IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 9, SEPTEMBER 2020

Minh Nguyen

for Data-Intensive Applications

, Sami Alesawi™, Ning Li, Hao Che, Senior Member, IEEE, and Hong Jiang

Abstract—The workflows of the predominant datacenter services are underlaid by various Fork-Join structures. Due to the lack of
good understanding of the performance of Fork-Join structures in general, today’s datacenters often operate under low resource
utilization to meet stringent service level objectives (SLOs), e.g., in terms of tail and/or mean latency, for such services. Hence, to
achieve high resource utilization, while meeting stringent SLOs, it is of paramount importance to be able to accurately predict the tail
and/or mean latency for a broad range of Fork-Join structures of practical interests. In this article, we propose a black-box Fork-Join
model that covers a wide range of Fork-Join structures for the prediction of tail and mean latency, called ForkTail and ForkMean,
respectively. We derive highly computational effective, empirical expressions for tail and mean latency as functions of means and
variances of task response times. Our extensive testing results based on model-based and trace-driven simulations, as well as a
real-world case study in a cloud environment demonstrate that the models can consistently predict the tail and mean latency within

20 and 15 percent prediction errors at 80 and 90 percent load levels, respectively, for heavy-tailed workloads, and at any load levels for
light-tailed workloads. Moreover, our sensitivity analysis demonstrates that such errors can be well compensated for with no more than
7 percent resource overprovisioning. Consequently, the proposed prediction model can be used as a powerful tool to aid the design of

1983

A Black-Box Fork-Join Latency Prediction Model

, Fellow, IEEE

tail-and-mean-latency guaranteed job scheduling and resource provisioning, especially at high load, for datacenter applications.

Index Terms—Tail latency, mean response time, Fork Join queuing networks, datacenter resource provisioning

1 INTRODUCTION

ORK-JOIN structures underlay many datacenter services,
Fincluding web searching, social networking, and big data
analytics. A Fork-Join structure is a critical building block in
the job processing workflow that constitutes a major part of
job processing time and hardware cost, e.g., more than two-
third of the total processing time and 90 percent hardware
cost for a Web search engine [1]. In a Fork-Join structure (see
Fig. 1), each job in an incoming flow spawns multiple tasks,
which are forked to, queued and processed at different
nodes, called Fork nodes in this paper, in parallel and its task
results are then merged at a Join node to yield the final result.
Due to barrier synchronization, the job response time is
determined by the slowest task, i.e., the tail probability,
which is hard to capture, from both modeling and measure-
ment points of view, making it extremely challenging to pre-
dict the job performance, e.g., the job tail latency.

Tail latency is considered to be the most important per-
formance measure for user-facing datacenter applications
[2], such as web searching and social networking, and nor-
mally expressed as a high percentile job response time, e.g.,

e M. Nguyen, N. Li, H. Che, and H. Jiang are with the Department of
Computer Science and Engineering, The University of Texas at Arlington,
Arlington, TX 76019. E-mail: mgnguyen@mavs.uta.edu, {ning.li, hong.
jiang|@uta.edu, hche@cse.uta.edu.

o S. Alesawi is with the Department of Computer Science and Engineering, The
University of Texas at Arlington, Arlington, TX 76019, and also with the
Faculty of Computing and Information Technology in Rabigh, King Abdulaziz
University, Jeddah 21589, Saudi Arabia. E-mail: salesawi@kau.edu.sa.

Manuscript received 29 July 2019; revised 27 Feb. 2020; accepted 3 Mar. 2020.
Date of publication 20 Mar. 2020; date of current version 16 Apr. 2020.
(Corresponding author: Minh Nguyen.)

Recommended for acceptance by jianfeng Zhan.

Digital Object Identifier no. 10.1109/TPDS.2020.2982137

the 99th percentile response time of 200 ms. Mean latency is
also an important performance measure for big data analyt-
ics workloads which are generally scale-out by design,
involving one or multiple rounds of parallel processing of a
(massive) number of tasks and task result merging phases
with barrier synchronization, based on, e.g., MapReduce [3]
or Spark [4] frameworks. In addition, it is harder but more
important' to predict the tail and mean latency under heavy
load conditions than light ones. This is because as the load
becomes heavier, so does the tail distribution, e.g., the 99th
percentile of memcached request latencies on a server
jumps from less than 1 ms at the load of 75 percent to 1 s at
the load of 89 percent [5].

Due to the lack of good understanding of the job-vs-task
performance of such workloads, i.e., how distributed task-
level performance determines the job-level performance,
especially in the high load” region, to provide high assurance
of meeting tail-latency and/or mean-latency SLOs for such
workloads, the current practice is to overprovision resources,
which however, results in low resource utilization in data-
centers [6], [7]. For example, aggregate CPU and memory
utilizations in a 12,000-server Google cluster are mostly less
than 50 percent, leaving 50 and 40 percent allocated CPU

1. In the low load region, tail and/or mean latency requirements can
be easily satisfied as the available resources are abundant. In contrast,
in the heavy load region in which the leftover resource is scarce,
resource allocation with high precision must be exercised to meet user
requirements.

2. The term “load” can be generally defined as the offered workload
per unit time divided by processing capacity per unit time. In the con-
text of Fork-Join structure, it is the maximum of the loads among all the
Fork nodes.

1045-9219 © 2020 |IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

https://orcid.org/0000-0002-1445-3700
https://orcid.org/0000-0002-1445-3700
https://orcid.org/0000-0002-1445-3700
https://orcid.org/0000-0002-1445-3700
https://orcid.org/0000-0002-1445-3700
https://orcid.org/0000-0002-4422-8678
https://orcid.org/0000-0002-4422-8678
https://orcid.org/0000-0002-4422-8678
https://orcid.org/0000-0002-4422-8678
https://orcid.org/0000-0002-4422-8678
https://orcid.org/0000-0002-1477-9751
https://orcid.org/0000-0002-1477-9751
https://orcid.org/0000-0002-1477-9751
https://orcid.org/0000-0002-1477-9751
https://orcid.org/0000-0002-1477-9751
mailto:mqnguyen@mavs.uta.edu
mailto:ning.li@uta.edu
mailto:hong.jiang@uta.edu
mailto:hong.jiang@uta.edu
mailto:hche@cse.uta.edu
mailto:salesawi@kau.edu.sa

1984

oE @ ODEoE
D
LE[T],V[T]

A Fork node as a black box

Fig. 1. Black-box Fork-Join model. Each job in the incoming flow spawns
k tasks mapped to & out of N Fork nodes. Each Fork node is treated as
a black box, completely determined by the mean and variance of the
task response time, i.e., E[T] and V[T7.

and memory resources, respectively, idle almost at all time
[6]. Similarly, in a large production cluster at Twitter, aggre-
gate CPU usage is within 20-30 percent even thought CPU
reservations are up to 80 percent and aggregate memory
usage is mostly within 40-50 percent while memory alloca-
tion consistently exceeds 75 percent [7]. Hence, how to
improve resource utilization or the load from currently less
than 50 percent to, say, 80-90 percent, while meeting strin-
gent SLOs has been a challenging issue for datacenter service
providers [7]. To this end, a key challenge to be tackled is how to
accurately capture the tail and mean latency with respect to various
Fork-Join structures at high load.

Fork-Join structures are traditionally modeled by a class
of queuing networks, known as Fork-Join queuing network
(FJQN) [8], as depicted in Fig. 1. FJQN's are white-box models
in the sense that all the Fork nodes are explicitly modeled as
queuing systems with given arrival process, queuing disci-
pline, and service time distribution. In this paper, we argue
that attempting to use FJQNs to cover a sufficiently wide
range of Fork-Join structures of practical interests is not a via-
ble solution. Instead, a black-box solution that can cover a
broad range of Fork-Join structures must be sought.

On one hand, FJQNs are notoriously difficult to solve in
general. Despite the great effort made for more than half a
century, to date, no exact solution is available even for the
simplest FJON where all the nodes are M/M/1 queues [9],
i.e., Poisson arrival process and one server with exponential
service time distribution. Although empirical solutions for
some FJQNs are available, e.g., [10], [11], [12], [13], [14], they
can only be applied to a very limited number of Fork-Join
structures, e.g., homogeneous case, the case of First-In-First-
Out (FIFO) queuing discipline, and a limited number of ser-
vice time distributions.

On the other hand, the design space of Fork-Join structures of
practical interests is vast. It encompasses (a) a wide range of
queuing disciplines and service time distributions (e.g., both
light-tailed and heavy-tailed) [8]; (b) the case with multiple
replicated servers per Fork node for failure recovery, task
load balancing, and/or redundant task issues for tail cutting
[15], [16] or fast recovery from straggling tasks [17]; (c) the
case where the number of spawned tasks per job may vary
from one job to another [18]; and (d) the case of consolidated
services, where different types of services and applications

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 9, SEPTEMBER 2020

may share the same datacenter cluster resources [19]. Clearly,
the existing FJONs can hardly cover such a design space in
practice.

To tackle the above challenges, in this paper, we propose
to study a black-box Fork-Join model for the prediction of job
tail and mean latency, called ForkTail and ForkMean, respec-
tively, to cover a broad range of Fork-Join structures of prac-
tical interests. By “black-box”, we mean that each Fork node
is treated as a black box, regardless of how many replicated
servers there are and how tasks are distributed, queued, and
processed inside the box. In other words, for a black-box
Fork-Join model, one can only use the task statistics measur-
able from outside of Fork nodes, e.g., the mean and variance
of the task response time (see Fig. 1). This is in stark contrast
to a white-box Fork-Join model where the exact task queuing
discipline and the service model for a Fork node must be
known. It also allows the number of spawned tasks per job,
k, to be a random integer taking values in [1, N], where N is
the maximum number of Fork nodes. As we shall see, our
black-box model can indeed adequately covers the above
design space.

However, general solutions to this model are unlikely to
exist, given the limited success in solving the white-box
FJQNs. Nevertheless, we found that for the black-box
model, empirical solutions under heavy load conditions do
exist, known as the central limit theorem for G/G/m queu-
ing systems, where the arrival process is general with inde-
pendent interarrival times, the queuing discipline is FIFO,
and there are m servers with general service time distribu-
tions, under heavy load [20], [21]. Inspired by this theorem,
we were able to demonstrate [22] that in a load region of
80 percent or higher, where resource provisioning with pre-
cision is most desirable and necessary, an empirical expres-
sion of the tail-latency for a special case of the black-box
model, i.e., k = N for all the requests, exists, which can pre-
dict the tail latencies within 15 percent error at any load lev-
els for light-tailed service time distribution and the load
level of 90 percent for heavy-tailed one in the cases (a) and
(b) in the design space mentioned above. As our sensitivity
analysis in Section 4 shows, such prediction errors can be
well compensated for with no more than 7 percent resource
overprovisioning.

The work in this paper makes the following contributions.
First, it generalizes the solution in [22] to also cover cases (c)
and (d) in the design space, hence, making it applicable to
most Fork-Join structures of practical interests. Second, it
gives the first empirical, universal solutions to tail and mean
job latencies for both black-and-white-box FJQNs at high
load and hence, it makes a contribution to the queuing net-
work theory as well. In fact, for any white-box FJQN with G/
G/1 Fork queuing servers, our approach leads to closed-
form approximate solutions, which are on par with the most
elaborate white-box solutions in terms of accuracy across the
entire load range at much lower computational complexity.
Third, comprehensive testing and verification of the pro-
posed approximations for tail and mean latency are per-
formed for all (a)-(d) Fork-Join structures, based on model-
based and trace-driven simulation, as well as a real-world
case study. Fourth, sensitivity analysis indicates that our pro-
posed solutions can lead to accurate resource provisioning
for data-intensive services and applications in a consolidated

NGUYEN ET AL.: BLACK-BOX FORK-JOIN LATENCY PREDICTION MODEL FOR DATA-INTENSIVE APPLICATIONS

datacenter environment at high load. Finally, preliminary
ideas are provided as to how to use this solution to facilitate
SLO-guaranteed job scheduling and resource provisioning,.

The rest of the paper is organized as follows. Section 2
introduces our black-box model and ForkTail and Fork-
Mean, the empirical approximations for the tail and mean
latency, respectively. Section 3 performs extensive testing
of the accuracy of these approximations. Section 4 presents
the sensitivity analysis for the proposed approximations.
Section 5 explores the range of applicability of the proposed
solutions. Section 6 discusses how the proposed approxi-
mations may be used to facilitate effective job scheduling
and resource provisioning with tail-latency-SLO guarantee.
Section 7 reviews the related work. Finally, Section 8 con-
cludes the paper and discusses future work.

2 MODEL AND SOLUTIONS

2.1 Black-Box Model

The black-box model described in this section greatly
extends the scope of the black-box model introduced in [22]
to address the entire design space mentioned in Section 1.

Consider a black-box Fork-Join model with each job in the
incoming flow spawning k tasks mapped to k out of NV Fork
nodes, as depicted in Fig. 1. The results from all & tasks are
finally merged at a Join node (i.e., the triangle on the right).
Jobs arrive following a random arrival process with average
arrival rate A\. Each Fork node may be composed of more
than one replicated servers for task-level fault tolerance, load
balancing, tail-cutting, and/or straggler recovery. An exam-
ple Fork node with three server replicas is depicted in Fig. 1.

The above model deals with a general case where k < N.
Note that the traditional FJQNs cover only a small fraction of
this design space, i.e., k = N, homogeneous Fork nodes with
a single server per node, which is modeled as a FIFO queuing
system.

General solutions to this model are unlikely to exists. For-
tunately, we are most interested in finding solutions in high load
regions where precise resource provisioning is highly desirable
and necessary. There is a large body of research results in the
context of queuing performance in high load regions (e.g.,
see [23] and the references therein). In particular, a classic
result, known as the central limit theorem for heavy traffic
queuing systems [20], [21], states that for a G/G/m queue
under heavy load, the waiting time distribution can be
approximated by an exponential distribution. Clearly, this
theorem applies to the response time distribution as well,
since the response time distribution converges to the wait-
ing time distribution as the traffic load increases. Inspired
by this result, we postulate that for tasks mapped to a black-
box Fork node and in a high load region, the task response
time distribution Fr(z) for any arrival process and service
time distribution can be approximated as a generalized
exponential distribution function [24], as follows,

Frz)=1—e"* 2 >0,a >0 >0, (1)
where o and g are shape and scale parameters, respectively.

The mean and variance of the task response time are given
by [24]

E[T] = Bly(a+1) —v(1)], 2

1985

VIT] = Bl (1) = '@+ 1)), ®)
where (.) and its derivative are the digamma and poly-
gamma functions.

From Egs. (2) and (3), it is clear that the distribution in
Eq. (1) is completely determined by the mean and variance of
the task response time. In other words, the task response time
distribution can be measured by treating each Fork node as a
black box as shown in Fig. 1. The rationale behind the use of
this distribution, instead of the exponential distribution, is
that it can capture both heavy-tailed and light-tailed task
behaviors depending on the parameter settings and mean-
while, it degenerates to the exponential distribution at & = 1
and E[T] = B.In [22], we showed that this distribution signifi-
cantly outperforms the exponential distribution in terms of
tail latency predictive accuracy.

Now, with all the Fork nodes in Fig. 1 being viewed as
black boxes, the response time distribution for any job with
k tasks can be approximated using the order statistics [9] as
follows,

k k

FO@) =] Pl =][- ey, @

i=1

Note that the above expression is exact if the response times
for tasks mapped to different Fork nodes are independent
random variables. This, however, does not hold true for any
Fork-Join structures, simply because the sample paths of the
task arrivals at different Fork nodes are exactly the same,
not independent of one another. This is the root cause that
renders the Fork-Join models extremely difficult to solve in
general. In what follows, we introduce ForkTail and Fork-
Mean, separately, based on this approximation.

2.2 ForkTail
ForkTail was originally presented in [25]. Our postulation is
that as load reaches 80 percent or higher where precise
resource provisioning is desirable and necessary, the tail-
latency prediction errors introduced by the above assumption
will become small enough for resource provisioning purpose.
Our extensive testing results in this paper provide strong sup-
port of the postulation, making our modeling approach the
only practically viable one for tail latency prediction.

Tail latency x,, defined as the pth percentile job response
time, can be written as,

2, = FP 7 (p/100), ®)

Eq. (5) simply states that in a high load region, the tail latency
can be approximated as a function of the means and varian-
ces of task response times for all & tasks at their correspond-
ing Fork nodes, irrespective of what workloads cause the
heavy load. The implication of this is significant. It means
that this expression is applicable to a consolidated datacenter
cluster where more than one service/application share the
same cluster resources. Moreover, this expression allows tail
latency to be predicted using a limited number of job sam-
ples thanks to its dependence on the first two moments of
task response times only, i.e., the means and variances.

The results so far is general, applying to the heteroge-
neous case, where task response time distributions may be

1986

different from one task to another, due to, e.g., the use of
heterogeneous Fork nodes and/or uneven background
workloads. As a result, the tail latency predicted by Eq. (5)
may be different from one job to another or even for two
identical jobs, as long as their respective Fork nodes do not
completely coincide with one another, or they are issued at
different times. In other words, Eq. (5) is a fine-grained tail
latency expression. For certain applications, such as offline
resource provisioning (see Section 6 for explanations) and
coarse-grained, per-service-based tail-latency prediction,
one may be more interested in the homogeneous case only.
In this case, the response time distribution can be further
simplified as,

FP(z) = (1 — e /). (6)

This is because the means and variances given in Egs. (2)
and (3) are the same for the homogeneous case. A coarser-
grained cumulative distribution function (CDF) of the job
response time can then be written as,

Fx(z) = Fy(alk) P(K = k), @)
k;

where Fyx(x|k;) is the conditional CDF of the job response
time for jobs with £; tasks, given by Eq. (6), i.e., Fx|x(z|k;) =
F)((k i)(;r), and P(K =k;) = P, is the probability that a job
spawns k; tasks.

Further assume that there are m job groups with distinct
numbers of tasks k;’s, i = 1,...,m, and corresponding prob-
abilities P;’s. We then have,

Fx(w) =Y P F& (@), ®)
i=1

Correspondingly, the tail latency for the m groups of jobs as
a whole can then be readily obtained, similar to Eq. (5), as
follows,

z, = Fy'(p/100). 9)

For example, the tail latency for a given service can be pre-
dicted by collecting statistics for k;’s and P’s, as well as
mean and variance of task response time and applying
them to the tail latency expression in Eq. (9).

2.2.1 Application to White-Box FJQNs

Clearly, the above black-box approach leads to closed-form
solutions for any white-box models whose analytical
expressions for the means and variances of task response
times are available, whether it is homogeneous or not. In
fact, our solution works for the case where different Fork
nodes may have different service time distributions and
queuing disciplines. For instance, our approach can be
applied to a large class of FJQNs, where each Fork node is
an M/G/1 queue or a more general G/G/1 queue, whose
mean and variance of the task response time can be com-
puted from Takdcs recurrence theorem [26] or the queuing
network analyzer [27], respectively.

2.3 ForkMean
While the approximations in Egs. (5) and (9) work well for
the job tail latency even for the k < N cases, it fails to

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 9, SEPTEMBER 2020

accurately predict the job mean response time,® yielding
more than three times larger errors for the same cases stud-
ied, especially for the case of light-tailed service time distri-
butions. We find that the reason for this to happen is due to
the fact that to accurately predict the job mean response
time, the entire job response time distribution including the
tail portion must be accurately captured, as the barrier syn-
chronization tends to push the job mean response time
towards the tail part of the task response time distribution,
as the workload scales out.

On the basis of the above modeling, this section aims at
finding solutions to reduce the prediction errors for the job
mean latency. To this end, we make the following two key
observations.

Observation 1. For a wide range of Fork-Join models, the
difference between the exact tail-mean ratio and the
model-based tail-mean ratio, derived from the CDF in
Eq. (4), hereafter called the gap and denoted as A, con-
verges to a constant as the number of Fork nodes becomes
large enough. Mathematically, we have,

x, 28

P P
———w =4, (10)
Tm Tm

where z, and ,, are the exact pth percentile and mean of
job latency, respectively, which can be estimated by
experiments, while z§° and 7} are derived from the pre-
diction model, i.e., Eq. (4). Hence, the mean latency can be
approximated as follows,

ge
Tp Zp

TRErAT RE4A

T amn
where z, ~ r;“ at high loads, since ForkTail give accurate
predictions for the pth percentile at high loads, as indi-
cated in the testing results, and R*® = 25° /%

m*

Fig. 2 illustrates the gaps for systems with different task
service time distributions, including light-tailed and heavy-
tailed ones, where each Fork node is a single server, i.e., with-
out replication. As one can see, the gap converges to a
constant as N becomes sufficiently large, say, N > 100, for all
the cases. Similar trends are also observed for the systems
with 3-replica Fork nodes with Round-Robin and redundant-
task-issue dispatching policies as well as the systems with
variable numbers of forked tasks (not shown here).

Observation 2. There is a strong correlation between the tail
heaviness of service time distribution and the gap A, ie., the
heavier the tail, the smaller the gap. It is evident from Fig. 2
that the light-tailed distributions, including Exponential and
Weibull, have larger gaps than the heavy-tailed ones, includ-
ing the truncated Pareto and empirical (defined in Section 3.1).
With this observation, we make the following postulation: The
gap is much more of a function of the tail heaviness of a service
time distribution than the service time distribution itself.

From the above observations, we propose two empirical
solutions, one is white-box and the other black-box, for
the approximation of the gap, A, and hence, the job mean
response time.

3. We use the terms ‘latency’ and ‘response time’ interchangely in
this paper.

NGUYEN ET AL.: BLACK-BOX FORK-JOIN LATENCY PREDICTION MODEL FOR DATA-INTENSIVE APPLICATIONS

jal: Tail-Mean latency ratios at load of 80% ‘Weibull: Tail-Mean latency ratios at load of 80%

1987

Truncated Pareto: Tail-Mean latency ratios at load of 80%

Empirical: Tail-Mean latency ratios at load of 80%

5 y

0
0 100 200 300 400 500 600 700 800 900 1000 0 100 200 300 400 500 600 700 800 900 1000
Number of nodes Number of nodes

Exponential: Tail-Mean latency ratios at load of 90% ‘Weibull: Tail-Mean latency ratios at load of 90%

0
0 100 200 300 400 500 600 700 8§00 900 1000 0 100 200 300 400 500 600 700 800 900 1000
er of nodes Number of nodes

Truncated Pareto: Tail-Mean latency ratios at load of 90% Empirical: Tail-Mean latency ratios at load of 90%

1 1

0 0
0 100 200 300 400 500 600 700 800 900 1000 0 100 200 300 400 500 600 700 800 900 1000
Number of nodes Number of nodes

0 0
0 100 200 300 400 500 600 700 800 900 1000 0 100 200 300 400 500 600 700 800 900 1000
Number of nodes. Number of nodes

Fig. 2. The gaps for Fork-Join systems with different service time distributions at load levels of 80 percent (upper row) and 90 percent (lower row).

2.3.1 White-Box Approach

This approach is based on the above postulation. Here we
consider a homogeneous white-box Fork-Join queuing
model where each Fork node can be modeled as a G/G/1
queue. With known interarrival and service time distribu-
tions, one can find the job response time distribution and
the corresponding tail and mean latencies, and so their ratio
R, from ForkTail. So to find the job mean latency, x,,, all
that is left to be done is to find A.

To this end, we first define tail heaviness, w(Fr). We use
Right Quantile Weight [28] which measures the tail heaviness
on the right side of a distribution, the region of interest in all
of our experiments. This tail weight measure is defined as,
Fpt (59 + ' (1 - 9) — 2F51(0.75)

B Y)y Y (Y

; (12)

where 0.5 < ¢ < 1 and F;!(q) is quantile ¢ of task service
time distribution Fr. To capture the tail effect but still retain
a reasonable robustness, we set ¢ = 0.99.

Based on our postulation, A = A(p,w), independent of
Fr(z). Here p is the load. In other words, as long as w(FéD) =
w(F}Q)), the two homogeneous Fork-Join models with differ-
ent service time distributions, F}l) and F}m, respectively, will
have the same gap. In other words, if one can find the func-
tion, A(p,w), using one distribution function with different
tail weights, this A(p,w) can then be used by any Fork-Join
models with other distribution functions to find the gap. In
this paper, we use the generalized exponential distribution in
Eq. (1) at different coefficients of variance to generate different
tail weights from Eq. (12) and the corresponding gaps and
then use nonlinear regression to find A(p, w). Table 1 shows
the gaps for different tail weights, averaged over N = 100 to
1,000 at three different load levels.

From experimental data with different distribution param-
meters, we found that the power function, ie., A = aw’ + ¢,

TABLE 1
The Gaps for Different Tail Heavinesses and Load Levels
Tail weight
Load
0.703 0.772 0.851 0918 0.962 098 0.999
75% 0486 0271 0.160 0.097 0.063 0.029 0.009
80% 0511 0.283 0.169 0.106 0.069 0.044 0.013
90% 0573 0.319 0.190 0.129 0.070 0.055 0.023

yields a very good fit to these gap-tail weight points. Fig. 3
illustrates the fitted curve at load level of 80 percent from
Table 1 with respect to the fitted points from the generalized
exponential distribution (the black points). It also shows the
actual points from other distributions, which are used for test-
ing in the experiments (the green points), relative to the fitted
curve. As one can see, the green points stay reasonably close
to the curve itself, meaning that our postulation indeed holds
true. Table 2 presents the fitted functions for the cases in
Table 1.

In summary, this white-box approach results in a closed-
form solution for the approximation of job mean latency,
which is composed of the following computation steps,

— With given E[T] and V[T], compute the tail and
mean latencies, i.e., z5° and zf; from the predicted
CDFin Eq. (4) and their corresponding ratio, i.e., R*°;

— With a given service time distribution F7, calculate
the tail weight w from Eq. (12), which is then
mapped to a A at a given load, e.g., using one of the
functions in Table 2;

— Approximate the mean latency using Eq. (11).

2.3.2 Black-Box Approach

The white-box approach above leads to closed-form solutions
for homogeneous white-box Fork-Join models with known

Gaps vs. tail weights - Load of 80%

121 « TFitted points |]
1P ¢ Testing points| 4
— Fitted curve
9087
2 0.6 xponential
< | A = 0.0322w %% + 0.0056
© 04 Weibull
02} . T.Pareto
ol Empirical e
065 07 075 08 085 09 095 1
Weight (w)

Fig. 3. An example of the gap-vs-tail-weight fitted curve.

TABLE 2
Examples of Fitted A(p, w) Curves
Load Function
75% A = 0.0371w 517 — 0.0052
80% A = 0.0322w %% 10,0056
90% A = 0.0274w851 4 0.0284

1988

»s Erlang-2 - ForkTail vs. EAT - 99th

Exponential - ForkTail vs. EAT - 99th

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 9, SEPTEMBER 2020

Hyperexponential-2 - ForkTail vs. EAT - 99th

I ForkTail-10% [ForkTail-50% [ForkTail-90% 25 B ForkTail-10% I ForkTail-50% [ForkTail-90% 2 R ForkTail-10% I ForkTail-50% [ForkTail90%
20 EEMEAT-10% [EEAT-50% [_1EAT-90% 20r EEMEAT-10% EEEAT-50% [_JEAT-90% 20 [EEMEAT-10% [EEAT-50% T
150 , 15F 15+ -
S lor g SRl S oy d
- S5+ - — 5+ = S5+ -
i< = =
E l_-—l | W A T o I 0 [S W 1 I - [
50 50 50
5 5 St -
-10F 1 -10F 101 al
s . . . s . . . 15 . . .
100 500 1000 100 500 1000 100 500 1000

Number of nodes

Number of nodes

Number of nodes

Fig. 4. Prediction errors for the 99th percentile response times for ForkTail and EAT.

service time distributions for Fork nodes. However, in prac-
tice, determining those distributions is nontrivial, e.g., for sys-
tems with multi-replica Fork nodes. Hence, it is necessary to
seek a black-box solution applicable to a wide range of Fork-
Join structures of practical interests.

Based on the Observation 1, i.e., A converges to a constant
as the number of Fork nodes becomes large enough, i.e.,
around 100, based on all the testing cases. This suggests that,
if for a target application, A can be measured on a small
testbed or by simulation, with 100 virtual machines/nodes, or
equivalently, a few commodity servers, e.g., 5, then the mean
latency can be predicted when the application is deployed on
a much larger number of nodes. This approach requires only
the means and variances of task response times as inputs, and
hence is a hybrid, black-box solution.

The steps taken to find the job mean latency are similar to
those for the white-box approach above except for step 2
where A is predicted by running experiments for the target
application on a system with a given number of Fork nodes,
e.g., 100, and measure the ratio gap between the results
from the experiments and the prediction model.

Compared to the white-box solution, the black-box one is
simpler and can be applied to a much wider range of Fork-
Join structures. However, as a hybrid approach, it requires to
run experiments, either via simulation or on a real testbed,
with an adequate number of Fork nodes, e.g., 100. Conse-
quently, it should be applied to large-scale systems where a
job is forked to at least hundreds of nodes, much larger than
the one used for testing. Note that the hybrid approach, which
combines analysis and simulation, is not unusual in analyzing
performance of the Fork-Join model. Indeed, it has been used
in several previous works in the literature [10], [13], [29].

3 VALIDATION

3.1 Tail Latency Prediction Validation

In this section, ForkTail is extensively validated against the
results from model-based simulation, trace-driven simula-
tion, and a case study in Amazon EC2 cloud. The validation
is performed for the systems with k = N, k£ < N, and consol-
idated services, separately. The accuracy of the prediction is
measured by the relative error between the value predicted
from ForkTail, ¢,, and the one measured from simulation or
real-system testing, ¢,,,, i.e.,

100(t, — tm,)
t’l}’ 1 ’

error =

3.1.1 Casel:k=N

A notable example for this case is Web search engine [30]
where a search request looks up keywords in a large inverted

index distributed on all the servers in the cluster. We validate
ForkTail with three testing approaches, i.e., white-box and
black-box model-based testing as well as a real-world case
study in Amazon EC2 cloud.

White-Box Model-Based Validation. Here we study the
accuracy of ForkTail when applied to homogeneous, single-
queuing-server-Fork-node Fork-Join systems with the assu-
mption that the service time distribution is known in
advance, the approach taken in all the existing works on per-
formance analysis of FJQNs [9]. The tail latency prediction
involves the following steps:

— Find the mean and variance of task response times
with the given task service time distribution;

— Substitute the above mean and variance into Egs. (2)
and (3), respectively, and solve that system of equa-
tions to find the scale and shape parameters of the
generalized exponential distribution in Eq. (1),
which is then used to approximate the task response
time distribution;

— Calculate the pth percentile of request response times
from Eq. (9).

First, we compare ForkTail against the state-of-the-art tail
latency approximation for homogeneous FJQNs [14], known
as EAT, which is derived from analytical results for single-
node and two-node systems. Fig. 4 shows the comparative
results for three service time distributions studied in [14],
i.e., Erlang-2, Exponential, and Hyperexponential-2, at the
loads of 10, 50, and 90 percent4 and numbers of nodes of
100, 500, and 1,000.

EAT provides more accurate (from a few to several per-
centage points) approximations for the 99th percentiles of
response times across all the cases studied. Much to our
surprise, our approach yields most of the errors within
10 percent, across the entire load range. Although outper-
forming our approach, EAT has its limitations. First, it can be
applied only to homogeneous FJQNs where each node can be
generally modeled as a MAP/PH/1 queuing system, i.e.,
Markovian arrival processes and phase-type service time dis-
tribution with one service center. Second, the method requires
the service time distribution to be known in advance and con-
verted into a phase-type distribution, which is nontrivial,
especially for heavy-tailed distributions [31]. Third, the
method may incur high computational complexity, depend-
ing on the selection of a constant C, whose value determines
the computational runtime and prediction accuracy. It takes

4. For EAT, the case for Hyperexponential-2 at the load of 90 percent
is not available, due to a numerical error running the code provided
in [14].

NGUYEN ET AL.: BLACK-BOX FORK-JOIN LATENCY PREDICTION MODEL FOR DATA-INTENSIVE APPLICATIONS

Empirical - 99th - single-server

Truncated Pareto - 99th - single-server

1989

Weibull - 99th - single-server

50F EEM10-node [J500-node 50F EEMI10-node [J500-node |] 50F WM 10-node [J500-node |
40 [100-node [_11000-node 40 [100-node [_11000-node 1 43&8 r I 100-node [_11000-node
S g SN0 1
5 5 5 0 ———
E- E- =-10F i
o o A ot
- - =30
40 F
50 50 50 ¢
50 75 80 90 50 75 80 90 50 75 80 90
Load (%) Load (%) Load (%)

Fig. 5. Prediction errors of the 99th percentile response times for white-box systems with single-server Fork nodes.

at least 2 seconds on our testing PC (Core i7-4940MX Quad-
core, 32GB RAM) to get the resulting percentiles even at
the lesser degree of accuracy with C' =100 (more than
300 seconds at C' = 500). In contrast, our method takes less
than 5 milliseconds to compute the required percentiles. As a
result, similar to other existing white-box solutions, EAT has
limited applicability for datacenter job scheduling and
resource provisioning in practice.

To cover a sufficiently large workload space, we further
consider service time distributions with heavy tails, which
are common in practice [32] and cannot be easily dealt with
by EAT, including the following,

— Empirical distribution measured from a Google search
test leaf node provided in [32], which has a mean ser-
vice time of 4.22 ms, a coefficient of variance (CV) of
1.12, and the largest tail value of 276.6 ms;

— Truncated Pareto distribution [31] with the same mean
service time and a CV of 1.2, whose CDF is given by,

_1-(L/z)"

Fs(x)fl_(L/H>a

0<L<z<H, (13)

where « is the shape parameter; L is the lower bound;
and H is the upper bound, which is set at the maxi-
mum value of the empirical distribution above, i.e.,
H = 276.6 ms, resultingino = 2.0119and L = 2.14 ms.
— Weibull distribution [8], also with the same mean ser-
vice time and a CV of 1.5, whose CDF is defined as,
Fs(z) =1 — exp[—(z/B)“] x>0, (14)
where o = 0.6848 and 8 = 3.2630 are shape and scale
parameters, respectively.

Fig. 5 presents the prediction errors for the 99th percentile
response times for the above cases. The Weibull distribution,
which is less heavy-tailed, consistently yields smaller errors,
well within 5 percent, for the entire load range studied, similar
to the light-tailed distribution cases studied earlier. The
empirical and truncated Pareto distributions, which are more
heavy-tailed, provide good approximations for the 99th per-
centiles at the load of 80 percent or higher, which is well
within 17 and 5 percent at the load of 80 and 90 percent,
respectively, agreeing with our postulation.

We also consider the cases with general arrival process
and general service time distribution, i.e., G/G/1 Fork
nodes. Fig. 6 shows the prediction errors for example cases
with Erlang-2 (CV = 0.5) and Hyperexponential-2 (CV = 1.2)
arrival processes and Truncated Pareto service time distribu-
tion (CV = 3.0). Again, ForkTail yields quite accurate app-
roximations for tail latency at high load regions, i.e., above

75 percent. The prediction results also show the same trend
for Weibull and Exponential service time distributions,
which are not shown here.

Black-Box Model-Based Validation. We now validate Fork-
Tail without making assumption on the service time distri-
bution at each Fork node. We treat each Fork node as a
black-box and empirically measure the mean and variance
of task response times at each given arrival rate A or load.
These measures are then substituted into Eqgs. (2) and (3),
respectively, to find the shape and scale parameters, which
are in turn used to predict the tail latency based on Eq. (9).

For all the three heavy-tailed FJQNs studied above, we
consider two types of Fork nodes, i.e., one with single server
and the other with three replicated servers. For the one with
three servers, we explore two task dispatching policies. The
first policy is the Round-Robin (RR) policy, in which the dis-
patcher will send tasks to different server replicas in an RR
fashion. The second policy is still RR, but it also allows
redundant task issues, a well-known tail-cutting technique
[15], [16]. This policy allows one or more replications of a
task to be sent to different server replicas in the Fork node.
The replications may be sent in predetermined intervals to
avoid overloading the server replicas. In our experiments,
at most one task replication can be issued, provided that the
original one does not finish within 10 ms, which is around
the 95th percentile of the empirical distribution above.

Figs. 7, 8, and 9 present the prediction errors at different
load levels and N’s for the 99th percentile response times
for all three FJQNs with single server and three servers per
Fork node, respectively. First, we note that the prediction
errors for the cases in Fig. 7 are very close to those in Fig. 5.
This is expected as the white-box and black-box results, ide-
ally, should be identical. The differences are introduced due
to simulation and measurement errors. Second, the predic-
tion performances of the cases with three replicas and the
RR policy in Fig. 8 are also very close to those of the cases in
Fig. 7, with errors being well within 20 and 10 percent at the

Truncated Pareto - 99th - G/G/1 Truncated Pareto - 99th - G/G/1

25 [100-node 25 [100-node |~

20 00-node 20 I 1000-node | ~
< 1o = 1o '
s : & : - - - -
= =
g 5 2 s |
= -10 = -10]

-15 -15 il

20 20

25 25

50 75 80 90 50 75 80 90
Load (%) Load (%)

Fig. 6. Prediction errors of the 99th percentile response times for white-
box systems with Erlang-2 (left) and Hyperexponential-2 (right) arrival
distributions and Truncated Pareto service time distribution.

1990

Empmca] 99th - single-: server

Truncated Pareto - 99th - single- server

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 9, SEPTEMBER 2020

Weibull - 99th - single-: server

50F EEM10-node [J500-node 50F EEM10-node [J500-node] 50F WM 10-node [J500-node | 1

40 [100-node [_11000-node 40 [100-node [_11000-node 1 gg r I 100-node [_11000-node 7
= = 20 -
S S of]
o —_ () ‘_-:D__:E__:EI_—:I:I;
2. g.10f .
o = ol

50 75 80 90 50 75
Load (%)

Load (%)

80 90 50 75 80 90
Load (%)

Fig. 7. Prediction errors of the 99th percentile response times for black-box systems with single-server Fork nodes.

Empmcal 99th - 3-server - Round- Robm

Truncated Pareto - 99th - 3-server - Round Robin

Weibull - 99th - 3-server - Round- Robm

50F EEM10-node [J500-node 50F EEMI10-node [J500-node | 1 50F WM 10-node [J500-node |
40+ [EEE100-node [J1000-node 40+ [EE100-node [J1000-node] ‘3*8 BN 100-node [—_11000-node
g € o :
g 50 mm
= E-10F 2
& @ ol 1
- =30
-40 F
=50 ¢
50 75 80 90 50 75 80 90 50 75 80 90

Load (%)

Load (%)

Load (%)

Fig. 8. Prediction errors of the 99th percentile response times for black-box systems with 3-server Fork nodes and Round-Robin policy.

Empirical - 99th - 3-server - Redund Truncated Pareto - 99th - 3-server - Redundant Weibull - 99th - 3-server - Redundant
50F EEM10-node [J500-node ' 50F EEM10-node [J500-node] 50F WM i10-node [J500-node |
40 [EEN100-node [_11000-node 40 [EEN100-node [_11000-node 1 40 [100-node [—_11000-node

£ ot
= 0 - o —— T
g -10F L‘—‘
= o0t

=30

40t

=50t

50 75 80 90 50 75 80 90 50 75 80 90
Load (%) Load (%) Load (%)

Fig. 9. Prediction errors of the 99th percentile response times for black-box systems with 3-server Fork nodes and redundant-task-issue policy.

loads of 80 and 90 percent, respectively, for all the case stud-
ies, further affirming our postulation. The two scenarios
have similar performance because they are compared at the
same load levels, where the RR policy in the second scenario
simply balances the load among three replicas, making each
virtually identical to the single-server scenario. In contrast
to these two scenarios, Fig. 9 shows that with the application
of the tail-cutting technique, the prediction errors are sub-
stantially reduced, with less than 10 percent at the load of
80 percent or higher. This is consistent with the earlier
observation, i.e., the lighter the tail, the smaller the predic-
tion errors. This suggests that the tail-cutting techniques,
often utilized in datacenters to curb the tail effects, can help
expand the load ranges in which ForkTail can be applied.

A Case Study in Cloud. We also assess the accuracy of
ForkTail for a real case study in Amazon EC2 cloud. We
implement a simple Unix grep-like program on the Apache
Spark framework (version 2.1.0) [4]. It looks up a keyword
in a set of documents and returns the total number of lines
containing that keyword, as depicted in Fig. 10. The cluster
for the testing includes one master node using an EC2
c4.4xlarge instance and 32 or 64 worker nodes using EC2 c4.
large instances. We use a subset of the English version of
Wikipedia as the document for lookup. Each worker node
holds a shard of the document whose size is 128 MB, corre-
sponding to the default block size on Hadoop Distributed
File System (HDEFS) [33]. A client, which runs a driver pro-
gram, sends a flow of keywords, each randomly sampled

from a pool of 50K keywords, to the testing cluster for
lookup. Each worker searches through its corresponding
data block to find the requested keyword and counts the
number of lines containing the keyword. The line count is
then sent back to the client program to sum up. Clearly, this
testing setup matches the black-box model.

We measure the request response time, i.e., the time it
takes to finish processing each keyword at the client. We also
collect the task response times, composed of the task waiting
time and task service time. The task waiting time is the one
between the time the request the task belongs to is sent to the
cluster and the time the task is sent to a given worker for
processing. This is because in the Spark framework, all the
tasks spawned by a request are kept in their respective

Worker 1
Executor

Data block [«

b
’
.

Cluster
‘.___
‘\\:

Fig. 10. Experiment setup in Amazon EC2 cloud. Each worker should be
viewed as a blackbox as in Fig. 1.

Driver Program

Query Generator

Worker n
Executor

Data block [

syuaWNI0P eIpadnyIp

NGUYEN ET AL.: BLACK-BOX FORK-JOIN LATENCY PREDICTION MODEL FOR DATA-INTENSIVE APPLICATIONS

The 95.0th percentiles - 32-c4.large
6000 6000
e Experiment
4000 [|—©&—Homogeneous 4000
—&— Heterogeneous

2000 2000

y (ms)
wo,
y (ms)

.0 35 4.0 4.5 5.0 5.5

The 99.0th percentiles - 32-c4.large

4000 b 4000
2000 J 2000

[
3
3
3

@
3
3
3

Latenc;
Latenc;

[} 0
3.0 35 4.0 4.5 5.0 55 3.0 35 4.0 45 5.0 55
Arrival rate (requests/s) Arrival rate (requests/s)

Fig. 11. Predicted tail latencies for keyword occurrence counts in Ama-
zon cloud with 32 (left) and 64 (right) nodes.

virtual queues corresponding to their target workers cen-
trally. A task at the head of a virtual queue cannot be sent to
its target worker until the worker becomes idle. Hence, to
match our black-box model, the task response time must
include the task waiting time, i.e., the task queuing time plus
the task dispatching time, and the task service time, which is
the actual processing time at the worker the task is mapped
to. From the collected samples, we compute the means and
variances of task response times, which are in turn used to
derive the task response time distribution as in Eq. (1).

Ideally, the task response time distributions for all the
tasks are the same, given that the workers are identical. In
other words, one would expect that this case study is homo-
geneous. However, our measurement indicates otherwise.
A careful analysis reveals that this is mainly due to the task
scheduling mechanism in the Spark framework. Each data
block has three replicas distributed across different workers.
By default, the placement preference is to send a task to an
available worker where the data block resides. Unfortu-
nately, as the request arrival rate or load increases, more
tasks are mapped to workers that do not hold the required
data blocks for the tasks, causing long task response time
due to the need to fetch the required data blocks from the
distributed file system. This results in higher variability in
the task response time distributions among different work-
ers. Therefore, the heterogeneous model given in Eq. (4) is
found to be more appropriate in high load regions.

The above observation is confirmed by the experimental
results, presented in Fig. 11. As one can see, the heteroge-
neous model (the blue lines) gives quite accurate prediction
for both 95th and 99th percentiles at both N = 32 and 64
cases, while the prediction from the homogeneous model
(the green lines) gets worse as the load becomes higher.
Based on the heterogeneous prediction, the prediction errors
atboth V = 32 and 64 and the 99th percentile are well within
10 percent in a high load region, i.e., 60 percent or higher.
Note that the load here is measured in terms of request
arrival rate. Since the system is heterogeneous, we estimated
the equivalent loads corresponding to different arrival rates

1991
The 95.0th percentiles - 64-c4.large TABLE 3
s Estimated Loads (%) for the Testbed Based
= Heterogencous 8 on Request Arrival Rates
0 st as om0 es Request arrival rates (requests/s)
The 99.0th percentiles - 64-c4.large #Workers
3.0 35 4.0 4.5 5.0 55
32 4833 5639 6444 7250 80.56 88.61
64 50.04 5838 66.72 75.06 8340 91.74

based on the maximum value of means of task service times
across all the workers, as given in Table 3.

Finally, we note that to achieve a reasonably good confi-
dence of measurement accuracy for the 99th percentile tail
latency, we collected 80K samples in our experiments at the
maximum possible sampling rate equal to the average request
arrival rate of 5.8 per second, which translates into a measure-
ment time of 13,793 seconds or about 4 hours. It takes even
more time to run the experiments at lower arrival rates. The
average runtime across all the request arrival rates in the
experiments is about 6 hours. Due to the costly cloud services,
we have to limit our experiments to 64 worker nodes.

This example clearly demonstrates that it can be expensive
and time consuming, if practical at all, to estimate tail latency
based on direct measurement. In contrast, ForkTail is able to
do so with far fewer number of samples at much lower cost.
For example, with 800 samples collectable in less than three
minutes, we can estimate the response-time means and varian-
ces for all the tasks and hence the tail latency with reasonably
good accuracy. This means that our prediction model can
reduce the needed samples or prediction time by two orders of
magnitude than the direct measurement.

3.1.2 Case 2: Variable Number of Tasks k < N

Notable examples for this case are key-value store systems
in which a key lookup may touch only a partial number of
servers and web rendering which requires to receive web
objects or data from a group of servers in a cluster.

In this case study, we assess the accuracy of our prediction
model (i.e., Egs. (8) and (9)) for applications whose jobs may
spawn different numbers of tasks with distribution P(K = k;).
Specifically, we study two scenarios where P(K = k;) is non-
zero for a specific value of K and uniformly distributed,
respectively. We further consider three different service time
distributions: two heavy-tailed ones, the empirical and trun-
cated Pareto as in Section. 3.1.1, and a light-tailed exponential
distribution, with the same mean service time, i.e., 4.22 ms.

Scenario 1: Fixed Number of Tasks per Job. In this scenario,
we consider the cases when the number of forked tasks per
job is a fixed number k (k < N), i.e., every incoming job is

Exponential - 99th - fixed k - 1000-node

Truncated Pareto - 99th - fixed k - 1000-node

Empirical - 99th - fixed k - 1000-node

50F EEEk=100 C_Jk=900 ' 50F EEEk=100 C_Jk=900 50f k=100 _Jk=900 1
40 Ik =500 40 Ik =500 40 - [k = 500 1
30+ 30+ — 30+ —
o 201 ~ 20r 1 ~ 20F i
S 100 S 100 1 S 10t 1
= 0 —— _ ./ [= 0 = 0
=] =} o
E-10F g-10f — 10 —
M0t M0t 1 H-20r 1
=30+ =30+ R 30F 1
40+ 40 - — 40+ -
50t 50 =50t ul
50 75 80 90 50 75 80 90 50 75 80 90
Load (%) Load (%) Load (%)

Fig. 12. Prediction errors of the 99th percentile response times for an 1000-node cluster when the number of tasks per job is fixed (k = 100, 500, 900).

1992

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 9, SEPTEMBER 2020

Exp ial - 99th - uniform k - 1000-node Truncated Pareto - 99th - uniform k - 1000-node Empirical - 99th - uniform k - 1000-node
50 EEEU(So, 1200 U800, 1000] ! S0F EEEUS0, 1200 CJU[800, 1000] ! 1 50F U8, 1200 U800, 1000]
4318 r EEUr400, 6001 [JUl10,990] 40 U400, 6001 [JUr10,990] 1 40 U400, 6007 [JUl10,990]
3 207 2
S 10+ =X
‘E/ 0 - e B e = \g
£-10r+ =
=0t S5
30+ -
40+ B
-50¢ 50 -50
50 75 80 90 50 75 80 90 50 75 80 90
Load (%) Load (%) Load (%)

Fig. 13. Prediction errors of the 99th percentile response times for an 1000-node cluster when the number of tasks per job is uniformly distributed.

split into exactly & tasks which are dispatched to k randomly
selected Fork nodes in an N-node cluster.

Fig. 12 shows prediction errors for the 99th percentile
response times for an 1,000-node cluster with & = 100, 500,
and 900 tasks. ForkTail provides good prediction in high
load regions, with all the errors within 10 percent at the load
of 90 and 20 percent at the load of 80 percent for all the cases
studied. The case with the light-tailed exponential distribu-
tion gives quite accurate prediction for the entire range
under study, i.e., all within 6 percent.

Scenario 2: Uniform Distribution. Here we deal with cases
when an incoming job is forked to £ random nodes in the clus-
ter where k is randomly sampled from an integer range [a, b],
ie, ki e€{a,a+1,...,b—1,b} with probability P, =P =
1/mVi, where m = b — a + 1. Therefore, the mean number of
tasksis (a +0)/2.

Fig. 13 presents prediction errors for an 1,000-node clus-
ter with & in four different ranges, i.e., [80, 120], [400, 600],
[800, 1000], and [10, 990]. The results again show that Fork-
Tail yields good approximations for the 99th percentile job
response times when the system is under heavy load, i.e.,
80 percent or higher. Furthermore, again for all the cases
with the exponential distribution, ForkTail gives accurate
predictions across the entire load range studied.

The above prediction model applies to the case where a
single tail-latency SLO is imposed on a service or applica-
tion as a whole, a practice widely adopted in industry.
However, this practice can be too coarse grained. To see
why this is true, Table 4 provides the predicted tail latencies
for some given jobs with distinct & values in a cluster of size

TABLE 4
The Predicted 99th Percentile of Latencies (ms)

Number of forked tasks
10 400 500 600 900

Exponential 291.32 44697 456.38 464.08 481.19
Truncated Pareto 448.83 70545 720.97 733.66 761.87
Empirical 391.27 616.22 629.83 640.95 665.68

Distribution

TABLE 5
Errors in the 99th Percentile Prediction When Tracking Jobs
With a Given Number of Tasks at Load of 90 percent

1,000 and at the load of 90 percent. As one can see, the 99th
percentile tail latencies for jobs at different £’s can be drasti-
cally different, e.g., the 10-task and 900-task cases. This sug-
gests that even for a single application, finer grained tail
latency SLOs may need to be enforced to be effective, e.g.,
enforcing tail-latency SLOs for job groups with each having
k’s in a small range. Table 5 shows that ForkTail can indeed
provide accurate, finest-grained prediction at given £’s, i.e.,
all well within 10 percent at load of 90 percent.

3.1.3 Case 3: Consolidated Services

In this case study, we evaluate the accuracy of ForkTail when
applied to the consolidated datacenter where multiple appli-
cations, including latency-sensitive user-facing and back-
ground batch ones, share cluster resources as illlustrated in
Fig. 14. We conduct a trace-driven simulation based on a
trace file derived from the Facebook 2010 trace, a widely
adopted approach in the literature to explore datacenter
workloads [19], [34], [35]. We test the accuracy of ForkTail in
capturing the tail latency for a given target application.
Workload. The trace file is generated based on the descrip-
tion of the Facebook trace in some previously published
works [19], [34], [35]. Specifically, we first generate the num-
ber of tasks for job arrivals based on the distribution of the
job size in terms of the number of tasks per job, as suggested
in [35]. It includes nine bins of given ranges of the number of
tasks and corresponding probabilities, assuming that the
number of tasks is uniformly distributed in the range of each
bin. We then generate the mean task service time based on
the Forked task processing time information in [34]. Individ-
ual task times are drawn from a Normal distribution with
the generated mean and a standard deviation that doubles
the mean as in [19]. The resulting trace file contains a total of
two million requests, each including the following informa-
tion: request arrival time, number of forked tasks, mean task
service time, and the service times of individual forked tasks.
In the experiments, the jobs in the trace file serve as the
background workloads, which are highly diverse, involving

OO0

Number of nodes

Distribution

10 400 500 600 900
Exponential —0.861 0.052 0.433 0.647 2.791
Truncated Pareto —0.571 —-0.403 1.763 —0.489 —1.433
Empirical —2.814 —-6.929 -6.239 5322 -—6.541

’L Master

. Target jobs

I:, Other jobs

(Background jobs with
different job size distributions)

Fig. 14. Consolidated applications running on a cluster.

NGUYEN ET AL.: BLACK-BOX FORK-JOIN LATENCY PREDICTION MODEL FOR DATA-INTENSIVE APPLICATIONS

Trace-based simulation - 99th - k =N

50 BEE100Tnode [01000-node |
40 [500-node [_15000-node

~ 20t]
S ot]
5 0
2100 L 2 | SR o]
M0+ 1

=301

40 -

50 . n n "

50 75 80 90
Load (%)

Trace-based simulation - 99th - k = 50%N

50[EEE100-node [1000-node
40+ [EEES500-node [15000-node

S g g

Error (%)
(=}

50 75 80 90
Load (%)

Fig. 15. Prediction errors of the 99th percentile target response times in
a consolidated workload environment when the tasks of each target job
reach all the nodes (top) and randomly reach 50 percent number of
nodes (bottom) in the cluster.

a wide range of applications with mean service times rang-
ing from a few milliseconds to thousands of seconds. The tar-
get jobs are generated at runtime using the same approach
the trace file is generated. The only difference is that the tar-
get jobs are statistically similar with the same mean service
time, to mimic a given application or simply a group of jobs
with similar statistic behaviors. For each simulation run, a
predetermined percentage, e.g., 10 percent, of target jobs are
created and fed into the cluster at random.

Simulation Settings and Results. In the simulation, the target
and background jobs are set at 10 and 90 percent of the total
number of jobs, respectively. We evaluate two cases, one
with the number of tasks per target job set at one half of the
cluster size and the other the same as the cluster size. The
tests cover multiple cluster sizes, i.e., 100, 500, 1,000, and
5,000 nodes with each having three replicated servers. All the
cases are homogeneous.

The prediction errors for the 99th percentiles of target
response times for the two case studies at loads of 50, 75, 80,
and 90 percent are shown in Fig. 15. As one can see, the pre-
diction errors are within 15 percent for all the cases studied.

Finally, we note that although the validations for tail lat-
ency prediction are exclusively focused on the 99th-percentile
tail latency, ForkTail offers similar and consistent perfor-
mance at higher percentiles, which are not shown here due to
the lack of space.

Exponential - 50-node

Exponential - 1000-node

1993

Gamma - 1000-node

o[EEEWHcbox EINT 0
= e @

‘Weibull - 1000-node

I White-box [EERINT
[Black-box IvMC

Error (%)
AbbL
g3
Error (%)
Sinddoto [
sababsozy

Load (%) Load (%)

Fig. 17. Comparison of percentage errors in mean latency approxima-
tions with M/G/1 queues for Gamma and Weibull service time
distributions.

3.2 Mean Latency Prediction Validation

In this section, we extensively validate the predicted mean
latencies from ForkMean, for both white-box and black-box
approaches, against the results from the existing white-box
solutions, the event-driven simulation experiments, and a
case study on Amazon EC2 as in Section 3.1.

3.2.1 Scenario 1: Single-Server Queues

In this scenario, we compare ForkMean with some well-
known closed-form approximations, including NT [10], VMC
[36],and VM [371].

Fig. 16 shows the comparison for the systems with 50,
1,000, and 5,000 nodes, each modeled as an M/M/1 queue,
at load levels of 50, 75, 80, and 90 percent. Overall, the NT
approximation is the most accurate one. The white-box Fork-
Mean yields errors within 5 percent for all the cases studied,
which are close to those of the NT approximation. The black-
box one that is based on the measured A’s at 100 node also
gives good approximations to mean latency even for the case
of 50 nodes, with errors within 10 percent for all the cases.
Note that, due to its high computational complexity, the VM
approximation is not included in the cases of 1,000 and 5,000
nodes. With small n’s, e.g., 50, it is a little better than the
VMC approximation but not as good as the NT one.

The NT and VMC approximations above, which are tai-
lored to M/M/1 queues, could not be applied to general ser-
vice time distributions as the prediction errors are too large to
be useful. Indeed, Fig. 17 shows that while both black-box and
white-box ForkMean solutions continue to perform well, with
errors within 10 percent, VMC and NT offer extremely poor
performance with up to 40 and 50 percent errors for Gamma
and Weibull task service time distributions, respectively.

The existing methods for the approximation of the mean
response time in the case of M/G/1 Fork-Join models are
heuristic-based [37] or hybrid-based [13], [29], i.e., combin-
ing simulation and analysis. Moreover, these works mainly
focus on light-tailed distributions, e.g., Exponential (Exp),
Erlang-2 (E2), and Hyperexponential-2 (H2). In contrast, in
addition to these distributions, ForkMean solutions are also
validated for a wide range of service time distributions.

Exponential - 5000-node

B White-box IEEINT v B White-box EEEINT B White-box EEINT
15F EBlack-box [VMC] 151 EEBlack-box [CIVMC] 151 @ Black-box [CIVMC
10r . 10r
5 0 5 0 5
£ st | & sy £ -
10+ . 10+ -
-15+ 8 -15 ¢
50 75 80 90 50 75 80 90 50 75 80 90
Load (%) Load (%) Load (%)
Fig. 16. Comparison of percentage errors in mean latency approximations where each Fork node is modeled as an M/M/1 queuing system.

1994

TABLE 6
Errors for Mean Latency Prediction With M/E2/1 Queues

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 9, SEPTEMBER 2020

TABLE 7
Errors for Mean Latency Prediction With M/H2/1 Queues

Number of nodes

Number of nodes

Load Method Load Method
5 10 15 20 5 10 15 20
50% VM —0.806 —1.486 —1.985 —-1.827 50% VM —1.007 6.446 13.389 17.937
White-box —7.947 —6.312 —5.483 —4.934 White-box 0.869 0.945 1.881 2.118
759% VM —2.989 —4.587 —5.748 —5.637 759% VM —1.682 6.556 12.601 16.678
White-box —9.827 —7.360 —6.316 —5.104 White-box —1.255 0.975 2.091 2.574
80% VM —3.440 —5.336 —6.886 —7.400 80% VM —0.402 6.361 11.687 14.975
White-box —10.101 —7.524 —6.666 —5.922 White-box —0.106 1.503 2.563 2.753
90% VM —5.414 —7.885 —-9.039 —9.538 90% VM 0.111 4.030 6.366 8.697
White-box —11.001 —-8.110 —6.398 —5.251 White-box —0.081 1.183 1.242 1.825

To test the effectiveness of ForkMean, we first compare
our white-box solution with the heuristic approximations in
[37] for the cases of Erlang-2 (E2) and Hyperexponential-2
(H2) service time distributions with Poisson arrivals, i.e., M/
G/1 queues.

Tables 6 and 7 present the comparative results for Erlang-2
and Hyperexponential-2, respectively. Again due to the
computational complexity concerning the VM approximation,
we perform comparison only for small n’s, i.e., up to 20, the
maximum problem size studied by the authors of the VM
approximation [37], although our solution offers consistent
performance at large n’s as well. For the Erlang-2 distribution,
the VM approach gives better predictions at load level of
50 percent and lower numbers of nodes, i.e., 5 and 10 nodes,
while our solution yields comparable or better predictions for
the other settings. The accuracy of our approach outperforms
that of the VM for the Hyperexponential distribution.
Although yielding good prediction performance for systems
with small numbers of Fork nodes, the VM approximation
faces the issue of numerical instatibility and computational
complexity due to big binomial coefficients, resulting in higher
prediction errors for higher numbers of nodes, as observered
from the reported results. In additon, while the VM approxi-
mation can in theory be applied to G/G/1 queues, finding
light and heavy traffic limits for an arbitrary service time distri-
bution, e.g., Weibull or truncated Pareto, is nontrivial.

Weibull - single-server - white-box

Truncated Pareto - single-server - white-box

Fig. 18 shows the prediction accuracy of ForkMean for the
above heavy-tailed service time distributions. Both white-
box and black-box solutions yield quite accurate predictions
for less heavy-tailed distributions, i.e., Weibull, for all the
cases studied, with errors within 12 percent for all the cases.
For heavier tailed distributions, i.e., truncated Pareto and
empirical, the solutions give good approximations at high
load levels, i.e., 80 percent or higher, a region of interest for
resource provisioning. Overall, the black-box solution gives
comparably close prediction performance to that of the
white-box one. The errors are mostly within 20 and 10 percent
at the load levels of 80 and 90 percent, respectively.

The predictions for G/G/1 cases as in Section 3.1 also
show similar performance, i.e., within 20 percent errors at
the load levels of 80 percent or higher, which are not shown
here due to the lack of space.

3.2.2 Scenario 2: Systems With Replicated Servers

We now validate ForkMean for systems with 3-replica Fork
nodes. We consider two dispatching policies, i.e., Round-
Robin and redundant-task-issue, and heavy-tailed service
time distributions as in Section 3.1. The validation is run
only for the black-box solution since the exact service time
distributions for the Fork nodes are simply unknown for
such cases.

Empirical - single-server - white-box

I 500-node

50 EEES00-node] sof
[1000-node

40+ [1000-node 1 40+
30+ [C15000-node i 30t

ol e] B

[15000-node

Error (%)
S
Error (%)
(=]

50 EEES00-node
40 EEE1000-node
30+ [C15000-node

Error (%)
(=]

-0t { £-10t { E£-10f -
20t { @20t { @20t -
30t {30t {30t -
40t — {1 -0t -

50 50 50
50 75 80 90 50 75 80 90 50 75 80 90
Load (%) Load (%) Load (%)
Weibull - single-server - black-box Truncated Pareto - single-server - black-box Empirical - single-server - black-box
50F I 500-node ‘ ‘ ‘ 1 50F [500-node ‘ ‘ 50F [500-node ‘ ‘ ‘
40 - [E1000-node] 40 - [EE1000-node 40 - [EE1000-node
30 - [15000-node] 30 - [15000-node 30 - [C15000-node

Oi-j_—:_il_—:;

Error (%)
>
Error (%)
(=]

-10f 1 E-10f 1 E-10f
20f 1 ®|a0f 1 ®|a0f
30t 1 30t 1 30t
40t 1 ot 1 ot
50t 1 -0t 1 -0t

Error (%)
(=]

50 75 80 90 50 75

Load (%)

Load (%)

80 90 50 75 80 90
Load (%)

Fig. 18. Errors for mean response time approximations using the white-box (upper row) and black-box (lower row) solutions.

NGUYEN ET AL.: BLACK-BOX FORK-JOIN LATENCY PREDICTION MODEL FOR DATA-INTENSIVE APPLICATIONS

‘Weibull - 3-server - Round-Robin

Truncated Pareto - 3-server - Round-Robin

1995

Empirical - 3-server - Round-Robin

50 [200-node] 50[[200-node 50 [200-node
40 - [500-node] 40 - [500-node 40 - [500-node
gg r [_11000-node 1 30 - [11000-node ig r [__11000-node
<ot 1S <ot
= 0 TM = = 0
210t 1 E-l0f 2.0t
s3] 20 F 4 M L s3] 20+
30+ =30+ =30
40+ — 40+
50 ¢ : : : : 50 ¢ : : : : 50 ¢ : : :
50 75 80 90 50 75 80 90 50 75 80 90
Load (%) Load (%) Load (%)
Weibull - 3-server - Redundant Truncated Pareto - 3-server - Redundant Empirical - 3-server - Redundant
50 [EEE200-node ‘ ' '] 50[EEE200-node ‘ ' ' 50[EEE200-node ‘ ‘ ‘
40 - [500-node] 40 - [EE500-node] 40+ [EE500-node
30 [11000-node 1 30 [J1000-node 1 30 [J1000-node
< 20r 1 = 20r 1 = 20r
S 10F B me e 1 £ 10f 1 £ 10 1
—_ 0 —_ 0 —_ 0 | S SR R s E—
2.0t 1 E-of . mE] == 1 E-of
M0 M0 1 20t
30+ =30+ 1 =30
40 -40 40
50 : : : : -50 : : : : 50 ¢ : : : :
50 75 80 90 50 75 80 90 50 75 80 90
Load (%) Load (%) Load (%)

Fig. 19. Errors in mean response time approximation for systems with replicated servers applying Round-Robin (upper row) and redundant-task-

issue (lower row) policies.

Fig. 19 presents the results for these cases using the
black-box approach, applying the A values measured from
the respective systems at n = 100 to the ones with 200, 500,
and 1,000 nodes. One can see that the results for the Round-
Robin cases are close to those in the previous scenario. This
is due to the fact that the Round-Robin policy mainly per-
forms load balancing between replica and thus the effective
service time distributions on the Fork nodes are almost
unchanged. In contrast, the model yields good predictions
for the redundant-task-issue policy for the entire load range
under study. This is largely because this policy curbs the
tail effects and makes the effective service time distributions
less heavy-tailed. These results agree with those from the
previous scenarios for less heavy-tailed distributions, i.e.,
Gamma and Weibull.

3.2.3 Scenario 3: Systems With Variable
Numbers of Tasks

For illustrative purposes, we validate the results on Fork-Join
models with homogeneous, single-server Fork nodes with
the above service time distributions using the black-box solu-
tion, assuming that the tasks for each incoming job is ran-
domly dispatched to 40-60 percent total number of Fork
nodes. As a result, the effective load on each Fork node is
half of that on the single-server systems in Scenario 3.2.1.
Therefore, we double the arrival rate,), to keep the same
arrival rate on each node as in the previous cases. The results
of this scenario are shown in Fig. 20. Similar to the previous
scenarios, the black-box solution gives accurate predictions

Exponential - single-server - k=(0.4-0.6)N

Truncated Pareto - single-server - k=(0.4-0.6)N

across the entire load range for light-tailed distributions, e.g.,
Exponential, Gamma (which is not shown here), while yield-
ing good approximations for the heavy-tailed distributions,
i.e., truncated Pareto and empirical, at high load regions,
e.g., 80 percent or above.

3.2.4 Scenario 4: A Case Study on Amazon EC2

Wealso evaluate the accuracy of the black-box solution for the
case study on AWS EC2 as in Section 3.1.1. To illustrate the
effectiveness of the black-box solution for this case study, we
compute the gap for the 32-worker cluster and apply it to the
approximation of request mean response time for the case of
the 64-worker cluster. Table 8 presents the prediction errors
forthis casestudy. Again, theblack-boxmethod predicts mean
response time quiteaccurately when the systemat the effective
load of 60 percent or higher, corresponding to arrival rates
greaterthan3.5requests/s.

Finally, we note that the tail effect is a recognized issue in
datacenter applications and tail-cutting techniques are often
exploited in datacenters to reduce the tail effects [1], [15],
[16], [38]. As a result, the effective service time distributions
tend to be less heavy-tailed. Therefore, ForkTail and Fork-
Mean show a great potential to be able to accurately predict
the tail and mean latencies in a wide load range in practice,
not limited to a high load region.

4 SENSITIVITY ANALYSIS

From all the experiments above, we can see that the pro-
posed approximations can be applied to a wide range of

Empirical - single-server - k=(0.4-0.6)N

50 [I 500-node 1 50 [EEE500-node 50 [EEE500-node
40 - [1000-node h 40 - [1000-node 40 - [1000-node
gg r [15000-node 1 gg r [15000-node 30 [J5000-node
S 1ot < ot
= 0 —_—— = 0
2101 210t -0+
M0 M0 20
-30F -30F -30F
40 -40 40+
50 : : : : -50 : : : =50t : : :
50 75 80 90 50 75 80 90 50 75 80 90
Load (%) Load (%) Load (%)

Fig. 20. Errors in mean response time approximation for systems with variable numbers of tasks.

1996

TABLE 8
Errors in Mean Response Time Approximation Using the
Black-Box Solution for the Test Case on AWS

Effective load (Arrival rate (requests/s))

50.0% 58.4% 66.7% 75.1% 834% 91.7%
#workers (3.0) (3.5) 4.0) 4.5) (5.0 (5.5)
64 31.678 10.489 7.817 8.874 15274 13.991

systems with reasonable prediction errors for the 99th per-
centile and mean job latency, consistently within 20 and
15 percent at the loads of 80 and 90 percent, respectively.
Now, the question yet to be answered is how much impact
these errors will have on the accuracy for resource provi-
sioning at high loads. To this end, we conduct a sensitivity
analysis of tail and mean latencies as functions of load.

We perform experiments with different load levels in the
high load region, i.e., 78 to 95 percent, for FJQNs with different
service time distributions, i.e., exponential, Weibull, truncated
Pareto, and empirical ones. Figs. 21 and 22 shows results from
both simulation and the proposed approximations for 1,000-
node systems. First, we note that the proposed models consis-
tentlyoverestimatesthetailand meanlatencies for theexponen-
tial and Weibull cases, while mostly underestimates them for
the truncated Pareto and empirical cases. In other words, the
former causes resource overprovisioning, whereas the latter
leads to resource underprovisioning. Then the question is how
much. Take the exponential case as an example, the predicted
meanlatencyat90percentloadisroughlyequaltothesimulated
one at 91 percent load. This means that the model may lead to
1 percent resource over provisioning for the exponential cases.
Following thesamelogic, itis easy tofind thatfor both exponen-
tial and Weibull cases, the prediction models for both tail and
mean latency may result in no more than 1 percent resource
overprovisioning in the entire 78-95 percent load range. By the
same token, we find that for the truncated Pareto and empirical
cases, the models may cause up to 4 and 6 percent resource
underprovisioning at 80 percentload and 2 and 1 at 90 percent
load for tail and mean latency, respectively. This can be well

ial - 99th - 1000-node Weibull - 99th - 1000-node

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 9, SEPTEMBER 2020

compensated forbyleavinga6 percentresourcemarginin prac-
tice. This implies that in the worst-case when the actual service
time distribution islight-tailed, our approximations may cause
upto7 percentresource overprovisioningat theloads of 80 per-
cent or higher, given that we don’t have the knowledge about
the tail-heaviness of the workload. With the prediction and the
small overprovisioning to compensate the prediction error
proposed in this paper, one can expecttorun the systematup to
90 percent instead of 50 percent resource utilization with tail
and meanlatency guarantee.

Our sensitivity analyses for the other Fork-Join structures,
which are not shown here, have led to similar conclusions.
This demonstrates the effectiveness of our prediction models
as a powerful means to facilitate multi-SLO-guaranteed, e.g.,
tail and mean latency guaranteed job scheduling and reso-
urce provisioning for datacenter applications.

5 APPLICABILITY RANGE

In this section, we want to answer the following question: In
what parameter range can our models predict the request
latency within 20 percent errors at high load? To this end, we
note that we need to focus on identifying the applicability
range on the heavy tail end, rather than the light tail end for
two reasons. First, from the extensive experiments above, we
found that our methods give quite accurate approximations
for tail and mean latency for a wide range of loads for light-
tailed distributions, e.g., Exponential, Gamma, and Erlang-2.
Second, in practice, server wokloads in datacenters exhibit
heavy-tailed distributions [15], [32]. Also, the heavy-tailed
truncated Pareto distribution given in Eq. (13) was found to
be a good fit for empirical data from server workloads [31].
Hence, in what follows, we test the applicability range of our
approximations based on this distribution.

From extensive experiments with the truncated Pareto
distribution, we found that our approximations predict the
tail and mean latencies within 20 percent errors at the loads
of 80 percent or higher, when the tail index « in Eq. (13) is
less than 2,i.e,, 0 < « < 2. This range of « was found to be
large enough to cover the server workloads in [31].

Truncated Pareto - 99th - 1000-node Empirical - 99th - 1000-node

1600

1600

1400 | —®— Simulation| 1400 | —— Simulation
z —=—ForkTail z —=—ForkTail

(ms
]
S
3

'y (m
S B
g3
83
Yy
=
2
3

%
=1
3
%
S
3

600
400 ——
200 e—e—s—oT=T

600 e
400 s—e—e—5°
200

Tail latency (ms
Tail latenc;

1600
1400
£ 1200
1000

—e— Simulation —e— Simulation
—=—ForkTail —=—ForkTail

%
=3
S

2
=
3

egegesF=- | = | eeee i
sss

Tail latency (s

400
200

.-

0
78 8 82 84 86 8 90 92 94 96
Load (%)

0
78 8 8 84 86 8 90 92 94 96
Load (%)

78 80 82 84 86 88 90 92 94 9
Load (%)

78 80 82 84 8 88 90 92 94 96
Load (%)

Fig. 21. Differences in the 99th percentile response times from simulation and ForkTail for 1000-node systems with different service time distributions

and fixed number of Fork tasks.

Exponential - Mean - 1000-node Weibull - Mean - 1000-node

Truncated Pareto - Mean - 1000-node Empirical - Mean - 1000-node

1000 1000

—=— Simulation| —=—Simulation
800 | | —o—Modeling 800 || —=—Modeling

600 600

400 400

200

Mean latency (ms)
Mean latency (ms)

1000 1000

—e— Simulation —=— Simulation
800 || —o—Modeling 800 || —o—Modeling

600 600

400 400

=

200 200

Mean latency (ms)
Mean latency (ms)

0
78 8 8 84 86 8 90 92 94 96
Load (%)

78 80 82 84 8 88 90 92 94 96
Load (%)

0
78 80 82 84 8 88 90 92 94 96
Load (%)

0
78 80 82 84 8 88 90 92 94 96
Load (%)

Fig. 22. Differences in mean response times from the simulation and black-box ForkMean for 1000-node systems with different service time distribu-

tions and fixed number of Fork tasks.

NGUYEN ET AL.: BLACK-BOX FORK-JOIN LATENCY PREDICTION MODEL FOR DATA-INTENSIVE APPLICATIONS

Fitted example for the Facebook trace Fitted example for the Google trace

10°

log(P(X > X))
log(P(X > X))

a = 0.4208

10 10° 10* 10° 10% 10° 10t 10°
log(x) log(x)

Fig. 23. Examples of fitting the truncated Pareto distribution to sampled
data from Facebook and Google traces. The plots show the complemen-
tary CDF (CCDF), which is on a log scale, to focus on the tail portion of
the distribution.

To further test if today’s datacenter workloads indeed
fall into the above range, we test the fitting of the truncated
Pareto distribution to the workload traces from Facebook
and Google provided in [19]. These traces include a mixture
of different types of workloads placed on datacenter serv-
ers. To simulate the workload on one server, we draw
10,000 random samples from each trace and fit them to the
truncated Pareto distribution based on the procedure sug-
gested in [39], which uses the (r + 1) largest-order statistics
and visual check. We found that the fitted values of o for
Google and Facebook samples are mostly within the appli-
cability range of (0,2). Fig. 23 illustrates two examples of
the fitted curves.

The above results strongly suggest that our proposed
methods can indeed serve as a useful tool for the approxi-
mation of tail and mean latency for datacenter workloads.

6 FACILITATING JOB SCHEDULING
AND RESOURCE PROVISIONING

We now discuss how our proposed approximations may be
used to facilitate both SLO-guaranteed job scheduling and
resource provisioning. We present here only the procedures
for tail latency approximation, i.e., ForkTail. The procedures
for mean latency follow similar steps since the approxima-
tion of mean latency is based on ForkTail. The proposed
ideas are preliminary and somewhat sketchy, but yet, they
do help reveal the promising prospects of our proposed
model and point directions for future studies on this topic.
Job Scheduling. We describe the ideas of how a tail-latency-
SLO-guaranteed hybrid centralized-and-distributed job
scheduler can be developed, based on ForkTail. The main
idea is to rely on distributed measurement of the means and
variances of the task response times and centralized decision
making as to how and whether the request tail-latency SLO
can be met, as depicted in Fig. 24. In the master server on the
left resides the central job scheduler to which users submit
their requests with given tail-latency SLOs. All the servers in
the cluster measures the means and variances of task
response times for tasks of different sizes or in different bins
on a continuous basis. All the servers periodically convey
their measurements to the central scheduler. Upon the arrival
of a request with a given tail-latency SLO and given tasks to
spawn, based on Eq. (5), the central scheduler will run a
Fork-node selection algorithm to determine which &k Fork
nodes should be used such that the tail-latency SLO can be
met. If such k£ Fork nodes are found, the request will be admit-
ted, otherwise, either the tail-latency SLO will be renegotiated

1997

Fig. 24. A hybrid, centralized-and-distributed job scheduler.

or the request will be rejected. At runtime, the central sched-
uler periodically run the prediction model using the up-to-
date means and variances as input to ensure that the tail-
latency SLOs for the on-going requests continue to be met.

Resource Provisioning. ForkTail for the homogeneous case
(i.e., Egs. (8) and (9)) naturally enables a resource provision-
ing solution involving two steps: (a) the evaluation of the
task-level performance requirements to achieve a given tail-
latency SLO; and (b) the selection of an underlying platform
to meet the requirements. Here, step (a) is platform inde-
pendent and hence is portable to any datacenter platforms.

For example, consider a service deployment scenario with a
given tail-latency SLO and a minimum throughput require-
ment, R. Assuming that N, k;, and P(K = k;) for the given ser-
vice are known, Eq. (9) can be used to first translate the tail-
latency SLO into a pair, i.e., the mean and variance of the task
response time. This pair then serves as the task performance
budgets or the task-level performance requirements, which are
platform independent and portable. This completes step (a).

In step (b), a Fork node is set up, e.g., using three virtual
machine instances purchased from Amazon EC2 to form a
3-replica Fork node, loaded with a data shard in the memory.
Then run tasks at increasing task arrival rate A until the mea-
sured task mean and/or variance are about to exceed the cor-
responding budget(s). At this arrival rate A, the tail-latency
SLO is met without resource over-provisioning. In other
words, the X value at this point would be the maximum sus-
tainable task throughput, or equivalently, the request through-
put, in order to meet the tail-latency SLO. If this throughput is
greater than R, the minimum throughput requirement is also
met. This means that the resource provisioning is successful
and a cluster with 3N VM instances can be deployed. Other-
wise, repeat step (b) by using a more powerful VM instance
or with a re-negotiated tail-latency SLO and/or minimum
throughput requirement.

7 RELATED WORK

Fork-Join structures are traditionally modeled by FJQNs,
which have been studied extensively in the literature. To
date, the exact solution exists for a two-Fork-node FJQN only
[10], [40]. Most of the previous works primarily focus on the
approximation of mean response time [10], [11], [41] and its
bounds [42], [43]. For networks with general service time dis-
tribution, several works have introduced hybrid approaches
that combine analysis and simulation to derive the empirical
approximation for mean response time [10], [13].

Some analytic results are available on redundant task issues
[44], [45], [46]. They either address only a single replicated

1998

server subsystem with exponential task service time distribu-
tion [45] or parallel request load balancing without task
spawning [44], [46].

Tail Latency Approximation. In terms of tail-latency related
research, several works dealt with the approximation of
response time distribution assuming a simple queuing
model for each Fork node, e.g.,, M/M/1 [47] or M/M/k
[12]. Computable stochastic bounds on request waiting and
response time distributions for some FJQNs are provided in
a recent work [48]. The most interesting and relevant work
is given in [14]. The authors of this work proposed a
method, called EAT, for the approximation of tail latency
for homogeneous FJONs based on the analytical results
from single-node and two-node cases. The approximation
applies to FJQNs with any service time distribution that can
be transformed into a phase-type distribution. Although
outperforming our solutions by a few percentage points in
terms of tail prediction, its computational complexity ren-
ders it infeasible to facilitate online resource provisioning.
Moreover, this work can only cover a small fraction of the
aforementioned design space and hence, cannot be used to
facilitate resource provisioning in practice.

Mean Latency Approximation. Various works have been
proposed for the approximation of mean response time of
FJQNs using model-based or hybrid approaches. The work
in [10] introduces a hybrid approach for the approximation
of mean response time, R, for a Fork-Join model with n M/
M/1 Fork nodes (2 < n < 32) based on the exact solution for
the 2-way network [40] and simulation. In [36], the authors
proposed an approximation for mean response time based
on the optimistic and pessimistic bounds. Another approxi-
mation for mean response time of Fork-Join models with
general inter-arrival and service time distributions is pro-
posed in [37] based on light traffic interpolation and heavy
traffic limit. The light traffic interpolation is computed from
the mean response time of the Fork-Join network when there
is only a tagged job in the network, which is equivalent to the
maximum of task service time random variables. The heavy
traffic limit is postulated based on the observation of the rela-
tionship between expressions for light and heavy traffic for
1-way and 2-way networks. In [29], the authors proposed a
hybrid procedure for the approximation of mean response
time for Fork-Join models with M/G/1 queues. Indeed, this
work proposed a methodology rather than specific expres-
sions for finding mean response time. In a recent work [49], a
simulation study assessed the accuracy of the approximation
based on order statistic.

The existing approaches above are white-box solutions
targeting at individual Fork-Join models with specific queu-
ing server models. In contrast, in this paper, we propose
both white-box and black-box solutions, applicable to Fork-
Join networks with arbitrary server models.

SLO-Aware Resource Provisioning. Due to the lack of theo-
retical underpinning, the existing SLO-aware resource provi-
sioning proposals cannot provide tail and /or mean latencies
SLO guarantee by design. Instead, various techniques such
as tail-cutting techniques [15], [16], a combination of job pri-
ority and rate limiting based on network calculus [50] are
employed to indirectly provide high assurance of meeting
tail-latency SLOs. As indirect solutions, however, they can-
not ensure precise resource allocation to meet tail-latency

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 9, SEPTEMBER 2020

SLOs, while allowing high resource utilization, and hence
may result in resource overprovisioning. Yet, another alter-
native solution is to track the target tail-latency SLO through
online, direct tail-latency measurement and dynamic reso-
urce provisioning [51], [52]. This approach, however, may
not be effective, especially in enforcing stringent tail latency
SLOs. To see why this is true, consider the 99.9th percentile
request response time of 200 ms, i.e., probabilistically, only
one out of 1,000 requests should experience a response time
greater than 200 ms. Assume that the average request arrival
rate is 50 per second. To track, through direct tail-latency
measurement, whether this tail latency SLO is violated or
not with reasonably high confidence, one needs to collect,
e.g., 100K samples to see if there are more than 100 requests
whose response times exceed 200 ms. This, however, takes
about 100K /50 = 2000 seconds or about 33 minutes of mea-
surement time! Given possibly high volatility of datacenter
workloads, the tail latency SLO may have been violated mul-
tiple times during this measurement period, even though the
total number of requests whose response times exceeding
200 ms may be well within 100. In constrast, using our pro-
posed models, with only 20 seconds of measurement time,
one can collect 20 x 50 = 1000 task samples at individual
Fork nodes to allow a reasonably accurate estimation of the
means and variances of task response times. With moving
average for a given time window, e.g., 20 seconds, these
means and variances and hence, the 99.9th percentile, can be
updated every tens of milliseconds, making it possible to
enable fast online tail-latency-guaranteed job scheduling
and resource provisioning.

In summary, a solution that can predict the tail and/or
mean latency using a small number of samples collected in
a short period of time as input and that applies to a large
design space of Fork-Join structures must be sought, the pri-
mary motivation of the current work.

8 CONCLUSION AND FUTURE WORK

A key challenge in enabling tail-latency and/or mean-
latency SLOs for data-intensive services and applications in
datacenters is how to predict the latencies for a broad range
of Fork-Join structures underlying those services and appli-
cations. In this paper, we proposed to study a generic black-
box Fork-Join model for the approximations of tail and mean
latency that covers most Fork-Join structures of practical
interests. On the basis of a central limit theorem for queuing
servers under heavy load, we were able to arrive at approxi-
mate solutions to this model for both tail and mean latencies,
called ForkTail and ForkMean, respectively. These approxi-
mations were found to be able to predict the tail and mean
latencies for most practical scenarios consistently within
20 percent in a load region of 80 percent or higher, resulting
in at most 7 percent resource overprovisioning, making it a
powerful tool for resource provisioning at high load. Finally,
we discussed some preliminary ideas of how to make use of
the proposed prediction model to facilitate tail-latency-SLO-
guaranteed job scheduling and resource provisioning.

In our future work, based on ForkTail and ForkMean, we
shall develop both job scheduling and online/ offline resource
provisioning solutions with tail-latency and /or mean-latency
SLO guarantee.

NGUYEN ET AL.: BLACK-BOX FORK-JOIN LATENCY PREDICTION MODEL FOR DATA-INTENSIVE APPLICATIONS

ACKNOWLEDGMENTS

This work is supported by the NSF under awards CCF XPS
1629625 and CCF 1704504.

REFERENCES

[1]

[2]

[3]

[4]
[5]

[6]

[71

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(171

[18]

[19]

[20]
[21]

[22]

[23]

[24]

[25]

M. Jeon et al., “Predictive parallelization: Taming tail latencies in
web search,” in Proc. 37th Int. ACM SIGIR Conf. Res. Develop. Inf.
Retrieval, 2014, pp. 253-262.

J. Brutlag, “Speed matters for Google web search,” 2009.
[Online]. Available: https://services.google.com/fh/files/blo
gs/google_delayexp.pdf

J. Dean and S. Ghemawat, “MapReduce: Simplified data process-
ing on large clusters,” in Proc. 6th Conf. Symp. Operating Syst. Des.
Implementation, 2004, pp. 137-150.

Apache spark, Accessed: Feb. 26, 2020. [Online]. Available:
https:/ /spark.apache.org

G. Blake and A. G. Saidi, “Where does the time go? Characterizing
tail latency in memcached,” in Proc. IEEE Int. Symp. Perform. Anal.
Syst. Softw., 2015, pp. 21-31.

C. Reiss, A. Tumanov, G. R. Ganger, R. H. Katz, and M. A. Kozuch,
“Heterogeneity and dynamicity of clouds at scale,” in Proc. 3rd
ACM Symp. Cloud Comput., 2012, pp. 7:1-7:13.

C. Delimitrou and C. Kozyrakis, “Quasar: Resource-efficient and
QoS-aware cluster management,” in Proc. 19th Int. Conf. Architec-
tural Support Program. Lang. Operating Syst., 2014, pp. 127-144.

G. Bolch, S. Greiner, H. de Meer, and K. S. Trivedi, Queueing Networks
and Markov Chains: Modeling and Performance Evaluation With Com-
puter Science Applications. Hoboken, NJ, USA: Wiley-Interscience,
2006.

A. Thomasian, “Analysis of fork/join and related queueing sys-
tems,” ACM Comput. Surv., vol. 47, no. 2, pp. 1-71, 2014.

R. Nelson and A. N. Tantawi, “Approximate analysis of fork/join
synchronization in parallel queues,” IEEE Trans. Comput., vol. 37,
no. 6, pp. 739-743, Jun. 1988.

E. Varki, “Response time analysis of parallel computer and stor-
age systems,” IEEE Trans. Parallel Distrib. Syst., vol. 12, no. 11,
pp- 1146-1161, Nov. 2001.

S. S. Ko and R. F. Serfozo, “Response times in M/M/s fork-join
networks,” Advances Appl. Probability, vol. 36, no. 3, pp. 854-871,
2004.

R.]. Chen, “A hybrid solution of fork/join synchronization in par-
allel queues,” IEEE Trans. Parallel Distrib. Syst., vol. 12, no. 8,
pp- 829-845, Aug. 2001.

Z.Qiu, J. F. Pérez, and P. G. Harrison, “Beyond the mean in fork-
join queues: Efficient approximation for response-time tails,” Per-
form. Eval., vol. 91, pp. 99-116, 2015.

J. Dean and L. A. Barroso, “The tail at scale,” Commun. ACM,
vol. 56, no. 2, pp. 74-80, 2013.

A. Vulimiri, P. B. Godfrey, R. Mittal, J. Sherry, S. Ratnasamy, and
S. Shenker, “Low latency via redundancy,” in Proc. 9th ACM Conf.
Emerg. Netw. Experiments Technol., 2013, pp. 283-294.

N.J. Yadwadkar, G. Ananthanarayanan, and R. Katz, “Wrangler:
Predictable and faster jobs using fewer resources,” in Proc. ACM
Symp. Cloud Comput., 2014, pp. 26:1-26:14.

R. Nishtala et al., “Scaling memcache at Facebook,” in Proc. 10th
USENIX Conf. Netw. Syst. Des. Implementation, 2013, pp. 385-398.
P. Delgado, F. Dinu, A. M. Kermarrec, and W. Zwaenepoel,
“Hawk: Hybrid datacenter scheduling,” in Proc. USENIX Conf.
Usenix Annu. Tech. Conf., 2015, pp. 499-510.

J. F. C. Kingman and M. F. Atiyah, “The single server queue in heavy
traffic,” Proc. Cambridge Philosophical Soc., vol. 57, pp. 902-904, 1961.

J. Kollerstrom, “Heavy traffic theory for queues with several serv-
ers. I,” J. Appl. Probability, vol. 11, no. 3, pp. 544-552, 1974.

M. Nguyen, Z. Li, F. Duan, H. Che, Y. Lei, and H. Jiang, “The Tail
at Scale: How to Predict It?” in Proc. 8th USENIX Workshop Hot
Topics Cloud Comput., 2016.

S. Sani and O. A. Daman, “Mathematical modeling in heavy traffic
queuing systems,” Amer. . Operations Res., vol. 4, pp. 340-350, 2014.
R. D. Gupta and D. Kundu, “Generalized exponential distribu-
tions,” Australian New Zealand |. Statist., vol. 41, no. 2, pp. 173-188,
1999.

M. Nguyen, S. Alesawi, N. Li, H. Che, and H. Jiang, “ForkTail: A
black-box fork-join tail latency prediction model for user-facing
datacenter workloads,” in Proc. 27th Int. Symp. High-Perform. Par-
allel Distrib. Comput., 2018, pp. 206-217.

[26]
[27]
[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

1999

L. Kleinrock, Queueing Systems, Vol. 1: Theory. Hoboken, New
Jersey, USA: Wiley, 1975.

W. Whitt, “The queueing network analyzer,” The Bell Syst. Tech. J.,
vol. 62, no. 9, pp. 2779-2815, Nov. 1983.

G. Brys, M. Hubert, and A. Struyf, “Robust measures of tail weight,”
Comput. Statist. Data Anal., vol. 50, no. 3, pp. 733759, 2006.

A. Thomasian and A. N. Tantawi, “Approximate solutions for
M/G/1 fork/join synchronization,” in Proc. 26th Conf. Winter
Simul., 1994, pp. 361-368.

L. A. Barroso, J. Dean, and U. Holzle, “Web search for a planet:
The Google cluster architecture,” IEEE Micro, vol. 23, no. 2,
pp- 22-28, 2003.

M. Harchol-Balter, Performance Modeling and Design of Computer
Systems: Queueing Theory in Action, 1st ed. Cambridge, U.K.:
Cambridge Univ. Press, 2013.

D. Meisner, W. Junjie, and T. F. Wenisch, “BigHouse: A simulation
infrastructure for data center systems,” in Proc. IEEE Int. Symp.
Perform. Anal. Syst. Softw., 2012, pp. 35-45.

Apache hadoop, Accessed: Feb. 26, 2020. [Online]. Available:
https:/ /hadoop.apache.org

Y. Chen, S. Alspaugh, and R. Katz, “Interactive analytical process-
ing in big data systems: A cross-industry study of MapReduce
workloads,” Proc. VLDB Endowment, vol. 5, no. 12, pp. 1802-1813,
Aug. 2012.

M. Zaharia, D. Borthakur, J. S. Sarma, K. Elmeleegy, S. Shenker,
and I. Stoica, “Delay scheduling: A simple technique for achieving
locality and fairness in cluster scheduling,” in Proc. 5th Eur. Conf.
Comput. Syst., 2010, pp. 265-278.

E. Varki, A. Merchant, and H. Chen, “The M/M/1 fork-join queue
with variable sub-tasks,” 2002. [Online]. Available: http://www.
cs.unh.edu/ varki/publication/2002-nov-open.pdf

S. Varma and A. M. Makowski, “Interpolation approximations
for symmetric fork-join queues,” Perform. Eval., vol. 20, no. 1/3,
pp- 245-265, 1994.

L. Suresh, M. Canini, S. Schmid, and A. Feldmann, “C3: Cutting tail
latency in cloud data stores via adaptive replica selection,”
in Proc. 12th USENIX Conf. Netw. Syst. Des. Implementation,
2015, pp. 513-527.

1. Aban, M. Meerschaert, and A. Panorska, “Parameter estimation
for the truncated pareto distribution,” J. Amer. Statist. Assoc.,
vol. 101, no. 473, pp. 270-277, 2006.

L. Flatto and S. Hahn, “Two parallel queues created by arrivals with
two demands I,” SIAM]. Appl. Math., vol. 44, no. 5, pp. 1041-1053,
1984.

F. Alomari and D. A. Menasce, “Efficient response time approxi-
mations for multiclass fork and join queues in open and closed
queuing networks,” IEEE Trans. Parallel Distributed Syst., vol. 25,
no. 6, pp. 1437-1446, Jun. 2014.

S. Balsamo, L. Donatiello, and N. M. Van Dijk, “Bound perfor-
mance models of heterogeneous parallel processing systems,”
IEEE Trans. Parallel Distributed Syst., vol. 9, no. 10, pp. 1041-1056,
Oct. 1998.

R.]J. Chen, “An upper bound solution for homogeneous fork/join
queuing systems,” IEEE Trans. Parallel Distributed Syst., vol. 22,
no. 5, pp. 874-878, May 2011.

D. Wang, G. Joshi, and G. Wornell, “Efficient task replication for
fast response times in parallel computation,” ACM SIGMETRICS
Perform. Eval. Rev., vol. 42, no. 1, pp. 599-600, Jun. 2014.

K. Gardner, S. Zbarsky, S. Doroudi, M. Harchol-Balter, E. Hyytia,
and A. Scheller-Wolf, “Reducing latency via redundant requests:
Exact analysis,” in Proc. ACM SIGMETRICS Int. Conf. Meas. Model.
Comput. Syst., 2015, pp. 347-360.

Z.Qiu and J. F. Perez, “Evaluating the effectiveness of replication
for tail-tolerance,” in Proc. 15th IEEEJACM Int. Symp. Cluster Cloud
Grid Comput., 2015, pp. 443-452.

S. Balsamo and I. Mura, “Approximate response time distribution
in Fork and Join systems,” in Proc. ACM SIGMETRICS Joint Int.
Conf. Meas. Model. Comput. Syst., 1995, pp. 305-306.

A. Rizk, F. Poloczek, and F. Ciucu, “Computable bounds in fork-
join queueing systems,” in Proc. ACM SIGMETRICS Int. Conf.
Meas. Model. Comput. Syst., 2015, pp. 335-346.

A. Lebrecht and W. J. Knottenbelt, “Response time approxima-
tions in fork-join queues,” in Proc. 23rd Annu. UK Perform. Eng.
Workshop, 2007.

T. Zhu, A. Tumanov, M. A. Kozuch, M. Harchol-Balter, and
G. R. Ganger, “PriorityMeister: Tail latency QoS for shared
networked storage,” in Proc. ACM Symp. Cloud Comput., 2014,
pp- 29:1-29:14.

https://services.google.com/fh/files/blogs/google_delayexp.pdf
https://services.google.com/fh/files/blogs/google_delayexp.pdf
https://spark.apache.org
https://hadoop.apache.org
http://www.cs.unh.edu/ varki/publication/2002-nov-open.pdf
http://www.cs.unh.edu/ varki/publication/2002-nov-open.pdf

2000

[51] A. Wang, S. Venkataraman, S. Alspaugh, R. Katz, and I. Stoica,
“Cake: Enabling high-level SLOs on shared storage systems,” in
Proc. 3rd ACM Symp. Cloud Comput., 2012, pp. 14:1-14:14.

A. D. Ferguson, P. Bodik, E. Boutin, and R. Fonseca, “Jockey:
Guaranteed job latency in data parallel clusters,” in Proc. 7th ACM
Eur. Conf. Comput. Syst., 2012, pp. 99-112.

[52]

Minh Nguyen received the BS and MS degrees in
electrical engineering from the Ho Chi Minh City
University of Technology, Vietnam; and the PhD
degree in computer engineering from the Univer-
sity of Texas at Arlington, Arlington, Texas. He is
currently a lead hardware integration engineer at
Ikon Technologies. His current research interests
include datacenter resource management and job
scheduling, edge computing, loT, and smart cities.

Sami Alesawi received the BS degree in computer
engineering and the MS degree in computer sci-
ence from King Abdulaziz University, Jeddah,
Saudi Arabia, and the PhD degree from The Uni-
versity of Texas at Arlington, Arlington, Texas. He
is currently working as an assistant professor at the
Faculty of Computing and Information Technology
in Rabigh, King Abdulaziz University, Saudi Arabia.
His current research interests include datacenter
resource management and job scheduling.

Ning Li received the BSc degree in computer sci-
ence from Jiangsu University, China; the MSc
degree in computer engineering from the Nanjing
University of Science and Technology, China; and
the PhD degree in computer system architecture
from the Huazhong University of Science and
Technology, China. He is currently working as a
post-doc research associate with the University of
Texas at Arlington, Arlington, Texas. His research
interests include virtualization, quality of service,
cloud computing and storage systems.

Hao Che (Senior Member, IEEE) received the BS
degree from Nanjing University, Nanjing, China;
the MS degree in physics from the University
of Texas at Arlington, Arlington, Texas; and the
PhD degree in electrical engineering from the
University of Texas at Austin, Austin, Texas.
He is currently a full professor in the Department
of Computer Science and Engineering, University
of Texas at Arlington, Texas. Prior to joining
UTA, he was a system architect with Santera
Systems, Inc. in Plano (2000-2002) and an
assistant professor of electrical engineering at the Pennsylvania State
University (1998 to 2000). His current research interests include network
architecture and Internet traffic control, datacenter resource manage-
ment and job scheduling, edge computing and loT.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 9, SEPTEMBER 2020

Hong Jiang (Fellow, IEEE) received the BSc
degree in computer engineering from the Huazhong
University of Science and Technology, Wuhan,
China; the MASc degree in computer engineering
from the University of Toronto, Toronto, Canada;
and the PhD degree in computer science from the
Texas A&M University, College Station, Texas. He
is currently chair and Wendell H. Nedderman
Endowed professor of Computer Science and
Engineering Department, University of Texas at
Arlington, Arlington, Texas. Prior to joining UTA, he
served as a program director at National Science Foundation (2013-2015)
and he was at University of Nebraska-Lincoln since 1991, where he was
Willa Cather professor of Computer Science and Engineering. He has grad-
uated 17 PhD students and supervised 20 post-doctoral fellows and visiting
scholars. He is currently supervising/co-supervising more than 10 PhD stu-
dents and post-doc fellows. His present research interests include computer
architecture, computer storage systems and parallel I/O, high-performance
computing, big data computing, and cloud and edge computing. He is an
associate editor of the IEEE Transactions on Computers and recently
served as an associate editor of the IEEE Transactions on Parallel and Dis-
tributed Systems. He has more than 300 publications in major journals and
international Conferences in these areas, including the |IEEE Transactions
on Parallel and Distributed Systems, IEEE Transactions on Computers,
Proceedings of IEEE, ACM Transactions on Architecture and Code Optimi-
zation, the ACM Transactions on Storage, USENIX ATC, FAST,
EUROSYS, ISCA, MICRO, SOCC, LISA, SIGMETRICS, ICDE, DATE,
ICDCS, IPDPS, MIDDLEWARE, OOPLAS, ECOOP, SC, ICS, HPDC,
INFOCOM, ICPP, etc., and his research has been supported by NSF and
industry. He is a member of the ACM.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 9, SEPTEMBER 2020

2001

ESetStore: An Erasure-Coded Storage
System With Fast Data Recovery

Chengijian Liu*, Qiang Wang

, Xiaowen Chu

, Senior Member, IEEE,

Yiu-Wing Leung, and Hai Liu, Member, IEEE

Abstract—Erasure codes have been used extensively in large-scale storage systems to reduce the storage overhead of triplication-based
storage systems. One key performance issue introduced by erasure codes is the long time needed to recover from a single failure, which
occurs constantly in large-scale storage systems. We present ESetStore, a prototype erasure-coded storage system that aims to achieve
fast recovery from failures. ESetStore is novel in the following aspects. We proposed a data placement algorithm named ESet for our
ESetStore that can aggregate adequate 1/O resources from available storage servers to recover from each single failure. We designed and
implemented efficient read and write operations on our erasure-coded storage system via effective use of available /0 and computation
resources. We evaluated the performance of ESetStore with extensive experiments on a cluster with 50 storage servers. The evaluation
results demonstrate that our recovery performance can obtain linear performance growth by harvesting available 1/O resources. With our
defined parameter recovery I/O parallelism under some mild conditions, we can achieve optimal recovery performance, in which ESet
enables minimal recovery time. Rather than being an alternative to improve recovery performance, our work can be an enhancement for
existing solutions, such as Partial-parallel-repair (PPR), to further improve recovery performance.

Index Terms—ESetStore, ESet, Erasure coded storage systems, Fast data recovery

1 INTRODUCTION

RECENT years have witnessed rapid growth in the amount
of data in large-scale distributed storage systems. In
2015, the European Centre for Medium-Range Weather
Forecasts revealed that its data had reached 100 PB and had
an annual growth rate of 45 percent [1]. A recent study illus-
trated that genomic big data have reached full storage of a
data center with a 100-PB storage capacity [2]. Triplication
[3], which is a reliability mechanism used in traditional stor-
age systems, introduces unaffordable storage costs with 3x
storage overhead. This makes the reduction of storage over-
head an unavoidable task in large-scale storage systems.
Many storage systems have begun to use erasure codes as
their reliability mechanism [4]. Microsoft’s cloud service
Azure [5], Facebooks warehouse [6], and Web service stor-
age system f4 [7] have already adopted erasure codes to
reduce their storage costs. Famous distributed file systems
such as HDFS [8] and Ceph [9] also support erasure coding,
yielding greater reliability and lower storage overhead.

An erasure-coded storage system is defined by two inte-
ger parameters, n and k. A file stored in the system is divided

o C. Liu is with the College of Big Data and Internet, Shenzhen Technology
University, Shenzhen, Guangdong 518055, China.

E-mail: liuchengjian@sztu.edu.cn.

o Q. Wang, X. Chu,and Y.-W. Leung are with the Department of Computer
Science, Hong Kong Baptist University, Kowloon Tong, Hong Kong.
E-mail: {qiangwang, chxw, ywleungj@comp.hkbu.edu.hk.

e H. Liu is with the Department of Computing, Hang Seng University of
Hong Kong, Siu Lek Yuen, Hong Kong. E-mail: hliu@hsu.edu.hk.

Manuscript received 12 Mar. 2019; revised 14 Feb. 2020; accepted 21 Mar. 2020.
Date of publication 31 Mar. 2020; date of current version 17 Apr. 2020.
(Corresponding author: Xiaowen Chu.)

Recommended for acceptance by K. Mohror.

Digital Object Identifier no. 10.1109/TPDS.2020.2983411

into k equally sized data blocks. These data blocks generate
n — k equally sized parity blocks. The blocks are stored in n
storage components to protect data against up to n — £ fail-
ures. The storage overhead is n/k. For example, Facebook f4
[7] sets k as 10 and 7 as 14, where its storage overhead is 1.4x.
The QFS sets k as 6 and n as 9 with 1.5x storage overhead
[10]. However, an erasure-coded storage system may suffer
from many performance penalties, one of which is the long
time needed to recover a failed storage component, which
can be a disk device or a storage server. To recover a missing
block, k blocks are retrieved from k storage components.
Because recovering a failed component is a constantly per-
formed task [6], the long recovery time may introduce
degraded service quality to the whole system.

Studies have shown that single failures accounted for
more than 99 percent of recoveries [5], [11], [12]. Recovery
from a single failure is a performance critical operation in era-
sure-coded storage systems [11], [13]. This motivated us to
focus on recovery from a single failure to evaluate recovery
performance of erasure-coded storage systems. A single
failure can refer to the failure of a single disk and to the fail-
ure of a single storage server. Here we regard a single fail-
ure as the failure of a single storage server. The recovery of
both kinds of failures requires disk I/O and network band-
width, both of which can be regarded as I/O resources. We
aim to gain adequate I/O resources for each recovery.

The key reason behind the long time needed to recover
from a single failure is the heavy I/O operations, which is k
times the replication-based storage. To improve recovery
performance, researchers have proposed solutions from the
following aspects. Some work reduces the I/O operations
required to recover a failed component. The Microsoft cloud

1045-9219 © 2020 |IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

https://orcid.org/0000-0002-0103-4670
https://orcid.org/0000-0002-0103-4670
https://orcid.org/0000-0002-0103-4670
https://orcid.org/0000-0002-0103-4670
https://orcid.org/0000-0002-0103-4670
https://orcid.org/0000-0002-2986-967X
https://orcid.org/0000-0002-2986-967X
https://orcid.org/0000-0002-2986-967X
https://orcid.org/0000-0002-2986-967X
https://orcid.org/0000-0002-2986-967X
https://orcid.org/0000-0001-9745-4372
https://orcid.org/0000-0001-9745-4372
https://orcid.org/0000-0001-9745-4372
https://orcid.org/0000-0001-9745-4372
https://orcid.org/0000-0001-9745-4372
mailto:liuchengjian@sztu.edu.cn
mailto:qiangwang@comp.hkbu.edu.hk
mailto:chxw@comp.hkbu.edu.hk
mailto:ywleung@comp.hkbu.edu.hk
mailto:hliu@hsu.edu.hk

2002

service Azure adopted local repair codes (LRC) that require
around %/2 blocks to recover a missing block, but at the cost
of increasing its storage overhead from n/k to (n + 2)/k [5].
The Hitchhiker reduces I/O operations by 25 to 45 percent for
recovery of single failures [14]. Some other works improve I/
O utilization of the recovery. Partial-parallel-repair pipe-
lined I/O operations to introduce k times of improvement of
recovery performance [15]. A recent work studied the pipe-
lined recovery for heterogeneous environments [16].

We can conclude that the long recovery time is caused
mainly by limited I/O resources for the recovery of a single
failure. Data placement algorithms, a promising means to
aggregate the desired I/O resources to recover from a single
failure, are ignored by studies of erasure-coded storage sys-
tems. This motivated us to propose ESetStore, an erasure-
coded storage system with fast data recovery via a novel
data placement algorithm ESet. To this end, we designed a
data placement algorithm named ESet to harvest adequate
1/0 resources for recovery of a single failure [17]. Our solu-
tion can be an enhancement to existing solutions to improve
the recovery performance of erasure-coded storage systems.
Our major contributions are summarized as follows:

1) We present a placement algorithm named ESet to
improve recovery from failures.

2) We conduct a theoretical analysis to illustrate how
ESet can achieve desired I/O aggregation for recov-
ery of a single failure with proper configuration.

3) Rather than being an alternative to existing solutions
for improving recovery performance, the placement
algorithm ESet can be an enhancement to existing
solutions to bring better recovery performance.

4) We achieve efficient I/O utilization for the read and
write operations in ESetStore by making an efficient
utilization of both I/O and computation resources.

5) We conduct extensive experiments to validate the
effectiveness of our proposed ESetStore, and compare
it with two storage systems: HDFS [8] and Ceph [9].

6) ESetStore is open-source and available to the public.'

The remainder of this paper is organized as follows.

Section 2 introduces the background and some related work.
Section 3 formulates the problem of long recovery time
caused by improper data placement. We present the design
of ESet in Section 4. The analysis of ESet is presented in
Section 5. The design and implementation of ESetStore are
presented in Section 6. Section 7 presents the experimental
results of ESetStore. We conclude the paper in Section 8.

2 BACKGROUND AND RELATED WORK

In this section, we first briefly introduce the background of
erasure-coded storage systems. Then, we present some
related work about the optimization of the recovery.

2.1 Erasure-Coded Storage Systems

Fig. 1 presents a concrete example with n =9 and £k = 6.
In this example, we assume that the system uses the Reed-
Solomon code [18] as the erasure code, which satisfies the
Maximum Distance Separable (MDS) property [19]. When
writing data to the storage system, the raw data are divided

1. Available at https://github.com/stevenlcj/ESetStore

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 9, SEPTEMBER 2020

1[0 0olofo D, —F—
ol1]{oflo]ofo D, —»F—
Dy
olof[1]o]o0]o0 D, —»——
D;
olofof[1]0]0 D; —»F—
D,
0[0|O0[O0O|1|0]| = 5 - Dy 4»%

3
0][0|0[0]O0]1 D S
=
X0,0(X0,1|X0,2|X0,3| X0,4 | X0, e~
0,01X0,1|X0,2|X0,3|X0,4|X0,5 Ds 0 -
X1,0(X1,1|X1,2|1X1,3|X1,4(X15 Raw Data P, —%
X2,0|X2,1|X2,2|X2,3|X2,4|X2,5 P, 4’

A Stripe Storage Devices

Generator Matrix

Fig. 1. Erasure-Coded storage with n=9 and k = 6 using RS code.

into k equally sized data blocks. A generator matrix serves
as another input. The matrix consists of a k x k identity
matrix and a (n — k) x k matrix, where each element in the
(n — k) x k matrix is an integer. The matrix multiplies with
the set of data blocks to generate n blocks. The set of n
blocks with k data blocks and n — k parity blocks together is
called a stripe. The set of blocks is then distributed into n
storage components to tolerate up to n — k failures.

The selected n devices for storing a stripe are typically
from n distinct failure domains to minimize the probability of
data loss. A failure domain is a physical container that
includes a set of storage servers. When the container encoun-
ters a failure, all servers in the container become unavailable.
The failure domain is a frequently used term in discussions
of system failures [7], [20], [21], [22]. In this paper, we con-
sider each rack as a failure domain. Stripes are distributed
across failure domains to protect data loss against failures
from the same failure domain.

When any storage device becomes unavailable, the stor-
age system must recover the data within it. For each missing
block in a stripe, k blocks are gathered together to reproduce
it. The process of recovering a missing block is performed
repeatedly until all blocks in the failed storage device
become available. This recovery process has become a rou-
tine job in large-scale storage systems. For example, at Face-
book, which has a production cluster of 3,000 storage
servers, around 20 storage servers will encounter failures
and require recovery each day [23]. It was also revealed that
the recovery of a failed server storing about 150 blocks
(each block size is 64 MB and k = 10) could take more than
50 minutes, which indicates that recovery performance
plays a critical role in storage systems.

Recovery occupies heavy I/O resources in erasure-coded
storage systems. Thus, recovering a single failure takes a
long time if I/O resources are limited. Reducing the
required 1/O operations is a major approach to improving
the recovery performance of erasure-coded storage systems
[5], [14]. Some studies have attempted to reduce recovery
time by making better use of available I/O resources [15],
[16]. However, the performance is still limited by available
I/0 resources. This motivated us to design and implement
a data placement algorithm to improve the available I/O
resources for recovery of single failures. Our work can be
used with existing solutions such as Partial-parallel-repair
(PPR) [15] to further improve the recovery performance of
erasure-coded storage systems by better I/O utilization.

https://github.com/stevenlcj/ESetStore

LIU ETAL.: ESETSTORE: AN ERASURE-CODED STORAGE SYSTEM WITH FAST DATA RECOVERY

2003

TABLE 1
Properties of Some State-of-the-Art Data Placement Algorithms

Algorithm Name Examples Reliability Mechanism Scenario Scalability ~ Reliability ~ Efficient Reconstruction
Random Placement [21] HDFS Replication & Erasure Coding Centralized Yes No Replication
Copyset [21] HDFS Replication Centralized Yes Yes Replication
CRUSH [22] Ceph Replication & Erasure Coding Decentralized Yes Yes N/A

ESet ESetStore Erasure Coding Centralized Yes Yes Erasure Coding

2.2 Related Work

Recovery of missing data comprises two operations: data
gathering and decoding. The performance of decoding was
improved by some recent studies like those by Gibraltar
[24], PErasure [25] and G-CRS [26]. This leaves 1/O opera-
tions as the major bottleneck of recovery. We classify the
existing studies into two categories: one attempts to reduce
I/0 operations, and the other attempts to improve I/O utili-
zation. We also investigate why some state-of-the-art data
placement algorithms are not suited for fast data recovery
in erasure-coded storage systems.

Reducing 1/O Operations. XOR-based erasure codes access
less data when recovering a single failure. Some researchers
proposed optimization techniques for specific codes like
RDP Code [27] and X-Code [28]. The rotated Reed-Solomon
codes hold the reliability and performance properties of stan-
dard Reed-Solomon codes and can reduce the data required
for recovery by up to 30 percent [11]. Algorithms have also
been proposed to find solutions for reading less data for
XOR-based erasure codes [13], [29].

Some studies sought solutions to reduce the required I/O
operations by half but at the cost of increased storage over-
head. The family of LRCs [30] is representative: it encodes
each k/2 of data out of a stripe and stores the parity in a new
storage device. When performing recovery, only k/2 of data
blocks are required to recover a missing block. The solution
is used in Microsoft Azure [5]. The XORing Elephants stud-
ied the LRCs and noted that the cost of faster recovery is a
14 percent increase in storage overhead [23].

The family of regenerating codes [31], which hold the
properties of MDS codes [19], reduced the amount of data
needed to recover a failed storage component with special
constraints on k and n-k. Recent studies proposed some sol-
utions without special constraints. A new storage code
developed from the Piggybacking framework [32] can reduce
network and disk use during recovery by 30 percent and is
used in Facebook’s warehouse cluster [6]. The Hitchhiker can
reduce I/O operations by around 25 to 45 percent for recov-
ery of a single failure [14], where it also holds the property
of MDS codes and supports arbitrary n and k.

Improving 1/O Utilization. When recovering a block from a
stripe, k blocks from the same stripe are retrieved from k stor-
age servers concurrently. Because each server has the same
network throughput, the network bandwidth is underutil-
ized in the recovery. The Partial-parallel-repair (PPR) makes
a thorough investigation of this issue and proposed a pipe-
lined mechanism to make full use of the available bandwidth
when performing recovery [15].

The repair pipelining technique was proposed in [16] to
make better use of bandwidth for small-size units. An
ECPipe was developed to allow the pipelined mechanism
to work in heterogeneous environments [16].

Data Placement Algorithm. Data placement algorithms play
a key role in large-scale storage systems. Using a data place-
ment algorithm to achieve good recovery performance has
been proposed in [33], [34] to help each recovery gain more
disk I/O resources. However, these algorithms are designed
for scenarios in which disks are in a single server and are not
proper for recovery of storage servers in large-scale distrib-
uted storage systems. Nowadays, many solutions compro-
mise the property of efficient recovery for other important
properties in large-scale storage systems such as balanced
storage, reliability, and scalability.

Table 1 lists the main properties of some state-of-the-art
placement algorithms. A random placement algorithm can
work with both replication and erasure-coding based stor-
age systems [35]. It can select an arbitrary number of storage
servers to store data. However, this algorithm is not reliable
in large-scale storage systems, as revealed in [21].

Copysets addresses the issue of random placement for
replication-based storage systems [21]. The probability of
data loss is reduced greatly when random placement is
replaced with with Copysets. The parameter “scatter
width” can help each storage server in a replication-based
storage system achieve efficient data reconstruction. How-
ever, this algorithm was designed for replication-based stor-
age systems, and may not work for erasure-coded storage
systems to improve recovery performance when the num-
ber of storage servers in each copyset is increased.

CRUSH [22], from the family of RUSH algorithms [36],
[37], is a well-known algorithm adopted in the storage sys-
tem Ceph [9]. It uses a pseudo-random algorithm to select a
set of storage servers when storing data. However, it is not
designed to satisfy the property of efficient recovery for era-
sure-coded storage systems.

For erasure-coded storage systems, researchers have con-
sidered placement algorithms to reduce cross-rack traffic
when recovering a single failure [38]. The study case is the
situation in which a rack contains more than one block of a
given stripe. However, when we need to simultaneously tol-
erate disk-level, host-level, and rack-level failures [7], cross-
rack traffic may not be reduced by them.

In summary, the state-of-the-art data placement algo-
rithms do not allow efficient reconstruction in erasure-
coded storage systems. This motivated us to design and
implement the placement algorithm ESet, which allows effi-
cient recovery in erasure-coded storage systems.

3 PROBLEM FORMULATION

In this section, we formulate the problem of efficient recon-
struction for erasure-coded storage systems. Our study
focuses on the recovery of the single failure. We first explain
some terms, and then illustrate our motivation by presenting

2004

a simple example. We finish this section by making a formal
formulation of the problem.

3.1 Terminologies

Block. A block is a sequence of bytes with a fixed-length. Our
storage system includes two kinds of blocks: data blocks
and parity blocks. Each data block contains raw data stored
by users. The parity blocks are generated from data blocks
to protect raw data. The erasure-coded storage system
record the location of each file by memorizing the location
of its blocks in a metadata server.

Erasure Code. We use Reed-Solomon (RS) code as an
example of erasure code in this paper. In an (1, k) RS code,
where n is greater than k and k is greater than 1, k data
blocks are put together to generate n — k parity blocks (or
code blocks). When no more than n — & blocks fail in these
blocks, any k remaining blocks can be used to restore the
missing blocks. Although the encoding and decoding opera-
tions involve huge computation, many existing studies have
resolved this challenge with multicore CPU and many-core
GPU accelerations [24]. Disk and network I/O overheads
are currently the major challenge for such storage systems.

Stripe. A stripe contains n blocks in our system, where k
blocks are data blocks and the other n — k blocks are parity
blocks. Any k blocks in the same stripe can be gathered
together to reproduce other n — k blocks in the system.

Erasure-Coded Set. Each stripe can be distributed in n
disks from n distinct storage servers in the storage system.
We define an erasure-coded set as a set of n storage servers to
carry a complete stripe. It can serve as a unit of failure in
erasure-coded storage systems. When a storage server fails,
all erasure-coded sets that contain the failed storage server
will begin to recover the missing blocks in the server.

Recovery of Single Failures. A single failure can be a disk
failure or a storage server failure. The recovery of a disk or
a storage server consumes both disk I/O and network band-
width from k storage servers, which can both be regarded as
1/0 resources. We aim to gain adequate I/O resources for
the single failure recovery. We regard the recovery of a sin-
gle failure as the recovery of a storage server.

Recovery I/O Parallelism. Here we define a concept of
recovery 1/O parallelism. We use the symbol I to denote the
degree of recovery I/O parallelism in the system, which indi-
cates the number of erasure-coded sets to which each storage
server belongs. A larger value for I indicates that more era-
sure-coded sets will be available to recover a failed storage
server. This may leave more I/O resources for recovery of a
failed server. Thus, we can achieve efficient data reconstruc-
tion from a single failure by setting a proper value of I.

3.2 Motivation lllustration by an Example

A placement algorithm can decide the number of erasure-
coded sets for each storage server. The number of erasure-
coded sets for a server indicates the amount of I/ O resources
that can be involved for recovery from a single failure. More
I/Oresources may result in better recovery performance.

We begin the demonstration of our motivation with an
example in Fig. 2. Here we set 1 as 3 and k as 2. Six storage
servers are indexed from 1 to 6 and organized in three col-
umns. We assume that each column belongs to one rack.
Blocks in the same stripe are distributed across racks to

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 9, SEPTEMBER 2020

— — —

Stripe 1 [Dﬂ;l ‘ Dlsl l PgsI]

ﬁ

Erasure-Coded Set 1

Storage Servers Stripe 2. H Dy ‘ D} l Py’]

k QL0 — ——

sover (o7 o] (A0
Stripe 2 H D? ‘ D/” l Py } Erasure-Coded Set 2

Stripe 3 U Dy ‘ D" l P]

2] Erasure-Coded Set 3
] Stripe 4 [Dy ‘ D, l Py]

Erasure-Coded Set 4
Placement Algorithm B

Stripe 3 ﬂ D

Stripe 4 H D

Erasure-Coded Set 2
Placement Algorithm A

Fig. 2. A naive example of data distribution.

tolerate disk-level, host-level, and rack-level failures. We
have four stripes indexed from 1 to 4. We describe two data
placement algorithms to distribute the stripes. Suppose the
network bandwidth is ¢ and the block size is w. The time
needed to recover a block can be calculated as (k X w)/¢,
which is the time needed to gather k blocks into a single
server by reading blocks one by one.

Placement algorithm A, which is shown at the bottom-
left of Fig. 2, divides storage servers into two erasure-coded
sets. Each erasure-coded set carries two stripes. Placement
algorithm B (on the right side of Fig. 2) partitions the six
storage servers into four erasure-coded sets. In this way,
each erasure-coded set carries one stripe.

Both placement algorithms meet the requirement to dis-
tribute blocks across racks to tolerate rack-level failures.
The data are evenly distributed among six storage servers,
which means that each server stores the same amount of
data. However, the recovery performance will differ for
placement algorithms A and B when any failure occurs.
Note that the placement algorithm A and B differ from stan-
dard parity declustering [33]. The standard parity decluster-
ing will distribute parity across all disks. As a result, it is not
able to tolerate rack-level failures. We will clarify the differ-
ence between ESet and parity decluster in Section 5.

For algorithm A, each storage server belongs to one era-
sure-coded set, so the value of I is 1. For algorithm B, each
storage server belongs to two erasure-coded sets, so the
value of I is 2. If storage server 1 fails as illustrated in the
figure, the time for recovery is (2 x k x w)/¢ with placement
algorithm A, and the time for recovery is (k X w)/¢ with
placement algorithm B. This is because in algorithm B, two
erasure-coded sets can proceed in parallel to recover missing
blocks.

The recovery performance of placement algorithm B is
twice that of placement algorithm A, which means that a
higher value for I can allow better recovery performance.
For fast recovery of these systems, a placement algorithm
must be able to set a proper I for each storage server.

Given the above description, we formulate the problem
as follows. Given a data center with « racks and g storage

LIU ETAL.: ESETSTORE: AN ERASURE-CODED STORAGE SYSTEM WITH FAST DATA RECOVERY

servers, we build an erasure-coded storage system to store s
stripes. The problem is how to design a data placement
algorithm that makes each storage server stay in I erasure-
coded sets, where I is a parameter configured by the system
administrator when initializing a storage system to indicate
the desired recovery performance; meanwhile, the algo-
rithm can evenly distribute data in each storage server, i.e.,
each storage server stores ns/p blocks, and the algorithm
must also distribute each stripe across racks to tolerate rack-
level failure. In this way, the recovery time of each storage
server can approximate (ns/B) x ((k x w)/¢)/I, where ns/p
is the number of blocks in each storage server and (k x w)/¢
is the time needed to recover a single block. In a word, the
solution to the problem should have the recovery time for
each storage server approximate (ns/g) x ((k x w)/¢)/1.

4 DESIGN OF ESET

In this section, we present the design of the data placement
algorithm ESet. To minimize the probability of data loss, we
partition the storage servers into many ESetGroups, where
each ESetGroup contains n x I storage servers organized
into n rows and I columns. We form I? erasure-coded sets
in each ESetGroup. Each storage server in an ESetGroup is
contained by I erasure-coded sets.

4.1 Construction of ESetGroups

To minimize the probability of data loss, we must distribute
n blocks from each stripe across failure domains. We first
transform the whole data center into a set of ESetGroups.
Each ESetGroup is a set with n x I storage servers organized
into n rows and I columns. The storage servers in each
ESetGroup are indexed from Ny to N,,_; ;—i. The first sub-
script represents storage server’s row, and the second sub-
script represents its column within its ESetGroup. In each
ESetGroup, the storage servers from any two different rows
share no common failure domain. We can construct each
erasure-coded set by selecting n storage servers from n rows
of an ESetGroup. In this fashion, we can achieve the mini-
mum data loss probability when storing stripes that distrib-
ute blocks across failure domains.

Algorithm 1. Construction of ESetGroups

: Input: Data Center with g storage servers , n, I

: Output: g ESetGroups indexed from Gy to G-y

: Set the value of g as B/(n x I)

: Initialize g ESetGroups indexed from G to Gy

: foreachi € [0,g— 1] do

foreach j € [0,n — 1] do
Find and select I servers from the Data Center
that share no common failure domain with
the storage servers in G;

8: Add selected servers to the jth row of G;

NGOG WN e

9: Remove selected servers from the Data Center
10: end for
11: end for

12: Return g ESetGroups

Here, we present Algorithm 1 to divide g storage servers
in the data center into g ESetGroups, where g is equal to
B/(n x I). The ESetGroups are indexed from G, to G, ;.

2005

Each storage server can only remain in one ESetGroup. The
for-loop (from line 6 to line 10 in the Algorithm 1) iterates n
times to generate an ESetGroup. When selecting I storage
servers as one row of an ESetGroup, the selected storage
servers and other storage servers in the ESetGroup must
share no common failure domain (at line 7).

4.2 Construction of Each Erasure-Coded Set
We generate an erasure-coded set by selecting 1 storage
servers from n rows of an ESetGroup. Because each storage
server in an ESetGroup remains in I erasure-coded sets, we
must generate I erasure-coded sets for each ESetGroup.
Here we use the symbol V to denote a storage server in
an erasure-coded set. The storage servers in an erasure-
coded set are indexed from V4 to V,,_;. The subscript refers
to the index of the storage server in the erasure-coded set.
The process of generating each erasure-coded set is
shown in Algorithm 2 with a given ESetGroup G;. The first
for-loop (from line 4 to line 12) iterates I* to generate I era-
sure-coded sets. Each erasure-coded set selects n storage serv-
ers from n rows of the G;. The first storage server 1} in an
erasure-coded set comes from the storage server in the first
row of G;. The rth storage server V; in an erasure-coded set
is selected from the rth row of an ESetGroup.

Algorithm 2. Generate Erasure-Coded Sets

1: Input: G, n, I
2: Output: Erasure-coded sets indexed from Ejp to E;,)2 4
3: set startldx as il?
4: foreach j €[0,7> — 1] do
5: Initialize Egartidrtj
6: Set columnldx as the value of j/I
7: Select the storage server Ny coumnrdz in G; as the 14 in
Estartldm+j
8: foreachr e [l,n—1] do
9: Set columnldx as the value of ((j/D)(r-1)+j) mod I
10: Select the storage server N, copmnidz in G; as the V, in
ESZ(J’I'tI{]:E+,i
11: end for
12: end for

13: Return I? Erasure-coded sets

The procedure of translating an entire data center with o
racks and B hosts into many erasure-coded sets are presented
in Fig. 3. We partition the data center into gFSetGroups with
Algorithm 1. Each ESetGroup contains n x I storage servers
organized in n rows and I columns. The Algorithm 2 then
iterates ¢ times to generate gI* erasure-coded sets. We set &
as the value of gI>. We have ¢ erasure-coded sets to carry
stripes, where each stripe contains n blocks. So far, we have
illustrated how to generate all erasure-coded sets. Now we
must assure each storage server appears in I erasure-coded
sets to obtain the required recovery I/O parallelism. In the next
section, we analyze the property of ESet algorithm.

5 ANALYSIS OF ESET

To ensure that each storage server has the same recovery 1/O
parallelism, each storage server is expected to remain in I era-
sure-coded sets. In this section, we first validate this property,

2006

g ESetGroups SQUSLUCLONy, Fragure-coded sets for Storage

The Data Center M

Fig. 3. Partition a data center with « racks and g hosts into ¢ erasure-
coded sets to store stripes.

and then analyze the condition in which each storage server
has the optimal recovery I/O parallelism.

5.1 Answer When N, € £}

We first prove that our proposed ESet algorithm for con-
structing erasure-coded sets can make each storage server
from any ESetGroup belong to I erasure-coded sets.

Theorem 5.1. Given a storage server N,;, € Gy, there are I and
only 1 erasure-coded sets that for each erasure-coded set Ej;,
Noy € Ej, that is V,, from Ej is selected from N,;, where
0<a<n0<b<I0<i<g and 0<j < I

Proof of Theorem 5.1. Based on Algorithm 2, the erasure-
coded sets that contain the storage server N,,, € Gy are
indexed from Ej to E;2_;. We can have 0 < j < I?in The-
orem 5.1 as N,; € E;. We divide the rest of the proof into
two parts. First, we prove that I and only I erasure-coded
sets contain V,,, when a is equal to 0. We then discuss the
case when a # 0. O

Case 1. a = 0. The value of b is equal to j/I if and only
if N,; € E; according to line 6 in Algorithm 2. We can
have that for any E; that can satisfy b = j/I, N, € E;. As
0<j<I’and 0< b < I, I and only I values of j sat1sfy
b =j/I; that is, j is any value from bl to (bI + I-1). To this end,
we can conclude that I erasure-coded sets and only I erasure-
coded sets contain the storage server N, , when a = 0.

Case2. a # 0. When N, € E;, b must be equal to ((j/I)(a-1)
+j)mod I according to line 9 in Algorithm 2. If Ny, € G sat-
isfies the conditions that both Ny, € E; and N, € Ej,
then it must satisfy the condition that b is equal to (x(a-1)+j)
mod I, where 0 <z < I. As «I < j < «l + I according to
the above paragraph, there will be one and only one ESet in
which both Ny, and N,; € I;. Because 0 <« < I, we can
deduce that I and only I erasure-coded sets contain N, for
the case that when the value of a is not equal to 0.

In a word, when any storage server fails, we have I erasure-
coded sets to recover the failed storage server concurrently
according to Theorem 5.1.

5.2 Optimal Recovery I/O Parallelism

When a storage server fails, I erasure-coded sets that contain
the failed server will begin to recover missing blocks in the
server. Each erasure-coded set will select k storage servers to
perform recovery. A storage server that participates in recov-
ery may be selected by more than one erasure-coded set. As
a result, I/O contention may occur for the selected storage
servers during recovery, which will further decrease the

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 9, SEPTEMBER 2020

recovery performance. To obtain optimal recovery I/O parallel-
ism when recovering a single failure, there should be no I/O
contention for the recovery. To this end, we give the theorem
of optimal recovery I/O parallelism for a storage server as
follows:

Theorem 5.2. Given a storage server N, , € G, where
0<z <n0<y <I and 0<i < g, for any other
storage server N,,, € Go, where x1 # 2,0 < 2y < 1,0 <
ya < I, if there is only one erasure-coded set that includes both
Ny, oy and Ny, ., then the storage server Ny, ,, can have opti-
mal recovery I/O parallelism.

Proof of Theorem 5.2. Suppose N,, ,,, € E, and N, ,,, € Ep,
where 0<z; < n,0<y; < I and a#b The I/0O
contention only exists when a storage server N, ,, € E,
and N,,,, € I will participate in the recovery, where
1 # 19,0 <19 < n,0<1ys < I. Because this violates
the condition that N,, ,, € FE,, N, ,, € B, and N, €
Eq, Ny, y, € Ep only exists whena = b. Thus, thereisno /0O
contention for recovering N, , , so it can have optimal
recovery IO parallelism. Now we give the condition in
which a storage server can have optimal recovery I/O paral-
lelism of our proposed ESet: 0

Theorem 5.3. For a given storage server N, , € Gy, where
0 <wy1 < 1, it can have optimal recovery 1/O parallelism
when it satisfies one of the following conditions:

1) 1 =0. Namely, a storage server in the first row can
always have optimal recovery 1/0 parallelism

2) For xy # 0. When 1 is a prime number and is equal to
or greater than n-1, N, ,,, can have optimal recovery
I/0O parallelism

Proof of Theorem 5.3. We first prove that any storage
server Ny, € Gy, where 0 <y; < I, can always have
optimal recovery 1/O parallelism. Given a storage server
Niyyy € Go, Wwhere 0 < 29 < 1,0 <yp < I. If Ny, € E,,
Noy, € By and N, € By, Ny, € £, we can have
yo = (y1(x2 — 1) + a)modl and ys = (y1(x2 — 1) 4 b)modl
based on line 9 in Algorithm 2. Then we can have
(a —b)mod I = 0. As a and b are values ranging from y, I
o (y1 +1)I — 1, a=b when (a — b)mod I = 0. Thus, only
one erasure-coded set F, satisfies Ny, € £, and
Nyyyy € E,. Based on Theorem 5.2, Ny, can always have
optimal recovery I1/O parallelism. O

For 1 # 0,20 #0 and xy # @, if Ny € Eoy Noypy,
E, and Ng,,, € E4, Ny, € Ey, we have the followmg
equations:

hn = (

o~

Yy = (7 T —]_ +b))m0d I (3)

o~

We have the following equation based on Equations (1), (2),
(3), and (4)

(x1 — 1) —I—a)modl (@)

NI@

(xa — 1)+ a)|mod I (2)

’NO“ Nl@

~| o

(x2 — 1)+ b)>m0d 1. 4)

LIU ETAL.: ESETSTORE: AN ERASURE-CODED STORAGE SYSTEM WITH FAST DATA RECOVERY

(a—"b)(x1 —x2)

0= i

mod 1. (6))

Because (a-b)/I is a value between 0 and I-1, we can conclude
that when the value of I is a prime number and is equal to or
greater than n-1, each storage server can obtain optimal recov-
ery I/O parallelism. Because the absolute value of z; — x; is
smaller than n-1, the only condition that satisfies Equation (5)
is thata is equal to b.

The storage servers in the first row of a given ESetGroup
can always have optimal recovery I/O parallelism, and when I
is a prime number and is equal to or greater than n-1, any
storage server from other rows can obtain optimal recovery
I/O parallelism. In this way, the recovery time of each storage
server can approximate (ns/g) x ((k x w)/¢)/I, where ns/p
is the number of blocks in each storage server and (k X w)/¢
is the time needed to recover a single block, which was men-
tioned in the last paragraph of Section 3.

We consider the case for G in this section. The storage
servers for any ESetGroup G still satisfy the conditions of
both Theorems 5.1 and 5.3.

The algorithm of standard parity declustering [33] also
seeks to obtain an optimized recovery performance. How-
ever, our ESet differs from standard parity declustering in
the following three aspects based on our analysis of ESet:

1) The standard parity declustering is designed for
disk-level failures. ESet can tolerate rack-level, host-
level, and disk-level failures.

2) The standard parity declustering relies on the Bal-
anced Incomplete Block Design algorithm to distrib-
ute blocks, which will perform a complex calculation
before distribution. For ESet, each erasure-coded set
is one unit for distributing blocks in each stripe.

3) As we have proved, when I is a prime number and
no less than n — 1, it can achieve optimal recovery
performance. However, standard parity declustering
relies on the Balanced Incomplete Block Design algo-
rithm to give optimal recovery performance, which
is difficult to find.

In summary, our placement algorithm can obtain the
desired recovery 1/O parallelism. It can achieve optimal recov-
ery I/O parallelism under some mild conditions. Our algo-
rithm differ from existing algorithms such as standard
parity declustering and is appropriate to achieve fast data
recovery performance for erasure-coded storage systems.

6 DESIGN AND IMPLEMENTATION OF ESETSTORE

We illustrate the data placement algorithm ESet to obtain
efficient reconstruction for erasure-coded storage systems.
In this section, we present the design and implementation
of a prototype erasure-coded storage system that integrates
the data placement algorithm ESet to harvest fast data
recovery. We also consider how to achieve good read and
write performance for erasure-coded storage systems. We
developed ESetStore in C language with around 40,000 lines
of source code.

We first present the overall architecture of our ESetStore.
We then illustrate how to make efficient utilization of avail-
able I/O and computation resources in ESetStore to obtain
good read and write performance. We also detail the efficient

2007

Block

File Management
8 Management

Server
Management

ECMeta

Recovery
Management

Servers and Blocks Management

S0

ECServer ECServer -+ ECServer§

Storage Cluster

Fig. 4. Main components of ESetStore.

reconstruction with the placement algorithm ESet. Finally,
we make a discussion about how to handle various kinds of
1/0 pressure in storage systems.

6.1 ESetStore Architecture

Fig. 4 illustrates the overview of ESetStore’s system architec-
ture. ESetStore consists of three major components: ECClient,
a client library that allows users to interact with the storage
system; ECMeta, the metadata service that manages the meta-
data information; and a Storage Cluster that contains many
storage servers where each one is deployed with the storage
service ECServer to store raw data.

ECClient. The ECClient is a library that provides funda-
mental operations for users to interact with the storage sys-
tem. The three functions are create, open, and delete. When
a client issues a create request to the system, the command
is sent to the ECMeta. ECMeta returns a set of n storage
servers for storing files and some additional information
about how to encode the files. To open a file, a set of k stor-
age servers that contain any data or parity blocks of the file
will be returned. When it sends a delete command, the file
information is deleted from the metadata server, and the fil-
e’s content is deleted by the storage servers.

Two fundamental functions for accessing file content are
read and write. When 1 storage servers are provided, the
write function writes n data and parity blocks of a file to
these storage servers. To read the content of a file from the
servers, the ECClient first selects k storage servers that con-
tain the data blocks to retrieve data from the storage system.
In case that any storage server that contains data blocks
failed, some parity blocks will be downloaded, and the
decoding operation is performed to restore the file.

ECMeta. Each operation issued by users will first interact
with the ECMeta. It records the file created by users via file
management. It also manages the relationship between
stripes and files by Block Management module. Monitoring
the state of each storage server is also performed by the
metadata service. It interacts with each storage server to
periodically check its status. It is also responsible for con-
ducting recovery of any failed storage server.

The metadata service is responsible for managing the
metadata information of each file, and it records the location
of each block and manages the relationship between blocks
and stripes. When any storage server fails, it selects related
erasure-coded sets for which each erasure-coded set con-
tains the failed server to perform recovery.

Storage Cluster. The storage cluster contains many storage
servers to store raw data. Each storage server contains a

ABCDEF Time
Writing Reading
Read A Read A
Storage Servers Read B Read B
Read C Read C
Procedure of writing Read D Read H
Read E Read I
ABC [Read F Read J
Generate HIJ Generate DEF
[SS | ST S_— Write A Write A
. Write B Write B
ABCDEF Write C Write C
Write D Write D
Write E Write E
Write F Write F
Write H
Write I
Procedure of reading Write J

Fig. 5. Example of read and write operations.

storage service named ECServer. ECServer provides interfa-
ces that help users access data on each storage server. When
users write data to a storage server, it receives the data and
writes them to the local disk. If the storage server receives
the read request from users, the ECServer reads the data
from the local disk and sends the data to the user. ECServer
also assists ECMeta in recovering missing data.

6.2 Efficient Read and Write Operations

Accessing data is a constantly performed task in storage
systems. Read and write operations are two fundamental
operations for accessing data in a storage system. A write
operation in erasure-coded storage systems involves three
steps. First, the data are read from disk to memory. The
encoding operation is then performed to generate k data
chunks and n-k parity chunks. Finally, these chunks are writ-
ten to n storage servers. When reading a file, the ECClient
gathers data from k storage servers. If any of the k chunks
retrieved from storage servers belong to the n-k parity chunk,
the decoding operation must be performed before construct-
ing the file. When decoding is required to read a file, we call
it degrade read. The read operation without decoding is called
normal read. To this end, effectively utilizing both I/O and
computational resources are the key factors in achieving
good read and write performance.

Fig. 5 presents a simple example of read and write opera-
tions. In this example, we set 72 as 3 and k as 2. The file content
is denoted with a string ABCDEF. We can see that H is equal
to A@ D, Iis equal to B& E, and | is equal to C'@® F. The
right side of Fig. 5 demonstrates the timeline of read and
write operations. One read or write operation is performed
at each time slot. Note that we assume the ECServer 2 failed
in the read operation in the example. We perform a degrade
read to retrieve the file with decoding operation involved.
As for a normal read when ECServer 2 is available, we need

Writing Reading
HHH Read A Read A
Read B Read O
Storage Servers Generate O Read C Generate B Read C
Procgig@ of overlapped writing Write A Read D Write A Read P
Write B Generate P Read E Write B Generate D Read E
Write O Read F WiiteC Read Q
”””””””””” Write C Generate Q Write D Generate F

! oo
\ —— } Write D Write E
| Write P Write F
Amr)rr 4*\‘4—‘ | Wiite E
T \ } Write F
! .

I Wi
L l:C SLI‘VLI‘Z ECServer3! HeQ

Storage Servers
Procedure of overlapped reading

Fig. 6. Read and write operations with overlapped I/O and coding.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 9, SEPTEMBER 2020

“Acquire a sct of
Idlc Buffers

| [Acquire a set of
| [__Idle Buffers i

‘ Read Data

Perform Coding

I
Reccive Data
from k Servers | |

J

The Net Thread

The Disk Thread The Coding Thread The Coding Thread

(a) Write Procedure (b) Read Procedure

Fig. 7. Read and write operation in ESetStore.

only retrieve data chunks from ECServer 1 and ECServer 2.
The read and write operations in this way may take a rather
long time because each step takes an exclusive time slot.

One solution to improve read and write performance is to
utilize the I/ O resources of both the client side and the server
side. Fig. 6 illustrates the method of overlapping operations
to accelerate the performance of read and write operations.
We divide each chunk into many small sub-chunks for each
read and write step in our operation. To write data to servers,
weread A and B and then encode them into O. We then write
A, B, and O into three servers. We write C, D, and P in a simi-
lar way. The timeline at the bottom of Fig. 6 reveals that the
writing, coding, and reading steps can proceed in parallel to
better utilize the I/O resources.

In this way, we can make better use of I/O resources. Via
numeric calculation, our proposed method takes 3/4 of the
way in Fig. 5 for writing, and the time for reading is 9/13 of
that in Fig. 5 for reading. To effectively overlap I/O and
coding operations as illustrated in Fig. 6, we define a con-
cept called streaming size as follows:

The streaming size is a configured fixed-length (e.g., 64 KB) to
manipulate data. The block size is a multiple of the streaming size.
When writing a file, the file is divided into one or more sets of k
data blocks. Each block is further divided into many small chunks
whose size is the streaming size. The streaming size can be the
minimum size for handling both read and write operations.

For read and write operations, we have two sets of buf-
fers. When we allocate a set of buffers to handle read and
write operations in ESetStore, the size of each buffer is a
multiple of the streaming size. Each set of buffers has two
states. One state is idle when no thread is performing a task
on them. Another state is busy when a thread is conducting
a read or write operation on it. We have three threads to
carry read and write operations with these buffers. One
thread is the disk thread, which is responsible for reading
data from disks into the buffers or writing data from buffers
to a disk. The coding thread is responsible for coding. The
network thread is responsible for sending data to other stor-
age servers or receiving data from other storage servers.

The procedure of the write operation in ESetStore is pre-
sented in Fig. 7a. The disk thread first selects a set of n buf-
fers that remain idle and mark the set’s state as busy. It then
reads data from the disk into the k buffers. After completing
reading data into k buffers, it notifies the coding thread to
handle the set of buffers. The disk thread continues to
acquire a set of idle buffers and reading data into them until
the file data are read from disks. The coding thread then
generates parity data and fills them into n-k buffers. It then

LIU ETAL.: ESETSTORE: AN ERASURE-CODED STORAGE SYSTEM WITH FAST DATA RECOVERY

notifies the coding thread to send data to n storage servers.
The network thread receives the set of buffers from the cod-
ing thread and sends data from n buffers to n storage serv-
ers. It then sets the state of the set of buffers to idle.

Reading works in the opposite way. The procedure of the
read operation in ESetStore is presented in Fig. 7b. The net-
work thread continues to request a set of buffers, marks the
set’s state as busy, and receives data from n storage servers
until all tasks are complete. The coding thread performs
decoding when any data block is missing. The disk thread
writes data into a disk when a set of buffers is ready for
writing. It then sets the set of buffers’ state to idle when all
data in the buffer have been written to a disk.

6.3 Data Distribution and Efficient Reconstruction
We use the data placement algorithm ESet to decide where
to store each stripe in our ESetStore. After partitioning the
storage servers into many erasure-coded sets, we use an
array to store the entire erasure-coded sets with each era-
sure-coded set containing n storage servers. When storing a
file to ESetStore, the file is encoded into a stripe, and we
then select an erasure-coded set to carry the stripe for the
file. To evenly distribute the data across storage servers, we
select the erasure-coded sets in a round-robin fashion.

When a storage server fails, we must recover the missing
blocks. Algorithm 3 presents a high-level workflow of the
recovery process. First, it finds I erasure-coded sets that con-
tain the failed server. Each of the I erasure-coded sets then
selects k available storage servers to recover missing blocks.
Each erasure-coded set recovers one missing block from the
set at a time, and it continues to recover missing blocks until
all missing blocks from the erasure-coded sets are recov-
ered. The recovery is complete when each erasure-coded set
has recovered its missing blocks.

Algorithm 3. High-Level Workflow of Recovery

: Input: Erasure-coded sets, IV; ;
: Initialize RecoverySet
Find I erasure-coded sets that contain V; ;
Put I erasure-coded sets in RecoverySet
: for each E; € RecoverySet do
Select k available storage servers in E;
for each missing block € E; do
Recover the missing block with selected servers
end for
: end for

SO RPN DN

—_

6.3.1 | Erasure-Coded Sets for a Failed Storage Server

To recover a failed server, we need to locate I erasure-coded
sets. We first consider the case in which we have only one
group in our storage system. Erasure-coded sets are indexed
from Ej to E;2_,. The storage servers are indexed from N
to N,—1 7-1. The algorithm to find I erasure-coded sets for a
given storage server NN; ; is presented in Algorithm 4.

When the failed server is in the first row of the group, its
erasure-coded sets are located from line 5 to line 7 in Algo-
rithm 4. They are indexed from I *j to (I + 1) * j— 1. For
the case in which any failed storage server is in other rows,
any erasure-coded set with its index satisfies the condition

2009

that at line 10 contains the storage server N;;. Here, the
index of erasure-coded sets is from 0 to I? — 1. When the
storage system contains many groups, locating I erasure-
coded sets for a storage system with many ESetGroups is
similar to the case in which we have only one ESetGroup.
We must add the value, which is calculated by multiplying
the index of the given ESetGroup by I?, with each index of
the located erasure-coded set by Algorithm 4.

Algorithm 4. Find I Erasure-Coded Sets That Contain 1V; ;

1: Input: Eyto Epp_;, Iand N;
2: Output: RecoverySet
3: Initialize RecoverySet
4: if { == 0 then
5. foreachidr € [I+j,(I+1)*j—1]do
6: Put Ejq, in RecoverySet
7: end for
8: else
9: foreachidx € [0,1?> — 1] do
10: if j==((idx/I)(i-1)+idx)mod I then
11: Put Ej4, in RecoverySet
12: end if
13: end for
14: end if
15: return RecoverySet

After locating I erasure-coded sets to recover a failed stor-
age server, we select one storage server from each erasure-
coded set responsible for recovering missing blocks. To
recover a failed stripe in an erasure-coded set, the selected
storage server in each erasure-coded set reads k-1 blocks of
the stripe from other k-1 storage servers and reads one local
block from its own disk. It then reproduces the missing block
and caches the recovered block in its own disk. The selected
storage servers in each erasure-coded set repeat the process
until all missing blocks are recovered. The ESetStore is
expected to have I times of performance growth to recover a
failed storage server in an optimal situation compared with
the case in which the value of I'is 1.

6.3.2 Recovery of Each Erasure-Coded Set in ESetStore

We use a simple approach to recover missing blocks. After
selecting k available storage servers from the given erasure-
coded set, we select one storage server responsible for recov-
ery. The selected storage server for gathering blocks and
decoding missing blocks is called the head server.

When the head server receives the command to recover a
missing block, it recovers a portion of data from the missing
block as presented in Fig. 8. Note that the k blocks in Fig. 8
belong to the same stripe of the missing block. It first gath-
ers k small chunks to the head server, and then uses a
decoding operation to restore the part of data from the miss-
ing block and caches the restored data to its local disk. The
operation in Fig. 8 is repeated until the whole missing block
is recovered. It then informs the metadata server that the
missing block is restored. The metadata server continues to
send the command to the head server to recover a missing
block until all missing blocks are recovered.

To make efficient use of available I/O and computation
resources in the head server, it uses the same approach illus-
trated in Fig. 7b when reading k-1 blocks.

2010

EE missing data

decoding operation

A

ECServer k-1

ECServer 0 ECServer 1

Fig. 8. Recovery missing data in an erasure-coded set.

6.3.3 Recovery With PPR in ESetStore

We can see that the above recovery performance for each
erasure-coded set is limited by the head server’s network
bandwidth. A study named PPR [15] proposed a solution to
make better use of the available network bandwidth from
each set of k selected storage servers.

Our implementation of the PPR is illustrated in Fig. 9. The
storage servers are indexed from ECServer 0 to ECServer k-1.
The last storage server sends the required subblock to
ECServer k-2 to generate a temporary block. The temporary
block is then sent to the former storage server. The head
server continues to receive temporary blocks and restore
missing small blocks, and the other servers continues to gen-
erate temporary blocks and send the temporary block to its
former server until all missing data are restored. The entire
process can be well pipelined so that we can make full use of
the available I/O resources to perform recovery.

6.4 Limitations and Discussions

Our current design of ESetStore mainly addresses the issue
of storage efficiency (i.e., using erasure coding) and recov-
ery performance (i.e., through ESet), and meanwhile opti-
mizes the read and write throughput. We consider recovery
performance as the major design factor because in (n, k) era-
sure-coded system, the required I/O for recovery is k times
of that of replication based system. Currently we have not
considered other factors like data access dynamics and data
locality.

Storage systems may encounter various kinds of 1/0O
pressure. A storage system may have poor read perfor-
mance when providing limited I/O resources for hot data,
which are frequently accessed by clients in a short period.
ESetStore does not implement any strategy to deal with hot
data. We discuss some existing solutions that could be used
to tackle this issue. As revealed in the study of Facebook’s
system f4 [7], newly created data in storage systems typi-
cally have a higher access rate. It is possible to distribute
data in a round-robin manner to provide more I/O resour-
ces for hot data. The f4 system also uses a caching stack to
reduces the load on the storage system. As a result, system
administrators can use in-memory storage systems such as
Memcache [39], [40] to reduce I/O pressure on our ESet-
Store. A recent erasure-coded storage system EC-Store is
designed for various kinds of I/O workload [41]. It uses
data access patterns and data movement strategies to
improve the distribution of workload and provide efficient
retrieval for erasure-coded storage systems. It is possible to
adopt its strategy and run it on top of our ESet algorithm to
provide better I/O performance for various access patterns.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 9, SEPTEMBER 2020

missing data
decoding operation
F == temporary block
decoding operation
IFI e temporary block
decoding operation
eee [EEzazd temporary block
Tdecoding operation

0] i] Entry point

ECServer 0 ECServer 1 ECServer k-2 ECServer -1

Fig. 9. Recovery of missing data with PPR in an erasure-coded set.

When using replication as a reliability mechanism, stor-
age systems like HDFS can take advantage of data locality
to better support computation tasks such as Map-Reduce.
When one storage server failed, some other storage servers
still contain the required data blocks. However, with era-
sure coding, any missing data block is required to be
restored before performing computation tasks. The erasure-
coded version of HDFS must gather k blocks to restore the
missing block before performing computation tasks. A
study has been proposed to run degraded tasks earlier to
reduce the performance penalty [42]. The XORing Elephants
used LRC codes to reduce repair costs for HDFS [23]. Cur-
rently, ESetStore does not consider how to exploit data
locality to support computing-oriented applications. We
will leave it as our future work.

7 EVALUATION OF ESETSTORE

In this section, we conduct a set of experiments to evaluate
the performance of ESetStore using a cluster of up to 50 com-
puters. We first introduce the experimental setup of our eval-
uation, and then measure the read and write throughput of
ESetStore and compare it with HDFS using different settings
of block size. The version of HDFS is Hadoop 3.0.0-alpha2
[8]. Many previous studies used HDFS as a baseline [14],
[23], so we also choose it for comparison. We also evaluate
the overall throughput of read and write operations on a
small cluster and compare it with Ceph of version 13.2.6 [43].
Afterwards, we measure the recovery performance of
ESetStore and compare it with both HDFS and Ceph. We
demonstrate the recovery performance of ESetStore with the
optimal I/O parallelism. Finally, we evaluate the system
recovery performance with a single failure.

7.1 Experimental Setup

Fig. 10 presents the testbed used to the evaluate ESetStore,
HDEFS and Ceph. Each storage server is equipped with one 1
Gbps Ethernet card connected to a 1 Gbps switch. The testbed
has 50 servers in total. Each storage server has a disk with
the peak read and write throughput around 100 MB/s. The
metadata service ECMeta is deployed in a high-performance
server with 12 CPU cores and a 10 Gbps Ethernet card to
provide low latency metadata service. It is connected to a

LIU ETAL.: ESETSTORE: AN ERASURE-CODED STORAGE SYSTEM WITH FAST DATA RECOVERY

12 Cores

10 Gbps NIC

ECMeta

10Gbps Switch
1Gbps Switch
ECClient

7777777777777777777777777777777

Storage Cluster

Fig. 10. Our testbed for performance evaluation.

10 Gbps switch which is connected to the 10 Gbps uplink port
of the 1 Gbps switch.

To measure the read and write throughput achievable by
a single client in Section 7.2.1, we vary the values of block
size from 1 to 128 MB. We perform one read and write oper-
ation of a file for each measurement. The file size is the
value of k multiplied by the block size. The total size written
to the storage servers is the value of n multiplied by the
block size, and the total size read from the storage server is
the value of k multiplied by the block size. The throughput
is calculated from dividing the file size by the whole execu-
tion time. We set the streaming size as 64 KB in each set of
experiments. The buffer of each block is 256 KB. Each client
can read and write 256 KB of data for each buffer.

When measuring the overall system throughput in Sec-
tion 7.2.2, we set the size of each object as 16 MB, which means
the file size of ESetStore is 16 MB. We evaluate a small cluster
with 18 storage servers and set 7 as 3 and k as 2. We use a pop-
ular tool IOR [44] to measure the performance of our storage
cluster with intensive I/O operations. We implement the nec-
essary APIs for IOR to perform the read and write operations
with ESetStore, and the source code can be found at [44]. We
measure the read and write performance with up to 16 clients
that are deployed on 16 machines in two cases: (1) without
storage server failure; (2) with a single storage server failure.

When evaluating the single recovery performance of ESet-
Store in Sections 7.3 and 7.4, we set the value of I from one to
seven. We have I hosts in each rack for each measurement.
Each host uses one disk to store data. We have n racks, and
the number of storage servers is nl. Our ESetStore has n
racks to form one ESetGroup and contains I? erasure-coded
sets. We use the same physical configuration to measure the
performance of HDFS and Ceph for comparison.

The configuration for recovery experiments is presented
in Table 2. The file size is 64 x k MB. The default setting is
used for ESetStore and HDFS. For Ceph, the block size
refers to the data size written to each disk when writing an
object. We use the default CRUSH setting and set the place-
ment groups as the maximum number allowed, selected
from 128, 256, 512, and 1024.

We write around 1 GB data to each storage server, and
then manually shut down one server to measure the recov-
ery time. The throughput is calculated by dividing the total
recovered data size by the total recovery time in each mea-
surement. We evaluate the recovery performance of ESet-
Store with the simple approach presented in Fig. 8. We also
evaluate the recovery performance of ESetStore with the
PPR adopted to achieve optimal recovery performance.

2011
TABLE 2
The System Configuration for Recovery Performance
Comparison

(O] Block Size Placement Algorithm
ESetStore Ubuntu 14.04 64 MB ESet
HDFS Ubuntu 14.04 64 MB Random Placement
Ceph Ubuntu 16.04 4 MB CRUSH

When evaluating the impact of recovery operation on the
data access performance in Section 7.5, we write 256 x I files
to our storage system and then retrieve the files using multi-
ple client machines. The size of each file is 4 x k£ MB. So each
storage server stores 1 GB of data. Both ESetStore and Ceph
use k x I number of client machines to retrieve all files. We
evaluate the performance of two cases: (1) no storage server
is failed; (2) a single storage server is failed and the recovery
procedure is performed.

7.2 Read and Write Throughput

In this subsection, we measure the read and write throughput
of ESetStore and compare it with HDFS and Ceph. We evalu-
ate both the normal data access and degraded data access
when there is a single failure of storage server. In this subsec-
tion, data recovery will not be triggered upon the failure of a
storage server. The performance of simultaneous data access
and data recovery will be presented in Section 7.5.

7.2.1 Single Client Performance: Comparison

With HDFS

We first investigate the impact of block size on the read/
write throughput of a single client. Fig. 11 presents the read
throughput of ESetStore and HDFS with different settings.
In Fig. 11, ESetStore R, HDFS R, and Baseline R represent
the cases without any storage server failure. On the con-
trary, ESetStore Degrade R, HDFS Degrade R, and Baseline
Degrade R represent the cases with one storage server fail-
ure which contains the required data block. The baseline
refers to the special version of ESetStore without the optimi-
zation strategies in Section 6.

The read throughput of ESetStore is about 50 MB/s when
the block size is 1 MB when no server failure occurs. When
the value of k is 3, the performance is slightly better than
when k is 2. It is obvious that the read performance increases
gradually as the data block size increases. The throughput
reaches its maximum (which is limited by the network band-
width) when the size of each block is 64 MB. The perfor-
mance penalty of the degrade read is about 10 percent of
normal read, attributed to the overlapping of I/O operations
and computing operations.

We use the baseline and the HDFS for comparison. The
results of the baseline reveal that the system can encounter
various kinds of performance penalties at both the client side
and the server side, when no optimization strategy is applied
to our system. The HDFS does not make good use of avail-
able I/O resources to obtain high read throughput. It
requires a larger block size to obtain better read performance.
No obvious difference is observed between its normal read
and degrade read. The under-utilization of I/O resources
could be the major result of its performance degradation

2012

Throughput (MB/s)
T 1 11 T T 1T
I N O N |
Throughput (MB/s)
T 1 11 T T 1T
I N O N |

1 1 1 1 1
1 2 4 8 16 32 64128
Block Size (MB)

(b) n=5, k=3

1 1 1 1 1
1 2 4 8 16 32 64128
Block Size (MB)

(a) n=3, k=2

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 9, SEPTEMBER 2020

T T 1111717
Throughput (MB/s)
T T 1111717
IS I I I

Throughput (MB/s)

T
12 4

1 1 1 1 1
8 16 32 64128
Block Size (MB)

(d) n=14, k=10

1 1 1 1 1 1
1 2 4 8 16 32 64128
Block Size (MB)

(c) n=9, k=6

—e— ESetStore R —#— ESetStore Degrade R —@— HDFS R —+— HDEFS Degrade R —— Baseline R —4— Baseline Degrade R

Fig. 11. Single client read throughput of ESetStore and HDFS.

T T T T T T T T T T T T
Q - 12 W il
3 80 |- . 2 80 - s
s 70 - . S 70 s
g 60 - . g 60 |- J
B 50 - . B 50 .
& 40 |- . 5 401 s
2 30 |- . 2 30 - s
B 20 - . & 20 s
= 10 B = 10 |- 8
0 1 1 1 1 1 0 1 1 1 1 1
1 2 4 8 16 32 64128 1 2 4 8 16 32 64128
Block Size (MB) Block Size (MB)
(a) n=3, k=2 (b) n=5, k=3

T T 1T T T 100 T T T T T
E 90 |- - 3 90 |- =
= 80 |- -) 80 |- =
S T e S 10 -
g 60 - . g 60 |- 4
% 50 |- - % 50 |- =
5 40 |- g % 40 |- -
g s e g s -
£ 20f . 2 20 -
= 10 [~ — = 10 |- .

0 1 1 1 1 1 1 0 1 1 1 1 1 1 1
1 2 4 8 16 32 64128 1 2 4 8 16 32 64128
Block Size (MB) Block Size (MB)
(c) n=9, k=6 (d) n=14, k=10

—e— ESetStore —— HDFS —— Baseline

Fig. 12. Single client write throughput of ESetStore and HDFS.

when performing reads. This also indicates that our optimi-
zation strategy is effective and achieve show good read and
write performance in erasure-coded storage systems.

Fig. 12 presents the write throughput of ESetStore and
HDFS. The write throughput is k/n of the raw throughput
because writing parity blocks account a part of the total exe-
cution time. This is why the case when 7 is 3 and k is 2 has
better write throughput than the case when n is 5 and k is 3.
The case of k is 2 has nearly the same throughput as that
when k is 3 for the block size is 1 MB because the buffer is
set to 256k bytes in each write operation.

The baseline version can have better performance with a
larger block size. However, the write throughput is limited
to around 45 MB/s because each step occupies a time slot
exclusively. The write throughput of HDFS has similar per-
formance to its read throughput. The performance increases
as the block size increases. According to our experiments,
ESetStore has much better write throughput than either the
baseline version or the HDFS.

7.2.2 Overall Performance: Comparison With Ceph

The overall read/write throughput is also important to a
distributed storage cluster. We use up to 16 client machines
to measure the overall throughput of a cluster of 18 storage
servers. We set I to 6, n to 3 and k to 2 in our storage cluster.
We set the transfer size for each read and write to 2 MB, and
the size of each file as 16 MB. Each measurement iterates 10
times and we pick the maximum overall throughput to rep-
resent the peak performance that the cluster can reach. The
experimental results are shown in Fig. 13.

In Fig. 13, Single Failure denotes the case when the stor-
age cluster has one failed storage server. From the figure,

we can see that single failure has no obvious impact on the
overall read /write throughput of both ESetStore and Ceph.
When the number of clients increases from 1 to 2 and from 2
to 4, we can see the throughput is nearly doubled. But when
the number of clients grows from 4 to 8 and 8 to 16, there
are at most 50 percent performance growth. This could be
caused by I/O contention when we have more clients issu-
ing read/write requests. In all cases, we can see that ESet-
Store achieves much higher overall read /write throughput
than Ceph.

7.3 Recovery Performance of Single Failure

The recovery performance of ESetStore is presented in
Fig. 14. We set the value of k from 2 to 5. The value of n — k
can be set to 1 for two reasons. First, the value of n — kas 1 is
adequate to tolerate a single failure. Meanwhile, the smaller

Throughput (MB/s)

600
540
480
420
360
300
240
180
120
60
0

The Number of Clients

(a) Read Performance

Throughput (MB/s)

600
540
480
420
360
300
240
180
120
60
0

The Number of Clients

(b) Write Performance

—&— ESetStore —#— ESetStore Single Failure
—o— Ceph —2— Ceph Single Failure

Fig. 13. The overall read/write throughput of ESetStore and Ceph.
n=23k=2.

LIU ETAL.: ESETSTORE: AN ERASURE-CODED STORAGE SYSTEM WITH FAST DATA RECOVERY

+

)

Throughput (MB/s)
w
=
T 1 1 1 T T 11
S I I N N |
S I I N N |

Throughput (MB/s)
3
T 1 1 1 T T 11

_j———F
i

N

w

' ¢
ol [

ol 1 1 0 0 T 7 1 [
1 2 3 5 6 7 1 6 7
The Value of T The Value of T
(a) n=3, k=2 (b) n=4, k=3

2013
210 170

E 189 |- - E 153 - -
~ 168 |- - ~ 136 - -
S 4Tk e S 119 e
= 126 B = 102 —
§ 105 |- e é 85 - s
5 84 e 5 68 - e
E Wl 1 & af]
= [~ - -1 = [~ -
= 21} &7 g = 17 e g

0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1

1 2 3 4 5 6 7 1 2 3 4 5 6 7

The Value of I The Value of I
(c) n=5, k=4 (d) n=6, k=5

—#— ESetStore Row 0 —— ESetStore Row 1 —— HDFS —+— Ceph

Fig. 14. Recovery performance of ESetStore.

value of n — k means a reduction in coding overhead, which
could better reveal the overhead of I/O operations.

We conduct two sets of experiments to measure the recov-
ery performance of ESetStore. The first is ESetStore Row 0.
We manually shutdown one storage server in the first row
(row 0) in the ESetGroup. For ESetStore Row 1, we manually
shutdown one storage server in the second row (row 1) in
the ESetGroup. The storage servers in the first row always
obtain optimal recovery performance because there will be k
distinct storage servers to recover missing blocks in each
ESet. However, whether the storage servers in other rows
can obtain optimal recovery performance relies on the value
of I as analyzed in Section 5.

From Fig. 14, we can see that the recovery performance is
nearly 1/(k — 1) of the maximum read throughput when the
value of I is one because we must read k — 1 blocks from
other servers to recover a missing block.

A storage server from the first row will have k distinct
servers in each erasure-coded set to recover all missing
blocks that belong to the erasure-coded set. It can thus
obtain I times of performance growth as compared to the
situation in which I is equal to 1. When k is 3 when recover-
ing a failed storage server from the second, a storage server
that participates in recovery belongs to two erasure-coded
sets when [is 2 and 4. However, because each erasure-
coded set has only around 45 MB/s network bandwidth, its
recovery performance is nearly the same as that of the first
row. We can thus obtain I times of performance growth to
recover a failed storage server in all cases compared with
that in which the value of I is 1.

The evaluation result in ESetStore is close to our analysis
that the recovery time is approximate (ns/8) x ((k x w)/¢)/I
in Section 3. We didn’t use the same setting as the one
in Fig. 7b and 7, because the required machines I *n
for storage servers will exceed the number of our testbed.
However, the recovery performance can still approximate
(ns/B) x ((kx w)/¢)/I for these configuration. Because the
main performance penalty for the recovery is the limited I/O
resources, and our ESet can increase the I/O resources for
recovery with the increases of value I.

The base performance, where I is 1, of HDFS and Ceph
is slightly worse than that of our ESetStore, and we can see
that there are fewer cases in which the recovery performance
increases as I increases for HDFS. HDFS uses a random
placement algorithm, which indicates that the algorithm can-
not make as good use of the available disk I/O and network
bandwidth resources as our ESetStore.

We set the number of threads for recovery to 8 for Ceph
to achieve good recovery performance. Ceph showed
slightly better performance than HDFS. It relies on more
placement groups to achieve better performance. However,
it can only achieve around 3x performance growth when I
increases from 1 to 7. Thus, we can conclude that our ESet-
Store can harvest available I/O resources to improve the
recovery performance with the placement algorithm ESet.

7.4 Performance of Optimal Recovery I/O
Parallelism

We can observe from Fig. 14 that as k increases, the recovery
performance suffers a great decrease because the recovery
performance is limited by the network bandwidth of a sin-
gle storage server. Here we implement the PPR algorithm in
our ESetStore to evaluate the performance of optimal recov-
ery I/0 parallelism. With PPR, each erasure-coded set can
make good use of the available I/O resources.

The evaluation results are presented in Fig. 15. We mea-
sured the recovery performance of a failed storage server
from row 0 and a failed storage server from row 1. The eval-
uation results differ greatly from that in Fig. 14. The perfor-
mance is far better due to the better utilization of available
I/0O resources in each erasure-coded set.

To recover a single failure from row 0, the performance
can still show linear growth with an increase of I. However,
when recovering a failed storage server from row 1, some
cases show no obvious performance increase. For example,
when k is 5, there is no performance growth for I from 1 to 4
because I is smaller than #-1. In these cases, some storage
servers concurrently participate in the recovery of a failed
storage server in more than one erasure-coded set, resulting
in I/O contention. As a consequence, there is no increase of
I/0O resources to recover the failed server.

In addition, in some cases the performance of row 1 is
around half that of row 0, such as when k is 3 and I is 4,
because there is a storage server staying in two erasure-
coded sets that contains the failed storage server. As a
result, the I/O resources to recover the failed storage server
is reduced to half for row 1.

In summary, the recovery performance is always optimal
for the storage servers in row 0. The storage servers in other
rows can obtain optimal recovery performance only when
the configuration satisfies the optimal recovery I/0O parallel-
ism, namely, that [is a prime number and its value is equal
to or greater than n-1. Our evaluation also indicates that an
optimization solution, such as PPR, may become useless in

2014
800 770
Q 720 |- g Q 693 |- g
= 640 g R 616 g
S 560 g S 5391 g
T 480 | N T 462 N
é 400 |- g § 385 |- s
5 320 |- g 5 308 |- g
g 20 g g 1 g
2 160 g 2 154 g
E 80 |- g = leds g
| | | | | | | 0 | | | | | | |
123 45 6 7 123 45 6 7
The Value of I The Value of I
(a) n=3, k=2 (b) n=4, k=3

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 9, SEPTEMBER 2020

700 700
Q 630 |- g Q 630 |- g
R 560 g X 560 g
S 490 | g S 490 g
T 420 N T 420 N
§ 350 |- g E_ 350 |- g
5 280 |- g 5 280 |- g
g 20p g g 20p g
= 0| g = 0| g
= 70 | g = 70 g
| | | | | | | 0 | | | | | | |
123 45 6 7 123 45 6 7
The Value of I The Value of I
(c) n=5, k=4 (d) n=6, k=5

’ —#— ESetStore with PPR Row 0 —— ESetStore with PPR Row 1

Fig. 15. Recovery performance of ESetStore with PPR.

90 600
@ 81 B E 540 - B
) 72 B 2 480 - B
= 63 - B > 420 |- B
:5/ 54 - B \g 360 B
% 45 - B % 300 B
36 - a s A - 240 B
o0 —5 ——e—6—5 5 1]
3 27 |- - A 3 180f 8
- -
2 18 - B = 120 |- B
= 9 - = 60 |- -
0 A 0 A R R N |

|
1 2 3 4 5
The Value of

| |
6 7 1 2 3 4 5 6 7
I The Value of [

(a) n=3,k=2 Average (b) n=3,k=2 Overall

90 — T T T T T T 1,200
@ 81| N @ 1,080 |- N
2 72 -) 960 |- -
> 63 |- - = 840 |- -
::;s: 54 - \g 720 |- -
2, 45f . 2. 600 .
T 361 . . T 480 .
[N S
E 27| o o—6—6—4 o _| 2 360 | b
k] 18 |- e B 240 e
= 9 e =120 8
0 X | | | | | | 0
1 2 3 4 5 6 7
The Value of I The Value of I

(c) n=4,k=3 Average (d) n=4,k=3 Overall

’ —e— ESetStore R —#— ESetStore Degrade

R —6— Ceph R —4— Ceph Degrade R

Fig. 16. Read throughput with recovery operation.

erasure-coded storage systems if the stripes are not placed
in a proper way with a data placement algorithm.

7.5 Impact of Recovery on Data Access
Performance

Although ESetStore is designed for efficient data recovery, it
is still important to evaluate the data access performance
while the system is during the recovery process. We present
the experimental results in Fig. 16, where we measure the
data access throughput while the system is undergoing the
recovery process. The Average means the mean throughput
of all clients, which is calculated by dividing the single file
size by the average file downloading time. The Overall is
the total aggregated system throughput for accessing all
files, which is calculated by dividing the size of all retrieved
files by the total time of downloading all files.

We can observe that the throughput of a single client in
ESetStore decreases with the increase of I. This is because
more clients result in more I/O contentions. It also explains
why the overall throughput does not achieve linear perfor-
mance growth with the increase of I. When I is 1 or 2, we
observe that the data access performance with ongoing data
recovery is slightly worse than the one without server failure.
However, for larger values of I, the impact of data recovery
on the data access performance is negligible.

For Ceph, the read operation cannot be performed when
the value of I is 1 when one storage server failed. That is
why the throughput is zero in Fig. 16 for Ceph Degrade R.
For other cases, the Ceph Degrade R and Ceph R have simi-
lar performance. In all cases, ESetStore shows superior data
access throughput than Ceph when the system is undergo-
ing data recovery.

8 CONCLUSION

In this paper, we present the design and implementation of
our data placement algorithm, ESet, on the prototype of an
erasure-coded storage system ESetStore. Our results demon-
strate that ESetStore can effectively improve the single recov-
ery performance by harvesting available 1/O resources with
ESet. Meanwhile, our recovery solution can be an enhance-
ment to existing optimizations such as the parallel partial
repair algorithm. When the value of parameter recovery I/O
parallelism I is a primer number and is equal to or greater
than n-1, each storage server can make good use of the avail-
able I/O resources to obtain optimal recovery performance.

ACKNOWLEDGMENTS

The authors would like to thank the anonymous reviewers
for their valuable comments. This work was supported by
Hong Kong Innovation and Technology Fund ITS/443/
16FX. Chengjian Liu and Qiang Wang contributed equally to
this work.

REFERENCES

[1] M. Grawinkel, L. Nagel, M. Masker, F. Padua, A. Brinkmann, and
L. Sorth, “Analysis of the ECMWEF storage landscape,” in Proc.
13th USENIX Conf. File Storage Technol., 2015, pp. 15-27.

[2] L. Papageorgiou, P. Eleni, S. Raftopoulou, M. Mantaiou,
V. Megalooikonomou, and D. Vlachakis, “Genomic big data hitting
the storage bottleneck,” EMBnet.]., vol. 24, 2018.

[3] S.Ghemawat, H. Gobioff, and S.-T. Leung, “The Google file system,”
in Proc. 19th ACM Symp. Operating Syst. Princ., 2003, pp. 29-43.

[4] Z.Zhang, A. Deshpande, X. Ma, E. Thereska, and D. Narayanan,
“Does erasure coding have a role to play in my data center,”
Microsoft Res., Redmond, WA, USA, Tech. Rep. MSR-TR-2010, 2010.

LIU ETAL.: ESETSTORE: AN ERASURE-CODED STORAGE SYSTEM WITH FAST DATA RECOVERY

[5]
[6]

(7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

C. Huang et al., “Erasure coding in windows azure storage,” in
Proc. Usenix Annu. Tech. Conf., 2012, pp. 15-26.

K. Rashmi, N. B. Shah, D. Gu, H. Kuang, D. Borthakur, and
K. Ramchandran, “A solution to the network challenges of data
recovery in erasure-coded distributed storage systems: A study
on the Facebook warehouse cluster,” in Proc. 5th USENIX Work-
shop Hot Topics Storage File Syst., 2013, Art. no. 8.

S. Muralidhar et al., “F4: Facebook’s warm BLOB storage system,”
in Proc. 11th USENIX Conf. Operating Syst. Des. Implementation,
2014, pp. 383-398.

A. S. Foundation, “HDFS erasure coding,” 2017. [Online]. Avail-
able: https://hadoop.apache.org/docs/r3.0.0/hadoop-project-
dist/hadoop-hdfs/HDFSErasureCoding.html

S. A. Weil, S. A. Brandt, E. L. Miller, D. D. Long, and C. Maltzahn,
“Ceph: A scalable, high-performance distributed file system,” in
Proc. 7th Symp. Operating Syst. Des. Implementation, 2006, pp. 307-320.
M. Ovsiannikov, S. Rus, D. Reeves, P. Sutter, S. Rao, and J. Kelly,
“The quantcast file system,” Proc. VLDB Endowment, vol. 6, no. 11,
pp- 1092-1101, 2013.

O. Khan, R. C. Burns, J. S. Plank, W. Pierce, and C. Huang,
“Rethinking erasure codes for cloud file systems: Minimizing I/O
for recovery and degraded reads,” in Proc. 10th USENIX Conf. File
Storage Technol., 2012, Art. no. 20.

B. Schroeder and G. A. Gibson, “Disk failures in the real world:
What does an MTTF of 1,000,000 hours mean to you?” in Proc. 5th
USENIX Conf. File Storage Technol., 2007, pp. 1-16.

Y. Zhu, P. P. Lee, Y. Xu, Y. Hu, and L. Xiang, “On the speedup of
recovery in large-scale erasure-coded storage systems,” IEEE
Trans. Parallel Distrib. Syst., vol. 25, no. 7, pp. 1830-1840, Jul. 2014.
K. Rashmi, N. B. Shah, D. Gu, H. Kuang, D. Borthakur, and
K. Ramchandran, “A Hitchhiker’s guide to fast and efficient data
reconstruction in erasure-coded data centers,” ACM SIGCOMM
Comput. Commun. Rev., vol. 44, no. 4, pp. 331-342, 2014.

S. Mitra, R. Panta, M.-R. Ra, and S. Bagchi, “Partial-parallel-repair
(PPR): A distributed technique for repairing erasure coded
storage,” in Proc. 11th Eur. Conf. Comput. Syst., 2016, Art. no. 30.

R. Li, X. Li, P. P. Lee, and Q. Huang, “Repair pipelining for
erasure-coded storage,” in Proc. USENIX Annu. Tech. Conf., 2017,
pp- 567-579.

C. Liu, X. Chu, H. Liu, and Y.-W. Leung, “ESet: Placing data
towards efficient recovery for large-scale erasure-coded storage
systems,” in Proc. 25th Int. Conf. Comput. Commun. Netw., 2016,
pp- 1-9.

I. S. Reed and G. Solomon, “Polynomial codes over certain finite
fields,” J. Soc. Ind. Appl. Math., vol. 8, no. 2, pp. 300-304, 1960.

M. Blaum and R. M. Roth, “On lowest density MDS codes,” IEEE
Trans. Inf. Theory, vol. 45, no. 1, pp. 46-59, Jan. 1999.

D. Ford et al., “Availability in globally distributed storage sys-
tems,” in Proc. 9th USENIX Conf. Operating Syst. Des. Implementa-
tion, 2010, pp. 1-7.

A. Cidon, S. M. Rumble, R. Stutsman, S. Katti, J. K. Ousterhout, and
M. Rosenblum, “Copysets: Reducing the frequency of data loss in
cloud storage,” in Proc. Usenix Annu. Tech. Conf., 2013, pp. 37—48.

S. A. Weil, S. A. Brandt, E. L. Miller, and C. Maltzahn, “CRUSH:
Controlled, scalable, decentralized placement of replicated data,”
in Proc. ACM/IEEE Conf. Supercomput., 2006, Art. no. 122.

M. Sathiamoorthy et al., “XORing elephants: Novel erasure codes
for big data,” Proc. VLDB Endowment, vol. 6, no. 5, pp. 325-336,
2013.

M. L. Curry, A. Skjellum, H. Lee Ward, and R. Brightwell, “Gibraltar:
A Reed-Solomon coding library for storage applications on pro-
grammable graphics processors,” Concurrency Comput.: Practice
Experience, vol. 23, no. 18, pp. 24772495, 2011.

X. Chu, C. Liu, K. Ouyang, L. S. Yung, H. Liu, and Y.-W. Leung,
“PErasure: A parallel cauchy reed-solomon coding library for
GPUs,” in Proc. IEEE Int. Conf. Commun., 2015, pp. 436—441.

C. Liu, Q. Wang, X. Chu, and Y.-W. Leung, “G-CRS: GPU acceler-
ated cauchy reed-solomon coding,” IEEE Trans. Parallel Distrib.
Syst., vol. 29, no. 7, pp. 1484-1498, Jul. 2018.

L. Xiang, Y. Xu, J. Lui, and Q. Chang, “Optimal recovery of single
disk failure in RDP code storage systems,” ACM SIGMETRICS
Perform. Eval. Rev., vol. 38, no. 1, pp. 119-130, 2010.

S. Xu et al., “Single disk failure recovery for X-code-based parallel
storage systems,” IEEE Trans. Comput., vol. 63, no. 4, pp. 995-1007,
Apr.2014.

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[371]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

2015

Z.Shen, J. Shu, P.P. Lee, and Y. Fu, “Seek-efficient I/O optimization
in single failure recovery for XOR-coded storage systems,” IEEE
Trans. Parallel Distrib. Syst., vol. 28, no. 3, pp. 877-890, Mar. 2017.

D. S. Papailiopoulos and A. G. Dimakis, “Locally repairable codes,”
IEEE Trans. Inf. Theory, vol. 60, no. 10, pp. 5843-5855, Oct. 2014.

A. G. Dimakis, K. Ramchandran, Y. Wu, and C. Suh, “A survey on
network codes for distributed storage,” in Proc. IEEE, vol. 99, no.
3, pp- 476-489, 2011.

K. Rashmi, N. B. Shah, and K. Ramchandran, “A piggybacking
design framework for read-and download-efficient distributed
storage codes,” in Proc. IEEE Int. Symp. Inf. Theory Proc., 2013,
pp- 331-335.

M. Holland and G. A. Gibson, “Parity declustering for continuous
operation in redundant disk arrays,” in Proc. 5th Int. Conf. Archit.
Support Program. Lang. Operating Syst., 1992, pp. 23-35.

G. A. Alvarez, W. A. Burkhard, L. J. Stockmeyer, and F. Cristian,
“Declustered disk array architectures with optimal and near-optimal
parallelism,” ACM SIGARCH Comput. Archit. News, vol. 26, no. 3,
pp- 109-120, 1998.

K. Shvachko, H. Kuang, S. Radia, and R. Chansler, “The hadoop
distributed file system,” in Proc. IEEE 26th Symp. Mass Storage
Syst. Technol., 2010, pp. 1-10.

R.J. Honicky and E. L. Miller, “A fast algorithm for online place-
ment and reorganization of replicated data,” in Proc. Int. Parallel
Distrib. Process. Symp., 2003, pp. 10-pp.

R. Honicky and E. L. Miller, “Replication under scalable hashing: A
family of algorithms for scalable decentralized data distribution,” in
Proc. 18th Int. Parallel Distrib. Process. Symp., 2004, Art. no. 96.

Z. Shen, P. P. Lee, J. Shu, and W. Guo, “Cross-rack-aware single
failure recovery for clustered file systems,” IEEE Trans. Dependable
Secure Comput., vol. 17, no. 2, pp. 248-261, Mar./ Apr. 2020.

C. Liu, K. Ouyang, X. Chu, H. Liu, and Y. Leung, “R-Memcached:
A reliable in-memory cache for big key-value stores,” Tsinghua
Sci. Technol., vol. 20, no. 6, pp. 560-573, 2015.

R. Nishtala et al., “Scaling Memcache at Facebook,” in Proc. 10th
USENIX Symp. Netw. Syst. Des. Implementation, 2013, pp. 385-398.
M. Abebe, K. Daudjee, B. Glasbergen, and Y. Tian, “EC-Store:
Bridging the gap between storage and latency in distributed era-
sure coded systems,” in Proc. IEEE 38th Int. Conf. Distrib. Comput.
Syst., 2018, pp. 255-266.

R.Li, P.P.C. Lee, and Y. Hu, “Degraded-first scheduling for Map-
Reduce in erasure-coded storage clusters,” in Proc. 44th Annu.
IEEE/IFIP Int. Conf. Dependable Syst. Netw., 2014, pp. 419-430.

T. C. Blog, “v13.2.6 mimic released,” 2019. [Online]. Available:
https:/ /ceph.io/releases/v13-2-6-mimic-released /

H. I. Benchmark, “IOR,” 2020. [Online]. Available: https://github.
com/stevenlcj/ESetStore/tree/master /IOR

Chengjian Liu received the MS degree from the
College of Computer Science & Software Engi-
neering, Shenzhen University, Shenzhen, PR.
China, in 2013, and the PhD degree in computer
science from the Hong Kong Baptist University,
Hong Kong, in 2018. Currently, he is an assistant
professor with the College of Big Data and Internet,
Shenzhen Technology University. His research
interests include distributed storage, blockchain,
and general-purpose GPU computing.

Qiang Wang received the BSc degree from the
South China University of Technology, Guangz-
hou, China, in 2014. He is currently working
toward the PhD degree in the Department of
Computer Science, Hong Kong Baptist University,
Hong Kong. His research interests include gen-
eral-purpose GPU computing and power-
efficient computing. He is a recipient of Hong
Kong PhD Fellowship.

https://hadoop.apache.org/docs/r3.0.0/hadoop-project-dist/hadoop-hdfs/HDFSErasureCoding.html
https://hadoop.apache.org/docs/r3.0.0/hadoop-project-dist/hadoop-hdfs/HDFSErasureCoding.html
https://ceph.io/releases/v13-2-6-mimic-released/
https://github.com/stevenlcj/ESetStore/tree/master/IOR
https://github.com/stevenlcj/ESetStore/tree/master/IOR

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 9, SEPTEMBER 2020

Xiaowen Chu (Senior Member, IEEE) received
the BE degree in computer science from Tsing-
hua University, Beijing, PR. China, in 1999, and
the PhD degree in computer science from the
Hong Kong University of Science and Technology,
Hong Kong, in 2003. Currently, he is a professor
with the Department of Computer Science, Hong
Kong Baptist University. His research interests
include distributed and parallel computing, deep
learning systems, and wireless networks. He is
currently serving as an associate editor of the
IEEE Access and the |EEE Internet of Things
Journal.

Yiu-Wing Leung received the BSc and PhD
degrees from the Chinese University of Hong
Kong, Hong Kong. He has been working with the
Hong Kong Baptist University and currently he is
professor of the Computer Science Department
and programme director of two MSc programmes.
His research interests include three major areas: 1)
network design, analysis and optimization, 2) Inter-
net and cloud computing, and 3) systems engineer-
ing and optimization. He has published more than
50 papers in these areas in various IEEE transac-
tions and journals.

Hai Liu (Member, IEEE) received the BSc and MSc
degrees in applied mathematics from the South
China University of Technology, Guangzhou,
China, and the PhD degree in computer science
from the City University of Hong Kong, Hong Kong.
He is currently an associate professor with the
Department of Computing, Hang Seng University
of Hong Kong. Before joining HSUHK, he held sev-
eral academic posts with the University of Ottawa
and Hong Kong Baptist University. His research
interests includes wireless networking, cloud com-
puting, and algorithm design and analysis. His h-
index is 22 according to Google Scholar.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 9, SEPTEMBER 2020

2017

The Design of Fast Content-Defined Chunking
for Data Deduplication Based Storage Systems

Wen Xia"™, Member, IEEE, Xiangyu Zou
Yukun Zhou
Yuchong Hu

, Student Member, IEEE, Hong Jiang
, Chuanyi Liu, Dan Feng, Member, IEEE, Yu Hua, Senior Member, IEEE,
, and Yucheng Zhang

, Fellow, IEEE,

Abstract—Content-Defined Chunking (CDC) has been playing a key role in data deduplication systems recently due to its high
redundancy detection ability. However, existing CDC-based approaches introduce heavy CPU overhead because they declare the
chunk cut-points by computing and judging the rolling hashes of the data stream byte by byte. In this article, we propose FastCDC, a
Fast and efficient Content-Defined Chunking approach, for data deduplication-based storage systems. The key idea behind FastCDC is
the combined use of five key techniques, namely, gear based fast rolling hash, simplifying and enhancing the Gear hash judgment,
skipping sub-minimum chunk cut-points, normalizing the chunk-size distribution in a small specified region to address the problem of
the decreased deduplication ratio stemming from the cut-point skipping, and last but not least, rolling two bytes each time to further
speed up CDC. Our evaluation results show that, by using a combination of the five techniques, FastCDC is 3-12X faster than the
state-of-the-art CDC approaches, while achieving nearly the same and even higher deduplication ratio as the classic Rabin-based
CDC. In addition, our study on the deduplication throughput of FastCDC-based Destor (an open source deduplication project)
indicates that FastCDC helps achieve 1.2-3.0X higher throughput than Destor based on state-of-the-art chunkers.

Index Terms—Data deduplication, content-defined chunking, storage system, performance evaluation

1 INTRODUCTION

ATA deduplication, an efficient approach to data reduc-
tion, has gained increasing attention and popularity in
large-scale storage systems due to the explosive growth of
digital data. It eliminates redundant data at the file- or
chunk-level and identifies duplicate contents by their crypto-
graphically secure hash signatures (e.g., SHAT fingerprint).
According to deduplication studies conducted by Micro-
soft [1], [2] and EMC [3], [4], about 50 and 85 percent of the
data in their production primary and secondary storage sys-
tems, respectively, are redundant and could be removed by
the deduplication technology.
In general, chunk-level deduplication is more popular
than file-level deduplication because it identifies and
removes redundancy at a finer granularity. For chunk-level

o W. Xia is with the Harbin Institute of Technology, Shenzhen 518055,
China, Cyberspace Security Research Center, Peng Cheng Laboratory,
Shenzhen 518055, China, and also with the Wuhan National Laboratory
for Optoelectronics, Wuhan 430074, China. E-mail: xiawen@hit.edu.cn.

o X. Zou and C. Liu are with the Harbin Institute of Technology, Shenzhen
518055, China, and also with the Cyberspace Security Research Center,
Peng Cheng Laboratory, Shenzhen 518055, China.

E-mail: xdnzxy@gmail.com, liuchuanyi@hit.edu.cn.

e H. Jiang is with the Department of Computer Science and Engineering,
University of Texas at Arlington, TX 76019. E-mail: hong jiang@uta.edu.

e Y. Zhou, D. Feng, Y. Hua, Y. Hu, and Y. Zhang are with the Wuhan
National Laboratory for Optoelectronics, School of Computer Sci.&Tech.,
Huazhong University of Science and Technology, Wuhan 430074, China.
E-mail: {ykzhou, dfeng, csyhua, yuchonghu, cszyc}@hust.edu.cn.

Manuscript received 29 July 2019; revised 21 Feb. 2020; accepted 25 Mar. 2020.
Date of publication 2 Apr. 2020; date of current version 17 Apr. 2020.
(Corresponding author: Chuanyi Liu.)

Recommended for acceptance by T. Kosar.

Digital Object Identifier no. 10.1109/TPDS.2020.2984632

deduplication, the simplest chunking approach is to cut the
file or data stream into equal, fixed-size chunks, referred to
as Fixed-Size Chunking (FSC) [5]. Content-Defined Chunk-
ing (CDC) based approaches are proposed to address the
boundary-shift problem faced by the FSC approach [6]. Specif-
ically, CDC declares chunk boundaries based on the byte
contents of the data stream instead of on the byte offset, as in
FSC, and thus helps detect more redundancy for deduplica-
tion. According to some recent studies [1], [2], [7], [8], CDC-
based deduplication approaches are able to detect about
10-20 percent more redundancy than the FSC approach.

Currently, the most popular CDC approaches determine
chunk boundaries based on the Rabin fingerprints of the con-
tent, which we refer to as Rabin-based CDC [6], [9], [10].
Rabin-based CDC is highly effective in duplicate detection
but time-consuming, because it computes and judges
(against a condition value) Rabin fingerprints of the data
stream byte by byte [11]. In order to speed up the CDC pro-
cess, other hash algorithms have been proposed to replace
the Rabin algorithm for CDC, such as SampeByte [12],
Gear [13], etc. Meanwhile, the abundance of computation
resources afforded by multi and manycore processors [14],
[15] or GPU processors [16], [17], [18] has been leveraged for
CDC acceleration.

Generally, CDC consists of two distinctive and sequential
stages: (1) hashing in which fingerprints of the data contents
are generated and (2) hash judgment in which fingerprints are
compared against a given value to identify and declare chunk
cut-points. Our previous study of delta compression,
Ddelta [13], suggests that the Gear hash Gi.e., fp = (fp << 1) +
G(b), see Section 3.2) is more efficient as a rolling hash for

1045-9219 © 2020 |IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

https://orcid.org/0000-0003-4093-6391
https://orcid.org/0000-0003-4093-6391
https://orcid.org/0000-0003-4093-6391
https://orcid.org/0000-0003-4093-6391
https://orcid.org/0000-0003-4093-6391
https://orcid.org/0000-0001-5104-8301
https://orcid.org/0000-0001-5104-8301
https://orcid.org/0000-0001-5104-8301
https://orcid.org/0000-0001-5104-8301
https://orcid.org/0000-0001-5104-8301
https://orcid.org/0000-0002-1477-9751
https://orcid.org/0000-0002-1477-9751
https://orcid.org/0000-0002-1477-9751
https://orcid.org/0000-0002-1477-9751
https://orcid.org/0000-0002-1477-9751
https://orcid.org/0000-0003-0774-462X
https://orcid.org/0000-0003-0774-462X
https://orcid.org/0000-0003-0774-462X
https://orcid.org/0000-0003-0774-462X
https://orcid.org/0000-0003-0774-462X
https://orcid.org/0000-0003-1265-7141
https://orcid.org/0000-0003-1265-7141
https://orcid.org/0000-0003-1265-7141
https://orcid.org/0000-0003-1265-7141
https://orcid.org/0000-0003-1265-7141
https://orcid.org/0000-0001-7716-1214
https://orcid.org/0000-0001-7716-1214
https://orcid.org/0000-0001-7716-1214
https://orcid.org/0000-0001-7716-1214
https://orcid.org/0000-0001-7716-1214
mailto:xiawen@hit.edu.cn
mailto:xdnzxy@gmail.com
mailto:liuchuanyi@hit.edu.cn
mailto:hong.jiang@uta.edu
mailto:ykzhou@hust.edu.cn
mailto:dfeng@hust.edu.cn
mailto:csyhua@hust.edu.cn
mailto:yuchonghu@hust.edu.cn
mailto:cszyc@hust.edu.cn

2018

CDC. To the best of our knowledge, Gear appears to be one of
the fastest rolling hash algorithms for CDC at present since it
use much less calculation operations than others. However,
our empirical and analytical studies on Gear-based CDC
obtain three important observations:

e Observation @: the Gear-based CDC has the potential
problem of low deduplication ratio (i.e., the percentage
of redundant data reduced), about 10-50 percent
lower on some datasets (detailed in Section 4.2). This
is because, in the hash judgment stage of Gear-based
CDC, the sliding window size is very small, only
13 bytes in its current implementation [13].

e Observation @: the hash judgment stage becomes the
new performance bottleneck in Gear-based CDC.
This is because the accelerated hashing stage by Gear,
has shifted the bottleneck to the hash judgment stage.

e Observation ® : Enlarging the predefined minimum
chunk size (used in CDC to avoid the very small-sized
chunks [6]) can further speed up the chunking process
(called cut-point skipping in this paper) but at the cost of
decreasing the deduplication ratio in Gear-based CDC.
This is because many chunks with skipped cut-points
are not divided truly according to the data contents
(i.e., content-defined). Our large scale study (detailed
in Section 4.3) suggests that skipping this predefined
min chunk size usually increases the chunking speed
by the ratio of Hficluclmin il st byt decreases the
deduplication ratio (about 15 percent decline in the
worst case).

Therefore, motivated by the above three observations, we
proposed FastCDC, a Fast and efficient CDC approach that
addresses the problems of low deduplication efficiency and
expensive hash judgement faced by Gear-based CDC. To
address the problems observed in the 1st and 2nd observa-
tions, we use an approach of enhancing and simplifying the
hash judgment to further reduce the CPU operations during
CDC for data deduplication. Specifically, FastCDC pads
several zero bits into the mask value in its hash-judging
statement to enlarge the sliding window size to the size of
48 Bytes used by Rabin-based CDC, which makes it able to
achieve nearly the same deduplication ratio as the Rabin-
based CDC; Meanwhile, by further simplifying and opti-
mizing the hash-judging statement, FastCDC decreases the
CPU overhead for the hash judgment stage in CDC.

For the 3rd observation and to further speed up chunking,
FastCDC employs a novel normalized Content-Defined
Chunking scheme, called normalized chunking, that normal-
izes the chunk-size distribution to a specified region that is
guaranteed to be larger than the minimum chunk size to effec-
tively address the problem facing the cut-point skipping
approach. Specifically, FastCDC selectively changes the
number of mask bits ‘1" in the hash-judging statement of
CDC, and thus it normalizes the chunk-size distribution to a
small specified region (e.g., 8KB~16KB), i.e., the vast major-
ity of the generated chunks fall into this size range, and thus
minimizes the number of chunks of either too small or large
in size. The benefits are twofold. @), it increases the dedupli-
cation ratio by reducing the number of large-sized chunks.
®, it reduces the number of small-sized chunks, which
makes it possible to combine with the cut-point skipping

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 9, SEPTEMBER 2020

Files

Chunking & \ i

! Data Chunks §

Fig. 1. General workflow of chunk-level data deduplication.

technique above to maximize the CDC speed without
sacrificing the deduplication ratio.

In addition, we propose a technique called “rolling two
bytes each time” for FastCDC, which further reduces the
calculation operations in the hashing stage by rolling two
bytes each time to calculate the chunking fingerprints in the
hashing stage, and then judging the even and odd bytes
respectively in the hash judgement stage. This further acceler-
ates the chunking process while achieving exactly the same
chunking results.

Our evaluation results based on seven large-scale datasets,
suggest that FastCDC is about 3-12x faster than the state of
art, while ensuring a comparably high deduplication ratio. In
addition, we have incorporated FastCDC in Destor [19], an
open source data deduplication system, and evaluation shows
that Destor using FastCDC helps achieve about 1.2-3.0X
higher system throughout than using other CDC approaches.
Meanwhile, due to its simplicity and effectiveness, FastCDC
has been adopted as the default chunker by several known
open source Github projects to speed up the detection of
duplicate contents, such as Rdedup [20], Content Block-
chain [21], etc. The released Rdedup version 2.0.0 states:
“rdedupe store performance has been greatly improved by
implementing many new techniques” and “our default CDC
algorithm is now FastCDC”.

2 BACKGROUND

Recently, chunk-level data deduplication becomes one of
the most popular data reduction method in storage systems
for improving storage and network efficiency. As shown in
Fig. 1, it splits a file into several contiguous chunks and
removes duplicates by computing and indexing hash
digests (or called fingerprints, such as SHA-1) of chunks [5],
[6], [22], [23]. The fingerprints matching means that their
corresponding chunks are duplicate, which thus simplifies
the global duplicates detection in storage systems. In the
past ten years, data deduplication technique has been dem-
onstrated its space efficiency functionality in the large-scale
production systems of Microsoft [1], [2] and EMC [3], [4].
Chunking is the first critical step in the operational path of
data deduplication, in which a file or data stream is divided
into small chunks so that each can be duplicate-identified.
Fixed-Size Chunking (FSC) [5] is simple and fast but may
face the problem of low deduplication ratio that stems from
the boundary-shift problem [6], [24]. For example, if one or
several bytes are inserted at the beginning of a file, all current
chunk cut-points (i.e., boundaries) declared by FSC will be
shifted and no duplicate chunks will be detected.
Content-Defined Chunking (CDC) is proposed to solve
the boundary-shift problem. CDC uses a sliding-window tech-
nique on the content of files and computes a hash value (e.g.,
Rabin fingerprint [6], [9]) of the window. A chunk cut-point

XIAETAL.: DESIGN OF FAST CONTENT-DEFINED CHUNKING FOR DATA DEDUPLICATION BASED STORAGE SYSTEMS

B —

S \fpmod D #r fp mod D =r
[¢ T 6 ¢Jida =
File V,
C. I CE I G [[C [- |
File V, Modified

Fig. 2. The sliding window technique for the CDC algorithm. The hash
value of the sliding window, fp, is computed via the Rabin algorithm (this
is the hashing stage of CDC). If the lowest log, D bits of the hash value
matches a threshold value r, i.e., fo mod D = r, this offset (i.e., the cur-
rent position) is marked as a chunk cut-point (this is the hash-judging
stage of CDC).

is declared if the hash value satisfies some pre-defined condi-
tion. As shown in Fig. 2, to chunk a file V5 that is modified
from the file V}, the CDC algorithm can still identify the cor-
rect boundary of chunks €}, Cs, and Cy, whose contents have
not been modified. As a result, CDC outperforms FSC in
terms of deduplication ratio and has been widely used in
backup [3], [22] and primary [1], [2] storage systems.

Although the widely used Rabin-based CDC helps obtain
a high deduplication ratio, it incurs heavy CPU overhead
[14], [16], [18], [25]. Specifically, in Rabin-based CDC, Rabin
hash for a sliding window containing the byte sequence B,
By, ..., B, is defined as a polynomial

Rabin(By, By, ..., By)=A(p) = {Z sz“x}mod D, (1)
z=1

where D is the average chunk size, @ is the number of
bytes in the sliding window, and p is a number representing
an irreducible polynomial [9]. Rabin hash is a rolling hash
algorithm since it is able to compute the hash in an iterative
fashion, i.e., the current hash can be incrementally com-
puted from the previous value as

Rabin(BQ, Bg}7 ceey BuH»l)

2
= {[Rabin(By, By, . .. (2

, By) — B1p® '|p + Byy1}modsS.

However, Rabin-based CDC is time-consuming because it
computes and judges the hashes of the data stream byte by
byte, which renders the chunking process a performance
bottleneck in deduplication systems. There are many
approaches that accelerate the CDC process for deduplica-
tion systems and they can be broadly classified as either algo-
rithmic oriented or hardware oriented. We summarize below
some of these approaches that represent the state of the art.

Algorithmic-Oriented CDC Optimizations. Since the fre-
quent computations of Rabin fingerprints for CDC are time-
consuming, many alternatives to Rabin have been proposed
to accelerate the CDC process [12], [13], [24]. Sample-
Byte [12] is designed for providing fast chunking for fine-
grained network redundancy elimination, usually eliminat-
ing duplicate chunks as small as 32-64 bytes. It uses one
byte to declare a fingerprint for chunking, in contrast to
Rabin that uses a sliding window, and skips % of the
expected chunk size before chunking to avoid generating
extremely small-sized strings or chunks (they called “avoid
oversampling”). Gear [13] uses fewer operations to generate
rolling hashes by means of a small random integer table to

2019

map the values of the byte contents, so as to achieve higher
chunking throughput. AE [24] is a non-rolling-hash-based
chunking algorithm that employs an asymmetric sliding
window to identify extremums of data stream as cut-points,
which reduces the computational overhead for CDC. Yu
et al. [26] adjust the function for selecting chunk boundaries
such that if weak conditions are not met, the sliding win-
dow can jump forward, avoiding unnecessary calculation
steps. RapidCDC [27] leverages the data locality to record
the chunking positions to reduce the CDC computations for
the duplicate chunks to appear next time.

Hardware-Oriented CDC Optimizations. StoreGPU [16], [17]
and Shredder [18] make full use of GPU’s computational
power to accelerate popular compute-intensive primitives
(i.e., chunking and fingerprinting) in data deduplication.
P-Dedupe [14] pipelines deduplication tasks and then further
parallelizes the sub-tasks of chunking and fingerprinting with
multiple threads and thus achieves higher throughput. SS-
CDC [28] proposes a two-stage prallel content-defined chunk-
ing approach without compromising deduplication ratio.

It is noteworthy that there are other chunking approaches
trying to achieve a higher deduplication ratio but introduce
more computation overhead on top of the conventional CDC
approach. TTTD [29] and Regression chunking [2] introdu-
ces one or more additional thresholds for chunking judg-
ment, which leads to a higher probability of finding chunk
boundaries and decreases the chunk size variance. MAXP
[30], [31], [32] treats the extreme values in a fixed-size region
as cut-points, which also results in smaller chunk size vari-
ance. In addition, Bimodal chunking [33], Subchunk [34],
and FBC [35] re-chunk the non-duplicate chunks into smaller
ones to detect more redundancy.

For completeness and self-containment we briefly dis-
cuss other relevant deduplication issues here. A typical data
deduplication system follows the workflow of chunking,
fingerprinting, indexing, and storage management [19],
[22], [36], [37]. The fingerprinting process computes the
cryptographically secure hash signatures (e.g., SHA1) of
data chunks, which is also a compute-intensive task but can
be accelerated by certain pipelining or parallelizing techni-
ques [14], [38], [39], [40]. Indexing refers the process of iden-
tifying the identical fingerprints for checking duplicate
chunks in large-scale storage systems, which has been well
explored in many previous studies [19], [22], [41], [42]. Stor-
age management refers to the storage and possible post-
deduplication processing of the non-duplicate chunks and
their metadata, including such processes as related to fur-
ther compression [13], defragmentation [43], reliability [44],
security [45], etc. In this paper, we focus on designing a
very fast and efficient chunking approach for data dedupli-
cation since the CPU-intensive CDC task has been widely
recognized as a major performance bottleneck of the CDC-
based deduplication system [17], [18], [27], [28].

3 FASTCDC DESIGN AND IMPLEMENTATION

3.1 FastCDC Overview

FastCDC aims to provide high performance CDC. And
there are three metrics for evaluating CDC performance,
namely, deduplication ratio, chunking speed, and the aver-
age generated chunk size. Note that the average generated

2020

FastCDC
|Gear-based Rolling Hashingl HCS |

High Performance

Hash Jud

| HDR: High Deduplication Ratio

|0p-' izi ‘|HCS, HDRl

| Cut-points SKipping | HCS, LCS | | HCS: High Chunking Speed |

| Normalized Chunking | HDR, HCSl

| LCS: Large Avg. Chunk Size

| Rolling two bytes each time | HCS |

Fig. 3. The five key techniques used in FastCDC and their corresponding
benefits for high performance CDC.

chunk size is also an important CDC performance metric
since it reflects the metadata overhead for deduplication
indexing, i.e., the larger the generated chunk size is, the
fewer the number of chunks and thus the less metadata will
be processed by data deduplication.

Generally, it is difficult, if not impossible, to improve
these three performance metrics simultaneously because
they can be conflicting goals. For example, a smaller average
generated chunk size leads to a higher deduplication ratio,
but at the cost of lower chunking speed and high metadata
overheads. Thus, FastCDC is designed to strike a sensible trade-
off among these three metrics so as to strive for high performance
CDC, by using a combination of the five techniques with their
complementary features as shown in Fig. 3.

e Gear-based rolling hashing: due to its hashing sim-
plicity and rolling effectiveness, Gear hash is shown
to be one of the fastest rolling hash algorithms for
CDC, and we introduce it and discuss its chunking
efficiency in detail in Section 3.2.

e Optimizing hash judgment: using a zero-padding
scheme and a simplified hash-judging statement to
speed up CDC without compromising the dedupli-
cation ratio, as detailed in Section 3.3.

e Sub-minimum chunk cut-point skipping: enlarging
the predefined minimum chunk size and skipping
cut-points for chunks smaller than that to provide a
higher chunking speed and a larger average gener-
ated chunk size, as detailed in Section 3.4.

e Normalized chunking: selectively changing the num-
ber of mask ‘1" bits for the hash judgment to approxi-
mately normalize the chunk-size distribution to a
small specified region that is just larger than the pre-
defined minimum chunk size, ensuring both a higher
deduplication ratio and higher chunking speed, as
detailed in Section 3.5.

e Rolling two bytes each time: furhter speeding up
chunking without affecting the chunking results by
reducing the calculation operations in the hashing
stage by rolling two bytes each time to calculate the

G[2D]=0x342ad348

G9E]=0x75239a8¢ Gear Hash: g
‘ BBy)= > GLB 2 mod 2"
=
Look up the Gear Table W8, B, 00 << 1)+ GIB,]} mod "
d L H2 we wo o i+n-1 Data Stream
2 |2D|9E|5B ‘)1'33 7F|| 2D "‘)l(‘?\' 20|8F|72|34|48| S

Sliding forward .
>

fp's bit width = n (the window size)

Fig. 4. A schematic diagram of the Gear hash.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 9, SEPTEMBER 2020

TABLE 1
The Hashing Stage of the Rabin- and Gear-Based CDC
Name Pseudocode Speed
Rabin o= ((fp"Ula)) << 8)|p"T[fp >> N] Slow
Gear fp=(fp << 1)+ G(b) Fast

Here ‘a’ and ‘b" denote contents of the first and last byte of the sliding window
respectively, ‘N’ is the length of the content-defined sliding window, and "U’,
‘T’, ‘G denote the predefined arrays [6], [11], [13]. * fp” represents the finger-
print of the sliding window.

chunking fingerprints in the hashing stage, and then
judging the even and odd bytes respectively in the
hash judgement stage, as detailed in Section 3.7.

In general, the key idea behind FastCDC is the combined
use of the above five key techniques for CDC acceleration,
especially employing normalized chunking to address the
problem of decreased deduplication ratio facing the cut-
point skipping, and thus achieve high performance CDC on
the three key metrics.

3.2 Gear-Based Rolling Hashing

In this subsection, we elaborate on and analyze the Gear-
based rolling hash, and then introduce the new challenges
and opportunities after we introduce Gear-based CDC.
Gear-based rolling hash is first employed by Ddelta [13] for
delta compression, which helps provide a higher delta
encoding speed and is suggested to be a good rolling hash
candidate for CDC.

A good hash function must have a uniform distribution
of hash values regardless of the hashed content. As shown
in Fig. 4, Gear-based CDC achieves this in two key ways: (1)
It employs an array of 256 random 64-bit integers to map
the values of the byte contents in the sliding window (.e.,
the calculated bytes, whose size is the bit-width of the fp);
and (2) The addition (“4”) operation adds the new byte in
the sliding window into Gear hashes while the left-shift
(" < <”) operation helps strip away the last byte of the last
sliding window (e.g., B;_; in Fig. 4). This is because, after
the “ < <” and modulo operations, the last byte B;_; will be
calculated into the fp as the (G[B;_1] << n) mod 2", which
will be equal to zero. As a result, Gear generates uniformly
distributed hash values by using only three operations (i.e.,
“4+7, “<<”, and an array lookup), enabling it to move
quickly through the data content for the purpose of CDC.
Table 1 shows a comparison among the two rolling hash
algorithms: Rabin and Gear, which suggests Gear uses far
fewer calculation operations than Rabin, thus being a good

rolling hash candidate for CDC.
To better illustrate Gear-based CDC, Algorithm 3.2 pro-

vides the detailed chunking pseudo code that uses the Gear
table for calculating the rolling fingerprints and the hash judg-
ing statement similar to the classical Rabin-based CDC. In
Fig. 5, we compare the chunk-size distributions each gener-
ated by Rabin- and Gear-based CDC on the random-number
workload, and against the mathematical analysis based on
Equation (3) (see Section 3.4), which indicates that the three
are almost identical (for more chunk-size distribution results,
see Fig. 12 in Section 4.2). And the previous study Ddelta [13]
also suggests Gear is considered to be a good rolling hash can-
didate for CDC both on the hashing efficiency and on the

XIAETAL.: DESIGN OF FAST CONTENT-DEFINED CHUNKING FOR DATA DEDUPLICATION BASED STORAGE SYSTEMS

® 12] 20 —— Math
%‘ 1o Rabin
£ 101 15 Gear
S 8- 1.7

2 6 16

o

S O —

“E 4 - 16.0 16.2 164 16.6 16.8 17.0
(0]

S 24

[0]

o

O T T T T T T T T M T T T M
0 10 20 30 40 50 60
Chunk size (KB)

Fig. 5. Chunk-size distributions of Rabin- and Gear-based CDC
approaches with average chunk size of 8KB (without max/min chunk
size requirement). “Rabin” and “Gear” denote our experimental results
after CDC and “Math” denotes theoretical analysis, where they are
shown to be nearly identical.

chunking efficiency. However, according to our experimen-
tal analysis, there are still challenges and opportunities for
Gear-based CDC, such as low deduplication ratio, expensive
hash judgment, further acceleration by skipping, etc. We
elaborate on these issues as follows.

Algorithm 1. GearCDC8KB

Input: data buffer, src; buffer length, n
Output: chunking breakpoint 4
MinSize «— 2KB; MaxSize «— 64KB;
i «— MinSize; fp—0;
if n < MinSize then
return n
whilei < ndo
o= (fp << 1)+ Gear| src[i] |;
if (fp & 0z1fff == 0z78) || i >= MaxSize then
return i;
return i;

Low Deduplication Ratio Due to the Limited Sliding Window
Size. The Gear-based CDC has the potential problem of low
deduplication ratio, about 10-50 percent lower on some data-
sets (see the evaluation results in Section 4.2). This is becase,
the traditional hash judgment for the Rabin-based CDC, as
shown in Fig. 2 (i.e.,, “fp mod D==r"), is also used by the
Gear-based CDC [13] as shown in Algorithm 3.2. But this
results in a smaller sized sliding window used by Gear-
based CDC since it uses Gear hash for chunking. For exam-
ple, as shown in Fig. 6, the sliding window size of the Gear-
based CDC will be equal to the number of the ‘1" bits used
by the mask value. Therefore, when using a mask value of
Ox1fff (ie., 23 —1, there are thirteen ‘1’ bits) for the
expected chunk size of 8 KB, the sliding window for the
Gear-based CDC would be 13 bytes while that of the Rabin-
based CDC would be 48 bytes [6]. The smaller sliding win-
dow size of the Gear-based CDC can lead to more chunking
position collisions (i.e.,, randomly marking the different
positions as the chunk cut-points), resulting in the decrease
in deduplication ratio.

The Expensive Hash Judgment. In Gear-based CDC, the
accelerated hashing stage by the fast Gear, has shifted the bot-
tleneck to the hash judgment stage that requires more opera-
tions as shown in Algorithm 3.2. Our implementation and
in-depth analysis of Gear-based CDC on several datasets

2021

(2) Hash judgment: fp & Ox001f==r?
\ 11111 (Mask value)

Gear[Biy] 0011011[0 (1) Hashing stage:
001101[11 b =(fp<<D)+Gear[B;]
10101/010
1101/0101 re
Gear[B;] 01110100 Sliding forward
(3) The sliding window

covers 5-byte contents

Fig. 6. An example of the sliding window technique used in the Gear-
based CDC. Here CDC consists of two stages: hashing and hash judg-
ment. The size of the sliding window used for hash judgment is only 5
bytes because of the computation principles of the Gear hash.

(detailed in Section 4) suggest that its hash-judging stage
accounts for more than 60 percent of its CPU overhead during
CDC after the fast Gear hash is introduced. Thus, there is a lot of
room for the optimization of the hash judging stage to further
accelerate the CDC process as discussed later in Section 3.3.

Further Speed up Chunking by Skipping. Another observa-
tion is that the minimum chunk size used for avoiding
extremely small-sized chunks, can be also employed to
speed up CDC by the cut-point skipping, i.e., eliminating
the chunking computation in the skipped region. But this
minimum chunk size for cut-point skipping approach
decreases the deduplication ratio (as demonstrated in the
evaluation results in Fig. 12c¢ in Section 4.3) since many
chunks are not divided truly according to the data contents,
i.e., not really content-defined.

The last observation from the minimum chunk size skip-
ping motivates us to consider a new CDC approach that (1)
keeps all the chunk cut-points that generate chunks larger
than a predefined minimum chunk size and (2) enables the
chunk-size distribution to be normalized to a relatively
small specified region, an approach we refer to as normalized
chunking in this paper, as described in Section 3.5.

3.3 Optimizing Hash Judgment
In this subsection, we optimize the hash judgment stage on top
of the Gear-based CDC, which helps further accelerate the
chunking process and increase the deduplication ratio to reach
that of the Rabin-based CDC. More specifically, FastCDC
incorporates two main optimizations as elaborated below.
Enlarging the Sliding Window Size by Zero Padding. As dis-
cussed in Section 3.2, the Gear-based CDC employs the
same conventional hash judgment used in the Rabin-based
CDC, where a certain number of the lowest bits of the fin-
gerprint are used to declare the chunk cut-point, leading to
a shortened sliding window for the Gear-based CDC (see
Fig. 6) because of the unique feature of the Gear hash. To
address this problem, FastCDC enlarges the sliding window
size by padding a number of zero bits into the mask value.
As illustrated by the example of Fig. 7, FastCDC pads five
zero bits into the mask value and changes the hash judg-
ment statement to “fp & mask == r”. If the masked bits of fp
match a threshold value r, the current position will be
declared as a chunk cut-point. Since Gear hash uses one
left-shift and one addition operation to compute the rolling
hash, this zero-padding scheme enables 10 bytes (i.e.,
Bi,...,Biy), instead of the original five bytes, to be
involved in the final hash judgment by the five masked one
bits (as the red box shown in Fig. 7) and thus makes the

2022

(2) Hash judgment: fp & 0x02f0 ==r?

1011110000 (Mask value is padded
Gear[Bis] 001101 1[0 with 5 zero bits)
001101(11
1 (1) } 8 { 8 } 8 . (1) Hashing stage:
01110100 Jp =(fp<<D)+Gear[B]
Gear[Bj.4] 00/110110
00110111
10101010
11010101
Gear[Bi] 01110100
(3) The sliding window
covers 10-byte contents

Fig. 7. An example of the sliding window technique proposed for
FastCDC. By padding y zero bits into the mask value for hash judgment,
the size of the sliding window used in FastCDC is enlarged to about 5+y
bytes, where y=5in this example.

sliding window size equal or similar to that of the Rabin-
based CDC [6], minimizing the probability of the chunking
position collision. As a result, FastCDC is able to achieve a
deduplication ratio as high as that by the Rabin-based CDC.

Simplifying the Hash Judgment to Accelerate CDC. The con-
ventional hash judgment process, as used in the Rabin-
based CDC, is expressed in the programming statement of
“fp mod D==r" [6], [13]. For example, the Rabin-based
CDC usually defines D and r as 0x02000 and 0x78, accord-
ing to the known open source project LBFS [6], to obtain the
expected average chunk size of 8 KB. In FastCDC, when
combined with the zero-padding scheme introduced above
and shown in Fig. 7, the hash judgment statement can be
optimized to “fp & Mask==0", which is equivalent to
“Ifp & Mask”. Therefore, FastCDC’s hash judgment state-
ment reduces the register space for storing the threshold
value r and avoids the unnecessary comparison operation
that compares “fp & Mask” and r, thus further speeds up
the CDC process as verified in Section 4.2.

3.4 Cut-Point Skipping

Most of CDC-based deduplication systems impose a limit
of the maximum and minimum chunk sizes, to avoid the
pathological cases of generating many extremely large- or
small-sized chunks by CDC [1], [6], [33], [34], [37], [46]. A com-
mon configuration of the average, minimum, and maximum
parameters follows that used by LBFS [6], i.e., 8,2, and 64 KB.
Our previous study [13] and experimental observations (see
Fig. 11 in Section 4.2, using curve fitting) suggest that the
cumulative distribution of chunk size X in Rabin-based CDC
approaches with an expected chunk size of 8 KB (without the
maximum and minimum chunk size requirements) generally
follows an exponential distribution as follows:

P(X <z)=F(z) = (1 — %), > 0. (3)

Note that this theoretical exponential distribution in
Equation (3) is based on the assumption that the data con-
tent and Rabin hashes of contents (recall Equation (1) and
Fig. 2 for CDC) follow a uniform distribution. Equation (3)
suggests that the value of the expected chunk size will be
8 KB according to exponential distribution.

According to Equation (3), the chunks smaller than 2 KB
and larger than 64 KB would account for about 22.12 and
0.03 percent of the total number of chunks respectively. This
means that imposing the maximum chunk size requirement

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 9, SEPTEMBER 2020

A
j«—Skipped—p}€— Normalized Chunking —3»|

Percentage of Chunks

Chunk Size (KB)

Minimum Chunk Size Expected Chunk Size

Fig. 8. A conceptual diagram of the normalized chunking combined with
the subminimum chunk cut-point skipping. The dotted line shows a
higher level of normalized chunking.

only slightly hurts the deduplication ratio but skipping
cut-points before chunking to avoid generating chunks
smaller than the prescribed minimum chunk size, or called
sub-minimum chunk cut-point skipping , will impact the dedu-
plication ratio significantly as evidenced in Fig. 12c. This is
because a significant portion of the chunks are not divided
truly according to the data contents, but forced by this cut-
point skipping.

Given FastCDC’s goal of maximizing the chunking
speed, enlarging the minimum chunk size and skipping sub-
minimum chunk cut-point will help FastCDC achieve a higher
CDC speed by avoiding the operations for the hash calculation
and judgment in the skipped region. This gain in speed, how-
ever, comes at the cost of reduced deduplication ratio. To
address this problem, we will develop a normalized chunking
approach, to be introduced in the next subsection.

It is worth noting that this cut-point skipping approach,
by avoiding generating chunks smaller than the minimum
chunk size, also helps increase the average generated chunk
size. In fact, the average generated chunk size exceeds the
expected chunk size by an amount equal to the minimum
chunk size. This is because the F(z) in Equation (3) is changed
to (1 — e %1%) after cut-point skipping, thus the value of
the expected chunk size becomes 8 KB + minimum chunk
size, which will be verified in Section 4.3. The speedup
achieved by skipping the sub-minimum chunk cut-point can
be estimated by 1+ e miimun chunk ¢ The increased chunk-
ing speed comes from the eliminated computation on the
skipped region, which will also be evaluated and verified in
Section 4.3.

3.5 Normalized Chunking

In this subsection, we propose a novel chunking approach,
called normalized chunking, to solve the problem of
decreased deduplication ratio facing the cut-point skipping
approach. As shown in Fig. 8, normalized chunking gener-
ates chunks whose sizes are normalized to a specified
region centered at the expected chunk size. After normal-
ized chunking, there are almost no chunks of size smaller
than the minimum chunk size, which means that normal-
ized chunking enables skipping cut-points for subminimum
chunks to reduce the unnecessary chunking computation
and thus speed up CDC.

In our implementation of normalized chunking, we selec-
tively change the number of effective mask bits (i.e., the
number of ‘1" bits) for the hash-judging statement. For the
traditional CDC approach with expected chunk size of 8 KB
(i.e., 2'%), 13 effective mask bits are used for hash judgment

XIAETAL.: DESIGN OF FAST CONTENT-DEFINED CHUNKING FOR DATA DEDUPLICATION BASED STORAGE SYSTEMS

— Unique
mmm Duplicates

— Unique
mmm Duplicates

280K

K
O 8 162432404856 64
Chunk size (KB)

K
O 8 1624324048 56 64
Chunk size (KB)

(a) FastCDC without NC

— Unique
mmm Duplicates

(b) FastCDC with NC level 1

— Unique
mmm Duplicates

1200K

% 500K %1 000K
S 400K S 800K
S S
«— 300K «— 600K
S S
T 200K T 400K
£ 1S

)

=

N
o
[o}Ne]
A

K
O 8 162432404856 64
Chunk size (KB)

O 8 162432404856 64
Chunk size (KB)

(c) FastCDC with NC level 2 (d) FastCDC with NC level 3

Fig. 9. Chunk-size distribution of FastCDC with normalized chunking
(NC) at different normalization levels.

(e.g., fp & Oxl1fff==r). For normalized chunking, more
than 13 effective mask bits are used for hash judgment (e.g.,
fp & 027 fff==r) when the current chunking position is
smaller than 8 KB, which makes it harder to generate
chunks of size smaller than 8 KB. On the other hand, fewer
than 13 effective mask bits are used for hash judgment (e.g.,
fp & 020fff==r) when the current chunking position is
larger than 8 KB, which makes it easier to generate chunks
of size larger than 8 KB. Therefore, by changing the number
of ‘1’ bits in FastCDC, the chunk-size distribution will be
approximately normalized to a specified region always
larger than the minimum chunk size, instead of following
the exponential distribution (see Fig. 5).

Generally, there are three benefits or features of normal-
ized chunking (NCO):

e NC reduces the number of small-sized chunks,
which makes it possible to combine it with the cut-
point skipping approach to achieve high chunking
speed without sacrificing the deduplication ratio as sug-
gested in Fig. 8.

e NC further improves the deduplication ratio by
reducing the number of large-sized chunks, which
compensates for the reduced deduplication ratio
caused by reducing the number of small-sized
chunks in FastCDC.

e The implementation of FastCDC does not add addi-
tional computing and comparing operations. It sim-
ply separates the hash judgment into two parts,
before and after the expected chunk size.

Fig. 9 shows the chunk-size distribution after normalized
chunking in comparison with FastCDC without NC on the
TAR dataset (whose workload characteristics are detailed in
Table 2 in Section 4.1). The normalization levels 1, 2, 3 indi-
cate that the normalized chunking uses the mask bits of (14,
12), (15, 11), (16, 10), respectively, where the first and the
second integers in the parentheses indicate the numbers of
effective mask bits used in the hash judgment before and
after the expected chunk size (or normalized chunk size) of
8 KB. Fig. 9 also suggests that the chunk-size distribution is

2023

TABLE 2
Workload Characteristics of the Seven Datasets Used
in the Performance Evaluation

Name Size Workload descriptions

TAR 56 GB 215 tarred files from several open source projects
such as GCC, GDB, Emacs, etc. [47]

LNX 178 GB 390 versions of Linux source code files (untarred).
There are totally 16, 381, 277 files [48].

WEB 237GB 102 days’ snapshots of the website: news.sina.com,
which are collected by crawling software wget
with a maximum retrieval depth of 3.

VMA 138GB 90 virtual machine images of different OS release
versions, including CentOS, Fedora, etc. [49]

VMB 1.9TB 125 backups of an Ubuntu 12.04 virtual machine
image in use by a research group.

RDB 1.1TB 198 backups of the Redis key-value store database
snapshots, i.e., dump.rdb files.

SYN 2.1TB 300 synthetic backups. The backup is simulated

by the file create/delete/ modify operations [50].

a reasonably close approximation of the normal distribution
centered on 8 KB at the normalization level of 2 or 3.

As shown in Fig. 9, there are only a very small number of
chunks smaller than 2 or 4 KB after normalized chunking
while FastCDC without NC has a large number of chunks
smaller than 2 or 4 KB (consistent with the discussion in
Section 3.4). Thus, when combining NC with the cut-point
skipping to speed up the CDC process, only a very small por-
tion of chunk cut-points will be skipped in FastCDC, leading
to nearly the same deduplication ratio as the conventional
CDC approaches without the minimum chunk size require-
ment. In addition, normalized chunking allows us to enlarge
the minimum chunk size to maximize the chunking speed
without sacrificing the deduplication ratio.

It is worth noting that the chunk-size distribution shown
in Fig. 9 is not truly normal distribution but an approximation
of it. Actually, it follows an improved exponential distribu-
tion calculating from Equation (3) as follows (taking the NC 2
as an example and using the average chunk size of 8 KB)

1_6781@, 0 <x<8192

__z (4)
1 —e 8192/4, x > 8192

P(X <z) = F(z) = {

Therefore, Figs. 9c and 9d shows a closer approximation
of normal distribution of chunk size achieved by using the
normalization levels 2 and 3. Interestingly, the highest nor-
malization level of NC would be equivalent to Fixed-Size
Chunking (FSC), i.e., all the chunk sizes are normalized to
be equal to the expected chunk size. Since FSC has a very
low deduplication ratio but extremely high chunking speed,
it means that there will be a “sweet spot” among the nor-
malization level, deduplication ratio, and chunking speed,
which will be studied and evaluated in Section 4.

3.6 Putting It All Together

To put things together and in perspective. Algorithm 3.6
describes FastCDC combining the three key techniques:
optimizing hash judgment, cut-point skipping, and normal-
ized chunking (with the expected chunk size of 8 KB). The

2024

data structure “Gear” is a predefined array of 256 random
64-bit integers with one-to-one mapping to the values of
byte contents for chunking [13].

Algorithm 2. FastCDC8KB (with NC)

Input: data buffer, src; buffer length, n
Output: chunking breakpoint ¢
MaskS «— 02000049 f003530000LL;
MaskA «— 020000d493003530000L L;
MaskL — 02x0000d490003530000LL;
MinSize — 2 KB; MaxSize — 64 KB;
fp<—0; i< MinSize; NormalSize — 8 KB;
if n < MinSize then
return n;
if n > MaxSize then
n < MaxSize;
else if n < NormalSize then
NormalSize «— n;
for; i < NormalSize; i++; do
fp=(fp << 1) + Gear| src[i] |;
if! (fp & MaskS) then
return i;
for; i < n; i++; do
fp=(fp << 1)+ Gear| src[i] |;
if! (fp & MaskL) then
return i;
return i;

// 15 ‘1’ bits;
// 13 ‘1’ bits;
// 111’ bits;

/ /if the masked bits are all ‘0’;

/ /if the masked bits are all ‘0’;

Algorithm 3. RabinCDC8KB(With NC)

Input: data buffer, src; buffer length, n
Output: chunking breakpoint 4
MinSize — 2 KB; MaxSize +— 64 KB;
fp<—0; i< MinSize; NormalSize — 8 KB;
if n < MinSize then
return n;
if n > MaxSize then
n «— MaxSize;
else if n < NormalSize then
NormalSize — n;
for; i < NormalSize; i++; do
fo=((f"Ula)) << 8"T[fp >> NJ;
if fp & (8192 %2 — 1) == 0278 then
return i;
for; i < n; i++; do
fo = (fp"Ula)) << 8)B"TIfp >> N|;
if fp & (8192/2 — 1) == 0278 then
return i;
return i;

As shown in Algorithm 3.6, FastCDC uses normalized
chunking to divide the chunking judgment into two loops
with the optimized hash judgment. Note that FastCDC
without normalized chunking is not shown here but can be
easily implemented by using the new hash-judging state-
ment “! fp & MaskA” where the MaskA is padded with 35
zero bits to enlarge the sliding window size to 48 bytes as
that used in the Rabin-based CDC [6]. Note that MaskA,
MaskS, and MaskL are three empirically derived values
where the padded zero bits are almost evenly distributed
for slightly higher deduplication ratio according to our large
scale tests.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 9, SEPTEMBER 2020

FastCDC implements normalized chunking by using
mask value MaskS and MaskL to make the chunking judg-
ment harder or easier (to generate chunks smaller or larger
than the expected chunk size) when the current position is
smaller or larger than the expected chunk size, respectively.
And the number of ‘1" bits in MaskS and MaskL can be
changed for different normalization levels. The minimum
chunk size used in Algorithm 3.6 is 2 KB, which can be
enlarged to 4 KB or 8 KB to further speed up the CDC pro-
cess while combining with normalized chunking. Tuning
the parameters of minimum chunk size and normalization
level will be studied and evaluated in the next Section.

In addition, we implement the normalized chunking
scheme in Rabin-based CDC as shown in Algorithm 3.6.
This improved Rabin-based CDC is also evaluated in the
next Section. Note that the hash judgment optimization for
Gear is not applied for Rabin. This is because there are
many zero hash values generated by Rabin [9], which
results too many positions satisfying the chunking judg-
ment “(fp&MaskValue) == false” and thus the generated
average chunk size after Rabin-based CDC will be far blow
the expected average chunk size.

3.7 Rolling Two Bytes Each Time

Besides the techniques mentioned in the above subsection,
we also propose another independent technique called
“rolling two bytes each time” on top of FastCDC. As shown
in Algorithm 3.7, the core idea of this technique is that the
fingerprint fp is rolling two bytes each time (G.e.,
“fp << 2”)in contrast to the traditional way of rolling one
byte each time (see Algorithm 3.2), and then we judge the
even and odd bytes respectively to determine the chunks’
boundaries. Specifically, © for the even bytes, we use the
Gear_Is table (Gear_Is contains elements from the Gear table,
which are all left shift one bit) and the mask value MaskA_Is
(i.e., MaskA < < 1) for the hash judgment in FastCDC, this is
because when we judge the fp for the even bytes, fp has been
already left shift two bits (as described in Algorithm 3.7); @
for the odd bytes, we process the fingerprints using Gear
table and the mask value MaskA in the traditional way.

Algorithm 4. Rolling Two Bytes Each Time on
FastCDC8KB (Without NC for Simplicity)

Input: data buffer, src; buffer length, n
Output: chunking breakpoint 4
MaskA «— 0x0000493003530000LL; // 131" bits ;
MaskAls —(MaskA< < 1); fp<—0; i< MinSize;
MinSize — 2KB; MaxSize — 64KB;
if n < MinSize then
return n;
if n > MaxSize then
n «— MaxSize;
whilei < (n/2) do
fp=(fp << 2)+ Gear.s| src[2x1] |;
if! (fp & MaskA_ls) then
return 2 x ;
fr+ = Gear| sre2xi+1]];
if! (fp & MaskA) then
return 2 x 7 + 1;
return n;

XIAETAL.: DESIGN OF FAST CONTENT-DEFINED CHUNKING FOR DATA DEDUPLICATION BASED STORAGE SYSTEMS

TABLE 3

2025

A Comparison Among the Rabin-Based CDC (RC), Gear-Based CDC (GC), and FastCDC (FC) Approaches in Terms of the
Deduplication Ratio and the Average Size of Generated Chunks, as a Function of the Expected Chunk Size

Dataset | CDC Expected Chunk Size of 4K (B) Expected Chunk Size of 8K (B) Expected Chunk Size of 16K (B)
Dedup Ratio [Avg. Chunk Size | Dedup Ratio [Avg. Chunk Size | Dedup Ratio [Avg. Chunk Size

RC 55.02% 5770 46.66% 12449 38.62% 25168

TAR GC | 51.20% (-6.94%) | 6786 (+17.6%) 43.55% (-6.67%) | 14120 (+13.4%) | 34.94% (-9.52%) | 30919 (+22.9%)
FC 54.39% (-1.14%) | 5759 (-0.19%) 46.65% (-0.02%) | 12334 (-0.92%) 38.68% (+1.55%) | 25388 (+0.87%)
RC 96.65% 3847 96.30% 6021 95.94% 8261

LNX GC | 96.72% (+0.07%) | 3501 (~8.99%) 96.37% (+0.07%) | 5684 (-5.59%) 96.01% (+0.07%) | 8007 (=3.07%)
FC 96.65% (-0.00%) | 3860 (+0.33%) 96.31% (+0.01%) | 6012 (-0.15%) 95.95% (+0.01%) | 8246 (-0.18%)
RC 87.38% 5029 75.98% 11301 63.77% 23221

WEB GC | 74.00% (-15.3%) | 7264 (+44.4%) 57.37% (—24.5%) | 19460 (+72.2%) | 31.86% (-50.0%) | 38888 (+67.5%)
FC 90.02% (+3.02%) | 5426 (+7.89%) 83.20% (+9.50%) | 11552 (+2.22%) 72.92% (+14.3%) | 23402 (+0.77%)
RC 41.63% 6535 36.70% 13071 31.38% 26191

VMA | GC | 41.11% (-1.24%) | 5894 (~9.80%) 35.88% (-2.23%) | 12419 (—4.98%) | 30.52% (-2.74%) | 24960 (-4.70%)
FC | 41.61% (-0.04%) | 6468 (-1.02%) 36.40% (<0.81%) | 13150 (+0.60%) | 31.19% (-0.60%) | 26334 (+0.54%)
RC 96.40% 5958 96.12% 11937 95.75% 24100

VMB GC 96.41% (+0.01%) | 5622 (-5.63%) 96.05% (-0.07%) | 11477 (-3.85%) 95.66% (-0.09%) | 23260 (-3.48%)
FC 96.39% (-0.01%) | 6021 (+1.05%) 96.08% (+0.04%) | 12138 (+1.68%) 95.70% (-0.05%) | 24384 (+1.17%)
RC 95.35% 5473 92.57% 10964 87.38% 21946

RDB GC | 95.15% (-0.20%) | 5830 (+6.52%) 92.26% (-0.33%) | 11666 (+6.40%) | 86.82% (<0.64%) | 23307 (+6.20%)
FC 95.32% (-0.03%) | 5479 (+0.10%) 92.58% (+0.01%) | 10970 (+0.05%) 87.39% (+0.01%) | 21909 (-0.16%)
RC 98.27% 5828 97.36% 11663 96.03% 23349

SYN GC | 98.45% (+0.18%) | 4922 (~15.5%) 97.65% (+0.29%) | 9818 (~15.8%) 96.44% (+0.41%) | 19624 (~16.0%)
FC | 98.28% (+0.01%) | 5799 (-0.49%) 97.37% (+0.01%) | 11598 (-0.55%) | 96.04% (+0.01%) | 23247 (-0.43%)

This technique is simple but very useful for FastCDC since
it reduces one shift operation when chunking each two bytes
compared with the traditional approach (rolling one byte
each time as shown in Algorithm 3.2) while ensuring exactly
the same chunking results. Note that it requires to lookup
one more table and increases additional computation opera-
tions of ‘2% 4" and ‘2 x ¢ + 1”, but these overheads are minor
and FastCDC using this technique is about 30-40 percent
faster than rolling one byte each time according to our evalua-
tion results discussed in the next section.

4 PERFORMANCE EVALUATION

4.1 Experimental Setup

Experimental Platform. To evaluate FastCDC, we implement
a prototype of the data deduplication system on the Ubuntu
18.04.1 operating system running on an Intel Xeon(R) Gold
6,130 processor at 2.1 GHz, with a 128 GB RAM. To better
evaluate the chunking speed, another Intel i7-8700 proces-
sor at 3.2 GHz is also used for comparison.

Configurations for CDC and Deduplication. Three CDC
approaches, Rabin-, Gear-, and AE-based CDC, are used as
the baselines for evaluating FastCDC. Rabin-based CDC is
implemented based on the open-source project LBFS [6]
(also used in many published studies [7], [19] or project [51]),
where the sliding window size is configured to be 48 bytes.
The Gear- and AE-based CDC schemes are implemented
according to the algorithms described in their papers [13],
[24], and we obtain performance results similar to and con-
sistent with those reported in these papers. Here all the CDC
approaches are configured with the maximum and mini-
mum chunk sizes of 8x and % x of the expected chunk size,
the same as configured in LBFS [6]. The deduplication proto-
type consists of approximately 3,000 lines of C code, which is
compiled by GCC 7.4.0 with the “-O3” compiler option to to
maximize the speed of the resulting executable.

Performance Metrics of Interest. Chunking speed is measured
by the in-memory processing speed of the evaluated CDC

approaches and obtained by the average speed of five runs.
Deduplication ratio is measured in terms of the percentage of
duplicates detected after CDC, i.e The size of duplicate data detected

7 Total data size before deduplication’

Average chunk size after CDC is [0 dsasice . which reflects
the metadata overhead for deduplication indexing,.

Evaluated Datasets. Seven datasets with a total size of
about 6 TB are used for evaluation as shown in Table 2.
These datasets consist of the various typical workloads of
deduplication, including the source code files, virtual
machine images, database snapshots, etc., whose deduplica-
tion ratios vary from 40 to 98 percent, which will be detailed
in Table 3 in the next subsection.

4.2 A Study of Optimizing Hash Judgment

This subsection discusses an empirical study of FastCDC
using techniques of the optimized hash judgment and
‘rolling two bytes each time’. Fig. 10 shows the chunking
speed of the four CDC approaches running on the RDB data-
set, as a function of the expected chunk size and all using
the minimum chunk size of 1 x of that for cut-point skipping.
In general, the Rabin-based CDC has the lowest speed, and
Gear-based CDC are about 3x faster than Rabin. FastCDC
using optimized hash judgement (ie., FC' in Fig. 10) is

— 4000

)
[
o
o
o

Bls

2500
2000
1500
1000

500

500
o}

Chunking speed (MB/s

Chunking speed (M

4KB 8KB 16KB
Expected chunk size

(a) Intel Gold 6130

4KB 8KB 16KB
Expected chunk size

(b) Intel i7-8700

Fig. 10. Chunking speed, as a function of the expected chunk size, of
Rabin-based CDC (RC), Gear-based CDC (GC), FastCDC using opti-
mized hash judgement (FC) and rolling two bytes each time (FC’) on two
CPU processors.

n
o
N
[

16% —RC
—aGC

—FcC

—GC

12% EC

8%
4%

Percentage of chunks
Percentage of chunks
2
X

0% —+ T T - J T T T \
(0] 16 32 48 64 (0] 16 32 48 64
Chunk size (KB) Chunk size (KB)

(a) Dataset TAR (b) Dataset WEB

16% ———RC

—GC

12% — FC
8%
4%
0% T T \

0 16 32 48 64 0 16 32 48 64
Chunk size (KB) Chunk size (KB)

(c) Dataset VMA (d) Dataset RDB

——RC
——aGc
—FcC

Percentage of chunks
2
X
Percentage of chunks

Fig. 11. Chunk-size distribution of the RC, GC, and FC approaches on
the four typical datasets.

about 5x faster than Rabin and 1.5x faster than Gear regard-
less of the speed of the CPU processor and the expected
chunk size. The high chunking speed of FastCDC stems
from its simplification of the hash judgment after the fast
Gear hash is used for chunking as described in Section 3.3.
Meanwhile, FastCDC using ‘rolling two bytes each time’
(i.e., FC’" in Fig. 10) further increases the chunking speed by
40-50 percent since it further reduces calculation operation
during CDC. Note that FC’ achieves exactly the same chunk-
ing results as FC, thus we do not discuss metrics of dedup-
lication ratio and generated chunk size for FC’ in the
remainder of this paper.

Table 3 shows the deduplication ratio and the average
size of generated chunks (post-chunking) achieved by the
three CDC approaches. We compare the Gear-based CDC
(GCO), and FastCDC (FC) approaches against the classic
Rabin-based CDC (i.e., the baseline: RC) and record the per-
centage differences (in parentheses).

In general, FastCDC achieves nearly the same deduplica-
tion ratio as Rabin regardless of the expected chunk size
and workload, and the difference between them is tiny as
shown in the 3rd, 5th, 7th columns in Table 3 except on the
WEB dataset. On the other hand, the Gear-based CDC has a
much lower deduplication ratio on the datasets TAR and
WEB due to its limited sliding window size as discussed in
Section 3.2.

For the metric of the average size of generated chunks, the
difference between the Rabin-based CDC and FastCDC is
smaller than £1.0 percent on most of the datasets. For the
datasets WEB, FastCDC has 7.89 percent larger average
chunk size than Rabin-based CDC, which is acceptable since
the larger average chunk size means fewer chunks and finger-
prints for indexing in a deduplication system (without
sacrificing deduplication ratio) [3]. But for the Gear-based
CDC, the average chunk size differs significantly in some
datasets while its deduplication ratio is still a bit lower than
other CDC approaches due to its smaller sliding window size.

We also compare the chunk-size distributions of the three
tested chunking approaches in Fig. 11: FastCDC has nearly
the same chunk-size distribution as Rabin on datasets TAR,
VMA, and RDB, which generally follows the exponential
distribution as discussed in Section 3.4. Note that the results

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 9, SEPTEMBER 2020

mm MIN-OKB === MIN-8KB
== MIN-2KB e MIN-12KB

mm MIN-OKB === MIN-8KB
== MIN-2KB e MIN-12KB

50007 oy MIN-4KB msm MIN-16KB == MIN-4KB s MIN-16KB

& 4000 & 6000
= = 5000
g 3000 g 4000
o o

@ 2000 & 3000
£ £ 2000
E 1000 £ 1000
o 0 © o]

TAR VMA

Workloads
(a) Speed on intel Gold 6130

100% == MIN-OKB
95% = MIN-2KB
== MIN-4KB
90% == MIN-8KB
mmm MIN-12KB
85% = MIN-16KB

RDB

TAR

VMA
Workloads

(b) Speed on intel i7-8700

RDB

80%

Normalized dedup ratio

75%

TAR LNX WEB VMA

Datasets

VMB RDB SYN

(c) Deduplication ratio

mm MIN-OKB
== MIN-2KB
mm MIN-4KB
== MIN-8KB
mm MIN-12KB
== MIN-16KB

TAR LNX

WEB VMA

Datasets

VMB RDB SYN

(d) Average chunk size

Fig. 12. Chunking performance of FastCDC with the expected chunk
size of 8KB but different minimum chunk sizes on two different CPU
processors.

in Fig. 11b are very different from others. This is because
there are many zero bytes in this dataset according to our
observation, which makes the chunking fingerprints not so
random (thus not follow the the exponential distribution).
However, comparing with Rabin and Gear, FastCDC’s
chunk-size distribution on WEB is the most similar to other
datasets, which explains why FastCDC achieves the highest
deduplication ratio on WEB among the three tested chunk-
ing approaches (see Table 3).

In summary, FastCDC with the optimized hash judg-
ment achieves a chunking speed that is 5x higher than
Rabin-based CDC while satisfactorily solving the problems
of low deduplication ratio and smaller sliding window size
faced by Gear-based CDC.

4.3 Evaluation of Cut-Point Skipping
This subsection discusses the evaluation results of cut-point
skipping technique. Figs. 12a and 12b show the impact of
applying different minimum chunk sizes on the chunking
speed of FastCDC. Since the chunking speed is not so sensi-
tive to the workloads, we only show the three typical work-
loads in Fig. 12. In general, cut-point skipping greatly
accelerates the CDC process since the skipped region will
not be hash-processed by CDC. The speedup of the FastCDC
applying the minimum chunk sizes of 4 and 2 KB over the
FastCDC without the constraint of the minimum chunk size
(i.e., Min-0 KB) is about 1.25x and 1.50x respectively, which
is almost consistent with the equation 1+ feminimun chutl sz
as discussed in Section 3.4.

Figs. 12c and 12d show the impact of applying different
minimum chunk sizes on the deduplication ratio and average

XIAETAL.: DESIGN OF FAST CONTENT-DEFINED CHUNKING FOR DATA DEDUPLICATION BASED STORAGE SYSTEMS

I FC w/o NC
B FC w/ NC-1
Il FC w/ NC-2
B FC w/ NC-3

30KB- Il FC w/o NC
B FC w/ NC-1
25KB{ llll FC w/ NC-2
Bl FC w/ NC-3

55%

50%
20KB
45% 15KB
10KB
40%
5KB

Deduplication ratio
Average chunk size

35% &
NG

Minimum chunk size Minimum chunk size

(a) Deduplication ratio (b) Average chunk size

mm FC w/o NC
=m FC w/ NC-1

== FC w/o NC

== FC w/ NC-1
7000 mmm FC w/ NC-2
6000 @ FC w/ NC-3

mm FC w/ NC-2
=\ FC w/ NC-3

= N W A O O
o O © O O O
© O © O O O
o O © O O O

Chunking speed (MB/s)
Chunking speed (MBIs)

o

> > > >
& & aF
Minimum chunk size

>
2
Minimum chunk size

(d) Speed on intel i7-8700

(c) Speed on intel Gold 6130

Fig. 13. Evaluation of comprehensive performance of normalized chunk-
ing with different normalization levels.

generated chunk size of FastCDC. In general, deduplication
ratio declines with the increase of the minimum chunk size
applied in FastCDC, but not proportionally. For the metric of
the average generated chunk size in FastCDC, it is approxi-
mately equal to the summation of the expected chunk size
and the applied minimum chunk size. This means that the
MIN-4 KB solution has the average chunk size of 8+4=12 KB,
leading to fewer chunks for fingerprints indexing in dedupli-
cation systems. Note that the increased portion of the average
generated chunk size is not always equal to the size of the
applied minimum chunk size, because the Rabin hashes of
contents may not strictly follow the uniform distribution (as
described in Equation (3) in Section 3.4) on some datasets.In
addition, the average chunk sizes of dataset LNX are smaller
than the minimum chunk size, which results from the many
very small files whose sizes are much smaller than the mini-
mum chunk size in LNX.

In summary, the results shown in Fig. 12 suggest that
cut-point skipping helps obtain higher chunking speed and
increase the average chunk size but at the cost of decreased
deduplication ratio. The decreased deduplication ratio will
be addressed by normalized chunking as evaluated in the
next two subsections.

4.4 Evaluation of Normalized Chunking

In this subsection, we conduct a sensitivity study of normal-
ized chunking (NC) on the TAR dataset, as shown in
Fig. 13. Here the expected chunk size of FastCDC without
NC is 8 KB and the normalized chunk size of FastCDC with
NC is configured as the 4 KB + minimum chunk size. The
normalization levels 1, 2, 3 refer to the three pairs of num-
bers of effective mask bits (14, 12), (15, 11), (16, 10) respec-
tively that normalized chunking applies when the chunking
position is smaller or larger than the normalized (or
expected) chunk size, as discussed in Section 3.5.

Figs. 13a and 13b suggest that normalized chunking (NC)
detects more duplicates when the minimum chunk size is
about 4, 6, and 8 KB but slightly reduces the average gener-
ated chunk size, in comparison with FastCDC without NC.
This is because NC reduces the number of large-sized

2027

chunks as shown in Fig. 9 and discussed in Section 3.5. The
results also suggest that NC touches the “sweet spot” of
deduplication ratio at the normalization level of 2 when the
minimum chunk size is 4, 6, or 8 KB. This is because the
very high normalization levels tend to have a similar
chunk-size distribution to the Fixed-Size Chunking as
shown in Fig. 9 in Section 3.5, which fails to address the
boundary-shift problem and thus detects fewer duplicates.
Figs. 13c and 13d suggest that NC, when combined with the
approach of enlarging the minimum chunk size for cut-
point skipping, greatly increases the chunking speed on the
two tested processors.

In general, considering the three metrics of chunking
speed, average generated chunk size, and deduplication ratio
as a whole, as shown in Fig. 13, NC-2 with MinSize of 8 KB
maximizes the chunking speed without sacrificing the dedu-
plication ratio. Note that NC-2 with MinSize of 6 KB achieves
the highest deduplication ratio among those NC approaches
whose average chunk size > that of Rabin and FastCDC tested
in Table 3 (with the minimum chunk size of 2 KB).

4.5 Comprehensive Evaluation of FastCDC

In this subsection, we comprehensively evaluate the perfor-
mance of FastCDC with the combined capability of the five
key techniques: Gear-based rolling hash, optimizing hash
judgment, cut-point skipping, rolling two bytes each time,
and normalized chunking using “NC-2” and minimum
chunk size of 6 KB/8 KB as suggested by the last subsection.
Finally, twelve CDC approaches are tested for evaluation:

e RC-vl (or RC-MIN-2 KB) is Rabin-based CDC used
in LBFS [6]; RC-v2 and RC-v3 refer to Rabin-based
CDC using normalized chunking with a minimum
chunk size of 4 and 6 KB respectively.

e FC-vl is FastCDC uses the techniques of optimizing
hash judgment and cut-point skipping with a mini-
mum chunk size of 2 KB; FC-v2 and FC-v3 refer to
FastCDC using all the four techniques with a mini-
mum chunk size of 6 and 8 KB, respectively.

e FC'-vl, FC'-v2, and FC’-v3 are FastCDC using the
technique of rolling two bytes each time on top of
FC-v1, FC-v2, and FC-v3 respectively.

e AE-vl and AE-v2 refer to AE-based CDC [24] and its
optimized version [52];

e Fixed-Size Chunking (FIXC) is also tested for com-
parison using the average chunk size of 10 KB (to
better understand content-defined chunking).

Evaluation results in Table 4 suggest that FC-v1, FC-v2,

AE-v2, and RC-v2 achieves nearly the same deduplication
ratio as RC-v1 in most cases, which suggests that the nor-
malized chunking scheme works well on both Rabin and
FastCDC. Note that FIXC works well on the datasets LNX
and VMB, because LNX has many files smaller than the
fixed-size chunk of 10 KB (and thus the average generated
chunk size is also smaller than 10 KB) and VMB has many
structured backup data (and thus VMB is suitable for FIXC).
Table 5 shows that RC-vl, RC-v2, AE-vl, AE-v2, FC-v1,
and FC-v2 generate similar average chunk size. But the
approaches of RC-v3 and FC-v3 has a much larger average
chunk size, which means that it generates fewer chunks and
thus less metadata for deduplication processing. Meanwhile,

2028 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 9, SEPTEMBER 2020
TABLE 4
Comparison of Deduplication Ratio Achieved by the Nine Chunking Approaches
Dataset FIXC RC-v1 RC-v2 RC-v3 AE-v1 AE-v2 FC-v1 FC-v2 FC-v3
TAR 15.77% 46.66% 47.42% 45.37% 43.62% 46.41% 46.65% 47.39% 45.40%
LNX 95.68% 96.30% 96.28% 96.19% 96.25% 96.13% 96.31% 96.28% 96.19%
WEB 59.96% 75.98% 83.16% 80.39% 83.08% 83.18% 83.20% 83.29% 80.92%
VMA 17.63% 36.70% 37.79% 36.52% 38.10% 38.17% 36.40% 37.66% 36.39%
VMB 95.68% 96.12% 96.17% 96.11% 95.82% 96.15% 96.08% 96.17% 96.11%
RDB 16.39% 92.57% 92.96% 92.24% 88.82% 92.83% 92.58% 92.97% 92.23%
SYN 79.46% 97.36% 97.91% 97.67% 97.54% 97.86% 97.37% 97.90% 97.67%
TABLE 5
Average Chunk Size Generated by the Nine Chunking Approaches on the Seven Datasets
Dataset FIXC RC-v1 RC-v2 RC-v3 AE-v1 AE-v2 FC-v1 FC-v2 FC-v3
TAR 10239 12449 12664 14772 12187 12200 12334 12801 14918
LNX 6508 6021 7041 7636 6274 6162 6012 7042 7636
WEB 10240 11301 12174 14148 11977 11439 11552 11880 13951
VMA 10239 13071 13505 15628 13098 13559 13150 13595 15746
VMB 10239 11937 12970 15094 12303 12254 12138 13034 15166
RDB 10239 10964 12587 14728 11943 12102 10970 12583 14725
SYN 10240 11663 12221 14271 11956 11997 11598 12239 14289

RC-v3 and FC-v3 still achieves a comparable deduplication
ratio, slightly lower than RC-v1 as shown in Table 4, while
providing a much higher chunking speed as discussed later.

Fig. 14 suggests that FC'-v3 has the highest chunking
speed, about 12x faster than the Rabin-based approach,
about 2.5x faster than FC-v1. This is because FC'-v3 is the
final FastCDC using all the five techniques to speed up the
CDC process. In addition, FC’-v2 is also a good CDC candi-
date since it has a comparable deduplication ratio while
also working well on the other two metrics of chunking
speed and average generated chunk size. Meanwhile, nor-
malized chunking also helps accelerate Rabin-based CDC
(i.e., RC-v2 and RC-v3) while achieving comparable dedu-
plication ratio and average chunk size. But this acceleration
is limited since the main bottleneck for Rabin-based CDC is
still the rolling hashing computation.

I RC-v1

Chunking speed (MB/s)

VMA RDB

Workloads

(a) Speed on intel Gold 6130

I RC-v1
BN RC-v2
I RC-v3
B AE-V1
I AE-v2
B FC-v1
I FC-v2
2000 = FC-v3

FC'-v1
1000 BN FC-v2

0 I FC'-v3
VMA

7000
6000
5000
4000
3000

Chunking speed (MB/s)

Workloads

(b) Speed on intel i7-8700

Fig. 14. Chunking speed of the 11 CDC approaches.

Q@

Table 6 further studies the CPU overhead among the eight
CDC approaches. The CPU overhead is averaged on 1,000
test runs by the Linux tool “Perf”. The results suggest that
FC’-v3 has the fewest instructions for CDC computation, the
higher instructions per cycle (IPC), and thus the least CPU
time overhead, i.e., CPU cycles. Generally, FastCDC greatly
reduces the number of instructions for CDC computation by
using the techniques of Gear-based hashing, optimizing
hash judgment, and rolling two bytes each time (i.e., FC’-v1),
and then minimizes the number of computation instructions
by enlarging the minimum chunk size for cut-point skipping
and combining normalized chunking (i.e., FC’-v2 and FC’-
v3). In addition, FastCDC increases the IPC for the CDC com-
putation by well pipelining the instructions of hashing and
hash-judging tasks in up-to-date processors. Therefore, these
results clearly reveal the reason why FastCDC is much faster
than Rabin- and AE-based CDC is that the former not only
reduces the number of instructions and branches, but also
increases the IPC for the CDC process.

TABLE 6
Number of Instructions, Instructions Per Cycle (IPC), and CPU
Cycles Required to Chunk Data Per Byte by the 11 CDC
Approaches on the Intel i7-8770 Processor

Approaches Instructions IPC CPUcycles branches
RC-v1 19.54 2.49 7.85 2.44
RC-v2 11.22 2.30 4.88 1.02
RC-v3 9.72 227 4.28 0.88
AE-vl 11.75 3.77 3.12 3.84
AE-v2 7.00 3.08 2.27 2.00
FC-v1 7.32 3.89 1.88 1.63
FC-v2 4.89 3.83 1.28 1.02
FC-v3 4.23 3.72 1.14 0.88
FC’-v1 5.28 3.87 1.36 1.13
FC’-v2 3.57 3.59 0.99 0.76
FC'-v3 3.09 3.47 0.89 0.66

XIA ETAL.: DESIGN OF FAST CONTENT-DEFINED CHUNKING FOR DATA DEDUPLICATION BASED STORAGE SYSTEMS

1400

1200 I RC-v1
1000 BN RC-v2
I AE-v1
800 B AE-v2
600 [FC-v2
[FC'-v2
400

200

0

System througput (MB/s)

TAR LNX WEB VMA VMB RDB SYN

Workloads
(a) Throughputs on intel Gold 6130

I RC-v1
BN RC-v2
I AE-v1
BE=S AE-v2
(M FC-v2
B rC-v2

System througput (MB/s)

LNX WEB VMA VMB RDB SYN
Workloads

(b) Throughputs on intel i7-8700

Fig. 15. System throughputs of Destor running with the six CDC
approaches on the two CPUs.

In summary, as shown in Tables 4, 5, 6 and Fig. 14,
FastCDC (i.e., FC’-v2 recommended) significantly speeds
up the Content-Defined Chunking process and achieves a com-
parable and even higher deduplication ratio with the similar
average chunk size by using a combination of the five key
techniques proposed in Section 3.

4.6 Impact of CDC on Overall System Throughput
To understand the impact of the different CDC algorithms on
the overall throughput of data deduplication system, we
implemented them in the open-source Destor deduplication
system [19]. In this evaluation, we use a Ramdisk-driven
emulation to avoid the performance bottleneck caused by
disk I/O. And for each dataset, we only use 5 GB, a small part
of its total size in the evaluation. In addition, to examine the
maximum impact of different CDC algorithms on the system
throughput, we configure Destor with: (1) using the fast intel
ISA-L library for SHA1 computation [53] (SHA1 speed would
be about 3-4 GB/s on our tested CPUs); (2) indexing all fin-
gerprints in RAM; (3) pipelining the deduplication subtasks
(i.e., chunking, fingerprinting, indexing, etc.).

Fig. 15 shows that FastCDC (i.e., FC'-v2) helps achieve
about 1.2-3.0X higher overall system throughout than RC-
vl, RC-v2, AE-v1, and AE-v2, while achieving a comparable
or even higher deduplication ratio as shown in Table 4. This
is because when Destor pipelines the deduplication sub-
tasks and the CDC becomes the bottleneck of the system,
acceleration of the CDC can directly benefit the overall sys-
tem throughput before the system meets another perfor-
mance bottleneck.

5 CONCLUSION

In this paper, we propose FastCDC, a much faster CDC
approach for data deduplication than the state-of-the-art
CDC approaches while achieving a comparable deduplica-
tion ratio. The main idea behind FastCDC is the combined
use of five key techniques, namely, Gear-based fast rolling
hashing, optimizing the hash judgment for chunking, sub-
minimum chunk cut-point skipping, normalized chunking,

2029

and rolling two bytes each time. Our experimental evalua-
tion demonstrates that FastCDC obtains a chunking speed
that is about 3-12x higher than that of the state-of-the-art
CDC approaches while achieving nearly the same dedupli-
cation ratio as the classic Rabin-based CDC. In addition, our
study of overall system throughput shows that Destor [19]
using FastCDC helps achieve about 1.2-3.0X higher overall
system throughout than using other CDC approaches.

FastCDC has been adopted as the default chunker in sev-
eral Github projects (for quickly detecting duplicate con-
tents), such as Rdedup [20], Content Blockchain [21], etc.
We have also released the FastCDC source code at https://
github.com/Borelset/destor/tree/master/src/chunkingto
be shared with the deduplication and storage systems
research community.

ACKNOWLEDGMENTS

The authors are grateful to the anonymous reviewers for their
insightful comments and constructive suggestions. This
research was partly supported by NSFC No. 61972441, No.
61872110, No. 61872414, No. 61772212, No. 61821003, No.
61772222, and No. 61832007, the major project of National
Science and Technology of China No. 2017Z2X01032-101,
the Open Project Program of Wuhan National Laboratory
for Optoelectronics No. 2018WNLOKF008, the Shenzhen
Science and Technology Program wunder Grant No.
JCYJ20190806143405318, Key R&D Program for Guangdong
Province under Grant No.2019B010136001, and the US
National Science Foundation under Grant CCF-1704504 and
CCF-1629625. The preliminary manuscript appeared in the
proceedings of USENIX ATC 2016. In this journal version, we
included more techniques on FastCDC and additional mea-
surement results from our analysis and testbed experiments.

REFERENCES

[1] D.Meyer and W. Bolosky, “A study of practical deduplication,” in
Proc. 9th USENIX Conf. File Storage Technol., 2011, Art. no. 1.

[2] A. El-Shimi et al., “Primary data deduplication-large scale study
and system design,” in Proc. USENIX Conf. Annu. Tech. Conf.,
2012, Art. no. 26.

[3] G.Wallace et al.., “Characteristics of backup workloads in produc-
tion systems,” in Proc. 10th USENIX Conf. File Storage Technol.,
2012, Art. no. 4.

[4] P. Shilane et al., “WAN optimized replication of backup datasets
using stream-informed delta compression,” in Proc. FAST.

[5] S. Quinlan and S. Dorward, “Venti: A new approach to archival
storage,” in Proc. 1st USENIX Conf. File Storage Technol., 2002,
pp- 7-es.

[6] A.Muthitacharoen, B. Chen, and D. Mazieres, “A low-bandwidth
network file system,” in Proc. 18th ACM Symp. Operating Syst.
Princ., 2001.

[71 D. Meister, J. Kaiser, A. Brinkmann, T. Cortes, M. Kuhn, and
J. Kunkel, “A study on data deduplication in HPC storage sys-
tems,” in Proc. Int. Conf. High Perform. Comput. Netw. Storage Anal.,
2012, pp. 1-11.

[8] C. Policroniades and I. Pratt, “Alternatives for detecting redun-
dancy in storage systems data,” in Proc. Annu. Conf. USENIX
Annu. Tech. Conf., 2004, Art. no. 6.

[91 M. O. Rabin, Fingerprinting by random polynomials. Center for

Research in Computing Techn., Aiken Computation Lab. Univ.,

1981.

A. Broder, “Some applications of Rabin’s fingerprinting method,”

in Sequences II: Methods in Communications, Security, and Computer

Science. Berlin, Germany: Springer, 1993, pp. 1-10.

C. Dubnicki, E. Kruus, K. Lichota, and C. Ungureanu, “Methods

and systems for data management using multiple selection

criteria,” U.S. Patent App. 11/566,122, Dec. 1, 2006.

[10]

[11]

https://github.com/Borelset/destor/tree/master/src/chunking
https://github.com/Borelset/destor/tree/master/src/chunking

2030

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]
[21]

[22]

[23]

[24]

[25]

[26]

[271

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[371

[38]

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 9, SEPTEMBER 2020

B. Aggarwal et al., “EndRE: An end-system redundancy elimina-
tion service for enterprises,” in Proc. 7th USENIX Conf. Netw. Syst.
Des. Implementation, 2010, Art. no. 28.

W. Xia et al.,“Ddelta: A deduplication-inspired fast delta compres-
sion approach,” Perform. Eval., vol. 79, pp. 258272, 2014.

W. Xia et al., “P-Dedupe: Exploiting parallelism in data deduplica-
tion system,” in Proc. IEEE 7th Int. Conf. Netw. Archit. Storage, 2012,
pp- 338-347.

M. D. Lillibridge, “Parallel processing of input data to locate land-
marks for chunks,” U.S. Patent 8 001 273, Aug. 16, 2011.

S. Al-Kiswany et al., “StoreGPU: Exploiting graphics processing
units to accelerate distributed storage systems,” in Proc. 17th Int.
Symp. High Perform. Distrib. Comput., 2008, pp. 165-174.

A. Gharaibeh et al., “A GPU accelerated storage system,” in Proc. 19th
ACM Int. Symp. High Perform. Distrib. Comput., 2010, pp. 167-178.

P. Bhatotia, R. Rodrigues, and A. Verma, “Shredder: GPU-accelerated
incremental storage and computation,” in Proc. 10th USENIX Conf.
File Storage Technol., 2012, Art. no. 14.

M. Fu et al., “Design tradeoffs for data deduplication performance
in backup workloads,” in Proc. 13th USENIX Conf. File Storage
Technol., 2015, pp. 331-344.

Rdedup Project. [Online]. Available: https://github.com/dpc/
rdedup

Content Blockchain Project. [Online]. Available: https://github.
com/coblo

B. Zhu, K. Li, and R. H. Patterson, “Avoiding the disk bottleneck
in the data domain deduplication file system,” in Proc. 6th USE-
NIX Conf. File Storage Technol., 2008, Art. no. 18.

W. Xia et al., “A comprehensive study of the past, present, and
future of data deduplication,”

Y. Zhang et al., “AE: An asymmetric extremum content defined
chunking algorithm for fast and bandwidth-efficient data
deduplication,” in Proc. IEEE Conf. Comput. Commun., 2015,
pp. 1337-1345.

Y. Cui et al., “QuickSync: Improving synchronization efficiency for
mobile cloud storage services,” in Proc. 21st Annu. Int. Conf. Mobile
Comput. Netw., 2015, pp. 592-603.

C. Yu, C. Zhang, Y. Mao, and F. Li, “Leap-based content defined
chunking—Theory and implementation,” in Proc. 31st Symp. Mass
Storage Syst. Technol., 2015, pp. 1-12.

F. Ni and S. Jiang, “RapidCDC: Leveraging duplicate locality to
accelerate chunking in CDC-based deduplication systems,” in
Proc. ACM Symp. Cloud Comput., 2019, pp. 220-232.

F. Ni, X. Lin, and S. Jiang, “SS-CDC: A two-stage parallel content-
defined chunking for deduplicating backup storage,” in Proc. 12th
ACM Int. Conf. Syst. Storage, 2019, pp. 86-96.

K. Eshghi and H. K. Tang, “A framework for analyzing and improv-
ing content-based chunking algorithms,” Hewlett Packard Labora-
tories, Palo Alto, CA, USA, Tech. Rep. HPL-2005-30(R.1), 2005.

D. Teodosiu, N. Bjorner, Y. Gurevich, M. Manasse, and J. Porkka,
“Optimizing file replication over limited bandwidth networks
using remote differential compression,” Microsoft Research TR-
2006-157, 2006.

A. Anand et al., “Redundancy in network traffic: Findings and
implications,” in Proc. 11th Int. Joint Conf. Meas. Model. Comput.
Syst., 2009, pp. 37-48.

N. Bjorner, A. Blass, and Y. Gurevich, “Content-dependent chunk-
ing for differential compression, the local maximum approach,” J.
Comput. Syst. Sci., vol. 76, pp. 154-203, 2010.

E. Kruus, C. Ungureanu, and C. Dubnicki, “Bimodal content
defined chunking for backup streams,” in Proc. 8th USENIX Conf.
File Storage Technol., 2010, Art. no. 18.

B. Romanski et al., “Anchor-driven subchunk deduplication,” in
Proc. 4th Annu. Int. Conf. Syst. Storage, 2011, Art. no. 16.

G. Lu, Y. Jin, and D. H. Du, “Frequency based chunking for data
de-duplication,” in Proc. IEEE Int. Symp. Model. Anal. Simul. Com-
put. Telecommun. Syst., 2010, pp. 287-296.

W. Xia et al., “SiLo: A similarity-locality based near-exact dedupli-
cation scheme with low RAM overhead and high throughput,” in
Proc. USENIX Conf. USENIX Annu. Tech. Conf., 2011, pp. 26-28.

M. Lillibridge et al., “Sparse indexing: Large scale, inline dedupli-
cation using sampling and locality,” in Proc. 7th Conf. File Storage
Technol., 2009, pp. 111-123.

W. Xia et al., “Accelerating data deduplication by exploiting pipe-
lining and parallelism with multicore or manycore processors,” in
Proc. 10th USENIX Conf. File Storage Technol., 2012, pp. 1-2.

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]
[48]
[49]
[50]

[51]

[52]

[53]

F. Guo and P. Efstathopoulos, “Building a high-performance
deduplication system,” in Proc. USENIX Annu. Tech. Conf., 2011,
Art. no. 25.

W. Xia et al.,“Accelerating content-defined-chunking based data
deduplication by exploiting parallelism,” Future Gener. Comput.
Syst., vol. 98, pp. 406418, 2019.

W. Xia, H. Jiang, D. Feng, and Y. Hua, “Similarity and locality
based indexing for high performance data deduplication,” IEEE
Trans. Comput., vol. 64, no. 4, pp. 1162-1176, Apr. 2015.

B. Debnath, S. Sengupta, and J. Li, “ChunkStash: Speeding up
inline storage deduplication using flash memory,” in Proc. USE-
NIX Annu. Tech. Conf., 2010, Art. no. 16.

M. Lillibridge, K. Eshghi, and D. Bhagwat, “Improving restore
speed for backup systems that use inline chunk-based dedup-
lication,” in Proc. 11th USENIX Conf. File Storage Technol., 2013,
pp- 183-198.

D. Bhagwat, K. Pollack, D. D. Long, T. Schwarz, E. L. Miller, and
J. Paris, “Providing high reliability in a minimum redundancy
archival storage system,” in Proc. 14th IEEE Int. Symp. Model. Anal.
Simul., 2006, pp. 413—421.

Y. Zhou et al., “SecDep: A user-aware efficient fine-grained secure
deduplication scheme with multi-level key management,” in Proc.
31st Symp. Mass Storage Syst. Technol., 2015, pp. 1-14.

J. Min, D. Yoon, and Y. Won, “Efficient deduplication techniques
for modern backup operation,” IEEE Trans. Comput., vol. 60, no. 6,
pp- 824-840, Jun. 2011.

GNU archives. [Online]. Available: http:/ /ftp.gnu.org/gnu/
Linux archives. [Online]. Available: ftp:/ /ftp.kernel.org/

VMs archives. [Online]. Available: http:/ /www.thoughtpolice.co.uk
V. Tarasov et al., “Generating realistic datasets for deduplication
analysis,” in Proc. USENIX Annu. Tech. Conf., 2012, Art. no. 24.

C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The PARSEC bench-
mark suite: Characterization and architectural implications,” in
Proc. Int. Conf. Parallel Archit. Compilation Techn., 2008, pp. 72-81.
Y. Zhang et al.,”A fast asymmetric extremum content defined
chunking algorithm for data deduplication in backup storage sys-
tems,” IEEE Trans. Comput., vol. 66, no. 2, pp. 199-211, Feb. 2017.
Intel ISA-L: Intelligent Storage Acceleration Library. [Online].
Available: https://github.com/intel /isa-1

Wen Xia (Member, IEEE) received the PhD degree
in computer science from the Huazhong University
of Science and Technology (HUST), Wuhan,
China, in 2014. He is currently an associate profes-
sor with the School of Computer Science and
Technology, Harbin Institute of Technology, Shenz-
hen. His research interests include data reduction,
storage systems, cloud storage, etc. He has pub-
lished more than 40 papers in major journals and
conferences including the /EEE Transactions on
Parallel and Distributed Systems, IEEE Transac-

tions on Computers, Proceedings of the IEEE, USENIX ATC, FAST, Hot-
Storage, MSST, DCC, IPDPS, etc.

Xiangyu Zou (Student Member, IEEE) is cur-
rently working toward the PhD degree majoring in
computer science at the Harbin Institute of Tech-
nology, Shenzhen, China. His research interests
include data deduplication, storage systems, etc.
He has published several papers in major jour-
nals and international conferences including the
Future Generation Computing Systems, MSST,
and HPCC.

https://github.com/dpc/rdedup
https://github.com/dpc/rdedup
https://github.com/coblo
https://github.com/coblo
http://ftp.gnu.org/gnu/
http://www.thoughtpolice.co.uk
https://github.com/intel/isa-l

XIAETAL.: DESIGN OF FAST CONTENT-DEFINED CHUNKING FOR DATA DEDUPLICATION BASED STORAGE SYSTEMS

Hong Jiang (Fellow, |IEEE) received the BSc
degree in computer engineering from the
Huazhong University of Science and Technology,
Wouhan, China, in 1982, the MASc degree in com-
puter engineering from the University of Toronto,
Toronto, Canada, in 1987, and the PhD degree in
computer science from the Texas A&M University,
College Station, Texas, in 1991. He is currently a
chair and Wendell H. Nedderman endowed pro-
fessor of Computer Science and Engineering
Department, University of Texas at Arlington.
Prior to joining UTA, he served as a program director with National Sci-
ence Foundation (2013.1-2015.8) and he was with the University of
Nebraska- Lincoln since 1991, where he was Willa Cather professor of
computer science and engineering. His present research interests
include computer architecture, computer storage systems and parallel I/
O, high performance computing, big data computing, cloud computing,
performance evaluation. He recently served as the associate editor of
the IEEE Transactions on Parallel and Distributed Systems and the
IEEE Transactions on Computers. He has more than 200 publications in
major journals and international Conferences in these areas, including
the IEEE Transactions on Parallel and Distributed Systems, IEEE Trans-
actions on Computers, ISCA, MICRO, USENIX ATC, FAST, EUROSYS,
SC, etc.

Yukun Zhou is currently working toward the PhD
degree majoring in computer science at the Harbin
Institute of Technology, Shenzhen, China. His
research interests include data reduction, distrib-
uted systems, etc. He has published several
papers in major journals and international con-
ferences including the Proceedings of the IEEE,
Future Generation Computing Systems, Perfor-
mance Evaluation, USENIX ATC, MSST, IPDPS,
INFOCOM, etc.

Chuanyi Liu received the PhD degrees in com-
puter science and technology from Tsinghua Uni-
versity, Beijing, China, in 2010. He is currently an
associate professor with the Harbin Institute of
Technology, Shenzhen. His research interests
include the mass storage systems, cloud comput-
ing and cloud security, and data security. He has
published more than 30 papers in major journals
and international conferences including the IEEE
Access, CCS, ICDCS, ICS, etc.

Dan Feng (Member, IEEE) received the BE, ME,
and PhD degrees in computer science and
technology from the Huazhong University of Sci-
ence and Technology (HUST), China, in 1991,
1994, and 1997, respectively. She is currently a
professor and the dean of the School of Computer
Science and Technology, HUST. Her research
interests include computer architecture, massive
storage systems, and parallel file systems. She
has more than 100 publications in major journals
and conferences, including the /EEE Transactions
on Parallel and Distributed Systems, IEEE Transactions on Compulters,
ACM Transactions on Storage, FAST, USENIX ATC, SC, etc.

2031

Yu Hua (Senior Member, IEEE) received the BE
and PhD degrees in computer science from the
Wuhan University, Wuhan, China, in 2001 and
2005, respectively. He is currently a professor with
the Huazhong University of Science and Technol-
ogy, China. His research interests include file sys-
tems, cloud storage systems, non-volatile
memory, etc. He has more than 100 papers to his
credit in major journals and international confer-
ences including IEEE Transactions on Parallel
and Distributed Systems, the IEEE Transactions
on Computers, OSDI, MICRO, FAST, USENIX ATC, SC, etc. He serves
for multiple international conferences, including ASPLOS, SOSP, FAST,
USENIX ATC, ICS, RTSS, SoCC, ICDCS, INFOCOM, IPDPS, DAC,
MSST, and DATE. He is a distinguished member of CCF and a senior
member of ACM.

Yuchong Hu received the BE and PhD degrees in
computer science from the University of Science
and Technology of China, Hefei, China, in 2005
and 2010, respectively. He is currently an associ-
ate professor with the Huazhong University of
Science and Technology. His research interests
include network coding/erasure coding, cloud
computing, and network storage. He has more
than 30 publications in major journals and confer-
1 ences, including the IEEE Transactions on Paral-

lel and Distributed Systems, IEEE Transactions
on Computers, IEEE Transactions on Information Theory, ACM Transac-
tions on Storage , FAST, INFOCOM, DSN, etc.

Yucheng Zhang received the PhD degree in com-
puter science from the Huazhong University of
Science and Technology (HUST), Wuhan, China,
in 2018. He is currently an assistant professor
with the Hubei University of Technology, Wuhan,
China. His research interests include data de-
duplication, storage systems, etc. He has several
papers in refereed journals and conferences inclu-
ding /EEE Transactions on Computers, Future
Generation Computing Systems, Proceedings of
the IEEE, USENIX ATC, FAST, IPDPS, INFOCOM,
MSST, etc.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

2032

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 9, SEPTEMBER 2020

An Event-Driven Approach to Serverless
Seismic Imaging in the Cloud

Philipp A. Witte™, Mathias Louboutin, Henryk Modzelewski, Charles Jones,
James Selvage, and Felix J. Herrmann

Abstract—Adapting the cloud for high-performance computing (HPC) is a challenging task, as software for HPC applications hinges
on fast network connections and is sensitive to hardware failures. Using cloud infrastructure to recreate conventional HPC clusters is
therefore in many cases an infeasible solution for migrating HPC applications to the cloud. As an alternative to the generic lift and shift
approach, we consider the specific application of seismic imaging and demonstrate a serverless and event-driven approach for running
large-scale instances of this problem in the cloud. Instead of permanently running compute instances, our workflow is based on a
serverless architecture with high throughput batch computing and event-driven computations, in which computational resources are
only running as long as they are utilized. We demonstrate that this approach is very flexible and allows for resilient and nested levels of
parallelization, including domain decomposition for solving the underlying partial differential equations. While the event-driven
approach introduces some overhead as computational resources are repeatedly restarted, it inherently provides resilience to instance
shut-downs and allows a significant reduction of cost by avoiding idle instances, thus making the cloud a viable alternative to on-

premise clusters for large-scale seismic imaging.

1 INTRODUCTION

EISMIC imaging of the earth’s subsurface is one of the

most computationally expensive applications in scientific
computing, as state-of-the-art imaging methods such as
least-squares reverse time migration (LS-RTM), require
repeatedly solving a large number of forward and adjoint
wave equations during numerical optimization (e.g., [1], [2],
[3]). Similar to training neural networks, the gradient com-
putations in seismic imaging are based on backpropagation
and require storage or re-computations of the state variables
(i.e., of the forward modeled wavefields). Due to the large
computational cost of repeatedly modeling wave propaga-
tion over many time steps using finite difference modeling,
seismic imaging requires access to high-performance com-
puting (HPC) clusters, but the high cost of acquiring and
maintaining HPC cluster makes this option only viable for a
small number of major energy companies [4]. For this reason,
cloud computing has lately emerged as a possible alternative
to on-premise HPC clusters, offering many advantages
such as no upfront costs, a pay-as-you-go pricing model
and theoretically unlimited scalability. Outside of the HPC
community, cloud computing is today widely used by

e P.A. Witte, M. Louboutin, and F.]. Herrmann are with the School of
Computational Science and Engineering, Georgia Institute of Technology,
Atlanta, GA 30308.

E-mail: {pwitte3, mlouboutin3, felix.herrmannj@gatech.edu.

o H. Modzelewski is with the Department of Earth, Ocean and Atmospheric
Sciences, University of British Columbia, Vancouver, BC V6T 172,
Canada. E-mail: hmodzelewski@eos.ubc.ca.

o C. Jones and |. Selvage are with Osokey Ltd., RG9 1AY Henley-on-
Thames, United Kingdom. E-mail: {charles, james}@osokey.com.

Manuscript received 20 Aug. 2019; revised 9 Mar. 2020; accepted 12 Mar.
2020. Date of publication 23 Mar. 2020; date of current version 17 Apr. 2020.
(Corresponding author: Philipp A. Witte.)

Recommended for acceptance by L. Wang.

Digital Object Identifier no. 10.1109/TPDS.2020.2982626

many companies for general purpose computing, data
storage and analysis or machine learning. Customers of
cloud providers include major companies such as General
Electric (GE), Comcast, Shell or Netflix, with the latter host-
ing their video streaming content on Amazon Web Services
(AWS) [5].

However, adapting the cloud for high-performance com-
puting applications such as seismic imaging, is not straight-
forward, as numerous investigations and case studies have
shown that performance, latency, bandwidth and mean
time between failures (MTBF) in the cloud can vary signifi-
cantly between platform providers, services and hardware,
and are often inferior compared to on-premise HPC resour-
ces. Especially in the early days of cloud computing, perfor-
mance and network connections were considerably slower
than on comparable on-premise HPC systems, as discussed
in a number of publications. An early performance analysis
by Jackson [6] of a range of typical NERSC HPC applica-
tions on Amazon’s Elastic Compute Cloud (EC2) found
that, at the time of the comparison in 2010, applications on
EC2 ran several orders of magnitude slower than on compa-
rable HPC systems, due to low bandwidth and high latency.
Other performance benchmarks from the late 2000s and
early 2010s, similarly conclude that poor network perfor-
mance severely limited the HPC capabilities of the cloud at
that time [7], [8], [9], [10], [11], [12]. Cloud providers have
since then responded by making significant improvements
regarding network connections, now offering technologies
such as InfiniBand, specialized network adapters such as
Amazon’s elastic fabric adapter (EFA, [13]) and improved
virtualization techniques to improve performance (e.g.,
AWS Nitro [14]). Accordingly, more recent benchmarks on
various cloud platforms, including AWS and Microsoft
Azure, find that the performance on newly introduced HPC

1045-9219 © 2020 |IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

https://orcid.org/0000-0001-9142-0390
https://orcid.org/0000-0001-9142-0390
https://orcid.org/0000-0001-9142-0390
https://orcid.org/0000-0001-9142-0390
https://orcid.org/0000-0001-9142-0390
mailto:pwitte3@gatech.edu
mailto:mlouboutin3@gatech.edu
mailto:felix.herrmann@gatech.edu
mailto:hmodzelewski@eos.ubc.ca
mailto:charles@osokey.com
mailto:james@osokey.com

WITTE ETAL.: EVENT-DRIVEN APPROACH TO SERVERLESS SEISMIC IMAGING IN THE CLOUD

instances is oftentimes on par with modern on-premise
HPC systems [15], [16]. Nevertheless, enhanced network
technologies are typically limited to a small subset of spe-
cialized HPC instances, which are not as widely available as
general purpose instances and which are accordingly more
expensive [17].

Aside from network communication, several investiga-
tions [16], [18], [19] point out that embarrassingly parallel
applications show very good performance that is compara-
ble to (non-virtualized) HPC environments, even in the
early days of the cloud and using standard (non-HPC opti-
mized) nodes. Similarly, performance tests on single cloud
nodes and bare-metal instances using HPCC and high-
performance LINPACK benchmarks demonstrate good per-
formance and scalability as well [20], [21]. These findings
underline that the lift and shift approach for porting HPC
applications to the cloud is unfavorable, as most HPC codes
are based on highly synchronized message passing (.e.,
MPI [22]) and rely on stable and fast network connections,
which are only available on certain (limited) instance types
and which are thus more expensive. On the other hand,
individual compute nodes and architectures offered by
cloud computing are indeed comparable to current super-
computing systems [21] and the cloud offers a range of
novel technologies such as cloud object storage or event-
driven computations [23]. These technologies are not avail-
able on traditional HPC systems and make it possible to
address computational bottlenecks of HPC in fundamen-
tally new ways. Porting HPC applications to the cloud in a
way that is financially viable therefore requires a careful re-
architecture of the corresponding codes and software stacks
to take advantage of these technologies, while minimizing
communication and idle times. This process is heavily
application dependent and requires the identification of
how specific applications can take advantage of specialized
cloud services such as serverless compute or high through-
put batch processing to mitigate resilience issues and mini-
mize cost, while avoiding idle instances and fast network
fabrics where possible.

Based on these premises, we present a workflow for
large-scale seismic imaging on AWS, which does not rely on
a conventional cluster of virtual machines, but is instead
based on a serverless workflow that takes advantage of the
mathematical properties of the seismic imaging optimiza-
tion problem [24]. Similar to deep learning, objective func-
tions in seismic imaging consist of a sum of (convex) misfit
functions and iterations of associated optimization algo-
rithms exhibit the structure of a MapReduce program [25].
The map part corresponds to computing the gradient of
each element in the sum and is embarrassingly parallel to
compute, but individual gradient computations are expen-
sive as they involve solving partial differential equations
(PDEs). The reduce part corresponds to the summation of
the gradients and update of the model parameters and is
comparatively cheap to compute, but I/O intensive. Instead
of performing these steps on a cluster of permanently run-
ning compute instances, our workflow is based on special-
ized AWS services such as AWS Batch and Lambda, which
are responsible for automatically launching and terminating
the required computational resources [23], [26]. EC2 instan-
ces are only running as long as they are utilized and are

2033

shut down automatically as soon as computations are fin-
ished, thus preventing instances from sitting idle. This
stands in contrast to alternative MapReduce cloud services,
such as Amazon’s Elastic Map Reduce (EMR), which is
based on Apache Hadoop and relies on a cluster of perma-
nently running EC2 instances [27]. In our approach, expen-
sive gradient computations are carried out by AWS Batch, a
service for processing embarrassingly parallel workloads,
but with the possibility of using (MPI-based) domain
decomposition for individual solutions of partial differen-
tial equations (PDEs). The cheaper gradient summations are
performed by Lambda functions, a service for serverless
computations, in which code is run in response to events,
without the need to manually provision computational
resources [23].

The following section provides an overview of the math-
ematical problem that underlies seismic imaging and we
identify possible characteristics that can be taken advantage
of to avoid the aforementioned shortcomings of the cloud.
In the subsequent section, we describe our seismic imaging
workflow, which has been developed specifically for AWS,
but the underlying services are available on other cloud
platforms (Google Compute Cloud, Azure) as well. We then
present a performance analysis of our workflow on a real-
world seismic imaging application, using a popular subsur-
face benchmark model [28]. Apart from conventional scal-
ing tests, we also consider specific cloud metrics such as
resilience and cost, which, aside from the pure performance
aspects like scaling and time-to-solution, are important
practical considerations for HPC in the cloud. An early
application of our workflow is presented in an expanded
conference abstract [29].

2 PROBLEM OVERVIEW

Seismic imaging and parameter estimation are a set of
computationally challenging inverse problems with high
practical importance, as they are today widely used for geo-
physical exploration and monitoring geohazards. Explora-
tion seismology is based on the manual excitation of seismic
sources, which trigger sound and/or elastic waves that
travel through the subsurface. At geological interfaces,
waves are scattered and reflected, causing parts of the
wavefield to travel back to the surface, where it is recorded
by an array of receivers (Fig. 1). In a seismic survey, the
source is fired repeatedly as it moves across the survey area
and the observed data that is collected for each source loca-
tion is denoted by d;. The objective of seismic imaging is to
recover a physical parametrization of the subsurface from
the recorded seismic data. In the setting of inverse prob-
lems, this is achieved by minimizing the misfit between
recorded data and data that is predicted using numerical
modeling. The forward problem is defined as the computa-
tion of a predicted seismic shot record through a forward
modeling operator F(m, q,), where m denotes the discre-
tized unknown parameters, such as the seismic image or
the acoustic wave speed and the vector q; represents the
location and the time signature of the seismic source. The
evaluation of the forward modeling operator corresponds
to numerically solving a discretized version of the wave
equation for the given set of model parameters and current

2034

Fig. 1. In marine seismic data acquisition, a seismic vessel excites
acoustic waves that travel through the subsurface. Waves are reflected
and refracted at geological interfaces and travel back to the surface,
where they are recorded by an array of seismic receivers. A typical seis-
mic survey consists of several thousand of individual source experi-
ments, during which the vessel moves across the survey area.

source location using for example finite differences (details
are given in Appendix A, which can be found on the Com-
puter Society Digital Library at http://doi.ieeecomputer
society.org/10.1109/TPDS.2020.2982626.).

In the inverse problem, we are interested in recovering the
parameters m from the observed seismic data d;. Mathemati-
cally, this is achieved by formulating an unconstrained optimi-
zation problem in which we minimize the /;-misfit between
the observed and numerically modeled data [30], [31]:

ns |
min;lKrlnizc ®d(m) = Z§ [|F(m,q;) — dz||§ M

i=1

In essence, the goal of seismic inversion is to find a set of
model parameters m, such that the numerically modeled
data matches the observed data from the seismic survey.
The total number of individual source experiments n; for
realistic surveys, ie., the number of PDEs that have to
solved for each evaluation of ®(m), is quite large and lies in
the range of 10® for 2D surveys and 10° for 3D surveys.

Seismic inverse problems of this form are typically
solved with gradient-based optimization algorithms such as
(stochastic) gradient descent, (Gauss-) Newton methods,
sparsity-promoting minimization or constrained optimiza-
tion (e.g., [32], [33]) and therefore involve computing the
gradient of Equation (1) for all or a subset of indices i. The
gradient of the objective function is given by:

Ng

g= 21 (Flm.q)—d). @

where the linear operator J = % is the partial derivative

of the forward modeling operator with respect to the model
parameters m and T denotes the matrix transpose. Both the
objective function, as well as the gradient exhibit a sum
structure over the source indices and are embarrassingly
parallel to compute. Evaluating the objective function and
computing the gradient are therefore instances of a MapRe-
duce program [25], as they involve the parallel computation
and subsequent summation of elements of the sum. How-
ever, computing the gradient for a single index i involves
solving two PDEs, namely a forward wave equation and an
adjoint (linearized) wave equation (denoted as a multiplica-
tion with J'). For realistically sized 3D problems, the

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 9, SEPTEMBER 2020

discretized model in which wave propagation is modeled
has up to 10° variables and modeling has to be performed
for several thousand time steps. The observed seismic data
d; (i =1,...,n,) is typically in the range of several terabytes
and a single element of the data (a seismic shot record)
ranges from several mega- to gigabytes.

The problem structure of Equation (1) is very similar to
deep learning and the parallels between convolutional neu-
ral networks and PDEs have lately attracted strong attention
[34]. As in deep learning, computing the gradient of the
objective function (Equation (2)) is based on backpropaga-
tion and in principle requires storing the state variables of
the forward problem. However, in any realistic setting the
wavefields are too big to be stored in memory and therefore
need to be written to secondary storage devices or recom-
puted from a subset of checkpoints [35]. Alternatively,
domain decomposition can be used to reduce the domain
size per compute node such that the forward wavefields fit
in memory, or time-to frequency conversion methods can
be employed to compute gradients in the frequency domain
[3], [36]. In either case, computing the gradient for a given
index ¢ is expensive both in terms of necessary floating point
operations, memory and IO and requires highly optimized
finite-difference modeling codes for solving the underlying
wave equations. Typical computation times of a single (3D-
domain) gradient g; (i.e., one element of the sum) are in the
range of minutes to hours, depending on the domain size
and the complexity of the wave simulator, and the computa-
tions have to be carried out for a large number of source
locations and iterations.

The high computational cost of seismic modeling, in com-
bination with the complexity of implementing optimiza-
tion algorithms to solve Equation (1), leads to enormously
complex inversion codes, which have to run efficiently on
large-scale HPC clusters. A large amount of effort goes into
implementing fast and scalable wave equation solvers [37],
[38], as well as into frameworks for solving the associated
inverse problem [39], [40], [41], [42]. Codes for seismic inver-
sion are typically based on message passing and use MPI
to parallelize the loop of the source indices (Equation (1)).
Furthermore, a nested parallelization is oftentimes used to
apply domain-decomposition or multi-threading to individ-
ual PDE solves. The reliance of seismic inversion codes on
MPI to implement an embarrassingly parallel loop is disad-
vantageous in the cloud, where the mean-time-between fail-
ures (MTBF) is much shorter than on HPC systems [6] and
instances using spot pricing can be arbitrarily shut down at
any given time [43]. Another important aspect is that the
computation time of individual gradients can vary signifi-
cantly and cause load imbalances, which is problematic in
the cloud, where users are billed for running instances by the
second, regardless of whether the instances are in use or idle.
For these reasons, we present an alternative approach for
seismic imaging in the cloud based on batch processing and
event-driven computations.

3 EVENT-DRIVEN SEISMIC IMAGING ON AWS

3.1 Workflow
Optimization algorithms for minimizing Equation (1) essen-
tially consists of three steps. First, the elements of the

http://doi.ieeecomputersociety.org/10.1109/TPDS.2020.2982626
http://doi.ieeecomputersociety.org/10.1109/TPDS.2020.2982626

WITTE ETAL.: EVENT-DRIVEN APPROACH TO SERVERLESS SEISMIC IMAGING IN THE CLOUD

gradient g, are computed in parallel for all or a subset of
indices ¢ € n,, which corresponds to the map part of a Map-
Reduce program. The number of indices for which the
objective is evaluated defines the batch size of the gradient.
The subsequent reduce part consists of summing these ele-
ments into a single array and using them to update the
unknown model/image according to the rule of the respec-
tive optimization algorithm (Algorithm 1). Optimization
algorithms that fit into this general framework include var-
iations of stochastic/full gradient descent (GD), such as
Nesterov’s accelerated GD [44] or Adam [45], as well as the
nonlinear conjugate gradient method [46], projected GD or
iterative soft thresholding [47]. Conventionally, these algo-
rithms are implemented as a single program and the gradi-
ent computations for seismic imaging are parallelized using
message passing. Running MPI-based programs of this
structure in the cloud require that users request a set of EC2
instances and establish a network connection between all
workers [48]. Tools like StarCluster [49] or AWS HPC [50]
facilitate the process of setting up a cluster and even allow
adding or removing instances to a running cluster. How-
ever, adding or dropping instances/nodes during the exe-
cution of an MPI program is not easily possible, so the
number of instances has to stay constant during the entire
length of the program execution, which, in the case of seis-
mic inversion, can range from several days to weeks. This
makes this approach not only prone to resilience issues, but
it can result in significant cost overhead, if workloads are
unevenly distributed and instances are temporarily idle.

Algorithm 1. Generic Algorithm Structure for Gradient-
Based Minimization of Equation (1), Using a Fixed Num-
ber of Iterations n.

1: Input: batch size n;, max. number of iterations n, step size «,
initial guess m;

2: fori=1tondo

3: Compute gradients g, i = 1, ..., n; in parallel

4: Sum gradients:g =" g

5: Update optimization variable, e.g., using SGD:
my; = mg — og

6: end for

Instead of implementing and running optimization algo-
rithms for seismic inverse problems as a single program
that runs on a cluster of EC2 instances, we express the steps
of a generic optimization algorithm through AWS Step
Functions (Fig. 2) and deploy its individual components
through a range of specialized AWS services [51]. Step func-
tions allow the description of an algorithm as a collection of
states and their relationship to each other using the Java-
Script Object Notation (JSON). From the JSON definition of
a workflow, AWS renders an interactive visual workflow in
the web browser, as shown in Fig. 2. For our purpose, we
use Step Functions to implement our iterative loop [52], dur-
ing which we compute and sum the gradients, and use them
to update the seismic image. We choose Step Functions to
express our algorithm, as they allow composing different
AWS Services such as AWS Batch and Lambda functions
into a single workflow, thus making it possible to leverage
preexisiting AWS services and to combine them into a sin-
gle application. Another important aspect of Step Functions

2035

Visual workflow

M Success BFailed Cancelled

In Progress

Fig. 2. A generic seismic imaging algorithm, expressed as a serverless
visual workflow using AWS Step Functions (1). The workflow consists of
a collection of states, which are used to implement an iterative optimiza-
tion loop. Each iteration involves computing the gradient of Equation 1
using AWS Batch (2) and the subsequent event-driven summation of all
gradient components using Lambda functions (3). The final Lambda
function uses the summed gradient to update the optimization variable
(i.e., the seismic image). Once the updated variable is detected by the
WaitForUpdate state, the workflow automatically progresses to the
next iteration.

is that the execution of the workflow itself is managed by
AWS and does not require running any EC2 instances,
which is why we refer to this approach as serverless. During
execution time, AWS automatically progresses the work-
flow from one state to the next and users are only billed for
transitions between states, but the cost is negligible com-
pared to the cost of running EC2 instances (0.025% per 1,000
state transitions).

States can be simple if-statements such as the IsCount
Reached state, which keeps track of the iteration number
and terminates the workflow after a specified number of
iterations, but states can also be used invoke other AWS
services. Specifically, states can be used to invoke AWS
Lambda functions to carry out serverless computations.
Lambda functions allow users to run code in response to
events, such as invocations through AWS Step Functions,
and automatically assign the required amount of computa-
tional resources to run the code. Billing is based on the exe-
cution time of the code and the amount of used memory.
Compared to EC2 instances, Lambda functions have a
much shorter startup time in the range of milliseconds
rather than minutes, but they are limited to 3 GB of memory
and an execution time of 15 minutes. As such, Lambda func-
tions themselves are not suitable for carrying out the gradi-
ent computations, but they can be used to manage other
AWS services. In our workflow, we use Lambda functions
invoked by the ComputeGradient state (Fig. 2) to launch
AWS Batch jobs for computing the gradients. During the
gradient computation, which can take up to several hours,
the Step Functions check in a user-defined interval if the full
gradient has been computed, before advancing the work-
flow to the next state. The WaitForUpdate state pauses

2036

i=n b

A
« &)

sas

Fig. 3. The gradients of the LS-RTM objective function are computed as
an embarrassingly parallel workload using AWS Batch. This process is
automatically invoked by the AWS Step Functions (Fig. 2) during each
iteration of the workflow. The gradients of individual source locations are
computed as separate jobs on either a single or multiple EC2 instances.
The resulting gradients are saved in S3 and the respective object names
are sent to an SQS queue to invoke the gradient summation.

the workflow for a specified amount of time, during which
no additional computational resources are running other
than the AWS Batch job itself.

3.2 Computing the Gradient

The gradient computations (Equation (2)) are the major
workload of seismic inversion, as they involve solving for-
ward and adjoint wave equations, but the embarrassingly
parallel structure of the problem lends itself to high-
throughput batch computing. On AWS, embarrassingly par-
allel workloads can be processed with AWS Batch, a service
for scheduling and running parallel containerized work-
loads on EC2 instances [26]. Parallel workloads, such as
computing a gradient of a given batch size, are submitted to
a batch queue and AWS Batch automatically launches the
required EC2 instances to process the workload from the
queue. Each job from the queue runs on an individual
instance or set of instances, with no communication being
possible between individual jobs.

In our workflow, we use the Lambda function invoked
by the ComputeGradient state (Fig. 2) to submit the gradi-
ent computations to an AWS Batch queue. Each element of
the gradient g, corresponds to an individual job in the
queue and is run by AWS Batch as a separate Docker con-
tainer [53]. Every container computes the gradient for its
respective source index ¢ and writes its resulting gradient to
an S3 bucket (Fig. 3), Amazon’s cloud object storage system
[54]. The gradients computed by our workflow are one-
dimensional numpy arrays of the size of the vectorized seis-
mic image and are stored in S3 as so-called objects [55].
Once an individual gradient g, has been computed, the
underlying EC2 instance is shut down automatically by
AWS Batch, thus preventing EC2 instances from idling.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 9, SEPTEMBER 2020

94 95 ‘ [gnh

Fig. 4. Event-driven gradient summation using AWS Lambda functions.
An SQS message queue collects the object names of all gradients that
are currently stored in S3 and automatically invokes Lambda functions
that stream up to 10 files from S3. Each Lambda function sums the
respective gradients, writes the result back to S3 and sends the new
object name to the SQS queue. The process is repeated until all gra-
dients have been summed into a single S3 object. SQS has a guaran-
teed at-least-once delivery of messages to ensure that no objects are
lost in the summation.

Since no communication between jobs is possible, the sum-
mation of the individual gradients is implemented sepa-
rately using AWS Lambda functions. For this purpose, each
jobs also sends its S3 object identifier to a message queue
(SQS) [56], which automatically invokes the reduction stage
(Fig. 4). For the gradient computations, each worker has to
download the observed seismic data of its respective source
index from S3 and the resulting gradient has to be uploaded
to 53 as well. The bandwidth with which objects are up-
and downloaded is only limited by the network bandwidth
of the EC2 instances and ranges from 10 to 100 Gbps [17].
Notably, cloud object storage such as S3 has no limit regard-
ing the number of workers that can simultaneously read
and write objects, as data is (redundantly) distributed
among physically separated data centers, thus providing
essentially unlimited IO scalability [54].

AWS Batch runs jobs from its queue as separate con-
tainers on a set of EC2 instances, so the source code of the
application has to be prepared as a Docker container. Con-
tainerization facilitates portability and has the advantage
that users have full control over managing dependencies
and packages. Our Docker image contains the code for solv-
ing acoustic wave equations to compute gradients of a
respective seismic source location. Since this is the most
computational intensive part of our workflow, it is important
that the wave equation solver is optimized for performance,
but is also implemented in a programming language that
allows interfacing other AWS services such as S3 or SQS. In
our workflow, we use a domain-specific language compiler
called Devito for implementing and solving the underlying
wave equations using time-domain finite-difference model-
ing [38], [57]. Devito is implemented in Python and provides
an application programming interface (API) for implement-
ing forward and adjoint wave equations as high-level
symbolic expressions based on the SymPy package [58].

WITTE ETAL.: EVENT-DRIVEN APPROACH TO SERVERLESS SEISMIC IMAGING IN THE CLOUD

During runtime, the Devito compiler applies a series of per-
formance optimizations to the symbolic operators, such as
reductions of the operation count, loop transformations, and
introduction of parallelism [57]. Devito then generates opti-
mized finite-difference stencil code in C from the symbolic
Python expressions and dynamically compiles and runs it.
Devito supports both multi-threading using OpenMP, as
well as generating code for MPI-based domain decomposi-
tion. Its high-level API allows expressing wave equations
of arbitrary stencil orders or various physical representa-
tions without having to implement and optimize low-level
stencil codes by hand. The complexity of implementing
highly optimized and parallel wave equation solvers is
therefore abstracted and vertically integrated into the AWS
workflow.

By default, AWS Batch runs the container of each job on a
single EC2 instance, but recently AWS introduced the possi-
bility to run multi-node batch computing jobs [59]. Thus,
individual jobs from the queue can be computed on a clus-
ter of EC2 instances and the corresponding Docker contain-
ers can communicate via the AWS network. In the context
of seismic imaging and inversion, multi-node batch jobs
enable nested levels of parallelization, as we can use AWS
Batch to parallelize the sum of the source indices, while
using MPI-based domain decomposition and/or multi-
threading for solving the underlying wave equations. This
provides a large amount of flexibility in regard of the
computational strategy for performing backpropagation
and how to address the storage of the state variables. AWS
Batch allows to scale horizontally, by increasing the number
of EC2 instances of multi-node jobs, but also enables vertical
scaling by adding additional cores and/or memory to single
instances. In our performance analysis, we compare and
evaluate different strategies for computing gradients with
Devito regarding scaling, costs and turnaround time.

3.3 Gradient Reduction

Every computed gradient is written by its respective con-
tainer to an S3 bucket, as no communication between indi-
vidual jobs is possible. Even if all gradients in the job queue
are computed by AWS Batch in parallel at the same time,
we found that the computation time of individual gradients
typically varies considerably (up to 10 percent), due to vary-
ing network performance or instance capacity. Furthermore,
we found that the startup time of the underlying EC2
instances itself is highly variable as well, so jobs in the
queue are usually not all started at the same time. Gradients
therefore arrive in the bucket over a large time interval dur-
ing the batch job. For the gradient reduction step, i.e., the
summation of all gradients into a single array, we take
advantage of the varying time-to-solutions by implement-
ing an event-driven gradient summation using Lambda
functions. In this approach, the gradient summation is not
performed by as single worker or the master process who
has to wait until all gradients have been computed, but
instead summations are carried out by Lambda functions in
response to gradients being written to S3.

The event-driven gradient summation is automatically
invoked through SQS messages, which are sent by the AWS
Batch workers that have completed their computations and
have saved their respective gradient to S3. Before being

2037

shut down, every batch worker sends a message with the
corresponding S3 object name to an AWS SQS queue, in
which all object names are collected (Fig. 4). Sending mes-
sages to SQS invokes AWS Lambda functions that read up
to 10 messages at a time from the queue. Every invoked
Lambda function that contains at least two messages, i.e.,
two object names, reads the corresponding arrays from S3,
sums them into a single array, and writes the array as a new
object back to S3. The new object name is sent to the SQS
queue, while the previous objects and objects names are
removed from the queue and S3. The process is repeated
recursively until all n, gradients have been summed into a
single array, with n; being the batch size for which the gra-
dient is computed.

Since Lambda functions are limited to 3 GB of memory, it is
not always possible to read the full gradient objects from S3.
Gradients that exceed Lambda’s available memory are there-
fore streamed from S3 using appropriate buffer sizes and are
re-uploaded to S3 using the multipart_upload functions
of the S3 Python interface [60]. As the execution time of
Lambda functions is furthermore limited to 15 minutes, the
bandwidth of S3 is not sufficient to stream and re-upload
objects that exceed a certain size within a single Lambda invo-
cation. For this case, we include the possibility that the work-
ers of the AWS Batch job split the computed gradients into
smaller chunks that are saved separately in S3, with the
respective objects names being sent to multiple SQS queues.
The gradient summation is then performed in chunks by sep-
arate queues and Lambda functions. The CreateQueues
task of our Step Functions workflow (Fig. 2) automatically
creates the required number of queues before starting the
optimization loop and the CleanUp state removes them after
the final iteration.

The advantage of the event-based gradient reduction is
that that the summation is executed asynchronously, as
soon as at least two S3 objects are available, while other
batch jobs are still running. Therefore, by the time the last
batch worker finishes the computation of its respective gra-
dient, all remaining gradients have already been summed
into a single object, or at least a small number of objects.
Furthermore, summing files of a single queue happens in
parallel (if enough messages are in the queue), as multiple
Lambda functions can be invoked at the same time. Fur-
thermore, splitting the gradients itself into chunks that are
processed by separate queues leads to an additional layer
of parallelism. In comparison to a fixed cluster of EC2
instances, the event-driven gradient summation using
Lambda function also takes advantage of the fact that the
summation of arrays is computationally considerably
cheaper than solving wave equations and therefore does
not require to be carried out on the expensive EC2 instan-
ces used for the PDE solves.

3.4 Variable Update

Once the gradients have been computed and summed into
a single array that is stored as an S3 object, the gradient is
used to update the optimization variables of equation 1,
i.e.,, the seismic image or subsurface parameters such as
velocity. Depending on the specific objective function and
optimization algorithm, this can range from simple opera-
tions like multiplications with a scalars (gradient descent)

2038

to more computational expensive operations such as spar-
sity promotion or applying constraints [61]. Updates that
use entry-wise operations only and are cheap to compute
such as multiplications with scalars or soft-thresholding,
can be applied directly by Lambda functions in the final
step of the gradient summation. L.e., the Lambda function
that sums the final two gradients, also streams the optimi-
zation variable of the current iteration from S3, uses the
gradient to update it and directly writes the updated vari-
able back to S3.

Many algorithms require access to the full optimization
variable and gradient, such as Quasi-Newton methods and
other algorithms that need to compute gradient norms. In
this case, the variable update is too expensive and memory
intensive to be carried out by Lambda functions and has to
be submitted to AWS Batch as a single job, which is then
executed on a larger EC2 instance. This can be accomplished
by adding an extra state such as UpdateVariable to our
Step Functions workflow. However, to keep matters simple,
we only consider a simple stochastic gradient descent exam-
ple with a fixed step size in our performance analysis, which
is computed by the Lambda functions after summing the
final two gradients [62]. The CheckUpdateStatus state of
our AWS Step Functions advances the workflow to the next
iteration, once the updated image (or summed gradient) has
been written to S3. The workflow shown in Fig. 2 terminates
the optimization loop after a predefined number of itera-
tions (i.e., epochs), but other termination criteria based on
gradient norms or function values are possible too. The
update of the optimization variable concludes a single itera-
tion of our workflow, whose performance we will now ana-
lyze in the subsequent sections.

4 PERFORMANCE ANALYSIS

In our performance analysis, we are interested in the perfor-
mance of our workflow on a real-world seismic imaging
application regarding scalability, cost and turn-around
time, as well as the computational benefits and overhead
introduced by our event-driven approach. We conduct our
analysis on a popular 2D subsurface velocity model
(Fig. 5a), called the 2004 BP velocity estimation benchmark
model [28]. The seismic data set of this model contains 1,348
seismic source locations and corresponding observations d;
(t=1,...,1,348). The (unknown) seismic image (Fig. 5b)
has dimensions of 1,911 x 10,789 grid points, i.e., a total of
almost 21 million parameters.

4.1 Weak Scaling

In our first performance test, we analyze the weak scaling
behavior of our workflow by varying the batch size (i.e., the
number of source locations) for which the gradient of the
LS-RTM objective function (Equation (1)) is computed. For
this test, we perform a single iteration of stochastic gradient
descent (SGD) using our workflow and measure the time-
to-solution as a function of the batch size. The workload per
instance, i.e., per parallel worker, is fixed to one gradient.
The total workload for a specified batch size is submitted to
AWS Batch as a so-called array job, where each array entry
corresponds to a single gradient g,. AWS Batch launches
one EC2 instance per array entry (i.e.,, per gradient), runs

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 9, SEPTEMBER 2020

Depth [km]
Velocity [km/s]

0 10 20 30 40 50 60
Lateral position [km]

{
i
o
)

Depth [km]

o
N

o
Slowness? [s2/km?]

0 10 20 30 40 50 60
Lateral position [km]

(b)

Fig. 5. The BP 2004 benchmark model, a 2D subsurface velocity model
for development and testing of algorithms for seismic imaging and
parameter estimation [28]. The velocity model and the unknown image
have dimensions of 1,911 x 10,789 grid points, a total of 20.1 million
unknown parameters (a). The inverted seismic image after 30 iterations
of stochastic gradient descent and a batchsize of 80 sources per itera-
tion, using our serverless workflow.

the respective container on the instance and then terminates
the instance.

In the experiment, we measure the time-to-solution for
performing a single iteration of our workflow, i.e., one sto-
chastic gradient descent update. Therefore, each run
involves the following steps:

1) A Lambda function submits the AWS Batch job for
specified batch size n;, (Fig. 3)
2) Compute gradients g, (i=1,...,n;) in parallel

(Fig. 3)
3) Lambda functions sum the gradients (Fig. 4):
g=2i"8

4) A Lambda function performs the SGD update of the

image: X = X — ag

We define the time-to-solution as the the time interval
between the submission of the AWS Batch job by a Lambda
function (step 1) and the time stamp of the S3 object contain-
ing the updated image (step 4). This time interval represents
a complete iteration of our workflow.

The computations of the gradients are performed on
m4 . 4xlarge instances (Appendix B, available in the online
supplemental material) and the number of threads per
instance is fixed to 8, which is the number of physical cores
that is available on the instance. The m4 instance is a general
purpose EC2 instance and we chose the instance size
(4xlarge) such that we are able to store the wavefields for
backpropagation in memory. The workload for each batch
worker consists of solving a forward wave equation to
model the predicted seismic data and an adjoint wave equa-
tion to backpropagate the data residual and to compute the
gradient. For this and all remaining experiments, we use
the acoustic isotropic wave equation with a second order
finite difference (FD) discretization in time and 8th order in
space. We model wave propagation for 12 seconds, which is
the recording length of the seismic data. The time stepping
interval is given by the Courant-Friedrichs-Lewy condition
with 0.55 ms, resulting in 21,889 time steps. Since it is not
possible for the waves to propagate through the whole

WITTE ETAL.: EVENT-DRIVEN APPROACH TO SERVERLESS SEISMIC IMAGING IN THE CLOUD

1000 600
. Full job
Container 500 A
E 800 N Reduction g
= = 400 A
S 600 2
g E 300 -
£ 400 n
] -
200 A
£ g
F 2001 £ 100
- 0 -
1 2 4 8 16 32 64 128 1 2 4 8 16 32 64 128
No. of instances No. of instances
(a) (b)
= 300 — 201
F £}
- @
£ 2504 0020 ¢
5 & =9
~ 2004 Fo015. 2
g s g
B 150 1 Z 210
< F0.010E £
a2
o 100 k2
o 2 gd
e r0.005 =4
§ 501 3
K <
0- ~ 0.000 0-
1 2 4 B 16 32 64128 1 2 4 8 16 32 64 128
No. of instances No. of instances
(c) (d)

Fig. 6. Weak scaling results for performing a single iteration of stochastic
gradient as a function of the batch size for which the gradient is com-
puted (a). The gradient is computed as an AWS Batch job with an
increasing number of parallel EC2 instances, while the gradient summa-
tion and the variable update are performed by Lambda functions. The
total time-to-solution (a) consists of the average time it takes AWS Batch
to request and start the EC2 instances (b), the average runtime of the
containers (c) and the additional reduction time (d), i.e., the time differ-
ence between the final gradient of the respective batch and the updated
image. All timings are the arithmetic mean over ten runs, with error bars
representing the 90 percent confidence interval.

domain within this time interval, we restrict the modeling
grid to a size of 1,911 x 4,001 grid points around the cur-
rent source location. After modeling, each gradient is
extended back to the full model size (1,911 x 10,789 grid
points). The dimensions of this example represent a large-
scale 2D example, but all components of our workflow are
agnostic to the number of physical dimensions and are
implemented for three-dimensional domains as well. The
decision to limit the examples to a 2D model was purely
made from a financial viewpoint and to make the results
reproducible in a reasonable amount of time.

The timings ranging from a batch size of 1 to 128 are dis-
played in Fig. 6a. The batch size corresponds to the number
of parallel EC2 instances on which the jobs are executed.
The time-to-solution consists of three components that
make up the full runtime of each job:

1) The average time for AWS Batch to request and
launch the EC2 instances and to start the Docker con-
tainers on those instances.

2) The runtime of the containers

3) The additional gradient reduction and image update
time, given by the time interval between the termina-
tion of the AWS Batch job and the time stamp of the
updated image.

The sum of these components makes up the time-to-solu-
tion as shown in Fig. 6a and each component is furthermore
plotted separately in Figs. 6b, 6c, and 6d. All timings are the
arithmetic mean over 10 individual runs and error bars

2039

represent the 90 percent confidence interval. The container
runtimes of Fig. 6¢ are the arithmetic mean of the individual
container runtimes on each instance (varying from 1 to 128).
The average container runtime is proportional to the cost of
computing one individual gradient and is given by the con-
tainer runtime times the price of the m4 . 4xlarge instance,
which was $0.2748 per hour at the time of testing. No extra
charges occurs for AWS Batch itself, i.e., for scheduling and
launching the batch job.

The timings indicate that the time-to-solution generally
grows as the batch size, and therefore the number of con-
tainers per job, increases (Fig. 6a). A close up inspection of
the individual components that make up the total time-to-
solution shows that this is mostly due to the increase of the
startup time, i.e., the average time it takes AWS Batch to
schedule and launch the EC2 instances for each job (Fig. 6b).
We found that AWS Batch does generally not start all
instances of the array job at the same time, but instead in
several stages, over the course of 1 to 3 minutes. The exact
startup time depends on the batch size and therefore on the
number of instances that need to be launched, but also on
the availability of the instance within the AWS region. The
combination of these factors leads to an increase of the aver-
age startup time for an increasing batch size, but also to a
large variance of the startup time between individual runs.
Users have no control over the startup time, but it is impor-
tant to consider that no cost is incurred during this time
period, as no EC2 instances are running while the individ-
ual containers remain in the queue.

The average container runtime, i.e., the average compu-
tation time of a single gradient, is fairly stable as the batch
size increases (Fig. 6¢). This observation is consistent with
the fact that each container of an AWS Batch array job runs
as an individual Docker container and is therefore indepen-
dent of the batch size. The container runtime increases only
slightly for larger batch sizes and we observe a larger vari-
ance in some of the container runtimes. This variance stems
from the fact that users do not have exclusive access to the
EC2 instances on which the containers are deployed. Specif-
ically, our containers run on m4 . 4xlarge instances, which
have 8 cores (16 virtual CPUs) and 64 GB of memory. In
practice, AWS deploys these instances on larger physical
nodes and multiple EC2 instances (of various users) can run
on the same node. We hypothesize that a larger batch size
increases the chance of containers being deployed to a com-
pute node that runs at full capacity, thus slightly increasing
the average container runtime, as user do not have exclusive
access to the full network capacity or memory bandwidth.
The average container runtime also represents a lower
bound on the time-to-solution (per iteration) that can be
achieved by running the example as a classic (non-event
driven) program on a fixed cluster. In this case there is no
overhead from requesting EC2 instances, but other over-
head may still occur, depending on how the source paralle-
lization and gradient summation are implemented.

Finally, we also observe an increase in the additional gra-
dient reduction time, i.e., the interval between the S3 time-
stamps of the final computed gradient g, and the updated
image x. The batch size corresponds to the number of gra-
dients that have to be summed before the gradient can be
used to update the image. The event-driven gradient

2040

reduction invokes the summation process as soon as the
first gradients are written to S3, so most gradients are
already summed by the time the final worker finishes its
gradient computation. For the event-driven gradient sum-
mation, the variance of the startup and container runtime is
therefore advantageous, as it allows the summation to hap-
pen asynchronously. However, in our example, the time
interval between the first two gradients being written to S3
(thus invoking the gradient reduction) and the final gradi-
ent being computed does not appear to be large enough to
complete the summation of all gradients. Specifically, we
see a general increase in the reduction time, as well as wid-
ening of the confidence interval. This variance is due to a
non-deterministic component of our event-based gradient
summation, resulting from a limitation of AWS Lambda.
While users can specify a maximum number of messages
that Lambda functions read from an SQS queue, it is not
possible to force Lambda to read a minimum amount of two
messages, resulting in most Lambda functions reading only
a single message (i.e., one object name) from the queue.
Since we need at least two messages to sum the correspond-
ing gradients, we return the message to the queue and wait
for a Lambda invocation with more than one message. The
user has no control over this process and sometimes it takes
several attempts until a Lambda function with multiple
messages is invoked. The likelihood of this happening
increases with a growing batch size, since a larger number
of gradients need to be summed, which explains the
increase of the reduction time and variance in Fig. 6d.

Overall, the gradient summation and variable update fin-
ish within a few seconds after the last gradient is computed
and the additional reduction time is small compared to the
full time-to-solution. In our example, the startup time
(Fig. 6b) takes up the majority of the time-to-solution
(Fig. 6a), as it lies in the range of a few minutes and is in fact
longer than the average container runtime of each worker
(Fig. 6¢c). However, the startup time is independent of the
runtime of the containers, so the ratio of the startup time to
the container runtime improves as the workload per con-
tainer increases. For 3D imaging workloads, whose solution
times for 3D wave equations are orders of magnitude higher
than for two dimensions, it is therefore to be expected that
the ratio between startup and computation time will shift
considerably towards the latter. Indeed, in a follow-up
application of our workflow to a 3D seismic data set on
Microsoft Azure, the average container runtime to compute
a gradient was 120 minutes, thus shifting the startup to
computation time ratio to 1 : 25 [63].

The cost of the batch job only depends on the container
runtime and the batch size, but not on the startup time or
reduction time. The cost for summing the gradients is given
by the cumulative runtime of the Lambda functions, but is
negligible compared to the EC2 cost for computing the gra-
dients. This is illustrated in Fig. 7a, which shows a cost
breakdown of running our workflow for 30 iterations of sto-
chastic gradient descent with a batch size of of 80, which
corresponds to 1.8 epochs. The corresponding data misfit as
a function of the iteration number is shown in Fig. 7b. Simi-
larly, SQS, Step Functions and S3 (i.e., the cost for storage
and I/0) only contribute marginally to the full cost of run-
ning the imaging example, while the EC2 instances used by

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 9, SEPTEMBER 2020

133 m on-demand 1.0 1
1004 Ws2 = spot .
‘ -4
5 103 % 0.8 1
= \ €
3 | 0.91 8 0.7
O 14 ‘ 8
\ 0.23 0.6
0.1 1
0.03 0.03 05 4
EC2 A SQS Step S3 1 10 20 30

Iteration number

(a) (b)

Fig. 7. Cost breakdown of running the imaging example for 30 iterations
of stochastic gradient descent and a batch size of 80, which corresponds
to approximately two passes through the data set (a). The data misfit as
a function of the iteration number. Due to the fact that the underlying lin-
ear system is inconsistent and we stop iterating after two epochs only,
the misfit only decays by about 50 percent.

AWS Batch contribute by far the largest share. Using spot
instances as opposed to on-demand instances for AWS
Batch reduces the cost of our example by a factor of 2.5, but
the prices of the remaining services are fixed. The seismic
image after the final iteration number is shown in Fig. 5b. In
this example, every gradient was computed by AWS Batch
on a single instance and a fixed number of threads, but in
the subsequent section we analyze the scaling of runtime
and cost as a function of the number of cores and EC2
instances. Furthermore, we will analyze in a subsequent
example how the cost of running the gradient computations
with AWS Batch compares to performing those computa-
tions on a fixed cluster of EC2 instances.

4.2 Strong Scaling

In the following set of experiments, we analyze the strong
scaling behavior of our workflow for an individual gradient
calculation, i.e., a gradient for a batch size of 1. For this, we
consider a single gradient computation using AWS Batch
and measure the runtime as a function of either the number
of threads or the number of instances in the context of MPI-
based domain decomposition. In the first experiment, we
evaluate the vertical scaling behavior, i.e., we run the gradi-
ent computation on a single instance and vary the number
of OpenMP threads. In contrast to the weak scaling experi-
ment, we model wave propagation in the full domain
(1,911 x 10,789 grid points), to ensure that the sub-domain
of each worker is not too small when we use maximum
number of threads.

Since AWS Batch runs all jobs as Docker containers, we
compare the runtimes with AWS Batch to running our
application on a bare metal instance, in which case we have
direct access to the compute node and run our code without
any virtualization. All timings on AWS are performed on a
r5.24xlarge EC2 instance, which is a memory optimized
instance type that uses the Intel Xeon Platinum 8175M archi-
tecture (Appendix B, available in the online supplemental
material). The 24xlarge instance has 96 virtual CPU cores
(48 physical cores on 2 sockets) and 768 GB of memory.
Using the largest possible instance of the r5 class, ensures
that our AWS Batch job has exclusive access to the physical
compute node, wile bare metal instances automatically give
users exclusive access. We also include the Optimum HPC

WITTE ETAL.: EVENT-DRIVEN APPROACH TO SERVERLESS SEISMIC IMAGING IN THE CLOUD

—8— Batch default 1.0

W 2000 ~§— Batchno HT

o —— EC2Z metal .]

£ ¥ Optimum B 0.8

S 1000 g

= S 0.6

£ z

= =

< 500 £ 041 _e~ Batch default

B3 L ~§~ Batch no HT

3 0.2 1 - EC2 metal

250 —¥— Optimum
1 2 4 810 16 24 a b 2 4 810 16 24
No. of cores No. of cores

(a) (b)

Fig. 8. Strong scaling results as a function of the number of cores on a
single socket. Figure (a) shows the runtimes for AWS Batch with and
without hyperthreading, as well as the runtimes on the r5 bare metal
instance, in which case no containerization or virtualization is used. For
reference, we also provide the runtime on a compute node of an on-
premise cluster. Figure (b) shows the corresponding parallel efficieny.

cluster in our comparison, a small research cluster at the
University of British Columbia based on the Intel’s Ivy
Bridge 2.8 GHz E5-2680v2 processor. Optimum has 2 CPUs
per node and 10 cores per CPU. However, all OpenMP tim-
ings were conducted on single CPUs only, i.e., the maxi-
mum number of threads on each architecture corresponds
to the maximum number of available cores per CPU (10 on
Optimum and 24 on the r5.24xlarge instances).

Fig. 8a shows the comparison of the kernel runtimes on
AWS and Optimum and Fig. 8b displays the corresponding
parallel efficiency. As expected, the r5 bare metal instance
shows the best scaling, as it uses a newer architecture than
Optimum and does not suffer from the virtualization over-
head of Docker. We noticed that AWS Batch in its default
mode uses hyperthreading (HT), even if we perform thread
pinning and instruct AWS Batch to use separate physical
cores. As of now, the only way to prevent AWS Batch from
performing HT, is to modify the Amazon Machine Image
(AMI) of the corresponding AWS compute environment.
With HT disabled, the runtimes and speedups of AWS
Batch are very close to the timings on the bare-metal instan-
ces, indicating that the overhead of Docker affects the run-
times and scaling of our memory-intensive application only
marginally, which matches the findings of [64].

Next, we analyze the horizontal strong scaling behavior
of running our application with AWS Batch. Once again, we
consider the computation of one single gradient, but this
time we vary the number of EC2 instances. We would like
to emphasize that AWS Batch is used differently than in the
weak scaling experiment, where AWS Batch was used to
parallelize the sum over source locations and communica-
tion between workers of a separate jobs was not possible.
Here, we submit a single workload (i.e., one gradient) as a
multi-node AWS Batch job, in which case IP-based commu-
nication between instances is enabled. Since this involves
distributed memory parallelism, we use domain decompo-
sition based on message passing (MPI) to solve the wave
equations on multiple EC2 instances [65], [66]. The code
with the corresponding MPI communication statements is
automatically generated by the Devito compiler. Further-
more, we use multi-threading on each individual instance
and utilize the maximum number of available cores per
socket, which is 24 for the r5 instance and 18 for the c¢5n
instance. To investigate the possible virtualization overhead

2041
500
—8— r5.24xlarge 1.04
L - r5.metal :
E 250 4 ~#- cSn.18xlarge |
= csn.metal 5 0.8
S k]
- 125 1 %
E 5 0.6 1
g ®
J; = —8— r5.24xlarge
£ & 0.41 9 r5.metal
i 504 - cSn.18xlarge
0.2 4 =¥ c5n.metal
1 2 4 8 16 1 2 4 8 16
No. of instances No. of EC2 instances
(@) (b)
1000 —8— Job 3.5 = r5 on-demand
—4— Container | _ e 5 spot
500 1 ~#- Python % 3.04 c5n on-demand
- ¥ Kernel = 2.5 ™ c5nspot
o) 0
v 4 =4
£ 250 g
= e
2 1251 g
i
o
[v]
50 4

1 2 4 8 16 1 2 4 8 16
No. of instances No. of instances

(c) (d)

Fig. 9. Strong scaling results for computing a single gradient as an AWS
Batch multi-node job for an increasing number of instances and in com-
parison to running on non-virtualized bare metal instances. Figures (a)
and (b) show the Devito kernel times and parallel efficiency on two differ-
ent instance types. Figure (c) shows a breakdown of the time-to-solution
of each batch job into its individual components. Figure (d) shows the
EC2 cost for computing the gradients.

of AWS Batch and Docker, we also conduct the same scaling
experiments on clusters of EC2 bare metal instances, in
which case our applications runs directly on the compute
nodes without any form of virtualization.

We compare the r5.24xlarge (and r5.metal) instan-
ces from the last section with Amazon’s recently introduced
c5n HPC instance. Communication between AWS instances
is generally based on ethernet and the r5 instances have up
to 25 GBps networking performance. The c5n instance type
uses Intel Xeon Platinum 8142M processors with up to
3.4 GHz architecture and according to AWS provides up to
100 GBps of network bandwidth. The network is based on a
proprietary AWS technology called elastic fabric adapter
(EFA), but AWS has not disclosed whether this technology
is based on InfiniBand or Ethernet [13]. Figs. 9a and 9b
show the kernel runtimes and the corresponding parallel
efficiency ranging from 1 to 16 instances for AWS Batch and
on bare metal instances. The r5 instance has overall shorter
runtimes than the c5n instance, since the former has 24
physical cores per CPU socket, while the c¢5n instance has
18. However, as expected, the c5n instance exhibits a better
parallel efficiency than the r5 instance (in both batch mode
and on bare metal), due to the better network performance.
Interestingly, speedups and parallel efficiency of multi-node
AWS Batch jobs are better than of the corresponding bare
metal jobs, which is counter intuitive. To investigate this
further, we measured the latency between two manually
requested bare metal instances and two compute nodes
assigned by AWS Batch and found that the latter set of instan-
ces have less than half the amount of latency (Appendix C,
available in the online supplemental material). All nodes

2042

were requested in the same availability zone and EC2 place-
ment group. This indicates that AWS possibly places instan-
ces for AWS Batch jobs closer to each other than manually
requested EC2 instances, or that AWS Batch instances use a
more efficient network gateway, but both of these explana-
tions are purely speculative. Overall, the observed scaling
and parallel efficiency of the AWS Batch jobs on both instan-
ces types are in the expected range of performance, as our
application represents a strongly memory bound workload
with an operational intensity of three FLOPs/Byte only, as
shown in a roofline analysis of Devito’s generated code for
acoustic modeling [38].

The timings given in Fig. 9a are once again the pure ker-
nel times for solving the PDEs, but a breakdown of the com-
ponents that make up the total time-to-solution on the c5n
instance is provided in Fig. 9c. The job runtime is defined as
the interval between the job creation time and the S3 time
stamp of the computed gradient. As in our weak scaling
test, this includes the time for AWS Batch to request and
launch the EC2 instances, but excludes the gradient summa-
tion time, since we are only considering the computation of
a single gradient. The container runtime is the runtime of
the Docker container on the master node and includes the
time it takes AWS Batch to launch the remaining workers
and to establish an ssh connection between all instances/
containers, which was the only supported communication
protocol for AWS Batch at the time [66]. Currently, AWS
Batch requires this process to be managed by the user using
a shell script that is run inside each container. The Python
runtime in Fig. 9c is defined as the runtime of our applica-
tion on the main node and includes IO, memory allocation
and code generation time. Our timings in Fig. 9c show that
the overhead from requesting instances and establishing a
cluster, i.e., the difference between the Python and container
runtime, is reasonable for a small number of instances, but
grows significantly as the number instances is increased.
Depending on the runtime of the application, the overhead
thus takes up a significant amount of the time-to-solution,
but for compute-heavy applications which run for one or
multiple hours, this amount of overhead may still be accept-
able. For 3D imaging applications that run for multiple
hours, it is therefore to be expected that the ratio of applica-
tion runtime to overhead will improve significantly.

Fig. 9d shows the cost for running our scaling test as a
function of the cluster size. The cost is calculated as the
instance price (per second) times the runtime of the con-
tainer on the main node times the number of instances. The
cost per gradient grows significantly with the number of
instances, as the overhead from establishing an ssh connec-
tion to all workers increases with the cluster size. The com-
munication overhead during domain decomposition adds
an additional layer of overhead that further increases the
cost for an increasing number of instances. This is an impor-
tant consideration for HPC in the cloud, as the shortest
time-to-solution does not necessarily correspond to the
cheapest approach. Another important aspect is that AWS
Batch multi-node jobs do not support spot instances [66].
Spot instances allow users to access unused EC2 capacities
at significantly lower price than at the on-demand price, but
AWS Batch multi-node jobs are, for the time being, only
supported with on-demand instances.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 9, SEPTEMBER 2020

500 0.5
5 family . 5 on-demand
i csn family | _, . 5 spot
g 400 foi 04 €5n on-demand
-E g BN c5n spot
= 3004 5 0.3
—= o
g 200 =8 M
. 1 w g 0.2
-]]
31004 [S o1
o
o~ 0.0 -
1 2 4 8 16 1 2 4 g 16
No. of instances No. of instances
(a) (b)

Fig. 10. Devito kernel runtimes for computing a single gradient as an
AWS Batch job for an increasing number of instances. In comparison to
the previous example in which both the instance type and number of
threads were fixed (Fig. 10a), we use the smallest possible instance
type for each job with as specified in each bar. Figure (b) shows the cor-
responding cost for computing the gradients.

The scaling and cost analysis in Figs. 9a, 9b, 9c and 9d
was carried out on the largest instances of the respective
instance types (r5.24xlarge and c5n.18xlarge) to
guarantee exclusive access to the compute nodes and net-
work bandwidth. Increasing the number of instances per
run therefore not only increases the total number of avail-
able cores, but also the amount of memory. However, for
computing a single gradient, the required amount of mem-
ory is fixed, so increasing the number of instances reduces
the required amount of memory per instance, as wavefields
are distributed among more workers. In practice, it there-
fore makes sense to chose the instance type based on the
required amount of memory per worker, as memory is gen-
erally more expensive than compute. In our specific case,
computing the gradient requires 170 GB of memory, which
requires either a single r5.12xlarge instance or multiple
smaller instances, which not only differ in the amount of
memory, but also in the number of available CPU cores. We
repeat our previous scaling test, but rather than using the
same instance type in all runs, we choose the instance type
based on the required amount of memory. Furthermore, for
every instance type, we utilize the maximum amount of
available cores using multi-threading with OpenMP. The
kernel runtimes for an increasing number of instances is
shown in Fig. 10a. In each bar, we indicate which instance
type was used, as well as the total number of cores across
all instances. The corresponding costs for computing each
gradient is shown in Fig. 10a. Compared to the previous
example, we observe that using 16 small on-demand instan-
ces leads to a lower cost than using a single more expensive
large instance, but that using a single instance ultimately
remains the most cost-effective way of computing a gradi-
ent, due to the possibility to utilize spot instances. An addi-
tional pricing model offered by AWS are reserved instances,
which are EC2 instances that can be purchased at rates simi-
lar to spot prices if reserved for a minimum period of one
year [67]. However, this pricing model is unsuitable for our
event-driven approach, as users cannot save costs by mini-
mizing idle time, since instances are paid for in advance.

In terms of cost, our scaling examples underline the
importance of choosing the EC2 instances for the AWS
Batch jobs based on the total amount of required memory,
rather than based on the amount of CPU cores. Scaling hori-
zontally by using an increasingly large number of instances

WITTE ETAL.: EVENT-DRIVEN APPROACH TO SERVERLESS SEISMIC IMAGING IN THE CLOUD

TABLE 1
Comparison of Parallelization Strategies on a Single EC2
Instance in the Context of AWS Batch

Grid CPU (cores) Parallelization Runtime [s]
1,911 x 5,394 1(24) OMP 190.17 £ 7.12
1,911 x 10,789 1(24) OMP 378.94 + 13.57
1,911 x 10,789 2 (48) OMP 315.92 4+ 16.50
1,911 x 10,789 2 (48) OMP + MPI 249.13 £5.22

The Timings are the Devito Kernel Times for Computing a Single Gradient of
the BP Model Using AWS Batch. The Program Runs as a Single Docker Con-
tainer on an Individual EC2 Instance, Using Either Multi-Threading
(OpenMP) or a Hybrid Approach of Multithreading and Domain-Decomposi-
tion (OpenMP + MPI).

expectedly leads to a faster time-to-solution, but results in a
significant increase of cost as well (Fig. 9d). As shown in
Fig. 10b, this increase in cost can be avoided to some extent
by choosing the instance size such that the total amount of
memory stays approximately constant, but ultimately the
restriction of not supporting spot instances makes multi-
node batch jobs not attractive in scenarios where single
instances provide sufficient memory to run a given applica-
tion. In practice, it makes therefore sense to use single
node/instance batch jobs and to utilize the full number of
available cores on each instance. The largest EC2 instances
of each type (e.g., r5.24xlarge, c5n.18xlarge) have
two CPU sockets with shared memory, making it possible
to run parallel programs using either pure multi-threading
or a hybrid MPI-OpenMP approach. In the latter case, pro-
grams still run as a single Docker container, but within each
container use MPI for communication between CPU sock-
ets, while OpenMP is used for multithreading on each CPU.
For our example, we found that computing a single gradient
of the BP model with the hybrid MPI-OpenMP approach
leads to a 20 percent speedup over the pure OpenMP pro-
gram (Table 1), which correspondingly leads to 20 percent
cost savings as well.

4.3 Cost Comparison

One of the most important considerations of high perfor-
mance computing in the cloud is the aspect of cost. As
users are billed for running EC2 instances by the second, it
is important to use instances efficiently and to avoid idle
resources. In our specific application, gradients for differ-
ent seismic source locations are computed by a pool of par-
allel workers, but as discussed earlier, computations do not
necessarily complete at the same time. On a conventional
cluster, programs with a MapReduce structure, are imple-
mented based on a client-server model, in which the work-
ers compute the gradients in parallel, while the master (the
server) collects and sums the results. This means that the
process has to wait until all gradients g, have been com-
puted, before the gradient can be summed and used to
update the image. This inevitably causes workers that fin-
ish their computations earlier than others to the sit idle.
This is problematic when using a cluster of EC2 instances,
where the number of instances are fixed, as users have to
pay for idle resources. In contrast, the event-driven
approach based on Lambda functions and AWS Batch
automatically terminates EC2 instances of workers that

2043
400+ = 2501 — EC2cluster 3.0
() — —
2 350 - E. AWS Batch 5 g = 108
5 566 o 200 1 s :
g £ 150 262 3
o 250 4 w 1 nw 2
B e} 245 3
1 @ T O
o = 100 4 oo
£ 1501 = 229 2
< 2 504 £l
& 100 - = -2.0
o
50 ™ T 0 T T T i 1-8 T
50 100 25 50 75 100 50 100
Job ID No. of instances No. of instances
(a) (b) (c)

Fig. 11. (a) Sorted container runtimes of an AWS Batch job in which we
compute the gradient of the BP model for a batch size of 100. Figure (b)
shows the cumulative idle time for computing this workload as a function
of the number of parallel workers on either a fixed cluster of EC2 instan-
ces or using AWS Batch. The right-hand y-axis shows the corresponding
cost, which is proportional to the idle time. In the optimal case, i.e., no
instances every sit idle, the cost for computing a gradient of batch size
100 is 1.8$. Figure (c) shows the time-to-solution as a function of the
number of parallel instances, which is the same on an EC2 cluster and
for AWS Batch, if we ignore the startup time of the AWS Batch workers
or of the corresponding EC2 cluster.

have completed their gradient calculation, thus preventing
resources from sitting idle.

We illustrate the difference between the event-driven
approach and using a fixed cluster of EC2 instances by
means of a specific example. We consider our previous
example of the BP synthetic model and compute the gradi-
ent g, for 100 random source locations and record the run-
times (Fig. 11a). We note that most gradients take around
250 seconds to compute, but that the runtimes vary due to
different domain sizes and varying EC2 capacity. We now
model the idle time for computing these gradients on a clus-
ter of EC2 instances as a function of the the number of paral-
lel instances, ranging from 1 instance (fully serial) to 100
instances (fully parallel). For a cluster consisting of a single
instance, the cumulative idle time is naturally zero, as the
full workload is executed in serial. For more than one
instance, we model the amount of time that each instance is
utilized, assuming that the workloads are assigned on a
first-come-first-served basis. The cumulative idle time ¢;q)o
is then given as the sum of the differences between the run-
time of each individual instance ¢; and the instance with the
longest runtime:

NEC2

tae = »_(max{t;} — t;), 3)

1=1

The cumulative idle time as a function of the cluster size
npC9 is plotted in Fig. 11b. We note that the cumulative
idle time generally increases with the cluster size, as a
larger number of instances sit idle while waiting for the final
gradient to be computed. On a cluster with 100 instances
each gradient is computed by a separate instance, but all
workers have to wait until the last worker finishes its com-
putation (after approximately 387 seconds). In this case,
the varying time-to-solutions of the individual gradients
leads to a cumulative idle time of 248 minutes. Compared
to the cumulative computation time of all gradients, which
is 397 minutes, this introduces an overhead of more than
60 percent, if the gradients are computed on a cluster with

2044

100 instances. The cumulative idle time is directly propor-
tional to the cost for computing the 100 gradients, which is
plotted on the right axis of Fig. 11b. With AWS Batch, the
cumulative idle time for computing the 100 gradients is
zero, regardless of the number of parallel instances that
AWS Batch has access to. Any EC2 instance that is not uti-
lized anymore is automatically shut down by AWS Batch,
so no additional cost other than the pure computation time
of the gradients is invoked [68]. A follow up case study of
this work, found that the ratio of cumulative idle time to
cumulative compute time (about 60 percent) also held true
for a 3D seismic imaging example, in which the average
container runtime was substanially longer than in the 2D
example (namely 120 minutes) [63].

While computing the 100 gradients on an EC2 cluster
with a small number of instances results in little cumulative
idle time, it increases the overall time-to-solution, as a larger
number of gradients have to be sequentially computed on
each instance (Fig. 11c). With AWS Batch this trade-off does
not exist, as the cumulative idle time, and therefore the cost
for computing a fixed workload, does not depend on the
number of instances. However, it is to be expected that in
practice the time-to-solution is somewhat larger for AWS
Batch than for a fixed cluster of EC2 instances, as AWS
Batch needs to request and launch EC2 instances for every
new gradient computation.

4.4 Resilience

In the final experiment of our performance analysis, we ana-
lyze the resilience of our workflow and draw a comparison
to running an MPI program on a conventional cluster of
EC2 instances. Resilience is an important factor in high per-
formance computing, especially for applications like seismic
imaging, whose runtime can range from several hours to
multiple days. In the cloud, the mean-time-between failures
is typically much shorter than on comparable HPC systems
[6], making resilience potentially a prohibiting factor. Fur-
thermore, using spot instances further increases the expo-
sure to instance shut downs, as spot instances can be
terminated at any point in time with a two minute warning.

Seismic imaging codes that run on conventional HPC
clusters typically use MPI to parallelize the sum of the
source indices and thus often leverage the User Level Fault
Mitigation (ULFM) Standard [69] or the MVAPICH2 imple-
mentation of MPI, which includes built-in resilience [70].
Both MVAPICH2 and ULFM enable the continued execu-
tion of an MPI program after node/instance failures. In our
event-driven approach, resilience in the cloud is naturally
provided by using AWS Batch for the gradient computa-
tions, as each gradient is computed by a separate container.
In case of exceptions, AWS Batch provides the possibility to
automatically restart EC2 instances that have crashed,
which allows the completion of programs with the initial
number of nodes or EC2 instances.

We illustrate the effect of instance restarts by means of
our previous example with the BP model (Fig. 5). Once
again, we compute the gradient of the LS-RTM objective
function for a batch size of 100 and record the runtimes
without any instance/node failures. In addition to the
default strategy for backpropagation, we compute the

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 9, SEPTEMBER 2020

1.0 —— w/ instance restart 1.0 1 —— w/ instance restart
0.9 4 —— w/o instance restart —— w/o instance restart
S 0.8 5038
@ 3
— 0? . u—
g S 0.6
5067 3
g 03
-4 e 0.4
0.4 4
=] 0.2 1
0 20 40 0 20 40
Percentage of instance failures Percentage of instance failures
(a) (b)

Fig. 12. Comparison of the resilience factor (RF) for an increasing per-
centage of instance failures with and without instance restarts. Figure
(a) is the RF for an application that runs for 5 minutes without failures,
while figure (b) is based on an example whose original time-to-solution
is 45 minutes.

gradients using optimal checkpointing, in which case the
average runtime per gradient increases from 5 minutes to
45 minutes, as a smaller memory footprint is traded for
additional computations.

We then model the time that it takes to compute the 100
gradients for an increasing number of instance failures with
and without restarts. We assume that the gradients are com-
puted fully in parallel, i.e., on 100 parallel instances and
invoke an increasing number of instance failures at ran-
domly chosen times during the execution of program. With-
out instance restarts, we assign the workload of the failed
instances to the workers of the remaining instances and
model how long it takes complete the computations. With
restarts, we add a two minute penalty to the failed worker
and then restart the computation on the same instance. The
two minute penalty represents the average amount of time
it takes AWS Batch to restart a terminated EC2 instance and
was determined experimentally.

Fig. 12 shows the ratio of the time-to-solution for comput-
ing the 100 gradients without events (i.e., without failures) to
the modeled time-to-solution with events. This ratio is known
as the resilience factor [71] and provides a metric of how
instance failures affect the time-to-solution and therefore the
cost of running a given application in the cloud:

time-to-solution eyent—free

4)

time-to-solution eyent

Ideally, we aim for this factor being as close to 1 as possible,
meaning that instance failures do not significantly increase
the time-to-solution. Figs. 12a and 12b compare the resil-
ience factors with and without restarts for the two different
backpropagation strategies, which represent programs of
different runtimes. The resilience factor is plotted as a func-
tion of the percentage of instance failures and is the average
of 10 realizations, with the standard deviation being
depicted by the shaded colors. The plots show that the larg-
est benefit from being able to restart instances with AWS
Batch is achieved for long running applications (Fig. 12b).
The resilience factor with instance restarts approaches a
value of 0.5, since in the worst case, the time-to-solution is
doubled if an instance fails shortly before completing its
gradient computation. Without being able to restart instan-
ces, the gradient computations need to be completed by the
remaining workers, so the resilience factor continuously

WITTE ETAL.: EVENT-DRIVEN APPROACH TO SERVERLESS SEISMIC IMAGING IN THE CLOUD

decreases as the failure percentage increases. For short run-
ning applications (Fig. 12a), the overhead of restarting
instances diminishes the advantage of instance restarts,
unless a significant percentage of instances fail, which, how-
ever, is unlikely for programs that run in a matter of
minutes. In fact, during our numerical experiments, we did
not observed any spot-related shut-downs, as the runtime
of our application was only in the order of five minutes. On
the other hand, long running programs or applications with
a large number of workers are much more likely to encoun-
ter instance shut downs and our experiment shows that
these programs benefit from the automatic instance restarts
of AWS Batch.

5 DiscussION

The main advantage of an event-driven approach based on
AWS Batch and Lambda functions for seismic imaging in
the cloud is the automated management of computational
resources by AWS. EC2 instances that are used for carrying
out heavy computations, namely for solving large-scale
wave equations, are started automatically in response to
events, which in our case are Step Functions advancing the
serverless workflow to the ComputeGradients state.
Expensive EC2 instances are thus only active for the dura-
tion it takes to compute one element g; of the full or mini-
batch gradient and they are automatically terminated after-
wards. Summing the gradients and updating the variables
(i.e., the seismic image) is performed on cheaper Lambda
functions, with billing being again solely based on the exe-
cution time of the respective code and the utilized memory.
The cost overhead introduced by Step Functions, SQS mes-
sages and AWS Batch is negligible compared to the cost of
the EC2 instances that are required for the gradient compu-
tations, while cost savings from spot instances and eliminat-
ing idle EC2 instances lead to significant cost savings, as
shown in our examples. With the benefits of spot instances
(factor 2-3), avoidance of idle instances and the overhead of
spinning clusters (factor 1.5-2), as well as improved resil-
ience, we estimate that our event-driven workflow provides
cost savings of up to an order of magnitude in comparison
to using fixed clusters of (on-demand) EC2 instances.

A second alternative to running cloud applications on
fixed EC2 clusters are in-between approaches based on a
combination of EC2 instances, task-based workflow tools
and auto-scaling. These approaches potentially benefit from
the possibility to avoid containerization by using bare metal
instances, while leveraging automatic up- and down-scaling
of EC2 instances to save cost. However, workflow tools like
AWS Batch or Step Functions are currently not available for
EC2 clusters and thus need to be replicated by the user. Fur-
thermore, any cluster-based workflows, even with auto-
scaling, require at least a single EC2 instance to be perma-
nently running, while our serverless approach makes it
hypothetically possible to suspend tasks or workloads
indefinitely without incurring any cost at all. Regarding per-
formance, our analysis showed that Docker containerization
did not lead to considerable performance impairments,
while latency between EC2 instances assigned by AWS
Batch was in fact smaller than latency between user-
requested instances. Using batch processing to compute an

2045

embarrassingly parallel workload is not only advantageous
in the cloud, but also on on-premise HPC systems, as parallel
jobs that are broken into multiple smaller and shorter jobs are
oftentimes processed faster by HPC schedulers than single
large workloads. In addition to the improved flexibility
regarding nested parallelization, this makes tasked-based
asynchronous batch processing interesting in the setting of
traditional HPC as well.

Another major advantage of our proposed serverless
approach is the handling of resilience. Instead of running as
a single program, our workflow is broken up into its indi-
vidual components and expressed through Step Function
states. Parallel programs based on MPI rely on not being
interrupted by hardware failures during the entire runtime
of the code, making this approach susceptible to resilience
issues. Breaking a seismic imaging workflow into its indi-
vidual components, with each component running as an
individual (sub-) program and AWS managing their inter-
actions, makes the event-driven approach inherently more
resilient, as the runtime of individual workflow components
is much shorter than the runtime of the full program, thus
minimizing the exposure to instance failures. Computing an
embarrassingly parallel workload with AWS Batch, rather
than as a MPI-program, provides a natural layer of resil-
ience, as AWS Batch processes each item from its queue sep-
arately on an individual EC2 instance and Docker container,
but also includes the possibility of automatic instance
restarts in the event of failures.

The most prominent disadvantage of the event-driven
workflow is that EC2 instances have to be restarted by AWS
Batch in every iteration of the workflow. In our performance
analysis, we found that the overhead of requesting EC2
instances and starting the Docker container lies in the range
of several minutes and depends on how many instances
are requested per gradient. However, items that remain
momentarily in the batch queue, do not incur any cost until
the respective EC2 instance is launched. The overhead intro-
duced by AWS Batch therefore only increases the time-to-
solution, but does not affect the cost negatively. Due to the
overhead of starting EC2 instances for individual computa-
tions, our proposed workflow is therefore applicable if the
respective computations (e.g., computing gradients) are
both embarrassingly parallel and take a long time to com-
pute; ideally in the range of hours rather than minutes. We
therefore expect that the advantages of our workflow will
be even more prominent when applied to 3D seismic data
sets, where computations are orders of magnitude more
expensive than in 2D.

Our application, as expressed through AWS Step Func-
tions, represents the structure of a generic gradient-based
optimization algorithm and is therefore applicable to prob-
lems other than seismic imaging and full-waveform inver-
sion. The design of our workflow lends itself to problems
that exhibit a certain MapReduce structure, namely they
consists of a computationally expensive, but embarrassingly
parallel Map part, as well as a computationally cheaper to
compute Reduce part. On the other hand, applications that
rely on dense communications between workers or where
the quantities of interest such as gradients or functions val-
ues are cheap to compute, are less suitable for this specific
design. For example, deep convolutional neural networks

2046

TABLE 2
An Overview how the AWS Services Used in our
Workflow Map to Other Cloud Providers

Amazon Web Services ~ Microsoft Azure Google Cloud
Elastic Compute Cloud Virtual Machines Compute Engine
Simple Storage System Blob storage Cloud Storage
AWS Batch Azure Batch Pipelines
Lambda Functions Azure Functions Cloud Functions
Step Functions Logic Apps N/A

Simple Message Queue Queue Storage Cloud Pub/Sub
Elastic File System Azure Files Cloud Filestore

(CNNs) exhibit mathematically a very similar problem
structure to seismic inverse problems, but forward and
backward evaluations of CNNs are typically much faster
than solving forward and adjoint wave equations, even if
we consider very deep networks like ResNet [72]. Imple-
menting training algorithms for CNNs as an event-driven
workflow as presented here, is therefore excessive for the
problem sizes that are currently encountered in deep learn-
ing, but might be justified in the future if the dimensionality
of neural networks continues to grow.

The event-driven workflow presented in this work
was specifically designed for AWS and takes advantage
of specialized services for batch computing or event-
driven computations that are available on this platform.
However, in principle, it is possible to implement our
workflow on other cloud platforms as well, as almost
all of the utilized services have equivalent versions on
Microsoft Azure or the Google Cloud Platform (Table 2)
[73], [74]. Services for running parallel containerized
workloads in the cloud, as well as event-driven cloud
functions, which are the two main components of our
workflow, are available on all platforms considered in
our comparison. Furthermore, both Microsoft Azure as
well as the GCP offer similar Python APIs as AWS for
interfacing cloud services. We also speculate that, as
cloud technology matures, services between different
providers will likely grow more similar to each other.
This is based on the presumption that less advanced
cloud platforms will imitate services offered by major
cloud providers in order to be competitive in the grow-
ing cloud market.

Overall, our workflow and performance evaluation dem-
onstrate that cost-competitive HPC in the cloud is possible,
but requires a fundamental software re-design of the corre-
sponding application. In our case, the implementation of an
event-driven seismic imaging workflow was possible, as we
leverage Devito for expressing and solving the underlying
wave equations, which accounts for the major workload of
seismic imaging. With Devito, we are able to abstract the
otherwise complex implementation and performance opti-
mization of wave equation solvers and take advantage of
recent advances in automatic code generation. As Devito
generates code for solving single PDEs, with the possibility
of using MPI-based domain decomposition, we are not only
able to leverage AWS Batch for the parallelization over
source experiments, but can also take advantage of AWS
Batch’s multi-node functionality to shift from data to model
parallelism. In contrast, many seismic imaging codes are

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 9, SEPTEMBER 2020

software monoliths, in which PDE solvers are enmeshed
with IO routines, parallelization and manual performance
optimization. Adapting codes of this form to the cloud is
fundamentally more challenging, as it is not easily possible
to isolate individual components such as a PDE solver for a
single source location, while replacing the parallelization
with cloud services. This illustrates that separation of con-
cerns and abstract user interfaces are a prerequisite for port-
ing HPC codes to the cloud such that the codes are able
to take advantage of new technologies like object storage
and event-driven computations. With a domain-specific lan-
guage compiler, automatic code generation, high-throughput
batch computing and serverless visual algorithm definitions,
our workflow represents a true vertical integration of mod-
ern programming paradimgs into a framework for HPC in
the cloud.

6 CONCLUSION

Porting HPC applications to the cloud using a lift and shift
approach based on virtual clusters that emulate on-premise
HPC clusters, is problematic as the cloud cannot offer the
same performance and reliability as conventional clusters.
Applications such as seismic imaging that are computation-
ally expensive and run for a long time, are faced with practi-
cal challenges such as cost and resilience issues, which
prohibit the cloud from being widely adapted for HPC
tasks. However, the cloud offers a range of new technolo-
gies such as object storage or event-driven computations,
that allow to address computational challenges in HPC in
novel ways. In this work, we demonstrate how to adapt
these technologies to implement a workflow for seismic
imaging in the cloud that does not rely on a conventional
cluster, but is instead based on serverless and event-driven
computations. These tools are not only necessary to make
HPC in the cloud financially viable, but also to improve the
resilience of workflows. The code of our application is fully
redesigned and uses a variety of AWS services as building
blocks for the new workflow, thus taking advantage of
AWS Dbeing responsible for resilience, job scheduling, and
resource allocations. Our performance analysis shows that
the resulting workflow exhibits competitive performance
and scalability, but most importantly minimizes idle time
on EC2 instances and cost and is inherently resilient. Our
example therefore demonstrates that successfully porting
HPC applications to the cloud is possible, but requires to
carefully adapt the corresponding codes to to the new envi-
ronment. This process is heavily dependent on the specific
application and involves identifying properties of the
underlying scientific problem that can be exploited by new
technologies available in the cloud. Most importantly, it
requires that codes are modular and designed based on the
principle of separation of concerns, thus making this transi-
tion possible.

ACKNOWLEDGMENTS

The authors would like to acknowledge Dr. Fabio Luporini
and Dr. Gerard]. Gorman (Imperial College London) for
their work on Devito and their valuable input on the perfor-
mance evaluation. This research was funded by the Georgia
Research Alliance and the Georgia Institute of Technology.

WITTE ETAL.: EVENT-DRIVEN APPROACH TO SERVERLESS SEISMIC IMAGING IN THE CLOUD

REFERENCES

[1]
[2]

[3]

[4]

[5]
(6]

(7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[171

[18]

[19]

[20]

[21]

[22]

[23]

A. A. Valenciano, “Imaging by wave-equation inversion,” Ph.D.
dissertation, Dept. Geophys., Stanford Univ., Stanford, CA, 2008.
S. Dong et al., “Least-squares reverse time migration: Towards
true amplitude imaging and improving the resolution,” in Proc.
82nd Annu. Int. Meeting SEG Expanded Abstracts, 2012, pp. 1-5.

P. A. Witte, M. Louboutin, F. Luporini, G. J. Gorman, and
F. J. Herrmann, “Compressive least-squares migration with on-
the-fly Fourier transforms,” GEOPHYSICS, vol. 84, no. 5,
pp- R655-R672, 2019. [Online]. Available: https://doi.org/10.1190/
£e02018-0490.1

“Seismic processing and imaging,” 2019. [Online]. Available:
https://www.pgs.com/imaging/services/processing-and-
imaging/

AWS enterprise customer success stories, 2019. [Online]. Available:
https:/ /aws.amazon.com/solutions/case-studies/enterprise

K. R. Jackson et al., “Performance analysis of high performance
computing applications on the Amazon Web Services cloud,” in
Proc. IEEE 2nd Int. Conf. Cloud Comput. Technol. Science, 2010,
pp- 159-168.

S. L. Garfinkel, “An evaluation of Amazon’s grid computing
services: EC2, 53, and SQS,” Harvard Computer Science Group,
Cambridge, MA, Tech. Rep. TR-08-07, 2007.

J. Napper and P. Bientinesi, “Can cloud computing reach the
Top500?” in Proc. Combined Workshops Unconventional High Per-
form. Comput. Workshop Plus Memory Access Workshop, 2009,
pp- 17-20. [Online]. Available: http://doi.acm.org/10.1145/
1531666.1531671

A. Tosup, S. Ostermann, M. N. Yigitbasi, R. Prodan, T. Fahringer,
and D. Epema, “Performance analysis of cloud computing serv-
ices for many-tasks scientific computing,” IEEE Trans. Parallel Dis-
trib. Syst., vol. 22, no. 6, pp. 931-945, Jun. 2011.

K. R. Jackson, K. Muriki, L. Ramakrishnan, K. J. Runge, and
R. C. Thomas, “Performance and cost analysis of the supernova
factory on the Amazon AWS cloud,” Sci. Program., vol. 19, no. 2-3,
pp- 107-119, 2011.

L. Ramakrishnan, R. S. Canon, K. Muriki, I. Sakrejda, and
N. J. Wright, “Evaluating interconnect and virtualization perfor-
mance for high performance computing,” ACM SIGMETRICS Per-
form. Eval. Rev., vol. 40, no. 2, pp. 55-60, 2012.

P. Mehrotra et al., “Performance evaluation of amazon elastic com-
pute cloud for NASA high-performance computing applications,”
Concurrency Comput., Practice Experience, vol. 28, no. 4, pp. 1041-1055,
2016.

AWS elastic fabric adapter, 2019. [Online]. Available: https://
aws.amazon.com/hpc/efa/

AWS Nitro system, 2019. [Online]. Available: https://aws.
amazon.com/ec2/nitro/

J. Scheuner and P. Leitner, “A cloud benchmark suite combining
micro and applications benchmarks,” in Proc. Companion ACM/
SPEC Int. Conf. Perform. Eng., 2018, Art. no. 161-166. [Online].
Available: https:/ /doi.org/10.1145/3185768.3186286

C. Kotas, T. Naughton, and N. Imam, “A comparison of Amazon
Web Services and Microsoft Azure cloud platforms for high per-
formance computing,” in Proc. IEEE Int. Conf. Consum. Electron.,
2018, pp. 1-4.

AWS documentation: Amazon EC2 instance types, 2019. [Online].
Available: https:/ /aws.amazon.com/ec2/instance-types/

A. Gupta and D. Milojicic, “Evaluation of HPC applications on
cloud,” in Proc. 6th Open Cirrus Summit, 2011, pp. 22-26.

I. Sadooghi et al., “Understanding the performance and potential
of cloud computing for scientific applications,” IEEE Trans. Cloud
Comput., vol. 5, no. 2, pp. 358-371, Apr. 2017.

P. Rad, A. Chronopoulos, P. Lama, P. Madduri, and C. Loader,
“Benchmarking bare metal cloud servers for HPC applications,”
in Proc. IEEE Int. Conf. Cloud Comput. Emerg. Markets, 2015,
pp- 153-159.

M. Mohammadi and T. Bazhirov, “Comparative benchmarking of
cloud computing vendors with high performance LINPACK,” in
Proc. 2nd Int. Conf. High Perform. Compilation Comput. Commun.,
2018, pp. 1-5.

W. Gropp, E. Lusk, and A. Skjellum, Using MPI: Portable Parallel Pro-
gramming with the Message-Passing Interface, Cambridge, MA, USA:
MIT Press, vol. 1, 1999.

AWS documentation: AWS Lambda, 2019. [Online]. Available:
https:/ /aws.amazon.com/lambda/

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

2047

A. Friedman and A. Pizarro, “Building high-throughput genomics
batch workflows on AWS,” May 2017. [Online]. Available:
https:/ /aws.amazon.com/blogs/compute/building-high-
throughput-genomics-batch-workflows-on-aws-introduction-
part-1-of-4/

J. Dean and S. Ghemawat, “MapReduce: Simplified data process-
ing on large clusters,” Commun. ACM, vol. 51, no. 1, pp. 107-113,
2008.

AWS documentation: AWS Batch, 2019. [Online]. Available:
https://aws.amazon.com/ec2/

AWS documentation: Amazon EMR, 2019. [Online]. Available:
https://docs.aws.amazon.com/emr/latest/ ManagementGuide/
emr-overview.html

F. Billette and S. Brandsberg-Dahl, “The 2004 BP velocity bench-
mark,” in Proc. 67th Annu. Int. Meeting EAGE Expanded Abstracts,
2005, Art. no. B035.

P. A. Witte, M. Louboutin, H. Modzelewski, C. Jones,]J. Selvage,
and F.]J. Herrmann, “Event-driven workflows for large-scale seis-
mic imaging in the cloud,” in Proc. 9th Annu. Int. Meeting SEG
Expanded Abstracts, 2019, pp. 3984-3988.

A. Tarantola, “Inversion of seismic reflection data in the acoustic
approximation,” Geophysics, vol. 49, no. 8, 1984, Art. no. 1259.
[Online]. Available: + http://dx.doi.org/10.1190/1.1441754

J. Virieux and S. Operto, “An overview of full-waveform inversion
in exploration geophysics,” Geophysics, vol. 74, mno. 6,
pp. WCC127-WCC152, Nov./Dec. 2009.

R. G. Pratt, “Seismic waveform inversion in the frequency
domain, part 1: Theory and verification in a physical scale model,”
Geophysics, vol. 64, no. 3, pp. 888-901, 1999. [Online]. Available:
https://doi.org/10.1190/1.1444597

B. Peters, B. R. Smithyman, and F. J. Herrmann, “Projection
methods and applications for seismic nonlinear inverse prob-
lems with multiple constraints,” Geophysics, vol. 84, no. 2,
pp- R251-R269, 2019. [Online]. Available: https://doi.org/
10.1190/ge02018-0192.1

L. Ruthotto and E. Haber, “Deep neural networks motivated by
partial differential equations,” CoRR, vol. abs/1804.04272, 2018.
[Online]. Available: http:/ /arxiv.org/abs/1804.04272

A. Griewank and A. Walther, “Algorithm 799: Revolve: An imple-
mentation of checkpointing for the reverse or adjoint mode of
computational differentiation,” Assoc. Comput. Machinery Trans.
Math. Softw., vol. 26, no. 1, pp. 1945, Mar. 2000. [Online]. Avail-
able: http://doi.acm.org/10.1145/347837.347846

C. M. Furse, “Faster than Fourier-ultra-efficient time-to-frequency
domain conversions for FDTD,” in Proc. Inst. Elect. Electronics
Engineers: Antennas Propag. Soc. Int. Symp., 1998, pp. 536-539.

R. Abdelkhalek, H. Calandra, O. Coulaud, J. Roman, and G. Latu,
“Fast seismic modeling and reverse time migration on a GPU
cluster,” in Proc. Int. Conf. High Perform. Comput. Simul., 2009,
pp- 3643.

M. Louboutin ef al., “Devito (v3.1.0): an embedded domain-specific
language for finite differences and geophysical exploration,” Geo-
scientific Model Develop., vol. 12, no. 3, pp. 1165-1187, 2019. [Online].
Available: https:/ /www.geosci-model-dev.net/12/1165/2019/

W. W. Symes, D. Sun, and M. Enriquez, “From modelling to inver-
sion: Designing a well-adapted simulator,” Geophys. Prospecting,
vol. 59, no. 5, pp. 814-833, 2011. [Online]. Available: 10.1111/
j-1365-2478.2011.00977.x

L. Ruthotto, E. Treister, and E. Haber, “jInv-a flexible Julia pack-
age for PDE parameter estimation,” SIAM]. Sci. Comput., vol. 39,
no. 5, pp. S702-5722, 2017. [Online]. Available: https://doi.org/
10.1137/16M1081063

C. D. Silva and F. J. Herrmann, “A unified 2D /3D large-scale soft-
ware environment for nonlinear inverse problems,” ACM Trans.
Math. Softw., vol. 45, pp. 7:1-7:35, 2017.

P. A. Witte, M. Louboutin, F. Luporini, N. Kukreja, M. Lange,
G. J. Gorman, and F. J. Herrmann, “A large-scale framework for
symbolic implementations of seismic inversion algorithms in
Julia,” Geophysics, vol. 84, pp. A31-V183, 2019.

AWS documentation: How spot instances work, 2019. [Online].
Available: https://docs.aws.amazon.com/AWSEC2/latest/User
Guide/how-spot-instances-work.html

Y. Nesterov, Lectures on Convex Optimization, vol. 137, Berlin,
Germany: Springer, 2018

D. P. Kingma and J. Ba, “Adam: A method for stochastic opti-
mization,” ArXiv e-prints, vol. abs/1412.6980, 2014. [Online].
Available: https:/ /arxiv.org/abs/1412.6980

https://doi.org/10.1190/geo2018--0490.1
https://doi.org/10.1190/geo2018--0490.1
https://www.pgs.com/imaging/services/processing-and-imaging/
https://www.pgs.com/imaging/services/processing-and-imaging/
https://aws.amazon.com/solutions/case-studies/enterprise
http://doi.acm.org/10.1145/1531666.1531671
http://doi.acm.org/10.1145/1531666.1531671
https://aws.amazon.com/hpc/efa/
https://aws.amazon.com/hpc/efa/
https://aws.amazon.com/ec2/nitro/
https://aws.amazon.com/ec2/nitro/
https://doi.org/10.1145/3185768.3186286
https://aws.amazon.com/ec2/instance-types/
https://aws.amazon.com/lambda/
https://aws.amazon.com/blogs/compute/building-high-throughput-genomics-batch-workflows-on-aws-introduction-part-1-of-4/
https://aws.amazon.com/blogs/compute/building-high-throughput-genomics-batch-workflows-on-aws-introduction-part-1-of-4/
https://aws.amazon.com/blogs/compute/building-high-throughput-genomics-batch-workflows-on-aws-introduction-part-1-of-4/
https://aws.amazon.com/ec2/
https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-overview.html
https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-overview.html
http://dx.doi.org/10.1190/1.1441754
https://doi.org/10.1190/1.1444597
https://doi.org/10.1190/geo2018-0192.1
https://doi.org/10.1190/geo2018-0192.1
http://arxiv.org/abs/1804.04272
http://doi.acm.org/10.1145/347837.347846
https://www.geosci-model-dev.net/12/1165/2019/
http://dx.doi.org/10.1111/j.1365-2478.2011.00977.x
http://dx.doi.org/10.1111/j.1365-2478.2011.00977.x
https://doi.org/10.1137/16M1081063
https://doi.org/10.1137/16M1081063
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/how-spot-instances-work.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/how-spot-instances-work.html
https://arxiv.org/abs/1412.6980

2048

[46]

[47]

[48]

[49]
[50]
[51]

[52]

[53]
[54]

[55]

[56]

[57]

[58]

[59]

[60]
[61]
[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

(711

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 9, SEPTEMBER 2020

R. Fletcher and C. M. Reeves, “Function minimization by
conjugate gradients,” Comput. J., vol. 7, no. 2, pp. 149-154, 1964.

A. Beck and M. Teboulle, “A fast iterative shrinkage-thresholding
algorithm for linear inverse problems,” SIAM]. Imaging Sci.,
vol. 2, no. 1, pp. 183-202, 2009.

AWS documentation: Amazon Elastic Compute Cloud, 2019.
[Online]. Available: https://docs.aws.amazon.com/batch/latest/
userguide/what-is-batch.html
Starcluster, 2019. [Online].
cluster/

AWS High Performance Computing, 2019. [Online]. Available:
https:/ /aws.amazon.com/hpc/

AWS documentation: AWS Step Functions, 2019. [Online].
Available: https:/ /aws.amazon.com/step-functions/

Iterating a loop using Lambda, 2018. [Online]. Available: https://
docs.aws.amazon.com/step-functions/latest/dg/tutorial-create-
iterate-pattern-section.html

Docker, 2019. [Online]. Available: https:/ /www.docker.com/
AWS documentation: Amazon Simple Storage Service, 2019.
[Online]. Available: https://docs.aws.amazon.com/AmazonS3/
latest/dev/Welcome.html

S. Van Der Walt, S. C. Colbert, and G. Varoquaux, “The NumPy
array: A structure for efficient numerical computation,” Comput.
Sci. Eng., vol. 13, no. 2, 2011, Art. no. 22.

AWS documentation: Amazon Simple Queue Service, 2019.
[Online]. Available: https://docs.aws.amazon.com/AmazonS3/
latest/dev/Welcome.html

F. Luporini ef al., “Architecture and performance of Devito, a sys-
tem for automated stencil computation,” ACM Trans. Math. Softw.,
2018. [Online]. Available: https:/ /arxiv.org/abs/1807.03032

D. Joyner, O. Certik, A. Meurer, and B. E. Granger, “Open source
computer algebra systems: SymPy,” Assoc. Comput. Machinery
Commun. Comput. Algebra, vol. 45, no. 3/4, pp. 225-234, Jan. 2012.
[Online]. Available: http://doi.acm.org/10.1145/2110170.2110185
J. Rad, A. Ragab, and A. Damodar, “Building a tightly coupled
molecular dynamics workflow with multi-node parallel jobs in
AWS Batch,” Nov. 2018. [Online]. Available: https://aws.
amazon.com/blogs/compute/building-a-tightly-coupled-
molecular-dynamics-workflow-with-multi-node-parallel-jobs-in-
aws-batch/

Boto 3 documentation, 2019. [Online]. Available: https:/ /boto3.
amazonaws.com/v1/documentation/api/latest/index.html#

J. Nocedal and S. Wright, Numerical Optimization. Berlin,
Germany: Springer, 2006.

L. Bottou, “Large-scale machine learning with stochastic gradient
descent,” in Proc. 15th Int. Conf. Comput. Statist., 2010, pp. 177-186.
P. A. Witte, M. Louboutin, C. Jones, and F.]J. Herrmann,
“Serverless seismic imaging in the cloud,” 2019. [Online]. Avail-
able: https:/ /arxiv.org/abs/1911.12447

M. T. Chung, N. Quang-Hung, M.-T. Nguyen, and N. Thoai,
“Using Docker in high performance computing applications,” in
Proc. IEEE 6th Int. Conf. Commun. Electronics, 2016, pp. 52-57.

A. Valli and A. Quarteroni, Domain Decomposition Methods for Par-
tial Differential Equations, New York, NY, USA: Numerical Mathe-
matics and Scientific Computation, The Clarendon Press, Oxford
Univ. Press, 1999.

AWS documentation: AWS Batch - multi node parallel jobs, 2019.
[Online]. Available: https:/ /docs.aws.amazon.com/batch/latest/
userguide/multi-node-parallel-jobs.html

Amazon EC2 reserved instances pricing, 2019. [Online]. Available:
https:/ /aws.amazon.com/ec2/pricing /reserved-instances / pricing/
Announcing accelerated scale-down of AWS Batch managed
compute environments, 2019. [Online]. Available: https://aws.
amazon.com/about-aws/whats-new/2017/10/announcing-
accelerated-scale-down-of-aws-batch-managed-compute-
environments/

W. Bland, A. Bouteiller, T. Herault, G. Bosilca, and J. Dongarra,
“Post-failure recovery of MPI communication capability: Design
and rationale,” Int. |. High Perform. Comput. Appl., vol. 27, no. 3,
pp. 244-254, 2013.

S. Chakraborty et al., “EReinit: Scalable and efficient fault-toler-
ance for bulk-synchronous MPI applications,” Concurrency Com-
put.: Practice Experience, 2018, Art. no. e4863. [Online]. Available:
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.4863

S. Hukerikar, R. A. Ashraf, and C. Engelmann, “Towards new
metrics for high-performance computing resilience,” in Proc.
Workshop Fault-Tolerance HPC Extreme Scale, 2017, pp. 23-30.

Available: http://star.mit.edu/

[72]

[73]

[74]

K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recog-
nit., 2016, pp. 770-778.

AWS to Azure services comparison, 2019. [Online]. Available:
https://docs.microsoft.com/en-us/azure/architecture/aws-
professional/services

Google Cloud Platform for AWS professionals, 2019. [Online].
Available: https:/ /cloud.google.com/docs/compare/aws/

Philipp A. Witte received the MSc degree in geo-
physics from the University of Hamburg, and
joined the Seismic Laboratory for Imaging and
Modeling (SLIM), in the fall of 2014. He is cur-
rently working toward the PhD degree in the
School of Computational Science and Engineer-
ing, Georgia Institute of Technology. His research
interests include large-scale seismic inverse
problems, cloud computing and physics-driven
machine learning.

Mathias Louboutin received the MSc degree in
applied mathematics and modeling from the Uni-
versity of Rennes 1. He is currently working
toward the PhD degree at the Seismic Laboratory
for Imaging and Modeling (SLIM) at the Georgia
Institute of Technology. His research interests
include seismic inverse problems, numerical
modeling and domain-specific languages for high-
performance computing.

Henryk Modzelewski received the MSc degree
in geophysics from Warsaw University, and the
PhD degree in atmospheric sciences from the
University of British Columbia, Canada. He is cur-
rently a research associate with the Department
of Earth, Ocean and Atmospheric Sciences, Uni-
versity of British Columbia. His research interests
include high-performance and cloud computing,
as well as scientific programming.

Charles Jones received the MSc degree in
exploration geophysics from the University of
Leeds. He is currently the head of development
at Osokey Ltd. He is interested in public cloud to
overcome the CapEx requirements of on-premise
high performance computing.

https://docs.aws.amazon.com/batch/latest/userguide/what-is-batch.html
https://docs.aws.amazon.com/batch/latest/userguide/what-is-batch.html
http://star.mit.edu/cluster/
http://star.mit.edu/cluster/
https://aws.amazon.com/hpc/
https://aws.amazon.com/step-functions/
https://docs.aws.amazon.com/step-functions/latest/dg/tutorial-create-iterate-pattern-section.html
https://docs.aws.amazon.com/step-functions/latest/dg/tutorial-create-iterate-pattern-section.html
https://docs.aws.amazon.com/step-functions/latest/dg/tutorial-create-iterate-pattern-section.html
https://www.docker.com/
https://docs.aws.amazon.com/AmazonS3/latest/dev/Welcome.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/Welcome.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/Welcome.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/Welcome.html
https://arxiv.org/abs/1807.03032
http://doi.acm.org/10.1145/2110170.2110185
https://aws.amazon.com/blogs/compute/building-a-tightly-coupled-molecular-dynamics-workflow-with-multi-node-parallel-jobs-in-aws-batch/
https://aws.amazon.com/blogs/compute/building-a-tightly-coupled-molecular-dynamics-workflow-with-multi-node-parallel-jobs-in-aws-batch/
https://aws.amazon.com/blogs/compute/building-a-tightly-coupled-molecular-dynamics-workflow-with-multi-node-parallel-jobs-in-aws-batch/
https://aws.amazon.com/blogs/compute/building-a-tightly-coupled-molecular-dynamics-workflow-with-multi-node-parallel-jobs-in-aws-batch/
https://boto3.amazonaws.com/v1/documentation/api/latest/index.html#
https://boto3.amazonaws.com/v1/documentation/api/latest/index.html#
https://arxiv.org/abs/1911.12447
https://docs.aws.amazon.com/batch/latest/userguide/multi-node-parallel-jobs.html
https://docs.aws.amazon.com/batch/latest/userguide/multi-node-parallel-jobs.html
https://aws.amazon.com/ec2/pricing/reserved-instances/pricing/
https://aws.amazon.com/about-aws/whats-new/2017/10/announcing-accelerated-scale-down-of-aws-batch-managed-compute-environments/
https://aws.amazon.com/about-aws/whats-new/2017/10/announcing-accelerated-scale-down-of-aws-batch-managed-compute-environments/
https://aws.amazon.com/about-aws/whats-new/2017/10/announcing-accelerated-scale-down-of-aws-batch-managed-compute-environments/
https://aws.amazon.com/about-aws/whats-new/2017/10/announcing-accelerated-scale-down-of-aws-batch-managed-compute-environments/
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.4863
https://docs.microsoft.com/en-us/azure/architecture/aws-professional/services
https://docs.microsoft.com/en-us/azure/architecture/aws-professional/services
https://cloud.google.com/docs/compare/aws/

James Selvage received the MSc degree in
exploration geophysics from the University of
Leeds. He is head of implementation at Osokey
Ltd. It was in 2016 at an AWS summit in London
that he first heard the phrase “serverless” and left
wondering how this could be applied to geophys-
ical datasets.

WITTE ETAL.: EVENT-DRIVEN APPROACH TO SERVERLESS SEISMIC IMAGING IN THE CLOUD 2049

Felix J. Herrmann received the PhD degree in
engineering physics from the Delft University of
Technology, and has been a post-doctoral fellow
at the Stanford’s Mathematics Department and
MIT’s Earth Resources Laboratory. He is a pro-
fessor at the Georgia Institute of Technology,
where he is cross appointed in the Schools of
Computational Science and Engineering, Earth
and Atmospheric Sciences as well as Electrical
and Computer Engineering. He is the founder of
the Seismic Laboratory for Imaging and Modeling
(SLIM) and the industry-supported SINBAD Consortium, both of which
have been responsible for major innovations in compressed sensing-
based seismic acquisition, domain-specific languages for seismic
modeling and inversion, and large-scale optimization for wave-equation
based seismic inverse problems. He also served for over a decade on
the Faculty of the University of British Columbia. His research interests
include theoretical and computational aspects of exploration seismology,
compressive sensing, and deep learning.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

2050

1

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 9, SEPTEMBER 2020

Efficient Algorithms for Delay-Aware
NFV-Enabled Multicasting in Mobile
Edge Clouds With Resource Sharing

Haozhe Ren, Zichuan Xu™, Member, IEEE, Weifa Liang™, Senior Member, IEEE,
Qiufen Xia"™, Member, IEEE, Pan Zhou"', Member, IEEE, Omer F. Rana“, Senior Member, IEEE,
Alex Galis, Senior Member, IEEE, and Guowei Wu

Abstract—Stringent delay requirements of many mobile applications have led to the development of mobile edge clouds, to offer low
latency network services at the network edges. Most conventional network services are implemented via hardware-based network
functions, including firewalls and load balancers, to guarantee service security and performance. However, implementing hardware-based
network functions usually incurs both a high capital expenditure (CAPEX) and operating expenditure (OPEX). Network Function
Virtualization (NFV) exhibits a potential to reduce CAPEX and OPEX significantly, by deploying software-based network functions in virtual
machines (VMs) on edge-clouds. We consider a fundamental problem of NFV-enabled multicasting in a mobile edge cloud, where each
multicast request has both service function chain and end-to-end delay requirements. Specifically, each multicast request requires chaining
of a sequence of network functions (referred to as a service function chain) from a source to a set of destinations within specified end-to-end
delay requirements. We devise an approximation algorithm with a provable approximation ratio for a single multicast request admission if
its delay requirement is negligible; otherwise, we propose an efficient heuristic. Furthermore, we also consider admissions of a given set of
the delay-aware NFV-enabled multicast requests, for which we devise an efficient heuristic such that the system throughput is maximized,
while the implementation cost of admitted requests is minimized. We finally evaluate the performance of the proposed algorithms in a real
test-bed, and experimental results show that our algorithms outperform other similar approaches reported in literature.

Index Terms—Mobile edge clouds, network function virtualization, multicasting, approximation algorithms, algorithm design

4

INTRODUCTION

WITH increasing uptake and use of multimedia technolo-
gies, there is an associated increase in data being gen-
erated and transmitted (processed) over our network-based
systems, often to multiple subscribers. Applications can
include video-on-demand, high definition streaming, multi-
media social networks (combing text, audio and video) and
Internet-of-Things (IoTs). This paradigm of data transfer to

o H. Ren, Z. Xu, and G. Wu are with the Key Laboratory for Ubiguitous
Network and Service Software of Liaoning Province, School of Software,
Dalian University of Technology, Dalian 116620, China.

E-mail: renhaozhe@mail.dlut.edu.cn, {z.xu, wgwdut)@dlut.edu.cn.

o W. Liang is with the Research School of Computer Science, Australian
National University, Canberra, ACT 2601, Australia.

E-mail: wliang@cs.anu.edu.au.

o Q. Xia is with the Key Laboratory for Ubiquitous Network and Service
Software of Liaoning Province, International School of Information Science
and Engineering, Dalian University of Technology, Dalian 116620, China.
E-mail: giufenxia@dlut.edu.cn.

o P. Zhou is with the School of Cyber Science and Engineering, Huazhong
University of Science and Technology, Wuhan, Hubei 430074, China.
E-mail: panzhou@hust.edu.cn.

e O.F. Rana is with Cardiff University, CF10 3AT Cardiff, United
Kingdom. E-mail: RanaOF@cardiff.ac.uk.

o A. Galis is with University College London, WCIE 6BT London, United
Kingdom. E-mail: a.galis@ucl.ac.uk.

Manuscript received 9 Nov. 2019; revised 25 Feb. 2020; accepted 17 Mar. 2020.
Date of publication 30 Mar. 2020; date of current version 20 Apr. 2020.
(Corresponding author: Zichuan Xu.)

Recommended for acceptance by M. Guo.

Digital Object Identifier no. 10.1109/TPDS.2020.2983918

multiple concurrent subscribers is referred to as multicasting,
and can significantly stress our current networks. Multicast-
ing not only requires use of various network functions such
as firewalls, Intrusion Detection Systems (IDSs), proxies, and
Wide Area Networks (WAN) optimizers to guarantee data
transfer security, but also to meet stringent Quality-of-Service
(QoS) requirements to ensure that the traffic is transferred on
time. Considering that most multimedia data needs to be
multicast to mobile users, Mobile Edge-Cloud Computing
(MEQ) [6], [15], [16], [18], [23], [27], [33], [46], [47], [50] has
emerged as a promising platform to meet the QoS require-
ments of mobile users, by deploying data processing resour-
ces within the proximity of mobile users. Network Function
Virtualization (NFV) moves network functions from dedi-
cated hardware to (software-based) virtual machines (VMs)
that can run on commodity hardware, thereby reducing the
OPEX and CAPEX of network service providers. In this
paper, we consider NFV-enabled multicasting in an MEC
network, where each user request requires its traffic to pass
through a sequence of network functions, referred to as a ser-
vice function chain, before reaching its destination.
Provisioning NFV-enabled multicasting services in
MEC networks poses many challenges. First, each cloudlet
(resource hosting a software-based Virtual Network Func-
tion (VNF)) in an MEC network usually has limited comput-
ing resource to support VNFs. Allowing multicast requests
to share existing VNF instances can significantly improve

1045-9219 © 2020 |IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

https://orcid.org/0000-0001-5438-1468
https://orcid.org/0000-0001-5438-1468
https://orcid.org/0000-0001-5438-1468
https://orcid.org/0000-0001-5438-1468
https://orcid.org/0000-0001-5438-1468
https://orcid.org/0000-0002-8207-6740
https://orcid.org/0000-0002-8207-6740
https://orcid.org/0000-0002-8207-6740
https://orcid.org/0000-0002-8207-6740
https://orcid.org/0000-0002-8207-6740
https://orcid.org/0000-0001-7978-4933
https://orcid.org/0000-0001-7978-4933
https://orcid.org/0000-0001-7978-4933
https://orcid.org/0000-0001-7978-4933
https://orcid.org/0000-0001-7978-4933
https://orcid.org/0000-0002-8629-4622
https://orcid.org/0000-0002-8629-4622
https://orcid.org/0000-0002-8629-4622
https://orcid.org/0000-0002-8629-4622
https://orcid.org/0000-0002-8629-4622
https://orcid.org/0000-0003-3597-2646
https://orcid.org/0000-0003-3597-2646
https://orcid.org/0000-0003-3597-2646
https://orcid.org/0000-0003-3597-2646
https://orcid.org/0000-0003-3597-2646
https://orcid.org/0000-0002-3929-3598
https://orcid.org/0000-0002-3929-3598
https://orcid.org/0000-0002-3929-3598
https://orcid.org/0000-0002-3929-3598
https://orcid.org/0000-0002-3929-3598
mailto:renhaozhe@mail.dlut.edu.cn
mailto:z.xu@dlut.edu.cn
mailto:wgwdut@dlut.edu.cn
mailto:wliang@cs.anu.edu.au
mailto:qiufenxia@dlut.edu.cn
mailto:panzhou@hust.edu.cn
mailto:RanaOF@cardiff.ac.uk
mailto:a.galis@ucl.ac.uk

REN ETAL.: EFFICIENT ALGORITHMS FOR DELAY-AWARE NFV-ENABLED MULTICASTING IN MOBILE EDGE CLOUDS WITH RESOURCE...

resource utilization in MEC networks and reduce service
cost. It is however challenging to efficiently utilize existing
VNF instances or create new VNF instances to maximize the
number of multicast requests and minimize overall cost —
subject to the computing capacity constraint on each cloudlet
in the MEC network and the end-to-end delay requirement
of each admitted multicast request. The key challenge is to
identify which cloudlets should be used to host VINFs
required within a multicast request service chain, i.e., which
existing VNF instances can be used for which request?
Second, each NFV-enabled multicast request usually has a
QoS requirement to guarantee that its traffic reaches the desti-
nations within the specified end-to-end delay requirement.
Identifying how to meet the end-to-end delay requirement of
each admitted NFV-enabled multicast request is challenging.
In this paper, we tackle the aforementioned challenges, by
investigating efficient methods that investigate VNF sharing,
service chaining, and routing that can meet QoS requirements
of NFV-enabled multicast requests in an MEC network.

There are extensive studies on multicasting in conven-
tional networks or software-defined networks, which do not
consider service function chain requirements [17], [18], [51].
These solutions however cannot be directly applied to NFV-
enabled multicasting. There are also recent investigations on
NFV-enabled multicasting. However, these approaches do
not consider end-to-end delay requirements [39], and they
assume that only one service instance is included in the ser-
vice function chain [51], or that the VNFs in each service chain
are consolidated into a single location [45], [47]. For example,
Zhang et al. [51] investigated the NFV-enabled multicast
problem by assuming that there are sufficient computing and
bandwidth resources in a Software Defined Network (SDN)
to accommodate a multicast request. Xu et al. [47] investi-
gated the problem of NFV-enabled multicasting, by devising
an approximation algorithm with a provable approximation
ratio for realizing a single NFV-enabled multicast request and
an online algorithm with a guaranteed competitive ratio for
the online NFV-enabled multicasting problem. Ren et al. [39]
investigated the NFV-enabled multicasting in an SDN, by
assuming that the traffic of each multicast request can be
processed by multiple instances of the VNFs in its service
chain. These methods are likely to increase the cost/delay of
implementing such multicast requests, as placing VNFs into
multiple cloudlets can lead to a greater delay to form a service
function chain and incur a higher cost.

To the best of our knowledge, we are the first to consider
the problem of delay-sensitive NFV-enabled multicasting
problem in an MEC network, by designing both approxima-
tion algorithms and efficient heuristics. The main contribu-
tions of this paper are as follows.

e We study the NFV-enabled multicasting problem in
an MEC network, with an aim to minimize the
implementation cost of the request while meeting its
delay requirement.

e We propose an efficient heuristic for the NFV-
enabled multicasting problem. We also devise the
very first approximation algorithm with an approxi-
mation ratio, if the delay requirement is neglected.

e We also consider a set of NFV-enabled multicast
request admissions with the aim to maximize the

2051

weighted system throughput. We also propose a
heuristic for this problem.

e We evaluate the performance of the proposed algo-
rithms through experimental simulations in synthetic
networks and within a real test-bed. Experimental
results demonstrate that the proposed algorithms
outperform existing reported approaches.

The rest of the paper is organized as follows. Section 2
reviews related work. Section 3 introduces the system
model, notations, and problem definition. Section 4 devises
an approximation algorithm for the NFV-enabled multicast-
ing problem without end-to-end delay requirements, and
proposes an efficient heuristic for the problem with delay
requirements using the proposed approximation algorithm
as a subroutine. Section 5 devises an efficient heuristic algo-
rithm for the the NFV-enabled multicasting problem with
resource constraints on cloudlets. Section 6 evaluates the
performance of the proposed algorithms experimentally in
a real test-bed, and Section 7 concludes the paper.

2 RELATED WORK

Recently, traffic steering has re-gained much attention due to
the challenges introduced by software defined networking
and network function virtualization [5], [6], [15], [16], [18],
[23], [27], [33], [46], [47], [50]. Unicasting is one of the primary
focus of existing studies. For example, Moens et al. [33]
focused on hybrid networks with both hardware and soft-
ware network functions. Cziva et al. [7] addressed the prob-
lem of the placement of virtual functions by minimizing the
total number of VNF instances. Yu et al. [29] investigated
profit maximization associated with placing VNFs onto a set
of locations, and considered the delay requirement of each
unicast request. Xu et al. [45] studied the offloading problem
of delay-sensitive tasks with network function requirements
in an MEC network, by proposing efficient heuristics and an
online algorithm with a competitive ratio. Xie et al. [44] inves-
tigated the VNF sharing problem with an aim to improve
resource utilization, by finding a common link for a set of ser-
vice chains, so that the deployed service chains can be shared
by all users. Kiji et al. [19] proposed a virtual network func-
tion placement and routing algorithm for multicast requests
with service chain requests, through merging multiple ser-
vice paths (MSC-M). Although there exist studies that con-
sider the delay requirements of user requests [22], [29], [45],
they only considered unicast requests and their solutions
cannot be applied to the NFV-enabled multicasting problem,
which is a generalization of the NFV-enabled unicasting
problem. Chen and Wu [5] devised algorithms for the VNF
placement to minimize the cost of implementing NFV-
enabled unicast requests by balancing set-up and bandwidth
consumption costs.

There are studies on multicasting in conventional net-
works [2], [14], [24], [25], [34], [43]. Recently, with the emer-
gence of new networking technologies such as mobile edge
computing, software-defined networking (SDN) and NFV,
multicasting has re-gained the attention by the research com-
munity [17], [18]. For example, Huang et al. [18] studied
online multicasting in software-defined networks with both
node and link capacity constraints. Huang et al. [17] studied
the scalability problem of multicasting in SDNs, by proposing

2052

an efficient algorithm to find a branch-aware Steiner Tree for
each multicast request. These solutions however cannot be
directly applied to the problem of NFV-enabled multicasting
in MEC networks, because they did not consider the service
chain requirements of multicast requests.

Investigations on NFV-enabled multicasting include [1],
[301, [31], [39], [41], [47], [49], [51]. For instance, Zhang
et al. [51] investigated the NFV-enabled multicasting problem
in an SDN without resource capacity constraints, assuming
that data traffic of each multicast request can only be proc-
essed by one server. Xu et al. [47], [48] considered the NFV
multicasting problem by assuming the traffic of each request
can be processed by multiple servers, with the objective to
minimize the implementation cost. Approximation and
online algorithms for the problems are proposed. They how-
ever assumed that the VNFs in each service chain is consoli-
dated into a single data center. Ma et al. [30], [31] proposed an
online algorithm for the NFV-enabled multicasting problem
without taking into account the end-to-end delay require-
ment. Soni et al. [41] proposed a scalable multicast group man-
agement scheme and a load balancing method for the routing
of best-effort traffic and bandwidth-guaranteed traffic. These
studies however did not consider end-to-end delay require-
ments of multicast requests. Alhussein et al. [1] devised exact
solutions for the problem of joint VNF placement and routing
for multicast requests in 5G core networks, such that the cost
of provisioning NFV-enabled multicast services is minimized,
by formulating the problem into a mixed integer linear
program (MILP). The delay requirement of NFV-enabled
requests has not been considered and the MILP-based exact
solutions might not be scalable for large problem sizes.
Yi et al. [49] considered delay requirements of the NFV-
enabled multicasting problem; however VNF sharing is not
explored. To guarantee scalability and solution quality, Ren
et al. [39] proposed approximation algorithm with an approxi-
mation ratio for the problem of embedding a service graph
that consists of VINF instances into a substrate network, by
assuming that the traffic of each multicast request can be proc-
essed by multiple instances of the VINFs in its service chain.
The delay requirement of multicast requests however is not
considered in the study. Similarly, the delay requirement of
multicast requests is not considered [30], [31], and the authors
only consider a single multicast request.

3 PRELIMINARIES

In this section, we first introduce the system model, notation
and key concepts. We then define the problem being consid-
ered more precisely.

3.1 System Model

We consider a mobile edge cloud (MEC) network G = (V, E)
with a set V of switches, a set of cloudlets and a set £ of links
between switches and cloudlets. Each cloudlet is attached to
a switch in V' via an optical fiber, and the communication
delay between a switch and its attached cloudlet is negligi-
ble. Let Vi, be the set of switches with attached cloudlets.
Clearly, Ve, C V. Cloudlets are usually deployed in shop-
ping malls, airports, or base stations that are within the prox-
imity of mobile users. Due to space limitation of installing
cooling equipment in those places, each cloudlet is usually

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 9, SEPTEMBER 2020

= =
- o U2 L
y Destination
Destmah%{ T Ys
—_— - ‘:_ @ Destination
L |
U,

—Multicast Request

Fig. 1. An MEC network G.

equipped with (a small number of) servers and thus has com-
puting resource capacity to implement VNF instances. We
denote by C,, the computing capacity of the cloudlet attached
to switch node v & V. In addition, transferring data
through links in £ incurs a communication latency. Let d. be
the delay associated with transmitting a unit of data traffic
via link e € E. We assume that there is an SDN controller
that both makes traffic steering decisions and manages net-
work function instances that run on a server in the MEC net-
work G. Fig. 1is an illustrative example of an MEC network.

3.2 NFV-Enabled Multicast Requests and Service
Chains

A delay-aware NFV-enabled multicast request is a request that

transfers an amount of data traffic from a source to a set of

destinations. The data traffic must be processed by a

sequence of VNFs before reaching their destinations, while

also meeting delay constraints.

Let 7, be a delay-aware NFV-enabled multicast request,
denoted by a quadruple 74 = (si, Dy; by, SCy), where s, € V
is the source, D;, is the set of destinations with D;, C V, b;. is
the size of its data traffic, and SC}, is the service chain of ry,
that consists of a sequence of VNFs. Without loss of general-
ity, we consider that the data traffic b, of request r;, is given
(derived from historical information).

Let F be the set of VNFs provided by the network service
provider in G. A VNF f; € F can be needed by request r;, to
form its service function chain SC).. Assume that there are
L, VNFs in SC,, where 1<1[<L; for each SC, and
SC, Cc F. We further assume that there is a number of
already instantiated VNF instances for each type of network
function f; in cloudlets of G. Due to the resource capacity
constraints on cloudlets, we allow the instances of VNF fj to
be shared among different requests.

To admit request 7, all data traffic from source s;, of 7},
needs to be processed through an instance of each VNF
fi € SC}, prior to reaching destinations in Dy, as illustrated in
Fig. 2. An existing instance must therefore be selected for
each VNF f; € SC}, or a new instance of f; must be instanti-
ated in a cloudlet of G. Existing or newly created VNF instan-
ces of each service chain SCj can be placed in multiple
cloudlets, because a single cloudlet may not have all the
instances of the VNFs in SCj, or it may lack sufficient com-
puting resources to create new instances for all VNFs in SCj..

Each multicast request needs a certain amount of com-
puting resource to process its data traffic. Let Cy,;.(f;) be

REN ETAL.: EFFICIENT ALGORITHMS FOR DELAY-AWARE NFV-ENABLED MULTICASTING IN MOBILE EDGE CLOUDS WITH RESOURCE...

Destination !

Destination2

Firewall

Sonrce
Destination3

Firewall Destinationd

Fig. 2. A service chain (NAT, Firewall, IDS) with one instance of NAT
and two instances of Firewall and IDS.

the number of computing resource needed to process a unit
amount of data traffic. If f; is implemented as a newly cre-
ated instance, the total number of computing resources that
should be assigned to the new instance to process the data
traffic of request ry is Cypit(fi) - by. Otherwise, an existing
instance of f; should have at least an amount C,,;:(f;) - by of
available computing resource to process the traffic of 7.
Notice that we assume that the accumulative available
resources in the cloudlets of G are higher then the total
resource demand of a single request 7;; however, for a spe-
cific cloudlet in V¢y, it may not have enough resources to
meet the demand of 7.

3.3 Delay Requirements of Multicast Requests

The end-to-end delay of implementing a multicast request
plays a vital role in guaranteeing the quality of services of
users. We thus consider that each multicast request has a
delay requirement, which specifies the maximum delay it
can tolerate for transmitting its data from its specified source
to its destinations. For a delay-aware NFV-enabled multicast
request, its experienced delay consists of the total processing
delay in the selected cloudlets and the total transfer delay
from the source to cloudlets and from the cloudlets to the
destinations, which are defined in the following.

Processing Delay. The processing delay experienced by a
multicast request r, depends on both the amount of data traf-
fic that needs to be processed and the computing resource
assigned to process the traffic. Without loss of generality, we
assume that the processing delay d);, of each multicast
request r, by VNF f; is proportional to the amount of traffic it
needs to process, i.e.,

dy, = o - by, 1)

where «; is a given proportional factor of VNF f;.
The accumulative processing delay incurred due to the
traffic processing by network functions in SCj; of 7, is

) P
di, = Zf,esck. .1)

Transmission Delay. Let P}, be the set of routing paths from
source s; to destinations in Dy, where each path p,, € P},
denotes a routing path from s, to a destination ¢,, € D;.. The
transmission delay of each 7 is the maximum end-to-end
delay incurred in the paths in P;. We denote by d!. the trans-
mission delay of request 7, which can be defined as follows:

dj, = max,,,cp, Zd - by. 3)

eEpm

2053

The delay experienced by multicast request r;, thus is

do=d +d., (4)

which needs no greater than the specified delay require-
ment Dy, i.e.,

d, < Dy, (%)

3.4 Cost Models
As the network service provider of an MEC network G
charges user requests on a pay-as-you-go basis, the major
concern of the service provider is its operational cost, which
consists of computing resource usage costs in cloudlets,
bandwidth resource usage costs in links, and VNF instance
instantiation costs. Let c(e) and ¢(v) be the usage costs of
one unit of bandwidth and computing resources at link
e € E and cloudlet v € V1, respectively. Denote by ¢;(v) the
cost of instantiating an instance of network function f; in
cloudlet v € V1, and let "?,v be the number of newly created
instances for network function f; in cloudlet v. Denote by
ny, the number of existing instances of f; in v that are used
to process the traffic of ry.

The operational cost of admitting a delay-aware NFV-
enabled multicast request rj, can be specified as

S o

J1€8C, veVerL

+ Z c(e) - by,

e€Ty,

(U) : bk + ng,v ’ Cl(v))

nlu+nl7

(6)

where Vpr,, is the set of cloudlets that are used to imple-
ment the instances of VNFs in SC}, of request 7, and T, is
the obtained multicast tree that is used to route the data traf-
fic of 7y.

3.5 The Directed Steiner Tree [4]

The Steiner tree problem is defined as follows: given a
graph G = (V, E) with a cost function ¢ on the edges, and a
subset of terminals X C V, the goal is to find a minimum
cost tree that includes all the terminals in X. The found min-
imum cost tree is referred to as the Steiner tree.

3.6 Problem Definition

We consider a mobile edge cloud (MEC) network G = (V, E)
with a set V¢, of cloudlets with V;, C V, and a set of multi-
cast requests R. Given a snapshot of the MEC at a given
time instant and a NFV-enabled multicast request r;,, under-
standing how request 7. can be realised across a set of VNFs
remains a key challenge. We thus first consider the problem
of admitting a single multicast request 7, such that its oper-
ational cost is minimized. Further, considering that the
accumulated computing resources in an MEC may be insuf-
ficient to implement all requests, another question is identi-
fying how to carry out admission control for multicast
requests to maximize weighted throughput. In the follow-
ing we define these two optimization problems precisely.

Problem 1. Assuming that each multicast request can be imple-
mented using the computing resources assigned to existing
VNF instances, the NFV-enabled multicasting problem
with a single multicast request in MEC network G is to

2054 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 9, SEPTEMBER 2020
TABLE 1
Symbols

Symbols Meaning

G=(V,E) a mobile edge cloud (MEC) network with a set V' of switches and a set £ of links

R a set of delay-aware NFV-enabled multicast requests

Ver the set of switches with attached cloudlets, and clearly Vo, €V

C, the computing capacity of the cloudlet attached to a switch node v € V¢,

7 = (8K, Di; by, SCy)

a delay-aware NFV-enabled multicast request, where s;. € V' is the source, D, is the set of destinations with D, C V, b;.

is the size of its data traffic, and SC;, is the service chain of r;, that consists of a sequence of VNFs.

F and f the set of VNFs provided by the network service provider in G and a VNF f;

Ly The number of VNFs in SC,

Cunit (f1) the amount of computing resource needed to process a unit amount of data traffic

dy, the processing delay of each multicast request 7, by VNF f;

a a given proportional factor of VNF f;

dj the accumulative processing delay incurred due to the traffic processing by network functions in SCj; of 7},
P the set of routing paths from source s;. to destinations in Dy,

Pm € Py a routing path from s;, to a destination ¢,, € Dy,

di, the transmission delay of request 7,

dy and D, the delay experienced by multicast request ;, and its delay requirement

c(e) and c(v)
¢(v)

”l;.'l}

Ny

the usage costs of one unit of bandwidth and computing resources at link e € £ and cloudlet v € V¢
the cost of instantiating an instance of network function f; in cloudlet v € Vi,

the number of newly created instances for network function f; in cloudlet v

the number of existing instances of f; in v that are used to process the traffic of ;,

C the operational cost of admitting a delay-aware NFV-enabled multicast request r;,

VoL, the set of cloudlets that are used to implement the instances of VNFs in SC}, of request 7,
Ty the obtained multicast tree that is used to route the data traffic of r;

ST and R, the weighted throughput and the set of admitted multicast requests

nj, the number of cloudlets that are used to implement the VNFs in SC}, in the current infeasible solution
g the proper number of cloudlets in the feasible solution of algorithm Heu_Delay

TNnae and Npin the minimum and maximum bounds of the binary search range in algorithm Heu_Delay
G =(V,E) the auxiliary graph constructed in algorithm Appro_NoDelay

fi,and f) the pair of virtual VNF nodes for the ith VNF instance of f; in cloudlet v € Vi,

w(‘,?J,m V1) the weight of edge (f/, ,, f/;,) in the auxiliary graph G’

vy, and vy a pair of virtual cloudlets for the ith VNF and cloudlet v in G’

Wi the widget that is built for network function f; in cloudlet v € Vi,

wsy, and wdy,
auxiliary graph G’

L'In(lT

LCOTYI and R(L(fOYT'L)
the set of such requests.

a widget source node and a widget destination node for the widget for network function f; and cloudlet v € V¢ in

c the optimal solution for the NFV-enabled multicasting problem
the maximum length of the service chains of the requests in R, i.e., Ly, = arg max,, cg|SCy|.
the number of common VNFs that requests have in their service chains VNFs in common of their service chains, and

route the traffic of request ry, to each destination in Dy, by chain-
ing either existing or newly created instances of VNF, such that
the operational cost (i.e., Eq. (6)) of implementing ry, is mini-
mized, while meeting the end-to-end delay requirement D, of
), and capacity constraint on each cloudlet v € Ve,

Problem 2. Assuming that the computing resource in each
cloudlet in the MEC network G has available capacity. For each
request in R, the network may or may not have enough resour-
ces to admit it, the NFV-enabled multicasting problem in
an MEC network G for a given set R of NFV-enabled multicast
requests is to maximize the system throughput while minimiz-
ing the operational cost, subject to computing capacity on each
cloudlet, where the system throughput is defined as the total
amount of data that is processed and transferred by the system
for admitted multicast requests. Let ST be the weighted
throughput and R,q the set of admitted multicast requests, then

ST = Z by

T/x'ERad

(7)

The NFV-enabled multicasting problems are NP-hard, as
its special case — the traditional multicast problem without
NFV service chain constraints is NP-hard [8].

For clarity, the symbols used in this paper are summa-
rized in Table 1.

4 ALGORITHMS FOR THE ADMISSION OF A SINGLE
NFV-ENABLED MULTICAST REQUEST

In this section, we deal with NFV-enabled multicasting for a
single NFV-enabled multicast request admission. We first
propose an efficient heuristic for the problem. We then con-
sider a special case of the problem without delay require-
ments, by devising an approximation algorithm.

4.1 An Efficient Heuristic
The basic idea of the proposed heuristic is based on an
observation that a feasible solution to the problem needs to
meet the capacity constraints on cloudlets, service function
chain requirements, and the end-to-end delay requirement
of each multicast requests 7. We thus adopt a two-phase
heuristic that progressively considers the mentioned con-
straints and requirements.

Phase One. We first propose an algorithm to jointly con-
sider the capacity constraint and the service chain require-
ment, by ignoring the delay requirement of ;.. The proposed

REN ETAL.: EFFICIENT ALGORITHMS FOR DELAY-AWARE NFV-ENABLED MULTICASTING IN MOBILE EDGE CLOUDS WITH RESOURCE...

algorithm smartly explores existing VNF instances in each
cloudlet that can be shared with the VNF instances of 7.
Notice that the solution may not be feasible to the NFV-
enabled multicasting problem, because the delay require-
ment of 7, is not considered in this phase. For the sake of clar-
ity, we describe the proposed algorithm for the problem
without delay requirement in the next subsection, which is
referred to as Appro_NoDelay. By now, we assume we
already obtained the multicast tree for 7 in G without con-
sidering its delay requirement.

Phase Two. We refine the obtained multicast tree into a
feasible solution to meet the delay requirement of ;.. In par-
ticular, we observe that a longer delay will be the result if
the VNFs of SCj are implemented in multiple cloudlets.
This is because that if the VNFs are distributed into different
cloudlets, the data traffic transmission among two consecu-
tive VNFs has to be performed by inter-cloudlet links,
which incurs higher delays than those by intra-cloudlet
data transfers. However, putting all VNFs into a single
cloudlet may also incur a longer delay, since the selected
cloudlet may be far away from the destinations of ;.. This
means that a large or a small value for the number of cloud-
lets of a request may not be proper to meet the delay
requirement of 7. We thus adopt a binary search to narrow
down the choices of the proper number of cloudlets for 7,
making the delay requirement of r;, being met quickly. Spe-
cifically, let nj be the number of cloudlets that are used to
implement the VNFs in SC}, in the current infeasible solu-
tion, and denote by n;, the proper number of cloudlets in the
feasible solution. We first set

ng = {%J ®)

The proposed algorithm first tries to re-assign the VNFs
in service function chain SCj such that they are imple-
mented in exactly n; cloudlets. If n, < nj, we identify a
number of (n), — n;) cloudlets that implements VNFs of SC},
in the obtained infeasible solution from the Steiner tree [4]
(i.e., multicast tree) in G’ and have the longest average data
transfer delay from it to the destinations in D;. Let F” be the
set of instances of VNFs in SCj, that are implemented in the
identified cloudlets. The VNFs in F” are pre-consolidated to
the rest ny, cloudlets in V’ one by one, by selecting a cloudlet
with the lowest implementation cost for each f; € F,. If the
pre-consolidation makes the delay requirement of r; being
met, the algorithm terminates with a feasible solution. Oth-
erwise, if the experienced delay of r;, is reduced but still
greater than its requirement, we continue the above proce-
dure by searching the appropriate number of cloudlets in
the range of [1,n;]. The rationale is that the number of
cloudlets in the multicast tree is still too many, and the
inter-cloudlet communication leads to the delay require-
ment violation. The number of cloudlets still needs to be
reduced. Instead, if the experienced delay is increased, we
try to find the appropriate value for n; in the range of
[, |Ver|]. This means increasing the number of cloudlets
for 7, may reduce the experienced delay of multicast
request 7. On the other hand, if n;, > nj, we need to find
the additional n;, — nj, cloudlets that have the lowest imple-
mentation cost for VNFs of 7, and pre-assign VNFs in F’ to

2055

1: Invoke Ngoﬁthm Appro_NoDelay for the problem without delay,
to obtain a multicast tree T, with n', cloudlets to implement request
Te -

Phase one

2. Adjust the nuriiber of cloudlets in T fo 1, |

3a: The delay of T,
with a new number n,
cloudlets is not met and

decreased. Phase two

Neniy

1 Vel

Binary search for a proper number of cloudlets for each request

Fig. 3. Anillustration of the algorithm Heu_Delay.

the cloudlets one by one. The above binary search procedure
continues until a feasible solution is obtained or the multicast
request is rejected. The detailed heuristic is described in
Algorithm 1 and its basic idea is shown in Fig. 3. For simplic-
ity, this algorithm is referred to as algorithm Heu_Delay in
the rest of this paper.

Algorithm 1. Heu_Delay

Input: G = (V, E), V¢, computing capacity C, for each cloudlet
v € Ver, and a multicast request 7, = (g, Dy; by, SCi.) and
its delay requirement d"".
Output: The locations for the VNFs of service chain SCj; of multi-
cast request r;, and the multicast tree 7}, to transfer its data.
1: /*Phase one: find cloudlets and routing paths for r; by con-
sidering its service chaining requirement and cloudlet
capacity constraints.*/
2: Find a multicast tree for r; without considering its delay
requirement d;“/, by invoking algorithm Appro_NoDelay;
3: Let n), be the number of cloudlets that are used to imple-
ment VNFs in SC), of the found multicast tree;

4: /*Phase two: adjust the multicast tree to meet the delay
requirement of r.*/

5: Nopin, <— 1;

6: Nomax < ‘VCL|/'

7: while n,,;, <= Ny, do

8: oy |Mmintime;

9: ifn, < nj then

10: Identify the number of n). — ny, cloudlets that implements

VNFs of SC). in the obtained solution from the Steiner
tree in G’ and has the top-(nj, — n;) highest average data
transfer delays from it to the destinations in D;;;

11: Move the VNFs that were implemented in the n) — n,
cloudlets of the infeasible solution to the rest cloudlets
one by one.

12: else

13: Find the additional nj, — nj, cloudlets that have the low-

est implementation cost for VNFs of r;, and assign
VNFs in F; to the cloudlets one by one.
14: if the experienced delay of 7 is met then

15: return;

16: else

17: if the experienced delay of 7 is decreased then
18: Nmaz < My

19: else

20: Nonin < Nk}

2056

4.2 An Approximation Algorithm for the Problem
Without Delay Requirements

The proposed approximation algorithm for the problem
without delay requirements is to reduce the problem in G to
the Steiner tree problem in an auxiliary graph G’, via a non-
trivial reduction. Since each cloudlet v € Vi, has computing
capacity to implement the VNFs of each request, the VNFs in
each service function chain SCj, can be implemented in mul-
tiple cloudlets or consolidated into a single cloudlet to save
the communication cost due to the transmissions between
different cloudlets. To ensure that each cloudlet has suffi-
cient computing resource to implement the VNFs in SC, of
each multicast request r;, we adopt a conservative method of
reserving » H€8C, bi. - Cunit(fi) resource for 7. in each cloud-
let. The cloudlet with an amount of available computing
resource that is less than) Hescy b - Conit(f1) will be
removed from the network GG, where the available resource
inidle VNF instances are also accounted.

The Construction of Auxiliary Graph G' = (V', E'). We now
construct G’ based on the sub-network of G.

We start by constructing the node set V' of G’. Specifically,
we first add source node s, into the auxiliary graph. We also
add each node in V into V/, i.e.,, V' « V' U V. Notice that,
since Vg, C V, all switch nodes in Vg, are added into V' as
well. However, only their functionalities of forwarding traf-
fic will be used.

Recall that VNFs in SC} of multicast request r; can be
assigned to existing VNFs or newly instantiated VNF instan-
ces. To determine whether making use of existing VNF
instances or creating new ones, we create a widget for each
cloudlet v € Vi1, and each network function f; € SCj, to rep-
resent the resource availability of the cloudlet v for f; by two
cases. Case 1: the amount of available computing resource to
instantiate new instances of VNFs; Case 2: existing VNF
instances of f;in v € Vi, that are available to process the traf-
fic of 7. There is a widget for each pair of cloudlet and VNF,
which actually means a possible placement of a VNF to a
cloudlet.

For Case 1, we add a pair of virtual VNF nodes into the
widget, to represent each of existing VNF instances of f;
with sufficient computing resource processing the data traf-
fic of 74 in cloudlet v € Ver. Denote by f},, and f}), the pair
of virtual VNF nodes for the ith VNF instance of fl in cloud-
let v € V. We then add an edge from fi1, to fi;, into the
widget. The weight of edge (f/, . f/;,) is the cost of process-
ing a unit traffic by an existing VNF instance of f; in cloudlet
v ie., w(fi,‘l,w fz{,/lﬁv) = C(vfl~7"k)'

For Case 2, we add a pair of virtual cloudlets for each cloud-
let v € Vr, into each widget to denote the amount of available
computing resource to instantiate a new instance of f; in
cloudlet v, as shown in Fig. 4. Let v} ; and v} ; be such a pair of
virtual cloudlets for the /th VNF and Cloudlet v. To jointly con-
sider the processing and transmission costs, we connect each
palr of virtual cloudlets, v}, and v, ie, £ < E'U{(v},,
vj,) }. The weight of edge (v} ;,v,;) is the sum of the instantia-
tion cost of VNF f; and the cost of processing a unit traffic by
the lth VNF in SC}, for each multicast request r; in cloudlet v.
Thatis, w(<U;<‘l’ UZ,I>) = c;b(;r) + C(Ufz,f'k)'

We also add a widget source node ws;,, and a widget destina-
tion node wd;, for the widget for network function f; and
cloudlet v € V7. Node ws;, is connected to node v}, and

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 9, SEPTEMBER 2020

This edge represents instantiating a new
instance for f;

Each of Such edges represents an existing
VNF instance that is available to process

the traffic of

Fig. 4. An example of the widget for the VNF f; in SC;, and cloudlet
ve Veor.

the node f] for each existing instance of network function f;
that has enough computing resource to process the data
traffic of 7. In addition, node v} ; and node f; for each exist-
ing instance of network function f; are both connected with
the widget destination node wd;,. The weights of those
edges are set to zeros. It must be mentioned that widget
source and destination nodes are used to guarantee that
either a new instance for f; is created or an existing VNF
instance of f; is selected to process the traffic of r;, which
will be proved in the algorithm analysis part.

The widgets become part of the auxiliary graph G'.

We then connect the widgets and other nodes in the aux-
iliary graph G’ as follows.

e sy to widget source nodes: There is an edge from source
node s;, to each widget source node ws;, of the wid-
get for the first VNF f; of SCj, and every v € V1. The
weight of edge (s;,ws;,) is set as the transmission
cost of data traffic of 7.

e widget destination to widget source nodes: Since the data
traffic of 7, may be processed by multiple cloudlets,
there is an edge from the widget destination node of
each widget for network function f; to the widget
source node of each widget for VNF f;,, for each !
with 1 < l < Lk — 1, i.e., E — FEU {<’wd17v,’w=51+1,u>}
for lwith1 <1< Ly — 1 and v, win V.. The weight of
edge (wd,,, wsi+1,) is the transmission cost of a unit
traffic along the shortest path from cloudlet v to cloud-
let u.

o widget destinations of fr, to cloudlet nodes: We finally
connect each of the widgets that are created for the last
VNF fi, € SC). with the cloudlet node. Specifically,
there is an edge from node wdy, ,, to cloudlet node v in
V', ie, B — E' U {(wdy, ., u)}. The weight of edge
(wdp, v, u) is the transmission cost of a unit traffic
along the shortest path from cloudlet v to cloudlet w.

An example of the constructed auxiliary graph is shown
in Fig. 5.

Problem Reduction. We now reduce the NFV-enabled
multicasting problem without delay requirements in G to
the Steiner tree problem in the directed auxiliary graph G'.
Recall that in the construction of G’, the VNF processing

REN ETAL.: EFFICIENT ALGORITHMS FOR DELAY-AWARE NFV-ENABLED MULTICASTING IN MOBILE EDGE CLOUDS WITH RESOURCE...

Two widgets for f- and cloudlet v,
and u

Two widgets for f; and cloudlet
v, and u

2057

Two widgets for f; and cloudlet
v, and 1

Fig. 5. An example of the auxiliary graph G’ = (V’, E') with two servers attached at node v and node u and multicast request r;, transfer its data to
destinations in Dy, = {d,, d»}. Note that there is a widget for each pair of VNF f; and cloudlet v, corresponding to a possible assignment of f;. The orig-
inal switches that attach the two cloudlets will just serve as normal forwarding switches.

and transmission costs are considered as the weights of edges.
We thus find a directed Steiner tree in G’ that spans nodes in
{sr} U Dj.. We then transfer the Steiner tree in G’ to routing
paths for ;. in the original network G. Specifically, if a widget
for f; € SC}, of and cloudlet v € V, is included in the Steiner
tree, either a newly created VNF instance or an existing one in
cloudlet v will be used to implement f;, depending on which
edge of the widget is included in the Steiner tree. Notice that
the edges among the widgets in G’ correspond to the shortest
paths of their endpoints of the edges in G. We thus replace
each of such edges with its shortest path in G.

Algorithm 2. Appro_NoDelay

Input: G = (V, E), Ver, computing capacity C, for each cloudlet
v € Ver, and a multicast request rj, = (sy, Di; by, SCy).

Output: The locations for the VNFs of service chain SCj, of mul-

ticast request r; and the multicast tree T}, to transfer its data.

1: Construct an auxiliary directed graph G’ = (V, E/), as
shown in Fig. 5;

2: Find a directed Steiner tree 7" in G’ that spans nodes in
{s1} U Dy, using Charikar’s algorithm [4];

3: For each path from the widget source node to the widget
destination node of a widget in 7', condense the path to a
single node;

4: Replace each of all other edges in T" with its corresponding
shortest path in network G; /*The edges among widgets
correspond to shortest paths in the original network G. */

4.3 Algorithm Analysis
We now analyze the feasibility of the solution obtained and
performance of the proposed algorithms.

We first show the feasibility of the solution delivered by
Algorithm 2. Intuitively, if a solution to the NFV-enabled
multicasting problem, it needs to satisfy the following three
conditions:

o Condition 1: each VNF f; € SC;, will be assigned to
one or multiple cloudlets by either creating a new
instance or using an existing instance

e Condition 2: the traffic of r;, will be processed by
VNFs as the specified order in SC;,
e Condition 3: the processed traffic by the VNFs in SCj,
is forwarded to destinations in Dj, of 7.
For Condition 1, we show that in each of the selected
cloudlets for f;, either a new instance is created or an exist-
ing instance is selected for it in the following lemma.

Lemma 1. If a cloudlet v € Vg, is selected for VNF f; € SC; of
multicast request 1y, either an existing instance of f; or a newly
created instance is used to process the traffic of ry.

Proof. Following the construction of G, showing the feasibil-
ity of the solution is to show that if the Steiner tree found in
G’ has one path from ws;, to wd;, of each selected widget,
the path will be the only path in the Steiner tree, and no
other paths in the widget will be included. Let 1, be the
widget that is built for network function f; in cloudlet
v € Veor. Assume that widget W, is included into the
Steiner tree for the subgraph, and let p be the path from
wsy, to wdy, of Wi, in G’ that is included in the Steiner tree.
We prove by contradiction. Assume that there is another
instance (either newly created or existing one) of f; is used
to process the traffic of r;. Let the ith instance of f; be such
an additional instance. This means that edge (f/, , f7;,) has
to be included in the Steiner tree found in G'. Edges (ws,,,

i and (f7, wd,) have to included, according to the
structure of the widget; otherwise, edge (f;,,, f/;,) is a
stand alone edge that can be removed. Let p’ be the path
that consisting of edges (ws;., fi;,), (fi1., f11.), and (fi},,
wdy,), as shown in Fig. 6. Paths p' and p however make it
not a tree. Therefore, only one path from ws;,, to wd;, will
be included in the Steiner tree for the subgraph of G’ that is
composed of source node s; and the widgets, meaning that

a newly created or existing instance of f; will be selected in

cloudlet v € V1. The lemma holds. ad

We consider Condition 2 in the following lemma.

Lemma 2. The traffic of i, will be processed by the VNF instan-
ces in SCy, in the specified order.

2058 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 9, SEPTEMBER 2020

that requires to transfer an amount by, of data from its source to
a set Dy, of destinations and process its traffic by the VNFs in
SCy,. There is an approximation algorithm, i.e., Algorithm 2,
for a special case of the NFV-enabled multicasting problem
without delay requirements, which delivers a feasible solution
that has an approximation ratio of i(i — 1)\Dk|l/‘ [4], and the
time complexity of O((Ly - |V - C,,,,p”(fl + V)" |Dp*), where
Ly, is the number of VNFs in the service chain SC}, of multicast
request ry, i.e., Ly = |SCy|, and i is the level of the directed

_ _ _ paths in the widget that is Steiner tree [4].

selected in the Steiner tree

Proof. From Lemmas 1, 2, and 3, we know that the solution

Fig. 6. A widget and its paths from its source to destination nodes that obtained by finding a Steiner tree in @' is feasible. In the

are selected in the Steiner tree.

Proof. Assume that the traffic of r; is not processed by the
specified order in SCj. We have the following two cases:
(1) two instances of the same VNF f; processed the traffic,
and (2) the traffic of r; is processed by a previous VNF
fi—1 after being processed by f;.

For Case (1), the two instances must be in different
cloudlets as shown in Lemma 1. This means that two
widgets of the same VNF f; is selected in the Steiner tree
in G'. According to the construction of G’ and Lemma 1,
if the instances of f; in two cloudlets are used, the source
and destination nodes of the corresponding two widgets
have to be included in the Steiner tree in G’; otherwise,
the edges will be stand alone edges that can be removed
from the Steiner tree. Therefore, according to the problem
transformation method of the algorithm, this will corre-
spond to the processing of r;’s traffic by two instances of
fi in different cloudlets, rather than a sequence process-
ing of the two instances.

Case (2) can be dealt with similarly. Therefore, these
two cases are not possible according to the construction
of G'.

In addition, since each edge in G' may correspond to a
shortest path in GG, making the traffic being forwarded to a
cloudlet more than once. this does not mean that the traf-
fic is to be processed by the cloudlet twice. This is because
we assume in such cloudlets will just forward the traffic
instead of processing.

We thus conclude that the traffic of r; will be processed
by the VNFs in the specified order in SC.. 0

We now show Condition 3 as follows.

following, we analyze the approximation ratio and run-
ning time of the proposed approximation algorithm.

Assume c* is the optimal solution for the NFV-enabled
multicasting problem. In Algorithm 2, we find an approxi-
mate Steiner tree 7" in the auxiliary graph G'. T" is then
converted to routing paths for ;. in G by (1) selecting either
an existing instance for a network function or a newly cre-
ated instance of each VNF f; in SC}, if the widget for f; is
included in the Steiner tree, and (2) replacing the edges
between selected widgets using their corresponding short-
est paths in G. In (1), the processing is determined accord-
ing to which type of VNF instance is selected. In (2), the
replaced auxiliary graph edge has the same weight as the
total cost of its corresponding shortest path in G. Therefore,
the cost do not change in the transfer from tree 7" to the
multicast tree 7" for multicast request 7. Since the approxi-
mation ratio of the algorithm in [4] is (i — 1)|Dk\l/ !, the
approximation of Algorithm 2isi(i — 1)| Dy|"" as well.

We now show the time complexity of Algorithm 2.1t can
be seen that the most time consuming part of the algorithm
is the finding of a Steiner tree in the auxiliary graph. The
tlme complexity of Charikar’s algorithm in auxiliary graph

= (V' E') is O(|V']) [21]. We can see that there are
O(m) instances of VNF f; in cloudlet v € V1. Accord-
ing to the Constructlon of the auxiliary graph, we thus have
Oz 7y (7+ 4) =0G 7 (77) nodes for each widget. In total,
we have Ly - |Verl w1dgets Therefore, there are O(Ly-
Ver! - C,,,m 7+ [V]) nodes in aux111ary graph G'. The time
complexity thusis O((Ly. - V| - 7=t + [V])" - D). O

We finally analyze the performance of Algorithm 1 the

following theorem.

Theorem 2. Given an MEC network G = (V, E) with a set Vg,
of cloudlets and a multicast request i, (= (sy, Dy; by, SCy,)) that
requires to transfer an amount by, of data from its source to a set
Dy, of destinations with an end-to-end delay requirement d,
and process its traffic by the VNFs in SCy. There is a heurlstzc
algorithm, i.e., Algorithm 1, for the NFV-enabled multicasting
problem for a single multicast request, which delivers a feasible
solution in time O(|log Vo, + 1] - V> + (Ly, - |V] - & W(fl) +
V) - | Di|*), where Ly is the number of VNFs in the service
chain SCy, of multicast request vy, i.e., Ly = |SCy|, and i is the
level of the directed Steiner tree [4].

Lemma 3. The traffic of vy, will be forwarded to its destinations in
Dy, after being processed by the instances of its VNFs in SC,.

Proof. In the construction of the auxiliary graph G’, we can
see that the destination nodes of the widgets for the last
VNF fr, is connected to its corresponding switch node in
the original network. For each W7y, ;. of such widgets, if its
edges are included in the Steiner tree, edge (wdy, x,v) has
to be included in the Steiner tree. The reasons include (1)
this is the only edge to the destination nodes in Dy, and
(2) as shown in Lemma 2, the traffic cannot be processed
sequentially by other cloudlets of the same VNF f;, or the
instances of its previous VNFs in SCj. The lemma holds. 1 Proof. We first show the solution feasibility of the proposed
heuristic by showing that the end-to-end delay require-
ment of r; is met. Algorithm 1 adopts a binary search
based heuristic to find the proper number of cloudlets

Theorem 1. Given an MEC network G = (V, E) with a set Vi,
of cloudlets and a multicast request rj, (= (sg, Dy; bi, SCy))

REN ETAL.: EFFICIENT ALGORITHMS FOR DELAY-AWARE NFV-ENABLED MULTICASTING IN MOBILE EDGE CLOUDS WITH RESOURCE...

each multicast request r; until the end-to-end delay
requirement of 7, is met or it is rejected. Therefore, as long
as the request is admitted, its end-to-end delay requirement
is met.

We then analyze the time complexity of the proposed
heuristic. Clearly, in the worse case, the binary search
can make |log Vi, + 1] iterations. Within each iteration,
the most time consuming parts include (1) the identifica-
tion of cloudlets that involved finding the delays from
cloudlets to destinations in Dj, via all pair shortest paths,
which take O(|V]*) time, and (2) the assignment of VNFs
one by one, taking O(]SC%|) time. In total, the time com-
plexity of the proposed heuristic is O(|log Ver+ 1] - [V -

[SCl + (Liy - V|- S5 + VD) - [Dif*) = O(|log | V| + 1]
VP4 (Le - V] - S5 +VD) - [Dyf), assuming that | SCy|
is a small constant. O

5 ALGORITHM FOR ADMISSIONS OF A SET OF
NFV-ENABLED MULTICASTING REQUESTS

In this section, we consider a set of multicast request admis-
sions. Given a set of NFV-enabled multicast request, we
admit as many as requests in the set such that the weighted
system throughput is maximized, while the accumulated
implementation cost of all admitted requests is minimized,
subject to computing capacities on cloudlets in an MEC.

5.1 Overview

Recall that we proposed both approximate and heuristic sol-
utions for the NFV-enabled multicasting problem for the
admission of a single multicast request, a simple method for
the NFV-enabled multicasting problem is to consider algo-
rithm Heu_Delay as a black-box and admit each request
one by one invoking algorithm Heu_Delay iteratively. This
method however may miss the opportunities of sharing
VNFs among the requests, if the consecutively admitted
requests do not have common VNFs in their service chains.
Further, the constructed auxiliary graph G’ in algorithm
Heu_Delay for a request may no longer useful for the other.
This consequently may lead to a prohibitively long time to
make decisions of request admissions.

The basic idea behind the proposed algorithm is as fol-
lows. We observe that some requests have the same service
chain requirements, and the VNFs in their service chains can
be shared with high opportunities. Fig. 7 illustrates this idea,
from which we can see that requests are classified into differ-
ent categories, with each category having a set of requests that
share a number of VNFs. Specifically, the algorithm first con-
siders the category in which multicast requests the maxi-
mum number of common VNFs of their service chains.
Then, the requests in this category, we start with the requests
with smaller data traffic, and admit the requests one-by-one.
This procedure continues until no more requests can be
admitted in the category.

5.2 Heuristic Algorithm

We propose an efficient heuristic for the NFV-enabled mul-
ticasting problem for a set of requests with different service
chain requirements, based on Algorithm 1.

2059

Heu_Delay

auxiliary

© ap:@Sfé Admission
@ decisions
Is

Auxiliary graph construction
for each request

Heu_MultiReq
auxiliary
@ graphs for Admission

decisions

Auxiliary grapL construction
for each category of requests

Fig. 7. The basic idea of the proposed heuristic for the NFV-enabled
multicasting problem.

Specifically, the heuristic consists of a number of itera-
tions within each iteration, a set of requests with the same
number of VNFs in common are processed. Let L, be the
number of common VNFs that requests have in their service
chains. Let L., be the maximum length of the service
chains of the requests in R, i.e., Ly, = argmax,,cg|SCy|.
Initially, Leow = Lmqs- It decreases by one in each iteration
of the algorithm until L,,, = 0.

Within each iteration, we first find the requests that have
Leom VNFs in common of their service chains. Denote by
R(Lcon,) the set of such requests. We then rank the requests
in R(Lm) in increasing order of their data traffic. For each
request r, € R(L.m), we invoke the proposed approxima-
tion algorithm in 2. Notice that the requests in R(L.,,) may
have different source nodes and different destination sets.
We thus need to adjust the auxiliary graph after the admis-
sion of each multicast request, by removing the source node
for the previous request, and add the source node of the cur-
rent request. This means that, before admitting the next
multicast request r;.;, we make adjustments of the con-
structed auxiliary graph G’ instead of constructing a new
one. Specifically, the widgets that are built for the Ly,
VNFs are updated accordingly, if multicast request 7 is
admitted. Also, the widgets for the VNFs that are not among
the Lcyy, of request 1,41 is added to the auxiliary graph. This
iteration continues until no more requests can be admitted
within this category. The steps of this algorithm are detailed
in Algorithm 3.

We now analyze the feasibility of Algorithm Heu_Mul-
tiReq in the following theorem.

Theorem 3. Given an MEC network G = (V, E) with a set Vi,
of cloudlets, a set R of NFV-enabled multicast requests with
each multicast request ry, (= (sy, D; by, SC)) that requires to
transfer an amount by, of data from its source to a set Dy, of des-
tinations with an end-to-end delay requirement d,"* and process
its traffic by the VNFs in SC},. There is an efficient algorithm,
Algorithm 3, for the NFV-enabled multicasting problem.

Proof. To show the solution delivered by Algorithm 3 is fea-
sible, we need to show the classification of requests does
not affect the solution feasibility of Algorithm 2. Assume
that the algorithm currently considers request 7. If its

2060

previous request 7, is admitted, the widgets of the corre-
sponding cloudlets that implement the VNFs of 7 are
then updated, since the resource availabilities of these
cloudlets or statuses of their existing VNF instances
changed. Otherwise, there is not any change of the widg-
ets in the auxiliary graph. Considering that the feasibility
of admitting one request by Algorithm 2 can be shown by
Lemma 2, Algorithm 1 delivers a feasible solution when
multiple requests are considered.]

Algorithm 3. Heu_MultiReq

Input: G = (V, E), V¢r, C, for each e € E, C, for each v € V¢,
and a set of multicast requests with each multicast request
being denoted by rj, = (s, Di; by, SC).

Output: The system throughput achieved by the admitted
requests in R.

1: Ny < 0;

2: for L.y, <— 0,1..., Ly do

3: Find the maximum number of requests in R that have
Leom, common VNFs in their service chains, and let
R(Lcon) be the set of requests;

4: Rank the multicast requests in R(L.m) according to their
data traffic;
5: foreach request r; € R(Leom) do
6: T — 0;
7 while G is (s;-D;,)-connected OR 7}, is admitted do
8: Construct auxiliary graph G’ = (V’, E'), by creating
Ly, - |V | widgets, adding all the switch nodes in V'
of the original network G, and interconnecting the
added nodes as shown in Fig. 5, or adjust the auxil-
iary graph if it is already constructed in the admis-
sion of previous requests;
9: Find a Steiner tree 7' for in auxiliary graph G';
10: if the delay of each branch of T is smaller than d,™
then
11: Admit multicast request r;;
12: else
13: Find the branches of T that violate delay require-
ment d;";
14: For each of such found branch, identify an edge
with the maximum delay;
15: Remove the identified edges from graph G;
16: if T # () then
17: For each path from the widget source node to the

widget destination node of a widget in 7', condense
the path to a single node;

18: The widgets that are built for the L, VNFs are
updated according to the resource availabilities after
admitting 7;

19: ifk+1 < |R(Lcm)| then

20: The widgets for the VNFs that are not among the

Lom of request rj,11 is added to the auxiliary graph;

6 PERFORMANCE EVALUATION

In this section we evaluate the performance of the proposed
algorithms in a real testbed.

6.1 Test-Bed Setup

We build a test-bed consisting of both an underlay network
with hardware switches and an overlay network with virtual

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 9, SEPTEMBER 2020

DL
Overlay ®@‘_©-@

= =
o —-—
kA A
!]‘KN "]
— _Z
KA

KA
Underlay E (2 £y

E s} RYU Virtual Virtual
|@I(.fuulruih:r Router Machine
P VXLAN
_E: Router ! Server === Channel

(b} The
ware switches
and servers.

(a) The underlay and overlay of the test-bed. hard-

Fig. 8. A test-bed with both hardware switches and virtual resources.

switches, as shown in Fig. 8. The physical underlay consists
of five H3C S5560X-30S-EI switches [12], with the support
for VXLAN for virtual tunnel building and SDN capabilities.
It has also one server with E5 Gold 5218 CPU, 128G RAM
and four PCs with i7-8700 CPU, 16G RAM. Netconf and
SNMP protocols are used to manage the switches and the
links that interconnect them [3], [35]. We considered a design
approach that uses the VXLAN functionality provided by
the switch, where VXLAN is a widely used overlay tech-
nology [37]. The H3C S5560X-30S-EI switch implements
a VXLAN tunnel based on hardware, which can greatly
improve performance compared to traditional methods. The
overlay mechanism provides connectivity within, and poten-
tially across multiple testbed sites as it can transit any routed
layer-3 underlay. We use VXLAN as a point-to-point tunnel-
ing mechanism (VXLAN VNI identifies a single link between
two nodes [37]). SDN-capable switches can also perform
encapsulation and decapsulation of VXLAN tunnels, each
tunnel corresponds to a port in the switch. Using VXLAN,
we build an overlay network with a number of Open vSwitch
(OVS) [36] nodes and VMs. The overlay network is built
following the topology generated using a graph generation
tool GT-ITM [10] and the real network topologies AS1755,
AS4755. Its OVS nodes and VMs are controlled by a Ryu [40]
controller. The proposed algorithms are implemented as
Ryu applications.

6.2 Environment Settings

We consider an MEC network consisting of the number of
nodes from 50 to 250. The number of servers in each network
is set to 10 percent of the network size, and the servers are
randomly co-located with the switches. We also use real net-
work topologies, i.e.the GEANT [9] and an ISP network
from [42]. There are nine cloudlets for the GEANT topology
as set in [11] and the number of data centers in the ISP net-
works are provided by [38]. The computing capacity of
cloudlet varies from 40,000 to 120,000 MHz [13] (cloudlets
with around tens of servers). Five types of network func-
tions, i.e., Firewall, Proxy, NAT, IDS, and Load Balancing,
are considered, and their computing demands are adopted
from [11], [32]. The source and destination nodes of each

REN ETAL.: EFFICIENT ALGORITHMS FOR DELAY-AWARE NFV-ENABLED MULTICASTING IN MOBILE EDGE CLOUDS WITH RESOURCE...

2061

280 '—)&A;;profNoli\elay —— Heu;DeIay] 25 —>¢— Appro_NoDelay —6— Heu_Delay l 350 |—¢— Appro_NoDelay —&— Heu_Delay
240 L[—B— Consolidated ~ —&— ExistingFirst| | " |8 Consolidated —— ExistingFirst w300 |5 Consolidated —&— ExistingFirst
—A— LowCost —— NewFirst 20 A— LowCost NewFirst | 0] —A— LowCost —+— NewfFirst
200 1 NoDelay . NoDelay £250 NoDelay
3160 © = 00
Q o15F 2200 -
o £
120 o 150
80 - 1.0 %100,
= v P’ o
40 == - 5 0.5 f/ « 50 -
0 b B L L od L L L L L 0 18 2 & 3 L
50 100 150 200 250 300 50 100 150 200 250 300 50 100 150 200 250 300

Network Size

(a) Average cost of implementing a multicast (b) Average delay experienced by a multicast

request. request.

Network Size

Network Size

(c) Running times.

Fig. 9. The performance of algorithms Appro_NoDelay, Consolidated, NoDelay, ExistingFirst, NewFirst, and LowCost.

multicast request is randomly generated, the ratio of the max-
imum number D,,,, of destinations of a multicast request to
the network size |V| is randomly drawn in the range of
[0.05,0.2]. The data of each request is randomly drawn from
[10,200] Megabyte, and the delay requirement of transferring
such data is randomly generated from [0.05,5] seconds.
Notice that the transfer of larger amount of data can be
divided into smaller amounts and transferred by multiple
multicast requests. Unless otherwise specified, these param-
eters will be adopted in the default setting.

We compare the performance of the proposed approxi-
mation and heuristic algorithms against the following
benchmarks.

e We consider the case where the VNFs of each multi-
cast request may be placed to multiple cloudlets for
processing while there exist solutions that consolidate
all VNFs of a multicast request into a single location.
We thus compare our solutions with such a solution,
which is referred to as algorithm Consolidated.

e Weevaluate the performance of the proposed approxi-
mation and heuristic algorithms against the one in [39]
that does not consider the delay requirement of multi-
cast requests, and we use NoDelay to represent the
algorithm.

e We also compare the performance of our algorithm
against that of a greedy solution that prefers to select
existing VNF instances for each multicast request r;.
Specifically, it finds the cloudlet that is the closest to
source node s; and has an VNF instance for its first
VNF in SC,, if there does not exist such cloudlets, a
new VNF instance is created in the closest cloudlet.
The procedure continues until all VNFs in SCj, are
considered. This greedy algorithm is referred to as
algorithm ExistingFirst.

e Another greedy benchmark prefers to create new
instances for each of the VNFs in SCj;, which is
referred to as algorithm NewFirst.

e The fifth benchmark selects the cloudlet that can
achieve the lowest processing cost for each VNF in
SCy.. For simplicity, it is referred to as algorithm
LowCost. Specifically, algorithm LowCost finds the
cloudlet that is the closest to the source s, and then
places as many VNFs in SCj, to the cloudlet until all
existing VNF instances are used or no computing
resource available to instantiate new ones. If there
are still VNFs in SC), that have not been assigned, it

finds the next cloudlet that is the closest to the found
cloudlets.

6.3 Performance Evaluation of
Algorithms Heu_Delay and Appro_NoDelay

We first evaluate the performance of algorithms Heu_Delay
and Appro_NoDelay against that of algorithms Consoli-
dated, NoDelay, ExistingFirst, NewFirst, and Low-
Cost, in terms of the average operational cost, the average
end-to-end delay, and the running time, by varying the
network size from 50 to 250 while fixing the number of
requests at 100. Fig. 9 shows the results of the proposed
algorithms.

From Fig. 9a, we can see that Algorithm Heu_Delay
achieves a lower operational cost than these of algorithms
ExistingFirst, NewFirst, and LowCost. The reason is
that Algorithm Heu_Delay jointly considers existing VINF
instances and newly instantiated ones. However, the greedy
approaches NewFirst, ExistingFirst, and LowCost
only prefer new, existing, or low processing cost VNF instan-
ces. They unfortunately could miss the opportunities of fur-
ther reducing the operational cost. Specifically, if the use of
existing VNF instances can save the processing cost, New-
First has a higher cost due to creating new instances. Also,
there are some cases when creating new VNF instances can
save transmission costs, which can be missed by algorithm
ExistingFirst. In addition, it can be seen from Fig. 9a
that Algorithm Heu_Delay has a higher operational cost
than algorithms Appro_NoDelay and NoDelay. This is
because algorithms Appro_NoDelay and NoDelay do not
consider the delay requirement of requests, making it choose
cloudlets with lower operational costs.

As shown in Fig. 9b, the average delay experienced by
each multicast request by Algorithm Heu_Delay is much
lower than its comparison counterparts. The reason is that
Algorithm Heu_Delay carefully finds a trade-off between
the delay and cost of implementing a NFV-enabled request.
Also, from Fig. 9c, we can see that the running time of
Algorithm Heu_Delay is around 50 seconds for network size
200, which is slightly larger than those of algorithms Appro_-
NoDelay and NoDelay and smaller than algorithms Exist -
ingFirst, NewFirst, and LowCost. The reason is that
Heu_Delay has an additional process of binary search to find
a proper number of cloudlets for each request 7. Algorithm
NoDelay has a lower running time compared with algorithm
Appro_Delay because the delay requirement of requests is
not considered, which reduces the solution space.

2062 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 9, SEPTEMBER 2020
T T 375
—>¢— Appro_NoDelay —6— Heu_Delay [—<— Appro_NoDelay —&— Heu_Delay |- —>— Appro_NoDelay —&— Heu_Delay
—=— Consolidated ~ —&— ExistingFirst = Consolidated ~ —&— ExistingFirst w300) = Consolidated —&— ExistingFirst
—&— LowCost —+— NewFirst F—A— LowCost —+— NewFirst |1 —A— LowCost —+— NewFirst
NoDelay NoDelay | Ezzs NoDelay

(a) Average cost of implementing a multicast (b) Average delay experienced by a multicast

0.15
[CLI/V]

request in network AS1755.

0.20

0.05 0.10 0.15 0.20

0.‘10 0.15
lcLiv|

[CLI/V]

(c) Running times in network AS1755.

request in network AS1755.

150 2.0 75
—>— Appro_NoDelay —&— Heu_Delay —>¢— Appro_NoDelay —&— Heu_Delay —>¢— Appro_NoDelay —&— Heu_Delay
—8— Consolidated =~ —&— ExistingFirst —&— Consolidated =~ —&— ExistingFirst 60 [|—5— Consolidated =~ —&— ExistingFirst|
—A— LowCost —+— NewFirst 1.6 i—A— LowCost —+— NewFirst 0E> —A— LowCost —+— NewFirst
- 100 NoDelay - NoDelay =45 NoDelay
7] ®
Q o12F 4 g;
(&) a 30
c
jm}
08 —2% 15
ox A 0.4 . . o ; ;
0.05 0.10 0.15 0.20 0.05 0.10 0.15 0.20 0.05 0.10 0.15 0.20
|CL|/|V| |CLI\V| |CL|/|V]|

(d) Average cost of implementing a multicast (e) Average delay experienced by a multicast
request in network AS4755.

request in network AS4755.

(f) Running times in network AS4755.

Fig. 10. The performance of algorithms Appro_NoDelay, Consolidated, NoDelay, ExistingFirst, NewFirst, and LowCost in networks

AS1755 and AS4755.

100

—>¢— Appro_NoDelay —&— Heu_Delay
80 | [—&— Consolidated ~ —&— ExistingFirst
—A— LowCost —+— NewFirst

60 NoDelay

Cost

1.4
The maximum delay requirement (seconds)

O 1
0.8 1.0 1.2

(a) Average cost of implementing a multi-
cast request.

1.0 r r .
—>¢— Appro_NoDelay —6— Heu_Delay
0.9} 8 Consolidated =~ —&— ExistingFirst
—A— LowCost —+— NewFirst
>0.8 NoDelay
®
° |
0o.

8 1.0 1.2 14 1.6
The maximum delay requirement (seconds)

(b) Average delay experienced by a multi-
cast request.

Fig. 11. The impact of the maximum delay requirement of each multicast request on the performance of algorithms Appro_NoDelay, Consoli-

dated, NoDelay, ExistingFirst, NewFirst, and LowCost.

We then evaluate the performance of algorithms Heu_-
Delay and Appro_NoDelay against that of algorithms
Consolidated, NoDelay, ExistingFirst, NewFirst,
and LowCost, in real networks AS1755 and AS4755, by vary-
ing the ratio of the number of cloudlets to the number of
switches, i.e., [CL|/|V| from 0.05 to 0.2. Fig. 10 illustrates the
results. Figs. 10a and 10d show that algorithms Heu_Delay
and Appro_NoDelay achieve lower operational costs than
algorithms Consolidated, ExistingFirst, and New-
First, while algorithms Appro_NoDelay and NoDelay
has the highest delay. We can also see that the average cost of
implementing a multicast increases first when the ratio
|CL|/|V| increases from 0.05 to 0.1 and then decreases after-
wards. The rationale behind is that VNFs of each multicast
request may be assigned to more cloudlets with the increase
of number of cloudlets, thereby pushing up the transmission
cost from its source to the cloudlets and from the cloudlets to
its destinations. However, with the further increase of cloud-
lets, it is more likely that these cloudlets are deployed in

locations that are close to the source and destinations of the
multicast request. The transmission cost then can be reduced
afterwards.

We then investigate the impact of the maximum delay
requirement on algorithm performance in the real network
AS1755, by varying the maximum delay requirement of
each multicast request from 0.8 seconds to 1.8 seconds with
an increment of 0.2 seconds. Fig. 11 illustrates that the cost
of implementing a multicast request is decreasing with the
increase of the maximum delay requirement. The rationale
behind is that a higher delay requirement of a request
allows the algorithm to select cloudlets with lower costs but
further from the source node of the request. Obviously, the
experienced delay will be higher, as shown in Fig. 11.

6.4 Performance Evaluation of Algorithm
Heu_MultiReq

We now compare the performance of Algorithm Heu_Mul-

tiReq against that of algorithms Consolidated, NoDelay,

REN ETAL.: EFFICIENT ALGORITHMS FOR DELAY-AWARE NFV-ENABLED MULTICASTING IN MOBILE EDGE CLOUDS WITH RESOURCE... 2063
16k - - 20k - - 300 - -
—<— Heu_MultiReq —— Consolidated 18k | —><—Heu_MultiReq —— Consolidated —¢—Heu_MultiReq —&— Consolidated

k) g ExistingFirst —<— LowCost I 16k | —=— ExistingFirst —<— LowCost 250 f| —=— ExistingFirst —<— LowCost

+ 12k +— NewFirst —+— NoDelay 1 - || —=— NewfFirst —+— NoDelay D +— NewFirst —+— NoDelay

3 @ L1k Q 200

S0k 812kt (i

%’ ok = 10k >150

1< 5 8kf o

£ 6k Foekl :% 100
4k ik f 50 p-
2% U B — of —

50 100 150 200 250 300 50 100 150 200 250 300 50 100 150 200 250 300

Network Size
(a) System throughput.

request.
4 - -
—<— Heu_MultiReq —— Consolidated
- || ExistingFirst —<— LowCost
® 3| —~— NewFirst —+— NoDelay
)
o
[0)
o
Y
)
>
<

100

150 200
Network Size

250 300

(d) Average delay experienced by a multicast
request.

Network Size

Network Size

(b) Total cost of implementing a multicast (c) Average cost of implementing a multicast

request.
450 - -
400 —<—Heu_MultiReq —— Consolidated
» 350 —&— ExistingFirst —<— LowCost
Q ~— NewFirst —+— NoDelay
£ 300
-
CD250
£ 200
c
€ 150
S
¥ 100

L —

150 200 250
Network Size

100

(e) Running times.

Fig. 12. The performance of algorithms Heu_Multicast, Consolidated, NoDelay, ExistingFirst, NewFirst, and LowCost.

250 2.5
—<—Heu_MultiReq —=— Consolidated —<— Heu_MultiReq —— Consolidated 400 —<— Heu_MultiReq —&— Consolidated
200 | —=— ExistingFirst —<— LowCost —&— ExistingFirst —<— LowCost ® —5— ExistingFirst —<— LowCost
£— NewFirst —+— NoDelay 2.0 —~— NewFirst —+— NoDelay GE) 200 £— NewFirst —+— NoDelay
[
o
| it
I=
5
)
4 4
0.05 0.10 0.15 0.20 0.05 0.10 0.15 0.20 05 0 0.15 0.20
[CLI/IV| [CLIIVI [CLINVI
(a) Average cost of implementing a multicast (b) Average delay experienced by a multicast (c) Running times.
request. request.
120 = = = = 60 = =
—<— Heu_MultiReq —&— Consolidated 2.0} —<—Heu_MultiReq —=— Consolidated —<— Heu_MultiReq —— Consolidated
—5— ExistingFirst —<— LowCost —&— ExistingFirst —<— LowCost 50 f —=— ExistingFirst —<— LowCost
90 | —A— NewFirst —+— NoDelay 1.6 —=— NewFirst —+— NoDelay —~— NewFirst —+— NoDelay

Cost

60

¥ Je.
d 0.4

N
o

Running Times

0 0.15 0.20 0.0 0.10
ICLI/VI

request. request.

0.15
[CLINVI

(d) Average cost of implementing a multicast (e) Average delay experienced by a multicast

0.20 0.15 0.20

0.10
[CLINVI

(f) Running times.

Fig. 13. The performance of algorithms Heu_Multicast, Consolidated, NoDelay, ExistingFirst, NewFirst, and LowCost.

ExistingFirst, NewFirst, and LowCost, in terms of the
system throughput, the total operational cost, the average
end-to-end delay, and the running time, by varying the net-
work size from 50 to 250 and fixing the number of requests to
100. Results are shown in Fig. 12, from which we can see that
Algorithm Heu_MultiReq achieves around 30, 30, 35 per-
cent higher system throughput than algorithms Existing-
First, NewFirst, LowCost,and Consolidated when the

network size is 200. The rationale behind is that algorithms
ExistingFirst, NewFirst, and LowCost prefer existing,
newly instantiated, and low processing cost VNF instances
for each multicast request, and the cloudlets for those VNF
instances may not have sufficient computing resource to
implement the request, thereby leading to its rejection. Fur-
ther, from Figs. 12a and 12b, it can be seen Algorithm NoDe-
lay has a higher end-to-end delay than that of Algorithm

2064 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 9, SEPTEMBER 2020
14k - , 400 : : : : . . .
—<—Heu_MultiReq —&— Consolidated 350 || — < Heu_MultiReq —&— Consolidated| | 9. g k| —<—Heu_MultiReq —5— Consolidated| |
Lokl 5 ExistingFirst —<— LowCost - —&— ExistingFirst —<— LowCost - —&— ExistingFirst —<— LowCost
5 £— NewFirst —+— NoDelay 2 300 1| —A— NewFirst —+— NoDelay % » £— NewFirst —+— NoDelay
= % 250 | N i a”
g 200 , = 5 9 1
<] © ®2.0F 1
c g 150 & q 5
= P<3 100@W é . 6E» 2 ;
% 50 1 L L . | ’ &
N i H L L L L
50 100 150 200 250 300 100 150 200 250 300 50 100 150 200 250 300
The number of requests The number of requests The number of requests
(a) System throughput in network AS1755 (b) Average cost in network AS1755 (c) Average delay in network AS1755
9k : : 180 1.6 : : ; .
—<— Heu_MultiReq —&— Consolidated —<— Heu_MultiReq —=— Consolidated —<—Heu_MultiReq —=— Consolidated
—=— ExistingFirst —<— LowCost —&— ExistingFirst —<— LowCost > 1. 4 |-| —=— ExistingFirst —<— LowCost
5 8k I —2— NewFirst —— NoDelay ‘g 135 [] —£— NewFirst —+— NoDelay 1 & £— NewFirst —+— NoDelay
5 o 8,0]
D7k Y o N
90
3 & 28 ;
F ok 2 o 0L
X 450 Z
g 0.8
5k)] L L .

50

100 150 200 250 150

The number of requests
(d) System throughput in network AS4755

300

50

100

The number of requests
(e) Average cost in network AS4755

200 250 300 50 100 150 200 250

The number of requests
(f) Average delay in network AS4755

Fig. 14. The performance of algorithms Heu_Multicast, Consolidated, NoDelay, ExistingFirst, NewFirst, and LowCost.

Heu_MultiRegq, although it delivers a slight higher system
throughput. Similar results can be observed from Fig. 13
when the performance of Algorithm Heu_MultiReq is eval-
uated against that of algorithms Consolidated, NoDelay,
ExistingFirst, NewFirst, and LowCost, in real net-
works AS1755 and AS4755.

We then investigate the impact of the number of requests
on the performance of algorithms Heu_MultiReq, Con-
solidated, NoDelay, ExistingFirst, NewFirst, and
LowCost, in terms of system throughput, average opera-
tional cost, average end-to-end delay, and running time, by
varying the number of requests from 50 to 300 while fixing
the network size to 100. Fig. 14 shows that the system
throughput increases first with the growth on the number
of requests from 50 to 100, and then keeps stable afterwards,
because the cloudlet capacities are saturated. We can also
see that the average cost of implementing a multicast
increases with the growth of request number. The rationale
behind is that each multicast request may be assigned to
more cloudlets for processing with the increase of number
of requests, considering that the resources in cloudlets are
saturated and may not be enough to implement all VNFs of
a service chain. This eventually increases the transmission
cost for each multicast request.

7 CONCLUSION AND FUTURE WORK

In this paper, we study the problem of delay-aware, NFV-
enabled multicasting in a mobile edge cloud network, by
exploring the sharing of VNF instances of requests. If cloud-
lets have sufficient computing resource to process traffic of
a multicast request, with no delay requirement, we pro-
posed an approximate solution with a provable approxima-
tion ratio; otherwise, we developed an efficient heuristic.
We also considered a set of NFV-enable multicast request
admissions with the aim to maximize the weighted system

throughput, for which we proposed an efficient heuristic.
We finally evaluate the performance of the proposed algo-
rithms against state-of-the-arts approaches in a real test-
bed, and the results show that the performance of our algo-
rithms is promising.

In this paper we considered the sharing of idle VNFs that
have been released by other requests. The requests with the
same service chain requirements may share resources with
high probability. However, requests may have dynamic
resource demands, and may share resources with others as
long as they have complimentary demands. Understanding
how to learn such dynamic complimentary resource
demands among requests is challenging. Therefore, we con-
sider the adoption of machine learning methods to classify
requests with complimentary demands as our future
research study — akin to existing efforts in interference-aware
scheduling in cloud-based data centers. Existing efforts that
make use of an interference index to characterize these com-
peting/ complementary workloads can also be utilized in the
proposed environment. Another is to explore the dynamic
admission of NFV-enabled delay-aware requests, taking
account of uncertainty (variability) of processing and trans-
mission delays. The admission of requests in the current time
slot can impact the admission of future requests. Understand-
ing how online learning algorithms can adapt to support such
admission control remains another potential research topic.

ACKNOWLEDGMENTS

The authors would like to thank the three anonymous referees
and the associate editor for their expertise comments and con-
structive suggestions, which have helped them improve the
quality and presentation of this article greatly. The work of
Zichuan Xu, Qiufen Xia, and Guowei Wu was supported in
part by the National Natural Science Foundation of China
(Grant No. 61802048 and 61802047), the fundamental research

REN ETAL.: EFFICIENT ALGORITHMS FOR DELAY-AWARE NFV-ENABLED MULTICASTING IN MOBILE EDGE CLOUDS WITH RESOURCE...

funds for the central universities in China (Grant No.

DUT17RC(3)061,

DUT17RC(3)070, DUTI19RC(4)035, and

DUT19GJ204), and the “Xinghai Scholar Program” in Dalian
University of Technology, China. The work of Weifa Liang
was supported by the Australian Research Council Discovery
Project (Grant No. DP200101985). The work of Pan Zhou was
supported by the National Natural Science Foundation of
China (Grant No. 61972448).

REFERENCES

[1]

[2]

[3]

[4]

[5]

[6]

(7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

O. Alhussein et al., “Joint VNF placement and multicast traffic
routing in 5G core networks,” in Proc. IEEE Global Commun. Conf.,
2018, pp. 1-6.

S. M. Banik, S. Radhakrishnan, and C. N. Sekharan, “Multicast rout-
ing with delay and delay variation constraints for collaborative
applications on overlay networks,” IEEE Trans. Parallel Distrib. Syst.,
vol. 18, no. 3, pp. 421431, Mar. 2007.

J. Case et al., “A simple network management protocol (SNMP),”
RFC 1098, IETF, 1990. [Online]. Available: https://tools.ietf.org/
html/rfc1157

M. Charikar et al., “Approximation algorithms for directed Steiner
problems,” in Proc. 9th Annu. ACM-SIAM Symp. Discrete Algo-
rithms, 1998, pp. 192-200.

Y. Chen and J. Wu, “NFV middlebox placement with balanced
set-up cost and bandwidth consumption,” in Proc. 47th Int. Conf.
Parallel Process., 2018, Art. no. 14.

R. Cohen, L. Eytan,]. Naor, and D. Raz, “Near optimal placement of
virtual network functions,” in Proc. IEEE Conf. Comput. Commun.,
2015, pp. 1346-1354.

R. Cziva, C. Anagnostopoulos, and D. P. Pezaros, “Dynamic
latency-optimal vNF placement at the network edge,” in Proc.
IEEE Conf. Comput. Commun., 2018, pp. 693-701.

M. R. Garey and D. S. Johnson, Computers and Intractability: A
Guide to the Theory of NP-Completeness. San Francisco, CA, USA:
Frgeman, 1979.

GEANT. 2000. Accessed: Feb. 2020. [Online]. Available: http://
www.geant.net

E. W. Zegura, K. Calvert, and S. Bhattacharjee, “How to model an
internetwork,” in Proc. IEEE INFOCOM, 1996, pp. 594-602.

A. Gushchin, A. Walid, and A. Tang, “Scalable routing in SDN-
enabled networks with consolidated middleboxes,” in Proc. ACM
SIGCOMM Workshop Hot Topics Middleboxes Netw. Function Virtu-
alization, 2015, pp. 55-60.

H3C SDN Switches. 2019. Accessed: Feb. 2020. [Online]. Avail-
able: http://www.h3c.com/en/Product_Technology/Enterprise
Products/Switches/Campus_Switches/H3C_S5560X-EI/
Hewlett-Packard Development Company, “L. P. servers for enter-
prise C bladeSystem, rack & tower and hyperscale,” 2015. [Online].
Auvailable: http:/ /www8.hp.com/us/en/products/servers/

K. Han, Y. Liu, and J. Luo, “Duty-cycle-aware minimum-energy
multicasting in wireless sensor networks,” IEEE/ACM Trans.
Netw., vol. 21, no. 3, pp. 910-923, Jun. 2013.

H. Huang, S. Guo, J. Wu, and J. Li, “Service chaining for
hybrid network function,” IEEE Trans. Cloud Comput., vol. 7,
no. 4, pp. 1082-1094, Fourth Quarter 2019.

H. Huang, P. Li, and S. Guo, “Traffic scheduling for deep packet
inspection in software-defined networks,” Concurrency Comput.,
Practice Experience, vol. 29, no. 16, 2016, Art. no. e3967.

L. Huang, H. Hung, C. Lin, and D. Yang, “Scalable Steiner tree for
multicast communications in software-defined networking,” CoRR,
vol. abs/1404.3454, 2014. [Online]. Available: http:/ /arxiv.org/abs/
1404.3454

M. Huang, W. Liang, Z. Xu, W. Xu, S. Guo, and Y. Xu, “Dynamic
routing for network throughput maximization in software-defined
networks,” in Proc. 35th Annu. IEEE Int. Conf. Comput. Commun.,
2016, pp. 1-9.

N. Kiji, T. Sato, R. Shinkuma, and E. Oki, “Virtual network func-
tion placement and routing model for multicast service chaining
based on merging multiple service paths,” in Proc. IEEE 20th Int.
Conf. High Perform. Switching Routing, 2019, pp. 1-6.

S. Knight et al., “The internet topology zoo,” J. Sel. Areas Commun.,
vol. 29, pp. 1765-1775, 2011.

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

2065

L. Kou, G. Markowsy, and L. Berman, “A faster algorithm for
Steiner trees,” Acta Informatica, vol. 15, pp. 141-145, 1981.

T.-W. Kuo, B.-H. Liou, K. C. Lin, and M.-J. Tsai, “Deploying
chains of virtual network functions: On the relation between link
and server usage,” in Proc. 35th Annu. IEEE Int. Conf. Comput.
Commun., 2016, pp. 1-9.

Y. Li, L. T. X. Phan, and B. T. Loo, “Network functions virtualiza-
tion with soft real-time guarantees,” in Proc. 35th Annu. IEEE Int.
Conf. Comput. Commun., 2016, pp. 1-9.

D. Li et al., “Reliable multicast in data center networks,” IEEE
Trans. Comput., vol. 63, no. 8, pp. 2011-2024, Aug. 2014.

W. Liang, “Approximate minimum-energy multicasting in wire-
less ad hoc networks,” IEEE Trans. Mobile Comput., vol. 5, no. 4,
pp- 377-387, Apr. 2006.

D. H. Lorenz and D. Raz, “A simple efficient approximation
scheme for the restricted shortest path problem,” Operations Res.
Lett., vol. 28, pp. 213-219, 2001.

T. Lukovszki and S. Schmid, “Online admission control and
embedding of service chains,” in Proc. Int. Colloq. Structural Inf.
Commun. Complexity, 2015, pp. 104-118.

L. Mamatas, S. Clayman, and A. Galis, “A service-aware virtual-
ized software-defined infrastructure,” [EEE Commun. Mag.,
vol. 53, no. 4, pp. 166-174, Apr. 2015.

Y. Ma, W. Liang, Z. Xu, and S. Guo, “Profit maximization for admit-
ting requests with network function services in distributed clouds,”
IEEE Trans. Parallel Distrib. Syst., vol. 30, no. 5, pp. 1143-1157,
May 2019.

Y. Ma, W. Liang, J]. Wu, and Z. Xu, “Throughput maximization of
NFV-enabled multicasting in mobile edge cloud networks,” IEEE
Trans. Parallel Distrib. Syst., vol. 31, no. 2, pp. 393407, Feb. 2020.
Y. Ma, W. Liang, and]. Wu, “Online NFV-enabled multicasting in
mobile edge cloud networks,” in Proc. IEEE 39th Int. Conf. Distrib.
Comput. Syst., 2019, pp. 821-830.

J. Martins et al.,, “ClickOS and the art of network function
virtualization,” in Proc. 11th USENIX Conf. Netw. Syst. Des. Imple-
mentation, 2014, pp. 459—473.

H. Moens and F. D. Turck, “VNF-P: A model for efficient place-
ment of virtualized network functions,” in Proc. 10th Int. Conf.
Netw. Service Manage. Workshop, 2014, pp. 418-423.

M. Mongiovi, A. K. Singh, X. Yan, B. Zong, and K. Psounis,
“Efficient multicasting for delay tolerant networks using graph
indexing,” in Proc. IEEE INFOCOM, 2012, pp. 1386-1394.

Netconf Working Group. 2018. [Online]. Available: https://
datatracker.ietf.org/wg/netconf/about/

Open vSwtich. 2016. [Online]. Available:
openvswitch.org

M. Mahalingam et al., “Virtual extensible local area network
(VXLAN): A framework for overlaying virtualized layer 2 networks
over layer 3 networks,” RFC 7348, IETF. 2014. [Online]. Available:
https:/ /tools.ietf.org/html/rfc7348

Z. A. Qazi, C. C. Ty, L. Chiang, R. Miao, V. Sekar, and M. Yu,
“SIMPLE-fying middlebox policy enforcement using SDN,” in
Proc. ACM SIGCOMM Conf., 2013, pp. 27-38.

B. Ren, D. Guo, G. Tang, X. Lin, and Y. Qin, “Optimal service
function tree embedding for NFV Enabled multicast,” in Proc.
IEEE 38th Int. Conf. Distrib. Comput. Syst., 2018, pp. 132-142.

Ryu SDN Controller. 2017. [Online]. Available: https://osrg.
github.io/ryu/

H. Soni, W. Dabbous, T. Turletti, and H. Asaeda, “NFV-based
scalable guaranteed-bandwidth multicast service for software-
defined ISP networks,” IEEE Trans. Netw. Service Manag., vol. 14,
no. 5, pp. 1157-1170, Dec. 2017.

N. Spring, R. Mahajan, and D. Wetherall, “Measuring ISP topolo-
gies with rocketfuel,” in Proc. ACM SIGCOMM Conf., 2002,
pp- 133-145.

J. M. Vella and S. Zammit, “A survey of multicasting over wireless
access networks,” IEEE Commun. Surveys Tuts., vol. 15, no. 2,
pp- 718-753, Second Quarter 2013.

K. Xie, X. Zhou, T. Semong, and S. He, “Multi-source multicast
routing with QoS constraints in network function virtualization,”
in Proc. IEEE Int. Conf. Commun., 2019, pp. 1-6.

Z. Xu, W. Liang, M. Jia, M. Huang, and G. Mao, “Task offloading
with network function services in a mobile edge-cloud network,”
IEEE Trans. Mobile Comput., vol. 18, no. 11, pp. 2672-2685, Nov. 2019.
Z.Xu, W. Liang, A. Galis, and Y. Ma, “Throughput maximization
and resource optimization in NFV-enabled networks,” in Proc.
IEEE Int. Conf. Commun., 2017, pp. 1-7.

https://www.

https://tools.ietf.org/html/rfc1157
https://tools.ietf.org/html/rfc1157
http://www.geant.net
http://www.geant.net
http://www.h3c.com/en/Product_Technology/Enterprise_Products/Switches/Campus_Switches/H3C_S5560X-EI/
http://www.h3c.com/en/Product_Technology/Enterprise_Products/Switches/Campus_Switches/H3C_S5560X-EI/
http://www8.hp.com/us/en/products/servers/
http://arxiv.org/abs/1404.3454
http://arxiv.org/abs/1404.3454
https://datatracker.ietf.org/wg/netconf/about/
https://datatracker.ietf.org/wg/netconf/about/
https://www.openvswitch.org
https://www.openvswitch.org
https://tools.ietf.org/html/rfc7348
https://osrg.github.io/ryu/
https://osrg.github.io/ryu/

2066

[47] Z. Xu, W. Liang, M. Huang, M. Jia, S. Guo, and A. Galis,
“Approximation and online algorithms for NFV-enabled multicast-
ing in SDNs,” in Proc 37th IEEE Int. Conf. Distrib. Comput. Syst., 2017,
pp. 625-634.

[48] Z.Xu, W. Liang, M. Huang, M. Jia, S. Guo, and A. Galis, “Efficient
NFV-enabled multicasting in SDNs,” IEEE Trans. Commun., vol. 67,
no. 3, pp. 2052-2070, Mar. 2019.

[49] B.Yi, X. Wang, M. Huang, and A. Dong, “A multi-stage solution
for NFV-enabled multicast over the hybrid infrastructure,” IEEE
Commun. Lett., vol. 21, no. 9, pp. 2061-2064, Sep. 2017.

[50] Y. Zhang et al., “StEERING: A software-defined networking for
inline service chaining,” in Proc. 21st IEEE Int. Conf. Netw. Protocols,
2013, pp. 1-10.

[51] S. Q. Zhang, Q. Zhang, H. Bannazadeh, and A. L. Garcia,
“Network function virtualization enabled multicast routing on
SDN,” in Proc. IEEE Int. Conf. Commun., 2015, pp. 5595-5601.

Haozhe Ren received the BSc degree from the
University of Science and Technology Beijing,
Beijing, China, in 2012, and the ME degree from
the Xinjiang Normal University, Urimgi, China, in
2018. He is currently working toward the PhD
degree in the School of Software, Dalian University
of Technology, Dalian, China. His current research
interests include network function virtualization,
software-defined networking, algorithmic game
theory, and optimization problems.

Zichuan Xu (Member, IEEE) received the BSc and
ME degrees from the Dalian University of Technol-
ogy, Dalian, China, in 2008 and 2011, respectively
and the PhD degree from the Australian National
University, Canberra, Australia, in 2016, all in com-
puter science. From 2016 to 2017, he was a
research associate with the Department of Elec-
tronic and Electrical Engineering, University Col-
lege London, United Kingdom. He is currently an
associate professor with the School of Software,
Dalian University of Technology. He is also a
‘Xinghai Scholar’ with the Dalian University of Technology. His research
interests include cloud computing, network function virtualization, soft-
ware-defined networking, wireless sensor networks, routing protocol
design for wireless networks, algorithmic game theory, and optimization
problems.

Weifa Liang (Senior Member, IEEE) received the
BSc degree from Wuhan University, Wuhan, China,
in 1984, the ME degree from the University of Sci-
ence and Technology of China, Hefei, China, in
1989, and the PhD degree from the Australian
National University, Canberra, Australia, in 1998,
allin computer science. He is currently a full profes-
sor with the Research School of Computer Sci-
ence, Australian National University. His research
interests include design and analysis of energy effi-
cient routing protocols for wireless ad hoc and sen-
sor networks, mobile edge computing and cloud computing, network
function virtualization, software-defined networking, design and analysis of
parallel and distributed algorithms, approximation algorithms, combinato-
rial optimization, and graph theory.

Qiufen Xia (Member, IEEE) received the BSc and
ME degrees from the Dalian University of Technol-
ogy, Dalian, China, in 2009 and 2012, respectively
and the PhD degree from the Australian National
University, Canberra, Australia, in 2017, all in com-
puter science. She is currently a lecturer with the
Dalian University of Technology. Her research inter-
ests include mobile cloud computing, query evalua-
tion, big data analytics, big data management in
distributed clouds, and cloud computing.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 9, SEPTEMBER 2020

Pan Zhou (Member, IEEE) received the BS degree
from the Advanced Class of Huazhong University
of Science and Technology (HUST), Wuhan,
China, in 2006, and the PhD degree from the
School of Electrical and Computer Engineering,
Georgia Institute of Technology, Atlanta, Georgia,
in2011. He is currently an associate professor with
the School of Electronic Information and Communi-

cations, HUST, Wuhan, China. He was a senior
' technical member with Oracle, Inc., America, from
2011 to 2013, Boston, Massachusetts. His current
research interests include security and privacy, machine learning and big
data analytics, and information networks.

Omer F. Rana (Senior Member, IEEE) received the
BS degree in information systems engineering
from the Imperial College of Science, Technology
and Medicine, London, United Kingdom, the MS
degree in microelectronics systems design from
the University of Southampton, Southampton,
United Kingdom, and the PhD degree in neural
computing and parallel architectures from the
Imperial College of Science, Technology and Medi-
cine, London, United Kingdom. He is a professor of
performance engineering with Cardiff University,
Cardiff, United Kingdom. His current research interests include problem
solving environments for computational science and commercial comput-
ing, data analysis and management for large-scale computing, and scal-
ability in high performance agent systems.

Alex Galis (Senior Member, IEEE) is currently a
professor in networked and service systems with
the University College London. He has co-authored
10 research books and more that 250 publications
in the Future Internet areas: System management,
networks and services, networking clouds, 5G vir-
tualisation, and programmability. He was a member
of the Steering Group of the Future Internet
Assembly (FIA) and he led the Management and
Service-aware Networking Architecture (MANA)
Working Group. He acted as TPC chair of 14 IEEE
conferences. He is also a co-editor of the IEEE Communications Magazine
feature topic on Advances in Networking Software. He acted as a vice chair
of the ITU-T SG13 Group on Future Networking. He is involved in IETF and
ITU-T SG13 network slicing activities and he is also involved in IEEE SDN
initiative.

Guowei Wu received the PhD degree from Harbin
Engineering University, Harbin, China, in 2003. He
is currently a professor with the School of Software,
Dalian University of Technology (DUT) in China.
His research interests include embedded real-time
system, cyber-physical systems(CPS), and smart
edge computing. He has published more than 100
papers in Journal and Conference.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 9, SEPTEMBER 2020

2067

Safety Enhancement for Real-Time Parallel
Applications in Distributed Automotive
Embedded Systems: A Stable

Stopping Approach

Guoqi Xie™, Senior Member, IEEE, Gang Zeng

, Member, IEEE, and Renfa Li

, Senior Member, IEEE

Abstract—In distributed automotive embedded systems, safety issues run through the entire life cycle, and safety mechanisms for
error handling are desirable for risk control. This article focuses on safety enhancement (i.e., safety mechanisms for error handling) for
a safety-critical automotive application within its deadline. A stable stopping approach used for safety enhancement for an automotive
application is proposed based on the static recovery mechanism provided in ISO 26262. The Stable Stopping-based Safety
Enhancement (SSSE) approach is proposed by combining known backward recovery, proposed forward recovery, and proposed
forward-and-backward recovery through primary-backup repetition. The stable stopping (i.e., SSSE) approach is a convergence
algorithm, which means that when the reliability value reaches a steady state and the algorithm can stop. Experimental results reveal
that the exposure level defined in ISO 26262 drops from E3 to E1 after using SSSE, and such improvement enables a safety guarantee

of higher level.

Index Terms—Distributed automotive embedded systems, safety enhancement, stable stopping

1 INTRODUCTION

1.1 Background

AFE driving has been the eternal theme of automobiles
Ssince their invention. Various safety components, such
as safety belt, airbag, and brake-by-wire, have been devel-
oped for automobiles to enhance their safety. The 1st edition
of the functional safety standard ISO 26262 for road vehicles
was officially released in Nov. 2011 to enable different auto-
motive software developers to follow the same principles of
safety development [1], [2], [3]. Currently, the 2nd edition of
the ISO 26262 standard has been released in Dec. 2018 to
further strengthen safety development [4]. Functional safety
refers to the absence of unreasonable risks due to hazards
caused by the malfunctioning behavior of Electrical and
Electronic (E/E) systems according to the definition in ISO
26262 [1], [4]. Safety issues run through the entire life cycle
of automotive development, such that the maximum possi-
ble safety value should be known during the early design
phase to help control risk in the actual development pro-
cess. Safety enhancement (i.e., safety mechanisms for error
handling) is extremely desirable for risk control.

e G. Xie and R. Li are with the Key Laboratory for Embedded and Cyber-
Physical Systems of Hunan Province, College of Computer Science and
Electronic Engineering, Hunan University, Changsha, Hunan 410082,
China. E-mail: {xggman, lirenfa)@hnu.edu.cn.

o G. Zeng is with the Graduate School of Engineering, Nagoya University,
Nagoya, Aichi 4648603, Japan. E-mail: sogo@ertl.jp.

Manuscript received 19 June 2019; revised 2 Feb. 2020; accepted 29 Mar. 2020.
Date of publication 2 Apr. 2020; date of current version 24 Apr. 2020.
(Corresponding author: Renfa Li.)

Recommended for acceptance by B. Di Martino.

Digital Object Identifier no. 10.1109/TPDS.2020.2984719

Risk refers to the probability of occurrence of harm and
the severity of that harm [1]; hence, safety can be enhanced
by reducing risk through reducing the probability or the
severity of harm or both. In ISO 26262, severity refers to the
measure of the extent of harm to an individual in a specific
situation [1], and it cannot be changed for a specific automo-
tive application because it is determined by the nature of the
harm. Therefore, risk can only be reduced by reducing the
probability of occurrence of harm. In ISO 26262, the proba-
bility of occurrence of harm is represented by exposure [1].
Reliability is often associated with random hardware fail-
ures, and it is used to represent the probability of the non-
occurrence of harm (i.e., reliability = 1 - exposure) in auto-
motive safety issues [5].

1.2 Motivation

With the increasing distribution and complexity of distrib-
uted automotive embedded systems, safety-critical automo-
tive applications such as brake-by-wire application [6], [7]
and vehicle cruiser control application [8] are parallel appli-
cations, where some tasks can be performed simultaneously
on different Electronic Control Units (ECUs) in parallel,
thereby reducing end-to-end response time. Recently,
Directed Acyclic Graph (DAG) has been used to represent
the above parallel automotive applications in some works
[7], [8] (details about parallel automotive application model-
ing can be found in Section 3).

A real-time application must guarantee correct response
within a specified time constraint (i.e., deadline) [9]. In auto-
motive embedded systems, many safety-critical applica-
tions must be real-time, such as anti-lock brake [10]; If the

1045-9219 © 2020 |IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

https://orcid.org/0000-0001-6625-0350
https://orcid.org/0000-0001-6625-0350
https://orcid.org/0000-0001-6625-0350
https://orcid.org/0000-0001-6625-0350
https://orcid.org/0000-0001-6625-0350
https://orcid.org/0000-0003-1663-7981
https://orcid.org/0000-0003-1663-7981
https://orcid.org/0000-0003-1663-7981
https://orcid.org/0000-0003-1663-7981
https://orcid.org/0000-0003-1663-7981
https://orcid.org/0000-0003-4573-7375
https://orcid.org/0000-0003-4573-7375
https://orcid.org/0000-0003-4573-7375
https://orcid.org/0000-0003-4573-7375
https://orcid.org/0000-0003-4573-7375
mailto:xgqman@hnu.edu.cn
mailto:lirenfa@hnu.edu.cn
mailto:sogo@ertl.jp

2068

anti-lock brake cannot be finished within its deadline, vehi-
cle collisions may happen due to the delay of the brake action
output, thereby causing harm or injury to people (including
drivers, passengers, and pedestrians) or damage to automo-
biles and roads. Violating the real-time constraint (i.e., dead-
line) is one of systematic failures, which may result in
malfunctioning behaviors [5]. That is, a safety-critical auto-
motive application must be completed correctly within its
deadline, (i.e., guaranteeing the real-time constraint) [5]; oth-
erwise, the probability of occurrence of harm is considered
to be 100 percent. Therefore, the essence of safety enhance-
ment is to enhance the reliability of the automotive applica-
tion while guaranteeing its real-time constraint.

Ref. [5] studied the problem of enhancing the safety of a
real-time parallel automotive application by presenting the
Reliability Enhancement Technique (RET). RET is a Back-
ward Safety Enhancement (BSE) approach because it tries to
migrate each task to another ECU that generates maximum
reliability value from the exit task to the entry task (.e.,
backward recovery) (details about BSE can be found in Sec-
tion 4.1). However, merely using BSE is insufficient to
enhance safety due to the following reasons.

1) BSE merely enhances reliability through backward
recovery (backward means that the recovery pro-
cess is from exit to entry tasks), and it does not
apply forward recovery (forward means that the
recovery process is from entry to exit tasks). For an
end-to-end parallel automotive application, applying
forward-and-backward recovery to enhance safety
could be efficient.

2) BSE is a non-repeated approach, thereby severely
limiting the strength of safety enhancement. In fact,
safety enhancement can be implemented through
repeated recovery, which is an effective fault toler-
ance measure that uses redundancy. Particularly, the
2nd edition of ISO 26262 introduces the concept of
fault tolerance, which means the ability to deliver a
specified application in the presence of one or more
faults [4].

1.3 Main Contributions

The development life cycle of safety-critical automotive
applications includes analysis (concept), design, implemen-
tation, and running phases [5]. This study focuses on safety
enhancement for a real-time parallel automotive application
by using fault tolerance measure during the design phase.
The novel contributions of this study include:

1) Considering that BSE in Ref. [5] is merely a back-
ward recovery, we propose the Forward Safety
Enhancement (FSE) algorithm (Algorithm 1). Differ-
ent from BSE that it handles the recovery process
from exit to entry tasks, FSE handles the recovery
process from entry to exit tasks. FSE is a novel contri-
bution as it tries to forward reallocate each task to
another ECU that can generate maximum reliability
value without violating given constraints. The for-
ward-and-backward recovery is then proposed to
further enhance safety by combining known BSE
and proposed FSE algorithms.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 9, SEPTEMBER 2020

2) Considering that BSE and FSE are merely non-
repeated algorithms, we proposed the Repeated BSE
(RBSE) algorithm (Algorithm 2) and Repeated FSE
(RFSE) algorithm (Algorithm 3). Different from BSE
and FSE that they handle the recovery process with-
out repetition, RBSE and RFSE handle the recovery
process through primary-backup repetition. RBSE
(or RFSE) is a novel contribution as it tries to back-
ward (or forward) add a new replica for each task to
an available ECU that can generate maximum reli-
ability value among all available ECUs without vio-
lating given constraints. The forward-and-backward
recovery through primary-backup repetition is then
proposed to further enhance safety by combining
proposed RBSE and RFSE algorithms.

3) Considering that RBSE and RFSE could be invoked
repeatedly until reaching a stable safety value, the
Stable Stopping-based Safety Enhancement (SSSE)
approach is proposed by combining the above four
algorithms. In other words, SSSE is basically a com-
bination of known BSE algorithm and proposed FSE,
RBSE, and RFSE algorithms. The stable stopping
(i.e., SSSE) approach is a convergence algorithm,
which means that when the reliability value reaches
a steady state, the algorithm can stop. SSSE is a novel
contribution because it is a new combined approach.
There are four algorithms to combine the SSSE
approach, where we propose there new algorithms.

2 RELATED RESEARCH

The objective of this study is to enhance the safety for real-
time parallel automotive applications through considering
two safety properties, namely, reliability and response time.
Therefore, this study mainly reviews existing research on the
reliability and response time of DAG-based applications.

(1) Bi-Criteria (Bi-Objective) Optimization Between Response
Time and Reliability. Simultaneously minimizing response
time and maximizing reliability (i.e., minimizing exposure)
is a bi-criteria optimization problem [11], [12], [13]. Ref. [11]
provided the NP-hard complexity results and the optimal
mapping algorithm for the bi-objective optimization prob-
lem under different variants of multiprocessors, including
homogenous and heterogeneous speeds. Ref. [12] proposed
meta-heuristic algorithm to solve the above bi-objective opti-
mization problem for a parallel application while meeting
the user-defined budget. Ref. [13] proposed a bi-objective
algorithm for a parallel application based on Wind Driven
Optimization (WDO) to implement the trade-off between
minimizing response time and maximizing reliability.

(2) Response Time Optimization With Reliability Constraint.
Ref. [5] presented an approach to minimize the response
time of an automotive application while guaranteeing the
reliability constraint without primary-backup repetition.
Refs. [14], [15] presented the MaxRe and RR algorithms to
minimize the resource cost of a DAG-based application
while guaranteeing the reliability constraint through pri-
mary-backup repetition. To effectively assure the reliability
requirement, Ref. [16] proposed reliability pre-allocation
technique based on geometric mean, which makes the pre-
allocated reliability values closer to the center. Particularly,

XIE ETAL.: SAFETY ENHANCEMENT FOR REAL-TIME PARALLEL APPLICATIONS IN DISTRIBUTED AUTOMOTIVE EMBEDDED...

TABLE 1

Main Abbreviations in This Article
Abbreviation Definition
RET Reliability Enhancement Technique
BSE Backward Safety Enhancement
RBSE Repeated BSE
FSE Forward Safety Enhancement
RFSE Repeated FSE
SSSE Stable Stopping-based Safety Enhancement
WCET Worst Case Execution Time
WCRT Worst Case Response Time
ECU Electronic Control Unit
DAG Directed Acyclic Graph
EST Earliest Start Time
EFT Earliest Finish Time
LFT Latest Finish Time
AST Actual Start Time
AFT Actual Finish Time

non-repeated and repeated approaches are both proposed
in Refs. [14], [15], [16].

(3) Reliability Optimization With Real-Time Constraint. Ref.
[5] first studied the problem of enhancing the safety for an
automotive application while guaranteeing its real-time
constraint by presenting the BSE algorithm. As explained in
Section 1, BSE is merely a backward recovery approach
toward safety enhancement and is a non-repeated approach,
thereby severely limiting the strength of safety enhancement.
In other words, BSE is insufficient to enhance safety. This
study aims to propose a novel safety enhancement approach
by introducing backward-and-forward recovery and pri-
mary-backup repetition for parallel automotive applications.

3 MODELS

Readers can refer to Tables 1 and 2 for main abbreviation
and notation, respectively, used in this study.

3.1 Application Model
Fig. 1 shows a simple execution process of the brake-by-
wire application [6], which is represented by a DAG, in a

TABLE 2

Main Notations in This Article
Notation Definition
n; A computing task in an automotive application
m; A CAN message from tasks n; to n;
Wi WCET of task n; executed in ECU wy,
Cij WCRT of message m; ;
i Failure rate for ECU u,,
R(n;,ur) Reliability of task n; executed in ECU uy,
Uallo(n;) Allocated ECU for task n;
R(G) Reliability of application G
LB(G) Lower bound of application G
D(G) Real-time constraint of application G
EST(n;,u) Earliest start time of task n; executed in ECU ;.
EFT(n;, uy) Earliest finish time of task n; executed in ECU uy,
LFT(n;,uy) Latest finish time of task n; executed in ECU ;.
AST(n;) Actual start time of task n;
AFT(n;) Actual finish time of task n;

Available begin time of task n; executed in ECU uy,
Available end time of task n; executed in ECU

2069

ECu# ECU =2 ECU Whee! FL ECU Whaeel RR
Semnor swe SWC o ctinkr
swe | - m
T - e —
[RTE| RTE| K
Bisic W Basic SW Basic 5W sm:swl
N i i
Bus 81 |
Bus 2 -
O] I
Sensor & | Emlﬂ' gﬂﬂ?ﬂm
= Signal Path RTE Run Time Emvironment ECU Electronic Control Unat
() Ctwarvabie SWE Scftwars Component

[Sowrce: & Kunts. Comtinenial

o ST N Cantare 3958, Goaber . 2000
Tha TR Pospadt e s b Timing ot ALK B 6

Fig. 1. Brake-by-wire application [6].

Controller Area Network (CAN)-based distributed automo-
tive embedded system. For this parallel application, ECU u,
receives the data from the sensor to trigger the entry task
ny, which is executed in u;. n; finishes its execution and
sends message m; 2 to ny executed in ECU u4. Notice that
my 2 is transmitted in the CAN bus.

Let U = {uy,us, ...,uy} be a heterogeneous ECU set in
the system. In this study, we uniformly use | X| to represent
the size of the set X. Meanwhile, a motivational automotive
application represented by a DAG G = (N, W, M, C) is
shown in Fig. 2.

1) Letn; be theith task of G. pred(n;) and succ(n;) repre-
sent the immediate predecessor task set and immedi-
ate successor task set of n;, respectively. For instance,
there are pred(ng) = {na, n4, ng} and succ(ng) = {n1o}
in Fig. 2. The entry and exit tasks are denoted by neptry
and n.yit, respectively. For the application in Fig. 2,
there are neyy = 171 and N = nip. The task model
should support time-triggered and event-triggered
paradigms according to the timing analysis of AUTO-
SAR standard [17], and the event-triggered task
model (i.e., a task is released only if it receives the
data from all its predecessor tasks) is considered in
this study. Let D(G) be the deadline of automotive
application GG, and assume that the period of G is not
less than D(G). Meanwhile, the application and all
the tasks share the same deadline and period.

2) W represents a |[N| x |U| matrix, where w; ;, denotes
the Worst Case Execution Time (WCET) of n; exe-
cuted in ECU wuy. w;, is infinity (.e., w;; = +o00) if n;
cannot be allocated to u; because some ECUs can
only execute specific tasks. The WCETs of each task
in three ECUs {uy,us, u3} are listed in Table 3. The

Fig. 2. Motivational automotive application with 10 tasks [5].

2070

TABLE 3
WCETs of Tasks on Different ECUs
of the Motivational Automotive
Application in Fig. 2 [5]

Task (5% Uz us
ny 14 16 9
Ny 13 19 18
ng 11 13 19
Ty 13 8 17
ns 12 13 10
ng 13 16 9
ny 7 15 11
ng 5 11 14
ng 18 12 20
nio 21 7 16

weight 9 of n, uz in Table 3 represents the WCET of
ni in us (i.e., w13 = 9)

3) Let ¢ be the Worst Case Response Time (WCRT) of
message m; j, which is a CAN message from tasks n;
to n;. Considering that the WCRT analysis generally
involves a tight WCRT upper bound within a
pseudo-polynomial computational time, the WCRTs
in this study are the theoretical upper bounds [18].

4) The non-preemptive scheduling for ECUs is adopted
to keep consistent with CAN buses. The motivational
automotive application in Fig. 2 is used as an explana-
tion of the proposed algorithms. For simplicity, the
units of all parameters are ignored in the example.

3.2 Reliability Model

Random hardware failures occur unpredictably during the
lifetime of a hardware element, but random hardware fail-
ure rates can be reasonably predicted because random hard-
ware faults (including permanent and transient faults)
occur based on a probabilistic distribution. [1]. This study
considers transient faults (e.g., single bit faults in case of an
Error Correcting Code (ECC) with single error correction,
double error detection capability as pointed in the 2nd edi-
tion of the ISO 26262 standard [4]), which usually obey the
Poisson distribution [5], [14], [15], [19], [20]. The reliability
of n; executed in uy, in its WCET is calculated by

R(ny,up) = e MWWk, (1)

where) is the failure rate of an ECU.

In general, the CAN link’s failure rate (about 1079) is
much less than ECU’s failure rate (about 107%) due to the
usage of CRC and ACK in CAN link [21], [22]. Therefore,
communication faults can be disregarded when considering
the ECU faults. Thus, the reliability of the application is the
product of all its tasks [5], [14], [15], [19], [20]:

R(G) = H R(n;) = H R(n, Uqpio(n;)) (2

n;eN n;eN
where u(n;) TEpresents the allocated ECU of n;.

3.3 Lower Bound of Application

Definition 1 (Lower Bound). The lower bound means the min-
imum response time of an application without any constraints.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 9, SEPTEMBER 2020

Scheduling tasks with minimum response time in multi-
processors (ECUs) is known to be an NP-hard optimization
problem [23], [24]. Obtaining approximate lower bound
is a fast process. The Heterogeneous Earliest Finish Time
(HEFT) [23] and Optimistic Cost Table (OCT) [24] algo-
rithms are two typical list scheduling algorithm to obtain
approximate lower bounds. This study adopts HEFT to get
the lower bound of the application.

There are two phases in HEFT: 1) tasks in the application
are sorted in ascending order by the upward rank values
(task prioritization phase); 2) each task is allocated to the
ECU that has the minimum EFT combining the insertion
strategy according to the task prioritization standard (task
allocation phase). Ref. [23] provided enough details about
how to obtain the lower bound of the motivational applica-
tion in Fig. 2 by using HEFT.

1) The task prioritization is based on the descending
order of ranky, which is calculated by [23]

ranky(n;) = w; + Ema)f){ci‘j + ranku(n;)},
ﬂj suce(n;

where w; represents the average WCET of task n;. In
the motivational example of Fig. 2, the task prioriti-
zation is organized by n; (ranky(ni) = 108), nj
(ranky(ns) = 80), ny (rank,(ng) = 80), ne (rank,(ng) =
77), ns (rank,(ns) = 69), ng (rank,(ng) = 63.3), ng
(ranky,(ng) = 44.3), n; (rank,(n;) = 42.7), ng
(rank,(ng) = 35.7), and nyy (rank,(nig) = 14.7) using
the HEFT algorithm [23].

2) The task allocation can get the lower bound of the
application. Let EFT(n;,u;) be the Earliest Finish
Time (EFT) of task n; executed in ECU u;. The mini-
mum EFT of the exit task should be the lower bound
of the application:

LB(G) = min{ EFT (ney;t, u) }-

ug el

Therefore, we can iteratively get the minimum EFT of
each task from the entry to the exit tasks. We can get the
EFT of each task based on

EFT(TL,‘, uk) = EST(TL“Uk) + Wi ks

where EST(n;,u;) represents the Earliest Start Time (EST)
of task n; executed in ECU wuy,:

EST (nentry, we) = 0;
EST(n;,u;) = max (a'vaBT(ni7 Uk), MAXy,, epred(n) LAFT (1)) + cZ‘_f})7

(3)

avaBT (n;,uy;,) is the available begin time of w;. ny, is an
immediate predecessor task of n;. AFT'(ny) is the Actual
Finish Time (AFT) of task n;. n; has different EST(n;, uy)
values depending on the allocations of predecessor tasks
because c’,ji‘ is not a fixed value.

ko Chi
Cp i {[l

h,i

p#k.
p=k. "

Table 4 shows the details of obtaining lower bound of the
motivational example. First, n; is allocated to us (denoted
with bold text) as it has the minimum EFT of 9. Then, ns is

XIE ETAL.: SAFETY ENHANCEMENT FOR REAL-TIME PARALLEL APPLICATIONS IN DISTRIBUTED AUTOMOTIVE EMBEDDED...

TABLE 4
Details of Obtaining Lower Bound of
the Motivation Example

Task EFT(TLZ‘, ul) EFT(TLi, UQ) EFT(nl, U3)
ny 14 16 9

ns 32 34 28

ny 31 26 45

Ny 40 46 46

ns 52 39 38

ng 53 42 47

ng 69 68 76

ny 58 83 49

ng 62 79 73

allocated to u3 (denoted with bold text) as it has the mini-
mum EFT of 28. The EFTs of ny, ns, ns, ng, ng, n7, ng, and nyg
are shown in Table 4. Finally, the lower bound of applica-
tion is 80, as the AFT of the exit task (i.e., nig) is 80. On the
basis of Table 4, Fig. 3 shows the HEFT-generated lower
bound (LB(G) = 80) of the motivational automotive appli-
cation G in Fig. 2, whereas the arrows between tasks repre-
sent their communication.

The real-time constraint D(G) must be larger than or
equal to LB(G). For the motivational automotive applica-
tion in Fig. 2, we let the real-time constraint be D(G) = 100,
as shown in Fig. 3.

3.4 Problem Statement and Two Constraints
Considering that the essence of safety enhancement is
to enhance the reliability of the automotive application while
guaranteeing its real-time constraint as explained in Sec-
tion 1.2, the problem to be solved in this study is to enhance
the reliability of the parallel automotive application GG

R(G) = [T R(n).

n;eN

towards enhancing the safety by task allocations, under its
real-time constraint

RT(G)<D(G),

where RT(G) represents the response time of application G.
The problem statement in fact involves two constraints.

Definition 2 (Constraint 1). The precedence constraints
between the current task (i.e., n;) and its immediate predecessor
and immediate successor tasks, namely, the Actual Start Time
(AST) and AFT of n; must adhere to the data dependencies
with other tasks.

R(G)=0.94771638

LB(G)=80 D(G)=100

" ‘

Il v T
ol 0 N N —
w N L

y N - I I
) > -
[e
7 - /// _— o 7777777777177

< - P } I
u3 ‘ ni |/ n3 ‘ ns %w | .
|
| | | | | | | | v | vy
‘ ‘ | | ! | ey

0 10 20 30 40 50 60 70 80 90 100

Fig. 3. HEFT-generated lower bound of the motivational automotive
application in Fig. 2.

2071

D(G)=100

i
ng [
S

< \
’{ 19 \ﬁ nlOJ |

/ , |
’)
rm ‘ | |
0

" [n

uz

w [
|
0

| | | | | | v

|
10 20 30 40 50 60 70 80 90 100

»
>

Fig. 4. ny0, ng, ns, and n; move the primary (i.e., the task itself) in fixed
ECU without migration, and n is migrated from ws to us.

For instance, ng cannot be scheduled before ny, ny, and ng
according to the Constraint 1 in Fig. 3.

Definition 3 (Constraint 2). The real-time constraint of the
automotive application, namely, the AFT of the exit task must
be less than or equal to the deadline of the automotive
application.

In the process of safety enhancement, the above two con-
straints cannot be violated; otherwise, the safety enhance-
ment is not valid.

4 BACKWARD AND FORWARD SAFETY
ENHANCEMENT

41 Existing BSE

As explained previously, the BSE algorithm is a backward
approach and its idea is as follows. BSE tries to migrate (i.e.,
re-allocate) the current task n; to another ECU that gener-
ates maximum reliability value for n; without violating Con-
straint 1 and Constraint 2. The above process is explored
from the exit task to the entry task (i.e., backward recovery).
In the following, the idea of BSE is simply explained on the
basis of the HEFT-generated lower bound (Fig. 3).

1) The backward sequence of tasks is sorted by the
descending order of the AFT values generated by
HEFT. For example, the backward sequence of tasks
in Flg 3is N10, N9, Ng, N7, Ng, N2, N5, N3, N4, and ni.

2) The exit task nqq is first considered. n;y has moved its
end time to 100 (i.e., D(G) = 100) in fixed ECU uy
without violating Constraint 2, as shown in Fig. 4. We
assume that njg, ng, ng, and n; have been re-allocated
using BSE, as shown in Fig. 4. Note that no, ng, ns,
and n; are only rescheduled on the same ECU with-
out migration. ECU migration is avoided due to one
of the following reasons: 1) the current task n; cannot
be migrated to another ECU otherwise Constraint 1
will be violated; 2) the current task n; can be
migrated to the other ECU without violating Con-
straint 1, but the new ECU cannot obtain a higher
reliability value than the current ECU for n;.

3) The fifth task ng is prepared to be re-allocated. ng
(denoted with red color) can be migrated from us to
ug because it can generate maximum reliability for
ng without violating Constraint 1, as shown in Fig. 4.

4) The following tasks use the same principle as the
aforementioned tasks. As shown in Fig. 5, na, ns, na,
and n; are only moved in fixed ECUs without migra-
tion, whereas n3 (denoted with red color) is migrated
from ug to uy. Finally, the reliability of the automo-
tive application is enhanced from 0.9477163 (Fig. 3)

2072

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 9, SEPTEMBER 2020

R(G)=0.95294318 D(G)=100 D(G)=100

I t
up | w‘ n2 } NN | [[
|) N o

. X I |

7=] | |

: — Z } }
o @ R 3
| | | ! | | | | | v | v
J > | | | —>

0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100

Fig. 5. BSE-generated lower bound of the motivational automotive appli-
cation in Fig. 2.

to 0.95294318 (Fig. 5) by using RET to migrate ng and
n3. Fig. 5 shows that Constraint 1 and Constraint 2 are
not violated. In other words, the following facts are
found: 1) each task adheres to the data dependencies
with other tasks; 2) the application is finished within
the deadline.

4.2 Proposed FSE Algorithm

Fig. 5 shows that the begin time of the entry task n; is not
started at 0 but at 8 after using BSE. An intuitive feeling is
that the begin time of n; can be set to 0 through making
some possible migrations of n; and its successor tasks to
enhance safety without violating Constraint 1 and Constraint
2. The above process is explored from the entry task to the
exit task (i.e., forward recovery).

1) The forward sequence of tasks is sorted by the
ascending order of AST values generated by BSE.
For example, the forward sequence of tasks in Fig. 5
is ny, ng, Ny, N5, N, Ng, N7, Ny, Ny, and nio-

2) The entry task n, is first considered. n; has moved its
start time and end time to 0 and 8, respectively, in
fixed ECU w3 without migration. The reason is that if
n; can be migrated, it has already been migrated
with the BSE algorithm, as shown in Fig. 5.

3) ni, n3, n4, and ns; have moved their individual begin
times and end times to smaller values in fixed ECUs
without migration, as shown in Fig. 6.

4) The fifth task n, is prepared to be re-allocated. ny can
be migrated from u3 to u; because it can generate
maximum reliability for n, without violating Con-
straint 1, as shown in Fig. 6. ny cannot be migrated
by using BSE. However, ny can be migrated when
using FSE further. In the following, the migration of
ny will be explained.

To determine whether the current task n; can be migrated,
its EST and Latest Finish Time (LFT) in each ECU are
required to obtain in advance to ensure that Constraint 1 and
Constraint 2 are not violated. The EST of n; in wu; has been
shown in Eq. (3), whereas the LFT of n; in uy, is calculated by

LFT(nexityuk) = D(G)7
LFT(nu uk) = min ((lUCLET(TZi, uk‘)v minny,esucc(n,){AST(nj) - Cf]q})
(4)

avaET (n;,uy) is the available end time of u; for n;. n; has
different LFT (n;, u;) values depending on the allocations of
successor tasks because cff’]'-’ is not a fixed value.

kq _ [y k#a
Cij =0 k=q

Fig. 6. ny, ng, ny, and n; have moved their individual begin times and end
times to small values in fixed ECUs without migration.

Take ny as an example. The avaBT (ny, ui,) and avaET (ng, uy)
values are as follows:

avaBT (ng,u;) =0
avaBT (ng, us) = 42
avaBT (ng, uz) = 19

avaET (ng,uy) =77
avaET (ng,uy) = 81
avaET (ng, ug) = 53.

Then, the EST (ny,u;,) and LFT (ny,uy,) values are as follows:
EST(nz,’LH) =27

EST(TLz, ’LLQ) =42
EST(’HQ,Ug) =19

LFT(HQ,’U,]) =65
LFT(TLQ,UQ) =58
LFT(TLQ,U:;) =53.

After Constraint 1 and Constraint 2 are determined, the
ECU w,, that has the maximum reliability value for n; can
then be selected.

Rlni) = Rlmas vatot)) = 0o oy T 4
where w;;, < (LFT(n;,u;) — EST(n;, u;)) should be satis-
fied to guarantee Constraint 1 is not violated. Note that wu,j,
can be the currently allocated ECU ucyr to be moved in or a
reallocated ECU unew to be migrated to.

Continuing with ny as an example. The R(ns,u;) values
are as follows:

R(ny, uy) = 0.99094128
R(ng, UQ) = NULL (5)
R(ny, u3) = 0.99282586.

R(ngy,us) is NULL because ws 2 = 19, which is larger than 16
(LFT(ng,ug) - EST(ng,us) = 58 - 42 = 16), such that allocat-
ing ny to uy will violate Constraint 1. Given that R(ns, us)
has the maximum reliability values in Eq. (5), n, is migrated
from uy to us.

The AST and AFT of n; are correspondingly updated to

and AST(?’Ll) = EST(’YZ“ uallo(i))a

AFT(n;) = AST (n;) + Wi altofi)»

respectively. For example, the AST and AFT of n, are as
follows:

and AST(HQ) = EST(TLQ, U3) = 197

AFT(?IQ) = AST(TLQ) +wy3 = 19+ 18 = 37.

5) The following tasks use the same principle as the
aforementioned tasks. As shown in Fig. 7, ng, n7, ng, ng, and
ni are moved in fixed ECUs without migration. Finally, the
reliability of the automotive application is enhanced from

XIE ETAL.: SAFETY ENHANCEMENT FOR REAL-TIME PARALLEL APPLICATIONS IN DISTRIBUTED AUTOMOTIVE EMBEDDED...

R(G)=0.95475549 D(G)=100

Fig. 7. FSE-generated task mapping of the motivational automotive
application in Fig. 2.

0.95294318 (Fig. 5) to 0.95475549 (Fig. 7) by using FSE to
migrate ny. Fig. 7 shows that Constraint 1 and Constraint 2
are still not violated.

The FSE algorithm is proposed on the basis of the afore-
mentioned analysis, as shown in Algorithm 1.

Algorithm 1. The FSE Algorithm

Input: U = {u1,uy,...,uy}, G, D(G), task mapping generated
by the previous algorithm
Output: R(G), RT(G), and task mapping
1: The tasks’” forward sequence forward_seq is also sorted by
the ascending order of the AST values generated by the
previous algorithm;
2: while (there are tasks in forward_seq) do
3: n; — forward_seq.out();
4: Uy, () indicates the currently allocated ECU.
5. Move the n; in ECU w;) by AST(n;) < EST (1, Ucur(s))
and AFT(n;) < (AST(n;) + Wi cw(s))
6: for (each ECU u, € U) do
7: Calculate EST'(n;, u;) using Eq. (3);
8: Calculate LFT'(n;, u;,) using Eq. (4);
9: if (LFT (ni,ur) —

EST(ni,u;)) < wiy) then

10: continue;

11: end if

12: Calculate R(n;, u;) using Eq. (1);
13: end for

14: Select the ECU ¢,y with the maximum reliability value
under R(n;j7 umw(i>) > R(TL,j7umw(i))

15: if (e is not NULL) then

16: Migrate the n; to ECU (i) by AST(n;) — EST (1, tneu(i))
and AFT(n;) < (AST(n;) + Wi pew(s))

17: end if

18: end while

19: Calculate the reliability R(G) using Eq. (2);

Overall, FSE tries to forward reallocate each task to
another ECU that can generate maximum reliability value
without violating Constraint 1 and Constraint 2. The details
are explained as follows. The time complexity of FSE is
O(IN> x|U]) and is explained below. (1) Traversing all
tasks requires O(|N|) time (Lines 2-18). (2) Calculating
EST(n;,w;,) and LFT(n;,u;) requires O(|N| x |U]) time
(Lines 6-11). Therefore, the time complexity of the FSE algo-
rithm is the same as those of HEFT and BSE.

5 REPEATED SAFETY ENHANCEMENT

5.1 Proposed RBSE Algorithm

Fig. 7 shows that the end time of the exit task n;y is not
ended at 100 but at 92 after using FSE. An intuitive feeling

2073

is that the end time of 7y can be set to 100 through making
some possible migrations of tasks by BSE again. Setting the
end time of njy to 100 is necessary, but making possible
migrations of tasks by BSE again is unfeasible. The reason is
that through the backward-and-forward recovery of BSE
and FSE in Section 4, the migration of tasks has reached the
extreme. Continually invoking BSE or FSE recovery can not
generate new migrations. Fortunately, primary-backup rep-
etition is an effective fault tolerant measure (i.e., recovery
through repetition) to implement safety enhancement.

Passive repetition and active repetition are two types of
primary-backup repetition paradigms [14], [15]. Passive rep-
etition aims to reschedule the task on a a backup ECU when
this task fails in the primary ECU. Active repetition will
simultaneously execute ¢ replicas of the task in ¢ ECUs. Each
ECU only execute one replica for the same task, such that the
maximum number of replicas is the number of ECU. Homog-
enous redundancy and heterogeneous redundancy are two
types of redundancy paradigms [4]. Homogeneous redun-
dancy means the duplication of homogeneous elements,
whereas heterogeneous redundancy means the combina-
tion of hardware devices and software tasks. In this study,
active repetition and homogeneous redundancy are adopted
because such combination implements independence among
tasks. In addition, as pointed out in the 2nd edition of ISO
26262, homogeneous redundancy during the design phase
focuses primarily on controlling the effects of transient faults
or random faults in the hardware (i.e., ECU in this study), on
which a similar software is executed (e.g., temporal redun-
dant execution of software). The aforementioned features
are consistent with the automotive application and reliability
models of this study.

Given that the reliability of n; in wy is R(n;, ui) = e Wik
according to Eq. (1), the failure probability of n; in w;, with-
out repetition is

Fail(nhulﬁ:) =1- R(m, uk) =1 e_/\sz‘k_

Assume that there are num; (num; < |U|) replicas for n;, the
failure probability of n; through active repetition is

H FaZl(110 nﬂ)>

num;
— B
H (< i allo(nﬁ)) > ’

) represents the allocated ECU of replica n/

Fail(n;)

where ottofs

Therefore the reliability of n; is

R(n;) =1 — Fail(n;) = 1 — H <1 - R<n?,uallo(n§))), ®)

p=1

(1) The backward sequence of tasks is sorted by the
descending order of the AFT values. For example, the back-
ward sequence of the tasks in Fig. 7 is nyg, ns, nr, ng, ng, n4,
N9, N3, N5, and ny.

(2) The exit task ny is first considered. n just moves its
begin time and end time to 93 and 100, respectively, in fixed
ECU uy without any repetition. Repetitions on u; or uz will
violate Constraint 1. The details are explained below. The
EST and LFT of ny are

2074

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 9, SEPTEMBER 2020

D(G)=100 D(G)=100
P e e ey —
. 1
“ g ' " i /4\ /"\ﬁ\ ‘ A L
s L 5 o
I I
1 - 2 1 1
ng yy u2 - W /J '[ns'*‘4| ns/* Ny, l |
| I
' i
(. .
| | V _ ﬂ]
| | vy | v 5
| Y | e
80 90 100 0 10 50 60 80 90 100

Fig. 8. Areplica is added to u, for ns.

EST(TL107’LL1) =85
EST(TLH),UQ) =85
EST(TL107U3) =85

LFT(nlo,ul) =100
LFT(nw, UQ) =100
Lﬂ(n107U3) = 100.

The LFT values of njy on u; and us are
LFT(TLw,ul) — EST(’I"Ll(),ul) =100—-85=15 < w101 = 21,
and

LFT(’I”L107U3) - EST(’I’LH),U?,) =100-85=15 < w10,3 = 16,

hence, neither u; nor us can be added with replicas.

(3) The second task ng is considered to be repeated. A
replica can be added to us for ng because this operation
does not violate Constraint 1, as shown in Fig. 8. Why a rep-
lica can be added to us for ng is explained in the following.

The EST and LFT values of ng are

EST(ng, ul) =69 LFT(’!Lg,ul) =
EST(TLlo,UQ) =65 LFT(TLg,’U,Q) =
EST(TLg, 'LL3) =69 L.FT(?’L&U;;) =

The LFT values of ng on us and us are

LFT(ng,UQ) — EST(TL&UQ) =93 —-65=28 > w2 = 11,
and
LFT(ng,u3) — EST (ng,u3) =82 — 69 = 13 < wyg3 = 14;

hence, a replica can be added to u,, whereas a replica cannot
be added to us for ng, as shown in Fig. 8.

(3) The following tasks use the same principle as the
aforementioned tasks. As shown in Fig. 9, n7, ng, n4, and ns
add individual replicas in ECUs. Finally, the reliability of
the automotive application is enhanced from 0.95475549
(Fig. 7) to 0.97584149 (Fig. 9) by using RBSE to add replicas
for ng, ny, Ng, N4, and ns.

The RBSE algorithm is proposed on the basis of the afore-
mentioned analysis, as shown in Algorithm 2.

Overall, RBSE tries to backward add a new replica for
each task to an available ECU that can generate maximum

R(G)-097584149 D(G)=100

“ L”B/JN - : @ ,,,,, i |
. - N nS/w
| _%—Y

| | !
0 10 20 30 40 80 90 1

Jel————

»
>

S

0

Fig. 9. RBSE-generated task mapping of the motivational automotive
application in Fig. 2.

Fig. 10. A new replica is added to w, for ng by using RFSE.

reliability value among all available ECUs without violating
the Constraint 1 and Constraint 2. The time complexity of
RBSE is also O(|N|*> x|U]) , which is the same as those of
HEFT and BSE.

Algorithm 2. The RBSE Algorithm

Input: U = {u1,us,...,uy}, G, D(G), task mapping generated
by the previous algorithm
Output: R(G), RT(G), and task mapping
1: The tasks” backward sequence backward_seq is also sorted
by the descending order of the AFT values generated by
the previous algorithm;
2: while (there are tasks in backward_seq) do
3: n; « backward_seq.out();
4. U, indicates that the ECU set has been allocated;
5.
6

for (each ECU uy, ;) € (Uewr)) do
: Move the n; in ECU g,y by AFT(n;) « LFT(n;, Ueyr())
and AST(n;) — (AFT(n;) —
7: end for
8: for (each ECU uy, € (U — Ucyr)) do
9: Calculate EST'(n;, ux) using Eq. (3);
10: Calculate LFT'(n;, u;) using Eq. (4);
11: if (LFT(n;,uy) — EST(n;,uy)) < w;y) then

wnk)/

12: continue;

13: end if

14: Calculate R(n;, u;) using Eq. (1);
15: end for

16: Select the ECU wy,(;y with the maximum reliability value
under R(n, Upew(i)) > R(1i, Uneu(i))

17: if (tyeu() is not NULL) then

18: Add the replica of 7; to ECU ;)

Upey(i)) and AST (n;) < (AFT(n;) —

19: end if

20: Calculate the reliability R(n;) using Eq. (6);

21: end while

22: Calculate the reliability R(G) using Eq. (2);

| by AFT(n;) — LFT(n;,

wz,ncu(z)) ;

5.2 Proposed RFSE Algorithm

Similar to the non-repeated FSE, a repeated FSE can be
implemented by adding a possible replica in an ECU for
each task.

1) Similar to FSE, the forward sequence of tasks is also
sorted by the ascending order of the AST values gen-
erated by RBSE. For example, the forward sequence
of tasks in Flg 9is ni, ng, N5, g, N, Ng, N7, Ng, N3, and
nio-

2) The entry task n, is first handled. The begin time and
end time of n; are just moved to 0 and 8, respec-
tively, in fixed ECU n3. No additional replicas are
added for ns, ns, n4, no until ng; a new replica for ng

XIE ETAL.: SAFETY ENHANCEMENT FOR REAL-TIME PARALLEL APPLICATIONS IN DISTRIBUTED AUTOMOTIVE EMBEDDED...

R(G)=0.97586917 D(G)=100

.
2 2 3 2 1
w | i m A m A]
' / > >l -
_

| | | \ | | | | | v
| | | >
0 10 20 30 40 50 60 70 80 90 100

I

I

> I

o t

2 =z ~ 2 1,
RSN e
- I
S '
|

I

Fig. 11. RFSE-generated task mapping of the motivational automotive
application in Fig. 2.

is added to ;. That is, ng has a total of three replicas,
as shown in Fig. 10.

3) The tasks ni, n3, ns, n4, no, and ng have been handled
in Fig. 10. Similar to already handled tasks, the
remaining tasks n7, ng, ng, and n;y will be handled;
however, no additional replicas are added for ny, ng,
ng, and nyg, as shown in Fig. 11. Finally, the reliabil-
ity of the automotive application is enhanced from
0.97584149 (Fig. 9) to 0.97586917 (Fig. 11) by using
RFSE to add replicas for ng.

Finally, the RFSE algorithm is proposed and is shown in

Algorithm 3.

Algorithm 3. The RFSE Algorithm

Input: U = {uy,up, ..., uy}, G, D(G), task mapping generated
by the previous algorithm
Output: R(G), RT(G), rep(G), and task mapping
1: The tasks’ forward sequence forward_seq is also sorted by
the ascending order of the AST values generated by the
previous algorithm;
2: while (there are tasks in forward_seq) do
n; < forward_seq.out();
U, indicates that the ECU set has been allocated;
for (each ECU vy, ;) € (Ucur)) do
Move the n; in ECU ;) by AST (n;) «— EST (n;, Ueur(s))
and AFT(n;) < (AST(n;) + wi);
7. end for
8: for (each ECU uy, € (U — Ucyr)) do
9: Calculate EST(n;, uj,) using Eq. (3);
10: Calculate LFT'(n;,u;,) using Eq. (4);
11: i (((LFT(ni,uy) — EST(n;,ui)) < w;) then

12: continue;

13: end if

14: Calculate R(n;, uy,) using Eq. (1);
15: end for

16: Select the ECU uy.,;) with the maximum reliability value
under R(n;, “’new(i)) > R(Ni, Upew(s))

17 if (tyeu(;) is not NULL) then

18: Add the replica of n; to ECU (i) by AST(n;) — EST(n;,

u7ww(i)) and AFT(”’) - (AIPT(TL,) + wi,ncw(i));

19: endif

20: Calculate the reliability R(n;) using Eq. (6);

21: end while

22: Calculate the reliability R(G) using Eq. (2);

5.3 Proposed SSSE Approach

After a round of backward-and-forward recovery using
RBSE and RFSE, the second round, the third round, and so
on can continue until the reliability value reaches a stable
and fixed value. We have explained that continually doing

2075

C Start)

‘ Obtain initial reliability value R(G) by invoking HEFT ‘

Ref. [23]

Ref. [5] ‘ Obtain enhanced reliability value R(G) by invoking BSE ‘

Algorithm 1 ‘ Obtain enhanced reliability value R(G) by invoking FSE ‘
I

¥

Algorithm 2 ‘Obtain enhanced reliability value R(G) by invoking RBSE‘

Algorithm 3 ‘Obtain enhanced reliability value R(G) by invoking RFSE‘

R(G) reaches a stable state?

(End)

Fig. 12. Flowchart of the proposed SSSE approach.

non-repeated BSE or FSE recovery can not enhance safety in
Section 5.1. Fortunately, invoking repeated RBSE and RFSE
recovery could enhance safety by adding a possible new
replica to an ECU for each task in each round instead of
task migration. The flow chart of SSSE is shown in Fig. 12.

Table 5 shows the reliability enhancement process of the
motivational automotive application in Fig. 2 by using
related algorithms. BSE, FSE, RBSE (first round), RFSE (first
round) gradually enhance the reliability value from
0.94771638 to 0.97586917. 0.97586917 is a stable and fixed
value because the same result is obtained using RFSE (first
round), RBSE (second round), and RFSE (second round). As
the motivational automotive application only includes three
ECUs, the second round does not reflect the difference from
the first round. The final response time RT(G) is 98, and the
number of replicas rep(G) is 16 for the motivational automo-
tive application in Fig. 2. SSSE is proposed by combing the
existing HEFT and BSE algorithms and the proposed FSE,
RBSE, RFSE algorithms. SSSE can invoke RBSE and RFSE
repeatedly until reaching a stable value. Notice that RBSE
and RFSE will not always enhance the reliability due to the
limited ECUs and strict Constraint 1 and Constraint 2. There-
fore, SSSE can stop in the while loop.

It is worth pointing out that SSSE is consistent with the
static recovery mechanism in the automotive functional
safety standard ISO 26262, where backward recovery, for-
ward recovery, and recovery through repetition have been
recommended as static recovery mechanism as pointed in
Section 7.4.12, Part 6 of the 2nd edition of ISO 26262 [4]. The

TABLE 5
Reliability Enhancement Process of the Motivational
Automotive Application in Fig. 2

R(G) RT(G) D(G) rep(G) Figure
HEFT 0.94771638 80 100 10 Fig.3
BSE 0.95294318 92 100 10 Fig. 5
FSE 0.95475549 92 100 10 Fig.7
RBSE (first round) 0.97584149 98 100 15 Fig.9
RFSE (first round) 0.97586917 98 100 16 Fig. 11
RBSE (second round) 0.97586917 98 100 16 Fig. 11
RFSE (second round) 0.97586917 98 100 16 Fig. 11

2076

SSSE approach proposed in this study is actually a recovery
through repetition based on backward recovery and for-
ward recovery of the static recovery mechanism. Therefore,
the special idea of SSSE is the organic combination of the
aforementioned three recoveries under the Constraint 1 and
Constraint 2. Therefore, the SSSE approach complies with
the automotive functional safety standard from a practical
perspective. In other words, the stable stopping (i.e., SSSE)
approach is a convergence algorithm, which means that
when the reliability value reaches a steady state, the algo-
rithm can stop. There is no denying that the proposed SSSE
approach has burden or disadvantages in terms of the ECU
they have due to the use of repetition.

1) If repetition is not adopted, a task only causes one
Message Receiving Interrupt (MRI) to one of its suc-
cessor task in the ECU receiving its message. For
instance, task ng is a successor task of task ng in the
motivational automotive application of Fig. 2; after
task ng is finished, it only needs to send one message
to ng, such that ng only causes one MRI to ns.

2) If repetition is adopted, a task only causes multiple
MRIs to its one successor task in the ECU receiving
its message. For instance, after using the SSSE
approach, ng causes four message MRIs to ng. The
details are shown in Fig. 11, where n¢ has three repli-
cas of n§, nZ, and ng, while ng has two replicas of n.,
and n2. In Fig. 11, ng cause four MRIs (denoted with
red arrows) to ns.

Too many unnecessary MRIs bring considerable ECU
load due to the execution of Interrupt Service Routine (ISR)
and interrupt-triggered switch overhead between tasks.
These disadvantages are not negligible for safety-critical
distributed automotive embedded systems, especially for
ECUs running at relatively low clock speeds and with small
memory space in automotive ECUs [25], [26], [27]. There-
fore, although the SSSE approach enhances the reliability of
the automotive application, it also brings considerable ECU
load that would affect the quality of task scheduling.

6 EXPERIMENTS

The state-of-the-art BSE algorithm is selected to compare
with the proposed algorithms. The metrics are response
time RT(G), reliability R(G), and replica number rep(G).
As this study focuses on the early design phase, the applica-
tion parameters are known on the basis of their real deploy-
ment. The parameter values of a real automotive are
adopted. The failure rate falls in the range of 107%/us -
16 x 1079/ us. The WCETs of the tasks and the WCRTs of
the messages fall under the range of 100 us - 400 us gener-
ated by uniform distribution. The ECU number is 16.
According to the related description in ISO 26262, fault
tolerance is merely a static recovery mechanism during the
design phase to maintain the safe state of automotive appli-
cation, and does not involve the final operational results [4].
Considering that fault tolerance does not address the con-
text where the application is used to switch off the system
and the context where a safe state can be directly reached
by switching off the application, and not all imaginable
faults can be tolerated as pointed out in the 2nd edition of
ISO 26262 [4], this study focuses on safety prevention using

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 9, SEPTEMBER 2020

TABLE 6
ASIL Determination Formed by a Combination of Severity, Expo-
sure, and Controllability Provided in ISO 26262 [4]

. Controllability
Severity Exposure
C1 2 c3
El QM QM QM
S1 E2 QM QM QM
E3 QM QM A
E4 QM A B
El QM QM QM
S2 E2 QM QM A
E3 QM A B
E4 A B C
El QM QM A/QM
s3 E2 oM A B
E3 A B C
E4 B C D

safety enhancement technique during the design phase, and
does not determine the final execution result during the
running phase. Therefore, the automotive applications in
this study will be tested by simulation to implement safety
enhancement in a static recovery manner.

6.1 ASIL Determination in ISO 26262

We introduce the Automotive Safety Integrity Level (ASIL)
in advance because it is related to the safety evaluation of
an automotive application. In ISO 26262, ASIL is a risk clas-
sification scheme to define the safety requirements. The
ASIL is established by performing a Hazard Analysis and
Risk Assessment (HARA) of a potential hazard by evaluat-
ing at the severity, exposure and controllability of the auto-
motive operating scenario. An ASIL is the combination of
severity, exposure, controllability [1], [28]. There are four
ASILs identified by the ISO 26262: ASIL A, ASIL B, ASIL C,
ASIL D [1], [4]. The higher the ASIL, the greater the risk and
the more effort required to reduce the risk.

Severity means an estimate of the extent of harm that
may occur in a potentially hazardous event; there are four
severity levels: SO (no injuries), S1 (light and moderate inju-
ries), S2 (severe and life-threatening injuries), and S3 (fatal
injuries). Exposure means the state of being in an opera-
tional situation where it is hazardous if the situation is coin-
cident with the failure mode under the analysis; there are
five exposure levels: EO (incredibly), E1 (very low probabil-
ity), E2 (low probability), E3 (medium probability), and E4
(high probability). Controllability means the ability to avoid
specified harm or damage through the timely reactions of
the persons involved; there are four controllability levels:
CO (controllable in general), C1 (simply controllable), C2
(normally controllable), and C3 (uncontrollable). Notice that
the controllability is related to the driver’s driving state
rather than the system.

ISO 26262 provides the ASIL determination formed by a
combination of severity, exposure, and controllability, as
shown in Table 6 [4]. Each ASIL is the combination of sever-
ity, exposure, and controllability values. There is a subtle
difference about ASIL determination between the 1st and
2nd editions of the ISO 26262 standard. In the 1st edition,

XIE ETAL.: SAFETY ENHANCEMENT FOR REAL-TIME PARALLEL APPLICATIONS IN DISTRIBUTED AUTOMOTIVE EMBEDDED...

IM |ﬂ|ﬂ|ﬂl’ll

ur.m

1
0.995
0.99

1200
0,985
1000 098
800 = 0975
- -
0.97
0.96%
400 0.96
= 0,955
20 095
945

Deadlisle 1030 A8 12: m,ﬂ\ I:wnntllﬁnb G0 p5
lv:,u\ u#! 630 45 | G0 L 26
| | 1010 485 |1-<~<,m |
1000 g5 | 1188485 |
1028 45 1204 f5
1030 48 1230 45
1030 A& 1230 48 |

Relinbility

Response time (unit: us)
o
B

WHEFT|
BBSE 630 L85

630 45 | |}“ |
630 45 | 829 /5 |
630 g | B29 |
630 45 | B30 A5 |

(a) Response time values.

890 45

(b) Reliability values.

2077

Number of replicas

1030 pos

1230 to5 I)cndlinr 630 45 B30 45 1030 ,u\ 1z !I‘u\ 1430 &
[mHEFT 3 | m | m | & 3l
sk | W 3l 3
FSE| &1 | 31 | m | s | @
|wRmse] 44 | ® | s | e | 60
WERFSE 49 70 B0 89 88
| msssE 5 | s | @ | 1m | 12

(c) Numbers of replicas.

Fig. 13. Values of the real-life parallel automotive application in different real-time constraints.

the combination of S3, E1, and C3 is ASIL A. However, in
the 2nd edition, this combination may be Quality Manage-
ment (QM) if several unlikely situations are combined and
the change may result in a lower probability of exposure
than E1. QM indicates that software can be developed
according to the quality management process to manage the
identified risk, and no safety-related design needs to be con-
sidered. QM is not an ASIL but may be specified in the
HARA [1], [4]. Severity has been decided after HARA and
cannot be changed. Controllability is a fixed value during
the design phase. Therefore, to enhance safety for a real-
time parallel automotive application, the feasible measure is
to drop the exposure of the application according to Table 6.

6.2 Real-Life Parallel Automotive Application

The real-life parallel automotive application with 31 tasks
from Ref. [5] are adopted. This application contains six
blocks: engine controller (n;-n;), automatic gear box
(ng-nq1), anti-locking brake (nj2-ni7), wheel angle sensor
(n1s-n1g), suspension controller (ngy-n24), and body work
(nos-nz1).

The HEFT-generated lower bound of the application is
630 ws. As the real-time constraint must be larger than or
equal to the lower bound explained in Section 3.3, The real-
time constraint is changed from 630 s to 1430 ws with 200
ws increments. The results are shown in Fig. 13.

1) Fig. 13(a) shows that the response time values using
all the algorithms are less than or equal to corre-
sponding real-time constraints. As the HEFT-gener-
ated response time is the lower bound, it is fixed at
630 ps. Except that the real-time constraint is equal
to the lower bound (i.e., 630 ws), Fig. 13(a) shows the
BSE and FSE-generated response time values are less
than the real-time constraints; such results indicate
that BSE and FSE still leave a larger optimization
space for RBSE, RFSE, and SSSE.

2) Fig. 13(b) shows that a long response time could lead
to a high reliability, and the results basically confirm
that minimizing response time and maximizing reli-
ability is a bi-criteria optima problem. In addition,
Fig. 13(b) clearly shows that the reliability values are
divided into three gradients: 1) HEFT; 2) BSE and
FSE; and 3) RBSE, RFSE, and SSSE. As expected,
SSSE generates the maximum reliability values, fol-
lowed by RFSE, RBSE, FSE, BSE, and HEFT. HEFT

has the lowest reliability value of 0.94920261. By
backward-and-forward recovery using BSE and FSE,
the reliability value are increased to 0.962-0.980.
Through further primary-backup repetition using
RBSE and RFSE, the reliability values are increased
to 0.974-0.998. With the continuous involvement of
RBSE and RFSE (i.e., using SSSE), the reliability val-
ues can reach a stable state in each case. SSSE only
increases a small amount of reliability compared
with RFSE because SSSE only invokes RBSE and
RFSE twice at most. Even so, as long as the slack
response time increases, safety enhancement can be
maximized as much as possible.

Automotive functional safety standard ISO 26262 pro-
vides the duration/probability of exposure levels of El
(very low probability with reliability goal of < 0.99), E2
(low probability with reliability goal 0.99), E3 (medium
probability with reliability goal > 0.9 and < 0.99), and E4
(high probability with reliability goal <= 0.9) (see Table 7).
Take Fig. 15(b) as an example, the maximum reliability
value using BSE is 0.97987526 (E3), whereas using SSSE
reaches 0.99877734 (E1). That is, the exposure level drops
from E3 to E1 after using SSSE. Such exposure drop (.e.,
reliability enhancement, safety enhancement) enables a
safety guarantee of higher level. For example, Table 6 shows
the ASIL determination formed by a combination of sever-
ity, exposure, and controllability in the 2nd edition of ISO
26262 [4]. According to the ASIL determination in Table 6,
there are two combinations of ASIL C. We consider one
combination, where the severity of the application is S3, the
exposure of the application is E3, and the controllability of
the driver is C3. Severity and controllability are fixed values
during the design phase as explained in Section 3.2. There-
fore, to achieve QM availability for the ASIL C application,
one possible measure is to drop the exposure of the applica-
tion from E3 to E1 according to Table 6.

TABLE 7
Classes of Probability of Exposure Regarding Duration/
Probability of Exposure in ISO 26262 [1], [4]

Exposure level Probability of exposure Reliability goal
E1 Very low probability Not specified At least exceeds 0.99
E2 Low probability < 1% 0.99

E3 Medium probability [1%, 10%] >0.9

E4 High probability > 10% <=0.9

2078

098

(IR

1442 /6] 504248
2642 185 |
HAZ 455 |
1440 45 |
1442 J5 |
442 45 |
1z 485 |

(a) Response time values.

Fig. 14. Values of synthetic application in different real-time constraints.

Even though SSSE has very little reliability enhancement
over RBSE and RFSE in Fig. 13(b), the results are still useful
for safety-sensitive distributed automotive embedded sys-
tems. The classes of probability of exposure in ISO 26262
shown in Table 7 are informative, not prescriptive, and
leave a great deal of discretion to whoever is building each
component system and ultimately to the automakers and
suppliers [29]. For instance, the probability of exposure E1
in ISO 26262 is not specified, and its corresponding reliabil-
ity goal at least exceeds 0.99, as shown in Table 7. Therefore,
different automakers and suppliers can choose different
reliability goals according to their product and market ori-
entations as long as the values belong to the same exposure.
For instance, it is feasible that the reliability goal for E3 is
0.99877730 because this value exceeds 0.99, and ISO 26262
requires high accuracy in reliability value. When the real-
time constraint is 1430 s shown in Fig. 13(b), SSSE drops to
E1, whereas RBSE and RFSE only drops to E2. This result
sufficiently reflects the advantages of SSSE.

3) Fig. 13(c) clearly shows that the HEFT-, BSE-, and FSE-
generated replicas are fixed at 31 because they do not imple-
ment primary-backup repetition. The replicas produced by
RBSE, RFSE, and SSSE progressively increase; for example,
when the real-time constraint is 630 us, the numbers of
RBSE-, RFSE-, and SSSE-generated replicas are 44, 49, and
54, respectively. As the reliability value increases with the
increased real-time constraint, the number of replicas
required also rises through primary-backup repetition; for
example, when the real-time constraint is 1430 ps, the num-
bers of RBSE, RFSE, and SSSE-generated replicas reach 60,
88, and 122, respectively. Although primary-backup repeti-
tion is a practical fault tolerance measure to enhance safety,
it has some weaknesses. That is, RBSE, RFSE, and SSSE,
especially SSSE increase the burden on ECUs due to the
additional replicas and affect the control efficiency of ECUs
due to the time-consuming extra code. These problems
should be considered the weaknesses of fault tolerance
measure.

(4) In each case, the time required to calculate the result
using SSSE is very short and is within 1 s. The reason is that
SSSE only invokes RBSE and RFSE twice at most.

6.3 Synthetic Parallel Application

In addition to using a real-life parallel automotive applica-
tion to confirm the advantage of the proposed algorithms, an
additional synthetic application with 100 tasks are adopted

Hesponse time (unit: us)
E £ %
| 8 S g &
I.E
S
=
x| Bl
1
Reliability
: § B

(b) Reliability values.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 9, SEPTEMBER 2020

Num ber of replicas
=

150
100 . - | . - -
2642 B IS 3842 48 44z pE 5042485
HE] 100 100 100 100 100
100 100 100 100 100
100 100 100 100 100
153 | 165 166 | 168 | 167
185 210 213 218 218
248 05 5 378 302

(c) Numbers of replicas.

to analyze the results. This synthetic application has the
same parameter values as those of a real-life parallel automo-
tive application. A randomly generated application can be
obtained by using a task graph generator [30]. The following
parameters are set in this experiment: the communication-
to-computation ratio is 1, the shape parameter is 1, and the
heterogeneity factor is 0.5. The heterogeneity factor values
are in the 0-1 scope in the task graph generator, where 0.1
and 1 are the lowest and highest heterogeneity factors,
respectively. The HEFT-generated lower bound of the appli-
cation is 2642 us. As the real-time constraint must be larger
than or equal to the lower bound explained in Section 3.3, the
real-time constraint is changed from 2642 s to 5042 ps with
600 s increments. The results are shown in Fig. 14.

1) Similar to Fig. 13(a), Fig. 14(a) shows that the
response time values using all the algorithms are
also less than or equal to the corresponding real-time
constraints. Overall, Fig. 13(a) and Fig. 14(a) have
the same regular pattern.

2) Similar to Fig. 13(b), Fig. 14(b) also clearly divides
the reliability values into three gradients: 1) HEFT; 2)
BSE and FSE; and 3) RBSE, RFSE, and SSSE. HEFT
has the lowest reliability value of 0.88677322, which
is much lower than 0.94920261 shown in Fig. 13(b).
The reason is that the reliability value of the applica-
tion is the product of all tasks, such that the applica-
tion reliability value generated by 100 tasks is
naturally lower than that generated by 31 tasks (the
real-life parallel automotive application contains 31
tasks). Overall, Fig. 13(b) and Fig. 14(b) present the
same regular pattern for all the algorithms.

3) Fig. 14(c) shows the same regular pattern as Fig. 13(c).
By synthesizing the data in Figs. 13(c) and 14(c), the fol-
lowing facts are confirmed. 1) HEFT, BSE, and FSE
have fixed numbers of replicas |N| due to the absence
of primary-backup repetition, and || represents the
size of task set of the application. 2) The numbers of
RBSE-generated replicas are between |N| and 2 x |N|
because each task is repeated once at most. 3) The num-
bers of RFSE-generated replicas are between |N| and
3 x |N| because each task is repeated at most once on
the basis of RBSE; 3) SSSE-generated replicas are theo-
retically between |N| and |U| x |N|, where |U| repre-
sents the size of processor set, but approximately
4 x |N|in the actual situations. However, as mentioned

XIE ETAL.: SAFETY ENHANCEMENT FOR REAL-TIME PARALLEL APPLICATIONS IN DISTRIBUTED AUTOMOTIVE EMBEDDED...

earlier, the main weaknesses of RBSE, RFSE, and SSSE
are that they increase the burden on ECUs due to the
additional replicas and affect the control efficiency of
ECUs due to the time-consuming extra code.

4) In each case, the time required to calculate the result
using SSSE is still within 1 s because SSSE only
invokes RBSE and RFSE five times at most for an
automotive application with 100 tasks.

7 CONCLUSION

The SSSE approach for a real-time parallel automotive
application to enhance safety to a stable value was proposed
in this study. SSSE consists of existing HEFT and BSE algo-
rithms and pretested FSE, RBSE, and RFSE algorithms. SSSE
enhances the safety by using stable stopping approach on
the basis of the forward-and-backward recovery through
primary-backup repetition. SSSE can make the exposure
level drops from E3 to E1 towards safety guarantee for
higher level. SSSE is actually a recovery through repetition
based on backward recovery and forward recovery of the
static recovery mechanism pointed out in the 2nd edition of
ISO 26262. It is believed that the stable stopping approach
can serve as a guideline in the safety design of automotive
applications. The future work could further study the safety
enhancement of distributed automotive embedded systems
by considering multiple automotive applications with dif-
ferent deadlines.

ACKNOWLEDGMENTS

The authors would like to express their gratitude to the asso-
ciate editor and three anonymous reviewers for their con-
structive comments which have helped to improve the
quality of this article. This work was supported in part by the
National Natural Science Foundation of China under Grants
61702172, 61932010, 61672217, and 61972139, the CCF-Ten-
cent Open Fund under Grant CCF-TecentRAGR20190119,
the Open Research Project of the State Key Laboratory of
Synthetical Automation for Process Industries (SAPI),
Northeastern University, China under Grant PAL-N201803,
the Natural Science Foundation of Hunan Province under
Grant 2018]J3076, and the Fundamental Research Funds for
the Central Universities, Hunan University, China.

REFERENCES

[1] “Road vehicles-functional safety, iso 26262,” Nov. 2011. [Online].
Available: https:/ /www.iso.org/standard /43464.html

[2] S. S. Williamson, A. K. Rathore, and F. Musavi, “Industrial elec-
tronics for electric transportation: Current state-of-the-art and
future challenges,” IEEE Trans. Ind. Electron., vol. 62, no. 5,
pp- 3021-3032, May 2015.

[3] A. Nardi and A. Armato, “Functional safety methodologies for
automotive applications,” in Proc. 36th Int. Conf. Comput.-Aided
Des., 2017, pp. 970-975.

[4] “Road vehicles-functional safety, 1SO 26262,” Dec. 2018. [Online].
Available: https:/ /www.iso.org/standard /68383.html

[5] G.Xie, G. Zeng, Y. Liu, J. Zhou, R. Li, and K. Li, “Fast functional
safety verification for distributed automotive applications during
early design phase,” IEEE Trans. Ind. Electron., vol. 65, no. 5,
pp- 43784391, May 2018.

[6] E. Rolf, “Formal performance analysis in automotive systems
design - a rocky ride to new grounds,” in Proc. 23rd Int. Conf.
Comput. Aided Verification, 2011. [Online]. Available: http://
formalverification.cs.utah.edu/cav2011/content/presentations /
CAV 2011V3.pdf

[7]

(8]

]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]
[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

2079

G. Xie et al., “Reliability enhancement towards functional safety
goal assurance in energy-aware automotive cyber-physical sys-
tems,” IEEE Trans. Ind. Informat., vol. 14, pp. 5447-5462, Dec. 2018.
W. Jiang, P. Pop, and K. Jiang, “Design optimization for security-
and safety-critical distributed real-time applications,” Microproces-
sors Microsyst., vol. 52, pp. 401-415, Jul. 2017.

J. M. Rivas, J. J. Gutiérrez,]J. C. Palencia, and M. G. Harbour,
“Deadline assignment in edf schedulers for real-time distributed
systems,” IEEE Trans. Parallel Distrib. Syst., vol. 26, no. 10,
pp. 26712684, Sep. 2015.

“Real-time computing - wikipedia,” Apr. 2014. [Online]. Avail-
able: https:/ /en.wikipedia.org/wiki/Real-time_computing

A. Benoit, F. Dufossé, A. Girault, and Y. Robert, “Reliability and
performance optimization of pipelined real-time systems,” J. Par-
allel Distrib. Comput., vol. 73, no. 6, pp. 851-865, Jun. 2013.

N. Kaur and S. Singh, “A budget-constrained time and reliability
optimization bat algorithm for scheduling workflow applications
in clouds,” Procedia Comput. Sci., vol. 98, pp. 199-204, Jan. 2016.

P. Singh, M. Dutta, and N. Aggarwal, “Bi-objective hwdo algo-
rithm for optimizing makespan and reliability of workflow sched-
uling in cloud systems,” in Proc. 14th IEEE India Council Int. Conf.,
2017, pp- 1-9.

L. Zhao, Y. Ren, Y. Xiang, and K. Sakurai, “Fault-tolerant schedul-
ing with dynamic number of replicas in heterogeneous systems,”
in Proc. 12th IEEE Int. Conf. High Perform. Comput. Commun, 2010,
pp. 434-441.

L. Zhao, Y. Ren, and K. Sakurai, “Reliable workflow scheduling
with less resource redundancy,” Parallel Comput., vol. 39, no. 10,
pp- 567-585, Jul. 2013.

G. Xie, Z. Li, N. Yuan, R. Li, and K. Li, “Toward effective reliabil-
ity requirement assurance for automotive functional safety,”
ACM Trans. Des. Autom. Electron. Syst., vol. 23, no. 5, pp. 1-26,
Aug. 2018.

2020. https:/ /www.autosar.org/standards/ classic-platform/

X. Yong, Z. Gang, C. Yang, R. Kurachi, H. Takada, and L. Renfa,
“Worst case response time analysis for messages in controller area
network with gateway,” IEICE Trans. Inf. Syst., vol. 96, no. 7,
pp- 1467-1477, Jul. 2013.

A. Girault and H. Kalla, “A novel bicriteria scheduling heuristics
providing a guaranteed global system failure rate,” IEEE Trans.
Dependable Secure Comput., vol. 6, no. 4, pp. 241-254, Oct./Dec. 2009.
B. Zhao, H. Aydin, and D. Zhu, “On maximizing reliability of real-
time embedded applications under hard energy constraint,” IEEE
Trans. Ind. Informat., vol. 6, no. 3, pp. 316-328, Aug. 2010.

M. Di Natale, H. Zeng, P. Giusto, and A. Ghosal, Understanding
and Using the Controller Area Network Communication Protocol: The-
ory and Practice. Berlin, Germany: Springer, 2012.

A. Kazeminia, “Reliability optimization of hardware components
and systems topology during early design phase,”]. Amer. Assoc.
Pediatric Ophthalmology Strabismus, vol. 18, no. 4, 2014, Art. no. €9.
H. Topcuoglu, S. Hariri, and M.-Y. Wu, “Performance-effective and
low-complexity task scheduling for heterogeneous computing,”
IEEE Trans. Parallel Distrib. Syst., vol. 13, no. 3, pp. 260-274,
Mar. 2002.

H. Arabnejad and J. G. Barbosa, “List scheduling algorithm for
heterogeneous systems by an optimistic cost table,” IEEE Trans.
Parallel Distrib. Syst., vol. 25, no. 3, pp. 682—-694, Mar. 2014.

F. Polzlbauer, R. I. Davis, and I. Bate, “Analysis and optimization
of message acceptance filter configurations for controller area net-
work (CAN),” in Proc. 25th Int. Conf. Real-Time Netw. Syst., 2017,
pp- 247-256.

R. L. Davis, S. Altmeyer, and A. Burns, “Mixed criticality systems
with varying context switch costs,” in Proc. IEEE Real-Time Embed-
ded Technol. Appl. Symp., 2018, pp. 140-151.

P. Patel, M. Vanga, and B. B. Brandenburg, “Timershield: Protect-
ing high-priority tasks from low-priority timer interference (out-
standing paper),” in Proc. IEEE Real-Time Embedded Technol. Appl.
Symp., 2017, pp. 3-12.

G. Xie, Y. Chen, Y. Liu, R. Li, and K. Li, “Minimizing development
cost with reliability goal for automotive functional safety during
design phase,” IEEE Trans. Rel., vol. 67, no. 1, pp. 196-211,
Mar. 2018.

C. Hobbs and P. Lee, “Understanding iso 26262 asils,” Jul. 2013.
[Online]. Available: https:/ /www.electronicdesign.com/embedded /
understanding-iso-26262-asils

“Task graph generator,” 2015. https://sourceforge.net/projects/
taskgraphgen/

https://www.iso.org/standard/43464.html
https://www.iso.org/standard/68383.html
http://formalverification.cs.utah.edu/cav2011/content/presentations/CAV 2011V3.pdf
http://formalverification.cs.utah.edu/cav2011/content/presentations/CAV 2011V3.pdf
http://formalverification.cs.utah.edu/cav2011/content/presentations/CAV 2011V3.pdf
https://en.wikipedia.org/wiki/Real-time_computing
https://www.autosar.org/standards/classic-platform/
https://www.electronicdesign.com/embedded/understanding-iso-26262-asils
https://www.electronicdesign.com/embedded/understanding-iso-26262-asils
https://sourceforge.net/projects/taskgraphgen/
https://sourceforge.net/projects/taskgraphgen/

2080

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 9, SEPTEMBER 2020

Guoqi Xie (Senior Member, |IEEE) received the
PhD degree in computer science and engineering
from Hunan University, in 2014. He is currently an
associate professor of embedded and cyber-
physical systems with Hunan University. He was
a postdoctoral research fellow with Nagoya Uni-
versity. His current research interests include
embedded and cyber-physical systems, parallel
and distributed systems, and safety- and
security-critical systems. He received the Best
Paper Award at IEEE ISPA 2016 and the 2018

IEEE TCSC Early Career Researcher Award. He is currently serving
on the editorial boards of Journal of Systems Architecture, Journal
of Circuits, Systems and Computers, and Microprocessors and
Microsystems. He is an ACM senior member.

Gang Zeng (Member, IEEE) received the PhD
degree in information science from Chiba Univer-
sity, in 2006. He is an associate professor at the
Graduate School of Engineering, Nagoya Univer-
sity. From 2006 to 2010, he was a researcher,
and then assistant professor at the Center for
Embedded Computing Systems (NCES), the
Graduate School of Information Science, Nagoya
University. His research interests mainly include
power-aware computing and real-time embedded
system design. He is a member of IPSJ.

Renfa Li (Senior Member, IEEE) is currently the
professor and chair of embedded and cyber-
physical systems with Hunan University. He is the
chair of the Key Laboratory for Embedded and
Cyber-Physical Systems. His major interests
include computer architectures, embedded com-
puting systems, cyber-physical systems, and
Internet of things. He is a member of the council
of CCF, and a senior member of ACM.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 9, SEPTEMBER 2020

2081

Customizable Scale-Out Key-Value Stores

Ali Anwar™, Yue Cheng
Dongyoon Lee

, Fred Douglis

, Hai Huang, Jingoo Han, Hyogi Sim™,

, Fellow, IEEE, and Ali R. Butt

Abstract—Enterprise KV stores are often not well suited for HPC applications, and thus cumbersome end-to-end KV design
customization is required to meet the needs of modern HPC applications. To this end, in this article we present BespoKV, an adaptive,
extensible, and scale-out KV store framework. BespoKV decouples the KV store design into the control plane for distributed
management and the data plane for local data store. For the control plane, BespoKVprovides pre-built modules, called controlets,
supporting common distributed functionalities (e.g., replication, consistency, and topology) and their various combinations. This
decoupling allows BespoKV to take a user-provided single-server KV store, called a datalet, and transparently enables a scalable and
fault-tolerant distributed KV store service. The resulting distributed stores are also adaptive to consistency or topology requirement
changes and can be easily extended for new types of services. Such specializations enable innovative uses of KV stores in HPC
applications, especially for emerging applications that utilize KV-friendly workloads. We evaluate BespoKV in a local testbed as well as
in a public cloud settings. Experiments show that BespoKV-enabled distributed KV stores scale horizontally to a large number of nodes,
and performs comparably and sometimes 1.2x to 2.6 x better than the state-of-the-art systems.

Index Terms—Key-value stores, HPC KV stores, scale-out KV stores, application tailored storage

1 INTRODUCTION

HE underlying storage and I/O fabric of modern high per-

formance computing (HPC) increasingly employ new
technologies such as flash-based systems and non-volatile
memory (NVM). While improving I/O performance, e.g., via
providing more efficient and fast I/O burst buffer, such tech-
nologies also provide for opportunities to explore the use of
in-memory storage such as key-value (KV) stores in the HPC
setting. Distributed KV stores are beginning to play an
increasingly critical role in supporting today’s HPC applica-
tions. Examples of this use include dynamic consistency
control [1], coupling applications [2], [3], and storing interme-
diate results [4], among others. Relatively simple data
schemas and indexing enable KV stores to achieve high per-
formance and high scalability, and allow them to serve as a
cache for quickly answering various queries, where user expe-
rience satisfaction often determines the success of the applica-
tions. Consequently, a variety of distributed KV stores have

e A. Anwar is with IBM Research—Almaden, San Jose, CA 95120-6099.
E-mail: ali.anwar2@ibm.com.

o Y. Cheng is with George Mason University, Fairfax, VA 22030.
E-mail: yuecheng@gmu.edu.

e H. Huang is with IBM Research—T.]. Watson, Ossining, NY 10562.
E-mail: haih@us.ibm.com.

e] Han and A.R. Butt are with Virginia Tech, Blacksburg, VA 24061.
E-mail: jingoo@ut .edu, butta@cs.vt.edu.

e H. Sim is with Oak Ridge National Laboratory, Oak Ridge, TN 37830.
E-mail: simh@ornl.gov.

e D. Lee is with Stony Brook University, Stony Brook, NY 11794, and also
with Virginia Tech, Blacksburg, VA 24061.
E-mail: dongyoon@cs.stonybrook.edu.

e F. Douglis is with Perspecta Labs, Basking Ridge, NJ 07920.
E-mail: fd-ic@douglis.org.

Manuscript received 11 June 2019; revised 25 Feb. 2020; accepted 8 Mar. 2020.
Date of publication 30 Mar. 2020; date of current version 24 Apr. 2020.
(Corresponding author: Ali Anwar.)

Recommended for acceptance by |. Wang.

Digital Object Identifier no. 10.1109/TPDS.2020.2982640

been developed, mainly in two forms: natively-distributed
and proxy-based KV stores.

The natively-distributed KV stores [5], [6], [7], [8], [9],
shown in Fig. 1a, are designed with distributed services
(e.g., topology, consistency, replication, and fault tolerance)
in mind from the beginning, and are often specialized for
one specific setting. For example, HyperDex [10] supports
Master-Slave topology and Strong Consistency (MS+5C).
Facebook relies on its own distributed Memcache [8] with
Master-Slave topology and Eventual Consistency (MS+EC).
Amazon employs Dynamo [6] with Active-Active' topology
and Eventual Consistency (AA+EC).

The key limitation of natively-distributed KV stores lie in
their inflexible monolithic design where distributed features
are deeply baked with backend data stores. Such a design
allows the developers to highly optimize the KV store perfor-
mance. However, such optimizations are not portable to any
other KV store. The rigid design implies that these KV stores
are not adaptive to ever-changing user demands for different
backend, topology, consistency, or other services. For
instance, Social Artisan [11] and Behance [12] moved from
MongoDB to Cassandra for scalability and maintenance rea-
sons [13]. Conversely, Flowdock [14] migrated from Cassan-
dra to MongoDB due to stability issues. Unfortunately,
this migration process is very frustrating and time/money-
consuming as requires data remodeling and extra migration
resources [13].

Alternatively, proxy-based distributed KV stores leverage
a proxy layer to add distributed services into existing back-
end data stores. For example, Mcrouter [15], and Twem-
proxy [16] can be used as a proxy to enable a basic form of
distributed Memcached [17] with partitioning, as shown in
Fig. 1b. Twemproxy supports additional Redis [18] backend

1. Active-Active is also called multi-master in database literature.

1045-9219 © 2020 |IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

https://orcid.org/0000-0003-4487-2436
https://orcid.org/0000-0003-4487-2436
https://orcid.org/0000-0003-4487-2436
https://orcid.org/0000-0003-4487-2436
https://orcid.org/0000-0003-4487-2436
https://orcid.org/0000-0003-1695-4864
https://orcid.org/0000-0003-1695-4864
https://orcid.org/0000-0003-1695-4864
https://orcid.org/0000-0003-1695-4864
https://orcid.org/0000-0003-1695-4864
https://orcid.org/0000-0003-2485-2171
https://orcid.org/0000-0003-2485-2171
https://orcid.org/0000-0003-2485-2171
https://orcid.org/0000-0003-2485-2171
https://orcid.org/0000-0003-2485-2171
https://orcid.org/0000-0002-2240-3316
https://orcid.org/0000-0002-2240-3316
https://orcid.org/0000-0002-2240-3316
https://orcid.org/0000-0002-2240-3316
https://orcid.org/0000-0002-2240-3316
https://orcid.org/0000-0003-2472-0339
https://orcid.org/0000-0003-2472-0339
https://orcid.org/0000-0003-2472-0339
https://orcid.org/0000-0003-2472-0339
https://orcid.org/0000-0003-2472-0339
mailto:ali.anwar2@ibm.com
mailto:yuecheng@gmu.edu
mailto:haih@us.ibm.com
mailto:jingoo@vt.edu
mailto:butta@cs.vt.edu
mailto:simh@ornl.gov
mailto:dongyoon@cs.stonybrook.edu
mailto:fd-ic@douglis.org

2082

(Ctient (" Client) Client)

(Client)(Client)(Client)
NV

(a) Natively-distributed KV store

(b) Proxy-assisted partitioning

(‘client) (Client) (Client)

(" ctient)(Client)(Client)

¥ <o\
551.;}& =0 ': igh-a;d P
SO ED 23

(¢) Proxy-assisted
partitioning & replication

(d) BespoKV-based flexible
partitioning & replication

Fig. 1. Different approaches to enable distributed KV stores: (a) natively-
distributed (b-d) proxy-based.

as well. Recently, Netflix Dynomite [19] extended Twem-
proxy to support high availability and cross-datacenter rep-
lication, as illustrated in Fig. 1c.

Unlike monolithic natively-distributed KV stores, the use
of a separate proxy layer enables support for multiple back-
ends. Each single-server KV store such as Memcached [17],
Redis [18], LevelDB [20], and Masstree [21] has own its merit,
so the ability to choose one or mix is an ample reward. How-
ever, existing proxy-based KV stores are still limited to a sin-
gle topology and consistency: e.g., Dynomite supports AA
+EC only. We see that existing solutions have not yet
extracted the full potential of proxy-based distributed KV
stores. Table 1 summarizes the limitations of existing proxy-
based KV solutions such as Dynomite and Twmemproxy.

This paper presents BesPoKV, a flexible, ready-to-use,
adaptive, and extensible distributed KV store framework.
Fig. 1d illustrates BesPOKV’s distributed KV store architecture.
BESPOKYV takes as input a single-server KV store, which we call
datalet, and transparently enables a distributed KV store ser-
vice, supporting a variety of cluster topologies, consistency
models, replication options, and fault tolerance (Section 3).
For the control plane, BesPoKV provides a set of distributed

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 9, SEPTEMBER 2020

TABLE 1
BesPOKYV versus State-of-the-Art Systems for KV Stores
System S R MB MC MT AR P
Single-server X X X X X X X
Twemproxy o x v X X X X
Mcrouter v /X X X L.
Dynomite v v X X X X
BESPOKV (Ourwork) v v/ / 4 4 v o/

S: Sharding; R: Replication; MB: Multiple backends; MC: Multiple consistency
techniques, e.g. strong, eventual, per-request, etc.; MT: Multiple network topol-
ogies, e.g. Master-Slave, Master-Master, Peer-to-Peer, etc.; AR: Automatic
failover recovery; P: Programmable.

management units, referred to as controlets. To the best of our
knowledge, BEsPOKYV is the first system supporting multiple con-
sistency techniques, multiple network topologies, dynamic topology/
consistency adaptation, automatic failover, and programmability,
all at the same time.

Table 2 shows the benefit of the proposed BesPOKV frame-
work. Here, four snippet implementations of the core func-
tions for a simple KV store are presented in pseudocode. To
implement everything from scratch ((a) Vanilla), a devel-
oper creates her own concurrency control functionality
(Lock (), Unlock()), and consistency and quorum man-
agement logic (Sync (), Quorum()). Using a distributed
lock server ((b) Lockserver-based), the developer can
avoid implementing synchronization functions. Similarly,
using Vsync [22] library ((c) Vsync-based) for consis-
tency management further reduces engineering effort. How-
ever, there are two limitations. First, developers still need to
familiarize themselves with a large collection of system/
library interfaces to use them appropriately in the applica-
tion code. Second, such approaches often provide only a sin-
gle technique for replication or consistency: e.g., Vsync uses
only a virtual synchrony to replicate data. In contrast, using
BESPOKV (option (d)), developers only need to implement a
non-distributed version of the KV store (datalet), and then
BESPOKV transparently scales it out to a variety of distributed
environments with different requirements.

TABLE 2
An Example of Four Possible Approaches to Developing a Distributed KV Store With the Last One Being the Proposed Approach

(a) Vanilla (b) Lockserver-based

(c) Vsync-based (d) BESPOKV-based

1 void Put(Str key, Obj val) { | 1 void Put(Str key, Obj val) {

2 if (this.master): 2 if (this.master):

3 Lock (key) 3 Is.Lock(key) // lockserver
4 Table.insert(key, val) 4 Table.insert(key, val)

5 Unlock (key) 5 Is.Unlock(key) // lockserver
6 Sync(master.slaves) 6 Sync(master.slaves)

9 Obj Get(Str key) { 9 Obj Get(Str key) {

10 if (this.master) 10 if (this.master) 10
11 Obj val = Quorum(key) 11 Obj val = Quorum(key) 11 Obj Get(Str key) {
12 Sync(master.slaves) 12 Sync(master.slaves) 12 if (this.master)
13 return val 13 return val 13 Obj val = Vsync.Quorum(key)
14 } 14 } 14 Vsync.Sync(master.slaves)
15 15 15 return val
16 void Lock(Str key) { 16 void Sync(Replicas peers) { 16 }
. // Acquire lock 17 . // Update replicas
18 } 18 }
19 19
20 void Unlock(Str key) { 20 void Quorum(Str key) {
21 ... /I Release lock 21 ... I/ Select a node
2} 22}
23
24 void Sync(Replicas peers) {
25 ... // Update replicas
26 }
27
28 void Quorum(Str key) {
29 ... I/ Select a node
30 }

1 #include <vsynclib> 1 void Put(Str key, Obj val) {
2 Table.insert(key, val)
void Put(Str key, Obj val) { 3}
if (this.master): 4

Is.Lock(key) // lockserver 5 Obj Get(Str key) {
Table.insert (key, val) 6 return Table(key)
Is.Unlock(key) // lockserver | 7 }

Vsync.Sync(master.slaves)

00N U W
-

In case of (a) vanilla, LoC of Lock, Unlock, Sync, and Quorumis not shown. Similarly, LoC to implement Lock and Unlock recipe for ZooKeeper is
not shown. Vsync is available in C# and requires use of proper APIs but for the sake of simplicity and consistency we assume a C++ language grammar.

ANWAR ETAL.: CUSTOMIZABLE SCALE-OUT KEY-VALUE STORES

BESPOKV’s decoupled control and data plane architecture,
configurability, and extensibility enable new solutions for
emerging HPC systems and workloads. First, BesPoKV makes
it easy for HPC developers to explore different design trade-
offs in future HPC systems with heterogeneous hardware
resources. Prior solutions are developed for one architecture.
For instance, SKV [4] is designed for the IBM Blue Gene
Active Storage I/O nodes equipped with flash storage, while
PapyrusKYV [1] is designed to leverage non-volatile memory
(NVM) in HPC systems. Future HPC architectures are
expected to have hierarchical, heterogeneous resources such
as DRAM, NVM, and high-bandwidth memory (HBM).
BESPOKV seamlessly supports the use of different datalets,
each of which can be tuned for different memory and storage
architecture. BesPoOKV’s proxy-based design may add perfor-
mance overhead with an additional layer in theory, but we
found them they remain small during our evaluation.

Second, BEsPOKV enables new HPC services for emerging
workloads such as deep learning and massive IoT data proc-
essing: (1) Data layout: While existing KV solutions are
rigid/fixed for one setting, BEsPOKV allows storing data in
different datalets, adapt and switch datalets as needed, and
thus can handle diverse characteristics of new data work-
loads. For example, a datalet using B-tree as main data struc-
ture is better suited for read-intensive workloads (e.g., deep
learning), while Log Structured Merge (LSM) tree based
datalet is a better choice for write-intensive workloads due
to high write amplification and no fragmentation. (2) Multi-
tenancy and geo-distribution: IoT applications increasingly
require multi-tenancy support, e.g., smart road big data used
by different applications. Different tenant would require dif-
ferent consistency and topologies. Even for a single tenant
the topology requirements may change. For example, simple
MS topology may be sufficient for sensors deployed in one
building but as the scale of deployment increases, AA may
become more beneficial. Existing systems do not provide
such support. (3) Low latency: deep learning queries require
ultra low latency to take advantage of in-memory KV stor-
age. For this purpose, we added support for DPDK kernel
bypassing in BesPOKV.

This paper makes the following contributions:

e We propose a novel distributed KV store architecture
that follows best architectural practices such as decou-
pling of control and data planes. Decoupling allows
BESPOKV to transparently turn a user-provided (single-
server) datalet into scalable, fault-tolerant distributed
KV stores. Such specialization will enables innovative
uses of KV stores in HPC applications, especially for
emerging applications that utilize KV-friendly work-
loads. Our implementation of BEsPOKV is publicly
available at https:/ / github.com/tddg/bespokv.

e We demonstrate that BEsPOKV can be easily extended
to offer advanced features such as range query, per-
request consistency, polyglot persistence, and more.
To the best of our knowledge, BespoKYV is first to sup-
port a seamless on-the-fly topology/consistency adap-
tation. As examples, we present a novel mechanism to
make transitions from MS+EC to MS+SC, and from
AA+EC to MS+EC. We also present several use cases
to show effectiveness of BEsSPOKV.

2083

e Wedeploy BespoKV-enabled distributed KV stores in a
local testbed as well as in a public cloud (Google Cloud
Platform [23]) and evaluate their performance. Using
five (two new and three existing) datalets, We show
that with all the aforementioned benefits, BEsPOKV-
enabled distributed KV stores scale horizontally and
performs comparable (and sometimes 1.2x to 2.6x
better) to state-of-the-art distributed KV stores.

2 CHALLENGES

Several challenges arise when designing BesPoKV to meet the
competing goals of compatibility, versatility, modularity,
and performance.

Compatibility. BespoKV strives to transparently make a non-
distributed KV store into a distributed one. It should be
easy to use, such that a developer simply “drops” the non-
distributed version of the store into BEspoKV; in turn, BEsPOKV
will automatically clone and convert the store into various
types of highly scalable and reliable distributed clusters.

However, in reality, every datalet is different, resulting in
compatibility issues. Moreover, KV stores use different
communication protocols. For instance, Redis’s protocol is
different from Cassandra’s. This implies that BesPOKV’s com-
munication substrate should be designed to understand the
basic message semantics, e.g., request routing. We describe
this in Section 3.1.

Versatility. Due to the diversity of data storage and
retrieval requirements, almost all the points on the cluster
topology (MS, AA, etc.), consistency (strong, eventual, etc.),
replication, and fault tolerance spectrum are valid. However,
existing systems only support a fixed single design point,
which limits flexibility and adaptability. Therefore, BEsSPOKV
architecture should be versatile enough to cover various
design options, and be flexible to support reconfiguration.

Different storage applications implement their distrib-
uted management and protocols with preference on diverse
dimensions such as cluster topology and consistency. To
support applications with tradeoffs among these different
dimensions through a generic framework, one should ensure
that each configurable dimension has a clear boundary and
well defined interface. Hence, different dimensions can be
seamlessly combined with each other to form a highly versa-
tile choice of options for application developers. Moreover,
the distributed network architecture should be flexible
enough to support these wide range of options. Section 3
presents this aspect of BEsSPOKV’s versatile architecture.

Modularity. Building various design options using differ-
ent implementations is simply a matter of putting in more
engineering effort and not as challenging. In fact, such a
naive monolithic redesign approach would essentially be
similar to the current approach of per-application imple-
mentations. Instead, BesPoOKV should be designed in a mod-
ular fashion, which makes it possible to reuse a previously
developed component. For instance, a controlet supporting
MS+SC or AA+EC can be reused for multiple backend data
stores. Furthermore, the modules in BEsPOKV should be
expandable to meet the ever-growing needs for advanced
features.

Performance. Achieving the above goals is the major focus
of our work. However, BesPoKV should be realized without

https://github.com/tddg/bespokv

2084

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 9, SEPTEMBER 2020

BESPOKYV controlet

’ Rephcatlon - *{ Consistency ‘
Y) ‘\

Y

\ Client app Clientapp |
\ H H
\

Coordinator

Client aAPP | Metadata

N etwork

’ Topology ‘ "{ Recovery ‘

BESPOKV datalet engines I

[Hash table] |LSM Tree |! v

Memory ! HDD/SSD |

Optional
Components !

Fig. 2. BespoKV architecture and the interactions between components. LSM Tree: Log-structured merge-tree. DLM: Distributed lock manager.

sacrificing performance. Design choices for protocol han-
dling, network architecture, and diverse components should
be carefully made with efficiency in mind.

3 BESPOKV DESIGN

In this section, we describe the design of BEsPOKV and how it
provides compatibility, versatility, modularity, and high
performance for supporting distributed KV stores. Fig. 2
shows the overall architecture of BEsPoKV comprising five
modules: datalet, controlet, coordinator, client library, and
optional components. A collection of datalets form the data
plane, the rest of the modules makes up the control plane.

Datalet is supplied by the user and responsible for storing
data within a single node. Datalet should provide the basic
I/0 interfaces (e.g., Put and Get) for the KV stores to be
implemented. We refer to this interface as the datalet APL
For example, a user can develop a simplest form of in-
memory hash table. Users can also mix and match datalets
with each datalet using a different data structure.

Controlet is supplied by BespoKV and provides a datalet
with distributed management services to realize and enable
the distributed KV stores associated with the datalet. The
controlet processes client requests and routes the requests to
the associated entities: e.g., to a datalet for storing data.
BEsPOKV provides a default set of controlets, and allows
advanced users to extend and design new controlets as
needed for realizing a service that may require specialized
handling in the controlet.

BEsPOKYV allows an arbitrary mapping between a controlet
and a datalet. A controlet may handle N (> 1) instances of
datalets, depending on the processing capacity of the con-
trolet and its datalets, and can leverage physical resource
(datacenter) heterogeneity [24], [25] for better overall utili-
zation. For instance, a controlet running on a high-capacity
node may manage more datalet nodes than a controlet run-
ning on a low-capacity node. For simplicity, we use one-to-
one controlet-datalet mappings in the rest of the paper.

Coordinator provides three main functions. (1) It main-
tains the metadata regarding the whole cluster topology
and provides a query service as a metadata server. (2) It
tracks the liveness of the cluster by exchanging periodic
heartbeat messages with the controlets. (3) It coordinates
failover in case of a node failure. The coordinator can run
on separate node or alongside other controlets.

BEsPOKV implements the coordinator on top of Zoo-
Keeper [26] for better resilience. Similar to designing spe-
cialized controlets, advanced users have the option to
design customized coordinators if needed. It is also possible

to design a new coordinator as a special form of controlet
from scratch using the BESPOKV-provided controlet pro-
gramming abstraction as shown in Section 3.2. Nonetheless,
because it is widely used across many KV stores, BEsPOKV
includes the coordinator as a default module in the control
plane.

Client library is provided by BesroKV and used by the cli-
ent applications to utilize the services created by BEsPoKV.
The library provides a flexible means for mapping data to
controlets. The client application uses the library interface
to consult with the coordinator and fetch data partitioning
and mapping information, which is then used to route
requests to appropriate controlets. BesPoKV allows different
developers to choose their own partitioning techniques
such as consistent hashing and range-based partitioning.

Optional Components. BesPoKV provides two optional com-
ponents facilitating the controlet development: 1) a distrib-
uted lock manager (DLM) for a locking service, and 2) a
Shared Log for an ordering service. One can build such a dis-
tributed management service as a special form of controlets
from the scratch, but given its common use in distributed KV
store development, BEsPOKV imports existing solutions (e.g.,
Redlock [27] for DLM, and ZLog [28], [29], [30] for Shared
Log) and provides interface libraries (Section 3.2, Table 4).

3.1 Data Plane

A collection of datalets running on different distributed
nodes form the data plane for BesPoKV. A single-server data-
let is completely unaware of other datalets.

Datalet Development. BesPoKV supports multiple backends.
Users can make use of off-the-shelf single-serve data stores
such as Redis [18], SSDB [31], and Masstree [21]. In addition,
BESPOKV provides datalet templates based on commonly
used data structures: currently, a hash-table-based tHT, a
log-based tLog, and a tree-based tMT. For the ease of dev-
elopment, BEsPOKV furnishes an asynchronous event-driven
network programming framework in which developers can
design new datalets, starting from existing templates. We
evaluate the reduced engineering effort in Section 8.

APIs and Protocol Parsers. For compatibility and modular-
ity, BesPOKV provides a clean set of datalet APIs (between
controlet and datalet) and client APIs (between client app
and client library). Table 3 presents example datalet and
client APIs. As these APIs are consistent with existing I/O
interfaces of existing KV stores. Datalet developers can
adopt them in a straightforward manner to enable distrib-
uted services. This is much easier than library-based replica-
tion solutions such as Vsync [22] where developers should
learn complex new APIs.

ANWAR ETAL.: CUSTOMIZABLE SCALE-OUT KEY-VALUE STORES

TABLE 3
APls to Put, Get, and Del a KV Pair

Datalet API (provided by application developers)

pPut (key, val)
val=Get (key)
Del (key)

Write the {key, val} pair to the datalet
Read val of key from the datalet
Delete {key,val} pair from the datalet

Client API (provided by BespoKV)
CreateTable (T) Create a table T to insert data
Put (key, val, T) Write the {key,val} pair to table T
val=Get (key, T) Read val of key from table T
Del (key, T) Delete {key,val} pair from table T
DeleteTable(T) Delete table T

Datalet and Client APIs are for using pre-built controlets.

To offer compatibility and be able to understand applica-
tion protocols to process incoming requests properly,
BESPOKV’s communication substrate supports two options.
(1) It provides a BEsPoKV-defined protocol using Google
Protocol Buffers [32]. This option is suitable for new datalets
and is preferred due to its ease of use and better program-
mability. (2) BespoKV allows developers to provide a parser
for their own protocols. This option is mainly available for
porting existing datalets such as Redis or SSDB.

3.2 Control Plane

BEsPOKV provides a set of pre-built controlets that provide
datalets with common distributed management. Given a
datalet, BesPoKV makes distributed KV stores immediately
ready-to-use. Developers can also extend these pre-built
controlets or design new ones from scratch for advanced
services.

Pre-Built Controlets. BespoKV identifies four core compo-
nents for distributed management, and provides pre-built
controlets that support common design options in existing
distributed KV stores. The choice is based on our compre-
hensive study of existing systems that revealed three key
observations: (1) cluster topology, consistency model, repli-
cation, and fault tolerance generally define distributed fea-
tures of KV stores; (2) for the topology, MS and AA are
common; and (3) for the consistency model, SC and EC are
popular. Detailed descriptions of exemplary controlets sup-
porting MS+5SC, MS+EC, AA+SC, and AA+EC options fol-
low in Section 4.

Controlet Development. To support advanced users and
new kinds of services, BEsPOKV provides an asynchronous
event-driven network programming framework for contro-
let development as well. For each event (e.g., Put request,
timeout, etc.), developer can define event handlers to
instruct how the controlet should process the event to
enable versatile distributed management services in the
control plane. The aforementioned pre-built controlets
indeed consist of a set of pre-defined event handlers for
common distributed services.

Discussion. Load imbalance due to hot keys (ie., hot-
spots) can be solved by integrating a small metadata cache
at BespoKV’s client library to keep track of hot keys [33];
once the popularity of hot keys exceeds a certain pre-
defined threshold, client library replicates this key on a
shadow server that is rehashed by adding a suffix to the
key. In fact, our proxy-based architecture naturally fits for

2085

TABLE 4
APIs for Events, Shared Log, DLM, and Coordinator
for New Controlet Development

Events API (provided by BespoKV)

Register(c,e,chb)
Enable(c,e)

Register basic event e for conn c to call func cb
Enable event e to be triggered onc time for conn ¢

On (e, cb) Register extended event e to call func cb
Emit (e) Emit event e

Shared Log API (provided by BesPoKV)
CreateLog Creates a new log instance L

PutSharedLog (m, L)
AsyncFetch (L)

Append message m to log L
Asynchronous read from log L

DLM API (provided by BesPoKV)
Acquire lock on key
Unlock key

Lock (key)
Unlock (key)

Coordinator API (provided by BEsPOKV)
LogHeartbeat (c,d) Log heartbeat for controlet ¢ & datalet d
map=GetShardInfo (s) Get controlet & datalet list for shard s
c=LeaderElect (s) Elect new Master controlet for shard s

Due to space limitation, we list only important APIs.

adding a controlet-side small cache or data migration/repli-
cation for load balancing purpose [34], [35], [36], [37], [38].

Control Plane Configuration. To configure the system, each
controlet takes as input (1) a JSON configuration file that
specifies the basic system deployment parameters such as
topology, consistency model, the number of replicas, and
coordinator address; and (2) a datalet host file containing
the list of datalets to be managed. BesPOKV loads the runtime
configuration information at the coordinator, which serves
as the query point for the client library and controlets to
periodically retrieve configuration updates. Any change in
configuration at runtime (e.g., topology/ consistency switch)
results in replacing old controlets with new ones. We
describe dynamic adaptation mechanisms in Section 5 in
detail.

Controlet Programming Abstraction. BesPOKV uses asynchro-
nous event-driven programming model to achieve high
throughput. For each event (e.g., incoming network input,
timer, etc.), developers are asked to define event handlers to
process the event. There are two types of events in BEsPOKV:
basic and extended events. Basic events represent pre-defined
conditions. Developers can create their own extended events
by using basic or existing extended events.

Other Controlet APIs. BesPOKV provides a set of libraries
and APIs with common features for controlet development,
shown in Table 4.

4 BESPOKV-BASED DISTRIBUTED KV STORES

BESPOKYV, to be specific its control plane, transparently turns
a user-provided single-server datalet to a scalable, fault-
tolerant distributed KV store. Using hash-based tHT datalet
and consistent hashing for the client library as an example,
this section presents support for MS+SC, MS+EC, AA+SC,
AA+EC and four examples to enable new forms of distrib-
uted gervices by combining existing controlets or extending
ones.

2. Please note that these examples present just one way to imple-
ment each combination. Controlet developers can easily implement
their own versions.

2086
- 2. putHead(key,val);
Client app 3. putMid(key,val); MS+SC
Ao LputTailtkeyyal: JV

1. put(key,val)

Controlet | D/M
Eut path Head Mid Tl

Client app

7 v -l
P . ~o_Lgetley) 3. Ack(val)
Y

Z oS
[Comroletl D/M] [Controlet [D/S1] [Commlet l D/S2]
Head Mid K_A Tail

1. getD(key)

Fig. 3. Put/Get paths in MS+SC. M means master; Sn means the nth
slave; D means datalet.

4.1 Master-Slave & Strong Consistency

We start from a KV store supporting the MS topology with
the SC model (MS+SC). Perhaps the simplest way to ensure
SC is to rely on a locking mechanism using ZooKeeper [26]
at the cost of serialization. However, alternative scalable
designs exist such as chain replication (CR) [39], value-
dependent chaining [10], and their variants. The pre-built
BESPOKV controlet for MS+SC leverages CR algorithm. Our
modular design allows BesPOKV to adopt other optimiza-
tions for CR [40], [41] as well, but so far we have not imple-
mented those. The original CR paper describes the tail
sending a message directly back to the client; but similar to
CRAQ [41], our implementation lets the head respond after
it receives an acknowledgment from the tail, given its pre-
existing network connection with the client.

Example. Fig. 3 shows how MS+SC is implemented in
BEsPOKV. Here, clients route Puts to the head of the corre-
sponding controlet-datalet chains via consistent hashing
(step 1). The head controlet forwards the incoming Put
request to its local datalet (step 2) and then to mid node
(step 3), which forwards the request to its local datalet and
then to tail (step 4). Tail first forwards the request to local data-
let and then sends Ackback to mid, which sends Ack back to
head (step 5). Once the head controlet receives the Ack from
the mid, the head controlet marks the request completed and
responds to the client (step 6). Gets are routed to the tail node
of the corresponding chains. This provides the SC guarantee
as clients are only notified of the successful completions of
Puts after the data is persisted through the tail nodes.

Failover. In all cases (MMS+SC, MS+EC, AA+SC, and AA
+EC), when the coordinator detects a node failure using a
periodic heartbeat message, it launches a new controlet—
datalet pair in recovery mode on one of the standby nodes.
The new controlet then recovers the data from one of the
datalets.

In particular, for MS+SC using chain replication, the coor-
dinator performs the chain recovery process and adds the
new pair as the new tail to the end of the chain. The former
chain recovery process depends on the location of the failure
in the replica chain as follows. If a middle node fails, the
coordinator notifies the head controlet to skip forwarding
requests to the failed node. In case the tail node fails, the
coordinator informs the head controlet to skip forwarding
requests to the tail datalet and temporarily marks the second
to the last node as the new tail so that future incoming Get
requests can be redirected properly. If the head node fails,
the coordinator appoints the second node in chain as the
new head, and updates the cluster metadata. Upon seeing
the change, the clients redirect future writes to the new head.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 9, SEPTEMBER 2020

Every node maintains a list of requests received but not yet
processed by the tail, which is used to resolve in-flight
requests [39], [41].

4.2 Master-Slave & Eventual Consistency

BEsPOKV’s pre-built controlet takes a simple approach to
support MS+EC where the master copies the data to slaves
asynchronously.

Example. Fig. 4a shows an example for MS+EC. Here,
upon receiving an incoming Put request (step 1), the master
node commits the request to the local datalet (step 2) before
it sends an acknowledgement back to the client (step 3).
Unlike the previous SC case, the master does not wait until
the propagation finishes.®> Subsequently, BesPOKV provides
EC by asynchronously forwarding Put requests to other
datalets (step 4).

Failover. Upon a node failure, the coordinator launches a
new controlet-datalet pair, and then the new controlet
recovers the requests from another datalet. For MS+EC, the
new pair is added as a slave. If the master node fails, the
coordinator promotes one of the slave nodes to master after
a leader election process. The coordinator then updates the
cluster topology metadata so that future incoming writes
can be routed to the new master, similar to the case of head
failure in MS+SC.

4.3 Active-Active & Strong Consistency

Supporting AA and SC is expensive in general. AA allows
multiple nodes to handle Put requests and SC requires
global ordering (serialization) between them. Thus, CR-like
optimization is not applicable under AA. For simplicity and
comparison purposes, the current sBesroKV’s AA+SC contro-
let takes the distributed locking based implementation, using
the DLM library (Section 3.2). For performance improve-
ment, optimistic concurrency control [42] and inconsistent
replication [9] can be added. Instead of using DLM, one can
also enable SC using a Shared Log to maintain a global and
sequential order of concurrent requests, which we used for
AA+EC later in a relaxed manner.

Example. Fig. 4b shows a DLM-based AA+SC example.
Clients’ Put requests are routed to any controlet (step 1 and
step 2). Concurrent Puts from another client (step 2 in our
example) are synchronized via the distributed locking ser-
vice. The first receiving controlet acquires a write lock
(step 3) on the key and updates all the relevant datalets
(step 4 & 5), releases the lock (step 6), and finally acknowl-
edges to the client (step 7). For a Getrequest, the controlet
that receives the request acquires a read lock on that key,
reads the value from the local datalet, releases the lock, and
then sends a response back to the client.

Failover Like the previous cases, when a node fails the coor-
dinator launches a new controlet—datalet pair. The new con-
trolet then performs data recovery from another datalet. As
AA+SC uses locking, ensuring SC for the new node and add-
ing it as an active node are trivial because all writes are syn-
chronized using locks. However, deadlock freedom should

3. This way at least one datalet is written straight away as in Cassan-
dra [7]. An alternative design choice is to forward the request to more
than one datalet and then acknowledge back. However, this decision
solely depends on the type of eventual consistency that is desired.

ANWAR ET AL.: CUSTOMIZABLE SCALE-OUT KEY-VALUE STORES 2087
[Client app] [Coordinator] MS+EC | AA+SC AA+EC
P T N
1. put(key,val) . Adi -7 / N S
&7 4 A [Client app 1] [Client app 2] [Coordinator] [Client app 1] [Client app 2
(controlet | DM] [Controlet [D/S1] {Controlet] D/S2] - i J & —x

2. putD(key,val)

Put path ---
4. asyncPutS1/S2(key,val) -
__ Controlet | D/M1
[Cliema 1] [Clienta 2] Get path
PP PP 2 J—u 5. putM1(key,vall)
I o 3b. Ack(val) "
a. get(key), 3a. Ack(val) Ib. get(key) \\
B 3. lock(key) "
((Controtet | D/M] ((Controlet [D/s1] [Controlet [D/s2]
6. unlock(key)

A N_7
2a. getD(key) 2b. getD(key) (@) | (b)

1 putckeyyval)) 7-Ack 2 puitkeyal2) 1o ack

9. putM1(key,val2)

4. putM2(keyvall) /8 Jock(key)

| Lock server

la. put(keyvall) 44 Ack 1b- put(key.val2))4b. Ack

(Controtet | D/M1] (Controlet] D/M2] (Controlet] D/M3]
~ ~ = AR~

AT

ll 10. putM2(key.val2)|

-y 3b. putD(key,val2) \‘

RN

Put path

L 3a. putD(key,val

Shared Log

2. M1/M2/M3 putSharedLog(key,val)
5. M1/M2/M3.asyncFetch()

’
7 11. unlock(key)

Putpath |(c)

Fig. 4. The Put/Get paths in MS+EC (a), AA+SC (b), and AA+EC (c). The Get path is same in all three, except in AA+SC, where the difference is
that each Get needs to acquire a read lock before proceeding. Mn means the nth master.

be guaranteed. Thus, BEsPOKV enforces that locks are released
after a configurable period of time. If a controlet fails after
acquiring a lock, the lock is auto-released after it expires. Note
that if a lock is auto-released, but a controlet has not failed
and was simply unresponsive for a while, it is terminated to
ensure proper continuation of operations. Also, one of the
master nodes cleans up the in-flight requests.

4.4 Active-Active & Eventual Consistency

For an AA topology, relaxed data consistency is more
widely used in practice for performance as in Dynamo [6],
Cassandra [7]), and Dynomite [19]. In particular, these sys-
tems use gossip-based protocols and provide a weaker data
consistency model, e.g., acknowledging back to the client if a
Put request is written to one node, N nodes, or a quorum [43].

In order to ensure EC, when multiple masters receive
concurrent PUT requests, AA should be able to resolve con-
flicts and agree on the global order of them, unlike MS
where one master gets all the writes. In this sense, Dynomite
does not support (a strict form of) EC when conflicting PUT
requests arrive within a time period less than the latency of
replication [44].

To address this issue, BEsPoOKV’s AA+EC controlet uses a
Shared Log to keep track of the request ordering. From the
Shared Log, asynchronous propagation of writes occur to
support EC. One disadvantage of this approach is that we
need to scale the Shared Log setup as BEspOKV scales. Alter-
native approach is to add anti-entropy/reconciliation [45].

Example. Fig. 4c depicts how BEspOKV supports AA+EC. In
AA, clients can route Get /Put to any of the master contro-
lets (step 1a). On a Put, the receiving controlet (in our exam-
ple the leftmost one) writes to the Shared Log first (step 2a),
commiits the request on its local datalet (step 3a), and then
responds back to the client (step 4a). All the controlets asyn-
chronously fetch the request (step 5). Gets can be handled
by any of the corresponding controlets by retrieving the data
from their local datalets. The duration to keep the requests in
Shared Log is configurable.

Failover.For AA+EC, the failover is handled like with MS
+EC, except that leader election is not needed in this case.

5 DyYNAMIC ADAPTATION TO CONSISTENCY
AND TOPOLOGY MODEL CHANGES

Separating the control and data planes bring another bene-
fit: BesPoOKV-enabled distributed KV stores can seamlessly

adapt to consistency and topology model changes at run-
time by switching the controlets while keeping the datalets
unchanged. At a high level, upon a consistency and/or
topology change request, Coordinator launches a new set of
controlets that will provide new services. Two old and new
controlets are mapped to one datalet during the transition
phase. The old controlet provides the old service with no
downtime, and forwards some requests to the new controlet
so that it can prepare the new service. When the transition
completes, the new controlet takes over the old one. The
transition protocol differs per each case. BEsPoKV supports
any transition between four aforementioned topology and
consistency combinations, among which we describe two
interesting cases in detail. Section 9.4 presents the experi-
mental results on this aspect.

5.1 Transition From MS+EC to MS+SC

To make a transition from EC to SC, the master node needs
to make sure that all the Put requests 1) that have arrived
before the transition starts and 2) that arrive during transi-
tion are fully propagated to the slave nodes. For the former,
the old master keeps flushing out any pending propagation.
For the latter, the old master forwards an incoming Put
request to the new master controlet which uses chain repli-
cation for SC, instead of propagating it asynchronously.
When there is no more pending propagation left in the old
controlet, the transition is over. SC guarantees will be
enforced after the transition has completed. During the tran-
sition, any node may respond to Get requests, providing
EC guarantee. This means that a Get request, even after the
reconfiguration was requested, may experience EC until the
transition is over. As controlet developers are responsible
for developing the transition functionality for the various
consistency/topology modes. A controlet developer can
choose an alternative route to fence all writes as soon as the
reconfiguration is requested so that all reads observe the
same and latest applied value.

Fig. 5a shows transition from MS+EC to MS+SC.* Client 1
sends a Put request (Step 1a) to the old master controlet C1.
A concurrent Get request (Step 1b) from Client 2 gets ser-
viced as it used to be. The old master forwards Put request
(Step 2) to the new master controlet which guarantees SC.

4. Reverse transition from MS+SC to MS+EC is trivial as the new
master just needs to start using asynch. propagation instead of chain
replication.

2088

3. put(k1,v2)

2.put(kl,vi)
2. putlkLel) 1. put(k1.v1) \
. put WV
e 3fct -
D/M /D/Ml

Shared |o»("c)
D/S1 Log

3 put(k1 v2) ‘_\

la. put(k1,v1)

1b. get(k2)

@ MS+EC — MS+SC

() AA+EC —> MS+EC

Fig. 5. Transition: MS+EC to MS+SC and AA+EC to MS+EC.

When the new master completes its chain replication pro-
cess, it acknowledges the old master, which in turn acknowl-
edges Client 1. When the transition completes, a Put request
(Step 3) is routed to the new master controlet.

5.2 Transition From AA+EC to MS+EC

In AA+EC, any active node can get a Put request. To
maintain a global ordering between concurrent Puts, an
active node relies on the Shared Log that propagates Puts
to the other nodes on its behalf. On the other hand, in MS
+EC, only the master node gets Put requests and is in
charge of propagating them to the slaves. Therefore, the
key operation in the transition from AA+EC to MS+EC is
to move the role of propagating Puts from the Shared Log
to the new master. To this end, when the transition starts,
the new master node takes the in-flight Puts that have not
been propagated yet from the Shared Log and starts prop-
agating them by itself. When an old active controlet
receives a Put request during transition, it does not con-
sult with Shared Log, but forwards the request to the new
master node which will eventually propagates the request.
The Get requests are not affected. Fig. 5b shows an exam-
ple where a Put request (Step 1) is forward to the new
master (Step 2) during transition. When the transition
completes, a Put request (Step 3) is serviced by the new
master. The transition from MS+EC to AA+EC can be sup-
ported by the reverse step order.

6 EXTENSIONS TO KV STORES

BEsPOKV is immediately ready-to-use for popular distrib-
uted KV store use cases. If desired, BesPoKV’s control plane
can be extended to enable new forms of distributed services
by combining existing controlets or extending ones. This
section demonstrates four examples. We evaluated perfor-
mance of Scan requests (range query) in Section 9.2, and
the next two per-request consistency and polyglot persis-
tence in Section 9.5.

6.1 Range Query

We support range query or scan operations as follows. For
datalets, the Masstree-based tMT template is used and
extended to expose a range query API such as GetRange
(Start, End). The client library supports range-based
partitioning, e.g., dividing the name space by alphabetical
order (e.g., A-C on one node, D-F on another node, and so
on). The controlet divides a client request into sub-requests
and forwards the sub-range query requests to correspond-
ing datalets that store the specified range.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 9, SEPTEMBER 2020

6.2 Per-Request Consistency

We extend the client library GET API to support consis-
tency/topology sp