IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 8, AUGUST 2020

1767

A Hybrid Update Strategy for I/O-Efficient
Out-of-Core Graph Processing

Xianghao Xu

, Fang Wang, Hong Jiang

, Fellow, IEEE, Yongli Cheng",

Dan Feng, Member, IEEE, and Yongxuan Zhang

Abstract—In recent years, a number of out-of-core graph processing systems have been proposed to process graphs with billions of edges
on just one commodity computer, due to their high cost efficiency. To obtain a better performance, these systems adopt a full I/O model that
scans all edges during the computation to avoid the inefficiency of random I/Os. Although this model ensures good I/O access locality, it
leads to a large number of useless edges to be loaded when running graph algorithms that only access a small portion of edges in each
iteration. An intuitive method to solve this I/O inefficiency problem is the on-demand 1/0O model that only accesses the active edges. However,
this method only works well for the graph algorithms with very few active edges, since the I/0O cost will grow rapidly as the number of active
edges increases due to the increasing amount of random 1/Os. In this article, we present HUS-Graph, an efficient out-of-core graph
processing system to address the above I/O issues and achieve a good balance between I/O traffic and I/O access locality. HUS-Graph
adopts a hybrid update strategy including two update models, Row-oriented Push (ROP) and Column-oriented Pull (COP). It supports
switching between ROP and COP adaptively, for the graph algorithms that have different computation and I/O features. For traversal-based
algorithms, HUS-Graph also provides an immediate propagation-based vertex update scheme to accelerate the vertex state propagation
and convergence speed. Furthermore, HUS-Graph adopts a locality-optimized dual-block representation to organize graph data and an
I/0-based performance prediction method to enable the system to dynamically select the optimal update model between ROP and COP.

To save the disk space and further reduce I/O traffic, HUS-Graph implements a space-efficient storage format by combining several graph
compression methods. Extensive experimental results show that HUS-Graph outperforms two existing out-of-core systems GraphChi and

GridGraph by 1.2x-52.8x.

Index Terms—Graph processing, out-of-core, 1/0O, hybrid update strategy

1 INTRODUCTION

RAPH data has been widely used to model and solve
many problems in application areas ranging from social
networks to web graphs, from chemical compounds to bio-
logical structures, etc. However, with the real-world graphs
growing in size and complexity, processing these large and
complex graphs in a scalable way has become increasingly
more challenging. While a distributed system (e.g., Pregel
[1], PowerGraph [2], GraphX [3] and Gemini [4]) is a natural
choice for handling these large graphs, a recent trend initi-
ated by GraphChi [5] advocates developing out-of-core sup-
port to process large graphs on a single commodity PC.
Out-of-core graph processing systems (e.g., GraphChi [5],
X-Stream [6] and GridGraph [7]) utilize secondary storage

o X. Xu, F. Wang, D. Feng, and Y. Zhang are with the Wuhan National
Laboratory for Optoelectronics, School of Computer Science and Technology,
Huazhong University of Science and Technology, Wuhan, Hubei 430074,
China. E-mail: {xianghao, wangfang, dfeng, zyx)@hust.edu.cn.

e H. Jiang is with the Department of Computer Science and Engineering,
University of Texas at Arlington, Arlington, TX 76019.

E-mail: hong.jiang@uta.edu.

o Y. Cheng is with the College of Mathematics and Computer Science, Fuzhou
University, Fuzhou, Fujian 350116, China, and also with the Wuhan
National Laboratory for Optoelectronics, School of Computer Science and
Technology, Huazhong University of Science and Technology, Wuhan, Hubei
430074, China. E-mail: chengyongli@fzu.edu.cn.

Manuscript received 28 Dec. 2018; revised 1 Feb. 2020; accepted 5 Feb. 2020.
Date of publication 11 Feb. 2020; date of current version 23 Mar. 2020.
(Corresponding author: Fang Wang.)

Recommended for acceptance by P. Sadayappan.

Digital Object Identifier no. 10.1109/TPDS.2020.2973143

to process very large graphs and achieve scalability with-
out massive, costly hardware. Furthermore, they overcome
the challenges faced by distributed systems, such as load
imbalance and significant communication overhead. When
processing an input graph, out-of-core systems divide the
vertices into disjoint intervals and break the large edge list
into smaller shards containing edges with source or destina-
tion vertices in corresponding vertex intervals. They process
one vertex interval and its associated edge shard at a time. To
obtain a better performance, these systems adopt a full I/O
model to utilize the sequential bandwidth of disk and mini-
mize the random I/Os. In this way, each edge shard is loaded
entirely into memory, even though a large number of edges
in the shard may not be needed.

Fig. 1 shows the percentage of active edges (the edges that
have active sources vertices and are accessed in current itera-
tion) per iteration for different iterative graph algorithms on
LiveJournal graph [8]. For PageRank,' all edges are always
active as all vertices compute their PR values in each iteration.
For Breadth-first Search (BFS) and Weakly Connected Com-
ponents (WCC), the number of active edges is small in most
iterations. In this case, the pursuit of high I/O bandwidth
overshadows the usefulness of data accesses. Repeatedly

1. This is a standard implementation of PageRank. There is another
implementation of PageRank (PageRank-Delata) where vertices are
active in an iteration only if they have accumulated enough change in
their PR value.

1045-9219 © 2020 |IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on August 03,2020 at 21:09:37 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0001-9822-2469
https://orcid.org/0000-0001-9822-2469
https://orcid.org/0000-0001-9822-2469
https://orcid.org/0000-0001-9822-2469
https://orcid.org/0000-0001-9822-2469
https://orcid.org/0000-0002-1477-9751
https://orcid.org/0000-0002-1477-9751
https://orcid.org/0000-0002-1477-9751
https://orcid.org/0000-0002-1477-9751
https://orcid.org/0000-0002-1477-9751
https://orcid.org/0000-0002-5250-9437
https://orcid.org/0000-0002-5250-9437
https://orcid.org/0000-0002-5250-9437
https://orcid.org/0000-0002-5250-9437
https://orcid.org/0000-0002-5250-9437
mailto:xianghao@hust.edu.cn
mailto:wangfang@hust.edu.cn
mailto:dfeng@hust.edu.cn
mailto:zyx@hust.edu.cn
mailto:hong.jiang@uta.edu
mailto:chengyongli@fzu.edu.cn

1768

[—=— PageRank —e— BFS —— WCC |

120
X 100{ ==
@
8 804
S 601
(]
= 401
ks
© 204
0,

2 4 6 8 10 12
iterations

Fig. 1. The percentage of active edges per iteration.

loading the useless edges incurs significant I/O inefficiencies
that degrade the overall performance. An intuitive method to
solve this problem is the on-demand I/O model that only
accesses the active edges. However, this method only works
well for the graph algorithms with very few active edges. It
incurs a large amount of small random disk accesses when
the number of active edges is large due to the discontinuous
distribution of active edges on disk. Dynamic Shards pro-
posed in [9] eliminate this issue of random disk accesses by
developing dynamic partitions whose layouts change during
the runtime to compactly capture the set of active edges. It
achieves this in light-weight manner by marking the active
edges during compute phase and writing those marked edges
back in separate partitions on disk during write-back phase.
While [9] significantly eliminates loading of inactive edges, it
requires writing back active edges. This dilemma motivates
us to propose a new out-of-core system that achieves a good
balance between I/O traffic and I/O access locality.

In this paper, we present HUS-Graph, an I/ O-efficient out-
of-core graph processing system with a hybrid update strat-
egy. Our work is inspired by state-of-art shared-memory
graph processing systems [10], [11] that utilize an adaptive
push-pull model to handle graphs with different densities of
active edges (percentage of active edges in all edges). When
the density of active edges is sparse, these systems adopt a
push-style model to only traverse the active edges and push
updates to their destination vertices, which skips the process-
ing of useless edges. When the density of active edges is
dense, these systems adopt a pull-style model where each
vertex collects data from its neighbors through its incoming
edges and then updates its own value with the collected data,
which eliminates atomic operations and enables full parallel-
ism. By adaptively switching between these two update mod-
els, the system can handle different active edges densities
with optimized performance. We extend this hybrid solution
to the disk-based scenario. However, this is non-trivial work
due to the following reasons. First, in both push and pull
models, the vertices access their neighbors to update or
obtain data. This can cause a large number of random and fre-
quent disk accesses in out-of-core systems when the vertex
values are too large to be cached in memory, which impacts
the overall performance. Second, in order to gain optimal per-
formance, it requires us to explore an effective performance
prediction mechanism that guides the system to adaptively
switch between push and pull models. HUS-Graph solves
these problems by adopting a locality-optimized graph repre-
sentation and an I/O-based performance prediction method.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 8, AUGUST 2020

The main contributions of our work are summarized as
follows.

o Locality-optimized graph representation. HUS-Graph pro-
poses a dual-block representation to organize the
graph data. It divides the vertices into several disjoint
intervals and groups the outgoing and incoming edges
of a vertex interval in out-blocks and in-blocks accord-
ing to the source and destination vertices respectively.
By restricting data access to each out-block or in-block
and corresponding source and destination vertices,
access locality can be ensured under the dual-block
representation.

e Hybrid update strateqy. HUS-Graph proposes two
update models, Row-oriented Push (ROP) and Col-
umn-oriented Pull (COP), to accommodate different
computation and I/O loads. When running algorithms
with sparse active edge sets, ROP only traverses the
active edges and pushes updates to vertices, which
avoids the loading of useless data. When running algo-
rithms with dense active edge sets, COP streams all
edges and updates vertices by pulling updates from
neighbors, which overcomes the challenges of random
disk accesses. For traversal-based algorithms, HUS-
Graph also provides an immediate propagation-based
vertex update scheme to accelerate the vertex states
propagation and convergence speed. By utilizing an
I/O-based performance prediction method, HUS-
Graph can dynamically select the optimal update
model based on the I/O load of the current iteration.

e Space-efficient storage format. To save the disk space
and further reduce 1/0 traffic, HUS-Graph imple-
ments a space-efficient storage format by combining
several graph compression methods. Compared with
our previous work [12], the space-efficient storage
format can reduce disk consumption by up to 71 per-
cent, which further significantly reduces 1/O traffic
and improves system performance with very little
extra preprocessing and decompression time.

e Extensive experiments. We evaluate HUS-Graph on
several real-world graphs with different algorithms.
Extensive evaluation results show that HUS-Graph
outperforms GraphChi and GridGraph significantly,
from 4.1x to 58.2x and from 1.2x to 29.3x respectively
due to its efficient hybrid update strategy that brings
a great improvement of I/O performance.

The rest of the paper is organized as follows. Section 2
presents the background and motivation. The system design
is detailed in Section 3. Section 4 presents an extensive
performance evaluation. We discuss the related works in
Section 5 and conclude this paper in Section 6.

2 BACKGROUND AND MOTIVATION

In this section, we first introduce the I/0 issues of out-of-
core graph processing systems. Then we present the promi-
nent features of the adaptive push-pull model and its apply-
ing in shared-memory and distributed systems. This helps
motivate us to propose a new out-of-core system that uti-
lizes the hybrid solutions to solve the I/O issues of current
out-of-core systems.

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on August 03,2020 at 21:09:37 UTC from IEEE Xplore. Restrictions apply.

XU ETAL.: HYBRID UPDATE STRATEGY FOR I/O-EFFICIENT OUT-OF-CORE GRAPH PROCESSING

source vertex é destination vertex —> write —-»> read

|
|
|
i
|
| ~
| ~
| ~
! Saign
3 : S
| -7
| 7
. ; Ve
® @©
|
The push model i The pull model

Fig. 2. The push and pull models.

2.1 1/O Issues in Out-of-Core Systems

As many works [5], [6], [7] have shown, out-of-core graph
processing systems can efficiently process billion-scale graphs
on a PC. They process large graphs by efficiently using the
disk drives. As the major performance bottleneck is disk I/O
overhead [9], these systems are usually optimized for the
sequential performance of disk drives and eliminate random
I/0s by scanning the entire graph data in all iterations of
graph algorithms. This full I/O model can be wasteful for
algorithms that access only small portions of data during each
iteration, such as BFS in Fig. 1. On the other hand, the on-
demand I/O model that is based on the active edges can avoid
loading the useless data. Unfortunately, it incurs a large
amount of small random disk accesses due to the randomness
of the active vertices. As we know, random access to disk
drives delivers much less bandwidth than sequential access.
Therefore, only accessing the useful data for out-of-core graph
processing is an overkill when the number of active vertices is
large. [9] solves this problem by employing dynamic parti-
tions whose layouts are dynamically adjustable in each itera-
tion. It achieves this in light-weight manner by marking the
active edges during compute phase and writing those marked
edges back in separate partitions on disk during write-back
phase. Although [9] can eliminate random disk accesses, it
requires writing back active edges.

2.2 Adaptive Push-Pull Model

The push and pull update models are extensively used in
graph processing [4], [10], [11]. As shown in Fig. 2, in the
push model, each vertex passes the updates to its neighbors
through its outgoing edges. In the pull model, each vertex
collects data from its neighbors through its incoming edges,
and then updates its own value with the collected data. Obvi-
ously, push and pull are suitable for different scenarios,
which is determined by the number of active edges. Specifi-
cally, sparse active edge set prefers the push model, since
the system only traverses the outgoing edges of the active
vertices where new updates are made. Contrarily, dense
active edge set prefers the pull model, since it significantly
reduces the contention in updating vertex states via locks or
atomic operations. Inspired by this principle, several shared-
memory systems [10], [11] and distributed systems [4], [13]
adopt an adaptive update model during graph processing.
For example, Ligra [11] proposes a lightweight graph proc-
essing framework that adaptively switches between the
push and pull models according to the densities of active
edge set in a shared-memory machine. Gemini [4] extends

1769

Graph Algorithms

U

HUS-Graph

‘ Hybrid Update Strategy ‘

‘ Dual-block Graph Representation ‘

‘ 1/O-based Performance Prediction Method ‘

‘ Space-efficient Storage Format ‘

J

Storage Devices

Fig. 3. The HUS-Graph architecture.

such adaptive design to distributed systems and proposes a
sparse-dense signal-slot model.

However, current out-of-core systems either use the push
model [6], [7] or the pull model [5], [14]. Furthermore, the
push model for these systems is based on all vertices rather
than the active vertices, since they put a higher priority on
I/0O access locality rather than I/O traffic. Actually, the
adaptive push-pull model works well for out-of-core sys-
tems as well. When running algorithms with sparse active
edge sets, the push model enables selective data access that
only traverses the active edges, which fully avoids the load-
ing of useless data. When running algorithms with dense
active edge sets, the pull model sequentially accesses the
edges of all vertices, which overcomes the challenges of ran-
dom accesses and enables full parallelism. This motivates
us to extend this hybrid solution to disk-based scenario to
solve the I/O issues of current out-of-core systems.

3 SyYSTEM DESIGN

In this section, we first introduce the system overview of
HUS-Graph. Then, we present the detail designs including
the graph representation, space-efficient storage format,
hybrid update strategy and the I/O-based performance pre-
diction method.

3.1 System Overview

A graph G = (V, E) is composed of its vertices V and edges
E. For a directed edge e = (u,v), we refer to e as v's in-edge,
and u’s out-edge. Additionally, u is an in-neighbor of v, v is an
out-neighbor of u. The computation of a graph G is usually
organized in several iterations where V and E are read and
updated. Updating messages are propagated from source
vertices to destination vertices through the edges. The com-
putation terminates after a given number of iterations or
when it converges.

Like previous out-of-core graph processing systems,
HUS-Graph focuses on maximizing the I/O performance as
well. It improves the I/O performance by achieving a good
balance between I/O traffic and I/O access locality. To
achieve this, it adopts a hybrid update strategy including
Row-oriented Push (ROP) and Column-oriented Pull (COP),
inspired by shared-memory systems. Fig. 3 presents the sys-
tem architecture of HUS-Graph. To efficiently support the
hybrid update strategy, HUS-Graph adopts a dual-block
representation to organize the graph data, which provides

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on August 03,2020 at 21:09:37 UTC from IEEE Xplore. Restrictions apply.

1770 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 8, AUGUST 2020
Interval 1 Interval 2 Interval 1 Interval 2
1,2,3,4,5 6,7,8,9, 10 LSS SAZASRORIO
- hard 1 N hard 2 out-shard 1
{n-shar fn-shar | out-block (1,1) | out-block (1, 2)
in-block (1, 1) | in-block (1, 2) [145
2,4->1 o 1->6,7,9
4->2 L2545 AT IS 2->6,9
2 1,5->7 3525 5->7,10
,4->3 4->1,2,3 ’
1,2->9
1->4 5->10
ot out-shard 2
in-block (2, 1) in-block (2, 2)

- out-block (2, 1) | out-block (2, 2)
6,8->1 7,9->6 1,24, 6->8
6,9->2 9,10->7 7->5 7->6,8

6,9,10->4 6,7,9->8 8->1 8->10
6,7,10 > 5 8.>10 9->2,4 9->6,7,8
10->4,5 10 -> 7
(a) Example graph (b) In-blocks (c) Out-blocks

Fig. 4. lllustration of the dual-block representation.

fast loading of out-edges (in ROP) and scanning of in-edges
(in COP). By restricting data access to each out-block or in-
block and corresponding source and destination vertices,
locality can be ensured under the dual-block representation.
In addition, HUS-Graph implements an 1/O-based perfor-
mance prediction method that enables the system to dynami-
cally select the optimal update model based on the I/O load
of the current iteration.

Compared with current graph processing systems, HUS-
Graph is different in the following two aspects.

Compared with current out-of-core systems, HUS-Graph
handles graph algorithms that have different computation
and I/O loads (number of active edges) with hybrid update
strategy to achieve an optimal performance. While current
out-of-core systems either adopt a push-style update [6], [7],
[15] or a pull-style update [5], [14]. Second, HUS-Graph
achieves a good balance between I/O traffic and 1/0O access
locality, while current out-of-core systems improve the I/O
access locality at the expense of larger amount of disk I/0O,
which degrades the overall performance especially when
the number of active edges is small.

Compared with shared memory or distributed systems
that use the adaptive push/pull model, HUS-Graph makes
great efforts and proposes different techniques to overcome
several new challenges when extending adaptive push/pull
model to out-of-core systems. First, in both push and pull
models, the vertices frequently access their neighbors to
update the latter or obtain data for their own update. This
can cause a large number of random disk accesses in out-of-
core systems when the vertex values are too large to be
cached in memory, notably reducing system performance.
Second, in order to gain optimal performance, some impor-
tant issues such as the proper switching time and effective
performance prediction model must be explored, which is
not easy in an out-of-core system whose performance
depends highly on disk I/O overhead. To address these chal-
lenges, HUS-Graph adopts a locality-optimized graph repre-
sentation and an I/O-based performance prediction method.

3.2 Graph Representation

The hybrid update strategy requires the system to store
both out-edges and in-edges of vertices to support the adap-
tive processing. Unlike previous systems [4], [11] that use
1-dimensional partitioning to store the out-edges/in-edges,
HUS-Graph adopts a 2-dimensional partitioning method
and implements a dual-block representation to improve the
locality of vertex access.

Like many out-of-core systems, HUS-Graph first splits
the vertices V of graph G into P disjoint intervals. Each inter-
val associates two edge shards, in-shard and out-shard, to
respectively store the in-edges and out-edges of the vertices
within the interval. Moreover, each in-shard is further parti-
tioned into P in-blocks according to their source vertices.
Similarly, each out-shard is partitioned into P out-blocks
according to their destination vertices. Edges inside each in-
block and out-block are respectively sorted by the destina-
tion and source vertices. In this way, both in-edges and out-
edges are partitioned into P x P edge blocks. Each in-block
(i, j) or out-block (i, j) contains edges that start from vertices
in interval i and end in vertices in interval j. By selecting P
such that each edge-block and the corresponding vertices
can fit in memory, HUS-Graph can ensure good locality
when processing each edge-block.

Fig. 4 shows the dual-block representation of an example
graph. The vertices are divided into two equal intervals (1,
5) and (6, 10), the in-edges and out-edges are respectively
partitioned into four in-blocks and four out-blocks accord-
ing to the two intervals. For example, the out-edge (1, 6) is
partitioned into out-blocks (1, 2) since vertex 1 belongs to
interval 1 and vertex 6 belongs to interval 2.

In addition, we also maintain the index to the edges for
each vertex. We refer to in-index (i, j) as the vertex index of
in-block (i, j) and out-index (i, j) as the vertex index of out-
block (i, j). This enables selective loading of the active edges
in ROP and parallel update in COP.

3.3 Space-Efficient Storage Format

Since the dual-block representation stores both in-edges and
out-edges plus the vertex index of each in-block and out-
block, the storage size of of a graph is 2(|E| + P|V|) where P
is the number of vertex intervals. This consumes more disk
space than the existing graph representations such as Com-
pressed Sparse Row (CSR) [5] whose storage size of a graph
is |E| + |V]. To solve this problem, we implement a more
space-efficient storage format by combining several graph
compression methods, i.e., compression of undirected graph
and ID compression.

Compression of Undirected Graph. For undirected graphs,
HUS-Graph stores each edge twice, one for each of the two
directions. Assuming that the example graph in Fig. 4a is
undirected, its dual-block representation is shown in Fig. 5.
Actually, for an undirected edge e = (u, v), e can be regarded
as the in-edge and out-edge of u and v simultaneously.
Therefore, in-block (1, 1) and out-block (1, 1) are a duplicate

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on August 03,2020 at 21:09:37 UTC from IEEE Xplore. Restrictions apply.

XU ETAL.: HYBRID UPDATE STRATEGY FOR I/O-EFFICIENT OUT-OF-CORE GRAPH PROCESSING

Interval 1 Interval 2 Interval 1 Interval 2

1,2,3,4,5 6,7,8,9,10 12345 6,7.8,9,10
out-shard 1
in-shard 1 in-shard 2
inshard inshard out-block (1,1) out-block (1, 2)
in-block (1, 1) in-block (1, 2) 1->2,4,5
2,4,5>1 1,2,4,5>6 2->1,3,4,5 1Tenes
1,3,4,5->2 1,5->7 3->2,4,5 4—>s,§,1o
2,4,5->3 1->8 4->1,2,3 5->6,7,10
5->1,2,3 c
1,2,3->4 1,2,4->9 2
1,2,3->5 4,5->10 Sutehards
in-block (2, 1) in-block (2, 2)
789->6 out-block (2,1) out-block (2, 2)
6,7,8,9->1 ég'w 7 ->1,2,4, 6->7,8,9
6,9->2 pED LTI 7515 7->6,8,9,10
6,9,10 >4 & %5% 108 8->1 8->6,7,9,10
6'7'10—>5 6,7,8->9 9->1,2,4 9->6,7,8
L 7,8 ->10 10->4,5 10->7,8
(a) In-blocks (b) Out-blocks

Fig. 5. lllustration of the dual-block representation when storing an undi-
rected graph.

of each other as shown in Fig. 5, since the in-edges of an inter-
val can also work as the out-edges. Similarly, in-block (1, 2)
and out-block (2, 1), in-block (2, 1) and out-block (1, 2), in-
block (2, 2) and out-block (2, 2) duplicate each other as well.
Generally, for any two vertex intervals i and j in an undi-
rected graph G with dual-block representation, if ¢ = j, in-
block (7, j) is a duplicate of out-block (i, j). Otherwise, in-block
(i, j) is a duplicate of out-block (P —4i, P —j), where
1<i<P,1<j<P.

To avoid the above redundant storage, HUS-Graph only
maintains one copy of edges for undirected graphs, i.e.,
only storing in-edges or out-edges of an interval. For
directed graphs, it still stores both in-edges and out-edges
to enable different update models.

ID Compression. We further compress the ID of each ver-
tex. To achieve the compression of vertex ID, we combine
two methods as follows.

1)Delta-based compression. In fact, each edge block in the
dual-block representation consists of all adjacency lists of the
vertices in an interval. The adjacency list of a vertex consecu-
tively stores the vertex IDs of the vertex’s neighbors. We can
compress the adjacency lists by utilizing the delta values of
vertex IDs. This is motivated by the locality and similarity in
web graphs [16] where most links contained in a page lead
the user to some other pages within the same host. In this
case, the neighbors of many vertices may have similar vertex
IDs. Instead of storing all vertex IDs in an adjacency list,
HUS-Graph stores the vertex ID of the first neighbors and
the delta values of the vertex IDs of remaining neighbors.

2)Variable-length 1D encoding. Current systems always
store the ID as an integer of four-byte or eight-byte length.
However, this can be wasteful if the IDs are of small values.
HUS-Graph adopts a variable-length integer [17] to encode
each vertex ID (including the delta values). Thus, a minimum
number of bytes are used to encode a given integer. Further-
more, the most significant bit of each compressed byte is used
to indicate different IDs and the remaining seven bits are used
to store the value. For example, considering an adjacency list
of vertex v1, adj(vl) = {v2,v3,v4}. Supposing that the IDs of
v2,v3 and v4 are 2, 5, and 300, the adjacency list of vertex v1 is
stored as “00000010 10000011 00000010 00100111”. The first
byte is the id of 2, and the second byte is the delta value
between 2 and 5 (removing the most significant bit). The third
byte and the fourth byte have the same most significant bit,
which means that they are used to encode the same ID.
00000100100111 (after removing the most significant bit of the
third and fourth byte) is the delta value between 300 and 5.

1771

By combining these compression techniques, our space-
efficient storage format can reduce disk consumption by up
to 71 percent, which further significantly reduces I/O traffic
and improves system performance with very little extra pre-
processing and decompression time, as shown in the evalu-
ation results in Section 4.4.

3.4 Hybrid Update Strategy

Like many out-of-core systems, HUS-Graph processes the
input graph one vertex interval at a time. Algorithm 1
shows the computation procedure of HUS-Graph in one
iteration. For the processing of each vertex interval, HUS-
Graph proposes two update models, Row-oriented Push
(ROP) and Column-oriented Pull (COP), to accommodate
different I/O and computation loads of graph algorithms.
The selection between ROP and COP is based on the num-
ber of active vertices with the I/O-based performance pre-
diction method that is further discussed in Section 3.7. For
both ROP and COP, we maintain two copies of vertex val-
ues for each interval i, source interval S; and destination
interval D;. S; stores the vertex values of previous iteration,
serving as the source vertices. D; stores the vertex values of
current iteration, serving as the destination vertices.

Algorithm 1. Pseudo Code of HUS-Graph Execution

1: for each interval i do
2 Out «— NewActiveVerticesSet
3: /*Identify the active vertices in interval i*/
4: Vaetive — GetActiveVertices(i)
5: /*Select the update strategy, using the I/O-based perfor-
mance prediction method*/
6: model — UpdateModelSelection(Vaetive)
7. if model = ROP then
8: /* Implement ROP model, using Alg. 2%/
9: RowOrientedPush(i, Out, Vaetive)
10: else
11: /* Implement COP model, using Alg. 3*/
12: ColumnOrientedPull(i, Out)
13: endif
14: end for

1)Row-oriented Push. Execution. ROP processes the input
graph by pushing updates through the out-edges with the
row-oriented process order. Algorithm 2 shows the proce-
dure of ROP to execute a vertex interval i. ROP successively
processes the out-blocks in a row from out-block (i, 1) to out-
block (i, P) (Lines 2 ~ 16). For the processing of each out-block
(i,j) (1 <j < P),ROP first loads vertex values of S; and D; as
well as the corresponding out-index. Then, it locates the out-
edges of the active vertices in the out-block based on the cor-
responding out-index and loads them into memory (Line 8).
As soon as the edges are loaded, ROP traverses the loaded
edges and pushes the updates to their out-neighbors with a
user-defined update function (Lines 9 ~ 14). In this process,
the vertex values in S; are read-only while the vertex values
in D; are write-only. If there is new vertex activated, it is
added to the new active vertex set and will be scheduled in
the next iteration (Lines 11 ~ 12). After the active edges in all
out-blocks of interval 7 (in the ith row) are processed, ROP
synchronizes the vertex values by replacing the values of
source intervals with the values of destination intervals for

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on August 03,2020 at 21:09:37 UTC from IEEE Xplore. Restrictions apply.

1772

[read [write

14,5

-, oo

1->4,5 1->6,7,9 =
2->1,3,5
3>5 (W26 35
4->1,2,3 (RSSO 41,23
[6->1,2,45 6->8 | H >1,2,4,
7->5 7->6,8 7->5
8->1 8->10 8->1
9->2,4 9->6,7,8 9->2,4
10->4,5 10->7 10->4,5

14,5
21,3,5

16,7,9
s1 (22535 2569 s1
3->5 5->7,10

451,23 |
= 651,245 658 i
7->6,8
8->10 $2
9->6,7,8
1057

1->6,7,9
2->6,9
5->7,10

6->8
7->6,8
8->10
9->6,7,8
10->7

7->5
S2 8->1
9->2,4
10->4,5

access out-block (1, 1) access out-block (1, 2)

(a) Processing vertex interval 1

synchronize the vertex values

Fig. 6. Execution procedure of ROP.

subsequent computation (Lines 17 ~ 19). Fig. 6 illustrates the
execution procedure of ROP with the example graph in Fig. 4.

Algorithm 2. Pseudo Code of RowOriented Push Function

1: Load fromDisk(S;)

2: /*parallel loops that overlap the processing of out-blocks of
one row*/

3: forjfrom 0 to P-1 do

4: Load fromDisk(D;)

5: OutIndex — out — index(i, j)

6: for each active vertex vin V.. do

7.

8

out — degree — OutIndex(v + 1) — OutIndex(v)
edges — LoadOut Edges(OutIndex(v), out — degree,
out — block(i, 7))

9: for each edge e in edges do
10: neighbor «— e.dst
11: if UserUpdate Function(v, neighbor) then
12: Out.add(neighbor)
13: end if
14: end for
15: end for
16: end for
17: for j from O to P-1 then
19: end for

Example. In the example of Fig. 6, ROP iterates over out-
block (1, 1) to out-block (1, 2) when processing interval 1. Sup-
posing that the active vertices of interval 1 in current iteration
are vertex 2, 5 and 10. ROP successively loads and processes
the out-edges of vertex 2 and 5 and updates their destinations
when executing each out-block. Furthermore, processing of
each out-block does not conflict with others due to the dis-
joint destination intervals. ROP can overlap the processing of
out-blocks to fully exploit the multi-threading. When the
processing of the first row of out-blocks is finished, ROP syn-
chronizes the vertex values of all source intervals and desti-
nation intervals and moves to the next row to process out-
block (2, 1) and out-block (2, 2).

I/O Cost Analysis. The I/O cost can be calculated by
the total size of data accessed divided by the random/
sequential throughput of disk access. Let M be the average
size of the compressed adjacency list of a vertex and N be the
size of a vertex value record. The active vertex set for each
vertex interval i is A;. In addition, T}, T}, T, and T, respec-
tively represent random read, random write, sequential read
and sequential write throughput (MB/s). For easy reference,
we list the notations in Table 1.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 8, AUGUST 2020

.

1->4,5
2->1,3,5
BET
4->1,2,3
6->1,2,45 6->8
7->5 7->6,8
S2 8->1 8->10 524
9->2,4 |9->6,7,8
10->4,5 | 10->7

/ D1 D2

1->6,7,9
2->6,9 S1
5->7,10

S1

10->4,5

10->4,5 10->7

access out-block (2, 1) access out-block (2, 2)

(b) Processing vertex interval 2

synchronize the vertex values

For ROP, when processing vertex interval i, HUS-Graph
only loads the out-edges of the active vertices, so the size of
the active edges is |A4;| x M since the edge blocks consist of
the compressed adjacency lists of vertices, as mentioned in
Section 3.3. In addition, the vertex values of source interval
(S;) and destination intervals (D; ~ Dp) as well as the vertex
indices are also loaded into memory. For the data writes,
since the mutable attributes are stored in vertices, only vertex
values of the destination intervals are written back to disk.
For the ease of expression, we assume that the number of ver-
tices in each interval is equal to |V'|/ P. Therefore, the I/ O cost
of processing vertex interval i, C,,,, can be expressed as

|Ai| x

M M2V x N |V xN
Cron = L R

Summary. ROP puts a higher priority on I/O traffic rather
than I/O access locality when processing a graph. It avoids
the loading of useless data by only loading the active edges.
Furthermore, with the row-oriented process order, ROP can
overlap the processing of out-blocks to fully exploit the
multi-threading when executing a vertex interval (Lines 2 ~
3), since the destination intervals of different out-blocks in a
row are disjoint.

2) Column-oriented Pull. Execution. COP processes the
input graph by pulling updates through the in-edges and
updating the vertices with the column-oriented process
order. Algorithm 3 shows the procedure of COP when exe-
cuting a vertex interval i. COP successively processes the in-
blocks in a column from in-block (1, i) to in-block (P, i) (Lines
2 ~ 19). For the processing of each in-block (j, 1) (1 < j < P),
COP streams all in-edges of the in-block and loads the vertex

TABLE 1

Notations
Notation Definition
G the graph G = (V, E)
1% vertices in G
E edgesin G
P number of intervals
A; active vertex set of interval i
M average size of a compressed adjacency list
N size of a vertex value
T random read throughput
Trw random write throughput
Ter sequential read throughput
Tow sequential write throughput

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on August 03,2020 at 21:09:37 UTC from IEEE Xplore. Restrictions apply.

XU ETAL.: HYBRID UPDATE STRATEGY FOR I/O-EFFICIENT OUT-OF-CORE GRAPH PROCESSING

[read [Wwrite
ZAPE 1256 R T 14,5
fe2 1557 = T By 251,35 | 12679
1 2,4->3 . s1 2,453 e 7 2->6,9
1,2->9 1,2->9 3->5
124 0 5510 14 | 510 4>1,23 | 52710
1,2,3->5 1,2,3->5 - s p—
6->1 7,96 6->1 7,956 e)
6,9->2 | 9,10->7 69>2 | 9,10->7 “ Zsif 73-1?08
6,9,10->3| 6,7,9>8 6,9,10->3 67,98 9524 |95 678
6,7,10>5 8->10 6,7,10>5 810 N

access in-block (1, 1) access in-block (2, 1) synchronize the vertex values

(a) Processing vertex interval 1

Fig. 7. Execution procedure of COP.

values of S; and D;. For each vertex in interval 7, it locates
its own in-edges and accesses its in-neighbors based on
the corresponding in-index of the in-block (Line 9). Then,
it collects data from the in-neighbors by reading S; and
updates its own value with a user-defined update function
(Lines 9 ~ 16). If there is new vertex activated, it is added
to the new active vertex set. After all in-blocks of the inter-
val 7 (in the ith column) are processed, COP replaces the S;
with D; to synchronize the vertex values (Line 20). Fig. 7
illustrates the execution procedure of COP with the exam-
ple graph in Fig. 4.

Algorithm 3. Pseudo Code of ColumnOriented Push Function
1: LoadfromDisk(D;)
2: forjfrom O to P-1 do
3: LoadfromDisk(S;)

4: InIndex «— in —index(j,1)

5. edges <« LoadInEdges(in — block(j,1))

6: /*each vertex pulls updates in parallel*/

7. foreach vertex vin D; do

8 in — degree < InIndex(v+ 1) — InIndex(v)

9: inedges — edges.locate(InIndex(v),in — degree)
10: for each edge e in inedges do
11: netghbor < e.src
12: if IsActive(neighbor) then
13: if UserUpdate Function(neighbor, v) then
14: Out.add(v)
15: end if
16: end if
17: end for
18: end for
19: end for
20: Si — D,j

Example. In the example of Fig. 7, COP iterates over in-
block (1, 1) to in-block (2, 1) when processing interval 1.
During the computation, each vertex in interval 1 can pull
updates from their in-neighbors through the in-edges to
update its own value in parallel. After the processing of the
first column of in-blocks, COP replaces S; with D; and
moves to process the next column.

I/O Cost Analysis. For COP, when processing vertex inter-
val i, HUS-Graph loads all in-edges within an interval. Fur-
thermore, the vertex values of source intervals (S; ~ Sp) and
destination interval (D;) as well as the vertex indices are also
loaded into memory. For the data writes, only vertex values

1773

2,451 1256 2,4->1 1,256 1->4,5

4->2 1557 4->2 1557 25135 1->6,7,9

s1 2,4->3 2 s1 2,43 z s1 177 2569
1,2->9 1,259 355

14 150 >4 | 510 41,23 >0

B 1,235 1,2,3>5 - 2 5%

6->1 7,956 6->1 | 7,96 i §

= 6,9->2 | 9,10->7 6,9>2 | 9,10->7 ;115 781?08

6,9,10->3| 6,7,9->8 6,9,10->3| 6,7,9->8 520 |05 6na

6,7,10->5 8->10 6,7,10->5 8->10 i | hes

access in-block (1, 2) access in-block (2, 2) synchronize the vertex values

(b) Processing vertex interval 2

of the destination interval are written back to disk. Thus C,,,
of vertex interval i is constant and can be expressed as

|4 Vv |4
. :%xkf+(%+2|V|)xN+%><N
o T@T TQ?U ’

Summary. Contrary to ROP, COP improves the I/O access
locality at the expense of larger amount of disk I/O. Although
it can not overlap the processing of the in-blocks in a column
due to the write conflicts, the parallelism within each in-block
can be achieved (Lines 6 ~ 7) since the edges are sorted by the
destination vertices. Note that ROP only accesses the out-
edges stored in out-blocks while COP only accesses the in-
edges stored in in-blocks. By restricting data access to each
out-block or in-block and corresponding source and destina-
tion vertices, both ROP and COP ensure the locality when
accessing vertices.

Note that our programming model is similar to Ligra’s
dense/sparse model [11]. In our programming model
(Algorithms 1, 2 and 3), only function UserUpdateFunction
is user-defined, while the others are provided by runtime.
UserUpdateFunction is applied to the edges to conduct the
user-defined programs, and identify if the destination vertex
is activated. Algorithm 4 shows the implementation of User-
UpdateFunction of Connected Components (CC).

Algorithm 4. UserUpdateFunction (s, d): CC

: Procedure CC

if s.label < d.label then
d.label = s.label
Return 1

else
Return 0

end if

: End Procedure

PN TR

3.5 Comparison With GridGraph-Like Systems

Note that, some works like GridGraph [7] also use a 2-
dimensional partitioning method and present a grid-like
format to improve the I/O performance, which is similar
to the dual-block representation of HUS-Graph. Moreover,
GridGraph also supports column-oriented and row-oriented
processing as well as selective scheduling. However, HUS-
Graph adopts some new designs in both graph representa-
tion and graph processing execution model.

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on August 03,2020 at 21:09:37 UTC from IEEE Xplore. Restrictions apply.

1774

read [write read & write

e o1 IESE
Z 1->4,5 - 1->6,7,9
7 e 1->6,7,9 2{>>14'355
Z 2>1,3,5 2560 o0 o9 260
3->S 5->7,10 P 5->7,10
4->1,2,3 4->1,2,3 b
1,245 658 61,245 6->8 |
7->5 7->6,8 7->5 7->6,8
s2 8->1 8->10 8->1 8->10
9->2,4 | 9->6,7,8 9->2,4 | 9->6,7,8
10->4,5 10->7 10->4,5 10->7

access out-block (1, 1) access out-block (1, 2)

2als | 178,70 2 aas | 17679
St 2->6,9 s1 g 2->6,9
4o123 | 5710 fenzs | DS%HW
6->1,2,4,5 658 6-51,2,4,5 6->8
755 7>68 2 755 7> 6,8
s2 8->1 8->10 52 8->1 8->1
9>24 |9->678 9>24 |9->6,78

10->4,5 10->7 10->4,5 10->7

access out-block (2, 1) access out-block (2, 2)

(a) Execution procedure of ROP

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 8, AUGUST 2020

[read [write 7 read & write

7 D2

7 2214_:21 1,2->6 2;‘4:21 1,256

2 1,5->7 - 1,5->7

s1 2,453 e 2,4->3 g
> 1,2,3->

1-=>4 5->10

7,9->6
9,10 ->7

6->1

6,9->2
6,9,10->3| 6,7,9->8
67, 10—>5‘ 8->10

6->1 7,9->6
6,9->2 9,10 > 7

6,9,10->3| 6,7,9->8

6,7,10>5| 8->10

s2

access in-block (1, 1) access in-block (2, 1)

2,4->1
4->2

s1 2,4->3
1->4

1,2,3->5

6->1 7,9->6

6,9->2 9,10->7

6,9,10->3| 6,7,9->8
s,7,1o->5‘ 8->10

2,4->1
4->2
s1 2,4->3
1->4
1,2,3->5 |
6->1 7,9->6
6,9->2 9,10->7
6,9,10->3| 6,7,9->8

6,7,10->5‘ 8->10 |

1,2->6

1,5->7

1,2->9
5->10

1,2->
1,5->7
1,2->

5->10
52

access in-block (1, 2) access in-block (2, 2)

(b) Execution procedure of COP

Fig. 8. Execution procedure of ROP and COP when using immediate propagation-based vertex update scheme.

In the graph representation, first, HUS-Graph stores both
in-edges and out-edges to enable hybrid processing. Second,
unlike GridGraph, HUS-Graph sorts the in-edges and out-
edges by the destination and source vertices respectively, so
that in-edges with the same destination vertex and out-edges
with the same source vertex are stored contiguously. This is
beneficial for the compression of edges and efficient parallel
processing. Third, HUS-Graph creates a vertex index struc-
ture to enable the selective loading of edges.

In the graph processing execution model, HUS-Graph
differs from GridGraph by adopting the following new
designs based on the graph representation.

Hybrid Processing. Although GridGraph can also support
column-oriented and row-oriented processing, it processes
each edge in one direction, i.e., top-down update (push-style
update) [11], shown in GridGraph’s programming model.
For HUS-Graplh, it provides different update models for dif-
ferent edges and processing orders. For out-edges (ROP),
HUS-Graph pushes updates to the destination vertices,
which is a top-down update. For in-edges (COP), HUS-
Graph adopts a pull-style model where each vertex pulls
updates from the source vertices, which is a bottom-up
update. By combining the two update models, HUS-Graph
can enable selective loading of edges when using the push-
style update and avoid the atomic operations when using
the pull-style update, as described in Section 2.2.

Efficient Edge Storing and Parallel Processing. Due to the
sorting of in-edges and out-edges, in-edges with the same
destination vertex and out-edges with the same source ver-
tex are stored contiguously. Therefore, HUS-Graph can
enable edge compression and space-efficient storage format
to reduce disk I/O. Moreover, fine-grained parallel process-
ing can be achieved as shown in Section 3.4. While for Grid-
Graph, it can not enable edges compression and fully utilize
the parallelism without sorting edges [18].

Fine-Grained Selective Scheduling. By efficiently using the
vertex index structure, HUS-Graph enables the selective
loading of the active edges and avoids the loading of useless
data. While for GridGraph, it can only skip processing the
sub-blocks without any active-edges. This means that it loads
and processes a sub-block even though there is only one
active edge, which is a much more coarse-grained selective
scheduling.

3.6 Immediate Propagation-Based Vertex Update

In both ROP and COP, the vertex update messages are propa-
gated by synchronizing the vertex values of source and desti-
nation intervals. Concretely, HUS-Graph will replace the
values of source intervals with the values of destination inter-
vals until all out-blocks of one row are processed in ROP or
until all in-blocks of one column are processed in COP. We
call this an accumulation-based vertex update scheme. This
scheme is particularly suitable for sparse matrix multiplica-
tion algorithms such as PageRank. These algorithms will not
propagate update messages to vertices until all the update
messages from their source vertices are accumulated. For
traversal-based algorithms, they need not to accumulate all
update messages of source vertices to update the states of
vertices. For example, when running BFS, any active in-
neighbor of a vertex can send an update message to it and
make it active. Therefore, the accumulation-based vertex
update scheme is suboptimal for these algorithms since the
updated messages can not be applied instantly, which slows
down the speed of vertex state propagation.

Based on this observation, HUS-Graph provides an immedi-
ate propagation-based vertex update scheme to accelerate the
vertex state propagation and convergence speed of traversal-
based algorithms. In this model, HUS-Graph applies the vertex
updates immediately after receiving the update messages.
Fig. 8 shows the executions of ROP and COP in the immediate
propagation-based vertex update scheme with the example
graph in Fig. 4. Here, we only maintain one copy of vertex
values for each interval, which means that the source intervals
work as the destination intervals at the same time. Therefore,
the update messages are propagated to the destination vertices
instantly with no need for vertex values synchronization, and
the newly updated vertices can propagate update messages
to their destination vertices in the subsequent processing in
the same iteration. For example, when processing in-block(1, 1)
in COP, as shown in Fig. 8b, vertex 1 that is newly updated
by vertex 2 and vertex 4 is treated as a newly activated
vertex from which vertex 4 and vertex 5 pull updates in the
subsequent processing. While in the accumulation-based ver-
tex update scheme as shown in Fig. 7a, vertex 4 and vertex 5
can only read vertex 1’s value of the last iteration, which
slows down the vertex state propagation and convergence
speed of algorithms. The first source interval S1 and the first

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on August 03,2020 at 21:09:37 UTC from IEEE Xplore. Restrictions apply.

XU ETAL.: HYBRID UPDATE STRATEGY FOR I/O-EFFICIENT OUT-OF-CORE GRAPH PROCESSING

destination interval D1 are identical physically and will be
read and updated simultaneously, although they are logically
separated.

3.7 1/0-Based Performance Prediction Method

The key to gain optimal performance is to select the fastest
update model between ROP and COP. Moreover, unlike
shared-memory systems [10] or distributed systems [19]
whose performance depend on CPU performance or com-
munication cost, the major performance bottleneck of out-of-
core systems is I/O cost. HUS-Graph proposes a simple I/O-
based performance prediction method that enables the sys-
tem to dynamically select the optimal update model based
on the I/Oload of the current iteration.

The I/O-based Performance Prediction Method estimates
and compares the I/O cost of ROP and COP when execut-
ing a vertex interval to guide the system to select the opti-
mal update model. According to the I/O cost analysis in
Section 3.4, the I/0O traffics of vertex values and vertex indi-
ces for both ROP and COP are almost identical, except for
the vertex values writes that have a slight impact on the I/O
performance. Therefore, if C,,, < C,,, we have

|Al-\xM<%xM

ﬂ"r‘ - Tsr
It can be seen that
14 T

The parameters A;, |V| and P can all be collected and
computed in the runtime. Furthermore, the disk access
throughput 7). and T}, can be measured by using several
measurement tools such as fio [6] before we conduct the
experiments. This provides an accurate performance estimate
that enables the system to select the proper update model.

To reduce the extra computational overhead, HUS-Graph
calculates and compares C.,, and C,,, just when the number
of active vertices is less than a user-modified threshold «. In
our experiments, « is empirically set to 5 percent of all verti-
ces. If the number of active vertices is larger than «, HUS-
Graph selects COP model regardless of the current active
vertices.

4 EVALUATION

In this section, we present experimental evaluation of our
system HUS-Graph in comparison with state-of-the-art out-
of-core graph processing systems.

4.1 Experiment Setup
Platform and Benchmarks. The hardware platform used in our
experiments is a 16-core commodity machine equipped with
16 GB main memory and 500 GB 7200 RPM HDD, running
Ubuntu 16.04 LTS. In addition, a 128 GB SATA2 SSD is
installed to evaluate the scalability. The program is compiled
with gec version 5.4.0.

The datasets for our evaluation are all real-world graphs
with power-law degree distributions, summarized in Table 2.
LiveJournal, Twitter2010, Friendster and SK2005 are social

1775
TABLE 2
Datasets Used in Evaluation

Dataset Vertices Edges Type

LiveJournal [8] 4.8 million 69 million Social Graphs
Twitter2010 [20] 42 million 1.5billion Social Graphs
Friendster [16] 66 million 1.8 billion Social Graphs
SK2005 [16] 51 million 1.9 billion Social Graphs
UK?2007 [21] 106 million 3.7 billion =~ Web Graphs
UKunion [21] 133 million 5.5 bilion Web Graphs

graphs, showing the relationship between users within each
online social network. UK2007 and UKunion are web graphs
that consist of hyperlink relationships between web pages,
with larger diameters than social graphs. The in-memory
graph LiveJournal is chosen to evaluate the scalability of
HUS-Graph. The other five graphs are respectively 1.5x,
1.9x,2.1x, 3.9x and 6.1x larger than available memory.

The benchmarks algorithms used in our evaluation
include three traversal-based graph algorithms, Breadth-first
search (BFS), Weak Connected Components (WCC), and Sin-
gle Source Shortest Path (SSSP), and a representative sparse
matrix multiplication algorithm known as PageRank. BFS,
WCC and SSSP vary the number of active vertices in differ-
ent iterations and can effectively evaluate the hybrid update
strategy of HUS-Graph. We run these algorithms until con-
vergence. For PageRank, all vertices are always active as
each vertex receives messages from its neighbors to compute
the new rank value in all iteration. We run five iterations of
PageRank on each dataset. In addition, we use the accumula-
tion-based vertex update scheme for PageRank and use the
immediate propagation-based vertex update scheme for
other three traversal-based graph algorithms.

Systems for Comparison. We compare HUS-Graph with three
baseline out-of-core graph processing systems. One is the first
version of HUS-Graph (we name it as HUS-Graph-v1) [12].
We compare HUS-Graph against HUS-Graph-v1 to evaluate
the effects of the newly proposed optimizations including the
space-efficient storage format and immediate propagation-
based vertex update scheme. The other two systems for com-
parison are GraphChi [5] and GridGraph [7]. GraphChi is an
extensively-used out-of-core graph processing system that
supports vertex-centric scatter-gather computation model. It
exploits a novel parallel sliding windows (PSW) method to
minimize random disk accesses. GridGraph uses a 2-Level
hierarchical partition and a streaming-apply model to reduce
the amount of data transfer, enable streamlined disk access,
and maintain locality. For all compared systems, we provide
16 execution threads for the executions of all algorithms.

Evaluation Methodology. We first explore the effects of our
system designs including hybrid update strategy, I/O-
based performance prediction method, space-efficient stor-
age format and immediate propagation-based vertex update
scheme. Then, we compare HUS-Graph against other sys-
tems on runtime of algorithms and I/O traffic. Finally, we
evaluate the scalability of HUS-Graph by observing the
improvement when more hardware resource is added.

4.2 Effect of Hybrid Update Strategy

Fig. 9 shows the effect of the hybrid update strategy of HUS-
Graph, by comparing the Hybrid model that adaptively

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on August 03,2020 at 21:09:37 UTC from IEEE Xplore. Restrictions apply.

1776

ROP [COP [l Hybrid 40 I ROP]
200
@ 150{ ﬁ'é
[} QO
% 1004 g
c £
= s50]- Q
0 4
BFS WCC sSSP BFS WCC SSSP
(a) Comparison of execution time (b) Comparison of I/O traffic
(Twitter2010) (Twitter2010)
800 150+
o 1204
@ 600 @ "
Q 15} i —
£ 4001 =
€ £ 604
= o
2001-- L 4l
0 04
BFS WCC SSSP BFS WCC SSSP
(c) Comparison of execution time (d) Comparison of I/O traffic
(SK2005) (SK2005)

Fig. 9. Comparison of different update strategies.

switches between ROP and COP with two baseline app-
roaches that respectively implement ROP and COP in each
iteration. Figs. 9a and 9c shows the comparisons of runtime
with different models on Twitter2010 and SK2005. Figs. 9b
and 9d shows the corresponding comparisons of 1/0 traffic.
As we see from the results, the Hybrid model always
achieves the best performance, as it selects the optimal I/O
model and update model for each vertex interval in each iter-
ation. For BFS and SSSP where the number of active vertices
is small in most iteration, COP has the worst performance as
it loads the entire edges in each iteration. For WCC where
most vertices are active in the first few iterations, ROP has the
worst performance due to the significant overheads of ran-
dom disk accesses.

As to I/0 traffic, ROP enables selective data access based
on the active vertices and accesses the least amount of data
for all algorithms. COP streams the whole of data to achieve
good I/0 access locality. Thus, it accesses the most amount
of data. Based on the I/O-based performance prediction
method, the Hybrid model dynamically selects between
ROP and COP. Therefore, the I/O traffic for the Hybrid
model is moderate.

Theoretically, only using ROP can also accommodate dif-
ferent I/O and computation loads of graph algorithms. For
sparse active edge sets, ROP only loads the active edges to
skip useless data. For dense active edge sets, ROP streams

[Adaptive-ROP Adaptive-ROP Hybrid

me(s)

runti

runtime(s)
o = N W s OO N ©

o PageRank BFS
(b) Twitter2010

“PageRank BFS
(a) LiveJournal

WCC

WCC

Fig. 10. Adaptive-ROP vs. hybrid.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 8, AUGUST 2020

F—=—ROP —e— COP —— Hybrid| F—=— ROP —s— COP —— Hybrid|

350

180
300
150
250
— 120 —
e < 200
£ 90 £ 150
S 60 5 100
30 50
0 0
0 5 10 15 20 25 30 0 5 10 15 20 25 30

iteration

(b) WCC

iteration

(a) BFS

Fig. 11. Effect of the 1/0O-based performance prediction model.

all edges to avoid random disk accesses. The switch can be
easily achieved by using our I/O-based performance predic-
tion method (We referred this execution model as Adaptive-
ROP). However, we take COP to handle dense active edge
sets for better computational efficiency as follows. First, COP
adopts a pull-style update model that can avoid the expen-
sive atomic operations and make better use of parallelism
especially when the number of active edges is large, as
described in Section 2.2. Second, as many studies [10], [11]
have shown, the pull-style update (bottom-up approach) can
significantly reduce accesses to vertices that have already
been visited and improve the performance of traversal-based
algorithms. To further demonstrate the superiority of our
Hybrid model (ROP+COP), we compare the performance of
these two methods in Fig. 10. Thanks to the better computa-
tional efficiency, Hybrid model outperforms Adaptive-ROP
in all cases. Specifically, for PageRank, BFS and WCC, Hybrid
model respectively outperforms Adaptive-ROP by 2.6x, 1.6x
and 1.8x. Actually, the more dense the active edge sets (like
PageRank), the more superiority Hybrid has, due to the data
contention when updating vertices faced by ROP. On the
other hand, when the graph becomes larger, the superiority
of Hybrid model becomes smaller due to the increasing disk
I/O costs. Even though, Hybrid model still outperforms
Adaptive-ROP by up to 1.9x for the Twitter graph.

4.3 Effect of I/0-Based Performance
Prediction Method

To evaluate the effectiveness of the I/O-based performance
prediction method, we run two algorithms (BFS and WCC)
that exhibit different I/O features on Ukunion with three
different update models, ROP, COP and Hybrid, and report
the runtime of different models in each iteration (30 itera-
tions) in Fig. 11. The two algorithms produce different num-
bers of active vertices in each iteration, which is appropriate
to evaluate the accuracy of the the I/O-based performance
prediction method.

As shown in Fig. 11, the performance gap between ROP
and COP is quite significant. The performance of COP is rela-
tively constant since it loads all graph data in per iteration,
while the performance of ROP depends on the number active
vertices. For BFS, ROP outperforms COP in most iterations,
except in few iterations (iteration 11 ~ 17) where there are a
large number of active vertices that cause frequent random
disk accesses. For WCC, COP performs better in the first few
iterations when most vertices remain active, while ROP per-
forms better when many vertices reach convergence. HUS-
Graph is able to select the optimal update model based on the
I/O-based performance prediction method in most iterations,

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on August 03,2020 at 21:09:37 UTC from IEEE Xplore. Restrictions apply.

XU ETAL.: HYBRID UPDATE STRATEGY FOR I/O-EFFICIENT OUT-OF-CORE GRAPH PROCESSING

Il GraphChi Il GridGraph
I HUS-Graph-v1 [l HUS-Graph

required disk space(GB)

Twitter Friendster SK2005 UK2007 UKunion

Fig. 12. Comparison of disk space consumption.

except iteration 10 of BFS and iteration 5 of WCC. These
wrong predictions are usually around the intersection of the
ROP” and COP’ performance curves. This indicates that we
can implement a more accurate and fine-grained performance
evaluation and prediction method to find the critical point
where the update strategy switches between ROP and COP.

4.4 Effect of Space-Efficient Storage Format

Fig. 12 compares the required disk space of HUS-Graph
with GraphChi, GridGraph and HUS-Graph-v1. Note that
we only report the storage size of edges as the storage sizes
of vertices and degrees are negligible. Compared with
HUS-Graph-vl, HUS-Graph that incorporates the space-
efficient storage format can reduce disk consumption by up
to 71 percent. For GraphChi and GridGraph, they respec-
tively store the edges in CSR and edge list format. Although
they only maintain one copy of edges, the storage usages of
them are 1.5x and 2.8x larger than that of HUS-Graph on
average. This further shows the efficiency of the space-effi-
cient storage format that adopts several graph compression
methods.

Fig. 13 shows the required disk space and runtime when
we store all the graph data without any compression (Base),
using compression of undirected graph (Undirected), and
when using all compression methods (All). We choose the
undirected Friendster graph to conduct this experiment
since it can efficiently evaluate the the effects of different
compression methods. We can see that the Undirected com-
pression can halve the storage size but has no impact on per-
formance. This is because HUS-Graph loads either the in-
edges or the out-edges for each vertex interval, and only
reducing the redundant storage of edges can not reduce the
1/0 traffic and improve performance. When using all com-
pression methods, the storage sizes of both in-edges and out-
edges reduce, leading to reduced I/0O traffic and improved
algorithmic performance.

9 1.0{
[
&
~ 081
[2]
z
g 0.6
E
§ 04y
(9]
2 02
a
e

0.0

Base Undirected ALL PageRank WCC
(a) diskspace (b) runtime

Fig. 13. Evaluating the effects of different compression methods.

1777

(N HUS-Graph-v1 B HUS-Graph]

ratio(%)
o

o

o o

LiveJournalTwitter2010 SK2005

UK2007
(b) Ratio of decompression time

0
Twitter2010 SK2005 UK2007 UKunion

(a) Comparison of preprocessing
time

Fig. 14. Evaluating the overheads of space-efficient storage format.

We also evaluate the overheads of space-efficient storage
format as it involves compression and decompression of
graphs. The overheads include two aspects: more prepro-
cessing (compression) time and extra decompression time.
The decompression time refers to the time spent on trans-
forming the compressed adjacency lists into initial adjacency
lists that the system can directly process. Fig. 14 shows the
evaluation results. In Fig. 14a, we compare the preprocessing
time of HUS-Graph and HUS-Graph-v1 to evaluate the com-
pression overheads. Due to the using of graph compression
techniques, the preprocessing time of HUS-Graph is longer
than that of HUS-Graph-v1 by 4.1-11.6 percent. Considering
the benefits that the space-efficient storage format brings,
these extra overheads in preprocessing are acceptable. More-
over, the graphs can be reused for many times after prepro-
cessing. Fig. 14b shows the percentage of decompression
time in overall runtime when running PageRank. The ratio
of decompression time ranges from 4.2 to 31.7 percent. We
can see that when the graph is larger, the ratio of decompres-
sion time is lower, since the disk I/O time dominates the
overall runtime. Therefore, the space-efficient storage format
may not work well for small graphs but can bring significant
benefits for large graphs. In addition, the decompression
procedure can be overlapped with vertex updating to further
reduce the extra overheads.

4.5 Effect of Inmediate Propagation-Based
Vertex Update Scheme

We conduct our evaluation on the traversal-based algorithms
(BFS, WCC and SSSP) with two vertex update schemes, accu-
mulation-based vertex update (AVU) and immediate propa-
gation-based vertex update (IPVU) schemes. Fig. 15 shows
the evaluation results. With the use of the IPVU model, the
performance of algorithms can improve by up to 39 percent,

relative runtime
Number of iterations

oA
SSSP BFS SSSP

(b) Number of iterations when
algorithms converge

BFS WCC
(a) Speedup

wCC

Fig. 15. Evaluating the benefits of immediate propagation-based vertex
update scheme.

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on August 03,2020 at 21:09:37 UTC from IEEE Xplore. Restrictions apply.

1778

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 8, AUGUST 2020

TABLE 3
Execution Time (in Seconds)
Data sets LiveJournal Twitter2010 Friendster SK2005 UK2007 UKunion
GraphChi 20.9 1624.3 2294.5 4973.6 7154.5 24062.3
BFS GridGraph 52 598.9 578.6 4066.3 6025.2 18929.2
HUS-Graph-v1 3.9 70.6 133.9 424.5 1278.2 1897.9
HUS-Graph 3.1 41.6 54.8 172.9 737.5 874.2
GraphChi 244 913.7 2612.3 2769.1 6862.8 15665.8
WCC GridGraph 5.1 522.5 526.8 3338.7 4783.8 13265.1
HUS-Graph-v1 3.5 74.8 103.5 289.2 1068.3 1223.6
HUS-Graph 1.9 45.6 449 113.9 674.1 734.2
GraphChi 214 1913.9 1802.4 5415.8 11495.8 56650.9
SSSP GridGraph 6.1 660.4 708.6 4180.7 7029.4 25554.2
HUS-Graph-v1 4.5 106.8 164.8 605.3 1750.7 2997.9
HUS-Graph 5.3 56.9 75.1 319.1 924.8 1461.4
GraphChi 16.6 928.6 2562.8 970.3 2774.8 3376.6
PageRank GridGraph 10.9 451.9 1009.4 669.1 1242.2 1829.3
8 HUS-Graph-v1 2.2 230.3 349.3 291.3 600.5 922.9
HUS-Graph 2.5 135.8 143.5 148.7 398.3 668.6

GraphChi [l GridGraph

420- HUS-Graph-v1 [l HUS-Graph

I GraphChi Il GridGraph
Il HUS-Graph-vi [l HUS-Graph

Il GraphChi lllll GridGraph
Il HUS-Graph-v1 [l HUS-Graph

2500+
360

3001 2000

240

1500+
180+

1000+
120+

/0 traffic(GB)
1/0 traffic(GB)

500+
60

0+ [oR!
PageRank BFS PageRank

(a) Twitter2010

SSsP

Fig. 16. I/0O traffic comparison.

as shown in Fig. 15a. Fig. 15b explains why the IPVU model
can improve the performance. It accelerates the vertex states
propagation and convergence speed of traversal-based algo-
rithms, reducing the number of iterations. The less iterations
mean less computation overheads and unnecessary 1/Os
when running the algorithms.

4.6 Comparison to Other Systems

We report the execution time of the chosen algorithms on dif-
ferent datasets and systems in Table 3. The execution time
includes the time of graph loading and vertices updating.
We can see that HUS-Graph achieves a significant speedup
over GraphChi and GridGraph. Specifically, HUS-Graph
outperforms GraphChi by 4.1x-58.2x and GridGraph by
1.2x-29.3x.

GraphChi utilizes the vertex-centric scatter-gather proc-
essing to maximize sequential disk access. However, it
writes a large amount of intermediate updates to disk, which
incurs great I/O overheads. In addition, it needs a subgraph
construction phase to construct the in-memory vertex-centric
data structure, which is a time-consuming process [6]. Grid-
Graph combines the scatter and gather phases into one
streaming-apply phase to avoid writing the intermediate
results to disk. While both GraphChi and GridGraph sup-
port the selective scheduling to reduce the loading of inactive
edges, it is very coarse-grained since it can only skip process-
ing the edge blocks without any active edges. This means it

1500

1200+

900+

600+

110 traffic(GB)

300+

BFS
(c) UK2007

[O
PageRank SSSP

BFS

(b) SK2005

SSSP

loads and processes an edge-block even though there is only
one active edge. Therefore, these systems still load many use-
less data, which is wasteful for the traversal-based algo-
rithms that only have a small number of active vertices in
most iterations. And that is just the greatest strength for
HUS-Graph that enables selective data access to avoid load-
ing useless data. For the three traversal-based algorithms
BFS, WCC, and SSSP, HUS-Graph respectively outperforms
GraphChi and GridGraph by 23.9x and 12.3x on average. For
the PageRank algorithm where all vertices are always active,
HUS-Graph implements COP model and loads the whole of
data in each iteration like other systems. Thanks to more
compact storage that leads to less amount of 1/0, HUS-
Graph remains outperforming GraphChi and GridGraph by
8.5x and 3.9x respectively.

When compared with HUS-Graph-vl, the use of the
space-efficient storage format and immediate propagation-
based vertex update scheme can improve the performance
by up to 2.5x. In addition, we can observe that these newly
proposed optimizations bring few benefits when processing
the small graph LiveJournal. This is attributed to the high
decompression overhead as shown in Section 4.4.

We compare the amount of I/O traffic of HUS-Graph
versus Graphchi, GridGraph and HUS-Graph-v1 in Fig. 16.
For PageRank, the I/0 traffic of HUS-Graph is respectively
9.8x and 4.2x smaller than that of GraphChi and GridGraph.
This is mainly attributed to HUS-Graph’s more compact

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on August 03,2020 at 21:09:37 UTC from IEEE Xplore. Restrictions apply.

XU ETAL.: HYBRID UPDATE STRATEGY FOR I/O-EFFICIENT OUT-OF-CORE GRAPH PROCESSING

GraphChilllll GridGraph

2500 I X-Streamlll HUS-Graph

20001 -~~~

1500 -

1000 f----mmmmmemee e

runtime(s)

BOO-----mzemomnae

0+
Twitter2010 SK2005

UK2007

UKunion

Fig. 17. Preprocessing time for different systems.

storage format. In addition, GraphChi has to write a large
amount of intermediate data (edge values) to disk for sub-
sequent computation, while GridGraph and HUS-Graph
only writes vertex values back to disk during the computa-
tion. For the two traversal-based algorithms BFS and SSSP,
the I/0 traffic of HUS-Graph is respectively 39.2x and 20.1x
smaller than that of GraphChi and GridGraph, thanks to the
combined effort of selective data access and space-efficient
storage format. Compared with HUS-Graph-v1, the use of
the space-efficient storage format and immediate propaga-
tion-based vertex update scheme can reduce I/O traffic
by up to 68 percent, since the more compact storage and
fewer number of iterations can lead to more smaller amount
of I/0 traffic.

We also evaluate the processing overhead (preprocessing
time) of different systems. The preprocessing procedure con-
verts an input graph into an internal form on the disk, which
consists of loading raw data into memory, partitioning and
building the graph. In addition to comparing with GraphChi
and GridGraph, we also include the preprocessing time of X-
Stream [6] that adopts an edge-centric model. As shown in
Fig. 17, X-Stream takes the least preprocessing time since it
does not need to sort edge lists during preprocessing [6]. It
only shuffles the original edge lists to several files according
to the streaming partitions [7], [22]. However, this partition-
ing strategy makes it inefficient for selective scheduling,

\+ GraphChi —e— GridGraph —A— HUS-G@M
16 gu, =+ 201

[—=— GraphChi —@— GridGraph —A— HUS-Graph
22

P—

14 18]
12 164
@ 10 w144
2 s 12]
€ 6
p=}
= 4

[N

[
£ 1ol
£ 5]
2
)
———— T 2
0 2 4 6 8 10 12 14 16 0 2 4 6 8 10 12 14 16

threads threads
(a) PageRank on Livedournal (b) BFS on Livedournal

o

—8— GraphChi —@— GridGraph —A— HUS-Graph| [—=— GraphChi —e— GridGraph —&— HUS-Graph|
0 00

300 80

. —————s— \,,-—-—-7
25001 7000
6000 *¢——e—e— o o
D 2000 B 5000
aé 1500 GE’ 4000
= =
€ ¢o—o—o——o— E 300
S 10004 3
2000
5001 Aa—y o, 1000 “A—u & o |
0 2 4 6 8 10 12 14 16 0 2 4 6 8 10 12 14 16
threads threads

(c) PagRank on UK2007 (d) BFS on UK2007

Fig. 18. Effect of the number of thread on performance.

HDD D
3600 I HOD [S5

3000 5000 ---

24004 - 4000+~
@

18004 - © 3000

1S

1200+ ---

runtime(s)

E 20004 -
2

1000+ ---

o
t=3
S

0 0
GraphChi GraphChi

GridGraph HUS-Graph
(a) wCC

GridGraph HUS-Graph
(b) SSSP

Fig. 19. Effect of 1/0 devices on performance.

which largely affects its performance on many algorithms
where only a portion of the vertices are used in some itera-
tions [7]. HUS-Graph takes more preprocessing time than
other systems, since it needs to build two copies of edges and
implement the space-efficient storage format. However, the
overhead of the extra preprocessing is more than offset by
the significant performance improvement it brings. For
example, the space-efficient storage format can greatly
reduce I/0O traffic, leading to improved algorithmic perfor-
mance. Moreover, the graphs can be reused for many times
after preprocessing, and the preprocessing overheads can be
significantly amortized.

4.7 Scalability

We evaluate the scalability of HUS-Graph by observing the
improvement when more hardware resource is added.
Fig. 18 shows the effect of the number of threads on system
performance. To access the effect of the parallel processing
on different algorithms and graphs, we choose two graph
algorithms with different computation and I/O features to
run on two graphs with different sizes. For the relatively
small graph LiveJournal whose data can completely fit in
memory, the degree of parallelism has significant impact on
system performances of HUS-Graph and GridGraph due to
the efficient use of parallelism. Moreover, both the perform-
ances of PageRank and BFS improve as the number of
threads increases. However, GraphChi shows poor scalabil-
ity as we increase the number of threads. The main blame is
GraphChi’s deterministic parallelism that limits the utiliza-
tion of multi-threads [5]. On the other hand, for the large
graph UK2007, system performance is limited by disk I/O.
Therefore, thread number has relatively less impact on the
performances of the three systems.

Fig. 19 shows the performance improvement of WCC and
SSSP on SK2005 when using different I/O devices. Com-
pared with disk cases, GraphChi, GridGraph and HUS-
Graph achieve an average speedup of 1.4x, 1.6x and 1.9x
respectively when using SSD for WCC and SSSP. This indi-
cates that HUS-Graph can benefit more from the utilization
of SSD, since HUS-Graph enables selective (random) data
access to load the active edges, which works well on SSD.

5 RELATED WORK

Many scalable graph processing systems have recently been
proposed. In this section, we introduce three categories of
existing graph processing systems: distributed systems, sin-
gle-machine shared-memory systems and single-machine
disk-based (out-of-core) systems.

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on August 03,2020 at 21:09:37 UTC from IEEE Xplore. Restrictions apply.

1780

5.1 Distributed Systems

Distributed systems usually require to hold the whole input
graph and all intermediate results and messages in mem-
ory. PEGASUS [23] and GBase [24] are based on MapRe-
duce, which works relatively well for graph algorithms
such as PageRank, but performs poorly for graph traversal
algorithms. Pregel [1] supports vertex-centric computing
model following Bulk-Synchronous Parallel (BSP) message
passing model [25]. It abstracts away the complexity of pro-
gramming in a distributed-memory environment and runs
users’ code in parallel on a cluster. However, this model
usually suffers from expensive synchronization overheads.
GraphLab [26] and PowerGraph [2] executes an asynchro-
nous model and uses shared memory for communication
among vertices instead of passing messages. Gemini [4]
applies multiple optimizations targeting computation per-
formance to build scalability on top of efficiency. Chaos
[27], BlitzG [28] and DD-Graph [29] utilize secondary stor-
age to scale distributed graph processing to out-of-core
scenery. Gluon [30] introduces a new approach to build dis-
tributed memory graph analytics systems that exploit het-
erogeneity in processor types (CPU and GPU), partitioning
policies and programming models.

5.2 Single-Machine Shared-Memory Systems
Single-machine shared-memory systems typically use a high-
end server with hundreds or thousands gigabytes of DRAM
to hold the whole graph. Ligra [11] is a lightweight shared-
memory framework and provides a programming interface
optimized for graph traversal algorithms. Ligra+ [31] inte-
grates compression techniques such delta compression into
Ligra. Unlike HUS-Graph that compresses the graphs to
save the disk space and further reduce I/O traffic, it uses the
compression techniques to enable faster in-memory parallel
graph processing using less memory footprints. Polymer [32]
is a NUMA-aware graph analytics system, which is moti-
vated by a detailed study of NUMA characteristics. Medusa
[33] and Garaph [34] fully exploit the power of modern hard-
ware and efficiently support GPU-accelerated graph process-
ing. Graphlt [35] is a novel DSL for graph processing that
generates fast implementations for algorithms with different
performance characteristics running on graphs with varying
sizes and structures.

5.3 Single-Machine Disk-Based Systems
Out-of-core graph processing systems enable users to ana-
lyze, process and mine large graphs in a single PC by effi-
ciently using disks. GraphChi [5] is a pioneering single-PC-
based out-of-core graph processing system that supports
vertex-centric computation and is able to express many
graph algorithms. By using a novel parallel sliding win-
dows method to reduce random I/O accesses, GraphChi is
able to process large-scale graphs in reasonable time.
Following GraphChi, a number of out-of-core graph proc-
essing systems are proposed to improve the I/O perfor-
mance. X-Stream [6] uses an edge-centric approach in order
to minimize random disk accesses. In each iteration, it
streams and processes the entire unordered list of edges dur-
ing the scatter phase and applies updates to vertices in the
gather phase. GridGraph [7] combines the scatter and gather

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 8, AUGUST 2020

phases into one streaming-apply phase and uses a 2-Level
hierarchical partition to break graph into 1D-partitioned ver-
tex chunks and 2D-partitioned edge blocks. It avoids writing
updates to disk and enables selective scheduling to skip the
inactive edge blocks. VENUS [14] explores a vertex-centric
streamlined computing model that enables streams the
graph data while performing computation. However, all
these systems improve the I/O access locality at the expense
of loading all graph data in all iterations, even though a large
amount of data is not needed.

GraphQ [36] and Wonderland [37] use abstraction to
accelerate graph processing. GraphQ improves the perfor-
mance of graph queries when queries can be answered
using only a few sub-graphs. Wonderland extracts graph
abstractions to capture certain graph properties, and then
performs abstraction-guided processing to infer better pri-
ority processing order and faster information propagation.
While this abstraction-based method can accelerate conver-
gence and reduce disk I/0, its scope of applications is lim-
ited to path-based monotonic graph algorithms.

Several systems use fast storage devices to accelerate out-
of-core graph processing. FlashGraph [38] and Graphene
[39] utilize SSD arrays and implement a semi-external mem-
ory graph engine to close the performance gap between in-
memory and out-of-core graph processing. GraFBoost [40]
adopts a sort-reduce accelerator to improve the I1/O perfor-
mance of flash storage. V-Part [41] extends GraFBoost by
using a novel to vertex partition scheme to alleviate extra
computation overheads. Compared with these systems,
HUS-Graph has better adaptability and works well for both
SSD and HDD.

[9] removes unnecessary 1/O of out-of-core graph proc-
essing by employing dynamic partitions whose layouts are
dynamically adjustable. These dynamic partitions com-
pactly capture the set of active edges in current iteration. It
achieves this by dropping inactive edges across iterations
and delaying computations that cannot be performed due
to missing edges. Although [9] can avoid the loading of use-
less data and eliminate random disk accesses, it has to write
back the active edges. LUMOS [42] is a dependency-driven
out-of-core graph processing system. It performs out-of-
order execution to proactively propagate values across iter-
ations while simultaneously providing synchronous proc-
essing guarantees.

6 CONCLUSION

In this paper, we present an I/O-efficient out-of-core graph
processing system called HUS-Graph that maximizes the I/O
performance by achieving a good balance between 1/0 traffic
and I/0 access locality. HUS-Graph adopts a hybrid update
strategy including Row-oriented Push (ROP) and Column-
oriented Pull (COP), to schedule disk I/O adaptively accord-
ing to running features of graph algorithms. Furthermore,
HUS-Graph adopts a locality-optimized dual-block graph
representation to organize the graph data and an I/O-based
performance prediction method that enables the system to
dynamically select the optimal update model based on the I/O
loads of current iteration. To save the disk space and further
reduce I/O traffic, HUS-Graph implement a space-efficient
storage format by combining several graph compression

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on August 03,2020 at 21:09:37 UTC from IEEE Xplore. Restrictions apply.

XU ETAL.: HYBRID UPDATE STRATEGY FOR I/O-EFFICIENT OUT-OF-CORE GRAPH PROCESSING

techniques. Our evaluation results show that HUS-Graph can
be much faster than GraphChi and GridGraph, two state-of-
the-art out-of-core systems.

ACKNOWLEDGMENTS

This work was supported by National Defense Preliminary
Research Project No. 31511010202, NSFC No. 61832020,
61772216, 61821003, and U1705261, Wuhan application
basic research Project No. 2017010201010103, Hubei prov-
ince technical innovation special Project No. 2017AAA129,
and Fundamental Research Funds for the Central Universi-
ties. This work was also supported by the Open Project
Program of Wuhan National Laboratory for Optoelectronics

No

. 2018WNLOKEFO006.

REFERENCES

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

G. Malewicz ef al., “Pregel: A system for large-scale graph proc-
essing,” in Proc. ACM SIGMOD Int. Conf. Manage. Data, 2010,
pp- 135-146.

J. E. Gonzalez, Y. Low, H. Gu, D. Bickson, and C. Guestrin,
“PowerGraph: Distributed graph-parallel computation on natural
graphs,” in Proc. USENIX Conf. Operating Syst. Des. Implementa-
tion, 2012, pp. 17-30.

J. E. Gonzalez, R. S. Xin, A. Dave, D. Crankshaw, M. J. Franklin,
and I. Stoica, “GraphX: Graph processing in a distributed data-
flow framework,” in Proc. USENIX Conf. Operating Syst. Des.
Implementation, 2014, pp. 599-613.

X. Zhu, W. Chen, W. Zheng, and X. Ma, “Gemini: A computation-
centric distributed graph processing system,” in Proc. USENIX
Conf. Operating Syst. Des. Implementation, 2016, pp. 301-316.

A. Kyrola, G. E. Blelloch, and C. Guestrin, “Graphchi: Large-scale
graph computation on just a PC,” in Proc. USENIX Conf. Operating
Syst. Des. Implementation, 2012, pp. 31-46.

A. Roy, I. Mihailovic, and W. Zwaenepoel, “X-stream: Edge-
centric graph processing using streaming partitions,” in Proc.
ACM Symp. Operating Syst. Princ., 2013, pp. 472-488.

X. Zhu, W. Han, and W. Chen, “GridGraph: Large-scale graph
processing on a single machine using 2-level hierarchical parti-
tioning,” in Proc. USENIX Conf. Usenix Annu. Tech. Conf., 2015,
pp- 375-386.

L. Backstrom, D. Huttenlocher, J. Kleinberg, and X. Lan, “Group
formation in large social networks: Membership, growth, and
evolution,” in Proc. ACM SIGKDD Int. Conf. Knowl. Discovery Data
Mining, 2006, pp. 44-54.

K. Vora, G. Xu, and R. Gupta, “Load the edges you need: A
generic I/O optimization for disk-based graph processing,” in
Proc. USENIX Conf. Usenix Annu. Tech. Conf., 2016, pp. 507-522.

S. Beamer, K. Asanovi¢, and D. Patterson, “Direction-optimizing
breadth-first search,” Sci. Program., vol. 21, no. 3-4, pp. 137-148, 2013.
J. Shun and G. E. Blelloch, “Ligra: A lightweight graph processing
framework for shared memory,” ACM SIGPLAN Notices, vol. 48,
no. 8, pp. 135-146, 2013.

X. Xu, F. Wang, H. Jiang, Y. Cheng, D. Feng, and Y. Zhang, “HUS-
graph: I/O-efficient out-of-core graph processing with hybrid
update strategy,” in Proc. 47th Int. Conf. Parallel Process., 2018,
Art. no. 3.

Z. Wang, Y. Gu, Y. Bao, G. Yu, and J. X. Yu, “Hybrid pulling/
pushing for I/O-efficient distributed and iterative graph
computing,” in Proc. ACM SIGMOD Int. Conf. Manage. Data, 2016,
pp. 479-494.

J.Cheng, Q. Liu, Z. Li, W.Fan, J. C. Lui,and C. He, “VENUS: Vertex-
centric streamlined graph computation on a single PC,” in Proc.
IEEE Int. Conf. Data Eng., 2015, pp. 1131-1142.

W.-S. Han et al., “TurboGraph: A fast parallel graph engine han-
dling billion-scale graphs in a single PC,” in Proc. ACM SIGKDD
Int. Conf. Knowl. Discovery Data Mining, 2013, pp. 77-85.

P. Boldi and S. Vigna, “The webgraph framework I: Compres-
sion techniques,” in Proc. Int. Conf. World Wide Web, 2004,
pp- 595-602.

P. Yuan, P. Liu, B. Wu, H. Jin, W. Zhang, and L. Liu, “TripleBit: A
fast and compact system for large scale RDF data,” Proc. VLDB
Endowment, vol. 6, pp. 517-528, 2013.

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

1781

Y. Chi, G. Dai, Y. Wang, G. Sun, G. Li, and H. Yang, “NXgraph:
An efficient graph processing system on a single machine,” in
Proc. IEEE Int. Conf. Data Eng., 2016, pp. 409-420.

Y. Cheng et al., “A communication-reduced and computation-
balanced framework for fast graph computation,” Front. Comput.
Sci., vol. 12, no. 5, pp. 887-907, 2018.

H. Kwak, C. Lee, H. Park, and S. Moon, “What is Twitter, a social
network or a news media?” in Proc. Int. Conf. World Wide Web,
2010, pp. 591-600.

P. Boldi, M. Santini, and S. Vigna, “A large time-aware web
graph,” ACM SIGIR Forum, vol. 42, no. 2, pp. 33-38, 2008.

P. Sun, Y. Wen, D. Ta, and X. Xiao, “GraphMP: I/O-efficient big
graph analytics on a single commodity machine,” IEEE Trans. Big
Data, to be published, doi: 10.1109/TBDATA.2019.2908384.

U. Kang, C. E. Tsourakakis, and C. Faloutsos, “PEGASUS: A peta-
scale graph mining system implementation and observations,” in
Proc. IEEE Int. Conf. Data Mining, pp. 229-238.

U. Kang, H. Tong, J. Sun, C.-Y. Lin, and C. Faloutsos, “GBASE: A
scalable and general graph management system,” in Proc. ACM
SIGKDD Int. Conf. Knowl. Discovery Data Mining, 2011, pp. 1091-1099.
L. G. Valiant, “A bridging model for parallel computation,” Com-
mun. ACM, vol. 33, no. 8, pp. 103111, 1990.

Y. Low, D. Bickson, J. Gonzalez, C. Guestrin, A. Kyrola, and
J. M. Hellerstein, “Distributed GraphLab: A framework for
machine learning and data mining in the cloud,” Proc. VLDB Endow-
ment, vol. 5, pp. 716-727,2012.

A. Roy, L. Bindschaedler, J. Malicevic, and W. Zwaenepoel,
“Chaos: Scale-out graph processing from secondary storage,” in
Proc. ACM Symp. Operating Syst. Princ., 2015, pp. 410-424.

Y. Cheng et al., “Using high-bandwidth networks efficiently for
fast graph computation,” IEEE Trans. Parallel Distrib. Syst., vol. 30,
no. 5, pp. 1170-1183, May 2019.

Y. Cheng ef al., “A highly cost-effective task scheduling strategy
for very large graph computation,” Future Gener. Comput. Syst.,
vol. 89, pp. 698-712, 2018.

R. Dathathri et al., “Gluon: A communication-optimizing substrate
for distributed heterogeneous graph analytics,” in Proc. ACM SIG-
PLAN Conf. Program. Lang. Des. Implementation, 2018, pp. 752-768.
J. Shun, L. Dhulipala, and G. E. Blelloch, “Smaller and faster: Par-
allel processing of compressed graphs with Ligra+,” in Proc. Data
Compression Conf., 2015, pp. 403-412.

K. Zhang, R. Chen, and H. Chen, “NUMA-aware graph-structured
analytics,” ACM SIGPLAN Notices, vol. 50, no. 8, pp. 183-193, 2015.

J. Zhong and B. He, “Medusa: Simplified graph processing on
GPUs,” IEEE Trans. Parallel Distrib. Syst., vol. 25, no. 6, pp. 1543-1552,
Jun. 2014.

L. Ma, Z. Yang, H. Chen, J. Xue, and Y. Dai, “Garaph: Efficient
GPU-accelerated graph processing on a single machine with bal-
anced replication,” in Proc. USENIX Conf. Usenix Annu. Tech.
Conf., 2015, pp. 195-207.

Y. Zhang, M. Yang, R. Baghdadi, S. Kamil, J. Shun, and S. Amara-
singhe, “Graphit: A high-performance graph DSL,” Proc. ACM
Program. Lang., vol. 2, no. OOPSLA, 2018, Art. no. 121.

K. Wang, G. Xu, Z. Su, and Y. D. Liu, “GraphQ: Graph query proc-
essing with abstraction refinement—Scalable and programmable
analytics over very large graphs on a single PC,” in Proc. USENIX
Conf. Usenix Annu. Tech. Conf., 2015, pp. 387-401.

M. Zhang, Y. Wu, Y. Zhuo, X. Qian, C. Huan, and K. Chen,
“Wonderland: A novel abstraction-based out-of-core graph proc-
essing system,” in Proc. 23rd Int. Conf. Archit. Support Program.
Lang. Operating Syst., 2018, pp. 608-621.

D. Zheng, D. Mhembere, R. Burns, J. Vogelstein, C. E. Priebe, and
A. S. Szalay, “FlashGraph: Processing billion-node graphs on an
array of commodity SSDs,” in Proc. USENIX Conf. File Storage
Technol., 2015, pp. 45-58.

H. Liu and H. H. Huang, “Graphene: Fine-grained IO manage-
ment for graph computing,” in Proc. USENIX Conf. File Storage
Technol., 2017, pp. 285-300.

S.-W. Jun, A. Wright, S. Zhang, S. Xu, and Arvind, “GraFboost:
Using accelerated flash storage for external graph analytics,” in Proc.
ACM/IEEE 45th Annu. Int. Symp. Comput. Archit., 2018, pp. 411-424.
N. Elyasi, C. Choi, and A. Sivasubramaniam, “Large-scale graph
processing on emerging storage devices,” in Proc. USENIX Conf.
File Storage Technol., 2019, pp. 309-316.

K. Vora, “LUMOS: Dependency-driven disk-based graph proc-
essing,” in Proc. USENIX Conf. Usenix Annu. Tech. Conf., 2019,
pp- 429-442.

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on August 03,2020 at 21:09:37 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1109/TBDATA.2019.2908384

1782

Xianghao Xu received the BE degree in com-
puter science and technology from the LiaoNing
University, ShenYang, China, in 2015. He is cur-
rently working toward the PhD degree majoring in
computer architecture at the Huazhong University
of Science and Technology, Wuhan, China. His
current research interests include computer
architecture and graph processing.

Fang Wang received the BE and master’s degrees
in computer science from the Huazhong University
of Science and Technology (HUST), Wuhan, China,
in 1994 and 1997, respectively, and the PhD degree
in computer architecture from the Huazhong Univer-
sity of Science and Technology (HUST), Wuhan,
China, in 2001, where she is currently a professor of
computer science and engineering. Her research
interests include distribute file systems, parallel 1/O
storage systems, and graph processing systems.
She has more than 50 publications in major journals
and conferences, including the Future Generation Computing Systems, the
ACM Transactions on Architecture and Code Optimization, HiPC, ICDCS,
HPDC, and ICPR

N :
" .
e B, o

Hong Jiang (Fellow, IEEE) received the BE degree
from the Huazhong University of Science and Tech-
nology, Wuhan, China, in 1982, the MASc degree
from the University of Toronto, Toronto, Canada, in
1987, and the PhD degree from the Texas A&M
University, College Station, Texas, in 1991. He is
Wendell H. Nedderman endowed professor and
chair of the Department of Computer Science and
Engineering, University of Texas at Arlington. His
research interests include computer architecture,
computer storage systems, and parallel/ distributed
computing. He serves as an associate editor of the IEEE Transactions on
Parallel and Distributed Systems. He has more than 200 publications in
major journals and international Conferences in these areas, including the
IEEE Transactions on Parallel and Distributed Systems, IEEE Transac-
tions on Computers, ACM Transactions on Storage, ACM Transactions on
Architecture and Code Optimization, Journal of Parallel and Distributed
Computing, ISCA, MICRO, FAST, USENIX ATC, USENIX LISA, SIGMET-
RICS, MIDDLEWARE, ICDCS, IPDPS, OOPLAS, ECOOR SC, ICS,
HPDC, and ICPR

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 8, AUGUST 2020

Yongli Cheng received the BE degree from
the Chang’an University, Xi'an, China, in 1998, the
MS degree from the FuzZhou University, FuZhou,
China, in 2010, and the PhD degree from the
Huazhong University of Science and Technology,
Wuhan, China, 2017. He is currently a teacher of
the College of Mathematics and Computer Sci-
ence, FuZhou University currently. His current
research interests include computer architecture
and graph computing. He has several publications
in major international conferences and journals,
including HPDC, IWQoS, INFOCOM, ICPR, the Future Generation Com-
puting Systems, IEEE/ACM Transactions on Networking, and Frontiers of
Computer Science.

Dan Feng (Member, IEEE) received the BE, ME,
and PhD degrees in computer science and technol-
ogy from the Huazhong University of Science and
Technology (HUST), Wuhan, China, in 1991, 1994,
and 1997, respectively. She is currently a professor
and dean of the School of Computer Science and
Technology, HUST. Her research interests include
computer architecture, massive storage systems,
and parallel file systems. She has more than 100
publications in major journals and international
conferences, including the |IEEE Transactions on
Computers, IEEE Transactions on Parallel and Distributed Systems, ACM
Transactions on Storage, Journal of Computer Science and Technology,
FAST, USENIX ATC, ICDCS, HPDC, SC, ICS, IPDPS, and ICPP. She
serves on the program committees of multiple international conferences,
including SC 2011, 2013, and MSST 2012.

Yongxuan Zhang received the BE degree in com-
puter science and technology from the Nanchang
Hangkong University, Nanchang, China, in 2005.
He is currently working toward the PhD degree
majoring in computer science and technology at
the Huazhong University of Science and Technol-
ogy, Wuhan, China. His current research interests
include graph processing and parallel/distributed
processing.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on August 03,2020 at 21:09:37 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

