
A Black-Box Fork-Join Latency Prediction Model
for Data-Intensive Applications

Minh Nguyen , Sami Alesawi , Ning Li, Hao Che, Senior Member, IEEE, and Hong Jiang , Fellow, IEEE

Abstract—The workflows of the predominant datacenter services are underlaid by various Fork-Join structures. Due to the lack of

good understanding of the performance of Fork-Join structures in general, today’s datacenters often operate under low resource

utilization to meet stringent service level objectives (SLOs), e.g., in terms of tail and/or mean latency, for such services. Hence, to

achieve high resource utilization, while meeting stringent SLOs, it is of paramount importance to be able to accurately predict the tail

and/or mean latency for a broad range of Fork-Join structures of practical interests. In this article, we propose a black-box Fork-Join

model that covers a wide range of Fork-Join structures for the prediction of tail and mean latency, called ForkTail and ForkMean,

respectively. We derive highly computational effective, empirical expressions for tail and mean latency as functions of means and

variances of task response times. Our extensive testing results based on model-based and trace-driven simulations, as well as a

real-world case study in a cloud environment demonstrate that the models can consistently predict the tail and mean latency within

20 and 15 percent prediction errors at 80 and 90 percent load levels, respectively, for heavy-tailed workloads, and at any load levels for

light-tailed workloads. Moreover, our sensitivity analysis demonstrates that such errors can be well compensated for with no more than

7 percent resource overprovisioning. Consequently, the proposed prediction model can be used as a powerful tool to aid the design of

tail-and-mean-latency guaranteed job scheduling and resource provisioning, especially at high load, for datacenter applications.

Index Terms—Tail latency, mean response time, Fork Join queuing networks, datacenter resource provisioning

Ç

1 INTRODUCTION

FORK-JOIN structures underlay many datacenter services,
including web searching, social networking, and big data

analytics. A Fork-Join structure is a critical building block in
the job processing workflow that constitutes a major part of
job processing time and hardware cost, e.g., more than two-
third of the total processing time and 90 percent hardware
cost for a Web search engine [1]. In a Fork-Join structure (see
Fig. 1), each job in an incoming flow spawns multiple tasks,
which are forked to, queued and processed at different
nodes, called Fork nodes in this paper, in parallel and its task
results are thenmerged at a Join node to yield the final result.
Due to barrier synchronization, the job response time is
determined by the slowest task, i.e., the tail probability,
which is hard to capture, from both modeling and measure-
ment points of view, making it extremely challenging to pre-
dict the job performance, e.g., the job tail latency.

Tail latency is considered to be the most important per-
formance measure for user-facing datacenter applications
[2], such as web searching and social networking, and nor-
mally expressed as a high percentile job response time, e.g.,

the 99th percentile response time of 200 ms. Mean latency is
also an important performance measure for big data analyt-
ics workloads which are generally scale-out by design,
involving one or multiple rounds of parallel processing of a
(massive) number of tasks and task result merging phases
with barrier synchronization, based on, e.g., MapReduce [3]
or Spark [4] frameworks. In addition, it is harder but more
important1 to predict the tail and mean latency under heavy
load conditions than light ones. This is because as the load
becomes heavier, so does the tail distribution, e.g., the 99th
percentile of memcached request latencies on a server
jumps from less than 1 ms at the load of 75 percent to 1 s at
the load of 89 percent [5].

Due to the lack of good understanding of the job-vs-task
performance of such workloads, i.e., how distributed task-
level performance determines the job-level performance,
especially in the high load2 region, to provide high assurance
of meeting tail-latency and/or mean-latency SLOs for such
workloads, the current practice is to overprovision resources,
which however, results in low resource utilization in data-
centers [6], [7]. For example, aggregate CPU and memory
utilizations in a 12,000-server Google cluster are mostly less
than 50 percent, leaving 50 and 40 percent allocated CPU

� M. Nguyen, N. Li, H. Che, and H. Jiang are with the Department of
Computer Science and Engineering, The University of Texas at Arlington,
Arlington, TX 76019. E-mail: mqnguyen@mavs.uta.edu, {ning.li, hong.
jiang}@uta.edu, hche@cse.uta.edu.

� S. Alesawi is with the Department of Computer Science and Engineering, The
University of Texas at Arlington, Arlington, TX 76019, and also with the
Faculty of Computing and Information Technology in Rabigh, King Abdulaziz
University, Jeddah 21589, Saudi Arabia. E-mail: salesawi@kau.edu.sa.

Manuscript received 29 July 2019; revised 27 Feb. 2020; accepted 3 Mar. 2020.
Date of publication 20 Mar. 2020; date of current version 16 Apr. 2020.
(Corresponding author: Minh Nguyen.)
Recommended for acceptance by jianfeng Zhan.
Digital Object Identifier no. 10.1109/TPDS.2020.2982137

1. In the low load region, tail and/or mean latency requirements can
be easily satisfied as the available resources are abundant. In contrast,
in the heavy load region in which the leftover resource is scarce,
resource allocation with high precision must be exercised to meet user
requirements.

2. The term “load” can be generally defined as the offered workload
per unit time divided by processing capacity per unit time. In the con-
text of Fork-Join structure, it is the maximum of the loads among all the
Fork nodes.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 9, SEPTEMBER 2020 1983

1045-9219� 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tps://www.ieee.org/publications/rights/index.html for more information.

https://orcid.org/0000-0002-1445-3700
https://orcid.org/0000-0002-1445-3700
https://orcid.org/0000-0002-1445-3700
https://orcid.org/0000-0002-1445-3700
https://orcid.org/0000-0002-1445-3700
https://orcid.org/0000-0002-4422-8678
https://orcid.org/0000-0002-4422-8678
https://orcid.org/0000-0002-4422-8678
https://orcid.org/0000-0002-4422-8678
https://orcid.org/0000-0002-4422-8678
https://orcid.org/0000-0002-1477-9751
https://orcid.org/0000-0002-1477-9751
https://orcid.org/0000-0002-1477-9751
https://orcid.org/0000-0002-1477-9751
https://orcid.org/0000-0002-1477-9751
mailto:mqnguyen@mavs.uta.edu
mailto:ning.li@uta.edu
mailto:hong.jiang@uta.edu
mailto:hong.jiang@uta.edu
mailto:hche@cse.uta.edu
mailto:salesawi@kau.edu.sa

and memory resources, respectively, idle almost at all time
[6]. Similarly, in a large production cluster at Twitter, aggre-
gate CPU usage is within 20–30 percent even thought CPU
reservations are up to 80 percent and aggregate memory
usage is mostly within 40–50 percent while memory alloca-
tion consistently exceeds 75 percent [7]. Hence, how to
improve resource utilization or the load from currently less
than 50 percent to, say, 80-90 percent, while meeting strin-
gent SLOs has been a challenging issue for datacenter service
providers [7]. To this end, a key challenge to be tackled is how to
accurately capture the tail and mean latency with respect to various
Fork-Join structures at high load.

Fork-Join structures are traditionally modeled by a class
of queuing networks, known as Fork-Join queuing network
(FJQN) [8], as depicted in Fig. 1. FJQNs arewhite-boxmodels
in the sense that all the Fork nodes are explicitly modeled as
queuing systems with given arrival process, queuing disci-
pline, and service time distribution. In this paper, we argue
that attempting to use FJQNs to cover a sufficiently wide
range of Fork-Join structures of practical interests is not a via-
ble solution. Instead, a black-box solution that can cover a
broad range of Fork-Join structuresmust be sought.

On one hand, FJQNs are notoriously difficult to solve in
general. Despite the great effort made for more than half a
century, to date, no exact solution is available even for the
simplest FJQN where all the nodes are M/M/1 queues [9],
i.e., Poisson arrival process and one server with exponential
service time distribution. Although empirical solutions for
some FJQNs are available, e.g., [10], [11], [12], [13], [14], they
can only be applied to a very limited number of Fork-Join
structures, e.g., homogeneous case, the case of First-In-First-
Out (FIFO) queuing discipline, and a limited number of ser-
vice time distributions.

On the other hand, the design space of Fork-Join structures of
practical interests is vast. It encompasses (a) a wide range of
queuing disciplines and service time distributions (e.g., both
light-tailed and heavy-tailed) [8]; (b) the case with multiple
replicated servers per Fork node for failure recovery, task
load balancing, and/or redundant task issues for tail cutting
[15], [16] or fast recovery from straggling tasks [17]; (c) the
case where the number of spawned tasks per job may vary
from one job to another [18]; and (d) the case of consolidated
services, where different types of services and applications

may share the same datacenter cluster resources [19]. Clearly,
the existing FJQNs can hardly cover such a design space in
practice.

To tackle the above challenges, in this paper, we propose
to study a black-box Fork-Join model for the prediction of job
tail andmean latency, called ForkTail and ForkMean, respec-
tively, to cover a broad range of Fork-Join structures of prac-
tical interests. By “black-box”, we mean that each Fork node
is treated as a black box, regardless of how many replicated
servers there are and how tasks are distributed, queued, and
processed inside the box. In other words, for a black-box
Fork-Join model, one can only use the task statistics measur-
able from outside of Fork nodes, e.g., the mean and variance
of the task response time (see Fig. 1). This is in stark contrast
to a white-box Fork-Joinmodel where the exact task queuing
discipline and the service model for a Fork node must be
known. It also allows the number of spawned tasks per job,
k, to be a random integer taking values in ½1; N �, where N is
the maximum number of Fork nodes. As we shall see, our
black-box model can indeed adequately covers the above
design space.

However, general solutions to this model are unlikely to
exist, given the limited success in solving the white-box
FJQNs. Nevertheless, we found that for the black-box
model, empirical solutions under heavy load conditions do
exist, known as the central limit theorem for G/G/m queu-
ing systems, where the arrival process is general with inde-
pendent interarrival times, the queuing discipline is FIFO,
and there are m servers with general service time distribu-
tions, under heavy load [20], [21]. Inspired by this theorem,
we were able to demonstrate [22] that in a load region of
80 percent or higher, where resource provisioning with pre-
cision is most desirable and necessary, an empirical expres-
sion of the tail-latency for a special case of the black-box
model, i.e., k ¼ N for all the requests, exists, which can pre-
dict the tail latencies within 15 percent error at any load lev-
els for light-tailed service time distribution and the load
level of 90 percent for heavy-tailed one in the cases (a) and
(b) in the design space mentioned above. As our sensitivity
analysis in Section 4 shows, such prediction errors can be
well compensated for with no more than 7 percent resource
overprovisioning.

Thework in this papermakes the following contributions.
First, it generalizes the solution in [22] to also cover cases (c)
and (d) in the design space, hence, making it applicable to
most Fork-Join structures of practical interests. Second, it
gives the first empirical, universal solutions to tail and mean
job latencies for both black-and-white-box FJQNs at high
load and hence, it makes a contribution to the queuing net-
work theory as well. In fact, for anywhite-box FJQNwith G/
G/1 Fork queuing servers, our approach leads to closed-
form approximate solutions, which are on par with the most
elaborate white-box solutions in terms of accuracy across the
entire load range at much lower computational complexity.
Third, comprehensive testing and verification of the pro-
posed approximations for tail and mean latency are per-
formed for all (a)–(d) Fork-Join structures, based on model-
based and trace-driven simulation, as well as a real-world
case study. Fourth, sensitivity analysis indicates that our pro-
posed solutions can lead to accurate resource provisioning
for data-intensive services and applications in a consolidated

Fig. 1. Black-box Fork-Join model. Each job in the incoming flow spawns
k tasks mapped to k out of N Fork nodes. Each Fork node is treated as
a black box, completely determined by the mean and variance of the
task response time, i.e., E½T � and V½T �.

1984 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 9, SEPTEMBER 2020

datacenter environment at high load. Finally, preliminary
ideas are provided as to how to use this solution to facilitate
SLO-guaranteed job scheduling and resource provisioning.

The rest of the paper is organized as follows. Section 2
introduces our black-box model and ForkTail and Fork-
Mean, the empirical approximations for the tail and mean
latency, respectively. Section 3 performs extensive testing
of the accuracy of these approximations. Section 4 presents
the sensitivity analysis for the proposed approximations.
Section 5 explores the range of applicability of the proposed
solutions. Section 6 discusses how the proposed approxi-
mations may be used to facilitate effective job scheduling
and resource provisioning with tail-latency-SLO guarantee.
Section 7 reviews the related work. Finally, Section 8 con-
cludes the paper and discusses future work.

2 MODEL AND SOLUTIONS

2.1 Black-Box Model

The black-box model described in this section greatly
extends the scope of the black-box model introduced in [22]
to address the entire design space mentioned in Section 1.

Consider a black-box Fork-Join model with each job in the
incoming flow spawning k tasks mapped to k out of N Fork
nodes, as depicted in Fig. 1. The results from all k tasks are
finally merged at a Join node (i.e., the triangle on the right).
Jobs arrive following a random arrival process with average
arrival rate �. Each Fork node may be composed of more
than one replicated servers for task-level fault tolerance, load
balancing, tail-cutting, and/or straggler recovery. An exam-
ple Fork nodewith three server replicas is depicted in Fig. 1.

The above model deals with a general case where k � N .
Note that the traditional FJQNs cover only a small fraction of
this design space, i.e., k ¼ N , homogeneous Fork nodes with
a single server per node, which is modeled as a FIFO queuing
system.

General solutions to this model are unlikely to exists. For-
tunately, we are most interested in finding solutions in high load
regions where precise resource provisioning is highly desirable
and necessary. There is a large body of research results in the
context of queuing performance in high load regions (e.g.,
see [23] and the references therein). In particular, a classic
result, known as the central limit theorem for heavy traffic
queuing systems [20], [21], states that for a G/G/m queue
under heavy load, the waiting time distribution can be
approximated by an exponential distribution. Clearly, this
theorem applies to the response time distribution as well,
since the response time distribution converges to the wait-
ing time distribution as the traffic load increases. Inspired
by this result, we postulate that for tasks mapped to a black-
box Fork node and in a high load region, the task response
time distribution FT ðxÞ for any arrival process and service
time distribution can be approximated as a generalized
exponential distribution function [24], as follows,

FT ðxÞ ¼ ð1� e�x=bÞa; x > 0; a > 0; b > 0; (1)

where a and b are shape and scale parameters, respectively.
Themean and variance of the task response time are given

by [24]

E½T � ¼ b½cðaþ 1Þ � cð1Þ�; (2)

V½T � ¼ b2½c0ð1Þ � c0ðaþ 1Þ�; (3)

where cð:Þ and its derivative are the digamma and poly-
gamma functions.

From Eqs. (2) and (3), it is clear that the distribution in
Eq. (1) is completely determined by the mean and variance of
the task response time. In other words, the task response time
distribution can be measured by treating each Fork node as a
black box as shown in Fig. 1. The rationale behind the use of
this distribution, instead of the exponential distribution, is
that it can capture both heavy-tailed and light-tailed task
behaviors depending on the parameter settings and mean-
while, it degenerates to the exponential distribution at a ¼ 1
andE½T � ¼ b. In [22], we showed that this distribution signifi-
cantly outperforms the exponential distribution in terms of
tail latency predictive accuracy.

Now, with all the Fork nodes in Fig. 1 being viewed as
black boxes, the response time distribution for any job with
k tasks can be approximated using the order statistics [9] as
follows,

F
ðkÞ
X ðxÞ ¼

Yk

i¼1

FTiðxÞ ¼
Yk

i¼1

ð1� e�x=biÞai : (4)

Note that the above expression is exact if the response times
for tasks mapped to different Fork nodes are independent
random variables. This, however, does not hold true for any
Fork-Join structures, simply because the sample paths of the
task arrivals at different Fork nodes are exactly the same,
not independent of one another. This is the root cause that
renders the Fork-Join models extremely difficult to solve in
general. In what follows, we introduce ForkTail and Fork-
Mean, separately, based on this approximation.

2.2 ForkTail

ForkTail was originally presented in [25]. Our postulation is
that as load reaches 80 percent or higher where precise
resource provisioning is desirable and necessary, the tail-
latency prediction errors introduced by the above assumption
will become small enough for resource provisioning purpose.
Our extensive testing results in this paper provide strong sup-
port of the postulation, making our modeling approach the
only practically viable one for tail latency prediction.

Tail latency xp, defined as the pth percentile job response
time, can be written as,

xp ¼ F
ðkÞ
X

�1
p=100ð Þ: (5)

Eq. (5) simply states that in a high load region, the tail latency
can be approximated as a function of the means and varian-
ces of task response times for all k tasks at their correspond-
ing Fork nodes, irrespective of what workloads cause the
heavy load. The implication of this is significant. It means
that this expression is applicable to a consolidated datacenter
cluster where more than one service/application share the
same cluster resources. Moreover, this expression allows tail
latency to be predicted using a limited number of job sam-
ples thanks to its dependence on the first two moments of
task response times only, i.e., themeans and variances.

The results so far is general, applying to the heteroge-
neous case, where task response time distributions may be

NGUYEN ET AL.: BLACK-BOX FORK-JOIN LATENCY PREDICTION MODEL FOR DATA-INTENSIVE APPLICATIONS 1985

different from one task to another, due to, e.g., the use of
heterogeneous Fork nodes and/or uneven background
workloads. As a result, the tail latency predicted by Eq. (5)
may be different from one job to another or even for two
identical jobs, as long as their respective Fork nodes do not
completely coincide with one another, or they are issued at
different times. In other words, Eq. (5) is a fine-grained tail
latency expression. For certain applications, such as offline
resource provisioning (see Section 6 for explanations) and
coarse-grained, per-service-based tail-latency prediction,
one may be more interested in the homogeneous case only.
In this case, the response time distribution can be further
simplified as,

F
ðkÞ
X ðxÞ ¼ ð1� e�x=bÞka: (6)

This is because the means and variances given in Eqs. (2)
and (3) are the same for the homogeneous case. A coarser-
grained cumulative distribution function (CDF) of the job
response time can then be written as,

FXðxÞ ¼
X

ki

FXjKðxjkiÞP ðK ¼ kiÞ; (7)

where FXjKðxjkiÞ is the conditional CDF of the job response
time for jobs with ki tasks, given by Eq. (6), i.e., FXjKðxjkiÞ ¼
F

ðkiÞ
X ðxÞ, and P ðK ¼ kiÞ ¼ Pi is the probability that a job

spawns ki tasks.
Further assume that there are m job groups with distinct

numbers of tasks ki’s, i ¼ 1; . . .;m, and corresponding prob-
abilities Pi’s. We then have,

FXðxÞ ¼
Xm

i¼1

Pi � F ðkiÞ
X ðxÞ: (8)

Correspondingly, the tail latency for the m groups of jobs as
a whole can then be readily obtained, similar to Eq. (5), as
follows,

xp ¼ F�1
X ðp=100Þ: (9)

For example, the tail latency for a given service can be pre-
dicted by collecting statistics for ki’s and Pi’s, as well as
mean and variance of task response time and applying
them to the tail latency expression in Eq. (9).

2.2.1 Application to White-Box FJQNs

Clearly, the above black-box approach leads to closed-form
solutions for any white-box models whose analytical
expressions for the means and variances of task response
times are available, whether it is homogeneous or not. In
fact, our solution works for the case where different Fork
nodes may have different service time distributions and
queuing disciplines. For instance, our approach can be
applied to a large class of FJQNs, where each Fork node is
an M/G/1 queue or a more general G/G/1 queue, whose
mean and variance of the task response time can be com-
puted from Tak�acs recurrence theorem [26] or the queuing
network analyzer [27], respectively.

2.3 ForkMean

While the approximations in Eqs. (5) and (9) work well for
the job tail latency even for the k < N cases, it fails to

accurately predict the job mean response time,3 yielding
more than three times larger errors for the same cases stud-
ied, especially for the case of light-tailed service time distri-
butions. We find that the reason for this to happen is due to
the fact that to accurately predict the job mean response
time, the entire job response time distribution including the
tail portion must be accurately captured, as the barrier syn-
chronization tends to push the job mean response time
towards the tail part of the task response time distribution,
as the workload scales out.

On the basis of the above modeling, this section aims at
finding solutions to reduce the prediction errors for the job
mean latency. To this end, we make the following two key
observations.

Observation 1. For a wide range of Fork-Join models, the
difference between the exact tail-mean ratio and the
model-based tail-mean ratio, derived from the CDF in
Eq. (4), hereafter called the gap and denoted as D, con-
verges to a constant as the number of Fork nodes becomes
large enough.Mathematically, we have,

xp

xm
� xge

p

xge
m
¼ D; (10)

where xp and xm are the exact pth percentile and mean of
job latency, respectively, which can be estimated by
experiments, while xge

p and xge
m are derived from the pre-

diction model, i.e., Eq. (4). Hence, the mean latency can be
approximated as follows,

xm ¼ xp

Rge þ D
� xgep

Rge þ D
; (11)

where xp � xge
p at high loads, since ForkTail give accurate

predictions for the pth percentile at high loads, as indi-
cated in the testing results, and Rge ¼ xge

p =x
ge
m .

Fig. 2 illustrates the gaps for systems with different task
service time distributions, including light-tailed and heavy-
tailed ones, where each Fork node is a single server, i.e., with-
out replication. As one can see, the gap converges to a
constant asN becomes sufficiently large, say,N � 100, for all
the cases. Similar trends are also observed for the systems
with 3-replica Fork nodes with Round-Robin and redundant-
task-issue dispatching policies as well as the systems with
variable numbers of forked tasks (not shown here).

Observation 2. There is a strong correlation between the tail
heaviness of service time distribution and the gap D, i.e., the
heavier the tail, the smaller the gap. It is evident from Fig. 2
that the light-tailed distributions, including Exponential and
Weibull, have larger gaps than the heavy-tailed ones, includ-
ing the truncatedPareto and empirical (defined in Section 3.1).
With this observation,wemake the followingpostulation: The
gap ismuchmoreof a functionof the tail heaviness of a service
timedistribution than the service timedistribution itself.

From the above observations, we propose two empirical
solutions, one is white-box and the other black-box, for
the approximation of the gap, D, and hence, the job mean
response time.

3. We use the terms ‘latency’ and ‘response time’ interchangely in
this paper.

1986 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 9, SEPTEMBER 2020

2.3.1 White-Box Approach

This approach is based on the above postulation. Here we
consider a homogeneous white-box Fork-Join queuing
model where each Fork node can be modeled as a G/G/1
queue. With known interarrival and service time distribu-
tions, one can find the job response time distribution and
the corresponding tail and mean latencies, and so their ratio
Rge, from ForkTail. So to find the job mean latency, xm, all
that is left to be done is to find D.

To this end, we first define tail heaviness, wðFT Þ. We use
Right QuantileWeight [28] whichmeasures the tail heaviness
on the right side of a distribution, the region of interest in all
of our experiments. This tail weightmeasure is defined as,

wðFT Þ ¼
F�1
T

1þq
2

� �þ F�1
T 1� q

2

� �� 2F�1
T ð0:75Þ

F�1
T

1þq
2

� �� F�1
T 1� q

2

� � ; (12)

where 0:5 < q < 1 and F�1
T ðqÞ is quantile q of task service

time distribution FT . To capture the tail effect but still retain
a reasonable robustness, we set q ¼ 0:99.

Based on our postulation, D ¼ Dðr; wÞ, independent of
FT ðxÞ. Here r is the load. In other words, as long as wðF ð1Þ

T Þ ¼
wðF ð2Þ

T Þ, the two homogeneous Fork-Join models with differ-
ent service time distributions, F

ð1Þ
T and F

ð2Þ
T , respectively, will

have the same gap. In other words, if one can find the func-
tion, Dðr; wÞ, using one distribution function with different
tail weights, this Dðr; wÞ can then be used by any Fork-Join
models with other distribution functions to find the gap. In
this paper, we use the generalized exponential distribution in
Eq. (1) at different coefficients of variance to generate different
tail weights from Eq. (12) and the corresponding gaps and
then use nonlinear regression to find Dðr; wÞ. Table 1 shows
the gaps for different tail weights, averaged over N ¼ 100 to
1,000 at three different load levels.

From experimental data with different distribution param-
meters, we found that the power function, i.e., D ¼ awb þ c,

yields a very good fit to these gap-tail weight points. Fig. 3
illustrates the fitted curve at load level of 80 percent from
Table 1 with respect to the fitted points from the generalized
exponential distribution (the black points). It also shows the
actual points from other distributions, which are used for test-
ing in the experiments (the green points), relative to the fitted
curve. As one can see, the green points stay reasonably close
to the curve itself, meaning that our postulation indeed holds
true. Table 2 presents the fitted functions for the cases in
Table 1.

In summary, this white-box approach results in a closed-
form solution for the approximation of job mean latency,
which is composed of the following computation steps,

– With given E½T � and V½T �, compute the tail and
mean latencies, i.e., xge

p and xge
m from the predicted

CDF in Eq. (4) and their corresponding ratio, i.e., Rge;
– With a given service time distribution FT , calculate

the tail weight w from Eq. (12), which is then
mapped to a D at a given load, e.g., using one of the
functions in Table 2;

– Approximate the mean latency using Eq. (11).

2.3.2 Black-Box Approach

The white-box approach above leads to closed-form solutions
for homogeneous white-box Fork-Join models with known

TABLE 1
The Gaps for Different Tail Heavinesses and Load Levels

Tail weight
Load

0.703 0.772 0.851 0.918 0.962 0.986 0.999

75% 0.486 0.271 0.160 0.097 0.063 0.029 0.009
80% 0.511 0.283 0.169 0.106 0.069 0.044 0.013
90% 0.573 0.319 0.190 0.129 0.070 0.055 0.023

Fig. 2. The gaps for Fork-Join systems with different service time distributions at load levels of 80 percent (upper row) and 90 percent (lower row).

Fig. 3. An example of the gap-vs-tail-weight fitted curve.

TABLE 2
Examples of Fitted Dðr; wÞ Curves

Load Function

75% D ¼ 0:0371w�7:517 � 0:0052
80% D ¼ 0:0322w�8:008 þ 0:0056
90% D ¼ 0:0274w�8:654 þ 0:0284

NGUYEN ET AL.: BLACK-BOX FORK-JOIN LATENCY PREDICTION MODEL FOR DATA-INTENSIVE APPLICATIONS 1987

service time distributions for Fork nodes. However, in prac-
tice, determining those distributions is nontrivial, e.g., for sys-
tems with multi-replica Fork nodes. Hence, it is necessary to
seek a black-box solution applicable to a wide range of Fork-
Join structures of practical interests.

Based on the Observation 1, i.e., D converges to a constant
as the number of Fork nodes becomes large enough, i.e.,
around 100, based on all the testing cases. This suggests that,
if for a target application, D can be measured on a small
testbed or by simulation, with 100 virtual machines/nodes, or
equivalently, a few commodity servers, e.g., 5, then the mean
latency can be predicted when the application is deployed on
a much larger number of nodes. This approach requires only
the means and variances of task response times as inputs, and
hence is a hybrid, black-box solution.

The steps taken to find the job mean latency are similar to
those for the white-box approach above except for step 2
where D is predicted by running experiments for the target
application on a system with a given number of Fork nodes,
e.g., 100, and measure the ratio gap between the results
from the experiments and the prediction model.

Compared to the white-box solution, the black-box one is
simpler and can be applied to a much wider range of Fork-
Join structures. However, as a hybrid approach, it requires to
run experiments, either via simulation or on a real testbed,
with an adequate number of Fork nodes, e.g., 100. Conse-
quently, it should be applied to large-scale systems where a
job is forked to at least hundreds of nodes, much larger than
the one used for testing. Note that the hybrid approach, which
combines analysis and simulation, is not unusual in analyzing
performance of the Fork-Join model. Indeed, it has been used
in several previousworks in the literature [10], [13], [29].

3 VALIDATION

3.1 Tail Latency Prediction Validation

In this section, ForkTail is extensively validated against the
results from model-based simulation, trace-driven simula-
tion, and a case study in Amazon EC2 cloud. The validation
is performed for the systems with k ¼ N , k � N , and consol-
idated services, separately. The accuracy of the prediction is
measured by the relative error between the value predicted
from ForkTail, tp, and the one measured from simulation or
real-system testing, tm, i.e.,

error ¼ 100ðtp � tmÞ
tm

:

3.1.1 Case 1: k ¼ N

A notable example for this case is Web search engine [30]
where a search request looks up keywords in a large inverted

index distributed on all the servers in the cluster.We validate
ForkTail with three testing approaches, i.e., white-box and
black-box model-based testing as well as a real-world case
study in Amazon EC2 cloud.

White-Box Model-Based Validation. Here we study the
accuracy of ForkTail when applied to homogeneous, single-
queuing-server-Fork-node Fork-Join systems with the assu-
mption that the service time distribution is known in
advance, the approach taken in all the existing works on per-
formance analysis of FJQNs [9]. The tail latency prediction
involves the following steps:

– Find the mean and variance of task response times
with the given task service time distribution;

– Substitute the above mean and variance into Eqs. (2)
and (3), respectively, and solve that system of equa-
tions to find the scale and shape parameters of the
generalized exponential distribution in Eq. (1),
which is then used to approximate the task response
time distribution;

– Calculate the pth percentile of request response times
from Eq. (9).

First, we compare ForkTail against the state-of-the-art tail
latency approximation for homogeneous FJQNs [14], known
as EAT, which is derived from analytical results for single-
node and two-node systems. Fig. 4 shows the comparative
results for three service time distributions studied in [14],
i.e., Erlang-2, Exponential, and Hyperexponential-2, at the
loads of 10, 50, and 90 percent4 and numbers of nodes of
100, 500, and 1,000.

EAT provides more accurate (from a few to several per-
centage points) approximations for the 99th percentiles of
response times across all the cases studied. Much to our
surprise, our approach yields most of the errors within
10 percent, across the entire load range. Although outper-
forming our approach, EAT has its limitations. First, it can be
applied only to homogeneous FJQNs where each node can be
generally modeled as a MAP/PH/1 queuing system, i.e.,
Markovian arrival processes and phase-type service time dis-
tributionwith one service center. Second, themethod requires
the service time distribution to be known in advance and con-
verted into a phase-type distribution, which is nontrivial,
especially for heavy-tailed distributions [31]. Third, the
method may incur high computational complexity, depend-
ing on the selection of a constant C, whose value determines
the computational runtime and prediction accuracy. It takes

Fig. 4. Prediction errors for the 99th percentile response times for ForkTail and EAT.

4. For EAT, the case for Hyperexponential-2 at the load of 90 percent
is not available, due to a numerical error running the code provided
in [14].

1988 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 9, SEPTEMBER 2020

at least 2 seconds on our testing PC (Core i7-4940MX Quad-
core, 32GB RAM) to get the resulting percentiles even at
the lesser degree of accuracy with C ¼ 100 (more than
300 seconds at C ¼ 500). In contrast, our method takes less
than 5 milliseconds to compute the required percentiles. As a
result, similar to other existing white-box solutions, EAT has
limited applicability for datacenter job scheduling and
resource provisioning in practice.

To cover a sufficiently large workload space, we further
consider service time distributions with heavy tails, which
are common in practice [32] and cannot be easily dealt with
by EAT, including the following,

– Empirical distributionmeasured from aGoogle search
test leaf node provided in [32], which has a mean ser-
vice time of 4.22 ms, a coefficient of variance (CV) of
1.12, and the largest tail value of 276.6ms;

– Truncated Pareto distribution [31] with the samemean
service time and a CV of 1.2, whose CDF is given by,

FSðxÞ ¼ 1� ðL=xÞa
1� ðL=HÞa 0 � L � x � H; (13)

where a is the shape parameter; L is the lower bound;
and H is the upper bound, which is set at the maxi-
mum value of the empirical distribution above, i.e.,
H ¼ 276:6ms, resulting ina ¼ 2:0119 andL ¼ 2:14ms.

– Weibull distribution [8], also with the samemean ser-
vice time and a CV of 1.5, whose CDF is defined as,

FSðxÞ ¼ 1� exp½�ðx=bÞa� x � 0; (14)

where a ¼ 0:6848 and b ¼ 3:2630 are shape and scale
parameters, respectively.

Fig. 5 presents the prediction errors for the 99th percentile
response times for the above cases. The Weibull distribution,
which is less heavy-tailed, consistently yields smaller errors,
wellwithin 5 percent, for the entire load range studied, similar
to the light-tailed distribution cases studied earlier. The
empirical and truncated Pareto distributions, which are more
heavy-tailed, provide good approximations for the 99th per-
centiles at the load of 80 percent or higher, which is well
within 17 and 5 percent at the load of 80 and 90 percent,
respectively, agreeingwith our postulation.

We also consider the cases with general arrival process
and general service time distribution, i.e., G/G/1 Fork
nodes. Fig. 6 shows the prediction errors for example cases
with Erlang-2 (CV = 0.5) and Hyperexponential-2 (CV = 1.2)
arrival processes and Truncated Pareto service time distribu-
tion (CV = 3.0). Again, ForkTail yields quite accurate app-
roximations for tail latency at high load regions, i.e., above

75 percent. The prediction results also show the same trend
for Weibull and Exponential service time distributions,
which are not shown here.

Black-Box Model-Based Validation. We now validate Fork-
Tail without making assumption on the service time distri-
bution at each Fork node. We treat each Fork node as a
black-box and empirically measure the mean and variance
of task response times at each given arrival rate � or load.
These measures are then substituted into Eqs. (2) and (3),
respectively, to find the shape and scale parameters, which
are in turn used to predict the tail latency based on Eq. (9).

For all the three heavy-tailed FJQNs studied above, we
consider two types of Fork nodes, i.e., one with single server
and the other with three replicated servers. For the one with
three servers, we explore two task dispatching policies. The
first policy is the Round-Robin (RR) policy, in which the dis-
patcher will send tasks to different server replicas in an RR
fashion. The second policy is still RR, but it also allows
redundant task issues, a well-known tail-cutting technique
[15], [16]. This policy allows one or more replications of a
task to be sent to different server replicas in the Fork node.
The replications may be sent in predetermined intervals to
avoid overloading the server replicas. In our experiments,
at most one task replication can be issued, provided that the
original one does not finish within 10 ms, which is around
the 95th percentile of the empirical distribution above.

Figs. 7, 8, and 9 present the prediction errors at different
load levels and N ’s for the 99th percentile response times
for all three FJQNs with single server and three servers per
Fork node, respectively. First, we note that the prediction
errors for the cases in Fig. 7 are very close to those in Fig. 5.
This is expected as the white-box and black-box results, ide-
ally, should be identical. The differences are introduced due
to simulation and measurement errors. Second, the predic-
tion performances of the cases with three replicas and the
RR policy in Fig. 8 are also very close to those of the cases in
Fig. 7, with errors being well within 20 and 10 percent at the

Fig. 5. Prediction errors of the 99th percentile response times for white-box systems with single-server Fork nodes.

Fig. 6. Prediction errors of the 99th percentile response times for white-
box systems with Erlang-2 (left) and Hyperexponential-2 (right) arrival
distributions and Truncated Pareto service time distribution.

NGUYEN ET AL.: BLACK-BOX FORK-JOIN LATENCY PREDICTION MODEL FOR DATA-INTENSIVE APPLICATIONS 1989

loads of 80 and 90 percent, respectively, for all the case stud-
ies, further affirming our postulation. The two scenarios
have similar performance because they are compared at the
same load levels, where the RR policy in the second scenario
simply balances the load among three replicas, making each
virtually identical to the single-server scenario. In contrast
to these two scenarios, Fig. 9 shows that with the application
of the tail-cutting technique, the prediction errors are sub-
stantially reduced, with less than 10 percent at the load of
80 percent or higher. This is consistent with the earlier
observation, i.e., the lighter the tail, the smaller the predic-
tion errors. This suggests that the tail-cutting techniques,
often utilized in datacenters to curb the tail effects, can help
expand the load ranges in which ForkTail can be applied.

A Case Study in Cloud. We also assess the accuracy of
ForkTail for a real case study in Amazon EC2 cloud. We
implement a simple Unix grep-like program on the Apache
Spark framework (version 2.1.0) [4]. It looks up a keyword
in a set of documents and returns the total number of lines
containing that keyword, as depicted in Fig. 10. The cluster
for the testing includes one master node using an EC2
c4.4xlarge instance and 32 or 64 worker nodes using EC2 c4.
large instances. We use a subset of the English version of
Wikipedia as the document for lookup. Each worker node
holds a shard of the document whose size is 128 MB, corre-
sponding to the default block size on Hadoop Distributed
File System (HDFS) [33]. A client, which runs a driver pro-
gram, sends a flow of keywords, each randomly sampled

from a pool of 50K keywords, to the testing cluster for
lookup. Each worker searches through its corresponding
data block to find the requested keyword and counts the
number of lines containing the keyword. The line count is
then sent back to the client program to sum up. Clearly, this
testing setup matches the black-box model.

We measure the request response time, i.e., the time it
takes to finish processing each keyword at the client. We also
collect the task response times, composed of the task waiting
time and task service time. The task waiting time is the one
between the time the request the task belongs to is sent to the
cluster and the time the task is sent to a given worker for
processing. This is because in the Spark framework, all the
tasks spawned by a request are kept in their respective

Fig. 7. Prediction errors of the 99th percentile response times for black-box systems with single-server Fork nodes.

Fig. 8. Prediction errors of the 99th percentile response times for black-box systems with 3-server Fork nodes and Round-Robin policy.

Fig. 9. Prediction errors of the 99th percentile response times for black-box systems with 3-server Fork nodes and redundant-task-issue policy.

Fig. 10. Experiment setup in Amazon EC2 cloud. Each worker should be
viewed as a blackbox as in Fig. 1.

1990 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 9, SEPTEMBER 2020

virtual queues corresponding to their target workers cen-
trally. A task at the head of a virtual queue cannot be sent to
its target worker until the worker becomes idle. Hence, to
match our black-box model, the task response time must
include the task waiting time, i.e., the task queuing time plus
the task dispatching time, and the task service time, which is
the actual processing time at the worker the task is mapped
to. From the collected samples, we compute the means and
variances of task response times, which are in turn used to
derive the task response time distribution as in Eq. (1).

Ideally, the task response time distributions for all the
tasks are the same, given that the workers are identical. In
other words, one would expect that this case study is homo-
geneous. However, our measurement indicates otherwise.
A careful analysis reveals that this is mainly due to the task
scheduling mechanism in the Spark framework. Each data
block has three replicas distributed across different workers.
By default, the placement preference is to send a task to an
available worker where the data block resides. Unfortu-
nately, as the request arrival rate or load increases, more
tasks are mapped to workers that do not hold the required
data blocks for the tasks, causing long task response time
due to the need to fetch the required data blocks from the
distributed file system. This results in higher variability in
the task response time distributions among different work-
ers. Therefore, the heterogeneous model given in Eq. (4) is
found to be more appropriate in high load regions.

The above observation is confirmed by the experimental
results, presented in Fig. 11. As one can see, the heteroge-
neous model (the blue lines) gives quite accurate prediction
for both 95th and 99th percentiles at both N ¼ 32 and 64
cases, while the prediction from the homogeneous model
(the green lines) gets worse as the load becomes higher.
Based on the heterogeneous prediction, the prediction errors
at bothN ¼ 32 and 64 and the 99th percentile are well within
10 percent in a high load region, i.e., 60 percent or higher.
Note that the load here is measured in terms of request
arrival rate. Since the system is heterogeneous, we estimated
the equivalent loads corresponding to different arrival rates

based on the maximum value of means of task service times
across all the workers, as given in Table 3.

Finally, we note that to achieve a reasonably good confi-
dence of measurement accuracy for the 99th percentile tail
latency, we collected 80K samples in our experiments at the
maximumpossible sampling rate equal to the average request
arrival rate of 5.8 per second, which translates into a measure-
ment time of 13,793 seconds or about 4 hours. It takes even
more time to run the experiments at lower arrival rates. The
average runtime across all the request arrival rates in the
experiments is about 6 hours. Due to the costly cloud services,
we have to limit our experiments to 64worker nodes.

This example clearly demonstrates that it can be expensive
and time consuming, if practical at all, to estimate tail latency
based on direct measurement. In contrast, ForkTail is able to
do so with far fewer number of samples at much lower cost.
For example, with 800 samples collectable in less than three
minutes, we can estimate the response-timemeans and varian-
ces for all the tasks and hence the tail latency with reasonably
good accuracy. This means that our prediction model can
reduce the needed samples or prediction time by two orders of
magnitude than the directmeasurement.

3.1.2 Case 2: Variable Number of Tasks k � N

Notable examples for this case are key-value store systems
in which a key lookup may touch only a partial number of
servers and web rendering which requires to receive web
objects or data from a group of servers in a cluster.

In this case study, we assess the accuracy of our prediction
model (i.e., Eqs. (8) and (9)) for applications whose jobs may
spawn different numbers of tasks with distributionP ðK ¼ kiÞ.
Specifically, we study two scenarios where P ðK ¼ kiÞ is non-
zero for a specific value of K and uniformly distributed,
respectively. We further consider three different service time
distributions: two heavy-tailed ones, the empirical and trun-
cated Pareto as in Section. 3.1.1, and a light-tailed exponential
distribution,with the samemean service time, i.e., 4.22ms.

Scenario 1: Fixed Number of Tasks per Job. In this scenario,
we consider the cases when the number of forked tasks per
job is a fixed number k (k � N), i.e., every incoming job is

Fig. 11. Predicted tail latencies for keyword occurrence counts in Ama-
zon cloud with 32 (left) and 64 (right) nodes.

TABLE 3
Estimated Loads (%) for the Testbed Based

on Request Arrival Rates

Request arrival rates (requests/s)
#workers

3.0 3.5 4.0 4.5 5.0 5.5

32 48.33 56.39 64.44 72.50 80.56 88.61
64 50.04 58.38 66.72 75.06 83.40 91.74

Fig. 12. Prediction errors of the 99th percentile response times for an 1000-node cluster when the number of tasks per job is fixed (k ¼ 100; 500; 900).

NGUYEN ET AL.: BLACK-BOX FORK-JOIN LATENCY PREDICTION MODEL FOR DATA-INTENSIVE APPLICATIONS 1991

split into exactly k tasks which are dispatched to k randomly
selected Fork nodes in anN-node cluster.

Fig. 12 shows prediction errors for the 99th percentile
response times for an 1,000-node cluster with k ¼ 100, 500,
and 900 tasks. ForkTail provides good prediction in high
load regions, with all the errors within 10 percent at the load
of 90 and 20 percent at the load of 80 percent for all the cases
studied. The case with the light-tailed exponential distribu-
tion gives quite accurate prediction for the entire range
under study, i.e., all within 6 percent.

Scenario 2: Uniform Distribution. Here we deal with cases
when an incoming job is forked to k randomnodes in the clus-
ter where k is randomly sampled from an integer range ½a; b�,
i.e., ki 2 fa; aþ 1; . . .; b� 1; bg with probability Pi ¼ P ¼
1=m8i, where m ¼ b� aþ 1. Therefore, the mean number of
tasks is ðaþ bÞ=2.

Fig. 13 presents prediction errors for an 1,000-node clus-
ter with k in four different ranges, i.e., [80, 120], [400, 600],
[800, 1000], and [10, 990]. The results again show that Fork-
Tail yields good approximations for the 99th percentile job
response times when the system is under heavy load, i.e.,
80 percent or higher. Furthermore, again for all the cases
with the exponential distribution, ForkTail gives accurate
predictions across the entire load range studied.

The above prediction model applies to the case where a
single tail-latency SLO is imposed on a service or applica-
tion as a whole, a practice widely adopted in industry.
However, this practice can be too coarse grained. To see
why this is true, Table 4 provides the predicted tail latencies
for some given jobs with distinct k values in a cluster of size

1,000 and at the load of 90 percent. As one can see, the 99th
percentile tail latencies for jobs at different k’s can be drasti-
cally different, e.g., the 10-task and 900-task cases. This sug-
gests that even for a single application, finer grained tail
latency SLOs may need to be enforced to be effective, e.g.,
enforcing tail-latency SLOs for job groups with each having
k’s in a small range. Table 5 shows that ForkTail can indeed
provide accurate, finest-grained prediction at given k’s, i.e.,
all well within 10 percent at load of 90 percent.

3.1.3 Case 3: Consolidated Services

In this case study, we evaluate the accuracy of ForkTail when
applied to the consolidated datacenter where multiple appli-
cations, including latency-sensitive user-facing and back-
ground batch ones, share cluster resources as illlustrated in
Fig. 14. We conduct a trace-driven simulation based on a
trace file derived from the Facebook 2010 trace, a widely
adopted approach in the literature to explore datacenter
workloads [19], [34], [35]. We test the accuracy of ForkTail in
capturing the tail latency for a given target application.

Workload. The trace file is generated based on the descrip-
tion of the Facebook trace in some previously published
works [19], [34], [35]. Specifically, we first generate the num-
ber of tasks for job arrivals based on the distribution of the
job size in terms of the number of tasks per job, as suggested
in [35]. It includes nine bins of given ranges of the number of
tasks and corresponding probabilities, assuming that the
number of tasks is uniformly distributed in the range of each
bin. We then generate the mean task service time based on
the Forked task processing time information in [34]. Individ-
ual task times are drawn from a Normal distribution with
the generated mean and a standard deviation that doubles
the mean as in [19]. The resulting trace file contains a total of
two million requests, each including the following informa-
tion: request arrival time, number of forked tasks, mean task
service time, and the service times of individual forked tasks.

In the experiments, the jobs in the trace file serve as the
background workloads, which are highly diverse, involving

Fig. 13. Prediction errors of the 99th percentile response times for an 1000-node cluster when the number of tasks per job is uniformly distributed.

TABLE 4
The Predicted 99th Percentile of Latencies (ms)

Number of forked tasks
Distribution

10 400 500 600 900

Exponential 291.32 446.97 456.38 464.08 481.19
Truncated Pareto 448.83 705.45 720.97 733.66 761.87
Empirical 391.27 616.22 629.83 640.95 665.68

TABLE 5
Errors in the 99th Percentile Prediction When Tracking Jobs

With a Given Number of Tasks at Load of 90 percent

Number of nodes
Distribution

10 400 500 600 900

Exponential �0.861 0.052 0.433 0.647 2.791
Truncated Pareto �0.571 �0.403 1.763 �0.489 �1.433
Empirical �2.814 �6.929 �6.239 �5.322 �6.541

Fig. 14. Consolidated applications running on a cluster.

1992 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 9, SEPTEMBER 2020

a wide range of applications with mean service times rang-
ing from a fewmilliseconds to thousands of seconds. The tar-
get jobs are generated at runtime using the same approach
the trace file is generated. The only difference is that the tar-
get jobs are statistically similar with the same mean service
time, to mimic a given application or simply a group of jobs
with similar statistic behaviors. For each simulation run, a
predetermined percentage, e.g., 10 percent, of target jobs are
created and fed into the cluster at random.

Simulation Settings and Results. In the simulation, the target
and background jobs are set at 10 and 90 percent of the total
number of jobs, respectively. We evaluate two cases, one
with the number of tasks per target job set at one half of the
cluster size and the other the same as the cluster size. The
tests cover multiple cluster sizes, i.e., 100, 500, 1,000, and
5,000 nodes with each having three replicated servers. All the
cases are homogeneous.

The prediction errors for the 99th percentiles of target
response times for the two case studies at loads of 50, 75, 80,
and 90 percent are shown in Fig. 15. As one can see, the pre-
diction errors are within 15 percent for all the cases studied.

Finally, we note that although the validations for tail lat-
ency prediction are exclusively focused on the 99th-percentile
tail latency, ForkTail offers similar and consistent perfor-
mance at higher percentiles, which are not shown here due to
the lack of space.

3.2 Mean Latency Prediction Validation

In this section, we extensively validate the predicted mean
latencies from ForkMean, for both white-box and black-box
approaches, against the results from the existing white-box
solutions, the event-driven simulation experiments, and a
case study on Amazon EC2 as in Section 3.1.

3.2.1 Scenario 1: Single-Server Queues

In this scenario, we compare ForkMean with some well-
known closed-form approximations, including NT [10], VMC
[36], andVM [37].

Fig. 16 shows the comparison for the systems with 50,
1,000, and 5,000 nodes, each modeled as an M/M/1 queue,
at load levels of 50, 75, 80, and 90 percent. Overall, the NT
approximation is themost accurate one. The white-box Fork-
Mean yields errors within 5 percent for all the cases studied,
which are close to those of the NT approximation. The black-
box one that is based on the measured D’s at 100 node also
gives good approximations to mean latency even for the case
of 50 nodes, with errors within 10 percent for all the cases.
Note that, due to its high computational complexity, the VM
approximation is not included in the cases of 1,000 and 5,000
nodes. With small n’s, e.g., 50, it is a little better than the
VMC approximation but not as good as theNT one.

The NT and VMC approximations above, which are tai-
lored to M/M/1 queues, could not be applied to general ser-
vice time distributions as the prediction errors are too large to
be useful. Indeed, Fig. 17 shows thatwhile both black-box and
white-box ForkMean solutions continue to performwell, with
errors within 10 percent, VMC and NT offer extremely poor
performance with up to 40 and 50 percent errors for Gamma
andWeibull task service time distributions, respectively.

The existing methods for the approximation of the mean
response time in the case of M/G/1 Fork-Join models are
heuristic-based [37] or hybrid-based [13], [29], i.e., combin-
ing simulation and analysis. Moreover, these works mainly
focus on light-tailed distributions, e.g., Exponential (Exp),
Erlang-2 (E2), and Hyperexponential-2 (H2). In contrast, in
addition to these distributions, ForkMean solutions are also
validated for a wide range of service time distributions.

Fig. 15. Prediction errors of the 99th percentile target response times in
a consolidated workload environment when the tasks of each target job
reach all the nodes (top) and randomly reach 50 percent number of
nodes (bottom) in the cluster.

Fig. 16. Comparison of percentage errors in mean latency approximations where each Fork node is modeled as an M/M/1 queuing system.

Fig. 17. Comparison of percentage errors in mean latency approxima-
tions with M/G/1 queues for Gamma and Weibull service time
distributions.

NGUYEN ET AL.: BLACK-BOX FORK-JOIN LATENCY PREDICTION MODEL FOR DATA-INTENSIVE APPLICATIONS 1993

To test the effectiveness of ForkMean, we first compare
our white-box solution with the heuristic approximations in
[37] for the cases of Erlang-2 (E2) and Hyperexponential-2
(H2) service time distributions with Poisson arrivals, i.e., M/
G/1 queues.

Tables 6 and 7 present the comparative results for Erlang-2
and Hyperexponential-2, respectively. Again due to the
computational complexity concerning the VM approximation,
we perform comparison only for small n’s, i.e., up to 20, the
maximum problem size studied by the authors of the VM
approximation [37], although our solution offers consistent
performance at large n’s as well. For the Erlang-2 distribution,
the VM approach gives better predictions at load level of
50 percent and lower numbers of nodes, i.e., 5 and 10 nodes,
while our solution yields comparable or better predictions for
the other settings. The accuracy of our approach outperforms
that of the VM for the Hyperexponential distribution.
Although yielding good prediction performance for systems
with small numbers of Fork nodes, the VM approximation
faces the issue of numerical instatibility and computational
complexity due to big binomial coefficients, resulting in higher
prediction errors for higher numbers of nodes, as observered
from the reported results. In additon, while the VM approxi-
mation can in theory be applied to G/G/1 queues, finding
light andheavy traffic limits for an arbitrary service timedistri-
bution, e.g.,Weibull or truncated Pareto, is nontrivial.

Fig. 18 shows the prediction accuracy of ForkMean for the
above heavy-tailed service time distributions. Both white-
box and black-box solutions yield quite accurate predictions
for less heavy-tailed distributions, i.e., Weibull, for all the
cases studied, with errors within 12 percent for all the cases.
For heavier tailed distributions, i.e., truncated Pareto and
empirical, the solutions give good approximations at high
load levels, i.e., 80 percent or higher, a region of interest for
resource provisioning. Overall, the black-box solution gives
comparably close prediction performance to that of the
white-box one. The errors aremostlywithin 20 and 10 percent
at the load levels of 80 and 90 percent, respectively.

The predictions for G/G/1 cases as in Section 3.1 also
show similar performance, i.e., within 20 percent errors at
the load levels of 80 percent or higher, which are not shown
here due to the lack of space.

3.2.2 Scenario 2: Systems With Replicated Servers

We now validate ForkMean for systems with 3-replica Fork
nodes. We consider two dispatching policies, i.e., Round-
Robin and redundant-task-issue, and heavy-tailed service
time distributions as in Section 3.1. The validation is run
only for the black-box solution since the exact service time
distributions for the Fork nodes are simply unknown for
such cases.

TABLE 6
Errors for Mean Latency Prediction With M/E2/1 Queues

Number of nodes
Load Method

5 10 15 20

50% VM �0.806 �1.486 �1.985 �1.827
White-box �7.947 �6.312 �5.483 �4.934

75% VM �2.989 �4.587 �5.748 �5.637
White-box �9.827 �7.360 �6.316 �5.104

80% VM �3.440 �5.336 �6.886 �7.400
White-box �10.101 �7.524 �6.666 �5.922

90% VM �5.414 �7.885 �9.039 �9.538
White-box �11.001 �8.110 �6.398 �5.251

TABLE 7
Errors for Mean Latency Prediction With M/H2/1 Queues

Number of nodes
Load Method

5 10 15 20

50% VM �1.007 6.446 13.389 17.937
White-box 0.869 0.945 1.881 2.118

75% VM �1.682 6.556 12.601 16.678
White-box �1.255 0.975 2.091 2.574

80% VM �0.402 6.361 11.687 14.975
White-box �0.106 1.503 2.563 2.753

90% VM 0.111 4.030 6.366 8.697
White-box �0.081 1.183 1.242 1.825

Fig. 18. Errors for mean response time approximations using the white-box (upper row) and black-box (lower row) solutions.

1994 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 9, SEPTEMBER 2020

Fig. 19 presents the results for these cases using the
black-box approach, applying the D values measured from
the respective systems at n ¼ 100 to the ones with 200, 500,
and 1,000 nodes. One can see that the results for the Round-
Robin cases are close to those in the previous scenario. This
is due to the fact that the Round-Robin policy mainly per-
forms load balancing between replica and thus the effective
service time distributions on the Fork nodes are almost
unchanged. In contrast, the model yields good predictions
for the redundant-task-issue policy for the entire load range
under study. This is largely because this policy curbs the
tail effects and makes the effective service time distributions
less heavy-tailed. These results agree with those from the
previous scenarios for less heavy-tailed distributions, i.e.,
Gamma andWeibull.

3.2.3 Scenario 3: Systems With Variable

Numbers of Tasks

For illustrative purposes, we validate the results on Fork-Join
models with homogeneous, single-server Fork nodes with
the above service time distributions using the black-box solu-
tion, assuming that the tasks for each incoming job is ran-
domly dispatched to 40–60 percent total number of Fork
nodes. As a result, the effective load on each Fork node is
half of that on the single-server systems in Scenario 3.2.1.
Therefore, we double the arrival rate, �, to keep the same
arrival rate on each node as in the previous cases. The results
of this scenario are shown in Fig. 20. Similar to the previous
scenarios, the black-box solution gives accurate predictions

across the entire load range for light-tailed distributions, e.g.,
Exponential, Gamma (which is not shown here), while yield-
ing good approximations for the heavy-tailed distributions,
i.e., truncated Pareto and empirical, at high load regions,
e.g., 80 percent or above.

3.2.4 Scenario 4: A Case Study on Amazon EC2

Wealso evaluate the accuracyof theblack-box solution for the
case study on AWS EC2 as in Section 3.1.1. To illustrate the
effectiveness of the black-box solution for this case study, we
compute the gap for the 32-worker cluster and apply it to the
approximation of request mean response time for the case of
the 64-worker cluster. Table 8 presents the prediction errors
forthiscasestudy.Again,theblack-boxmethodpredictsmean
responsetimequiteaccuratelywhenthesystemattheeffective
load of 60 percent or higher, corresponding to arrival rates
greaterthan3.5requests/s.

Finally, we note that the tail effect is a recognized issue in
datacenter applications and tail-cutting techniques are often
exploited in datacenters to reduce the tail effects [1], [15],
[16], [38]. As a result, the effective service time distributions
tend to be less heavy-tailed. Therefore, ForkTail and Fork-
Mean show a great potential to be able to accurately predict
the tail and mean latencies in a wide load range in practice,
not limited to a high load region.

4 SENSITIVITY ANALYSIS

From all the experiments above, we can see that the pro-
posed approximations can be applied to a wide range of

Fig. 19. Errors in mean response time approximation for systems with replicated servers applying Round-Robin (upper row) and redundant-task-
issue (lower row) policies.

Fig. 20. Errors in mean response time approximation for systems with variable numbers of tasks.

NGUYEN ET AL.: BLACK-BOX FORK-JOIN LATENCY PREDICTION MODEL FOR DATA-INTENSIVE APPLICATIONS 1995

systems with reasonable prediction errors for the 99th per-
centile and mean job latency, consistently within 20 and
15 percent at the loads of 80 and 90 percent, respectively.
Now, the question yet to be answered is how much impact
these errors will have on the accuracy for resource provi-
sioning at high loads. To this end, we conduct a sensitivity
analysis of tail and mean latencies as functions of load.

We perform experiments with different load levels in the
high load region, i.e., 78 to 95percent, for FJQNswithdifferent
service timedistributions, i.e., exponential,Weibull, truncated
Pareto, and empirical ones. Figs. 21 and 22 shows results from
both simulation and the proposed approximations for 1,000-
node systems. First, we note that the proposedmodels consis-
tentlyoverestimatesthetailandmeanlatenciesfortheexponen-
tial and Weibull cases, while mostly underestimates them for
the truncated Pareto and empirical cases. In other words, the
former causes resource overprovisioning, whereas the latter
leads to resourceunderprovisioning. Then thequestion is how
much. Take the exponential case as an example, the predicted
meanlatencyat90percentloadisroughlyequaltothesimulated
one at 91 percent load. This means that the model may lead to
1 percent resource over provisioning for the exponential cases.
Followingthesamelogic, it iseasytofindthatforbothexponen-
tial andWeibull cases, the predictionmodels for both tail and
mean latency may result in no more than 1 percent resource
overprovisioning in the entire 78–95percent load range.By the
sametoken,wefindthat for the truncatedParetoandempirical
cases, the models may cause up to 4 and 6 percent resource
underprovisioning at 80percent load and 2 and 1 at 90percent
load for tail and mean latency, respectively. This can be well

compensatedforbyleavinga6percentresourcemargininprac-
tice. This implies that in theworst-casewhen the actual service
timedistribution is light-tailed,ourapproximationsmaycause
upto7percentresourceoverprovisioningatthe loadsof80per-
cent or higher, given that we don’t have the knowledge about
the tail-heaviness of theworkload.With theprediction and the
small overprovisioning to compensate the prediction error
proposedinthispaper,onecanexpecttorunthesystematupto
90 percent instead of 50 percent resource utilization with tail
andmeanlatencyguarantee.

Our sensitivity analyses for the other Fork-Join structures,
which are not shown here, have led to similar conclusions.
This demonstrates the effectiveness of our predictionmodels
as a powerful means to facilitate multi-SLO-guaranteed, e.g.,
tail and mean latency guaranteed job scheduling and reso-
urce provisioning for datacenter applications.

5 APPLICABILITY RANGE

In this section, we want to answer the following question: In
what parameter range can our models predict the request
latency within 20 percent errors at high load? To this end, we
note that we need to focus on identifying the applicability
range on the heavy tail end, rather than the light tail end for
two reasons. First, from the extensive experiments above, we
found that our methods give quite accurate approximations
for tail and mean latency for a wide range of loads for light-
tailed distributions, e.g., Exponential, Gamma, and Erlang-2.
Second, in practice, server wokloads in datacenters exhibit
heavy-tailed distributions [15], [32]. Also, the heavy-tailed
truncated Pareto distribution given in Eq. (13) was found to
be a good fit for empirical data from server workloads [31].
Hence, in what follows, we test the applicability range of our
approximations based on this distribution.

From extensive experiments with the truncated Pareto
distribution, we found that our approximations predict the
tail and mean latencies within 20 percent errors at the loads
of 80 percent or higher, when the tail index a in Eq. (13) is
less than 2, i.e., 0 < a < 2. This range of a was found to be
large enough to cover the server workloads in [31].

TABLE 8
Errors in Mean Response Time Approximation Using the

Black-Box Solution for the Test Case on AWS

Effective load (Arrival rate (requests/s))

50.0% 58.4% 66.7% 75.1% 83.4% 91.7%

#workers (3.0) (3.5) (4.0) (4.5) (5.0) (5.5)
64 31.678 10.489 7.817 8.874 15.274 13.991

Fig. 21. Differences in the 99th percentile response times from simulation and ForkTail for 1000-node systems with different service time distributions
and fixed number of Fork tasks.

Fig. 22. Differences in mean response times from the simulation and black-box ForkMean for 1000-node systems with different service time distribu-
tions and fixed number of Fork tasks.

1996 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 9, SEPTEMBER 2020

To further test if today’s datacenter workloads indeed
fall into the above range, we test the fitting of the truncated
Pareto distribution to the workload traces from Facebook
and Google provided in [19]. These traces include a mixture
of different types of workloads placed on datacenter serv-
ers. To simulate the workload on one server, we draw
10,000 random samples from each trace and fit them to the
truncated Pareto distribution based on the procedure sug-
gested in [39], which uses the ðrþ 1Þ largest-order statistics
and visual check. We found that the fitted values of a for
Google and Facebook samples are mostly within the appli-
cability range of ð0; 2Þ. Fig. 23 illustrates two examples of
the fitted curves.

The above results strongly suggest that our proposed
methods can indeed serve as a useful tool for the approxi-
mation of tail and mean latency for datacenter workloads.

6 FACILITATING JOB SCHEDULING

AND RESOURCE PROVISIONING

We now discuss how our proposed approximations may be
used to facilitate both SLO-guaranteed job scheduling and
resource provisioning. We present here only the procedures
for tail latency approximation, i.e., ForkTail. The procedures
for mean latency follow similar steps since the approxima-
tion of mean latency is based on ForkTail. The proposed
ideas are preliminary and somewhat sketchy, but yet, they
do help reveal the promising prospects of our proposed
model and point directions for future studies on this topic.

Job Scheduling.We describe the ideas of how a tail-latency-
SLO-guaranteed hybrid centralized-and-distributed job
scheduler can be developed, based on ForkTail. The main
idea is to rely on distributed measurement of the means and
variances of the task response times and centralized decision
making as to how and whether the request tail-latency SLO
can be met, as depicted in Fig. 24. In the master server on the
left resides the central job scheduler to which users submit
their requests with given tail-latency SLOs. All the servers in
the cluster measures the means and variances of task
response times for tasks of different sizes or in different bins
on a continuous basis. All the servers periodically convey
theirmeasurements to the central scheduler. Upon the arrival
of a request with a given tail-latency SLO and given k tasks to
spawn, based on Eq. (5), the central scheduler will run a
Fork-node selection algorithm to determine which k Fork
nodes should be used such that the tail-latency SLO can be
met. If such k Fork nodes are found, the request will be admit-
ted, otherwise, either the tail-latency SLOwill be renegotiated

or the request will be rejected. At runtime, the central sched-
uler periodically run the prediction model using the up-to-
date means and variances as input to ensure that the tail-
latency SLOs for the on-going requests continue to bemet.

Resource Provisioning. ForkTail for the homogeneous case
(i.e., Eqs. (8) and (9)) naturally enables a resource provision-
ing solution involving two steps: (a) the evaluation of the
task-level performance requirements to achieve a given tail-
latency SLO; and (b) the selection of an underlying platform
to meet the requirements. Here, step (a) is platform inde-
pendent and hence is portable to any datacenter platforms.

For example, consider a service deployment scenario with a
given tail-latency SLO and a minimum throughput require-
ment,R. Assuming thatN , ki, andP ðK ¼ kiÞ for the given ser-
vice are known, Eq. (9) can be used to first translate the tail-
latency SLO into a pair, i.e., the mean and variance of the task
response time. This pair then serves as the task performance
budgets or the task-level performance requirements, which are
platform independent and portable. This completes step (a).

In step (b), a Fork node is set up, e.g., using three virtual
machine instances purchased from Amazon EC2 to form a
3-replica Fork node, loaded with a data shard in the memory.
Then run tasks at increasing task arrival rate � until the mea-
sured task mean and/or variance are about to exceed the cor-
responding budget(s). At this arrival rate �, the tail-latency
SLO is met without resource over-provisioning. In other
words, the � value at this point would be the maximum sus-
tainable task throughput, or equivalently, the request through-
put, in order to meet the tail-latency SLO. If this throughput is
greater than R, the minimum throughput requirement is also
met. This means that the resource provisioning is successful
and a cluster with 3N VM instances can be deployed. Other-
wise, repeat step (b) by using a more powerful VM instance
or with a re-negotiated tail-latency SLO and/or minimum
throughput requirement.

7 RELATED WORK

Fork-Join structures are traditionally modeled by FJQNs,
which have been studied extensively in the literature. To
date, the exact solution exists for a two-Fork-node FJQN only
[10], [40]. Most of the previous works primarily focus on the
approximation of mean response time [10], [11], [41] and its
bounds [42], [43]. For networkswith general service time dis-
tribution, several works have introduced hybrid approaches
that combine analysis and simulation to derive the empirical
approximation formean response time [10], [13].

Some analytic results are available on redundant task issues
[44], [45], [46]. They either address only a single replicated

Fig. 23. Examples of fitting the truncated Pareto distribution to sampled
data from Facebook and Google traces. The plots show the complemen-
tary CDF (CCDF), which is on a log scale, to focus on the tail portion of
the distribution.

Fig. 24. A hybrid, centralized-and-distributed job scheduler.

NGUYEN ET AL.: BLACK-BOX FORK-JOIN LATENCY PREDICTION MODEL FOR DATA-INTENSIVE APPLICATIONS 1997

server subsystem with exponential task service time distribu-
tion [45] or parallel request load balancing without task
spawning [44], [46].

Tail Latency Approximation. In terms of tail-latency related
research, several works dealt with the approximation of
response time distribution assuming a simple queuing
model for each Fork node, e.g., M/M/1 [47] or M/M/k
[12]. Computable stochastic bounds on request waiting and
response time distributions for some FJQNs are provided in
a recent work [48]. The most interesting and relevant work
is given in [14]. The authors of this work proposed a
method, called EAT, for the approximation of tail latency
for homogeneous FJQNs based on the analytical results
from single-node and two-node cases. The approximation
applies to FJQNs with any service time distribution that can
be transformed into a phase-type distribution. Although
outperforming our solutions by a few percentage points in
terms of tail prediction, its computational complexity ren-
ders it infeasible to facilitate online resource provisioning.
Moreover, this work can only cover a small fraction of the
aforementioned design space and hence, cannot be used to
facilitate resource provisioning in practice.

Mean Latency Approximation. Various works have been
proposed for the approximation of mean response time of
FJQNs using model-based or hybrid approaches. The work
in [10] introduces a hybrid approach for the approximation
of mean response time, Rn, for a Fork-Join model with n M/
M/1 Fork nodes (2 � n � 32) based on the exact solution for
the 2-way network [40] and simulation. In [36], the authors
proposed an approximation for mean response time based
on the optimistic and pessimistic bounds. Another approxi-
mation for mean response time of Fork-Join models with
general inter-arrival and service time distributions is pro-
posed in [37] based on light traffic interpolation and heavy
traffic limit. The light traffic interpolation is computed from
the mean response time of the Fork-Join network when there
is only a tagged job in the network, which is equivalent to the
maximum of task service time random variables. The heavy
traffic limit is postulated based on the observation of the rela-
tionship between expressions for light and heavy traffic for
1-way and 2-way networks. In [29], the authors proposed a
hybrid procedure for the approximation of mean response
time for Fork-Join models with M/G/1 queues. Indeed, this
work proposed a methodology rather than specific expres-
sions for findingmean response time. In a recent work [49], a
simulation study assessed the accuracy of the approximation
based on order statistic.

The existing approaches above are white-box solutions
targeting at individual Fork-Join models with specific queu-
ing server models. In contrast, in this paper, we propose
both white-box and black-box solutions, applicable to Fork-
Join networks with arbitrary server models.

SLO-Aware Resource Provisioning. Due to the lack of theo-
retical underpinning, the existing SLO-aware resource provi-
sioning proposals cannot provide tail and/or mean latencies
SLO guarantee by design. Instead, various techniques such
as tail-cutting techniques [15], [16], a combination of job pri-
ority and rate limiting based on network calculus [50] are
employed to indirectly provide high assurance of meeting
tail-latency SLOs. As indirect solutions, however, they can-
not ensure precise resource allocation to meet tail-latency

SLOs, while allowing high resource utilization, and hence
may result in resource overprovisioning. Yet, another alter-
native solution is to track the target tail-latency SLO through
online, direct tail-latency measurement and dynamic reso-
urce provisioning [51], [52]. This approach, however, may
not be effective, especially in enforcing stringent tail latency
SLOs. To see why this is true, consider the 99.9th percentile
request response time of 200 ms, i.e., probabilistically, only
one out of 1,000 requests should experience a response time
greater than 200 ms. Assume that the average request arrival
rate is 50 per second. To track, through direct tail-latency
measurement, whether this tail latency SLO is violated or
not with reasonably high confidence, one needs to collect,
e.g., 100K samples to see if there are more than 100 requests
whose response times exceed 200 ms. This, however, takes
about 100K/50 = 2000 seconds or about 33 minutes of mea-
surement time! Given possibly high volatility of datacenter
workloads, the tail latency SLOmay have been violatedmul-
tiple times during this measurement period, even though the
total number of requests whose response times exceeding
200 ms may be well within 100. In constrast, using our pro-
posed models, with only 20 seconds of measurement time,
one can collect 20	 50 ¼ 1000 task samples at individual
Fork nodes to allow a reasonably accurate estimation of the
means and variances of task response times. With moving
average for a given time window, e.g., 20 seconds, these
means and variances and hence, the 99.9th percentile, can be
updated every tens of milliseconds, making it possible to
enable fast online tail-latency-guaranteed job scheduling
and resource provisioning.

In summary, a solution that can predict the tail and/or
mean latency using a small number of samples collected in
a short period of time as input and that applies to a large
design space of Fork-Join structures must be sought, the pri-
mary motivation of the current work.

8 CONCLUSION AND FUTURE WORK

A key challenge in enabling tail-latency and/or mean-
latency SLOs for data-intensive services and applications in
datacenters is how to predict the latencies for a broad range
of Fork-Join structures underlying those services and appli-
cations. In this paper, we proposed to study a generic black-
box Fork-Join model for the approximations of tail andmean
latency that covers most Fork-Join structures of practical
interests. On the basis of a central limit theorem for queuing
servers under heavy load, we were able to arrive at approxi-
mate solutions to this model for both tail andmean latencies,
called ForkTail and ForkMean, respectively. These approxi-
mations were found to be able to predict the tail and mean
latencies for most practical scenarios consistently within
20 percent in a load region of 80 percent or higher, resulting
in at most 7 percent resource overprovisioning, making it a
powerful tool for resource provisioning at high load. Finally,
we discussed some preliminary ideas of how to make use of
the proposed prediction model to facilitate tail-latency-SLO-
guaranteed job scheduling and resource provisioning.

In our future work, based on ForkTail and ForkMean, we
shall develop both job scheduling and online/offline resource
provisioning solutions with tail-latency and/ormean-latency
SLO guarantee.

1998 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 9, SEPTEMBER 2020

ACKNOWLEDGMENTS

This work is supported by the NSF under awards CCF XPS
1629625 and CCF 1704504.

REFERENCES

[1] M. Jeon et al., “Predictive parallelization: Taming tail latencies in
web search,” in Proc. 37th Int. ACM SIGIR Conf. Res. Develop. Inf.
Retrieval, 2014, pp. 253–262.

[2] J. Brutlag, “Speed matters for Google web search,” 2009.
[Online]. Available: https://services.google.com/fh/files/blo
gs/google_delayexp.pdf

[3] J. Dean and S. Ghemawat, “MapReduce: Simplified data process-
ing on large clusters,” in Proc. 6th Conf. Symp. Operating Syst. Des.
Implementation, 2004, pp. 137–150.

[4] Apache spark, Accessed: Feb. 26, 2020. [Online]. Available:
https://spark.apache.org

[5] G. Blake and A. G. Saidi, “Where does the time go? Characterizing
tail latency in memcached,” in Proc. IEEE Int. Symp. Perform. Anal.
Syst. Softw., 2015, pp. 21–31.

[6] C. Reiss, A. Tumanov, G. R. Ganger, R. H. Katz, andM. A. Kozuch,
“Heterogeneity and dynamicity of clouds at scale,” in Proc. 3rd
ACMSymp. Cloud Comput., 2012, pp. 7:1–7:13.

[7] C. Delimitrou and C. Kozyrakis, “Quasar: Resource-efficient and
QoS-aware cluster management,” in Proc. 19th Int. Conf. Architec-
tural Support Program. Lang. Operating Syst., 2014, pp. 127–144.

[8] G. Bolch, S.Greiner,H. deMeer, andK. S. Trivedi,QueueingNetworks
and Markov Chains: Modeling and Performance Evaluation With Com-
puter Science Applications. Hoboken, NJ, USA: Wiley-Interscience,
2006.

[9] A. Thomasian, “Analysis of fork/join and related queueing sys-
tems,” ACM Comput. Surv., vol. 47, no. 2, pp. 1–71, 2014.

[10] R. Nelson and A. N. Tantawi, “Approximate analysis of fork/join
synchronization in parallel queues,” IEEE Trans. Comput., vol. 37,
no. 6, pp. 739–743, Jun. 1988.

[11] E. Varki, “Response time analysis of parallel computer and stor-
age systems,” IEEE Trans. Parallel Distrib. Syst., vol. 12, no. 11,
pp. 1146–1161, Nov. 2001.

[12] S. S. Ko and R. F. Serfozo, “Response times in M/M/s fork-join
networks,” Advances Appl. Probability, vol. 36, no. 3, pp. 854–871,
2004.

[13] R. J. Chen, “A hybrid solution of fork/join synchronization in par-
allel queues,” IEEE Trans. Parallel Distrib. Syst., vol. 12, no. 8,
pp. 829–845, Aug. 2001.

[14] Z. Qiu, J. F. P�erez, and P. G. Harrison, “Beyond the mean in fork-
join queues: Efficient approximation for response-time tails,” Per-
form. Eval., vol. 91, pp. 99–116, 2015.

[15] J. Dean and L. A. Barroso, “The tail at scale,” Commun. ACM,
vol. 56, no. 2, pp. 74–80, 2013.

[16] A. Vulimiri, P. B. Godfrey, R. Mittal, J. Sherry, S. Ratnasamy, and
S. Shenker, “Low latency via redundancy,” in Proc. 9th ACM Conf.
Emerg. Netw. Experiments Technol., 2013, pp. 283–294.

[17] N. J. Yadwadkar, G. Ananthanarayanan, and R. Katz, “Wrangler:
Predictable and faster jobs using fewer resources,” in Proc. ACM
Symp. Cloud Comput., 2014, pp. 26:1–26:14.

[18] R. Nishtala et al., “Scaling memcache at Facebook,” in Proc. 10th
USENIX Conf. Netw. Syst. Des. Implementation, 2013, pp. 385–398.

[19] P. Delgado, F. Dinu, A. M. Kermarrec, and W. Zwaenepoel,
“Hawk: Hybrid datacenter scheduling,” in Proc. USENIX Conf.
Usenix Annu. Tech. Conf., 2015, pp. 499–510.

[20] J. F. C. Kingman andM. F. Atiyah, “The single server queue in heavy
traffic,” Proc. Cambridge Philosophical Soc., vol. 57, pp. 902–904, 1961.

[21] J. K€ollerstr€om, “Heavy traffic theory for queues with several serv-
ers. I,” J. Appl. Probability, vol. 11, no. 3, pp. 544–552, 1974.

[22] M. Nguyen, Z. Li, F. Duan, H. Che, Y. Lei, and H. Jiang, “The Tail
at Scale: How to Predict It?” in Proc. 8th USENIX Workshop Hot
Topics Cloud Comput., 2016.

[23] S. Sani and O. A. Daman, “Mathematical modeling in heavy traffic
queuing systems,”Amer. J. Operations Res., vol. 4, pp. 340–350, 2014.

[24] R. D. Gupta and D. Kundu, “Generalized exponential distribu-
tions,” Australian New Zealand J. Statist., vol. 41, no. 2, pp. 173–188,
1999.

[25] M. Nguyen, S. Alesawi, N. Li, H. Che, and H. Jiang, “ForkTail: A
black-box fork-join tail latency prediction model for user-facing
datacenter workloads,” in Proc. 27th Int. Symp. High-Perform. Par-
allel Distrib. Comput., 2018, pp. 206–217.

[26] L. Kleinrock, Queueing Systems, Vol. 1: Theory. Hoboken, New
Jersey, USA: Wiley, 1975.

[27] W. Whitt, “The queueing network analyzer,” The Bell Syst. Tech. J.,
vol. 62, no. 9, pp. 2779–2815, Nov. 1983.

[28] G. Brys, M. Hubert, and A. Struyf, “Robust measures of tail weight,”
Comput. Statist. Data Anal., vol. 50, no. 3, pp. 733–759, 2006.

[29] A. Thomasian and A. N. Tantawi, “Approximate solutions for
M/G/1 fork/join synchronization,” in Proc. 26th Conf. Winter
Simul., 1994, pp. 361–368.

[30] L. A. Barroso, J. Dean, and U. H€olzle, “Web search for a planet:
The Google cluster architecture,” IEEE Micro, vol. 23, no. 2,
pp. 22–28, 2003.

[31] M. Harchol-Balter, Performance Modeling and Design of Computer
Systems: Queueing Theory in Action, 1st ed. Cambridge, U.K.:
Cambridge Univ. Press, 2013.

[32] D. Meisner, W. Junjie, and T. F. Wenisch, “BigHouse: A simulation
infrastructure for data center systems,” in Proc. IEEE Int. Symp.
Perform. Anal. Syst. Softw., 2012, pp. 35–45.

[33] Apache hadoop, Accessed: Feb. 26, 2020. [Online]. Available:
https://hadoop.apache.org

[34] Y. Chen, S. Alspaugh, and R. Katz, “Interactive analytical process-
ing in big data systems: A cross-industry study of MapReduce
workloads,” Proc. VLDB Endowment, vol. 5, no. 12, pp. 1802–1813,
Aug. 2012.

[35] M. Zaharia, D. Borthakur, J. S. Sarma, K. Elmeleegy, S. Shenker,
and I. Stoica, “Delay scheduling: A simple technique for achieving
locality and fairness in cluster scheduling,” in Proc. 5th Eur. Conf.
Comput. Syst., 2010, pp. 265–278.

[36] E. Varki, A. Merchant, and H. Chen, “The M/M/1 fork-join queue
with variable sub-tasks,” 2002. [Online]. Available: http://www.
cs.unh.edu/ varki/publication/2002-nov-open.pdf

[37] S. Varma and A. M. Makowski, “Interpolation approximations
for symmetric fork-join queues,” Perform. Eval., vol. 20, no. 1/3,
pp. 245–265, 1994.

[38] L. Suresh, M. Canini, S. Schmid, and A. Feldmann, “C3: Cutting tail
latency in cloud data stores via adaptive replica selection,”
in Proc. 12th USENIX Conf. Netw. Syst. Des. Implementation,
2015, pp. 513–527.

[39] I. Aban, M. Meerschaert, and A. Panorska, “Parameter estimation
for the truncated pareto distribution,” J. Amer. Statist. Assoc.,
vol. 101, no. 473, pp. 270–277, 2006.

[40] L. Flatto and S. Hahn, “Two parallel queues created by arrivals with
two demands I,” SIAM J. Appl. Math., vol. 44, no. 5, pp. 1041–1053,
1984.

[41] F. Alomari and D. A. Menasce, “Efficient response time approxi-
mations for multiclass fork and join queues in open and closed
queuing networks,” IEEE Trans. Parallel Distributed Syst., vol. 25,
no. 6, pp. 1437–1446, Jun. 2014.

[42] S. Balsamo, L. Donatiello, and N. M. Van Dijk, “Bound perfor-
mance models of heterogeneous parallel processing systems,”
IEEE Trans. Parallel Distributed Syst., vol. 9, no. 10, pp. 1041–1056,
Oct. 1998.

[43] R. J. Chen, “An upper bound solution for homogeneous fork/join
queuing systems,” IEEE Trans. Parallel Distributed Syst., vol. 22,
no. 5, pp. 874–878, May 2011.

[44] D. Wang, G. Joshi, and G. Wornell, “Efficient task replication for
fast response times in parallel computation,” ACM SIGMETRICS
Perform. Eval. Rev., vol. 42, no. 1, pp. 599–600, Jun. 2014.

[45] K. Gardner, S. Zbarsky, S. Doroudi, M. Harchol-Balter, E. Hyyti€a,
and A. Scheller-Wolf, “Reducing latency via redundant requests:
Exact analysis,” in Proc. ACM SIGMETRICS Int. Conf. Meas. Model.
Comput. Syst., 2015, pp. 347–360.

[46] Z. Qiu and J. F. Perez, “Evaluating the effectiveness of replication
for tail-tolerance,” in Proc. 15th IEEE/ACM Int. Symp. Cluster Cloud
Grid Comput., 2015, pp. 443–452.

[47] S. Balsamo and I. Mura, “Approximate response time distribution
in Fork and Join systems,” in Proc. ACM SIGMETRICS Joint Int.
Conf. Meas. Model. Comput. Syst., 1995, pp. 305–306.

[48] A. Rizk, F. Poloczek, and F. Ciucu, “Computable bounds in fork-
join queueing systems,” in Proc. ACM SIGMETRICS Int. Conf.
Meas. Model. Comput. Syst., 2015, pp. 335–346.

[49] A. Lebrecht and W. J. Knottenbelt, “Response time approxima-
tions in fork-join queues,” in Proc. 23rd Annu. UK Perform. Eng.
Workshop, 2007.

[50] T. Zhu, A. Tumanov, M. A. Kozuch, M. Harchol-Balter, and
G. R. Ganger, “PriorityMeister: Tail latency QoS for shared
networked storage,” in Proc. ACM Symp. Cloud Comput., 2014,
pp. 29:1–29:14.

NGUYEN ET AL.: BLACK-BOX FORK-JOIN LATENCY PREDICTION MODEL FOR DATA-INTENSIVE APPLICATIONS 1999

https://services.google.com/fh/files/blogs/google_delayexp.pdf
https://services.google.com/fh/files/blogs/google_delayexp.pdf
https://spark.apache.org
https://hadoop.apache.org
http://www.cs.unh.edu/ varki/publication/2002-nov-open.pdf
http://www.cs.unh.edu/ varki/publication/2002-nov-open.pdf

[51] A. Wang, S. Venkataraman, S. Alspaugh, R. Katz, and I. Stoica,
“Cake: Enabling high-level SLOs on shared storage systems,” in
Proc. 3rd ACM Symp. Cloud Comput., 2012, pp. 14:1–14:14.

[52] A. D. Ferguson, P. Bodik, E. Boutin, and R. Fonseca, “Jockey:
Guaranteed job latency in data parallel clusters,” in Proc. 7th ACM
Eur. Conf. Comput. Syst., 2012, pp. 99–112.

Minh Nguyen received the BS and MS degrees in
electrical engineering from the Ho Chi Minh City
University of Technology, Vietnam; and the PhD
degree in computer engineering from the Univer-
sity of Texas at Arlington, Arlington, Texas. He is
currently a lead hardware integration engineer at
Ikon Technologies. His current research interests
include datacenter resource management and job
scheduling, edge computing, IoT, and smart cities.

Sami Alesawi received the BS degree in computer
engineering and the MS degree in computer sci-
ence from King Abdulaziz University, Jeddah,
Saudi Arabia, and the PhD degree from The Uni-
versity of Texas at Arlington, Arlington, Texas. He
is currently working as an assistant professor at the
Faculty of Computing and Information Technology
in Rabigh, King Abdulaziz University, Saudi Arabia.
His current research interests include datacenter
resourcemanagement and job scheduling.

Ning Li received the BSc degree in computer sci-
ence from Jiangsu University, China; the MSc
degree in computer engineering from the Nanjing
University of Science and Technology, China; and
the PhD degree in computer system architecture
from the Huazhong University of Science and
Technology, China. He is currently working as a
post-doc research associate with the University of
Texas at Arlington, Arlington, Texas. His research
interests include virtualization, quality of service,
cloud computing and storage systems.

Hao Che (Senior Member, IEEE) received the BS
degree from Nanjing University, Nanjing, China;
the MS degree in physics from the University
of Texas at Arlington, Arlington, Texas; and the
PhD degree in electrical engineering from the
University of Texas at Austin, Austin, Texas.
He is currently a full professor in the Department
of Computer Science and Engineering, University
of Texas at Arlington, Texas. Prior to joining
UTA, he was a system architect with Santera
Systems, Inc. in Plano (2000–2002) and an

assistant professor of electrical engineering at the Pennsylvania State
University (1998 to 2000). His current research interests include network
architecture and Internet traffic control, datacenter resource manage-
ment and job scheduling, edge computing and IoT.

Hong Jiang (Fellow, IEEE) received the BSc
degree in computer engineering from theHuazhong
University of Science and Technology, Wuhan,
China; the MASc degree in computer engineering
from the University of Toronto, Toronto, Canada;
and the PhD degree in computer science from the
Texas A&M University, College Station, Texas. He
is currently chair and Wendell H. Nedderman
Endowed professor of Computer Science and
Engineering Department, University of Texas at
Arlington, Arlington, Texas. Prior to joining UTA, he

served as a program director at National Science Foundation (2013–2015)
and he was at University of Nebraska-Lincoln since 1991, where he was
Willa Cather professor of Computer Science and Engineering. He has grad-
uated 17 PhD students and supervised 20 post-doctoral fellows and visiting
scholars. He is currently supervising/co-supervising more than 10 PhD stu-
dents and post-doc fellows. His present research interests include computer
architecture, computer storage systems and parallel I/O, high-performance
computing, big data computing, and cloud and edge computing. He is an
associate editor of the IEEE Transactions on Computers and recently
served as an associate editor of the IEEE Transactions on Parallel and Dis-
tributed Systems. He has more than 300 publications in major journals and
international Conferences in these areas, including the IEEE Transactions
on Parallel and Distributed Systems, IEEE Transactions on Computers,
Proceedings of IEEE, ACM Transactions on Architecture and Code Optimi-
zation, the ACM Transactions on Storage, USENIX ATC, FAST,
EUROSYS, ISCA, MICRO, SOCC, LISA, SIGMETRICS, ICDE, DATE,
ICDCS, IPDPS, MIDDLEWARE, OOPLAS, ECOOP, SC, ICS, HPDC,
INFOCOM, ICPP, etc., and his research has been supported by NSF and
industry. He is amember of the ACM.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

2000 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 9, SEPTEMBER 2020

ESetStore: An Erasure-Coded Storage
SystemWith Fast Data Recovery
Chengjian Liu , Qiang Wang , Xiaowen Chu , Senior Member, IEEE,

Yiu-Wing Leung, and Hai Liu,Member, IEEE

Abstract—Erasure codes have been used extensively in large-scale storage systems to reduce the storage overhead of triplication-based

storage systems. One key performance issue introduced by erasure codes is the long time needed to recover from a single failure, which

occurs constantly in large-scale storage systems.We present ESetStore, a prototype erasure-coded storage system that aims to achieve

fast recovery from failures. ESetStore is novel in the following aspects.We proposed a data placement algorithm namedESet for our

ESetStore that can aggregate adequate I/O resources fromavailable storage servers to recover fromeach single failure.We designed and

implemented efficient read andwrite operations on our erasure-coded storage system via effective use of available I/O and computation

resources.We evaluated the performance of ESetStorewith extensive experiments on a cluster with 50 storage servers. The evaluation

results demonstrate that our recovery performance can obtain linear performance growth by harvesting available I/O resources.With our

defined parameter recovery I/O parallelism under somemild conditions, we can achieve optimal recovery performance, in which ESet

enablesminimal recovery time. Rather than being an alternative to improve recovery performance, our work can be an enhancement for

existing solutions, such as Partial-parallel-repair (PPR), to further improve recovery performance.

Index Terms—ESetStore, ESet, Erasure coded storage systems, Fast data recovery

Ç

1 INTRODUCTION

RECENT years have witnessed rapid growth in the amount
of data in large-scale distributed storage systems. In

2015, the European Centre for Medium-Range Weather
Forecasts revealed that its data had reached 100 PB and had
an annual growth rate of 45 percent [1]. A recent study illus-
trated that genomic big data have reached full storage of a
data center with a 100-PB storage capacity [2]. Triplication
[3], which is a reliability mechanism used in traditional stor-
age systems, introduces unaffordable storage costs with 3x
storage overhead. This makes the reduction of storage over-
head an unavoidable task in large-scale storage systems.
Many storage systems have begun to use erasure codes as
their reliability mechanism [4]. Microsoft’s cloud service
Azure [5], Facebooks warehouse [6], and Web service stor-
age system f4 [7] have already adopted erasure codes to
reduce their storage costs. Famous distributed file systems
such as HDFS [8] and Ceph [9] also support erasure coding,
yielding greater reliability and lower storage overhead.

An erasure-coded storage system is defined by two inte-
ger parameters, n and k. A file stored in the system is divided

into k equally sized data blocks. These data blocks generate
n� k equally sized parity blocks. The blocks are stored in n
storage components to protect data against up to n� k fail-
ures. The storage overhead is n=k. For example, Facebook f4
[7] sets k as 10 and n as 14, where its storage overhead is 1.4x.
The QFS sets k as 6 and n as 9 with 1.5x storage overhead
[10]. However, an erasure-coded storage system may suffer
from many performance penalties, one of which is the long
time needed to recover a failed storage component, which
can be a disk device or a storage server. To recover a missing
block, k blocks are retrieved from k storage components.
Because recovering a failed component is a constantly per-
formed task [6], the long recovery time may introduce
degraded service quality to thewhole system.

Studies have shown that single failures accounted for
more than 99 percent of recoveries [5], [11], [12]. Recovery
from a single failure is a performance critical operation in era-
sure-coded storage systems [11], [13]. This motivated us to
focus on recovery from a single failure to evaluate recovery
performance of erasure-coded storage systems. A single
failure can refer to the failure of a single disk and to the fail-
ure of a single storage server. Here we regard a single fail-
ure as the failure of a single storage server. The recovery of
both kinds of failures requires disk I/O and network band-
width, both of which can be regarded as I/O resources. We
aim to gain adequate I/O resources for each recovery.

The key reason behind the long time needed to recover
from a single failure is the heavy I/O operations, which is k
times the replication-based storage. To improve recovery
performance, researchers have proposed solutions from the
following aspects. Some work reduces the I/O operations
required to recover a failed component. The Microsoft cloud

� C. Liu is with the College of Big Data and Internet, Shenzhen Technology
University, Shenzhen, Guangdong 518055, China.
E-mail: liuchengjian@sztu.edu.cn.

� Q. Wang, X. Chu, and Y.-W. Leung are with the Department of Computer
Science, Hong Kong Baptist University, Kowloon Tong, Hong Kong.
E-mail: {qiangwang, chxw, ywleung}@comp.hkbu.edu.hk.

� H. Liu is with the Department of Computing, Hang Seng University of
Hong Kong, Siu Lek Yuen, Hong Kong. E-mail: hliu@hsu.edu.hk.

Manuscript received 12 Mar. 2019; revised 14 Feb. 2020; accepted 21 Mar. 2020.
Date of publication 31 Mar. 2020; date of current version 17 Apr. 2020.
(Corresponding author: Xiaowen Chu.)
Recommended for acceptance by K. Mohror.
Digital Object Identifier no. 10.1109/TPDS.2020.2983411

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 9, SEPTEMBER 2020 2001

1045-9219� 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht_tps://www.ieee.org/publications/rights/index.html for more information.

https://orcid.org/0000-0002-0103-4670
https://orcid.org/0000-0002-0103-4670
https://orcid.org/0000-0002-0103-4670
https://orcid.org/0000-0002-0103-4670
https://orcid.org/0000-0002-0103-4670
https://orcid.org/0000-0002-2986-967X
https://orcid.org/0000-0002-2986-967X
https://orcid.org/0000-0002-2986-967X
https://orcid.org/0000-0002-2986-967X
https://orcid.org/0000-0002-2986-967X
https://orcid.org/0000-0001-9745-4372
https://orcid.org/0000-0001-9745-4372
https://orcid.org/0000-0001-9745-4372
https://orcid.org/0000-0001-9745-4372
https://orcid.org/0000-0001-9745-4372
mailto:liuchengjian@sztu.edu.cn
mailto:qiangwang@comp.hkbu.edu.hk
mailto:chxw@comp.hkbu.edu.hk
mailto:ywleung@comp.hkbu.edu.hk
mailto:hliu@hsu.edu.hk

service Azure adopted local repair codes (LRC) that require
around k=2 blocks to recover a missing block, but at the cost
of increasing its storage overhead from n=k to ðnþ 2Þ=k [5].
TheHitchhiker reduces I/O operations by 25 to 45 percent for
recovery of single failures [14]. Some other works improve I/
O utilization of the recovery. Partial-parallel-repair pipe-
lined I/O operations to introduce k times of improvement of
recovery performance [15]. A recent work studied the pipe-
lined recovery for heterogeneous environments [16].

We can conclude that the long recovery time is caused
mainly by limited I/O resources for the recovery of a single
failure. Data placement algorithms, a promising means to
aggregate the desired I/O resources to recover from a single
failure, are ignored by studies of erasure-coded storage sys-
tems. This motivated us to propose ESetStore, an erasure-
coded storage system with fast data recovery via a novel
data placement algorithm ESet. To this end, we designed a
data placement algorithm named ESet to harvest adequate
I/O resources for recovery of a single failure [17]. Our solu-
tion can be an enhancement to existing solutions to improve
the recovery performance of erasure-coded storage systems.
Our major contributions are summarized as follows:

1) We present a placement algorithm named ESet to
improve recovery from failures.

2) We conduct a theoretical analysis to illustrate how
ESet can achieve desired I/O aggregation for recov-
ery of a single failure with proper configuration.

3) Rather than being an alternative to existing solutions
for improving recovery performance, the placement
algorithm ESet can be an enhancement to existing
solutions to bring better recovery performance.

4) We achieve efficient I/O utilization for the read and
write operations in ESetStore by making an efficient
utilization of both I/O and computation resources.

5) We conduct extensive experiments to validate the
effectiveness of our proposed ESetStore, and compare
it with two storage systems: HDFS [8] and Ceph [9].

6) ESetStore is open-source and available to the public.1

The remainder of this paper is organized as follows.
Section 2 introduces the background and some related work.
Section 3 formulates the problem of long recovery time
caused by improper data placement. We present the design
of ESet in Section 4. The analysis of ESet is presented in
Section 5. The design and implementation of ESetStore are
presented in Section 6. Section 7 presents the experimental
results of ESetStore.We conclude the paper in Section 8.

2 BACKGROUND AND RELATED WORK

In this section, we first briefly introduce the background of
erasure-coded storage systems. Then, we present some
related work about the optimization of the recovery.

2.1 Erasure-Coded Storage Systems

Fig. 1 presents a concrete example with n ¼ 9 and k ¼ 6.
In this example, we assume that the system uses the Reed-
Solomon code [18] as the erasure code, which satisfies the
Maximum Distance Separable (MDS) property [19]. When
writing data to the storage system, the raw data are divided

into k equally sized data blocks. A generator matrix serves
as another input. The matrix consists of a k� k identity
matrix and a ðn� kÞ � k matrix, where each element in the
ðn� kÞ � k matrix is an integer. The matrix multiplies with
the set of data blocks to generate n blocks. The set of n
blocks with k data blocks and n� k parity blocks together is
called a stripe. The set of blocks is then distributed into n
storage components to tolerate up to n� k failures.

The selected n devices for storing a stripe are typically
from n distinct failure domains to minimize the probability of
data loss. A failure domain is a physical container that
includes a set of storage servers.When the container encoun-
ters a failure, all servers in the container become unavailable.
The failure domain is a frequently used term in discussions
of system failures [7], [20], [21], [22]. In this paper, we con-
sider each rack as a failure domain. Stripes are distributed
across failure domains to protect data loss against failures
from the same failure domain.

When any storage device becomes unavailable, the stor-
age system must recover the data within it. For each missing
block in a stripe, k blocks are gathered together to reproduce
it. The process of recovering a missing block is performed
repeatedly until all blocks in the failed storage device
become available. This recovery process has become a rou-
tine job in large-scale storage systems. For example, at Face-
book, which has a production cluster of 3,000 storage
servers, around 20 storage servers will encounter failures
and require recovery each day [23]. It was also revealed that
the recovery of a failed server storing about 150 blocks
(each block size is 64 MB and k = 10) could take more than
50 minutes, which indicates that recovery performance
plays a critical role in storage systems.

Recovery occupies heavy I/O resources in erasure-coded
storage systems. Thus, recovering a single failure takes a
long time if I/O resources are limited. Reducing the
required I/O operations is a major approach to improving
the recovery performance of erasure-coded storage systems
[5], [14]. Some studies have attempted to reduce recovery
time by making better use of available I/O resources [15],
[16]. However, the performance is still limited by available
I/O resources. This motivated us to design and implement
a data placement algorithm to improve the available I/O
resources for recovery of single failures. Our work can be
used with existing solutions such as Partial-parallel-repair
(PPR) [15] to further improve the recovery performance of
erasure-coded storage systems by better I/O utilization.

Fig. 1. Erasure-Coded storage with n = 9 and k = 6 using RS code.

1. Available at https://github.com/stevenlcj/ESetStore

2002 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 9, SEPTEMBER 2020

https://github.com/stevenlcj/ESetStore

2.2 Related Work

Recovery of missing data comprises two operations: data
gathering and decoding. The performance of decoding was
improved by some recent studies like those by Gibraltar
[24], PErasure [25] and G-CRS [26]. This leaves I/O opera-
tions as the major bottleneck of recovery. We classify the
existing studies into two categories: one attempts to reduce
I/O operations, and the other attempts to improve I/O utili-
zation. We also investigate why some state-of-the-art data
placement algorithms are not suited for fast data recovery
in erasure-coded storage systems.

Reducing I/O Operations. XOR-based erasure codes access
less data when recovering a single failure. Some researchers
proposed optimization techniques for specific codes like
RDP Code [27] and X-Code [28]. The rotated Reed-Solomon
codes hold the reliability and performance properties of stan-
dard Reed-Solomon codes and can reduce the data required
for recovery by up to 30 percent [11]. Algorithms have also
been proposed to find solutions for reading less data for
XOR-based erasure codes [13], [29].

Some studies sought solutions to reduce the required I/O
operations by half but at the cost of increased storage over-
head. The family of LRCs [30] is representative: it encodes
each k/2 of data out of a stripe and stores the parity in a new
storage device. When performing recovery, only k/2 of data
blocks are required to recover a missing block. The solution
is used in Microsoft Azure [5]. The XORing Elephants stud-
ied the LRCs and noted that the cost of faster recovery is a
14 percent increase in storage overhead [23].

The family of regenerating codes [31], which hold the
properties of MDS codes [19], reduced the amount of data
needed to recover a failed storage component with special
constraints on k and n-k. Recent studies proposed some sol-
utions without special constraints. A new storage code
developed from the Piggybacking framework [32] can reduce
network and disk use during recovery by 30 percent and is
used in Facebook’s warehouse cluster [6]. The Hitchhiker can
reduce I/O operations by around 25 to 45 percent for recov-
ery of a single failure [14], where it also holds the property
ofMDS codes and supports arbitrary n and k.

Improving I/O Utilization.When recovering a block from a
stripe, k blocks from the same stripe are retrieved from k stor-
age servers concurrently. Because each server has the same
network throughput, the network bandwidth is underutil-
ized in the recovery. The Partial-parallel-repair (PPR) makes
a thorough investigation of this issue and proposed a pipe-
linedmechanism tomake full use of the available bandwidth
when performing recovery [15].

The repair pipelining technique was proposed in [16] to
make better use of bandwidth for small-size units. An
ECPipe was developed to allow the pipelined mechanism
to work in heterogeneous environments [16].

Data Placement Algorithm.Data placement algorithms play
a key role in large-scale storage systems. Using a data place-
ment algorithm to achieve good recovery performance has
been proposed in [33], [34] to help each recovery gain more
disk I/O resources. However, these algorithms are designed
for scenarios in which disks are in a single server and are not
proper for recovery of storage servers in large-scale distrib-
uted storage systems. Nowadays, many solutions compro-
mise the property of efficient recovery for other important
properties in large-scale storage systems such as balanced
storage, reliability, and scalability.

Table 1 lists the main properties of some state-of-the-art
placement algorithms. A random placement algorithm can
work with both replication and erasure-coding based stor-
age systems [35]. It can select an arbitrary number of storage
servers to store data. However, this algorithm is not reliable
in large-scale storage systems, as revealed in [21].

Copysets addresses the issue of random placement for
replication-based storage systems [21]. The probability of
data loss is reduced greatly when random placement is
replaced with with Copysets. The parameter “scatter
width” can help each storage server in a replication-based
storage system achieve efficient data reconstruction. How-
ever, this algorithm was designed for replication-based stor-
age systems, and may not work for erasure-coded storage
systems to improve recovery performance when the num-
ber of storage servers in each copyset is increased.

CRUSH [22], from the family of RUSH algorithms [36],
[37], is a well-known algorithm adopted in the storage sys-
tem Ceph [9]. It uses a pseudo-random algorithm to select a
set of storage servers when storing data. However, it is not
designed to satisfy the property of efficient recovery for era-
sure-coded storage systems.

For erasure-coded storage systems, researchers have con-
sidered placement algorithms to reduce cross-rack traffic
when recovering a single failure [38]. The study case is the
situation in which a rack contains more than one block of a
given stripe. However, when we need to simultaneously tol-
erate disk-level, host-level, and rack-level failures [7], cross-
rack traffic may not be reduced by them.

In summary, the state-of-the-art data placement algo-
rithms do not allow efficient reconstruction in erasure-
coded storage systems. This motivated us to design and
implement the placement algorithm ESet, which allows effi-
cient recovery in erasure-coded storage systems.

3 PROBLEM FORMULATION

In this section, we formulate the problem of efficient recon-
struction for erasure-coded storage systems. Our study
focuses on the recovery of the single failure. We first explain
some terms, and then illustrate our motivation by presenting

TABLE 1
Properties of Some State-of-the-Art Data Placement Algorithms

Algorithm Name Examples Reliability Mechanism Scenario Scalability Reliability Efficient Reconstruction

Random Placement [21] HDFS Replication & Erasure Coding Centralized Yes No Replication
Copyset [21] HDFS Replication Centralized Yes Yes Replication
CRUSH [22] Ceph Replication & Erasure Coding Decentralized Yes Yes N/A
ESet ESetStore Erasure Coding Centralized Yes Yes Erasure Coding

LIU ETAL.: ESETSTORE: AN ERASURE-CODED STORAGE SYSTEM WITH FAST DATA RECOVERY 2003

a simple example. We finish this section by making a formal
formulation of the problem.

3.1 Terminologies

Block.A block is a sequence of bytes with a fixed-length. Our
storage system includes two kinds of blocks: data blocks
and parity blocks. Each data block contains raw data stored
by users. The parity blocks are generated from data blocks
to protect raw data. The erasure-coded storage system
record the location of each file by memorizing the location
of its blocks in a metadata server.

Erasure Code. We use Reed-Solomon (RS) code as an
example of erasure code in this paper. In an (n, k) RS code,
where n is greater than k and k is greater than 1, k data
blocks are put together to generate n� k parity blocks (or
code blocks). When no more than n� k blocks fail in these
blocks, any k remaining blocks can be used to restore the
missing blocks. Although the encoding and decoding opera-
tions involve huge computation, many existing studies have
resolved this challenge with multicore CPU and many-core
GPU accelerations [24]. Disk and network I/O overheads
are currently the major challenge for such storage systems.

Stripe. A stripe contains n blocks in our system, where k
blocks are data blocks and the other n� k blocks are parity
blocks. Any k blocks in the same stripe can be gathered
together to reproduce other n� k blocks in the system.

Erasure-Coded Set. Each stripe can be distributed in n
disks from n distinct storage servers in the storage system.
We define an erasure-coded set as a set of n storage servers to
carry a complete stripe. It can serve as a unit of failure in
erasure-coded storage systems. When a storage server fails,
all erasure-coded sets that contain the failed storage server
will begin to recover the missing blocks in the server.

Recovery of Single Failures. A single failure can be a disk
failure or a storage server failure. The recovery of a disk or
a storage server consumes both disk I/O and network band-
width from k storage servers, which can both be regarded as
I/O resources. We aim to gain adequate I/O resources for
the single failure recovery. We regard the recovery of a sin-
gle failure as the recovery of a storage server.

Recovery I/O Parallelism. Here we define a concept of
recovery I/O parallelism. We use the symbol I to denote the
degree of recovery I/O parallelism in the system, which indi-
cates the number of erasure-coded sets to which each storage
server belongs. A larger value for I indicates that more era-
sure-coded sets will be available to recover a failed storage
server. This may leave more I/O resources for recovery of a
failed server. Thus, we can achieve efficient data reconstruc-
tion from a single failure by setting a proper value of I.

3.2 Motivation Illustration by an Example

A placement algorithm can decide the number of erasure-
coded sets for each storage server. The number of erasure-
coded sets for a server indicates the amount of I/O resources
that can be involved for recovery from a single failure. More
I/O resourcesmay result in better recovery performance.

We begin the demonstration of our motivation with an
example in Fig. 2. Here we set n as 3 and k as 2. Six storage
servers are indexed from 1 to 6 and organized in three col-
umns. We assume that each column belongs to one rack.
Blocks in the same stripe are distributed across racks to

tolerate disk-level, host-level, and rack-level failures. We
have four stripes indexed from 1 to 4. We describe two data
placement algorithms to distribute the stripes. Suppose the
network bandwidth is f and the block size is v. The time
needed to recover a block can be calculated as ðk� vÞ=f,
which is the time needed to gather k blocks into a single
server by reading blocks one by one.

Placement algorithm A, which is shown at the bottom-
left of Fig. 2, divides storage servers into two erasure-coded
sets. Each erasure-coded set carries two stripes. Placement
algorithm B (on the right side of Fig. 2) partitions the six
storage servers into four erasure-coded sets. In this way,
each erasure-coded set carries one stripe.

Both placement algorithms meet the requirement to dis-
tribute blocks across racks to tolerate rack-level failures.
The data are evenly distributed among six storage servers,
which means that each server stores the same amount of
data. However, the recovery performance will differ for
placement algorithms A and B when any failure occurs.
Note that the placement algorithm A and B differ from stan-
dard parity declustering [33]. The standard parity decluster-
ing will distribute parity across all disks. As a result, it is not
able to tolerate rack-level failures. We will clarify the differ-
ence between ESet and parity decluster in Section 5.

For algorithm A, each storage server belongs to one era-
sure-coded set, so the value of I is 1. For algorithm B, each
storage server belongs to two erasure-coded sets, so the
value of I is 2. If storage server 1 fails as illustrated in the
figure, the time for recovery is ð2� k� vÞ=fwith placement
algorithm A, and the time for recovery is ðk� vÞ=f with
placement algorithm B. This is because in algorithm B, two
erasure-coded sets can proceed in parallel to recover missing
blocks.

The recovery performance of placement algorithm B is
twice that of placement algorithm A, which means that a
higher value for I can allow better recovery performance.
For fast recovery of these systems, a placement algorithm
must be able to set a proper I for each storage server.

Given the above description, we formulate the problem
as follows. Given a data center with a racks and b storage

Fig. 2. A naive example of data distribution.

2004 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 9, SEPTEMBER 2020

servers, we build an erasure-coded storage system to store s
stripes. The problem is how to design a data placement
algorithm that makes each storage server stay in I erasure-
coded sets, where I is a parameter configured by the system
administrator when initializing a storage system to indicate
the desired recovery performance; meanwhile, the algo-
rithm can evenly distribute data in each storage server, i.e.,
each storage server stores ns=b blocks, and the algorithm
must also distribute each stripe across racks to tolerate rack-
level failure. In this way, the recovery time of each storage
server can approximate ðns=bÞ � ððk� vÞ=fÞ=I, where ns=b
is the number of blocks in each storage server and ðk� vÞ=f
is the time needed to recover a single block. In a word, the
solution to the problem should have the recovery time for
each storage server approximate ðns=bÞ � ððk� vÞ=fÞ=I.

4 DESIGN OF ESET

In this section, we present the design of the data placement
algorithm ESet. To minimize the probability of data loss, we
partition the storage servers into many ESetGroups, where
each ESetGroup contains n� I storage servers organized
into n rows and I columns. We form I2 erasure-coded sets
in each ESetGroup. Each storage server in an ESetGroup is
contained by I erasure-coded sets.

4.1 Construction of ESetGroups

To minimize the probability of data loss, we must distribute
n blocks from each stripe across failure domains. We first
transform the whole data center into a set of ESetGroups.
Each ESetGroup is a set with n� I storage servers organized
into n rows and I columns. The storage servers in each
ESetGroup are indexed from N0;0 to Nn�1;I�1. The first sub-
script represents storage server’s row, and the second sub-
script represents its column within its ESetGroup. In each
ESetGroup, the storage servers from any two different rows
share no common failure domain. We can construct each
erasure-coded set by selecting n storage servers from n rows
of an ESetGroup. In this fashion, we can achieve the mini-
mum data loss probability when storing stripes that distrib-
ute blocks across failure domains.

Algorithm 1. Construction of ESetGroups

1: Input: Data Center with b storage servers , n, I
2: Output: g ESetGroups indexed from G0 to Gg�1

3: Set the value of g as b=ðn� IÞ
4: Initialize g ESetGroups indexed from G0 to Gg�1

5: for each i 2 ½0; g� 1� do
6: for each j 2 ½0; n� 1� do
7: Find and select I servers from the Data Center

that share no common failure domain with
the storage servers in Gi

8: Add selected servers to the jth row of Gi

9: Remove selected servers from the Data Center
10: end for
11: end for
12: Return g ESetGroups

Here, we present Algorithm 1 to divide b storage servers
in the data center into g ESetGroups, where g is equal to
b=ðn� IÞ. The ESetGroups are indexed from G0 to Gg�1.

Each storage server can only remain in one ESetGroup. The
for-loop (from line 6 to line 10 in the Algorithm 1) iterates n
times to generate an ESetGroup. When selecting I storage
servers as one row of an ESetGroup, the selected storage
servers and other storage servers in the ESetGroup must
share no common failure domain (at line 7).

4.2 Construction of Each Erasure-Coded Set

We generate an erasure-coded set by selecting n storage
servers from n rows of an ESetGroup. Because each storage
server in an ESetGroup remains in I erasure-coded sets, we
must generate I2 erasure-coded sets for each ESetGroup.

Here we use the symbol V to denote a storage server in
an erasure-coded set. The storage servers in an erasure-
coded set are indexed from V0 to Vn�1. The subscript refers
to the index of the storage server in the erasure-coded set.

The process of generating each erasure-coded set is
shown in Algorithm 2 with a given ESetGroup Gi. The first
for-loop (from line 4 to line 12) iterates I2 to generate I2 era-
sure-coded sets. Each erasure-coded set selects n storage serv-
ers from n rows of the Gi. The first storage server V0 in an
erasure-coded set comes from the storage server in the first
row of Gi. The rth storage server Vr in an erasure-coded set
is selected from the rth row of an ESetGroup.

Algorithm 2. Generate Erasure-Coded Sets

1: Input: Gi, n, I
2: Output: Erasure-coded sets indexed from EiI2 to Eðiþ1ÞI2�1

3: set startIdx as iI2

4: for each j 2 ½0; I2 � 1� do
5: Initialize EstartIdxþj

6: Set columnIdx as the value of j/I
7: Select the storage server N0;columnIdx in Gi as the V0 in

EstartIdxþj

8: for each r 2 ½1; n� 1� do
9: Set columnIdx as the value of ((j/I)(r-1)+j) mod I
10: Select the storage server Nr;columnIdx in Gi as the Vr in

EstartIdxþj

11: end for
12: end for
13: Return I2 Erasure-coded sets

The procedure of translating an entire data center with a

racks and b hosts intomany erasure-coded sets are presented
in Fig. 3. We partition the data center into gESetGroupswith
Algorithm 1. Each ESetGroup contains n� I storage servers
organized in n rows and I columns. The Algorithm 2 then
iterates g times to generate gI2 erasure-coded sets. We set "
as the value of gI2. We have " erasure-coded sets to carry
stripes, where each stripe contains n blocks. So far, we have
illustrated how to generate all erasure-coded sets. Now we
must assure each storage server appears in I erasure-coded
sets to obtain the required recovery I/O parallelism. In the next
section, we analyze the property of ESet algorithm.

5 ANALYSIS OF ESET

To ensure that each storage server has the same recovery I/O
parallelism, each storage server is expected to remain in I era-
sure-coded sets. In this section, we first validate this property,

LIU ETAL.: ESETSTORE: AN ERASURE-CODED STORAGE SYSTEM WITH FAST DATA RECOVERY 2005

and then analyze the condition in which each storage server
has the optimal recovery I/O parallelism.

5.1 Answer When Na;b 2 Ej

We first prove that our proposed ESet algorithm for con-
structing erasure-coded sets can make each storage server
from any ESetGroup belong to I erasure-coded sets.

Theorem 5.1. Given a storage server Na;b 2 G0, there are I and
only I erasure-coded sets that for each erasure-coded set Ej,
Na;b 2 Ej, that is Va from Ej is selected from Na;b, where
0 � a < n; 0 � b < I; 0 � i < g; and 0 � j < I2.

Proof of Theorem 5.1. Based on Algorithm 2, the erasure-
coded sets that contain the storage server Na;b 2 G0 are
indexed from E0 to EI2�1. We can have 0 � j < I2 in The-
orem 5.1 as Na;b 2 Ej. We divide the rest of the proof into
two parts. First, we prove that I and only I erasure-coded
sets contain Na;b when a is equal to 0. We then discuss the
case when a 6¼ 0. tu
Case 1. a ¼ 0. The value of b is equal to j/I if and only

if Na;b 2 Ej according to line 6 in Algorithm 2. We can
have that for any Ej that can satisfy b = j/I, Na;b 2 Ej. As
0 � j < I2 and 0 � b < I, I and only I values of j satisfy
b = j/I; that is, j is any value from bI to (bI + I - 1). To this end,
we can conclude that I erasure-coded sets and only I erasure-
coded sets contain the storage serverNa;b when a ¼ 0.

Case 2. a 6¼ 0. WhenNa;b 2 Ej, bmust be equal to ((j/I)(a-1)
+j)mod I according to line 9 in Algorithm 2. If N0;x 2 G0 sat-
isfies the conditions that both N0;x 2 Ej and Na;b 2 Ej,
then it must satisfy the condition that b is equal to (x(a-1)+j)
mod I, where 0 � x < I. As xI � j < xI þ I according to
the above paragraph, there will be one and only one ESet in
which both N0;x and Na;b 2 Ej. Because 0 � x < I, we can
deduce that I and only I erasure-coded sets contain Na;b for
the case that when the value of a is not equal to 0.

In aword,when any storage server fails, we have I erasure-
coded sets to recover the failed storage server concurrently
according to Theorem 5.1.

5.2 Optimal Recovery I/O Parallelism

When a storage server fails, I erasure-coded sets that contain
the failed server will begin to recover missing blocks in the
server. Each erasure-coded set will select k storage servers to
perform recovery. A storage server that participates in recov-
ery may be selected by more than one erasure-coded set. As
a result, I/O contention may occur for the selected storage
servers during recovery, which will further decrease the

recovery performance. To obtain optimal recovery I/O parallel-
ismwhen recovering a single failure, there should be no I/O
contention for the recovery. To this end, we give the theorem
of optimal recovery I/O parallelism for a storage server as
follows:

Theorem 5.2. Given a storage server Nx1;y1 2 G0, where
0 � x1 < n; 0 � y1 < I and 0 � i < g, for any other
storage server Nx2;y2 2 G0, where x1 6¼ x2; 0 � x2 < n; 0 �
y2 < I, if there is only one erasure-coded set that includes both
Nx1;y1 and Nx2;y2 , then the storage server Nx1;y1 can have opti-
mal recovery I/O parallelism.

Proof of Theorem 5.2. SupposeNx1;y1 2 Ea andNx1;y1 2 Eb,
where 0 � x1 < n; 0 � y1 < I and a 6¼ b. The I/O
contention only exists when a storage serverNx2;y2 2 Ea

and Nx2;y2 2 Eb will participate in the recovery, where
x1 6¼ x2; 0 � x2 < n; 0 � y2 < I. Because this violates
the condition that Nx1;y1 2 Ea;Nx1;y1 2 Eb and Nx2;y2 2
Ea;Nx2;y2 2 Eb only exists when a = b. Thus, there is no I/O
contention for recovering Nx1;y1 , so it can have optimal
recovery I/O parallelism. Now we give the condition in
which a storage server can have optimal recovery I/O paral-
lelism of our proposed ESet: tu

Theorem 5.3. For a given storage server Nx1;y1 2 G0, where
0 � y1 < I, it can have optimal recovery I/O parallelism
when it satisfies one of the following conditions:

1) x1 ¼ 0. Namely, a storage server in the first row can
always have optimal recovery I/O parallelism

2) For x1 6¼ 0. When I is a prime number and is equal to
or greater than n-1, Nx1;y1 can have optimal recovery
I/O parallelism

Proof of Theorem 5.3. We first prove that any storage
server N0;y1 2 G0, where 0 � y1 < I, can always have
optimal recovery I/O parallelism. Given a storage server
Nx2;y2 2 G0, where 0 < x2 < n; 0 � y2 < I. If N0;y1 2 Ea;
N0;y1 2 Eb and Nx2;y2 2 Ea;Nx2;y2 2 Eb, we can have
y2 ¼ ðy1ðx2 � 1Þ þ aÞmodI and y2 ¼ ðy1ðx2 � 1Þ þ bÞmodI
based on line 9 in Algorithm 2. Then we can have
ða� bÞmod I ¼ 0. As a and b are values ranging from y1I
to ðy1 þ 1ÞI � 1, a=b when ða� bÞmod I ¼ 0. Thus, only
one erasure-coded set Ea satisfies N0;y1 2 Ea and
Nx2;y2 2 Ea. Based on Theorem 5.2, N0;y1 can always have
optimal recovery I/O parallelism. tu
For x1 6¼ 0; x2 6¼ 0 and x1 6¼ x2, if Nx1;y1 2 Ea;Nx1;y1 2

Eb and Nx2;y2 2 Ea;Nx2;y2 2 Eb, we have the following
equations:

y1 ¼ a

I
ðx1 � 1Þ þ aÞ

� �
mod I (1)

y2 ¼ a

I
ðx2 � 1Þ þ aÞ

� �
mod I (2)

y1 ¼ b

I
ðx1 � 1Þ þ bÞ

� �
mod I (3)

y2 ¼ b

I
ðx2 � 1Þ þ bÞ

� �
mod I: (4)

We have the following equation based on Equations (1), (2),
(3), and (4)

Fig. 3. Partition a data center with a racks and b hosts into " erasure-
coded sets to store stripes.

2006 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 9, SEPTEMBER 2020

0 ¼ ða� bÞðx1 � x2Þ
I

mod I: (5)

Because (a-b)/I is a value between 0 and I-1, we can conclude
that when the value of I is a prime number and is equal to or
greater than n-1, each storage server can obtain optimal recov-
ery I/O parallelism. Because the absolute value of x1 � x2 is
smaller than n-1, the only condition that satisfies Equation (5)
is that a is equal to b.

The storage servers in the first row of a given ESetGroup
can always have optimal recovery I/O parallelism, and when I
is a prime number and is equal to or greater than n-1, any
storage server from other rows can obtain optimal recovery
I/O parallelism. In this way, the recovery time of each storage
server can approximate ðns=bÞ � ððk� vÞ=fÞ=I, where ns=b
is the number of blocks in each storage server and ðk� vÞ=f
is the time needed to recover a single block, which was men-
tioned in the last paragraph of Section 3.

We consider the case for G0 in this section. The storage
servers for any ESetGroup Gi still satisfy the conditions of
both Theorems 5.1 and 5.3.

The algorithm of standard parity declustering [33] also
seeks to obtain an optimized recovery performance. How-
ever, our ESet differs from standard parity declustering in
the following three aspects based on our analysis of ESet:

1) The standard parity declustering is designed for
disk-level failures. ESet can tolerate rack-level, host-
level, and disk-level failures.

2) The standard parity declustering relies on the Bal-
anced Incomplete Block Design algorithm to distrib-
ute blocks, which will perform a complex calculation
before distribution. For ESet, each erasure-coded set
is one unit for distributing blocks in each stripe.

3) As we have proved, when I is a prime number and
no less than n� 1, it can achieve optimal recovery
performance. However, standard parity declustering
relies on the Balanced Incomplete Block Design algo-
rithm to give optimal recovery performance, which
is difficult to find.

In summary, our placement algorithm can obtain the
desired recovery I/O parallelism. It can achieve optimal recov-
ery I/O parallelism under some mild conditions. Our algo-
rithm differ from existing algorithms such as standard
parity declustering and is appropriate to achieve fast data
recovery performance for erasure-coded storage systems.

6 DESIGN AND IMPLEMENTATION OF ESETSTORE

We illustrate the data placement algorithm ESet to obtain
efficient reconstruction for erasure-coded storage systems.
In this section, we present the design and implementation
of a prototype erasure-coded storage system that integrates
the data placement algorithm ESet to harvest fast data
recovery. We also consider how to achieve good read and
write performance for erasure-coded storage systems. We
developed ESetStore in C language with around 40,000 lines
of source code.

We first present the overall architecture of our ESetStore.
We then illustrate how to make efficient utilization of avail-
able I/O and computation resources in ESetStore to obtain
good read andwrite performance.We also detail the efficient

reconstruction with the placement algorithm ESet. Finally,
we make a discussion about how to handle various kinds of
I/O pressure in storage systems.

6.1 ESetStore Architecture

Fig. 4 illustrates the overview of ESetStore’s system architec-
ture. ESetStore consists of three major components: ECClient,
a client library that allows users to interact with the storage
system; ECMeta, themetadata service thatmanages themeta-
data information; and a Storage Cluster that contains many
storage servers where each one is deployed with the storage
service ECServer to store raw data.

ECClient. The ECClient is a library that provides funda-
mental operations for users to interact with the storage sys-
tem. The three functions are create, open, and delete. When
a client issues a create request to the system, the command
is sent to the ECMeta. ECMeta returns a set of n storage
servers for storing files and some additional information
about how to encode the files. To open a file, a set of k stor-
age servers that contain any data or parity blocks of the file
will be returned. When it sends a delete command, the file
information is deleted from the metadata server, and the fil-
e’s content is deleted by the storage servers.

Two fundamental functions for accessing file content are
read and write. When n storage servers are provided, the
write function writes n data and parity blocks of a file to
these storage servers. To read the content of a file from the
servers, the ECClient first selects k storage servers that con-
tain the data blocks to retrieve data from the storage system.
In case that any storage server that contains data blocks
failed, some parity blocks will be downloaded, and the
decoding operation is performed to restore the file.

ECMeta. Each operation issued by users will first interact
with the ECMeta. It records the file created by users via file
management. It also manages the relationship between
stripes and files by Block Management module. Monitoring
the state of each storage server is also performed by the
metadata service. It interacts with each storage server to
periodically check its status. It is also responsible for con-
ducting recovery of any failed storage server.

The metadata service is responsible for managing the
metadata information of each file, and it records the location
of each block and manages the relationship between blocks
and stripes. When any storage server fails, it selects related
erasure-coded sets for which each erasure-coded set con-
tains the failed server to perform recovery.

Storage Cluster. The storage cluster contains many storage
servers to store raw data. Each storage server contains a

Fig. 4. Main components of ESetStore.

LIU ETAL.: ESETSTORE: AN ERASURE-CODED STORAGE SYSTEM WITH FAST DATA RECOVERY 2007

storage service named ECServer. ECServer provides interfa-
ces that help users access data on each storage server. When
users write data to a storage server, it receives the data and
writes them to the local disk. If the storage server receives
the read request from users, the ECServer reads the data
from the local disk and sends the data to the user. ECServer
also assists ECMeta in recovering missing data.

6.2 Efficient Read and Write Operations

Accessing data is a constantly performed task in storage
systems. Read and write operations are two fundamental
operations for accessing data in a storage system. A write
operation in erasure-coded storage systems involves three
steps. First, the data are read from disk to memory. The
encoding operation is then performed to generate k data
chunks and n-k parity chunks. Finally, these chunks are writ-
ten to n storage servers. When reading a file, the ECClient
gathers data from k storage servers. If any of the k chunks
retrieved from storage servers belong to the n-k parity chunk,
the decoding operation must be performed before construct-
ing the file. When decoding is required to read a file, we call
it degrade read. The read operation without decoding is called
normal read. To this end, effectively utilizing both I/O and
computational resources are the key factors in achieving
good read andwrite performance.

Fig. 5 presents a simple example of read and write opera-
tions. In this example, we set n as 3 and k as 2. The file content
is denoted with a string ABCDEF. We can see that H is equal
to A�D, I is equal to B�E, and J is equal to C � F . The
right side of Fig. 5 demonstrates the timeline of read and
write operations. One read or write operation is performed
at each time slot. Note that we assume the ECServer 2 failed
in the read operation in the example. We perform a degrade
read to retrieve the file with decoding operation involved.
As for a normal read when ECServer 2 is available, we need

only retrieve data chunks from ECServer 1 and ECServer 2.
The read and write operations in this way may take a rather
long time because each step takes an exclusive time slot.

One solution to improve read and write performance is to
utilize the I/O resources of both the client side and the server
side. Fig. 6 illustrates the method of overlapping operations
to accelerate the performance of read and write operations.
We divide each chunk into many small sub-chunks for each
read andwrite step in our operation. Towrite data to servers,
we readA and B and then encode them intoO. We thenwrite
A, B, andO into three servers. Wewrite C,D, and P in a simi-
lar way. The timeline at the bottom of Fig. 6 reveals that the
writing, coding, and reading steps can proceed in parallel to
better utilize the I/O resources.

In this way, we can make better use of I/O resources. Via
numeric calculation, our proposed method takes 3/4 of the
way in Fig. 5 for writing, and the time for reading is 9/13 of
that in Fig. 5 for reading. To effectively overlap I/O and
coding operations as illustrated in Fig. 6, we define a con-
cept called streaming size as follows:

The streaming size is a configured fixed-length (e.g., 64 KB) to
manipulate data. The block size is a multiple of the streaming size.
When writing a file, the file is divided into one or more sets of k
data blocks. Each block is further divided into many small chunks
whose size is the streaming size. The streaming size can be the
minimum size for handling both read and write operations.

For read and write operations, we have two sets of buf-
fers. When we allocate a set of buffers to handle read and
write operations in ESetStore, the size of each buffer is a
multiple of the streaming size. Each set of buffers has two
states. One state is idle when no thread is performing a task
on them. Another state is busy when a thread is conducting
a read or write operation on it. We have three threads to
carry read and write operations with these buffers. One
thread is the disk thread, which is responsible for reading
data from disks into the buffers or writing data from buffers
to a disk. The coding thread is responsible for coding. The
network thread is responsible for sending data to other stor-
age servers or receiving data from other storage servers.

The procedure of the write operation in ESetStore is pre-
sented in Fig. 7a. The disk thread first selects a set of n buf-
fers that remain idle and mark the set’s state as busy. It then
reads data from the disk into the k buffers. After completing
reading data into k buffers, it notifies the coding thread to
handle the set of buffers. The disk thread continues to
acquire a set of idle buffers and reading data into them until
the file data are read from disks. The coding thread then
generates parity data and fills them into n-k buffers. It then

Fig. 5. Example of read and write operations.

Fig. 6. Read and write operations with overlapped I/O and coding.

Fig. 7. Read and write operation in ESetStore.

2008 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 9, SEPTEMBER 2020

notifies the coding thread to send data to n storage servers.
The network thread receives the set of buffers from the cod-
ing thread and sends data from n buffers to n storage serv-
ers. It then sets the state of the set of buffers to idle.

Reading works in the opposite way. The procedure of the
read operation in ESetStore is presented in Fig. 7b. The net-
work thread continues to request a set of buffers, marks the
set’s state as busy, and receives data from n storage servers
until all tasks are complete. The coding thread performs
decoding when any data block is missing. The disk thread
writes data into a disk when a set of buffers is ready for
writing. It then sets the set of buffers’ state to idle when all
data in the buffer have been written to a disk.

6.3 Data Distribution and Efficient Reconstruction

We use the data placement algorithm ESet to decide where
to store each stripe in our ESetStore. After partitioning the
storage servers into many erasure-coded sets, we use an
array to store the entire erasure-coded sets with each era-
sure-coded set containing n storage servers. When storing a
file to ESetStore, the file is encoded into a stripe, and we
then select an erasure-coded set to carry the stripe for the
file. To evenly distribute the data across storage servers, we
select the erasure-coded sets in a round-robin fashion.

When a storage server fails, we must recover the missing
blocks. Algorithm 3 presents a high-level workflow of the
recovery process. First, it finds I erasure-coded sets that con-
tain the failed server. Each of the I erasure-coded sets then
selects k available storage servers to recover missing blocks.
Each erasure-coded set recovers one missing block from the
set at a time, and it continues to recover missing blocks until
all missing blocks from the erasure-coded sets are recov-
ered. The recovery is complete when each erasure-coded set
has recovered its missing blocks.

Algorithm 3.High-Level Workflow of Recovery

1: Input: Erasure-coded sets, Ni;j

2: Initialize RecoverySet
3: Find I erasure-coded sets that contain Ni;j

4: Put I erasure-coded sets in RecoverySet
5: for each Ei 2 RecoverySet do
6: Select k available storage servers in Ei

7: for each missing block 2 Ei do
8: Recover the missing block with selected servers
9: end for
10: end for

6.3.1 I Erasure-Coded Sets for a Failed Storage Server

To recover a failed server, we need to locate I erasure-coded
sets. We first consider the case in which we have only one
group in our storage system. Erasure-coded sets are indexed
from E0 to EI2�1. The storage servers are indexed from N0;0

to Nn�1;I�1. The algorithm to find I erasure-coded sets for a
given storage serverNi;j is presented in Algorithm 4.

When the failed server is in the first row of the group, its
erasure-coded sets are located from line 5 to line 7 in Algo-
rithm 4. They are indexed from I � j to ðI þ 1Þ � j� 1. For
the case in which any failed storage server is in other rows,
any erasure-coded set with its index satisfies the condition

that at line 10 contains the storage server Ni;j. Here, the
index of erasure-coded sets is from 0 to I2 � 1. When the
storage system contains many groups, locating I erasure-
coded sets for a storage system with many ESetGroups is
similar to the case in which we have only one ESetGroup.
We must add the value, which is calculated by multiplying
the index of the given ESetGroup by I2, with each index of
the located erasure-coded set by Algorithm 4.

Algorithm 4. Find I Erasure-Coded Sets That ContainNi;j

1: Input: E0 to EI2�1, I and Ni;j

2: Output: RecoverySet
3: Initialize RecoverySet
4: if i ¼¼ 0 then
5: for each idx 2 ½I � j; ðI þ 1Þ � j� 1� do
6: Put Eidx in RecoverySet
7: end for
8: else
9: for each idx 2 ½0; I2 � 1� do
10: if j==((idx/I)(i-1)+idx)mod I then
11: Put Eidx in RecoverySet
12: end if
13: end for
14: end if
15: return RecoverySet

After locating I erasure-coded sets to recover a failed stor-
age server, we select one storage server from each erasure-
coded set responsible for recovering missing blocks. To
recover a failed stripe in an erasure-coded set, the selected
storage server in each erasure-coded set reads k-1 blocks of
the stripe from other k-1 storage servers and reads one local
block from its own disk. It then reproduces themissing block
and caches the recovered block in its own disk. The selected
storage servers in each erasure-coded set repeat the process
until all missing blocks are recovered. The ESetStore is
expected to have I times of performance growth to recover a
failed storage server in an optimal situation compared with
the case in which the value of I is 1.

6.3.2 Recovery of Each Erasure-Coded Set in ESetStore

We use a simple approach to recover missing blocks. After
selecting k available storage servers from the given erasure-
coded set, we select one storage server responsible for recov-
ery. The selected storage server for gathering blocks and
decodingmissing blocks is called the head server.

When the head server receives the command to recover a
missing block, it recovers a portion of data from the missing
block as presented in Fig. 8. Note that the k blocks in Fig. 8
belong to the same stripe of the missing block. It first gath-
ers k small chunks to the head server, and then uses a
decoding operation to restore the part of data from the miss-
ing block and caches the restored data to its local disk. The
operation in Fig. 8 is repeated until the whole missing block
is recovered. It then informs the metadata server that the
missing block is restored. The metadata server continues to
send the command to the head server to recover a missing
block until all missing blocks are recovered.

To make efficient use of available I/O and computation
resources in the head server, it uses the same approach illus-
trated in Fig. 7b when reading k-1 blocks.

LIU ETAL.: ESETSTORE: AN ERASURE-CODED STORAGE SYSTEM WITH FAST DATA RECOVERY 2009

6.3.3 Recovery With PPR in ESetStore

We can see that the above recovery performance for each
erasure-coded set is limited by the head server’s network
bandwidth. A study named PPR [15] proposed a solution to
make better use of the available network bandwidth from
each set of k selected storage servers.

Our implementation of the PPR is illustrated in Fig. 9. The
storage servers are indexed from ECServer 0 to ECServer k-1.
The last storage server sends the required subblock to
ECServer k-2 to generate a temporary block. The temporary
block is then sent to the former storage server. The head
server continues to receive temporary blocks and restore
missing small blocks, and the other servers continues to gen-
erate temporary blocks and send the temporary block to its
former server until all missing data are restored. The entire
process can be well pipelined so that we can make full use of
the available I/O resources to perform recovery.

6.4 Limitations and Discussions

Our current design of ESetStore mainly addresses the issue
of storage efficiency (i.e., using erasure coding) and recov-
ery performance (i.e., through ESet), and meanwhile opti-
mizes the read and write throughput. We consider recovery
performance as the major design factor because in ðn; kÞ era-
sure-coded system, the required I/O for recovery is k times
of that of replication based system. Currently we have not
considered other factors like data access dynamics and data
locality.

Storage systems may encounter various kinds of I/O
pressure. A storage system may have poor read perfor-
mance when providing limited I/O resources for hot data,
which are frequently accessed by clients in a short period.
ESetStore does not implement any strategy to deal with hot
data. We discuss some existing solutions that could be used
to tackle this issue. As revealed in the study of Facebook’s
system f4 [7], newly created data in storage systems typi-
cally have a higher access rate. It is possible to distribute
data in a round-robin manner to provide more I/O resour-
ces for hot data. The f4 system also uses a caching stack to
reduces the load on the storage system. As a result, system
administrators can use in-memory storage systems such as
Memcache [39], [40] to reduce I/O pressure on our ESet-
Store. A recent erasure-coded storage system EC-Store is
designed for various kinds of I/O workload [41]. It uses
data access patterns and data movement strategies to
improve the distribution of workload and provide efficient
retrieval for erasure-coded storage systems. It is possible to
adopt its strategy and run it on top of our ESet algorithm to
provide better I/O performance for various access patterns.

When using replication as a reliability mechanism, stor-
age systems like HDFS can take advantage of data locality
to better support computation tasks such as Map-Reduce.
When one storage server failed, some other storage servers
still contain the required data blocks. However, with era-
sure coding, any missing data block is required to be
restored before performing computation tasks. The erasure-
coded version of HDFS must gather k blocks to restore the
missing block before performing computation tasks. A
study has been proposed to run degraded tasks earlier to
reduce the performance penalty [42]. The XORing Elephants
used LRC codes to reduce repair costs for HDFS [23]. Cur-
rently, ESetStore does not consider how to exploit data
locality to support computing-oriented applications. We
will leave it as our future work.

7 EVALUATION OF ESETSTORE

In this section, we conduct a set of experiments to evaluate
the performance of ESetStore using a cluster of up to 50 com-
puters.We first introduce the experimental setup of our eval-
uation, and then measure the read and write throughput of
ESetStore and compare it with HDFS using different settings
of block size. The version of HDFS is Hadoop 3.0.0-alpha2
[8]. Many previous studies used HDFS as a baseline [14],
[23], so we also choose it for comparison. We also evaluate
the overall throughput of read and write operations on a
small cluster and compare it with Ceph of version 13.2.6 [43].
Afterwards, we measure the recovery performance of
ESetStore and compare it with both HDFS and Ceph. We
demonstrate the recovery performance of ESetStore with the
optimal I/O parallelism. Finally, we evaluate the system
recovery performancewith a single failure.

7.1 Experimental Setup

Fig. 10 presents the testbed used to the evaluate ESetStore,
HDFS and Ceph. Each storage server is equipped with one 1
Gbps Ethernet card connected to a 1 Gbps switch. The testbed
has 50 servers in total. Each storage server has a disk with
the peak read and write throughput around 100 MB/s. The
metadata service ECMeta is deployed in a high-performance
server with 12 CPU cores and a 10 Gbps Ethernet card to
provide low latency metadata service. It is connected to a

Fig. 8. Recovery missing data in an erasure-coded set.

Fig. 9. Recovery of missing data with PPR in an erasure-coded set.

2010 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 9, SEPTEMBER 2020

10 Gbps switch which is connected to the 10 Gbps uplink port
of the 1 Gbps switch.

To measure the read and write throughput achievable by
a single client in Section 7.2.1, we vary the values of block
size from 1 to 128 MB. We perform one read and write oper-
ation of a file for each measurement. The file size is the
value of kmultiplied by the block size. The total size written
to the storage servers is the value of n multiplied by the
block size, and the total size read from the storage server is
the value of k multiplied by the block size. The throughput
is calculated from dividing the file size by the whole execu-
tion time. We set the streaming size as 64 KB in each set of
experiments. The buffer of each block is 256 KB. Each client
can read and write 256 KB of data for each buffer.

When measuring the overall system throughput in Sec-
tion 7.2.2, we set the size of each object as 16MB,whichmeans
the file size of ESetStore is 16 MB. We evaluate a small cluster
with 18 storage servers and set n as 3 and k as 2.We use a pop-
ular tool IOR [44] to measure the performance of our storage
cluster with intensive I/O operations. We implement the nec-
essary APIs for IOR to perform the read and write operations
with ESetStore, and the source code can be found at [44]. We
measure the read and write performance with up to 16 clients
that are deployed on 16 machines in two cases: (1) without
storage server failure; (2) with a single storage server failure.

When evaluating the single recovery performance of ESet-
Store in Sections 7.3 and 7.4, we set the value of I from one to
seven. We have I hosts in each rack for each measurement.
Each host uses one disk to store data. We have n racks, and
the number of storage servers is nI. Our ESetStore has n
racks to form one ESetGroup and contains I2 erasure-coded
sets. We use the same physical configuration to measure the
performance of HDFS and Ceph for comparison.

The configuration for recovery experiments is presented
in Table 2. The file size is 64� k MB. The default setting is
used for ESetStore and HDFS. For Ceph, the block size
refers to the data size written to each disk when writing an
object. We use the default CRUSH setting and set the place-
ment groups as the maximum number allowed, selected
from 128, 256, 512, and 1024.

We write around 1 GB data to each storage server, and
then manually shut down one server to measure the recov-
ery time. The throughput is calculated by dividing the total
recovered data size by the total recovery time in each mea-
surement. We evaluate the recovery performance of ESet-
Store with the simple approach presented in Fig. 8. We also
evaluate the recovery performance of ESetStore with the
PPR adopted to achieve optimal recovery performance.

When evaluating the impact of recovery operation on the
data access performance in Section 7.5, we write 256� I files
to our storage system and then retrieve the files using multi-
ple client machines. The size of each file is 4� kMB. So each
storage server stores 1 GB of data. Both ESetStore and Ceph
use k� I number of client machines to retrieve all files. We
evaluate the performance of two cases: (1) no storage server
is failed; (2) a single storage server is failed and the recovery
procedure is performed.

7.2 Read and Write Throughput

In this subsection,wemeasure the read andwrite throughput
of ESetStore and compare it with HDFS and Ceph.We evalu-
ate both the normal data access and degraded data access
when there is a single failure of storage server. In this subsec-
tion, data recovery will not be triggered upon the failure of a
storage server. The performance of simultaneous data access
and data recoverywill be presented in Section 7.5.

7.2.1 Single Client Performance: Comparison

With HDFS

We first investigate the impact of block size on the read/
write throughput of a single client. Fig. 11 presents the read
throughput of ESetStore and HDFS with different settings.
In Fig. 11, ESetStore R, HDFS R, and Baseline R represent
the cases without any storage server failure. On the con-
trary, ESetStore Degrade R, HDFS Degrade R, and Baseline
Degrade R represent the cases with one storage server fail-
ure which contains the required data block. The baseline
refers to the special version of ESetStore without the optimi-
zation strategies in Section 6.

The read throughput of ESetStore is about 50 MB/s when
the block size is 1 MB when no server failure occurs. When
the value of k is 3, the performance is slightly better than
when k is 2. It is obvious that the read performance increases
gradually as the data block size increases. The throughput
reaches its maximum (which is limited by the network band-
width) when the size of each block is 64 MB. The perfor-
mance penalty of the degrade read is about 10 percent of
normal read, attributed to the overlapping of I/O operations
and computing operations.

We use the baseline and the HDFS for comparison. The
results of the baseline reveal that the system can encounter
various kinds of performance penalties at both the client side
and the server side, when no optimization strategy is applied
to our system. The HDFS does not make good use of avail-
able I/O resources to obtain high read throughput. It
requires a larger block size to obtain better read performance.
No obvious difference is observed between its normal read
and degrade read. The under-utilization of I/O resources
could be the major result of its performance degradation

Fig. 10. Our testbed for performance evaluation.

TABLE 2
The System Configuration for Recovery Performance

Comparison

OS Block Size Placement Algorithm

ESetStore Ubuntu 14.04 64 MB ESet
HDFS Ubuntu 14.04 64 MB Random Placement
Ceph Ubuntu 16.04 4 MB CRUSH

LIU ETAL.: ESETSTORE: AN ERASURE-CODED STORAGE SYSTEM WITH FAST DATA RECOVERY 2011

when performing reads. This also indicates that our optimi-
zation strategy is effective and achieve show good read and
write performance in erasure-coded storage systems.

Fig. 12 presents the write throughput of ESetStore and
HDFS. The write throughput is k=n of the raw throughput
because writing parity blocks account a part of the total exe-
cution time. This is why the case when n is 3 and k is 2 has
better write throughput than the case when n is 5 and k is 3.
The case of k is 2 has nearly the same throughput as that
when k is 3 for the block size is 1 MB because the buffer is
set to 256k bytes in each write operation.

The baseline version can have better performance with a
larger block size. However, the write throughput is limited
to around 45 MB/s because each step occupies a time slot
exclusively. The write throughput of HDFS has similar per-
formance to its read throughput. The performance increases
as the block size increases. According to our experiments,
ESetStore has much better write throughput than either the
baseline version or the HDFS.

7.2.2 Overall Performance: Comparison With Ceph

The overall read/write throughput is also important to a
distributed storage cluster. We use up to 16 client machines
to measure the overall throughput of a cluster of 18 storage
servers. We set I to 6, n to 3 and k to 2 in our storage cluster.
We set the transfer size for each read and write to 2 MB, and
the size of each file as 16 MB. Each measurement iterates 10
times and we pick the maximum overall throughput to rep-
resent the peak performance that the cluster can reach. The
experimental results are shown in Fig. 13.

In Fig. 13, Single Failure denotes the case when the stor-
age cluster has one failed storage server. From the figure,

we can see that single failure has no obvious impact on the
overall read/write throughput of both ESetStore and Ceph.
When the number of clients increases from 1 to 2 and from 2
to 4, we can see the throughput is nearly doubled. But when
the number of clients grows from 4 to 8 and 8 to 16, there
are at most 50 percent performance growth. This could be
caused by I/O contention when we have more clients issu-
ing read/write requests. In all cases, we can see that ESet-
Store achieves much higher overall read/write throughput
than Ceph.

7.3 Recovery Performance of Single Failure

The recovery performance of ESetStore is presented in
Fig. 14. We set the value of k from 2 to 5. The value of n� k
can be set to 1 for two reasons. First, the value of n� k as 1 is
adequate to tolerate a single failure. Meanwhile, the smaller

Fig. 11. Single client read throughput of ESetStore and HDFS.

Fig. 12. Single client write throughput of ESetStore and HDFS.

Fig. 13. The overall read/write throughput of ESetStore and Ceph.
n ¼ 3; k ¼ 2.

2012 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 9, SEPTEMBER 2020

value of n� k means a reduction in coding overhead, which
could better reveal the overhead of I/O operations.

We conduct two sets of experiments to measure the recov-
ery performance of ESetStore. The first is ESetStore Row 0.
We manually shutdown one storage server in the first row
(row 0) in the ESetGroup. For ESetStore Row 1, we manually
shutdown one storage server in the second row (row 1) in
the ESetGroup. The storage servers in the first row always
obtain optimal recovery performance because there will be k
distinct storage servers to recover missing blocks in each
ESet. However, whether the storage servers in other rows
can obtain optimal recovery performance relies on the value
of I as analyzed in Section 5.

From Fig. 14, we can see that the recovery performance is
nearly 1=ðk� 1Þ of the maximum read throughput when the
value of I is one because we must read k� 1 blocks from
other servers to recover a missing block.

A storage server from the first row will have k distinct
servers in each erasure-coded set to recover all missing
blocks that belong to the erasure-coded set. It can thus
obtain I times of performance growth as compared to the
situation in which I is equal to 1. When k is 3 when recover-
ing a failed storage server from the second, a storage server
that participates in recovery belongs to two erasure-coded
sets when I is 2 and 4. However, because each erasure-
coded set has only around 45 MB/s network bandwidth, its
recovery performance is nearly the same as that of the first
row. We can thus obtain I times of performance growth to
recover a failed storage server in all cases compared with
that in which the value of I is 1.

The evaluation result in ESetStore is close to our analysis
that the recovery time is approximate ðns=bÞ � ððk� vÞ=fÞ=I
in Section 3. We didn’t use the same setting as the one
in Fig. 7b and 7, because the required machines I � n
for storage servers will exceed the number of our testbed.
However, the recovery performance can still approximate
ðns=bÞ � ððk� vÞ=fÞ=I for these configuration. Because the
main performance penalty for the recovery is the limited I/O
resources, and our ESet can increase the I/O resources for
recoverywith the increases of value I.

The base performance, where I is 1, of HDFS and Ceph
is slightly worse than that of our ESetStore, and we can see
that there are fewer cases in which the recovery performance
increases as I increases for HDFS. HDFS uses a random
placement algorithm,which indicates that the algorithm can-
not make as good use of the available disk I/O and network
bandwidth resources as our ESetStore.

We set the number of threads for recovery to 8 for Ceph
to achieve good recovery performance. Ceph showed
slightly better performance than HDFS. It relies on more
placement groups to achieve better performance. However,
it can only achieve around 3x performance growth when I
increases from 1 to 7. Thus, we can conclude that our ESet-
Store can harvest available I/O resources to improve the
recovery performance with the placement algorithm ESet.

7.4 Performance of Optimal Recovery I/O
Parallelism

We can observe from Fig. 14 that as k increases, the recovery
performance suffers a great decrease because the recovery
performance is limited by the network bandwidth of a sin-
gle storage server. Here we implement the PPR algorithm in
our ESetStore to evaluate the performance of optimal recov-
ery I/O parallelism. With PPR, each erasure-coded set can
make good use of the available I/O resources.

The evaluation results are presented in Fig. 15. We mea-
sured the recovery performance of a failed storage server
from row 0 and a failed storage server from row 1. The eval-
uation results differ greatly from that in Fig. 14. The perfor-
mance is far better due to the better utilization of available
I/O resources in each erasure-coded set.

To recover a single failure from row 0, the performance
can still show linear growth with an increase of I. However,
when recovering a failed storage server from row 1, some
cases show no obvious performance increase. For example,
when k is 5, there is no performance growth for I from 1 to 4
because I is smaller than n-1. In these cases, some storage
servers concurrently participate in the recovery of a failed
storage server in more than one erasure-coded set, resulting
in I/O contention. As a consequence, there is no increase of
I/O resources to recover the failed server.

In addition, in some cases the performance of row 1 is
around half that of row 0, such as when k is 3 and I is 4,
because there is a storage server staying in two erasure-
coded sets that contains the failed storage server. As a
result, the I/O resources to recover the failed storage server
is reduced to half for row 1.

In summary, the recovery performance is always optimal
for the storage servers in row 0. The storage servers in other
rows can obtain optimal recovery performance only when
the configuration satisfies the optimal recovery I/O parallel-
ism, namely, that I is a prime number and its value is equal
to or greater than n-1. Our evaluation also indicates that an
optimization solution, such as PPR, may become useless in

Fig. 14. Recovery performance of ESetStore.

LIU ETAL.: ESETSTORE: AN ERASURE-CODED STORAGE SYSTEM WITH FAST DATA RECOVERY 2013

erasure-coded storage systems if the stripes are not placed
in a proper way with a data placement algorithm.

7.5 Impact of Recovery on Data Access
Performance

Although ESetStore is designed for efficient data recovery, it
is still important to evaluate the data access performance
while the system is during the recovery process. We present
the experimental results in Fig. 16, where we measure the
data access throughput while the system is undergoing the
recovery process. The Average means the mean throughput
of all clients, which is calculated by dividing the single file
size by the average file downloading time. The Overall is
the total aggregated system throughput for accessing all
files, which is calculated by dividing the size of all retrieved
files by the total time of downloading all files.

We can observe that the throughput of a single client in
ESetStore decreases with the increase of I. This is because
more clients result in more I/O contentions. It also explains
why the overall throughput does not achieve linear perfor-
mance growth with the increase of I. When I is 1 or 2, we
observe that the data access performance with ongoing data
recovery is slightlyworse than the onewithout server failure.
However, for larger values of I, the impact of data recovery
on the data access performance is negligible.

For Ceph, the read operation cannot be performed when
the value of I is 1 when one storage server failed. That is
why the throughput is zero in Fig. 16 for Ceph Degrade R.
For other cases, the Ceph Degrade R and Ceph R have simi-
lar performance. In all cases, ESetStore shows superior data
access throughput than Ceph when the system is undergo-
ing data recovery.

8 CONCLUSION

In this paper, we present the design and implementation of
our data placement algorithm, ESet, on the prototype of an
erasure-coded storage system ESetStore. Our results demon-
strate that ESetStore can effectively improve the single recov-
ery performance by harvesting available I/O resources with
ESet. Meanwhile, our recovery solution can be an enhance-
ment to existing optimizations such as the parallel partial
repair algorithm. When the value of parameter recovery I/O
parallelism I is a primer number and is equal to or greater
than n-1, each storage server can make good use of the avail-
able I/O resources to obtain optimal recovery performance.

ACKNOWLEDGMENTS

The authors would like to thank the anonymous reviewers
for their valuable comments. This work was supported by
Hong Kong Innovation and Technology Fund ITS/443/
16FX. Chengjian Liu and Qiang Wang contributed equally to
this work.

REFERENCES

[1] M. Grawinkel, L. Nagel, M. M€asker, F. Padua, A. Brinkmann, and
L. Sorth, “Analysis of the ECMWF storage landscape,” in Proc.
13th USENIX Conf. File Storage Technol., 2015, pp. 15–27.

[2] L. Papageorgiou, P. Eleni, S. Raftopoulou, M. Mantaiou,
V.Megalooikonomou, andD. Vlachakis, “Genomic big data hitting
the storage bottleneck,” EMBnet. J., vol. 24, 2018.

[3] S. Ghemawat,H. Gobioff, and S.-T. Leung, “TheGoogle file system,”
in Proc. 19th ACMSymp. Operating Syst. Princ., 2003, pp. 29–43.

[4] Z. Zhang, A. Deshpande, X. Ma, E. Thereska, and D. Narayanan,
“Does erasure coding have a role to play in my data center,”
Microsoft Res., Redmond, WA, USA, Tech. Rep. MSR-TR-2010, 2010.

Fig. 15. Recovery performance of ESetStore with PPR.

Fig. 16. Read throughput with recovery operation.

2014 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 9, SEPTEMBER 2020

[5] C. Huang et al., “Erasure coding in windows azure storage,” in
Proc. Usenix Annu. Tech. Conf., 2012, pp. 15–26.

[6] K. Rashmi, N. B. Shah, D. Gu, H. Kuang, D. Borthakur, and
K. Ramchandran, “A solution to the network challenges of data
recovery in erasure-coded distributed storage systems: A study
on the Facebook warehouse cluster,” in Proc. 5th USENIX Work-
shop Hot Topics Storage File Syst., 2013, Art. no. 8.

[7] S. Muralidhar et al., “F4: Facebook’s warm BLOB storage system,”
in Proc. 11th USENIX Conf. Operating Syst. Des. Implementation,
2014, pp. 383–398.

[8] A. S. Foundation, “HDFS erasure coding,” 2017. [Online]. Avail-
able: https://hadoop.apache.org/docs/r3.0.0/hadoop-project-
dist/hadoop-hdfs/HDFSErasureCoding.html

[9] S. A. Weil, S. A. Brandt, E. L. Miller, D. D. Long, and C. Maltzahn,
“Ceph: A scalable, high-performance distributed file system,” in
Proc. 7th Symp. Operating Syst. Des. Implementation, 2006, pp. 307–320.

[10] M. Ovsiannikov, S. Rus, D. Reeves, P. Sutter, S. Rao, and J. Kelly,
“The quantcast file system,” Proc. VLDB Endowment, vol. 6, no. 11,
pp. 1092–1101, 2013.

[11] O. Khan, R. C. Burns, J. S. Plank, W. Pierce, and C. Huang,
“Rethinking erasure codes for cloud file systems: Minimizing I/O
for recovery and degraded reads,” in Proc. 10th USENIX Conf. File
Storage Technol., 2012, Art. no. 20.

[12] B. Schroeder and G. A. Gibson, “Disk failures in the real world:
What does an MTTF of 1,000,000 hours mean to you?” in Proc. 5th
USENIX Conf. File Storage Technol., 2007, pp. 1–16.

[13] Y. Zhu, P. P. Lee, Y. Xu, Y. Hu, and L. Xiang, “On the speedup of
recovery in large-scale erasure-coded storage systems,” IEEE
Trans. Parallel Distrib. Syst., vol. 25, no. 7, pp. 1830–1840, Jul. 2014.

[14] K. Rashmi, N. B. Shah, D. Gu, H. Kuang, D. Borthakur, and
K. Ramchandran, “A Hitchhiker’s guide to fast and efficient data
reconstruction in erasure-coded data centers,” ACM SIGCOMM
Comput. Commun. Rev., vol. 44, no. 4, pp. 331–342, 2014.

[15] S. Mitra, R. Panta, M.-R. Ra, and S. Bagchi, “Partial-parallel-repair
(PPR): A distributed technique for repairing erasure coded
storage,” in Proc. 11th Eur. Conf. Comput. Syst., 2016, Art. no. 30.

[16] R. Li, X. Li, P. P. Lee, and Q. Huang, “Repair pipelining for
erasure-coded storage,” in Proc. USENIX Annu. Tech. Conf., 2017,
pp. 567–579.

[17] C. Liu, X. Chu, H. Liu, and Y.-W. Leung, “ESet: Placing data
towards efficient recovery for large-scale erasure-coded storage
systems,” in Proc. 25th Int. Conf. Comput. Commun. Netw., 2016,
pp. 1–9.

[18] I. S. Reed and G. Solomon, “Polynomial codes over certain finite
fields,” J. Soc. Ind. Appl. Math., vol. 8, no. 2, pp. 300–304, 1960.

[19] M. Blaum and R. M. Roth, “On lowest density MDS codes,” IEEE
Trans. Inf. Theory, vol. 45, no. 1, pp. 46–59, Jan. 1999.

[20] D. Ford et al., “Availability in globally distributed storage sys-
tems,” in Proc. 9th USENIX Conf. Operating Syst. Des. Implementa-
tion, 2010, pp. 1–7.

[21] A. Cidon, S. M. Rumble, R. Stutsman, S. Katti, J. K. Ousterhout, and
M. Rosenblum, “Copysets: Reducing the frequency of data loss in
cloud storage,” in Proc. Usenix Annu. Tech. Conf., 2013, pp. 37–48.

[22] S. A. Weil, S. A. Brandt, E. L. Miller, and C. Maltzahn, “CRUSH:
Controlled, scalable, decentralized placement of replicated data,”
in Proc. ACM/IEEE Conf. Supercomput., 2006, Art. no. 122.

[23] M. Sathiamoorthy et al., “XORing elephants: Novel erasure codes
for big data,” Proc. VLDB Endowment, vol. 6, no. 5, pp. 325–336,
2013.

[24] M. L.Curry, A. Skjellum,H. LeeWard, andR. Brightwell, “Gibraltar:
A Reed-Solomon coding library for storage applications on pro-
grammable graphics processors,” Concurrency Comput.: Practice
Experience, vol. 23, no. 18, pp. 2477–2495, 2011.

[25] X. Chu, C. Liu, K. Ouyang, L. S. Yung, H. Liu, and Y.-W. Leung,
“PErasure: A parallel cauchy reed-solomon coding library for
GPUs,” in Proc. IEEE Int. Conf. Commun., 2015, pp. 436–441.

[26] C. Liu, Q. Wang, X. Chu, and Y.-W. Leung, “G-CRS: GPU acceler-
ated cauchy reed-solomon coding,” IEEE Trans. Parallel Distrib.
Syst., vol. 29, no. 7, pp. 1484–1498, Jul. 2018.

[27] L. Xiang, Y. Xu, J. Lui, and Q. Chang, “Optimal recovery of single
disk failure in RDP code storage systems,” ACM SIGMETRICS
Perform. Eval. Rev., vol. 38, no. 1, pp. 119–130, 2010.

[28] S. Xu et al., “Single disk failure recovery for X-code-based parallel
storage systems,” IEEE Trans. Comput., vol. 63, no. 4, pp. 995–1007,
Apr. 2014.

[29] Z. Shen, J. Shu, P. P. Lee, and Y. Fu, “Seek-efficient I/O optimization
in single failure recovery for XOR-coded storage systems,” IEEE
Trans. Parallel Distrib. Syst., vol. 28, no. 3, pp. 877–890,Mar. 2017.

[30] D. S. Papailiopoulos and A. G. Dimakis, “Locally repairable codes,”
IEEE Trans. Inf. Theory, vol. 60, no. 10, pp. 5843–5855, Oct. 2014.

[31] A. G. Dimakis, K. Ramchandran, Y. Wu, and C. Suh, “A survey on
network codes for distributed storage,” in Proc. IEEE, vol. 99, no.
3, pp. 476–489, 2011.

[32] K. Rashmi, N. B. Shah, and K. Ramchandran, “A piggybacking
design framework for read-and download-efficient distributed
storage codes,” in Proc. IEEE Int. Symp. Inf. Theory Proc., 2013,
pp. 331–335.

[33] M. Holland and G. A. Gibson, “Parity declustering for continuous
operation in redundant disk arrays,” in Proc. 5th Int. Conf. Archit.
Support Program. Lang. Operating Syst., 1992, pp. 23–35.

[34] G. A. Alvarez, W. A. Burkhard, L. J. Stockmeyer, and F. Cristian,
“Declustereddisk array architectureswith optimal andnear-optimal
parallelism,” ACM SIGARCH Comput. Archit. News, vol. 26, no. 3,
pp. 109–120, 1998.

[35] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, “The hadoop
distributed file system,” in Proc. IEEE 26th Symp. Mass Storage
Syst. Technol., 2010, pp. 1–10.

[36] R. J. Honicky and E. L. Miller, “A fast algorithm for online place-
ment and reorganization of replicated data,” in Proc. Int. Parallel
Distrib. Process. Symp., 2003, pp. 10–pp.

[37] R. Honicky and E. L. Miller, “Replication under scalable hashing: A
family of algorithms for scalable decentralized data distribution,” in
Proc. 18th Int. Parallel Distrib. Process. Symp., 2004, Art. no. 96.

[38] Z. Shen, P. P. Lee, J. Shu, and W. Guo, “Cross-rack-aware single
failure recovery for clustered file systems,” IEEE Trans. Dependable
Secure Comput., vol. 17, no. 2, pp. 248–261, Mar./Apr. 2020.

[39] C. Liu, K. Ouyang, X. Chu, H. Liu, and Y. Leung, “R-Memcached:
A reliable in-memory cache for big key-value stores,” Tsinghua
Sci. Technol., vol. 20, no. 6, pp. 560–573, 2015.

[40] R. Nishtala et al., “Scaling Memcache at Facebook,” in Proc. 10th
USENIX Symp. Netw. Syst. Des. Implementation, 2013, pp. 385–398.

[41] M. Abebe, K. Daudjee, B. Glasbergen, and Y. Tian, “EC-Store:
Bridging the gap between storage and latency in distributed era-
sure coded systems,” in Proc. IEEE 38th Int. Conf. Distrib. Comput.
Syst., 2018, pp. 255–266.

[42] R. Li, P. P. C. Lee, and Y. Hu, “Degraded-first scheduling for Map-
Reduce in erasure-coded storage clusters,” in Proc. 44th Annu.
IEEE/IFIP Int. Conf. Dependable Syst. Netw., 2014, pp. 419–430.

[43] T. C. Blog, “v13.2.6 mimic released,” 2019. [Online]. Available:
https://ceph.io/releases/v13-2-6-mimic-released/

[44] H. I. Benchmark, “IOR,” 2020. [Online]. Available: https://github.
com/stevenlcj/ESetStore/tree/master/IOR

Chengjian Liu received the MS degree from the
College of Computer Science & Software Engi-
neering, Shenzhen University, Shenzhen, P.R.
China, in 2013, and the PhD degree in computer
science from the Hong Kong Baptist University,
Hong Kong, in 2018. Currently, he is an assistant
professor with the College of Big Data and Internet,
Shenzhen Technology University. His research
interests include distributed storage, blockchain,
and general-purposeGPU computing.

Qiang Wang received the BSc degree from the
South China University of Technology, Guangz-
hou, China, in 2014. He is currently working
toward the PhD degree in the Department of
Computer Science, Hong Kong Baptist University,
Hong Kong. His research interests include gen-
eral-purpose GPU computing and power-
efficient computing. He is a recipient of Hong
Kong PhD Fellowship.

LIU ETAL.: ESETSTORE: AN ERASURE-CODED STORAGE SYSTEM WITH FAST DATA RECOVERY 2015

https://hadoop.apache.org/docs/r3.0.0/hadoop-project-dist/hadoop-hdfs/HDFSErasureCoding.html
https://hadoop.apache.org/docs/r3.0.0/hadoop-project-dist/hadoop-hdfs/HDFSErasureCoding.html
https://ceph.io/releases/v13-2-6-mimic-released/
https://github.com/stevenlcj/ESetStore/tree/master/IOR
https://github.com/stevenlcj/ESetStore/tree/master/IOR

Xiaowen Chu (Senior Member, IEEE) received
the BE degree in computer science from Tsing-
hua University, Beijing, P.R. China, in 1999, and
the PhD degree in computer science from the
Hong Kong University of Science and Technology,
Hong Kong, in 2003. Currently, he is a professor
with the Department of Computer Science, Hong
Kong Baptist University. His research interests
include distributed and parallel computing, deep
learning systems, and wireless networks. He is
currently serving as an associate editor of the
IEEE Access and the IEEE Internet of Things
Journal.

Yiu-Wing Leung received the BSc and PhD
degrees from the Chinese University of Hong
Kong, Hong Kong. He has been working with the
Hong Kong Baptist University and currently he is
professor of the Computer Science Department
and programme director of two MSc programmes.
His research interests include threemajor areas: 1)
network design, analysis and optimization, 2) Inter-
net and cloud computing, and 3) systems engineer-
ing and optimization. He has published more than
50 papers in these areas in various IEEE transac-
tions and journals.

Hai Liu (Member, IEEE) received the BSc andMSc
degrees in applied mathematics from the South
China University of Technology, Guangzhou,
China, and the PhD degree in computer science
from the City University of Hong Kong, Hong Kong.
He is currently an associate professor with the
Department of Computing, Hang Seng University
of Hong Kong. Before joining HSUHK, he held sev-
eral academic posts with the University of Ottawa
and Hong Kong Baptist University. His research
interests includes wireless networking, cloud com-
puting, and algorithm design and analysis. His h-
index is 22 according toGoogle Scholar.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

2016 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 9, SEPTEMBER 2020

The Design of Fast Content-Defined Chunking
for Data Deduplication Based Storage Systems

Wen Xia ,Member, IEEE, Xiangyu Zou , Student Member, IEEE, Hong Jiang , Fellow, IEEE,

Yukun Zhou , Chuanyi Liu, Dan Feng,Member, IEEE, Yu Hua, Senior Member, IEEE,

Yuchong Hu , and Yucheng Zhang

Abstract—Content-Defined Chunking (CDC) has been playing a key role in data deduplication systems recently due to its high

redundancy detection ability. However, existing CDC-based approaches introduce heavy CPU overhead because they declare the

chunk cut-points by computing and judging the rolling hashes of the data stream byte by byte. In this article, we propose FastCDC, a

Fast and efficient Content-Defined Chunking approach, for data deduplication-based storage systems. The key idea behind FastCDC is

the combined use of five key techniques, namely, gear based fast rolling hash, simplifying and enhancing the Gear hash judgment,

skipping sub-minimum chunk cut-points, normalizing the chunk-size distribution in a small specified region to address the problem of

the decreased deduplication ratio stemming from the cut-point skipping, and last but not least, rolling two bytes each time to further

speed up CDC. Our evaluation results show that, by using a combination of the five techniques, FastCDC is 3-12X faster than the

state-of-the-art CDC approaches, while achieving nearly the same and even higher deduplication ratio as the classic Rabin-based

CDC. In addition, our study on the deduplication throughput of FastCDC-based Destor (an open source deduplication project)

indicates that FastCDC helps achieve 1.2-3.0X higher throughput than Destor based on state-of-the-art chunkers.

Index Terms—Data deduplication, content-defined chunking, storage system, performance evaluation

Ç

1 INTRODUCTION

DATA deduplication, an efficient approach to data reduc-
tion, has gained increasing attention and popularity in

large-scale storage systems due to the explosive growth of
digital data. It eliminates redundant data at the file- or
chunk-level and identifies duplicate contents by their crypto-
graphically secure hash signatures (e.g., SHA1 fingerprint).
According to deduplication studies conducted by Micro-
soft [1], [2] and EMC [3], [4], about 50 and 85 percent of the
data in their production primary and secondary storage sys-
tems, respectively, are redundant and could be removed by
the deduplication technology.

In general, chunk-level deduplication is more popular
than file-level deduplication because it identifies and
removes redundancy at a finer granularity. For chunk-level

deduplication, the simplest chunking approach is to cut the
file or data stream into equal, fixed-size chunks, referred to
as Fixed-Size Chunking (FSC) [5]. Content-Defined Chunk-
ing (CDC) based approaches are proposed to address the
boundary-shift problem faced by the FSC approach [6]. Specif-
ically, CDC declares chunk boundaries based on the byte
contents of the data stream instead of on the byte offset, as in
FSC, and thus helps detect more redundancy for deduplica-
tion. According to some recent studies [1], [2], [7], [8], CDC-
based deduplication approaches are able to detect about
10-20 percentmore redundancy than the FSC approach.

Currently, the most popular CDC approaches determine
chunk boundaries based on the Rabin fingerprints of the con-
tent, which we refer to as Rabin-based CDC [6], [9], [10].
Rabin-based CDC is highly effective in duplicate detection
but time-consuming, because it computes and judges
(against a condition value) Rabin fingerprints of the data
stream byte by byte [11]. In order to speed up the CDC pro-
cess, other hash algorithms have been proposed to replace
the Rabin algorithm for CDC, such as SampeByte [12],
Gear [13], etc. Meanwhile, the abundance of computation
resources afforded by multi and manycore processors [14],
[15] or GPU processors [16], [17], [18] has been leveraged for
CDC acceleration.

Generally, CDC consists of two distinctive and sequential
stages: (1) hashing in which fingerprints of the data contents
are generated and (2) hash judgment in which fingerprints are
compared against a given value to identify and declare chunk
cut-points. Our previous study of delta compression,
Ddelta [13], suggests that the Gear hash (i.e., fp ¼ ðfp << 1Þ þ
GðbÞ, see Section 3.2) is more efficient as a rolling hash for

� W. Xia is with the Harbin Institute of Technology, Shenzhen 518055,
China, Cyberspace Security Research Center, Peng Cheng Laboratory,
Shenzhen 518055, China, and also with the Wuhan National Laboratory
for Optoelectronics, Wuhan 430074, China. E-mail: xiawen@hit.edu.cn.

� X. Zou and C. Liu are with the Harbin Institute of Technology, Shenzhen
518055, China, and also with the Cyberspace Security Research Center,
Peng Cheng Laboratory, Shenzhen 518055, China.
E-mail: xdnzxy@gmail.com, liuchuanyi@hit.edu.cn.

� H. Jiang is with the Department of Computer Science and Engineering,
University of Texas at Arlington, TX 76019. E-mail: hong.jiang@uta.edu.

� Y. Zhou, D. Feng, Y. Hua, Y. Hu, and Y. Zhang are with the Wuhan
National Laboratory for Optoelectronics, School of Computer Sci.&Tech.,
Huazhong University of Science and Technology, Wuhan 430074, China.
E-mail: {ykzhou, dfeng, csyhua, yuchonghu, cszyc}@hust.edu.cn.

Manuscript received 29 July 2019; revised 21 Feb. 2020; accepted 25 Mar. 2020.
Date of publication 2 Apr. 2020; date of current version 17 Apr. 2020.
(Corresponding author: Chuanyi Liu.)
Recommended for acceptance by T. Kosar.
Digital Object Identifier no. 10.1109/TPDS.2020.2984632

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 9, SEPTEMBER 2020 2017

1045-9219� 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht_tps://www.ieee.org/publications/rights/index.html for more information.

https://orcid.org/0000-0003-4093-6391
https://orcid.org/0000-0003-4093-6391
https://orcid.org/0000-0003-4093-6391
https://orcid.org/0000-0003-4093-6391
https://orcid.org/0000-0003-4093-6391
https://orcid.org/0000-0001-5104-8301
https://orcid.org/0000-0001-5104-8301
https://orcid.org/0000-0001-5104-8301
https://orcid.org/0000-0001-5104-8301
https://orcid.org/0000-0001-5104-8301
https://orcid.org/0000-0002-1477-9751
https://orcid.org/0000-0002-1477-9751
https://orcid.org/0000-0002-1477-9751
https://orcid.org/0000-0002-1477-9751
https://orcid.org/0000-0002-1477-9751
https://orcid.org/0000-0003-0774-462X
https://orcid.org/0000-0003-0774-462X
https://orcid.org/0000-0003-0774-462X
https://orcid.org/0000-0003-0774-462X
https://orcid.org/0000-0003-0774-462X
https://orcid.org/0000-0003-1265-7141
https://orcid.org/0000-0003-1265-7141
https://orcid.org/0000-0003-1265-7141
https://orcid.org/0000-0003-1265-7141
https://orcid.org/0000-0003-1265-7141
https://orcid.org/0000-0001-7716-1214
https://orcid.org/0000-0001-7716-1214
https://orcid.org/0000-0001-7716-1214
https://orcid.org/0000-0001-7716-1214
https://orcid.org/0000-0001-7716-1214
mailto:xiawen@hit.edu.cn
mailto:xdnzxy@gmail.com
mailto:liuchuanyi@hit.edu.cn
mailto:hong.jiang@uta.edu
mailto:ykzhou@hust.edu.cn
mailto:dfeng@hust.edu.cn
mailto:csyhua@hust.edu.cn
mailto:yuchonghu@hust.edu.cn
mailto:cszyc@hust.edu.cn

CDC. To the best of our knowledge, Gear appears to be one of
the fastest rolling hash algorithms for CDC at present since it
use much less calculation operations than others. However,
our empirical and analytical studies on Gear-based CDC
obtain three important observations:

� Observation�1 : the Gear-based CDChas the potential
problem of low deduplication ratio (i.e., the percentage
of redundant data reduced), about 10-50 percent
lower on some datasets (detailed in Section 4.2). This
is because, in the hash judgment stage of Gear-based
CDC, the sliding window size is very small, only
13 bytes in its current implementation [13].

� Observation �2 : the hash judgment stage becomes the
new performance bottleneck in Gear-based CDC.
This is because the accelerated hashing stage by Gear,
has shifted the bottleneck to the hash judgment stage.

� Observation �3 : Enlarging the predefined minimum
chunk size (used in CDC to avoid the very small-sized
chunks [6]) can further speed up the chunking process
(called cut-point skipping in this paper) but at the cost of
decreasing the deduplication ratio in Gear-based CDC.
This is because many chunks with skipped cut-points
are not divided truly according to the data contents
(i.e., content-defined). Our large scale study (detailed
in Section 4.3) suggests that skipping this predefined
min chunk size usually increases the chunking speed
by the ratio of Predefined min chunk size

Expected avg: chunk size but decreases the
deduplication ratio (about 15 percent decline in the
worst case).

Therefore, motivated by the above three observations, we
proposed FastCDC, a Fast and efficient CDC approach that
addresses the problems of low deduplication efficiency and
expensive hash judgement faced by Gear-based CDC. To
address the problems observed in the 1st and 2nd observa-
tions, we use an approach of enhancing and simplifying the
hash judgment to further reduce the CPU operations during
CDC for data deduplication. Specifically, FastCDC pads
several zero bits into the mask value in its hash-judging
statement to enlarge the sliding window size to the size of
48 Bytes used by Rabin-based CDC, which makes it able to
achieve nearly the same deduplication ratio as the Rabin-
based CDC; Meanwhile, by further simplifying and opti-
mizing the hash-judging statement, FastCDC decreases the
CPU overhead for the hash judgment stage in CDC.

For the 3rd observation and to further speed up chunking,
FastCDC employs a novel normalized Content-Defined
Chunking scheme, called normalized chunking, that normal-
izes the chunk-size distribution to a specified region that is
guaranteed to be larger than the minimum chunk size to effec-
tively address the problem facing the cut-point skipping
approach. Specifically, FastCDC selectively changes the
number of mask bits ‘1’ in the hash-judging statement of
CDC, and thus it normalizes the chunk-size distribution to a
small specified region (e.g., 8KB�16KB), i.e., the vast major-
ity of the generated chunks fall into this size range, and thus
minimizes the number of chunks of either too small or large
in size. The benefits are twofold.�1 , it increases the dedupli-
cation ratio by reducing the number of large-sized chunks.
�2 , it reduces the number of small-sized chunks, which
makes it possible to combine with the cut-point skipping

technique above to maximize the CDC speed without
sacrificing the deduplication ratio.

In addition, we propose a technique called “rolling two
bytes each time” for FastCDC, which further reduces the
calculation operations in the hashing stage by rolling two
bytes each time to calculate the chunking fingerprints in the
hashing stage, and then judging the even and odd bytes
respectively in the hash judgement stage. This further acceler-
ates the chunking process while achieving exactly the same
chunking results.

Our evaluation results based on seven large-scale datasets,
suggest that FastCDC is about 3-12� faster than the state of
art, while ensuring a comparably high deduplication ratio. In
addition, we have incorporated FastCDC in Destor [19], an
open source data deduplication system, and evaluation shows
that Destor using FastCDC helps achieve about 1.2-3.0X
higher system throughout than using other CDC approaches.
Meanwhile, due to its simplicity and effectiveness, FastCDC
has been adopted as the default chunker by several known
open source Github projects to speed up the detection of
duplicate contents, such as Rdedup [20], Content Block-
chain [21], etc. The released Rdedup version 2.0.0 states:
“rdedupe store performance has been greatly improved by
implementing many new techniques” and “our default CDC
algorithm is now FastCDC”.

2 BACKGROUND

Recently, chunk-level data deduplication becomes one of
the most popular data reduction method in storage systems
for improving storage and network efficiency. As shown in
Fig. 1, it splits a file into several contiguous chunks and
removes duplicates by computing and indexing hash
digests (or called fingerprints, such as SHA-1) of chunks [5],
[6], [22], [23]. The fingerprints matching means that their
corresponding chunks are duplicate, which thus simplifies
the global duplicates detection in storage systems. In the
past ten years, data deduplication technique has been dem-
onstrated its space efficiency functionality in the large-scale
production systems of Microsoft [1], [2] and EMC [3], [4].

Chunking is the first critical step in the operational path of
data deduplication, in which a file or data stream is divided
into small chunks so that each can be duplicate-identified.
Fixed-Size Chunking (FSC) [5] is simple and fast but may
face the problem of low deduplication ratio that stems from
the boundary-shift problem [6], [24]. For example, if one or
several bytes are inserted at the beginning of a file, all current
chunk cut-points (i.e., boundaries) declared by FSC will be
shifted and no duplicate chunkswill be detected.

Content-Defined Chunking (CDC) is proposed to solve
the boundary-shift problem. CDC uses a sliding-window tech-
nique on the content of files and computes a hash value (e.g.,
Rabin fingerprint [6], [9]) of the window. A chunk cut-point

Fig. 1. General workflow of chunk-level data deduplication.

2018 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 9, SEPTEMBER 2020

is declared if the hash value satisfies some pre-defined condi-
tion. As shown in Fig. 2, to chunk a file V2 that is modified
from the file V1, the CDC algorithm can still identify the cor-
rect boundary of chunksC1,C3, andC4, whose contents have
not been modified. As a result, CDC outperforms FSC in
terms of deduplication ratio and has been widely used in
backup [3], [22] and primary [1], [2] storage systems.

Although the widely used Rabin-based CDC helps obtain
a high deduplication ratio, it incurs heavy CPU overhead
[14], [16], [18], [25]. Specifically, in Rabin-based CDC, Rabin
hash for a sliding window containing the byte sequence B1,
B2; . . . ; Ba is defined as a polynomial

RabinðB1; B2; . . . ; BaÞ¼AðpÞ ¼
Xa

x¼1
Bxp

a�x
()

mod D; (1)

where D is the average chunk size, a is the number of
bytes in the sliding window, and p is a number representing
an irreducible polynomial [9]. Rabin hash is a rolling hash
algorithm since it is able to compute the hash in an iterative
fashion, i.e., the current hash can be incrementally com-
puted from the previous value as

RabinðB2; B3; . . . ; Baþ1Þ
¼ f½RabinðB1; B2; . . . ; BaÞ �B1p

a�1�pþBaþ1gmodS:
(2)

However, Rabin-based CDC is time-consuming because it
computes and judges the hashes of the data stream byte by
byte, which renders the chunking process a performance
bottleneck in deduplication systems. There are many
approaches that accelerate the CDC process for deduplica-
tion systems and they can be broadly classified as either algo-
rithmic oriented or hardware oriented.We summarize below
some of these approaches that represent the state of the art.

Algorithmic-Oriented CDC Optimizations. Since the fre-
quent computations of Rabin fingerprints for CDC are time-
consuming, many alternatives to Rabin have been proposed
to accelerate the CDC process [12], [13], [24]. Sample-
Byte [12] is designed for providing fast chunking for fine-
grained network redundancy elimination, usually eliminat-
ing duplicate chunks as small as 32-64 bytes. It uses one
byte to declare a fingerprint for chunking, in contrast to
Rabin that uses a sliding window, and skips 1

2 of the
expected chunk size before chunking to avoid generating
extremely small-sized strings or chunks (they called “avoid
oversampling”). Gear [13] uses fewer operations to generate
rolling hashes by means of a small random integer table to

map the values of the byte contents, so as to achieve higher
chunking throughput. AE [24] is a non-rolling-hash-based
chunking algorithm that employs an asymmetric sliding
window to identify extremums of data stream as cut-points,
which reduces the computational overhead for CDC. Yu
et al. [26] adjust the function for selecting chunk boundaries
such that if weak conditions are not met, the sliding win-
dow can jump forward, avoiding unnecessary calculation
steps. RapidCDC [27] leverages the data locality to record
the chunking positions to reduce the CDC computations for
the duplicate chunks to appear next time.

Hardware-Oriented CDC Optimizations. StoreGPU [16], [17]
and Shredder [18] make full use of GPU’s computational
power to accelerate popular compute-intensive primitives
(i.e., chunking and fingerprinting) in data deduplication.
P-Dedupe [14] pipelines deduplication tasks and then further
parallelizes the sub-tasks of chunking and fingerprintingwith
multiple threads and thus achieves higher throughput. SS-
CDC [28] proposes a two-stage prallel content-defined chunk-
ing approachwithout compromising deduplication ratio.

It is noteworthy that there are other chunking approaches
trying to achieve a higher deduplication ratio but introduce
more computation overhead on top of the conventional CDC
approach. TTTD [29] and Regression chunking [2] introdu-
ces one or more additional thresholds for chunking judg-
ment, which leads to a higher probability of finding chunk
boundaries and decreases the chunk size variance. MAXP
[30], [31], [32] treats the extreme values in a fixed-size region
as cut-points, which also results in smaller chunk size vari-
ance. In addition, Bimodal chunking [33], Subchunk [34],
and FBC [35] re-chunk the non-duplicate chunks into smaller
ones to detect more redundancy.

For completeness and self-containment we briefly dis-
cuss other relevant deduplication issues here. A typical data
deduplication system follows the workflow of chunking,
fingerprinting, indexing, and storage management [19],
[22], [36], [37]. The fingerprinting process computes the
cryptographically secure hash signatures (e.g., SHA1) of
data chunks, which is also a compute-intensive task but can
be accelerated by certain pipelining or parallelizing techni-
ques [14], [38], [39], [40]. Indexing refers the process of iden-
tifying the identical fingerprints for checking duplicate
chunks in large-scale storage systems, which has been well
explored in many previous studies [19], [22], [41], [42]. Stor-
age management refers to the storage and possible post-
deduplication processing of the non-duplicate chunks and
their metadata, including such processes as related to fur-
ther compression [13], defragmentation [43], reliability [44],
security [45], etc. In this paper, we focus on designing a
very fast and efficient chunking approach for data dedupli-
cation since the CPU-intensive CDC task has been widely
recognized as a major performance bottleneck of the CDC-
based deduplication system [17], [18], [27], [28].

3 FASTCDC DESIGN AND IMPLEMENTATION

3.1 FastCDC Overview

FastCDC aims to provide high performance CDC. And
there are three metrics for evaluating CDC performance,
namely, deduplication ratio, chunking speed, and the aver-
age generated chunk size. Note that the average generated

Fig. 2. The sliding window technique for the CDC algorithm. The hash
value of the sliding window, fp, is computed via the Rabin algorithm (this
is the hashing stage of CDC). If the lowest log2D bits of the hash value
matches a threshold value r, i.e., fp mod D = r, this offset (i.e., the cur-
rent position) is marked as a chunk cut-point (this is the hash-judging
stage of CDC).

XIA ETAL.: DESIGN OF FASTCONTENT-DEFINED CHUNKING FOR DATA DEDUPLICATION BASED STORAGE SYSTEMS 2019

chunk size is also an important CDC performance metric
since it reflects the metadata overhead for deduplication
indexing, i.e., the larger the generated chunk size is, the
fewer the number of chunks and thus the less metadata will
be processed by data deduplication.

Generally, it is difficult, if not impossible, to improve
these three performance metrics simultaneously because
they can be conflicting goals. For example, a smaller average
generated chunk size leads to a higher deduplication ratio,
but at the cost of lower chunking speed and high metadata
overheads. Thus, FastCDC is designed to strike a sensible trade-
off among these three metrics so as to strive for high performance
CDC, by using a combination of the five techniques with their
complementary features as shown in Fig. 3.

� Gear-based rolling hashing: due to its hashing sim-
plicity and rolling effectiveness, Gear hash is shown
to be one of the fastest rolling hash algorithms for
CDC, and we introduce it and discuss its chunking
efficiency in detail in Section 3.2.

� Optimizing hash judgment: using a zero-padding
scheme and a simplified hash-judging statement to
speed up CDC without compromising the dedupli-
cation ratio, as detailed in Section 3.3.

� Sub-minimum chunk cut-point skipping: enlarging
the predefined minimum chunk size and skipping
cut-points for chunks smaller than that to provide a
higher chunking speed and a larger average gener-
ated chunk size, as detailed in Section 3.4.

� Normalized chunking: selectively changing the num-
ber of mask ‘1’ bits for the hash judgment to approxi-
mately normalize the chunk-size distribution to a
small specified region that is just larger than the pre-
defined minimum chunk size, ensuring both a higher
deduplication ratio and higher chunking speed, as
detailed in Section 3.5.

� Rolling two bytes each time: furhter speeding up
chunking without affecting the chunking results by
reducing the calculation operations in the hashing
stage by rolling two bytes each time to calculate the

chunking fingerprints in the hashing stage, and then
judging the even and odd bytes respectively in the
hash judgement stage, as detailed in Section 3.7.

In general, the key idea behind FastCDC is the combined
use of the above five key techniques for CDC acceleration,
especially employing normalized chunking to address the
problem of decreased deduplication ratio facing the cut-
point skipping, and thus achieve high performance CDC on
the three key metrics.

3.2 Gear-Based Rolling Hashing

In this subsection, we elaborate on and analyze the Gear-
based rolling hash, and then introduce the new challenges
and opportunities after we introduce Gear-based CDC.
Gear-based rolling hash is first employed by Ddelta [13] for
delta compression, which helps provide a higher delta
encoding speed and is suggested to be a good rolling hash
candidate for CDC.

A good hash function must have a uniform distribution
of hash values regardless of the hashed content. As shown
in Fig. 4, Gear-based CDC achieves this in two key ways: (1)
It employs an array of 256 random 64-bit integers to map
the values of the byte contents in the sliding window (i.e.,
the calculated bytes, whose size is the bit-width of the fp);
and (2) The addition (“þ”) operation adds the new byte in
the sliding window into Gear hashes while the left-shift
(“<< ”) operation helps strip away the last byte of the last
sliding window (e.g., Bi�1 in Fig. 4). This is because, after
the “<< ” and modulo operations, the last byte Bi�1 will be
calculated into the fp as the ðG½Bi�1� << nÞ mod 2n, which
will be equal to zero. As a result, Gear generates uniformly
distributed hash values by using only three operations (i.e.,
“þ”, “<< ”, and an array lookup), enabling it to move
quickly through the data content for the purpose of CDC.
Table 1 shows a comparison among the two rolling hash
algorithms: Rabin and Gear, which suggests Gear uses far
fewer calculation operations than Rabin, thus being a good
rolling hash candidate for CDC.

To better illustrate Gear-based CDC, Algorithm 3.2 pro-
vides the detailed chunking pseudo code that uses the Gear
table for calculating the rolling fingerprints and the hash judg-
ing statement similar to the classical Rabin-based CDC. In
Fig. 5, we compare the chunk-size distributions each gener-
ated by Rabin- and Gear-based CDC on the random-number
workload, and against the mathematical analysis based on
Equation (3) (see Section 3.4), which indicates that the three
are almost identical (for more chunk-size distribution results,
see Fig. 12 in Section 4.2). And the previous study Ddelta [13]
also suggests Gear is considered to be a good rolling hash can-
didate for CDC both on the hashing efficiency and on the

Fig. 3. The five key techniques used in FastCDC and their corresponding
benefits for high performance CDC.

Fig. 4. A schematic diagram of the Gear hash.

TABLE 1
The Hashing Stage of the Rabin- and Gear-Based CDC

Name Pseudocode Speed

Rabin fp ¼ ððfp^UðaÞÞ << 8Þjb^T ½fp >> N � Slow

Gear fp ¼ ðfp << 1Þ þGðbÞ Fast

Here ‘a’ and ‘b’ denote contents of the first and last byte of the sliding window
respectively, ‘N’ is the length of the content-defined sliding window, and ‘U’,
‘T’, ‘G’ denote the predefined arrays [6], [11], [13]. ‘fp’ represents the finger-
print of the sliding window.

2020 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 9, SEPTEMBER 2020

chunking efficiency. However, according to our experimen-
tal analysis, there are still challenges and opportunities for
Gear-based CDC, such as low deduplication ratio, expensive
hash judgment, further acceleration by skipping, etc. We
elaborate on these issues as follows.

Algorithm 1. GearCDC8KB

Input: data buffer, src; buffer length, n
Output: chunking breakpoint i
MinSize 2KB; MaxSize 64KB;
i MinSize; fp 0;
if n �MinSize then
return n

while i < n do
fp ¼ ðfp << 1Þ þGear½ src½i� �;
if ðfp & 0x1fff ¼¼ 0x78Þ jj i >¼ MaxSize then
return i;

return i;

Low Deduplication Ratio Due to the Limited Sliding Window
Size. The Gear-based CDC has the potential problem of low
deduplication ratio, about 10-50 percent lower on some data-
sets (see the evaluation results in Section 4.2). This is becase,
the traditional hash judgment for the Rabin-based CDC, as
shown in Fig. 2 (i.e., “fp mod D==r”), is also used by the
Gear-based CDC [13] as shown in Algorithm 3.2. But this
results in a smaller sized sliding window used by Gear-
based CDC since it uses Gear hash for chunking. For exam-
ple, as shown in Fig. 6, the sliding window size of the Gear-
based CDC will be equal to the number of the ‘1’ bits used
by the mask value. Therefore, when using a mask value of
0x1fff (i.e., 213 � 1, there are thirteen ‘1’ bits) for the
expected chunk size of 8 KB, the sliding window for the
Gear-based CDC would be 13 bytes while that of the Rabin-
based CDC would be 48 bytes [6]. The smaller sliding win-
dow size of the Gear-based CDC can lead to more chunking
position collisions (i.e., randomly marking the different
positions as the chunk cut-points), resulting in the decrease
in deduplication ratio.

The Expensive Hash Judgment. In Gear-based CDC, the
accelerated hashing stage by the fast Gear, has shifted the bot-
tleneck to the hash judgment stage that requires more opera-
tions as shown in Algorithm 3.2. Our implementation and
in-depth analysis of Gear-based CDC on several datasets

(detailed in Section 4) suggest that its hash-judging stage
accounts for more than 60 percent of its CPU overhead during
CDC after the fast Gear hash is introduced. Thus, there is a lot of
room for the optimization of the hash judging stage to further
accelerate the CDC process as discussed later in Section 3.3.

Further Speed up Chunking by Skipping. Another observa-
tion is that the minimum chunk size used for avoiding
extremely small-sized chunks, can be also employed to
speed up CDC by the cut-point skipping, i.e., eliminating
the chunking computation in the skipped region. But this
minimum chunk size for cut-point skipping approach
decreases the deduplication ratio (as demonstrated in the
evaluation results in Fig. 12c in Section 4.3) since many
chunks are not divided truly according to the data contents,
i.e., not really content-defined.

The last observation from the minimum chunk size skip-
ping motivates us to consider a new CDC approach that (1)
keeps all the chunk cut-points that generate chunks larger
than a predefined minimum chunk size and (2) enables the
chunk-size distribution to be normalized to a relatively
small specified region, an approach we refer to as normalized
chunking in this paper, as described in Section 3.5.

3.3 Optimizing Hash Judgment

In this subsection,we optimize the hash judgment stage on top
of the Gear-based CDC, which helps further accelerate the
chunking process and increase the deduplication ratio to reach
that of the Rabin-based CDC. More specifically, FastCDC
incorporates twomain optimizations as elaborated below.

Enlarging the Sliding Window Size by Zero Padding. As dis-
cussed in Section 3.2, the Gear-based CDC employs the
same conventional hash judgment used in the Rabin-based
CDC, where a certain number of the lowest bits of the fin-
gerprint are used to declare the chunk cut-point, leading to
a shortened sliding window for the Gear-based CDC (see
Fig. 6) because of the unique feature of the Gear hash. To
address this problem, FastCDC enlarges the sliding window
size by padding a number of zero bits into the mask value.
As illustrated by the example of Fig. 7, FastCDC pads five
zero bits into the mask value and changes the hash judg-
ment statement to “fp & mask == r”. If the masked bits of fp
match a threshold value r, the current position will be
declared as a chunk cut-point. Since Gear hash uses one
left-shift and one addition operation to compute the rolling
hash, this zero-padding scheme enables 10 bytes (i.e.,
Bi; . . . ; Biþ9), instead of the original five bytes, to be
involved in the final hash judgment by the five masked one
bits (as the red box shown in Fig. 7) and thus makes the

Fig. 5. Chunk-size distributions of Rabin- and Gear-based CDC
approaches with average chunk size of 8KB (without max/min chunk
size requirement). “Rabin” and “Gear” denote our experimental results
after CDC and “Math” denotes theoretical analysis, where they are
shown to be nearly identical.

Fig. 6. An example of the sliding window technique used in the Gear-
based CDC. Here CDC consists of two stages: hashing and hash judg-
ment. The size of the sliding window used for hash judgment is only 5
bytes because of the computation principles of the Gear hash.

XIA ETAL.: DESIGN OF FASTCONTENT-DEFINED CHUNKING FOR DATA DEDUPLICATION BASED STORAGE SYSTEMS 2021

sliding window size equal or similar to that of the Rabin-
based CDC [6], minimizing the probability of the chunking
position collision. As a result, FastCDC is able to achieve a
deduplication ratio as high as that by the Rabin-based CDC.

Simplifying the Hash Judgment to Accelerate CDC. The con-
ventional hash judgment process, as used in the Rabin-
based CDC, is expressed in the programming statement of
“fp mod D¼¼r” [6], [13]. For example, the Rabin-based
CDC usually defines D and r as 0x02000 and 0x78, accord-
ing to the known open source project LBFS [6], to obtain the
expected average chunk size of 8 KB. In FastCDC, when
combined with the zero-padding scheme introduced above
and shown in Fig. 7, the hash judgment statement can be
optimized to “fp & Mask¼¼0”, which is equivalent to
“!fp & Mask”. Therefore, FastCDC’s hash judgment state-
ment reduces the register space for storing the threshold
value r and avoids the unnecessary comparison operation
that compares “fp & Mask” and r, thus further speeds up
the CDC process as verified in Section 4.2.

3.4 Cut-Point Skipping

Most of CDC-based deduplication systems impose a limit
of the maximum and minimum chunk sizes, to avoid the
pathological cases of generating many extremely large- or
small-sized chunks byCDC [1], [6], [33], [34], [37], [46]. A com-
mon configuration of the average, minimum, and maximum
parameters follows that used by LBFS [6], i.e., 8, 2, and 64 KB.
Our previous study [13] and experimental observations (see
Fig. 11 in Section 4.2, using curve fitting) suggest that the
cumulative distribution of chunk sizeX in Rabin-based CDC
approaches with an expected chunk size of 8 KB (without the
maximum and minimum chunk size requirements) generally
follows an exponential distribution as follows:

P ðX � xÞ ¼ F ðxÞ ¼ ð1� e�
x

8192Þ; x 	 0: (3)

Note that this theoretical exponential distribution in
Equation (3) is based on the assumption that the data con-
tent and Rabin hashes of contents (recall Equation (1) and
Fig. 2 for CDC) follow a uniform distribution. Equation (3)
suggests that the value of the expected chunk size will be
8 KB according to exponential distribution.

According to Equation (3), the chunks smaller than 2 KB
and larger than 64 KB would account for about 22.12 and
0.03 percent of the total number of chunks respectively. This
means that imposing the maximum chunk size requirement

only slightly hurts the deduplication ratio but skipping
cut-points before chunking to avoid generating chunks
smaller than the prescribed minimum chunk size, or called
sub-minimum chunk cut-point skipping , will impact the dedu-
plication ratio significantly as evidenced in Fig. 12c. This is
because a significant portion of the chunks are not divided
truly according to the data contents, but forced by this cut-
point skipping.

Given FastCDC’s goal of maximizing the chunking
speed, enlarging the minimum chunk size and skipping sub-
minimumchunk cut-pointwill help FastCDC achieve a higher
CDC speed by avoiding the operations for the hash calculation
and judgment in the skipped region. This gain in speed, how-
ever, comes at the cost of reduced deduplication ratio. To
address this problem,wewill develop a normalized chunking
approach, to be introduced in the next subsection.

It is worth noting that this cut-point skipping approach,
by avoiding generating chunks smaller than the minimum
chunk size, also helps increase the average generated chunk
size. In fact, the average generated chunk size exceeds the
expected chunk size by an amount equal to the minimum
chunk size. This is because the F(x) in Equation (3) is changed

to ð1� e�
x�MinSize

8192 Þ after cut-point skipping, thus the value of
the expected chunk size becomes 8 KB + minimum chunk
size, which will be verified in Section 4.3. The speedup
achieved by skipping the sub-minimum chunk cut-point can

be estimated by 1þ the minimum chunk size
the expected chunk size . The increased chunk-

ing speed comes from the eliminated computation on the
skipped region, which will also be evaluated and verified in
Section 4.3.

3.5 Normalized Chunking

In this subsection, we propose a novel chunking approach,
called normalized chunking, to solve the problem of
decreased deduplication ratio facing the cut-point skipping
approach. As shown in Fig. 8, normalized chunking gener-
ates chunks whose sizes are normalized to a specified
region centered at the expected chunk size. After normal-
ized chunking, there are almost no chunks of size smaller
than the minimum chunk size, which means that normal-
ized chunking enables skipping cut-points for subminimum
chunks to reduce the unnecessary chunking computation
and thus speed up CDC.

In our implementation of normalized chunking, we selec-
tively change the number of effective mask bits (i.e., the
number of ‘1’ bits) for the hash-judging statement. For the
traditional CDC approach with expected chunk size of 8 KB
(i.e., 213), 13 effective mask bits are used for hash judgment

Fig. 7. An example of the sliding window technique proposed for
FastCDC. By padding y zero bits into the mask value for hash judgment,
the size of the sliding window used in FastCDC is enlarged to about 5+y
bytes, where y=5 in this example.

Fig. 8. A conceptual diagram of the normalized chunking combined with
the subminimum chunk cut-point skipping. The dotted line shows a
higher level of normalized chunking.

2022 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 9, SEPTEMBER 2020

(e.g., fp & 0x1fff¼¼r). For normalized chunking, more
than 13 effective mask bits are used for hash judgment (e.g.,
fp & 0x7fff¼¼r) when the current chunking position is
smaller than 8 KB, which makes it harder to generate
chunks of size smaller than 8 KB. On the other hand, fewer
than 13 effective mask bits are used for hash judgment (e.g.,
fp & 0x0fff¼¼r) when the current chunking position is
larger than 8 KB, which makes it easier to generate chunks
of size larger than 8 KB. Therefore, by changing the number
of ‘1’ bits in FastCDC, the chunk-size distribution will be
approximately normalized to a specified region always
larger than the minimum chunk size, instead of following
the exponential distribution (see Fig. 5).

Generally, there are three benefits or features of normal-
ized chunking (NC):

� NC reduces the number of small-sized chunks,
which makes it possible to combine it with the cut-
point skipping approach to achieve high chunking
speed without sacrificing the deduplication ratio as sug-
gested in Fig. 8.

� NC further improves the deduplication ratio by
reducing the number of large-sized chunks, which
compensates for the reduced deduplication ratio
caused by reducing the number of small-sized
chunks in FastCDC.

� The implementation of FastCDC does not add addi-
tional computing and comparing operations. It sim-
ply separates the hash judgment into two parts,
before and after the expected chunk size.

Fig. 9 shows the chunk-size distribution after normalized
chunking in comparison with FastCDC without NC on the
TAR dataset (whose workload characteristics are detailed in
Table 2 in Section 4.1). The normalization levels 1, 2, 3 indi-
cate that the normalized chunking uses the mask bits of (14,
12), (15, 11), (16, 10), respectively, where the first and the
second integers in the parentheses indicate the numbers of
effective mask bits used in the hash judgment before and
after the expected chunk size (or normalized chunk size) of
8 KB. Fig. 9 also suggests that the chunk-size distribution is

a reasonably close approximation of the normal distribution
centered on 8 KB at the normalization level of 2 or 3.

As shown in Fig. 9, there are only a very small number of
chunks smaller than 2 or 4 KB after normalized chunking
while FastCDC without NC has a large number of chunks
smaller than 2 or 4 KB (consistent with the discussion in
Section 3.4). Thus, when combining NC with the cut-point
skipping to speed up the CDCprocess, only a very small por-
tion of chunk cut-points will be skipped in FastCDC, leading
to nearly the same deduplication ratio as the conventional
CDC approaches without the minimum chunk size require-
ment. In addition, normalized chunking allows us to enlarge
the minimum chunk size to maximize the chunking speed
without sacrificing the deduplication ratio.

It is worth noting that the chunk-size distribution shown
in Fig. 9 is not truly normal distribution but an approximation
of it. Actually, it follows an improved exponential distribu-
tion calculating from Equation (3) as follows (taking the NC 2
as an example and using the average chunk size of 8 KB)

P ðX � xÞ ¼ F ðxÞ ¼ 1� e�
x

8192
4; 0 � x � 8192

1� e
� x
8192=4; x > 8192

�
: (4)

Therefore, Figs. 9c and 9d shows a closer approximation
of normal distribution of chunk size achieved by using the
normalization levels 2 and 3. Interestingly, the highest nor-
malization level of NC would be equivalent to Fixed-Size
Chunking (FSC), i.e., all the chunk sizes are normalized to
be equal to the expected chunk size. Since FSC has a very
low deduplication ratio but extremely high chunking speed,
it means that there will be a “sweet spot” among the nor-
malization level, deduplication ratio, and chunking speed,
which will be studied and evaluated in Section 4.

3.6 Putting It All Together

To put things together and in perspective. Algorithm 3.6
describes FastCDC combining the three key techniques:
optimizing hash judgment, cut-point skipping, and normal-
ized chunking (with the expected chunk size of 8 KB). The

Fig. 9. Chunk-size distribution of FastCDC with normalized chunking
(NC) at different normalization levels.

TABLE 2
Workload Characteristics of the Seven Datasets Used

in the Performance Evaluation

Name Size Workload descriptions

TAR 56 GB 215 tarred files from several open source projects
such as GCC, GDB, Emacs, etc. [47]

LNX 178 GB 390 versions of Linux source code files (untarred).
There are totally 16, 381, 277 files [48].

WEB 237 GB 102 days’ snapshots of the website: news.sina.com,
which are collected by crawling software wget
with a maximum retrieval depth of 3.

VMA 138 GB 90 virtual machine images of different OS release
versions, including CentOS, Fedora, etc. [49]

VMB 1.9 TB 125 backups of an Ubuntu 12.04 virtual machine
image in use by a research group.

RDB 1.1 TB 198 backups of the Redis key-value store database
snapshots, i.e., dump.rdb files.

SYN 2.1 TB 300 synthetic backups. The backup is simulated
by the file create/delete/modify operations [50].

XIA ETAL.: DESIGN OF FASTCONTENT-DEFINED CHUNKING FOR DATA DEDUPLICATION BASED STORAGE SYSTEMS 2023

data structure “Gear” is a predefined array of 256 random
64-bit integers with one-to-one mapping to the values of
byte contents for chunking [13].

Algorithm 2. FastCDC8KB (with NC)

Input: data buffer, src; buffer length, n
Output: chunking breakpoint i
MaskS 0x0000d9f003530000LL; // 15 ‘1’ bits;
MaskA 0x0000d93003530000LL; // 13 ‘1’ bits;
MaskL 0x0000d90003530000LL; // 11 ‘1’ bits;
MinSize 2 KB; MaxSize 64 KB;
fp 0; i MinSize; NormalSize 8 KB;
if n �MinSize then
return n;

if n 	MaxSize then
n MaxSize;

else if n � NormalSize then
NormalSize n;

for ; i < NormalSize; iþþ; do
fp ¼ ðfp << 1Þ þGear½ src½i� �;
if ! ð fp & MaskS Þ then
return i; //if the masked bits are all ‘0’;

for ; i < n; iþþ; do
fp ¼ ðfp << 1Þ þGear½ src½i� �;
if ! ð fp & MaskL Þ then
return i; //if the masked bits are all ‘0’;

return i;

Algorithm 3. RabinCDC8KB(With NC)

Input: data buffer, src; buffer length, n
Output: chunking breakpoint i
MinSize 2 KB; MaxSize 64 KB;
fp 0; i MinSize; NormalSize 8 KB;
if n �MinSize then
return n;

if n 	MaxSize then
n MaxSize;

else if n � NormalSize then
NormalSize n;

for ; i < NormalSize; iþþ; do
fp ¼ ððfp^UðaÞÞ << 8Þjb^T ½fp >> N �;
if fp & ð8192
 2� 1Þ ¼¼ 0x78 then
return i;

for ; i < n; iþþ; do
fp ¼ ððfp^UðaÞÞ << 8Þjb^T ½fp >> N �;
if fp & ð8192=2� 1Þ ¼¼ 0x78 then
return i;

return i;

As shown in Algorithm 3.6, FastCDC uses normalized
chunking to divide the chunking judgment into two loops
with the optimized hash judgment. Note that FastCDC
without normalized chunking is not shown here but can be
easily implemented by using the new hash-judging state-
ment “! fp & MaskA” where the MaskA is padded with 35
zero bits to enlarge the sliding window size to 48 bytes as
that used in the Rabin-based CDC [6]. Note that MaskA,
MaskS, and MaskL are three empirically derived values
where the padded zero bits are almost evenly distributed
for slightly higher deduplication ratio according to our large
scale tests.

FastCDC implements normalized chunking by using
mask value MaskS and MaskL to make the chunking judg-
ment harder or easier (to generate chunks smaller or larger
than the expected chunk size) when the current position is
smaller or larger than the expected chunk size, respectively.
And the number of ‘1’ bits in MaskS and MaskL can be
changed for different normalization levels. The minimum
chunk size used in Algorithm 3.6 is 2 KB, which can be
enlarged to 4 KB or 8 KB to further speed up the CDC pro-
cess while combining with normalized chunking. Tuning
the parameters of minimum chunk size and normalization
level will be studied and evaluated in the next Section.

In addition, we implement the normalized chunking
scheme in Rabin-based CDC as shown in Algorithm 3.6.
This improved Rabin-based CDC is also evaluated in the
next Section. Note that the hash judgment optimization for
Gear is not applied for Rabin. This is because there are
many zero hash values generated by Rabin [9], which
results too many positions satisfying the chunking judg-
ment “ðfp&MaskValueÞ ¼¼ false” and thus the generated
average chunk size after Rabin-based CDC will be far blow
the expected average chunk size.

3.7 Rolling Two Bytes Each Time

Besides the techniques mentioned in the above subsection,
we also propose another independent technique called
“rolling two bytes each time” on top of FastCDC. As shown
in Algorithm 3.7, the core idea of this technique is that the
fingerprint fp is rolling two bytes each time (i.e.,
“fp << 2”) in contrast to the traditional way of rolling one
byte each time (see Algorithm 3.2), and then we judge the
even and odd bytes respectively to determine the chunks’
boundaries. Specifically, �1 for the even bytes, we use the
Gear_ls table (Gear_ls contains elements from the Gear table,
which are all left shift one bit) and the mask value MaskA_ls
(i.e., MaskA<< 1) for the hash judgment in FastCDC, this is
because when we judge the fp for the even bytes, fp has been
already left shift two bits (as described in Algorithm 3.7);�2
for the odd bytes, we process the fingerprints using Gear
table and the mask valueMaskA in the traditional way.

Algorithm 4. Rolling Two Bytes Each Time on
FastCDC8KB (Without NC for Simplicity)

Input: data buffer, src; buffer length, n
Output: chunking breakpoint i
MaskA 0x0000d93003530000LL; // 13 ‘1’ bits ;
MaskA ls (MaskA<< 1Þ; fp 0; i MinSize;
MinSize 2KB; MaxSize 64KB;
if n �MinSize then
return n;

if n 	MaxSize then
n MaxSize;

while i < ðn=2Þ do
fp ¼ ðfp << 2Þ þGear ls½ src½2
 i� �;
if ! ð fp & MaskA ls Þ then
return 2
 i;

fpþ ¼ Gear½ src½2
 iþ 1� �;
if ! ð fp & MaskA Þ then
return 2
 iþ 1;

return n;

2024 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 9, SEPTEMBER 2020

This technique is simple but very useful for FastCDC since
it reduces one shift operation when chunking each two bytes
compared with the traditional approach (rolling one byte
each time as shown in Algorithm 3.2) while ensuring exactly
the same chunking results. Note that it requires to lookup
one more table and increases additional computation opera-
tions of ‘2
 i’ and ‘2
 iþ 1’, but these overheads are minor
and FastCDC using this technique is about 30-40 percent
faster than rolling one byte each time according to our evalua-
tion results discussed in the next section.

4 PERFORMANCE EVALUATION

4.1 Experimental Setup

Experimental Platform. To evaluate FastCDC, we implement
a prototype of the data deduplication system on the Ubuntu
18.04.1 operating system running on an Intel Xeon(R) Gold
6,130 processor at 2.1 GHz, with a 128 GB RAM. To better
evaluate the chunking speed, another Intel i7-8700 proces-
sor at 3.2 GHz is also used for comparison.

Configurations for CDC and Deduplication. Three CDC
approaches, Rabin-, Gear-, and AE-based CDC, are used as
the baselines for evaluating FastCDC. Rabin-based CDC is
implemented based on the open-source project LBFS [6]
(also used inmany published studies [7], [19] or project [51]),
where the sliding window size is configured to be 48 bytes.
The Gear- and AE-based CDC schemes are implemented
according to the algorithms described in their papers [13],
[24], and we obtain performance results similar to and con-
sistent with those reported in these papers. Here all the CDC
approaches are configured with the maximum and mini-
mum chunk sizes of 8� and 1

4� of the expected chunk size,
the same as configured in LBFS [6]. The deduplication proto-
type consists of approximately 3,000 lines of C code, which is
compiled by GCC 7.4.0 with the “-O3” compiler option to to
maximize the speed of the resulting executable.

Performance Metrics of Interest. Chunking speed is measured
by the in-memory processing speed of the evaluated CDC

approaches and obtained by the average speed of five runs.
Deduplication ratio is measured in terms of the percentage of

duplicates detected after CDC, i.e., The size of duplicate data detected
Total data size before deduplication.

Average chunk size after CDC is Total data size
Number of chunks, which reflects

themetadata overhead for deduplication indexing.
Evaluated Datasets. Seven datasets with a total size of

about 6 TB are used for evaluation as shown in Table 2.
These datasets consist of the various typical workloads of
deduplication, including the source code files, virtual
machine images, database snapshots, etc., whose deduplica-
tion ratios vary from 40 to 98 percent, which will be detailed
in Table 3 in the next subsection.

4.2 A Study of Optimizing Hash Judgment

This subsection discusses an empirical study of FastCDC
using techniques of the optimized hash judgment and
‘rolling two bytes each time’. Fig. 10 shows the chunking
speed of the four CDC approaches running on the RDB data-
set, as a function of the expected chunk size and all using
theminimum chunk size of 14� of that for cut-point skipping.
In general, the Rabin-based CDC has the lowest speed, and
Gear-based CDC are about 3� faster than Rabin. FastCDC
using optimized hash judgement (i.e., FC’ in Fig. 10) is

TABLE 3
A Comparison Among the Rabin-Based CDC (RC), Gear-Based CDC (GC), and FastCDC (FC) Approaches in Terms of the

Deduplication Ratio and the Average Size of Generated Chunks, as a Function of the Expected Chunk Size

Fig. 10. Chunking speed, as a function of the expected chunk size, of
Rabin-based CDC (RC), Gear-based CDC (GC), FastCDC using opti-
mized hash judgement (FC) and rolling two bytes each time (FC’) on two
CPU processors.

XIA ETAL.: DESIGN OF FASTCONTENT-DEFINED CHUNKING FOR DATA DEDUPLICATION BASED STORAGE SYSTEMS 2025

about 5� faster than Rabin and 1.5� faster than Gear regard-
less of the speed of the CPU processor and the expected
chunk size. The high chunking speed of FastCDC stems
from its simplification of the hash judgment after the fast
Gear hash is used for chunking as described in Section 3.3.
Meanwhile, FastCDC using ‘rolling two bytes each time’
(i.e., FC’ in Fig. 10) further increases the chunking speed by
40-50 percent since it further reduces calculation operation
during CDC. Note that FC’ achieves exactly the same chunk-
ing results as FC, thus we do not discuss metrics of dedup-
lication ratio and generated chunk size for FC’ in the
remainder of this paper.

Table 3 shows the deduplication ratio and the average
size of generated chunks (post-chunking) achieved by the
three CDC approaches. We compare the Gear-based CDC
(GC), and FastCDC (FC) approaches against the classic
Rabin-based CDC (i.e., the baseline: RC) and record the per-
centage differences (in parentheses).

In general, FastCDC achieves nearly the same deduplica-
tion ratio as Rabin regardless of the expected chunk size
and workload, and the difference between them is tiny as
shown in the 3rd, 5th, 7th columns in Table 3 except on the
WEB dataset. On the other hand, the Gear-based CDC has a
much lower deduplication ratio on the datasets TAR and
WEB due to its limited sliding window size as discussed in
Section 3.2.

For the metric of the average size of generated chunks, the
difference between the Rabin-based CDC and FastCDC is
smaller than �1.0 percent on most of the datasets. For the
datasets WEB, FastCDC has 7.89 percent larger average
chunk size than Rabin-based CDC, which is acceptable since
the larger average chunk sizemeans fewer chunks and finger-
prints for indexing in a deduplication system (without
sacrificing deduplication ratio) [3]. But for the Gear-based
CDC, the average chunk size differs significantly in some
datasets while its deduplication ratio is still a bit lower than
other CDC approaches due to its smaller slidingwindow size.

We also compare the chunk-size distributions of the three
tested chunking approaches in Fig. 11: FastCDC has nearly
the same chunk-size distribution as Rabin on datasets TAR,
VMA, and RDB, which generally follows the exponential
distribution as discussed in Section 3.4. Note that the results

in Fig. 11b are very different from others. This is because
there are many zero bytes in this dataset according to our
observation, which makes the chunking fingerprints not so
random (thus not follow the the exponential distribution).
However, comparing with Rabin and Gear, FastCDC’s
chunk-size distribution on WEB is the most similar to other
datasets, which explains why FastCDC achieves the highest
deduplication ratio on WEB among the three tested chunk-
ing approaches (see Table 3).

In summary, FastCDC with the optimized hash judg-
ment achieves a chunking speed that is 5� higher than
Rabin-based CDC while satisfactorily solving the problems
of low deduplication ratio and smaller sliding window size
faced by Gear-based CDC.

4.3 Evaluation of Cut-Point Skipping

This subsection discusses the evaluation results of cut-point
skipping technique. Figs. 12a and 12b show the impact of
applying different minimum chunk sizes on the chunking
speed of FastCDC. Since the chunking speed is not so sensi-
tive to the workloads, we only show the three typical work-
loads in Fig. 12. In general, cut-point skipping greatly
accelerates the CDC process since the skipped region will
not be hash-processed by CDC. The speedup of the FastCDC
applying the minimum chunk sizes of 4 and 2 KB over the
FastCDC without the constraint of the minimum chunk size
(i.e., Min-0 KB) is about 1.25� and 1.50� respectively, which
is almost consistent with the equation 1þ the minimum chunk size

the expected chunk size

as discussed in Section 3.4.
Figs. 12c and 12d show the impact of applying different

minimum chunk sizes on the deduplication ratio and average

Fig. 11. Chunk-size distribution of the RC, GC, and FC approaches on
the four typical datasets.

Fig. 12. Chunking performance of FastCDC with the expected chunk
size of 8KB but different minimum chunk sizes on two different CPU
processors.

2026 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 9, SEPTEMBER 2020

generated chunk size of FastCDC. In general, deduplication
ratio declines with the increase of the minimum chunk size
applied in FastCDC, but not proportionally. For the metric of
the average generated chunk size in FastCDC, it is approxi-
mately equal to the summation of the expected chunk size
and the applied minimum chunk size. This means that the
MIN-4 KB solution has the average chunk size of 8+4=12 KB,
leading to fewer chunks for fingerprints indexing in dedupli-
cation systems. Note that the increased portion of the average
generated chunk size is not always equal to the size of the
applied minimum chunk size, because the Rabin hashes of
contents may not strictly follow the uniform distribution (as
described in Equation (3) in Section 3.4) on some datasets.In
addition, the average chunk sizes of dataset LNX are smaller
than the minimum chunk size, which results from the many
very small files whose sizes are much smaller than the mini-
mum chunk size in LNX.

In summary, the results shown in Fig. 12 suggest that
cut-point skipping helps obtain higher chunking speed and
increase the average chunk size but at the cost of decreased
deduplication ratio. The decreased deduplication ratio will
be addressed by normalized chunking as evaluated in the
next two subsections.

4.4 Evaluation of Normalized Chunking

In this subsection, we conduct a sensitivity study of normal-
ized chunking (NC) on the TAR dataset, as shown in
Fig. 13. Here the expected chunk size of FastCDC without
NC is 8 KB and the normalized chunk size of FastCDC with
NC is configured as the 4 KB + minimum chunk size. The
normalization levels 1, 2, 3 refer to the three pairs of num-
bers of effective mask bits (14, 12), (15, 11), (16, 10) respec-
tively that normalized chunking applies when the chunking
position is smaller or larger than the normalized (or
expected) chunk size, as discussed in Section 3.5.

Figs. 13a and 13b suggest that normalized chunking (NC)
detects more duplicates when the minimum chunk size is
about 4, 6, and 8 KB but slightly reduces the average gener-
ated chunk size, in comparison with FastCDC without NC.
This is because NC reduces the number of large-sized

chunks as shown in Fig. 9 and discussed in Section 3.5. The
results also suggest that NC touches the “sweet spot” of
deduplication ratio at the normalization level of 2 when the
minimum chunk size is 4, 6, or 8 KB. This is because the
very high normalization levels tend to have a similar
chunk-size distribution to the Fixed-Size Chunking as
shown in Fig. 9 in Section 3.5, which fails to address the
boundary-shift problem and thus detects fewer duplicates.
Figs. 13c and 13d suggest that NC, when combined with the
approach of enlarging the minimum chunk size for cut-
point skipping, greatly increases the chunking speed on the
two tested processors.

In general, considering the three metrics of chunking
speed, average generated chunk size, and deduplication ratio
as a whole, as shown in Fig. 13, NC-2 with MinSize of 8 KB
maximizes the chunking speed without sacrificing the dedu-
plication ratio. Note that NC-2 with MinSize of 6 KB achieves
the highest deduplication ratio among those NC approaches
whose average chunk size	 that of Rabin and FastCDC tested
in Table 3 (with theminimum chunk size of 2 KB).

4.5 Comprehensive Evaluation of FastCDC

In this subsection, we comprehensively evaluate the perfor-
mance of FastCDC with the combined capability of the five
key techniques: Gear-based rolling hash, optimizing hash
judgment, cut-point skipping, rolling two bytes each time,
and normalized chunking using “NC-2” and minimum
chunk size of 6 KB/8 KB as suggested by the last subsection.
Finally, twelve CDC approaches are tested for evaluation:

� RC-v1 (or RC-MIN-2 KB) is Rabin-based CDC used
in LBFS [6]; RC-v2 and RC-v3 refer to Rabin-based
CDC using normalized chunking with a minimum
chunk size of 4 and 6 KB respectively.

� FC-v1 is FastCDC uses the techniques of optimizing
hash judgment and cut-point skipping with a mini-
mum chunk size of 2 KB; FC-v2 and FC-v3 refer to
FastCDC using all the four techniques with a mini-
mum chunk size of 6 and 8 KB, respectively.

� FC’-v1, FC’-v2, and FC’-v3 are FastCDC using the
technique of rolling two bytes each time on top of
FC-v1, FC-v2, and FC-v3 respectively.

� AE-v1 and AE-v2 refer to AE-based CDC [24] and its
optimized version [52];

� Fixed-Size Chunking (FIXC) is also tested for com-
parison using the average chunk size of 10 KB (to
better understand content-defined chunking).

Evaluation results in Table 4 suggest that FC-v1, FC-v2,
AE-v2, and RC-v2 achieves nearly the same deduplication
ratio as RC-v1 in most cases, which suggests that the nor-
malized chunking scheme works well on both Rabin and
FastCDC. Note that FIXC works well on the datasets LNX
and VMB, because LNX has many files smaller than the
fixed-size chunk of 10 KB (and thus the average generated
chunk size is also smaller than 10 KB) and VMB has many
structured backup data (and thus VMB is suitable for FIXC).

Table 5 shows that RC-v1, RC-v2, AE-v1, AE-v2, FC-v1,
and FC-v2 generate similar average chunk size. But the
approaches of RC-v3 and FC-v3 has a much larger average
chunk size, which means that it generates fewer chunks and
thus lessmetadata for deduplication processing.Meanwhile,

Fig. 13. Evaluation of comprehensive performance of normalized chunk-
ing with different normalization levels.

XIA ETAL.: DESIGN OF FASTCONTENT-DEFINED CHUNKING FOR DATA DEDUPLICATION BASED STORAGE SYSTEMS 2027

RC-v3 and FC-v3 still achieves a comparable deduplication
ratio, slightly lower than RC-v1 as shown in Table 4, while
providing amuch higher chunking speed as discussed later.

Fig. 14 suggests that FC’-v3 has the highest chunking
speed, about 12� faster than the Rabin-based approach,
about 2.5� faster than FC-v1. This is because FC’-v3 is the
final FastCDC using all the five techniques to speed up the
CDC process. In addition, FC’-v2 is also a good CDC candi-
date since it has a comparable deduplication ratio while
also working well on the other two metrics of chunking
speed and average generated chunk size. Meanwhile, nor-
malized chunking also helps accelerate Rabin-based CDC
(i.e., RC-v2 and RC-v3) while achieving comparable dedu-
plication ratio and average chunk size. But this acceleration
is limited since the main bottleneck for Rabin-based CDC is
still the rolling hashing computation.

Table 6 further studies the CPU overhead among the eight
CDC approaches. The CPU overhead is averaged on 1,000
test runs by the Linux tool “Perf”. The results suggest that
FC’-v3 has the fewest instructions for CDC computation, the
higher instructions per cycle (IPC), and thus the least CPU
time overhead, i.e., CPU cycles. Generally, FastCDC greatly
reduces the number of instructions for CDC computation by
using the techniques of Gear-based hashing, optimizing
hash judgment, and rolling two bytes each time (i.e., FC’-v1),
and then minimizes the number of computation instructions
by enlarging the minimum chunk size for cut-point skipping
and combining normalized chunking (i.e., FC’-v2 and FC’-
v3). In addition, FastCDC increases the IPC for the CDC com-
putation by well pipelining the instructions of hashing and
hash-judging tasks in up-to-date processors. Therefore, these
results clearly reveal the reason why FastCDC is much faster
than Rabin- and AE-based CDC is that the former not only
reduces the number of instructions and branches, but also
increases the IPC for the CDC process.

TABLE 4
Comparison of Deduplication Ratio Achieved by the Nine Chunking Approaches

Dataset FIXC RC-v1 RC-v2 RC-v3 AE-v1 AE-v2 FC-v1 FC-v2 FC-v3

TAR 15.77% 46.66% 47.42% 45.37% 43.62% 46.41% 46.65% 47.39% 45.40%
LNX 95.68% 96.30% 96.28% 96.19% 96.25% 96.13% 96.31% 96.28% 96.19%
WEB 59.96% 75.98% 83.16% 80.39% 83.08% 83.18% 83.20% 83.29% 80.92%
VMA 17.63% 36.70% 37.79% 36.52% 38.10% 38.17% 36.40% 37.66% 36.39%
VMB 95.68% 96.12% 96.17% 96.11% 95.82% 96.15% 96.08% 96.17% 96.11%
RDB 16.39% 92.57% 92.96% 92.24% 88.82% 92.83% 92.58% 92.97% 92.23%
SYN 79.46% 97.36% 97.91% 97.67% 97.54% 97.86% 97.37% 97.90% 97.67%

TABLE 5
Average Chunk Size Generated by the Nine Chunking Approaches on the Seven Datasets

Dataset FIXC RC-v1 RC-v2 RC-v3 AE-v1 AE-v2 FC-v1 FC-v2 FC-v3

TAR 10239 12449 12664 14772 12187 12200 12334 12801 14918
LNX 6508 6021 7041 7636 6274 6162 6012 7042 7636
WEB 10240 11301 12174 14148 11977 11439 11552 11880 13951
VMA 10239 13071 13505 15628 13098 13559 13150 13595 15746
VMB 10239 11937 12970 15094 12303 12254 12138 13034 15166
RDB 10239 10964 12587 14728 11943 12102 10970 12583 14725
SYN 10240 11663 12221 14271 11956 11997 11598 12239 14289

Fig. 14. Chunking speed of the 11 CDC approaches.

TABLE 6
Number of Instructions, Instructions Per Cycle (IPC), and CPU

Cycles Required to Chunk Data Per Byte by the 11 CDC
Approaches on the Intel i7-8770 Processor

Approaches Instructions IPC CPU cycles branches

RC-v1 19.54 2.49 7.85 2.44
RC-v2 11.22 2.30 4.88 1.02
RC-v3 9.72 2.27 4.28 0.88
AE-v1 11.75 3.77 3.12 3.84
AE-v2 7.00 3.08 2.27 2.00
FC-v1 7.32 3.89 1.88 1.63
FC-v2 4.89 3.83 1.28 1.02
FC-v3 4.23 3.72 1.14 0.88
FC’-v1 5.28 3.87 1.36 1.13
FC’-v2 3.57 3.59 0.99 0.76
FC’-v3 3.09 3.47 0.89 0.66

2028 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 9, SEPTEMBER 2020

In summary, as shown in Tables 4, 5, 6 and Fig. 14,
FastCDC (i.e., FC’-v2 recommended) significantly speeds
up the Content-Defined Chunking process and achieves a com-
parable and even higher deduplication ratio with the similar
average chunk size by using a combination of the five key
techniques proposed in Section 3.

4.6 Impact of CDC on Overall System Throughput

To understand the impact of the different CDC algorithms on
the overall throughput of data deduplication system, we
implemented them in the open-source Destor deduplication
system [19]. In this evaluation, we use a Ramdisk-driven
emulation to avoid the performance bottleneck caused by
disk I/O. And for each dataset, we only use 5 GB, a small part
of its total size in the evaluation. In addition, to examine the
maximum impact of different CDC algorithms on the system
throughput, we configure Destor with: (1) using the fast intel
ISA-L library for SHA1 computation [53] (SHA1 speedwould
be about 3-4 GB/s on our tested CPUs); (2) indexing all fin-
gerprints in RAM; (3) pipelining the deduplication subtasks
(i.e., chunking, fingerprinting, indexing, etc.).

Fig. 15 shows that FastCDC (i.e., FC’-v2) helps achieve
about 1.2-3.0X higher overall system throughout than RC-
v1, RC-v2, AE-v1, and AE-v2, while achieving a comparable
or even higher deduplication ratio as shown in Table 4. This
is because when Destor pipelines the deduplication sub-
tasks and the CDC becomes the bottleneck of the system,
acceleration of the CDC can directly benefit the overall sys-
tem throughput before the system meets another perfor-
mance bottleneck.

5 CONCLUSION

In this paper, we propose FastCDC, a much faster CDC
approach for data deduplication than the state-of-the-art
CDC approaches while achieving a comparable deduplica-
tion ratio. The main idea behind FastCDC is the combined
use of five key techniques, namely, Gear-based fast rolling
hashing, optimizing the hash judgment for chunking, sub-
minimum chunk cut-point skipping, normalized chunking,

and rolling two bytes each time. Our experimental evalua-
tion demonstrates that FastCDC obtains a chunking speed
that is about 3-12� higher than that of the state-of-the-art
CDC approaches while achieving nearly the same dedupli-
cation ratio as the classic Rabin-based CDC. In addition, our
study of overall system throughput shows that Destor [19]
using FastCDC helps achieve about 1.2-3.0X higher overall
system throughout than using other CDC approaches.

FastCDC has been adopted as the default chunker in sev-
eral Github projects (for quickly detecting duplicate con-
tents), such as Rdedup [20], Content Blockchain [21], etc.
We have also released the FastCDC source code at https://
github.com/Borelset/destor/tree/master/src/chunkingto
be shared with the deduplication and storage systems
research community.

ACKNOWLEDGMENTS

The authors are grateful to the anonymous reviewers for their
insightful comments and constructive suggestions. This
research was partly supported by NSFC No. 61972441, No.
61872110, No. 61872414, No. 61772212, No. 61821003, No.
61772222, and No. 61832007, the major project of National
Science and Technology of China No. 2017ZX01032-101,
the Open Project Program of Wuhan National Laboratory
for Optoelectronics No. 2018WNLOKF008, the Shenzhen
Science and Technology Program under Grant No.
JCYJ20190806143405318, Key R&D Program for Guangdong
Province under Grant No.2019B010136001, and the US
National Science Foundation under Grant CCF-1704504 and
CCF-1629625. The preliminary manuscript appeared in the
proceedings of USENIX ATC 2016. In this journal version, we
included more techniques on FastCDC and additional mea-
surement results from our analysis and testbed experiments.

REFERENCES

[1] D. Meyer andW. Bolosky, “A study of practical deduplication,” in
Proc. 9th USENIX Conf. File Storage Technol., 2011, Art. no. 1.

[2] A. El-Shimi et al., “Primary data deduplication–large scale study
and system design,” in Proc. USENIX Conf. Annu. Tech. Conf.,
2012, Art. no. 26.

[3] G. Wallace et al.., “Characteristics of backup workloads in produc-
tion systems,” in Proc. 10th USENIX Conf. File Storage Technol.,
2012, Art. no. 4.

[4] P. Shilane et al., “WAN optimized replication of backup datasets
using stream-informed delta compression,” in Proc. FAST.

[5] S. Quinlan and S. Dorward, “Venti: A new approach to archival
storage,” in Proc. 1st USENIX Conf. File Storage Technol., 2002,
pp. 7–es.

[6] A. Muthitacharoen, B. Chen, and D. Mazieres, “A low-bandwidth
network file system,” in Proc. 18th ACM Symp. Operating Syst.
Princ., 2001.

[7] D. Meister, J. Kaiser, A. Brinkmann, T. Cortes, M. Kuhn, and
J. Kunkel, “A study on data deduplication in HPC storage sys-
tems,” in Proc. Int. Conf. High Perform. Comput. Netw. Storage Anal.,
2012, pp. 1–11.

[8] C. Policroniades and I. Pratt, “Alternatives for detecting redun-
dancy in storage systems data,” in Proc. Annu. Conf. USENIX
Annu. Tech. Conf., 2004, Art. no. 6.

[9] M. O. Rabin, Fingerprinting by random polynomials. Center for
Research in Computing Techn., Aiken Computation Lab. Univ.,
1981.

[10] A. Broder, “Some applications of Rabin’s fingerprinting method,”
in Sequences II: Methods in Communications, Security, and Computer
Science. Berlin, Germany: Springer, 1993, pp. 1–10.

[11] C. Dubnicki, E. Kruus, K. Lichota, and C. Ungureanu, “Methods
and systems for data management using multiple selection
criteria,” U.S. Patent App. 11/566,122, Dec. 1, 2006.

Fig. 15. System throughputs of Destor running with the six CDC
approaches on the two CPUs.

XIA ETAL.: DESIGN OF FASTCONTENT-DEFINED CHUNKING FOR DATA DEDUPLICATION BASED STORAGE SYSTEMS 2029

https://github.com/Borelset/destor/tree/master/src/chunking
https://github.com/Borelset/destor/tree/master/src/chunking

[12] B. Aggarwal et al., “EndRE: An end-system redundancy elimina-
tion service for enterprises,” in Proc. 7th USENIX Conf. Netw. Syst.
Des. Implementation, 2010, Art. no. 28.

[13] W. Xia et al.,“Ddelta: A deduplication-inspired fast delta compres-
sion approach,” Perform. Eval., vol. 79, pp. 258–272, 2014.

[14] W. Xia et al., “P-Dedupe: Exploiting parallelism in data deduplica-
tion system,” in Proc. IEEE 7th Int. Conf. Netw. Archit. Storage, 2012,
pp. 338–347.

[15] M. D. Lillibridge, “Parallel processing of input data to locate land-
marks for chunks,” U.S. Patent 8 001 273, Aug. 16, 2011.

[16] S. Al-Kiswany et al., “StoreGPU: Exploiting graphics processing
units to accelerate distributed storage systems,” in Proc. 17th Int.
Symp. High Perform. Distrib. Comput., 2008, pp. 165–174.

[17] A. Gharaibeh et al., “AGPU accelerated storage system,” in Proc. 19th
ACM Int. Symp.High Perform. Distrib. Comput., 2010, pp. 167–178.

[18] P. Bhatotia, R. Rodrigues, andA.Verma, “Shredder: GPU-accelerated
incremental storage and computation,” in Proc. 10th USENIX Conf.
File Storage Technol., 2012, Art. no. 14.

[19] M. Fu et al., “Design tradeoffs for data deduplication performance
in backup workloads,” in Proc. 13th USENIX Conf. File Storage
Technol., 2015, pp. 331–344.

[20] Rdedup Project. [Online]. Available: https://github.com/dpc/
rdedup

[21] Content Blockchain Project. [Online]. Available: https://github.
com/coblo

[22] B. Zhu, K. Li, and R. H. Patterson, “Avoiding the disk bottleneck
in the data domain deduplication file system,” in Proc. 6th USE-
NIX Conf. File Storage Technol., 2008, Art. no. 18.

[23] W. Xia et al., “A comprehensive study of the past, present, and
future of data deduplication,”

[24] Y. Zhang et al., “AE: An asymmetric extremum content defined
chunking algorithm for fast and bandwidth-efficient data
deduplication,” in Proc. IEEE Conf. Comput. Commun., 2015,
pp. 1337–1345.

[25] Y. Cui et al., “QuickSync: Improving synchronization efficiency for
mobile cloud storage services,” in Proc. 21st Annu. Int. Conf. Mobile
Comput. Netw., 2015, pp. 592–603.

[26] C. Yu, C. Zhang, Y. Mao, and F. Li, “Leap-based content defined
chunking—Theory and implementation,” in Proc. 31st Symp. Mass
Storage Syst. Technol., 2015, pp. 1–12.

[27] F. Ni and S. Jiang, “RapidCDC: Leveraging duplicate locality to
accelerate chunking in CDC-based deduplication systems,” in
Proc. ACM Symp. Cloud Comput., 2019, pp. 220–232.

[28] F. Ni, X. Lin, and S. Jiang, “SS-CDC: A two-stage parallel content-
defined chunking for deduplicating backup storage,” in Proc. 12th
ACM Int. Conf. Syst. Storage, 2019, pp. 86–96.

[29] K. Eshghi andH. K. Tang, “A framework for analyzing and improv-
ing content-based chunking algorithms,” Hewlett Packard Labora-
tories, Palo Alto, CA,USA,Tech. Rep. HPL-2005–30(R.1), 2005.

[30] D. Teodosiu, N. Bjorner, Y. Gurevich, M. Manasse, and J. Porkka,
“Optimizing file replication over limited bandwidth networks
using remote differential compression,” Microsoft Research TR-
2006–157, 2006.

[31] A. Anand et al., “Redundancy in network traffic: Findings and
implications,” in Proc. 11th Int. Joint Conf. Meas. Model. Comput.
Syst., 2009, pp. 37–48.

[32] N. Bjørner, A. Blass, and Y. Gurevich, “Content-dependent chunk-
ing for differential compression, the local maximum approach,” J.
Comput. Syst. Sci., vol. 76, pp. 154–203, 2010.

[33] E. Kruus, C. Ungureanu, and C. Dubnicki, “Bimodal content
defined chunking for backup streams,” in Proc. 8th USENIX Conf.
File Storage Technol., 2010, Art. no. 18.

[34] B. Roma�nski et al., “Anchor-driven subchunk deduplication,” in
Proc. 4th Annu. Int. Conf. Syst. Storage, 2011, Art. no. 16.

[35] G. Lu, Y. Jin, and D. H. Du, “Frequency based chunking for data
de-duplication,” in Proc. IEEE Int. Symp. Model. Anal. Simul. Com-
put. Telecommun. Syst., 2010, pp. 287–296.

[36] W. Xia et al., “SiLo: A similarity-locality based near-exact dedupli-
cation scheme with low RAM overhead and high throughput,” in
Proc. USENIX Conf. USENIX Annu. Tech. Conf., 2011, pp. 26–28.

[37] M. Lillibridge et al., “Sparse indexing: Large scale, inline dedupli-
cation using sampling and locality,” in Proc. 7th Conf. File Storage
Technol., 2009, pp. 111–123.

[38] W. Xia et al., “Accelerating data deduplication by exploiting pipe-
lining and parallelism with multicore or manycore processors,” in
Proc. 10th USENIX Conf. File Storage Technol., 2012, pp. 1–2.

[39] F. Guo and P. Efstathopoulos, “Building a high-performance
deduplication system,” in Proc. USENIX Annu. Tech. Conf., 2011,
Art. no. 25.

[40] W. Xia et al.,“Accelerating content-defined-chunking based data
deduplication by exploiting parallelism,” Future Gener. Comput.
Syst., vol. 98, pp. 406–418, 2019.

[41] W. Xia, H. Jiang, D. Feng, and Y. Hua, “Similarity and locality
based indexing for high performance data deduplication,” IEEE
Trans. Comput., vol. 64, no. 4, pp. 1162–1176, Apr. 2015.

[42] B. Debnath, S. Sengupta, and J. Li, “ChunkStash: Speeding up
inline storage deduplication using flash memory,” in Proc. USE-
NIX Annu. Tech. Conf., 2010, Art. no. 16.

[43] M. Lillibridge, K. Eshghi, and D. Bhagwat, “Improving restore
speed for backup systems that use inline chunk-based dedup-
lication,” in Proc. 11th USENIX Conf. File Storage Technol., 2013,
pp. 183–198.

[44] D. Bhagwat, K. Pollack, D. D. Long, T. Schwarz, E. L. Miller, and
J. Paris, “Providing high reliability in a minimum redundancy
archival storage system,” in Proc. 14th IEEE Int. Symp. Model. Anal.
Simul., 2006, pp. 413–421.

[45] Y. Zhou et al., “SecDep: A user-aware efficient fine-grained secure
deduplication scheme with multi-level key management,” in Proc.
31st Symp. Mass Storage Syst. Technol., 2015, pp. 1–14.

[46] J. Min, D. Yoon, and Y. Won, “Efficient deduplication techniques
for modern backup operation,” IEEE Trans. Comput., vol. 60, no. 6,
pp. 824–840, Jun. 2011.

[47] GNU archives. [Online]. Available: http://ftp.gnu.org/gnu/
[48] Linux archives. [Online]. Available: ftp://ftp.kernel.org/
[49] VMs archives. [Online]. Available: http://www.thoughtpolice.co.uk
[50] V. Tarasov et al., “Generating realistic datasets for deduplication

analysis,” in Proc. USENIX Annu. Tech. Conf., 2012, Art. no. 24.
[51] C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The PARSEC bench-

mark suite: Characterization and architectural implications,” in
Proc. Int. Conf. Parallel Archit. Compilation Techn., 2008, pp. 72–81.

[52] Y. Zhang et al.,“A fast asymmetric extremum content defined
chunking algorithm for data deduplication in backup storage sys-
tems,” IEEE Trans. Comput., vol. 66, no. 2, pp. 199–211, Feb. 2017.

[53] Intel ISA-L: Intelligent Storage Acceleration Library. [Online].
Available: https://github.com/intel/isa-l

WenXia (Member, IEEE) received the PhDdegree
in computer science from the Huazhong University
of Science and Technology (HUST), Wuhan,
China, in 2014. He is currently an associate profes-
sor with the School of Computer Science and
Technology, Harbin Institute of Technology, Shenz-
hen. His research interests include data reduction,
storage systems, cloud storage, etc. He has pub-
lished more than 40 papers in major journals and
conferences including the IEEE Transactions on
Parallel and Distributed Systems, IEEE Transac-

tions on Computers, Proceedings of the IEEE, USENIX ATC, FAST, Hot-
Storage, MSST, DCC, IPDPS, etc.

Xiangyu Zou (Student Member, IEEE) is cur-
rently working toward the PhD degree majoring in
computer science at the Harbin Institute of Tech-
nology, Shenzhen, China. His research interests
include data deduplication, storage systems, etc.
He has published several papers in major jour-
nals and international conferences including the
Future Generation Computing Systems, MSST,
and HPCC.

2030 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 9, SEPTEMBER 2020

https://github.com/dpc/rdedup
https://github.com/dpc/rdedup
https://github.com/coblo
https://github.com/coblo
http://ftp.gnu.org/gnu/
http://www.thoughtpolice.co.uk
https://github.com/intel/isa-l

Hong Jiang (Fellow, IEEE) received the BSc
degree in computer engineering from the
Huazhong University of Science and Technology,
Wuhan, China, in 1982, the MASc degree in com-
puter engineering from the University of Toronto,
Toronto, Canada, in 1987, and the PhD degree in
computer science from the Texas A&M University,
College Station, Texas, in 1991. He is currently a
chair and Wendell H. Nedderman endowed pro-
fessor of Computer Science and Engineering
Department, University of Texas at Arlington.

Prior to joining UTA, he served as a program director with National Sci-
ence Foundation (2013.1–2015.8) and he was with the University of
Nebraska- Lincoln since 1991, where he was Willa Cather professor of
computer science and engineering. His present research interests
include computer architecture, computer storage systems and parallel I/
O, high performance computing, big data computing, cloud computing,
performance evaluation. He recently served as the associate editor of
the IEEE Transactions on Parallel and Distributed Systems and the
IEEE Transactions on Computers. He has more than 200 publications in
major journals and international Conferences in these areas, including
the IEEE Transactions on Parallel and Distributed Systems, IEEE Trans-
actions on Computers, ISCA, MICRO, USENIX ATC, FAST, EUROSYS,
SC, etc.

Yukun Zhou is currently working toward the PhD
degree majoring in computer science at the Harbin
Institute of Technology, Shenzhen, China. His
research interests include data reduction, distrib-
uted systems, etc. He has published several
papers in major journals and international con-
ferences including the Proceedings of the IEEE,
Future Generation Computing Systems, Perfor-
mance Evaluation, USENIX ATC, MSST, IPDPS,
INFOCOM, etc.

Chuanyi Liu received the PhD degrees in com-
puter science and technology from Tsinghua Uni-
versity, Beijing, China, in 2010. He is currently an
associate professor with the Harbin Institute of
Technology, Shenzhen. His research interests
include the mass storage systems, cloud comput-
ing and cloud security, and data security. He has
published more than 30 papers in major journals
and international conferences including the IEEE
Access, CCS, ICDCS, ICS, etc.

Dan Feng (Member, IEEE) received the BE, ME,
and PhD degrees in computer science and
technology from the Huazhong University of Sci-
ence and Technology (HUST), China, in 1991,
1994, and 1997, respectively. She is currently a
professor and the dean of the School of Computer
Science and Technology, HUST. Her research
interests include computer architecture, massive
storage systems, and parallel file systems. She
has more than 100 publications in major journals
and conferences, including the IEEE Transactions

on Parallel and Distributed Systems, IEEE Transactions on Computers,
ACMTransactions on Storage, FAST, USENIXATC, SC, etc.

Yu Hua (Senior Member, IEEE) received the BE
and PhD degrees in computer science from the
Wuhan University, Wuhan, China, in 2001 and
2005, respectively. He is currently a professor with
the Huazhong University of Science and Technol-
ogy, China. His research interests include file sys-
tems, cloud storage systems, non-volatile
memory, etc. He has more than 100 papers to his
credit in major journals and international confer-
ences including IEEE Transactions on Parallel
and Distributed Systems, the IEEE Transactions

on Computers, OSDI, MICRO, FAST, USENIX ATC, SC, etc. He serves
for multiple international conferences, including ASPLOS, SOSP, FAST,
USENIX ATC, ICS, RTSS, SoCC, ICDCS, INFOCOM, IPDPS, DAC,
MSST, and DATE. He is a distinguished member of CCF and a senior
member of ACM.

YuchongHu received the BE and PhD degrees in
computer science from the University of Science
and Technology of China, Hefei, China, in 2005
and 2010, respectively. He is currently an associ-
ate professor with the Huazhong University of
Science and Technology. His research interests
include network coding/erasure coding, cloud
computing, and network storage. He has more
than 30 publications in major journals and confer-
ences, including the IEEE Transactions on Paral-
lel and Distributed Systems, IEEE Transactions

on Computers, IEEE Transactions on Information Theory, ACM Transac-
tions on Storage , FAST, INFOCOM, DSN, etc.

Yucheng Zhang received the PhD degree in com-
puter science from the Huazhong University of
Science and Technology (HUST), Wuhan, China,
in 2018. He is currently an assistant professor
with the Hubei University of Technology, Wuhan,
China. His research interests include data de-
duplication, storage systems, etc. He has several
papers in refereed journals and conferences inclu-
ding IEEE Transactions on Computers, Future
Generation Computing Systems, Proceedings of
the IEEE, USENIX ATC, FAST, IPDPS, INFOCOM,
MSST, etc.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

XIA ETAL.: DESIGN OF FASTCONTENT-DEFINED CHUNKING FOR DATA DEDUPLICATION BASED STORAGE SYSTEMS 2031

An Event-Driven Approach to Serverless
Seismic Imaging in the Cloud

Philipp A. Witte , Mathias Louboutin, Henryk Modzelewski, Charles Jones,

James Selvage, and Felix J. Herrmann

Abstract—Adapting the cloud for high-performance computing (HPC) is a challenging task, as software for HPC applications hinges

on fast network connections and is sensitive to hardware failures. Using cloud infrastructure to recreate conventional HPC clusters is

therefore in many cases an infeasible solution for migrating HPC applications to the cloud. As an alternative to the generic lift and shift

approach, we consider the specific application of seismic imaging and demonstrate a serverless and event-driven approach for running

large-scale instances of this problem in the cloud. Instead of permanently running compute instances, our workflow is based on a

serverless architecture with high throughput batch computing and event-driven computations, in which computational resources are

only running as long as they are utilized. We demonstrate that this approach is very flexible and allows for resilient and nested levels of

parallelization, including domain decomposition for solving the underlying partial differential equations. While the event-driven

approach introduces some overhead as computational resources are repeatedly restarted, it inherently provides resilience to instance

shut-downs and allows a significant reduction of cost by avoiding idle instances, thus making the cloud a viable alternative to on-

premise clusters for large-scale seismic imaging.

Ç

1 INTRODUCTION

SEISMIC imaging of the earth’s subsurface is one of the
most computationally expensive applications in scientific

computing, as state-of-the-art imaging methods such as
least-squares reverse time migration (LS-RTM), require
repeatedly solving a large number of forward and adjoint
wave equations during numerical optimization (e.g., [1], [2],
[3]). Similar to training neural networks, the gradient com-
putations in seismic imaging are based on backpropagation
and require storage or re-computations of the state variables
(i.e., of the forward modeled wavefields). Due to the large
computational cost of repeatedly modeling wave propaga-
tion over many time steps using finite difference modeling,
seismic imaging requires access to high-performance com-
puting (HPC) clusters, but the high cost of acquiring and
maintaining HPC cluster makes this option only viable for a
small number of major energy companies [4]. For this reason,
cloud computing has lately emerged as a possible alternative
to on-premise HPC clusters, offering many advantages
such as no upfront costs, a pay-as-you-go pricing model
and theoretically unlimited scalability. Outside of the HPC
community, cloud computing is today widely used by

many companies for general purpose computing, data
storage and analysis or machine learning. Customers of
cloud providers include major companies such as General
Electric (GE), Comcast, Shell or Netflix, with the latter host-
ing their video streaming content on Amazon Web Services
(AWS) [5].

However, adapting the cloud for high-performance com-
puting applications such as seismic imaging, is not straight-
forward, as numerous investigations and case studies have
shown that performance, latency, bandwidth and mean
time between failures (MTBF) in the cloud can vary signifi-
cantly between platform providers, services and hardware,
and are often inferior compared to on-premise HPC resour-
ces. Especially in the early days of cloud computing, perfor-
mance and network connections were considerably slower
than on comparable on-premise HPC systems, as discussed
in a number of publications. An early performance analysis
by Jackson [6] of a range of typical NERSC HPC applica-
tions on Amazon’s Elastic Compute Cloud (EC2) found
that, at the time of the comparison in 2010, applications on
EC2 ran several orders of magnitude slower than on compa-
rable HPC systems, due to low bandwidth and high latency.
Other performance benchmarks from the late 2000s and
early 2010s, similarly conclude that poor network perfor-
mance severely limited the HPC capabilities of the cloud at
that time [7], [8], [9], [10], [11], [12]. Cloud providers have
since then responded by making significant improvements
regarding network connections, now offering technologies
such as InfiniBand, specialized network adapters such as
Amazon’s elastic fabric adapter (EFA, [13]) and improved
virtualization techniques to improve performance (e.g.,
AWS Nitro [14]). Accordingly, more recent benchmarks on
various cloud platforms, including AWS and Microsoft
Azure, find that the performance on newly introduced HPC

� P.A. Witte, M. Louboutin, and F.J. Herrmann are with the School of
Computational Science and Engineering, Georgia Institute of Technology,
Atlanta, GA 30308.
E-mail: {pwitte3, mlouboutin3, felix.herrmann}@gatech.edu.

� H. Modzelewski is with the Department of Earth, Ocean and Atmospheric
Sciences, University of British Columbia, Vancouver, BC V6T 1Z2,
Canada. E-mail: hmodzelewski@eos.ubc.ca.

� C. Jones and J. Selvage are with Osokey Ltd., RG9 1AY Henley-on-
Thames, United Kingdom. E-mail: {charles, james}@osokey.com.

Manuscript received 20 Aug. 2019; revised 9 Mar. 2020; accepted 12 Mar.
2020. Date of publication 23 Mar. 2020; date of current version 17 Apr. 2020.
(Corresponding author: Philipp A. Witte.)
Recommended for acceptance by L. Wang.
Digital Object Identifier no. 10.1109/TPDS.2020.2982626

2032 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 9, SEPTEMBER 2020

1045-9219� 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht_tps://www.ieee.org/publications/rights/index.html for more information.

https://orcid.org/0000-0001-9142-0390
https://orcid.org/0000-0001-9142-0390
https://orcid.org/0000-0001-9142-0390
https://orcid.org/0000-0001-9142-0390
https://orcid.org/0000-0001-9142-0390
mailto:pwitte3@gatech.edu
mailto:mlouboutin3@gatech.edu
mailto:felix.herrmann@gatech.edu
mailto:hmodzelewski@eos.ubc.ca
mailto:charles@osokey.com
mailto:james@osokey.com

instances is oftentimes on par with modern on-premise
HPC systems [15], [16]. Nevertheless, enhanced network
technologies are typically limited to a small subset of spe-
cialized HPC instances, which are not as widely available as
general purpose instances and which are accordingly more
expensive [17].

Aside from network communication, several investiga-
tions [16], [18], [19] point out that embarrassingly parallel
applications show very good performance that is compara-
ble to (non-virtualized) HPC environments, even in the
early days of the cloud and using standard (non-HPC opti-
mized) nodes. Similarly, performance tests on single cloud
nodes and bare-metal instances using HPCC and high-
performance LINPACK benchmarks demonstrate good per-
formance and scalability as well [20], [21]. These findings
underline that the lift and shift approach for porting HPC
applications to the cloud is unfavorable, as most HPC codes
are based on highly synchronized message passing (i.e.,
MPI [22]) and rely on stable and fast network connections,
which are only available on certain (limited) instance types
and which are thus more expensive. On the other hand,
individual compute nodes and architectures offered by
cloud computing are indeed comparable to current super-
computing systems [21] and the cloud offers a range of
novel technologies such as cloud object storage or event-
driven computations [23]. These technologies are not avail-
able on traditional HPC systems and make it possible to
address computational bottlenecks of HPC in fundamen-
tally new ways. Porting HPC applications to the cloud in a
way that is financially viable therefore requires a careful re-
architecture of the corresponding codes and software stacks
to take advantage of these technologies, while minimizing
communication and idle times. This process is heavily
application dependent and requires the identification of
how specific applications can take advantage of specialized
cloud services such as serverless compute or high through-
put batch processing to mitigate resilience issues and mini-
mize cost, while avoiding idle instances and fast network
fabrics where possible.

Based on these premises, we present a workflow for
large-scale seismic imaging on AWS, which does not rely on
a conventional cluster of virtual machines, but is instead
based on a serverless workflow that takes advantage of the
mathematical properties of the seismic imaging optimiza-
tion problem [24]. Similar to deep learning, objective func-
tions in seismic imaging consist of a sum of (convex) misfit
functions and iterations of associated optimization algo-
rithms exhibit the structure of a MapReduce program [25].
The map part corresponds to computing the gradient of
each element in the sum and is embarrassingly parallel to
compute, but individual gradient computations are expen-
sive as they involve solving partial differential equations
(PDEs). The reduce part corresponds to the summation of
the gradients and update of the model parameters and is
comparatively cheap to compute, but I/O intensive. Instead
of performing these steps on a cluster of permanently run-
ning compute instances, our workflow is based on special-
ized AWS services such as AWS Batch and Lambda, which
are responsible for automatically launching and terminating
the required computational resources [23], [26]. EC2 instan-
ces are only running as long as they are utilized and are

shut down automatically as soon as computations are fin-
ished, thus preventing instances from sitting idle. This
stands in contrast to alternative MapReduce cloud services,
such as Amazon’s Elastic Map Reduce (EMR), which is
based on Apache Hadoop and relies on a cluster of perma-
nently running EC2 instances [27]. In our approach, expen-
sive gradient computations are carried out by AWS Batch, a
service for processing embarrassingly parallel workloads,
but with the possibility of using (MPI-based) domain
decomposition for individual solutions of partial differen-
tial equations (PDEs). The cheaper gradient summations are
performed by Lambda functions, a service for serverless
computations, in which code is run in response to events,
without the need to manually provision computational
resources [23].

The following section provides an overview of the math-
ematical problem that underlies seismic imaging and we
identify possible characteristics that can be taken advantage
of to avoid the aforementioned shortcomings of the cloud.
In the subsequent section, we describe our seismic imaging
workflow, which has been developed specifically for AWS,
but the underlying services are available on other cloud
platforms (Google Compute Cloud, Azure) as well. We then
present a performance analysis of our workflow on a real-
world seismic imaging application, using a popular subsur-
face benchmark model [28]. Apart from conventional scal-
ing tests, we also consider specific cloud metrics such as
resilience and cost, which, aside from the pure performance
aspects like scaling and time-to-solution, are important
practical considerations for HPC in the cloud. An early
application of our workflow is presented in an expanded
conference abstract [29].

2 PROBLEM OVERVIEW

Seismic imaging and parameter estimation are a set of
computationally challenging inverse problems with high
practical importance, as they are today widely used for geo-
physical exploration and monitoring geohazards. Explora-
tion seismology is based on the manual excitation of seismic
sources, which trigger sound and/or elastic waves that
travel through the subsurface. At geological interfaces,
waves are scattered and reflected, causing parts of the
wavefield to travel back to the surface, where it is recorded
by an array of receivers (Fig. 1). In a seismic survey, the
source is fired repeatedly as it moves across the survey area
and the observed data that is collected for each source loca-
tion is denoted by di. The objective of seismic imaging is to
recover a physical parametrization of the subsurface from
the recorded seismic data. In the setting of inverse prob-
lems, this is achieved by minimizing the misfit between
recorded data and data that is predicted using numerical
modeling. The forward problem is defined as the computa-
tion of a predicted seismic shot record through a forward
modeling operator Fðm;qiÞ, where m denotes the discre-
tized unknown parameters, such as the seismic image or
the acoustic wave speed and the vector qi represents the
location and the time signature of the seismic source. The
evaluation of the forward modeling operator corresponds
to numerically solving a discretized version of the wave
equation for the given set of model parameters and current

WITTE ETAL.: EVENT-DRIVEN APPROACH TO SERVERLESS SEISMIC IMAGING IN THE CLOUD 2033

source location using for example finite differences (details
are given in Appendix A, which can be found on the Com-
puter Society Digital Library at http://doi.ieeecomputer
society.org/10.1109/TPDS.2020.2982626.).

In the inverse problem, we are interested in recovering the
parameters m from the observed seismic data di. Mathemati-
cally, this is achieved by formulating an unconstrained optimi-
zation problem in which we minimize the ‘2-misfit between
the observed and numericallymodeled data [30], [31]:

minimize
m

FðmÞ ¼
Xns

i¼1

1

2
jjFðm;qiÞ � dijj22: (1)

In essence, the goal of seismic inversion is to find a set of
model parameters m, such that the numerically modeled
data matches the observed data from the seismic survey.
The total number of individual source experiments ns for
realistic surveys, i.e., the number of PDEs that have to
solved for each evaluation of FðmÞ, is quite large and lies in
the range of 103 for 2D surveys and 105 for 3D surveys.

Seismic inverse problems of this form are typically
solved with gradient-based optimization algorithms such as
(stochastic) gradient descent, (Gauss-) Newton methods,
sparsity-promoting minimization or constrained optimiza-
tion (e.g., [32], [33]) and therefore involve computing the
gradient of Equation (1) for all or a subset of indices i. The
gradient of the objective function is given by:

g ¼
Xns

i¼1

J>
�
Fðm;qiÞ � di

�
; (2)

where the linear operator J ¼ @Fðm;qiÞ
@m is the partial derivative

of the forward modeling operator with respect to the model
parameters m and > denotes the matrix transpose. Both the
objective function, as well as the gradient exhibit a sum
structure over the source indices and are embarrassingly
parallel to compute. Evaluating the objective function and
computing the gradient are therefore instances of a MapRe-
duce program [25], as they involve the parallel computation
and subsequent summation of elements of the sum. How-
ever, computing the gradient for a single index i involves
solving two PDEs, namely a forward wave equation and an
adjoint (linearized) wave equation (denoted as a multiplica-
tion with J>). For realistically sized 3D problems, the

discretized model in which wave propagation is modeled
has up to 109 variables and modeling has to be performed
for several thousand time steps. The observed seismic data
di (i ¼ 1; . . . ; ns) is typically in the range of several terabytes
and a single element of the data (a seismic shot record)
ranges from several mega- to gigabytes.

The problem structure of Equation (1) is very similar to
deep learning and the parallels between convolutional neu-
ral networks and PDEs have lately attracted strong attention
[34]. As in deep learning, computing the gradient of the
objective function (Equation (2)) is based on backpropaga-
tion and in principle requires storing the state variables of
the forward problem. However, in any realistic setting the
wavefields are too big to be stored in memory and therefore
need to be written to secondary storage devices or recom-
puted from a subset of checkpoints [35]. Alternatively,
domain decomposition can be used to reduce the domain
size per compute node such that the forward wavefields fit
in memory, or time-to frequency conversion methods can
be employed to compute gradients in the frequency domain
[3], [36]. In either case, computing the gradient for a given
index i is expensive both in terms of necessary floating point
operations, memory and IO and requires highly optimized
finite-difference modeling codes for solving the underlying
wave equations. Typical computation times of a single (3D-
domain) gradient gi (i.e., one element of the sum) are in the
range of minutes to hours, depending on the domain size
and the complexity of the wave simulator, and the computa-
tions have to be carried out for a large number of source
locations and iterations.

The high computational cost of seismic modeling, in com-
bination with the complexity of implementing optimiza-
tion algorithms to solve Equation (1), leads to enormously
complex inversion codes, which have to run efficiently on
large-scale HPC clusters. A large amount of effort goes into
implementing fast and scalable wave equation solvers [37],
[38], as well as into frameworks for solving the associated
inverse problem [39], [40], [41], [42]. Codes for seismic inver-
sion are typically based on message passing and use MPI
to parallelize the loop of the source indices (Equation (1)).
Furthermore, a nested parallelization is oftentimes used to
apply domain-decomposition or multi-threading to individ-
ual PDE solves. The reliance of seismic inversion codes on
MPI to implement an embarrassingly parallel loop is disad-
vantageous in the cloud, where the mean-time-between fail-
ures (MTBF) is much shorter than on HPC systems [6] and
instances using spot pricing can be arbitrarily shut down at
any given time [43]. Another important aspect is that the
computation time of individual gradients can vary signifi-
cantly and cause load imbalances, which is problematic in
the cloud, where users are billed for running instances by the
second, regardless of whether the instances are in use or idle.
For these reasons, we present an alternative approach for
seismic imaging in the cloud based on batch processing and
event-driven computations.

3 EVENT-DRIVEN SEISMIC IMAGING ON AWS

3.1 Workflow

Optimization algorithms for minimizing Equation (1) essen-
tially consists of three steps. First, the elements of the

Fig. 1. In marine seismic data acquisition, a seismic vessel excites
acoustic waves that travel through the subsurface. Waves are reflected
and refracted at geological interfaces and travel back to the surface,
where they are recorded by an array of seismic receivers. A typical seis-
mic survey consists of several thousand of individual source experi-
ments, during which the vessel moves across the survey area.

2034 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 9, SEPTEMBER 2020

http://doi.ieeecomputersociety.org/10.1109/TPDS.2020.2982626
http://doi.ieeecomputersociety.org/10.1109/TPDS.2020.2982626

gradient gi are computed in parallel for all or a subset of
indices i 2 ns, which corresponds to the map part of a Map-
Reduce program. The number of indices for which the
objective is evaluated defines the batch size of the gradient.
The subsequent reduce part consists of summing these ele-
ments into a single array and using them to update the
unknown model/image according to the rule of the respec-
tive optimization algorithm (Algorithm 1). Optimization
algorithms that fit into this general framework include var-
iations of stochastic/full gradient descent (GD), such as
Nesterov’s accelerated GD [44] or Adam [45], as well as the
nonlinear conjugate gradient method [46], projected GD or
iterative soft thresholding [47]. Conventionally, these algo-
rithms are implemented as a single program and the gradi-
ent computations for seismic imaging are parallelized using
message passing. Running MPI-based programs of this
structure in the cloud require that users request a set of EC2
instances and establish a network connection between all
workers [48]. Tools like StarCluster [49] or AWS HPC [50]
facilitate the process of setting up a cluster and even allow
adding or removing instances to a running cluster. How-
ever, adding or dropping instances/nodes during the exe-
cution of an MPI program is not easily possible, so the
number of instances has to stay constant during the entire
length of the program execution, which, in the case of seis-
mic inversion, can range from several days to weeks. This
makes this approach not only prone to resilience issues, but
it can result in significant cost overhead, if workloads are
unevenly distributed and instances are temporarily idle.

Algorithm 1. Generic Algorithm Structure for Gradient-
Based Minimization of Equation (1), Using a Fixed Num-
ber of Iterations n.

1: Input: batch size nb, max. number of iterations n, step size a,
initial guessm1

2: for i ¼ 1 to n do
3: Compute gradients gi, i ¼ 1; :::; nb in parallel
4: Sum gradients: g ¼ Pnb

i¼1 gi
5: Update optimization variable, e.g., using SGD:

mkþ1 ¼ mk � ag
6: end for

Instead of implementing and running optimization algo-
rithms for seismic inverse problems as a single program
that runs on a cluster of EC2 instances, we express the steps
of a generic optimization algorithm through AWS Step
Functions (Fig. 2) and deploy its individual components
through a range of specialized AWS services [51]. Step func-
tions allow the description of an algorithm as a collection of
states and their relationship to each other using the Java-
Script Object Notation (JSON). From the JSON definition of
a workflow, AWS renders an interactive visual workflow in
the web browser, as shown in Fig. 2. For our purpose, we
use Step Functions to implement our iterative loop [52], dur-
ing which we compute and sum the gradients, and use them
to update the seismic image. We choose Step Functions to
express our algorithm, as they allow composing different
AWS Services such as AWS Batch and Lambda functions
into a single workflow, thus making it possible to leverage
preexisiting AWS services and to combine them into a sin-
gle application. Another important aspect of Step Functions

is that the execution of the workflow itself is managed by
AWS and does not require running any EC2 instances,
which is why we refer to this approach as serverless. During
execution time, AWS automatically progresses the work-
flow from one state to the next and users are only billed for
transitions between states, but the cost is negligible com-
pared to the cost of running EC2 instances (0.025$ per 1,000
state transitions).

States can be simple if-statements such as the IsCount

Reached state, which keeps track of the iteration number
and terminates the workflow after a specified number of
iterations, but states can also be used invoke other AWS
services. Specifically, states can be used to invoke AWS
Lambda functions to carry out serverless computations.
Lambda functions allow users to run code in response to
events, such as invocations through AWS Step Functions,
and automatically assign the required amount of computa-
tional resources to run the code. Billing is based on the exe-
cution time of the code and the amount of used memory.
Compared to EC2 instances, Lambda functions have a
much shorter startup time in the range of milliseconds
rather than minutes, but they are limited to 3 GB of memory
and an execution time of 15 minutes. As such, Lambda func-
tions themselves are not suitable for carrying out the gradi-
ent computations, but they can be used to manage other
AWS services. In our workflow, we use Lambda functions
invoked by the ComputeGradient state (Fig. 2) to launch
AWS Batch jobs for computing the gradients. During the
gradient computation, which can take up to several hours,
the Step Functions check in a user-defined interval if the full
gradient has been computed, before advancing the work-
flow to the next state. The WaitForUpdate state pauses

Fig. 2. A generic seismic imaging algorithm, expressed as a serverless
visual workflow using AWS Step Functions (1). The workflow consists of
a collection of states, which are used to implement an iterative optimiza-
tion loop. Each iteration involves computing the gradient of Equation 1
using AWS Batch (2) and the subsequent event-driven summation of all
gradient components using Lambda functions (3). The final Lambda
function uses the summed gradient to update the optimization variable
(i.e., the seismic image). Once the updated variable is detected by the
WaitForUpdate state, the workflow automatically progresses to the
next iteration.

WITTE ETAL.: EVENT-DRIVEN APPROACH TO SERVERLESS SEISMIC IMAGING IN THE CLOUD 2035

the workflow for a specified amount of time, during which
no additional computational resources are running other
than the AWS Batch job itself.

3.2 Computing the Gradient

The gradient computations (Equation (2)) are the major
workload of seismic inversion, as they involve solving for-
ward and adjoint wave equations, but the embarrassingly
parallel structure of the problem lends itself to high-
throughput batch computing. On AWS, embarrassingly par-
allel workloads can be processed with AWS Batch, a service
for scheduling and running parallel containerized work-
loads on EC2 instances [26]. Parallel workloads, such as
computing a gradient of a given batch size, are submitted to
a batch queue and AWS Batch automatically launches the
required EC2 instances to process the workload from the
queue. Each job from the queue runs on an individual
instance or set of instances, with no communication being
possible between individual jobs.

In our workflow, we use the Lambda function invoked
by the ComputeGradient state (Fig. 2) to submit the gradi-
ent computations to an AWS Batch queue. Each element of
the gradient gi corresponds to an individual job in the
queue and is run by AWS Batch as a separate Docker con-
tainer [53]. Every container computes the gradient for its
respective source index i and writes its resulting gradient to
an S3 bucket (Fig. 3), Amazon’s cloud object storage system
[54]. The gradients computed by our workflow are one-
dimensional numpy arrays of the size of the vectorized seis-
mic image and are stored in S3 as so-called objects [55].
Once an individual gradient gi has been computed, the
underlying EC2 instance is shut down automatically by
AWS Batch, thus preventing EC2 instances from idling.

Since no communication between jobs is possible, the sum-
mation of the individual gradients is implemented sepa-
rately using AWS Lambda functions. For this purpose, each
jobs also sends its S3 object identifier to a message queue
(SQS) [56], which automatically invokes the reduction stage
(Fig. 4). For the gradient computations, each worker has to
download the observed seismic data of its respective source
index from S3 and the resulting gradient has to be uploaded
to S3 as well. The bandwidth with which objects are up-
and downloaded is only limited by the network bandwidth
of the EC2 instances and ranges from 10 to 100 Gbps [17].
Notably, cloud object storage such as S3 has no limit regard-
ing the number of workers that can simultaneously read
and write objects, as data is (redundantly) distributed
among physically separated data centers, thus providing
essentially unlimited IO scalability [54].

AWS Batch runs jobs from its queue as separate con-
tainers on a set of EC2 instances, so the source code of the
application has to be prepared as a Docker container. Con-
tainerization facilitates portability and has the advantage
that users have full control over managing dependencies
and packages. Our Docker image contains the code for solv-
ing acoustic wave equations to compute gradients of a
respective seismic source location. Since this is the most
computational intensive part of our workflow, it is important
that the wave equation solver is optimized for performance,
but is also implemented in a programming language that
allows interfacing other AWS services such as S3 or SQS. In
our workflow, we use a domain-specific language compiler
called Devito for implementing and solving the underlying
wave equations using time-domain finite-difference model-
ing [38], [57]. Devito is implemented in Python and provides
an application programming interface (API) for implement-
ing forward and adjoint wave equations as high-level
symbolic expressions based on the SymPy package [58].

Fig. 3. The gradients of the LS-RTM objective function are computed as
an embarrassingly parallel workload using AWS Batch. This process is
automatically invoked by the AWS Step Functions (Fig. 2) during each
iteration of the workflow. The gradients of individual source locations are
computed as separate jobs on either a single or multiple EC2 instances.
The resulting gradients are saved in S3 and the respective object names
are sent to an SQS queue to invoke the gradient summation.

Fig. 4. Event-driven gradient summation using AWS Lambda functions.
An SQS message queue collects the object names of all gradients that
are currently stored in S3 and automatically invokes Lambda functions
that stream up to 10 files from S3. Each Lambda function sums the
respective gradients, writes the result back to S3 and sends the new
object name to the SQS queue. The process is repeated until all gra-
dients have been summed into a single S3 object. SQS has a guaran-
teed at-least-once delivery of messages to ensure that no objects are
lost in the summation.

2036 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 9, SEPTEMBER 2020

During runtime, the Devito compiler applies a series of per-
formance optimizations to the symbolic operators, such as
reductions of the operation count, loop transformations, and
introduction of parallelism [57]. Devito then generates opti-
mized finite-difference stencil code in C from the symbolic
Python expressions and dynamically compiles and runs it.
Devito supports both multi-threading using OpenMP, as
well as generating code for MPI-based domain decomposi-
tion. Its high-level API allows expressing wave equations
of arbitrary stencil orders or various physical representa-
tions without having to implement and optimize low-level
stencil codes by hand. The complexity of implementing
highly optimized and parallel wave equation solvers is
therefore abstracted and vertically integrated into the AWS
workflow.

By default, AWS Batch runs the container of each job on a
single EC2 instance, but recently AWS introduced the possi-
bility to run multi-node batch computing jobs [59]. Thus,
individual jobs from the queue can be computed on a clus-
ter of EC2 instances and the corresponding Docker contain-
ers can communicate via the AWS network. In the context
of seismic imaging and inversion, multi-node batch jobs
enable nested levels of parallelization, as we can use AWS
Batch to parallelize the sum of the source indices, while
using MPI-based domain decomposition and/or multi-
threading for solving the underlying wave equations. This
provides a large amount of flexibility in regard of the
computational strategy for performing backpropagation
and how to address the storage of the state variables. AWS
Batch allows to scale horizontally, by increasing the number
of EC2 instances of multi-node jobs, but also enables vertical
scaling by adding additional cores and/or memory to single
instances. In our performance analysis, we compare and
evaluate different strategies for computing gradients with
Devito regarding scaling, costs and turnaround time.

3.3 Gradient Reduction

Every computed gradient is written by its respective con-
tainer to an S3 bucket, as no communication between indi-
vidual jobs is possible. Even if all gradients in the job queue
are computed by AWS Batch in parallel at the same time,
we found that the computation time of individual gradients
typically varies considerably (up to 10 percent), due to vary-
ing network performance or instance capacity. Furthermore,
we found that the startup time of the underlying EC2
instances itself is highly variable as well, so jobs in the
queue are usually not all started at the same time. Gradients
therefore arrive in the bucket over a large time interval dur-
ing the batch job. For the gradient reduction step, i.e., the
summation of all gradients into a single array, we take
advantage of the varying time-to-solutions by implement-
ing an event-driven gradient summation using Lambda
functions. In this approach, the gradient summation is not
performed by as single worker or the master process who
has to wait until all gradients have been computed, but
instead summations are carried out by Lambda functions in
response to gradients being written to S3.

The event-driven gradient summation is automatically
invoked through SQS messages, which are sent by the AWS
Batch workers that have completed their computations and
have saved their respective gradient to S3. Before being

shut down, every batch worker sends a message with the
corresponding S3 object name to an AWS SQS queue, in
which all object names are collected (Fig. 4). Sending mes-
sages to SQS invokes AWS Lambda functions that read up
to 10 messages at a time from the queue. Every invoked
Lambda function that contains at least two messages, i.e.,
two object names, reads the corresponding arrays from S3,
sums them into a single array, and writes the array as a new
object back to S3. The new object name is sent to the SQS
queue, while the previous objects and objects names are
removed from the queue and S3. The process is repeated
recursively until all nb gradients have been summed into a
single array, with nb being the batch size for which the gra-
dient is computed.

Since Lambda functions are limited to 3GBofmemory, it is
not always possible to read the full gradient objects from S3.
Gradients that exceed Lambda’s available memory are there-
fore streamed from S3 using appropriate buffer sizes and are
re-uploaded to S3 using the multipart_upload functions
of the S3 Python interface [60]. As the execution time of
Lambda functions is furthermore limited to 15 minutes, the
bandwidth of S3 is not sufficient to stream and re-upload
objects that exceed a certain sizewithin a single Lambda invo-
cation. For this case, we include the possibility that the work-
ers of the AWS Batch job split the computed gradients into
smaller chunks that are saved separately in S3, with the
respective objects names being sent to multiple SQS queues.
The gradient summation is then performed in chunks by sep-
arate queues and Lambda functions. The CreateQueues

task of our Step Functions workflow (Fig. 2) automatically
creates the required number of queues before starting the
optimization loop and the CleanUp state removes them after
the final iteration.

The advantage of the event-based gradient reduction is
that that the summation is executed asynchronously, as
soon as at least two S3 objects are available, while other
batch jobs are still running. Therefore, by the time the last
batch worker finishes the computation of its respective gra-
dient, all remaining gradients have already been summed
into a single object, or at least a small number of objects.
Furthermore, summing files of a single queue happens in
parallel (if enough messages are in the queue), as multiple
Lambda functions can be invoked at the same time. Fur-
thermore, splitting the gradients itself into chunks that are
processed by separate queues leads to an additional layer
of parallelism. In comparison to a fixed cluster of EC2
instances, the event-driven gradient summation using
Lambda function also takes advantage of the fact that the
summation of arrays is computationally considerably
cheaper than solving wave equations and therefore does
not require to be carried out on the expensive EC2 instan-
ces used for the PDE solves.

3.4 Variable Update

Once the gradients have been computed and summed into
a single array that is stored as an S3 object, the gradient is
used to update the optimization variables of equation 1,
i.e., the seismic image or subsurface parameters such as
velocity. Depending on the specific objective function and
optimization algorithm, this can range from simple opera-
tions like multiplications with a scalars (gradient descent)

WITTE ETAL.: EVENT-DRIVEN APPROACH TO SERVERLESS SEISMIC IMAGING IN THE CLOUD 2037

to more computational expensive operations such as spar-
sity promotion or applying constraints [61]. Updates that
use entry-wise operations only and are cheap to compute
such as multiplications with scalars or soft-thresholding,
can be applied directly by Lambda functions in the final
step of the gradient summation. I.e., the Lambda function
that sums the final two gradients, also streams the optimi-
zation variable of the current iteration from S3, uses the
gradient to update it and directly writes the updated vari-
able back to S3.

Many algorithms require access to the full optimization
variable and gradient, such as Quasi-Newton methods and
other algorithms that need to compute gradient norms. In
this case, the variable update is too expensive and memory
intensive to be carried out by Lambda functions and has to
be submitted to AWS Batch as a single job, which is then
executed on a larger EC2 instance. This can be accomplished
by adding an extra state such as UpdateVariable to our
Step Functions workflow. However, to keep matters simple,
we only consider a simple stochastic gradient descent exam-
ple with a fixed step size in our performance analysis, which
is computed by the Lambda functions after summing the
final two gradients [62]. The CheckUpdateStatus state of
our AWS Step Functions advances the workflow to the next
iteration, once the updated image (or summed gradient) has
been written to S3. The workflow shown in Fig. 2 terminates
the optimization loop after a predefined number of itera-
tions (i.e., epochs), but other termination criteria based on
gradient norms or function values are possible too. The
update of the optimization variable concludes a single itera-
tion of our workflow, whose performance we will now ana-
lyze in the subsequent sections.

4 PERFORMANCE ANALYSIS

In our performance analysis, we are interested in the perfor-
mance of our workflow on a real-world seismic imaging
application regarding scalability, cost and turn-around
time, as well as the computational benefits and overhead
introduced by our event-driven approach. We conduct our
analysis on a popular 2D subsurface velocity model
(Fig. 5a), called the 2004 BP velocity estimation benchmark
model [28]. The seismic data set of this model contains 1,348
seismic source locations and corresponding observations di

(i ¼ 1; . . . ; 1; 348). The (unknown) seismic image (Fig. 5b)
has dimensions of 1; 911� 10; 789 grid points, i.e., a total of
almost 21 million parameters.

4.1 Weak Scaling

In our first performance test, we analyze the weak scaling
behavior of our workflow by varying the batch size (i.e., the
number of source locations) for which the gradient of the
LS-RTM objective function (Equation (1)) is computed. For
this test, we perform a single iteration of stochastic gradient
descent (SGD) using our workflow and measure the time-
to-solution as a function of the batch size. The workload per
instance, i.e., per parallel worker, is fixed to one gradient.
The total workload for a specified batch size is submitted to
AWS Batch as a so-called array job, where each array entry
corresponds to a single gradient gi. AWS Batch launches
one EC2 instance per array entry (i.e., per gradient), runs

the respective container on the instance and then terminates
the instance.

In the experiment, we measure the time-to-solution for
performing a single iteration of our workflow, i.e., one sto-
chastic gradient descent update. Therefore, each run
involves the following steps:

1) A Lambda function submits the AWS Batch job for
specified batch size nb (Fig. 3)

2) Compute gradients gi (i ¼ 1; . . . ; nb) in parallel
(Fig. 3)

3) Lambda functions sum the gradients (Fig. 4):
g ¼ Pnb

i¼1 gi
4) A Lambda function performs the SGD update of the

image: x ¼ x� ag
We define the time-to-solution as the the time interval

between the submission of the AWS Batch job by a Lambda
function (step 1) and the time stamp of the S3 object contain-
ing the updated image (step 4). This time interval represents
a complete iteration of our workflow.

The computations of the gradients are performed on
m4.4xlarge instances (Appendix B, available in the online
supplemental material) and the number of threads per
instance is fixed to 8, which is the number of physical cores
that is available on the instance. The m4 instance is a general
purpose EC2 instance and we chose the instance size
(4xlarge) such that we are able to store the wavefields for
backpropagation in memory. The workload for each batch
worker consists of solving a forward wave equation to
model the predicted seismic data and an adjoint wave equa-
tion to backpropagate the data residual and to compute the
gradient. For this and all remaining experiments, we use
the acoustic isotropic wave equation with a second order
finite difference (FD) discretization in time and 8th order in
space. We model wave propagation for 12 seconds, which is
the recording length of the seismic data. The time stepping
interval is given by the Courant-Friedrichs-Lewy condition
with 0.55 ms, resulting in 21,889 time steps. Since it is not
possible for the waves to propagate through the whole

Fig. 5. The BP 2004 benchmark model, a 2D subsurface velocity model
for development and testing of algorithms for seismic imaging and
parameter estimation [28]. The velocity model and the unknown image
have dimensions of 1; 911� 10; 789 grid points, a total of 20.1 million
unknown parameters (a). The inverted seismic image after 30 iterations
of stochastic gradient descent and a batchsize of 80 sources per itera-
tion, using our serverless workflow.

2038 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 9, SEPTEMBER 2020

domain within this time interval, we restrict the modeling
grid to a size of 1; 911� 4; 001 grid points around the cur-
rent source location. After modeling, each gradient is
extended back to the full model size (1; 911� 10; 789 grid
points). The dimensions of this example represent a large-
scale 2D example, but all components of our workflow are
agnostic to the number of physical dimensions and are
implemented for three-dimensional domains as well. The
decision to limit the examples to a 2D model was purely
made from a financial viewpoint and to make the results
reproducible in a reasonable amount of time.

The timings ranging from a batch size of 1 to 128 are dis-
played in Fig. 6a. The batch size corresponds to the number
of parallel EC2 instances on which the jobs are executed.
The time-to-solution consists of three components that
make up the full runtime of each job:

1) The average time for AWS Batch to request and
launch the EC2 instances and to start the Docker con-
tainers on those instances.

2) The runtime of the containers
3) The additional gradient reduction and image update

time, given by the time interval between the termina-
tion of the AWS Batch job and the time stamp of the
updated image.

The sum of these components makes up the time-to-solu-
tion as shown in Fig. 6a and each component is furthermore
plotted separately in Figs. 6b, 6c, and 6d. All timings are the
arithmetic mean over 10 individual runs and error bars

represent the 90 percent confidence interval. The container
runtimes of Fig. 6c are the arithmetic mean of the individual
container runtimes on each instance (varying from 1 to 128).
The average container runtime is proportional to the cost of
computing one individual gradient and is given by the con-
tainer runtime times the price of the m4.4xlarge instance,
which was $0.2748 per hour at the time of testing. No extra
charges occurs for AWS Batch itself, i.e., for scheduling and
launching the batch job.

The timings indicate that the time-to-solution generally
grows as the batch size, and therefore the number of con-
tainers per job, increases (Fig. 6a). A close up inspection of
the individual components that make up the total time-to-
solution shows that this is mostly due to the increase of the
startup time, i.e., the average time it takes AWS Batch to
schedule and launch the EC2 instances for each job (Fig. 6b).
We found that AWS Batch does generally not start all
instances of the array job at the same time, but instead in
several stages, over the course of 1 to 3 minutes. The exact
startup time depends on the batch size and therefore on the
number of instances that need to be launched, but also on
the availability of the instance within the AWS region. The
combination of these factors leads to an increase of the aver-
age startup time for an increasing batch size, but also to a
large variance of the startup time between individual runs.
Users have no control over the startup time, but it is impor-
tant to consider that no cost is incurred during this time
period, as no EC2 instances are running while the individ-
ual containers remain in the queue.

The average container runtime, i.e., the average compu-
tation time of a single gradient, is fairly stable as the batch
size increases (Fig. 6c). This observation is consistent with
the fact that each container of an AWS Batch array job runs
as an individual Docker container and is therefore indepen-
dent of the batch size. The container runtime increases only
slightly for larger batch sizes and we observe a larger vari-
ance in some of the container runtimes. This variance stems
from the fact that users do not have exclusive access to the
EC2 instances on which the containers are deployed. Specif-
ically, our containers run on m4.4xlarge instances, which
have 8 cores (16 virtual CPUs) and 64 GB of memory. In
practice, AWS deploys these instances on larger physical
nodes and multiple EC2 instances (of various users) can run
on the same node. We hypothesize that a larger batch size
increases the chance of containers being deployed to a com-
pute node that runs at full capacity, thus slightly increasing
the average container runtime, as user do not have exclusive
access to the full network capacity or memory bandwidth.
The average container runtime also represents a lower
bound on the time-to-solution (per iteration) that can be
achieved by running the example as a classic (non-event
driven) program on a fixed cluster. In this case there is no
overhead from requesting EC2 instances, but other over-
head may still occur, depending on how the source paralle-
lization and gradient summation are implemented.

Finally, we also observe an increase in the additional gra-
dient reduction time, i.e., the interval between the S3 time-
stamps of the final computed gradient gi and the updated
image x. The batch size corresponds to the number of gra-
dients that have to be summed before the gradient can be
used to update the image. The event-driven gradient

Fig. 6. Weak scaling results for performing a single iteration of stochastic
gradient as a function of the batch size for which the gradient is com-
puted (a). The gradient is computed as an AWS Batch job with an
increasing number of parallel EC2 instances, while the gradient summa-
tion and the variable update are performed by Lambda functions. The
total time-to-solution (a) consists of the average time it takes AWS Batch
to request and start the EC2 instances (b), the average runtime of the
containers (c) and the additional reduction time (d), i.e., the time differ-
ence between the final gradient of the respective batch and the updated
image. All timings are the arithmetic mean over ten runs, with error bars
representing the 90 percent confidence interval.

WITTE ETAL.: EVENT-DRIVEN APPROACH TO SERVERLESS SEISMIC IMAGING IN THE CLOUD 2039

reduction invokes the summation process as soon as the
first gradients are written to S3, so most gradients are
already summed by the time the final worker finishes its
gradient computation. For the event-driven gradient sum-
mation, the variance of the startup and container runtime is
therefore advantageous, as it allows the summation to hap-
pen asynchronously. However, in our example, the time
interval between the first two gradients being written to S3
(thus invoking the gradient reduction) and the final gradi-
ent being computed does not appear to be large enough to
complete the summation of all gradients. Specifically, we
see a general increase in the reduction time, as well as wid-
ening of the confidence interval. This variance is due to a
non-deterministic component of our event-based gradient
summation, resulting from a limitation of AWS Lambda.
While users can specify a maximum number of messages
that Lambda functions read from an SQS queue, it is not
possible to force Lambda to read a minimum amount of two
messages, resulting in most Lambda functions reading only
a single message (i.e., one object name) from the queue.
Since we need at least two messages to sum the correspond-
ing gradients, we return the message to the queue and wait
for a Lambda invocation with more than one message. The
user has no control over this process and sometimes it takes
several attempts until a Lambda function with multiple
messages is invoked. The likelihood of this happening
increases with a growing batch size, since a larger number
of gradients need to be summed, which explains the
increase of the reduction time and variance in Fig. 6d.

Overall, the gradient summation and variable update fin-
ish within a few seconds after the last gradient is computed
and the additional reduction time is small compared to the
full time-to-solution. In our example, the startup time
(Fig. 6b) takes up the majority of the time-to-solution
(Fig. 6a), as it lies in the range of a few minutes and is in fact
longer than the average container runtime of each worker
(Fig. 6c). However, the startup time is independent of the
runtime of the containers, so the ratio of the startup time to
the container runtime improves as the workload per con-
tainer increases. For 3D imaging workloads, whose solution
times for 3D wave equations are orders of magnitude higher
than for two dimensions, it is therefore to be expected that
the ratio between startup and computation time will shift
considerably towards the latter. Indeed, in a follow-up
application of our workflow to a 3D seismic data set on
Microsoft Azure, the average container runtime to compute
a gradient was 120 minutes, thus shifting the startup to
computation time ratio to 1 : 25 [63].

The cost of the batch job only depends on the container
runtime and the batch size, but not on the startup time or
reduction time. The cost for summing the gradients is given
by the cumulative runtime of the Lambda functions, but is
negligible compared to the EC2 cost for computing the gra-
dients. This is illustrated in Fig. 7a, which shows a cost
breakdown of running our workflow for 30 iterations of sto-
chastic gradient descent with a batch size of of 80, which
corresponds to 1.8 epochs. The corresponding data misfit as
a function of the iteration number is shown in Fig. 7b. Simi-
larly, SQS, Step Functions and S3 (i.e., the cost for storage
and I/O) only contribute marginally to the full cost of run-
ning the imaging example, while the EC2 instances used by

AWS Batch contribute by far the largest share. Using spot
instances as opposed to on-demand instances for AWS
Batch reduces the cost of our example by a factor of 2.5, but
the prices of the remaining services are fixed. The seismic
image after the final iteration number is shown in Fig. 5b. In
this example, every gradient was computed by AWS Batch
on a single instance and a fixed number of threads, but in
the subsequent section we analyze the scaling of runtime
and cost as a function of the number of cores and EC2
instances. Furthermore, we will analyze in a subsequent
example how the cost of running the gradient computations
with AWS Batch compares to performing those computa-
tions on a fixed cluster of EC2 instances.

4.2 Strong Scaling

In the following set of experiments, we analyze the strong
scaling behavior of our workflow for an individual gradient
calculation, i.e., a gradient for a batch size of 1. For this, we
consider a single gradient computation using AWS Batch
and measure the runtime as a function of either the number
of threads or the number of instances in the context of MPI-
based domain decomposition. In the first experiment, we
evaluate the vertical scaling behavior, i.e., we run the gradi-
ent computation on a single instance and vary the number
of OpenMP threads. In contrast to the weak scaling experi-
ment, we model wave propagation in the full domain
(1; 911� 10; 789 grid points), to ensure that the sub-domain
of each worker is not too small when we use maximum
number of threads.

Since AWS Batch runs all jobs as Docker containers, we
compare the runtimes with AWS Batch to running our
application on a bare metal instance, in which case we have
direct access to the compute node and run our code without
any virtualization. All timings on AWS are performed on a
r5.24xlarge EC2 instance, which is a memory optimized
instance type that uses the Intel Xeon Platinum 8175M archi-
tecture (Appendix B, available in the online supplemental
material). The 24xlarge instance has 96 virtual CPU cores
(48 physical cores on 2 sockets) and 768 GB of memory.
Using the largest possible instance of the r5 class, ensures
that our AWS Batch job has exclusive access to the physical
compute node, wile bare metal instances automatically give
users exclusive access. We also include the Optimum HPC

Fig. 7. Cost breakdown of running the imaging example for 30 iterations
of stochastic gradient descent and a batch size of 80, which corresponds
to approximately two passes through the data set (a). The data misfit as
a function of the iteration number. Due to the fact that the underlying lin-
ear system is inconsistent and we stop iterating after two epochs only,
the misfit only decays by about 50 percent.

2040 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 9, SEPTEMBER 2020

cluster in our comparison, a small research cluster at the
University of British Columbia based on the Intel’s Ivy
Bridge 2.8 GHz E5-2680v2 processor. Optimum has 2 CPUs
per node and 10 cores per CPU. However, all OpenMP tim-
ings were conducted on single CPUs only, i.e., the maxi-
mum number of threads on each architecture corresponds
to the maximum number of available cores per CPU (10 on
Optimum and 24 on the r5.24xlarge instances).

Fig. 8a shows the comparison of the kernel runtimes on
AWS and Optimum and Fig. 8b displays the corresponding
parallel efficiency. As expected, the r5 bare metal instance
shows the best scaling, as it uses a newer architecture than
Optimum and does not suffer from the virtualization over-
head of Docker. We noticed that AWS Batch in its default
mode uses hyperthreading (HT), even if we perform thread
pinning and instruct AWS Batch to use separate physical
cores. As of now, the only way to prevent AWS Batch from
performing HT, is to modify the Amazon Machine Image
(AMI) of the corresponding AWS compute environment.
With HT disabled, the runtimes and speedups of AWS
Batch are very close to the timings on the bare-metal instan-
ces, indicating that the overhead of Docker affects the run-
times and scaling of our memory-intensive application only
marginally, which matches the findings of [64].

Next, we analyze the horizontal strong scaling behavior
of running our application with AWS Batch. Once again, we
consider the computation of one single gradient, but this
time we vary the number of EC2 instances. We would like
to emphasize that AWS Batch is used differently than in the
weak scaling experiment, where AWS Batch was used to
parallelize the sum over source locations and communica-
tion between workers of a separate jobs was not possible.
Here, we submit a single workload (i.e., one gradient) as a
multi-node AWS Batch job, in which case IP-based commu-
nication between instances is enabled. Since this involves
distributed memory parallelism, we use domain decompo-
sition based on message passing (MPI) to solve the wave
equations on multiple EC2 instances [65], [66]. The code
with the corresponding MPI communication statements is
automatically generated by the Devito compiler. Further-
more, we use multi-threading on each individual instance
and utilize the maximum number of available cores per
socket, which is 24 for the r5 instance and 18 for the c5n

instance. To investigate the possible virtualization overhead

of AWS Batch and Docker, we also conduct the same scaling
experiments on clusters of EC2 bare metal instances, in
which case our applications runs directly on the compute
nodes without any form of virtualization.

We compare the r5.24xlarge (and r5.metal) instan-
ces from the last section with Amazon’s recently introduced
c5nHPC instance. Communication between AWS instances
is generally based on ethernet and the r5 instances have up
to 25 GBps networking performance. The c5n instance type
uses Intel Xeon Platinum 8142M processors with up to
3.4 GHz architecture and according to AWS provides up to
100 GBps of network bandwidth. The network is based on a
proprietary AWS technology called elastic fabric adapter
(EFA), but AWS has not disclosed whether this technology
is based on InfiniBand or Ethernet [13]. Figs. 9a and 9b
show the kernel runtimes and the corresponding parallel
efficiency ranging from 1 to 16 instances for AWS Batch and
on bare metal instances. The r5 instance has overall shorter
runtimes than the c5n instance, since the former has 24
physical cores per CPU socket, while the c5n instance has
18. However, as expected, the c5n instance exhibits a better
parallel efficiency than the r5 instance (in both batch mode
and on bare metal), due to the better network performance.
Interestingly, speedups and parallel efficiency of multi-node
AWS Batch jobs are better than of the corresponding bare
metal jobs, which is counter intuitive. To investigate this
further, we measured the latency between two manually
requested bare metal instances and two compute nodes
assigned byAWSBatch and found that the latter set of instan-
ces have less than half the amount of latency (Appendix C,
available in the online supplemental material). All nodes

Fig. 8. Strong scaling results as a function of the number of cores on a
single socket. Figure (a) shows the runtimes for AWS Batch with and
without hyperthreading, as well as the runtimes on the r5 bare metal
instance, in which case no containerization or virtualization is used. For
reference, we also provide the runtime on a compute node of an on-
premise cluster. Figure (b) shows the corresponding parallel efficieny.

Fig. 9. Strong scaling results for computing a single gradient as an AWS
Batch multi-node job for an increasing number of instances and in com-
parison to running on non-virtualized bare metal instances. Figures (a)
and (b) show the Devito kernel times and parallel efficiency on two differ-
ent instance types. Figure (c) shows a breakdown of the time-to-solution
of each batch job into its individual components. Figure (d) shows the
EC2 cost for computing the gradients.

WITTE ETAL.: EVENT-DRIVEN APPROACH TO SERVERLESS SEISMIC IMAGING IN THE CLOUD 2041

were requested in the same availability zone and EC2 place-
ment group. This indicates that AWS possibly places instan-
ces for AWS Batch jobs closer to each other than manually
requested EC2 instances, or that AWS Batch instances use a
more efficient network gateway, but both of these explana-
tions are purely speculative. Overall, the observed scaling
and parallel efficiency of the AWS Batch jobs on both instan-
ces types are in the expected range of performance, as our
application represents a strongly memory bound workload
with an operational intensity of three FLOPs/Byte only, as
shown in a roofline analysis of Devito’s generated code for
acousticmodeling [38].

The timings given in Fig. 9a are once again the pure ker-
nel times for solving the PDEs, but a breakdown of the com-
ponents that make up the total time-to-solution on the c5n

instance is provided in Fig. 9c. The job runtime is defined as
the interval between the job creation time and the S3 time
stamp of the computed gradient. As in our weak scaling
test, this includes the time for AWS Batch to request and
launch the EC2 instances, but excludes the gradient summa-
tion time, since we are only considering the computation of
a single gradient. The container runtime is the runtime of
the Docker container on the master node and includes the
time it takes AWS Batch to launch the remaining workers
and to establish an ssh connection between all instances/
containers, which was the only supported communication
protocol for AWS Batch at the time [66]. Currently, AWS
Batch requires this process to be managed by the user using
a shell script that is run inside each container. The Python
runtime in Fig. 9c is defined as the runtime of our applica-
tion on the main node and includes IO, memory allocation
and code generation time. Our timings in Fig. 9c show that
the overhead from requesting instances and establishing a
cluster, i.e., the difference between the Python and container
runtime, is reasonable for a small number of instances, but
grows significantly as the number instances is increased.
Depending on the runtime of the application, the overhead
thus takes up a significant amount of the time-to-solution,
but for compute-heavy applications which run for one or
multiple hours, this amount of overhead may still be accept-
able. For 3D imaging applications that run for multiple
hours, it is therefore to be expected that the ratio of applica-
tion runtime to overhead will improve significantly.

Fig. 9d shows the cost for running our scaling test as a
function of the cluster size. The cost is calculated as the
instance price (per second) times the runtime of the con-
tainer on the main node times the number of instances. The
cost per gradient grows significantly with the number of
instances, as the overhead from establishing an ssh connec-
tion to all workers increases with the cluster size. The com-
munication overhead during domain decomposition adds
an additional layer of overhead that further increases the
cost for an increasing number of instances. This is an impor-
tant consideration for HPC in the cloud, as the shortest
time-to-solution does not necessarily correspond to the
cheapest approach. Another important aspect is that AWS
Batch multi-node jobs do not support spot instances [66].
Spot instances allow users to access unused EC2 capacities
at significantly lower price than at the on-demand price, but
AWS Batch multi-node jobs are, for the time being, only
supported with on-demand instances.

The scaling and cost analysis in Figs. 9a, 9b, 9c and 9d
was carried out on the largest instances of the respective
instance types (r5.24xlarge and c5n.18xlarge) to
guarantee exclusive access to the compute nodes and net-
work bandwidth. Increasing the number of instances per
run therefore not only increases the total number of avail-
able cores, but also the amount of memory. However, for
computing a single gradient, the required amount of mem-
ory is fixed, so increasing the number of instances reduces
the required amount of memory per instance, as wavefields
are distributed among more workers. In practice, it there-
fore makes sense to chose the instance type based on the
required amount of memory per worker, as memory is gen-
erally more expensive than compute. In our specific case,
computing the gradient requires 170 GB of memory, which
requires either a single r5.12xlarge instance or multiple
smaller instances, which not only differ in the amount of
memory, but also in the number of available CPU cores. We
repeat our previous scaling test, but rather than using the
same instance type in all runs, we choose the instance type
based on the required amount of memory. Furthermore, for
every instance type, we utilize the maximum amount of
available cores using multi-threading with OpenMP. The
kernel runtimes for an increasing number of instances is
shown in Fig. 10a. In each bar, we indicate which instance
type was used, as well as the total number of cores across
all instances. The corresponding costs for computing each
gradient is shown in Fig. 10a. Compared to the previous
example, we observe that using 16 small on-demand instan-
ces leads to a lower cost than using a single more expensive
large instance, but that using a single instance ultimately
remains the most cost-effective way of computing a gradi-
ent, due to the possibility to utilize spot instances. An addi-
tional pricing model offered by AWS are reserved instances,
which are EC2 instances that can be purchased at rates simi-
lar to spot prices if reserved for a minimum period of one
year [67]. However, this pricing model is unsuitable for our
event-driven approach, as users cannot save costs by mini-
mizing idle time, since instances are paid for in advance.

In terms of cost, our scaling examples underline the
importance of choosing the EC2 instances for the AWS
Batch jobs based on the total amount of required memory,
rather than based on the amount of CPU cores. Scaling hori-
zontally by using an increasingly large number of instances

Fig. 10. Devito kernel runtimes for computing a single gradient as an
AWS Batch job for an increasing number of instances. In comparison to
the previous example in which both the instance type and number of
threads were fixed (Fig. 10a), we use the smallest possible instance
type for each job with as specified in each bar. Figure (b) shows the cor-
responding cost for computing the gradients.

2042 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 9, SEPTEMBER 2020

expectedly leads to a faster time-to-solution, but results in a
significant increase of cost as well (Fig. 9d). As shown in
Fig. 10b, this increase in cost can be avoided to some extent
by choosing the instance size such that the total amount of
memory stays approximately constant, but ultimately the
restriction of not supporting spot instances makes multi-
node batch jobs not attractive in scenarios where single
instances provide sufficient memory to run a given applica-
tion. In practice, it makes therefore sense to use single
node/instance batch jobs and to utilize the full number of
available cores on each instance. The largest EC2 instances
of each type (e.g., r5.24xlarge, c5n.18xlarge) have
two CPU sockets with shared memory, making it possible
to run parallel programs using either pure multi-threading
or a hybrid MPI-OpenMP approach. In the latter case, pro-
grams still run as a single Docker container, but within each
container use MPI for communication between CPU sock-
ets, while OpenMP is used for multithreading on each CPU.
For our example, we found that computing a single gradient
of the BP model with the hybrid MPI-OpenMP approach
leads to a 20 percent speedup over the pure OpenMP pro-
gram (Table 1), which correspondingly leads to 20 percent
cost savings as well.

4.3 Cost Comparison

One of the most important considerations of high perfor-
mance computing in the cloud is the aspect of cost. As
users are billed for running EC2 instances by the second, it
is important to use instances efficiently and to avoid idle
resources. In our specific application, gradients for differ-
ent seismic source locations are computed by a pool of par-
allel workers, but as discussed earlier, computations do not
necessarily complete at the same time. On a conventional
cluster, programs with a MapReduce structure, are imple-
mented based on a client-server model, in which the work-
ers compute the gradients in parallel, while the master (the
server) collects and sums the results. This means that the
process has to wait until all gradients gi have been com-
puted, before the gradient can be summed and used to
update the image. This inevitably causes workers that fin-
ish their computations earlier than others to the sit idle.
This is problematic when using a cluster of EC2 instances,
where the number of instances are fixed, as users have to
pay for idle resources. In contrast, the event-driven
approach based on Lambda functions and AWS Batch
automatically terminates EC2 instances of workers that

have completed their gradient calculation, thus preventing
resources from sitting idle.

We illustrate the difference between the event-driven
approach and using a fixed cluster of EC2 instances by
means of a specific example. We consider our previous
example of the BP synthetic model and compute the gradi-
ent gi for 100 random source locations and record the run-
times (Fig. 11a). We note that most gradients take around
250 seconds to compute, but that the runtimes vary due to
different domain sizes and varying EC2 capacity. We now
model the idle time for computing these gradients on a clus-
ter of EC2 instances as a function of the the number of paral-
lel instances, ranging from 1 instance (fully serial) to 100
instances (fully parallel). For a cluster consisting of a single
instance, the cumulative idle time is naturally zero, as the
full workload is executed in serial. For more than one
instance, we model the amount of time that each instance is
utilized, assuming that the workloads are assigned on a
first-come-first-served basis. The cumulative idle time tidle
is then given as the sum of the differences between the run-
time of each individual instance ti and the instance with the
longest runtime:

tidle ¼
XnEC2

i¼1

ðmaxftig � tiÞ; (3)

The cumulative idle time as a function of the cluster size
nEC2 is plotted in Fig. 11b. We note that the cumulative
idle time generally increases with the cluster size, as a
larger number of instances sit idle while waiting for the final
gradient to be computed. On a cluster with 100 instances
each gradient is computed by a separate instance, but all
workers have to wait until the last worker finishes its com-
putation (after approximately 387 seconds). In this case,
the varying time-to-solutions of the individual gradients
leads to a cumulative idle time of 248 minutes. Compared
to the cumulative computation time of all gradients, which
is 397 minutes, this introduces an overhead of more than
60 percent, if the gradients are computed on a cluster with

TABLE 1
Comparison of Parallelization Strategies on a Single EC2

Instance in the Context of AWS Batch

Grid CPU (cores) Parallelization Runtime [s]

1; 911� 5; 394 1 (24) OMP 190:17� 7:12
1; 911� 10; 789 1 (24) OMP 378:94� 13:57
1; 911� 10; 789 2 (48) OMP 315:92� 16:50
1; 911� 10; 789 2 (48) OMP + MPI 249:13� 5:22

The Timings are the Devito Kernel Times for Computing a Single Gradient of
the BP Model Using AWS Batch. The Program Runs as a Single Docker Con-
tainer on an Individual EC2 Instance, Using Either Multi-Threading
(OpenMP) or a Hybrid Approach of Multithreading and Domain-Decomposi-
tion (OpenMP +MPI).

Fig. 11. (a) Sorted container runtimes of an AWS Batch job in which we
compute the gradient of the BP model for a batch size of 100. Figure (b)
shows the cumulative idle time for computing this workload as a function
of the number of parallel workers on either a fixed cluster of EC2 instan-
ces or using AWS Batch. The right-hand y-axis shows the corresponding
cost, which is proportional to the idle time. In the optimal case, i.e., no
instances every sit idle, the cost for computing a gradient of batch size
100 is 1.8$. Figure (c) shows the time-to-solution as a function of the
number of parallel instances, which is the same on an EC2 cluster and
for AWS Batch, if we ignore the startup time of the AWS Batch workers
or of the corresponding EC2 cluster.

WITTE ETAL.: EVENT-DRIVEN APPROACH TO SERVERLESS SEISMIC IMAGING IN THE CLOUD 2043

100 instances. The cumulative idle time is directly propor-
tional to the cost for computing the 100 gradients, which is
plotted on the right axis of Fig. 11b. With AWS Batch, the
cumulative idle time for computing the 100 gradients is
zero, regardless of the number of parallel instances that
AWS Batch has access to. Any EC2 instance that is not uti-
lized anymore is automatically shut down by AWS Batch,
so no additional cost other than the pure computation time
of the gradients is invoked [68]. A follow up case study of
this work, found that the ratio of cumulative idle time to
cumulative compute time (about 60 percent) also held true
for a 3D seismic imaging example, in which the average
container runtime was substanially longer than in the 2D
example (namely 120 minutes) [63].

While computing the 100 gradients on an EC2 cluster
with a small number of instances results in little cumulative
idle time, it increases the overall time-to-solution, as a larger
number of gradients have to be sequentially computed on
each instance (Fig. 11c). With AWS Batch this trade-off does
not exist, as the cumulative idle time, and therefore the cost
for computing a fixed workload, does not depend on the
number of instances. However, it is to be expected that in
practice the time-to-solution is somewhat larger for AWS
Batch than for a fixed cluster of EC2 instances, as AWS
Batch needs to request and launch EC2 instances for every
new gradient computation.

4.4 Resilience

In the final experiment of our performance analysis, we ana-
lyze the resilience of our workflow and draw a comparison
to running an MPI program on a conventional cluster of
EC2 instances. Resilience is an important factor in high per-
formance computing, especially for applications like seismic
imaging, whose runtime can range from several hours to
multiple days. In the cloud, the mean-time-between failures
is typically much shorter than on comparable HPC systems
[6], making resilience potentially a prohibiting factor. Fur-
thermore, using spot instances further increases the expo-
sure to instance shut downs, as spot instances can be
terminated at any point in time with a two minute warning.

Seismic imaging codes that run on conventional HPC
clusters typically use MPI to parallelize the sum of the
source indices and thus often leverage the User Level Fault
Mitigation (ULFM) Standard [69] or the MVAPICH2 imple-
mentation of MPI, which includes built-in resilience [70].
Both MVAPICH2 and ULFM enable the continued execu-
tion of an MPI program after node/instance failures. In our
event-driven approach, resilience in the cloud is naturally
provided by using AWS Batch for the gradient computa-
tions, as each gradient is computed by a separate container.
In case of exceptions, AWS Batch provides the possibility to
automatically restart EC2 instances that have crashed,
which allows the completion of programs with the initial
number of nodes or EC2 instances.

We illustrate the effect of instance restarts by means of
our previous example with the BP model (Fig. 5). Once
again, we compute the gradient of the LS-RTM objective
function for a batch size of 100 and record the runtimes
without any instance/node failures. In addition to the
default strategy for backpropagation, we compute the

gradients using optimal checkpointing, in which case the
average runtime per gradient increases from 5 minutes to
45 minutes, as a smaller memory footprint is traded for
additional computations.

We then model the time that it takes to compute the 100
gradients for an increasing number of instance failures with
and without restarts. We assume that the gradients are com-
puted fully in parallel, i.e., on 100 parallel instances and
invoke an increasing number of instance failures at ran-
domly chosen times during the execution of program. With-
out instance restarts, we assign the workload of the failed
instances to the workers of the remaining instances and
model how long it takes complete the computations. With
restarts, we add a two minute penalty to the failed worker
and then restart the computation on the same instance. The
two minute penalty represents the average amount of time
it takes AWS Batch to restart a terminated EC2 instance and
was determined experimentally.

Fig. 12 shows the ratio of the time-to-solution for comput-
ing the 100 gradients without events (i.e., without failures) to
the modeled time-to-solutionwith events. This ratio is known
as the resilience factor [71] and provides a metric of how
instance failures affect the time-to-solution and therefore the
cost of running a given application in the cloud:

r ¼ time-to-solution event�free

time-to-solution event
: (4)

Ideally, we aim for this factor being as close to 1 as possible,
meaning that instance failures do not significantly increase
the time-to-solution. Figs. 12a and 12b compare the resil-
ience factors with and without restarts for the two different
backpropagation strategies, which represent programs of
different runtimes. The resilience factor is plotted as a func-
tion of the percentage of instance failures and is the average
of 10 realizations, with the standard deviation being
depicted by the shaded colors. The plots show that the larg-
est benefit from being able to restart instances with AWS
Batch is achieved for long running applications (Fig. 12b).
The resilience factor with instance restarts approaches a
value of 0.5, since in the worst case, the time-to-solution is
doubled if an instance fails shortly before completing its
gradient computation. Without being able to restart instan-
ces, the gradient computations need to be completed by the
remaining workers, so the resilience factor continuously

Fig. 12. Comparison of the resilience factor (RF) for an increasing per-
centage of instance failures with and without instance restarts. Figure
(a) is the RF for an application that runs for 5 minutes without failures,
while figure (b) is based on an example whose original time-to-solution
is 45 minutes.

2044 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 9, SEPTEMBER 2020

decreases as the failure percentage increases. For short run-
ning applications (Fig. 12a), the overhead of restarting
instances diminishes the advantage of instance restarts,
unless a significant percentage of instances fail, which, how-
ever, is unlikely for programs that run in a matter of
minutes. In fact, during our numerical experiments, we did
not observed any spot-related shut-downs, as the runtime
of our application was only in the order of five minutes. On
the other hand, long running programs or applications with
a large number of workers are much more likely to encoun-
ter instance shut downs and our experiment shows that
these programs benefit from the automatic instance restarts
of AWS Batch.

5 DISCUSSION

The main advantage of an event-driven approach based on
AWS Batch and Lambda functions for seismic imaging in
the cloud is the automated management of computational
resources by AWS. EC2 instances that are used for carrying
out heavy computations, namely for solving large-scale
wave equations, are started automatically in response to
events, which in our case are Step Functions advancing the
serverless workflow to the ComputeGradients state.
Expensive EC2 instances are thus only active for the dura-
tion it takes to compute one element gi of the full or mini-
batch gradient and they are automatically terminated after-
wards. Summing the gradients and updating the variables
(i.e., the seismic image) is performed on cheaper Lambda
functions, with billing being again solely based on the exe-
cution time of the respective code and the utilized memory.
The cost overhead introduced by Step Functions, SQS mes-
sages and AWS Batch is negligible compared to the cost of
the EC2 instances that are required for the gradient compu-
tations, while cost savings from spot instances and eliminat-
ing idle EC2 instances lead to significant cost savings, as
shown in our examples. With the benefits of spot instances
(factor 2-3), avoidance of idle instances and the overhead of
spinning clusters (factor 1.5-2), as well as improved resil-
ience, we estimate that our event-driven workflow provides
cost savings of up to an order of magnitude in comparison
to using fixed clusters of (on-demand) EC2 instances.

A second alternative to running cloud applications on
fixed EC2 clusters are in-between approaches based on a
combination of EC2 instances, task-based workflow tools
and auto-scaling. These approaches potentially benefit from
the possibility to avoid containerization by using bare metal
instances, while leveraging automatic up- and down-scaling
of EC2 instances to save cost. However, workflow tools like
AWS Batch or Step Functions are currently not available for
EC2 clusters and thus need to be replicated by the user. Fur-
thermore, any cluster-based workflows, even with auto-
scaling, require at least a single EC2 instance to be perma-
nently running, while our serverless approach makes it
hypothetically possible to suspend tasks or workloads
indefinitely without incurring any cost at all. Regarding per-
formance, our analysis showed that Docker containerization
did not lead to considerable performance impairments,
while latency between EC2 instances assigned by AWS
Batch was in fact smaller than latency between user-
requested instances. Using batch processing to compute an

embarrassingly parallel workload is not only advantageous
in the cloud, but also on on-premise HPC systems, as parallel
jobs that are broken intomultiple smaller and shorter jobs are
oftentimes processed faster by HPC schedulers than single
large workloads. In addition to the improved flexibility
regarding nested parallelization, this makes tasked-based
asynchronous batch processing interesting in the setting of
traditional HPC aswell.

Another major advantage of our proposed serverless
approach is the handling of resilience. Instead of running as
a single program, our workflow is broken up into its indi-
vidual components and expressed through Step Function
states. Parallel programs based on MPI rely on not being
interrupted by hardware failures during the entire runtime
of the code, making this approach susceptible to resilience
issues. Breaking a seismic imaging workflow into its indi-
vidual components, with each component running as an
individual (sub-) program and AWS managing their inter-
actions, makes the event-driven approach inherently more
resilient, as the runtime of individual workflow components
is much shorter than the runtime of the full program, thus
minimizing the exposure to instance failures. Computing an
embarrassingly parallel workload with AWS Batch, rather
than as a MPI-program, provides a natural layer of resil-
ience, as AWS Batch processes each item from its queue sep-
arately on an individual EC2 instance and Docker container,
but also includes the possibility of automatic instance
restarts in the event of failures.

The most prominent disadvantage of the event-driven
workflow is that EC2 instances have to be restarted by AWS
Batch in every iteration of the workflow. In our performance
analysis, we found that the overhead of requesting EC2
instances and starting the Docker container lies in the range
of several minutes and depends on how many instances
are requested per gradient. However, items that remain
momentarily in the batch queue, do not incur any cost until
the respective EC2 instance is launched. The overhead intro-
duced by AWS Batch therefore only increases the time-to-
solution, but does not affect the cost negatively. Due to the
overhead of starting EC2 instances for individual computa-
tions, our proposed workflow is therefore applicable if the
respective computations (e.g., computing gradients) are
both embarrassingly parallel and take a long time to com-
pute; ideally in the range of hours rather than minutes. We
therefore expect that the advantages of our workflow will
be even more prominent when applied to 3D seismic data
sets, where computations are orders of magnitude more
expensive than in 2D.

Our application, as expressed through AWS Step Func-
tions, represents the structure of a generic gradient-based
optimization algorithm and is therefore applicable to prob-
lems other than seismic imaging and full-waveform inver-
sion. The design of our workflow lends itself to problems
that exhibit a certain MapReduce structure, namely they
consists of a computationally expensive, but embarrassingly
parallel Map part, as well as a computationally cheaper to
compute Reduce part. On the other hand, applications that
rely on dense communications between workers or where
the quantities of interest such as gradients or functions val-
ues are cheap to compute, are less suitable for this specific
design. For example, deep convolutional neural networks

WITTE ETAL.: EVENT-DRIVEN APPROACH TO SERVERLESS SEISMIC IMAGING IN THE CLOUD 2045

(CNNs) exhibit mathematically a very similar problem
structure to seismic inverse problems, but forward and
backward evaluations of CNNs are typically much faster
than solving forward and adjoint wave equations, even if
we consider very deep networks like ResNet [72]. Imple-
menting training algorithms for CNNs as an event-driven
workflow as presented here, is therefore excessive for the
problem sizes that are currently encountered in deep learn-
ing, but might be justified in the future if the dimensionality
of neural networks continues to grow.

The event-driven workflow presented in this work
was specifically designed for AWS and takes advantage
of specialized services for batch computing or event-
driven computations that are available on this platform.
However, in principle, it is possible to implement our
workflow on other cloud platforms as well, as almost
all of the utilized services have equivalent versions on
Microsoft Azure or the Google Cloud Platform (Table 2)
[73], [74]. Services for running parallel containerized
workloads in the cloud, as well as event-driven cloud
functions, which are the two main components of our
workflow, are available on all platforms considered in
our comparison. Furthermore, both Microsoft Azure as
well as the GCP offer similar Python APIs as AWS for
interfacing cloud services. We also speculate that, as
cloud technology matures, services between different
providers will likely grow more similar to each other.
This is based on the presumption that less advanced
cloud platforms will imitate services offered by major
cloud providers in order to be competitive in the grow-
ing cloud market.

Overall, our workflow and performance evaluation dem-
onstrate that cost-competitive HPC in the cloud is possible,
but requires a fundamental software re-design of the corre-
sponding application. In our case, the implementation of an
event-driven seismic imaging workflow was possible, as we
leverage Devito for expressing and solving the underlying
wave equations, which accounts for the major workload of
seismic imaging. With Devito, we are able to abstract the
otherwise complex implementation and performance opti-
mization of wave equation solvers and take advantage of
recent advances in automatic code generation. As Devito
generates code for solving single PDEs, with the possibility
of using MPI-based domain decomposition, we are not only
able to leverage AWS Batch for the parallelization over
source experiments, but can also take advantage of AWS
Batch’s multi-node functionality to shift from data to model
parallelism. In contrast, many seismic imaging codes are

software monoliths, in which PDE solvers are enmeshed
with IO routines, parallelization and manual performance
optimization. Adapting codes of this form to the cloud is
fundamentally more challenging, as it is not easily possible
to isolate individual components such as a PDE solver for a
single source location, while replacing the parallelization
with cloud services. This illustrates that separation of con-
cerns and abstract user interfaces are a prerequisite for port-
ing HPC codes to the cloud such that the codes are able
to take advantage of new technologies like object storage
and event-driven computations. With a domain-specific lan-
guage compiler, automatic code generation, high-throughput
batch computing and serverless visual algorithm definitions,
our workflow represents a true vertical integration of mod-
ern programming paradimgs into a framework for HPC in
the cloud.

6 CONCLUSION

Porting HPC applications to the cloud using a lift and shift
approach based on virtual clusters that emulate on-premise
HPC clusters, is problematic as the cloud cannot offer the
same performance and reliability as conventional clusters.
Applications such as seismic imaging that are computation-
ally expensive and run for a long time, are faced with practi-
cal challenges such as cost and resilience issues, which
prohibit the cloud from being widely adapted for HPC
tasks. However, the cloud offers a range of new technolo-
gies such as object storage or event-driven computations,
that allow to address computational challenges in HPC in
novel ways. In this work, we demonstrate how to adapt
these technologies to implement a workflow for seismic
imaging in the cloud that does not rely on a conventional
cluster, but is instead based on serverless and event-driven
computations. These tools are not only necessary to make
HPC in the cloud financially viable, but also to improve the
resilience of workflows. The code of our application is fully
redesigned and uses a variety of AWS services as building
blocks for the new workflow, thus taking advantage of
AWS being responsible for resilience, job scheduling, and
resource allocations. Our performance analysis shows that
the resulting workflow exhibits competitive performance
and scalability, but most importantly minimizes idle time
on EC2 instances and cost and is inherently resilient. Our
example therefore demonstrates that successfully porting
HPC applications to the cloud is possible, but requires to
carefully adapt the corresponding codes to to the new envi-
ronment. This process is heavily dependent on the specific
application and involves identifying properties of the
underlying scientific problem that can be exploited by new
technologies available in the cloud. Most importantly, it
requires that codes are modular and designed based on the
principle of separation of concerns, thus making this transi-
tion possible.

ACKNOWLEDGMENTS

The authors would like to acknowledge Dr. Fabio Luporini
and Dr. Gerard J. Gorman (Imperial College London) for
their work on Devito and their valuable input on the perfor-
mance evaluation. This research was funded by the Georgia
Research Alliance and the Georgia Institute of Technology.

TABLE 2
An Overview how the AWS Services Used in our

Workflow Map to Other Cloud Providers

Amazon Web Services Microsoft Azure Google Cloud

Elastic Compute Cloud Virtual Machines Compute Engine
Simple Storage System Blob storage Cloud Storage
AWS Batch Azure Batch Pipelines
Lambda Functions Azure Functions Cloud Functions
Step Functions Logic Apps N/A
Simple Message Queue Queue Storage Cloud Pub/Sub
Elastic File System Azure Files Cloud Filestore

2046 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 9, SEPTEMBER 2020

REFERENCES

[1] A. A. Valenciano, “Imaging by wave-equation inversion,” Ph.D.
dissertation, Dept. Geophys., Stanford Univ., Stanford, CA, 2008.

[2] S. Dong et al., “Least-squares reverse time migration: Towards
true amplitude imaging and improving the resolution,” in Proc.
82nd Annu. Int. Meeting SEG Expanded Abstracts, 2012, pp. 1–5.

[3] P. A. Witte, M. Louboutin, F. Luporini, G. J. Gorman, and
F. J. Herrmann, “Compressive least-squares migration with on-
the-fly Fourier transforms,” GEOPHYSICS, vol. 84, no. 5,
pp. R655–R672, 2019. [Online]. Available: https://doi.org/10.1190/
geo2018–0490.1

[4] “Seismic processing and imaging,” 2019. [Online]. Available:
https://www.pgs.com/imaging/services/processing-and-
imaging/

[5] AWS enterprise customer success stories, 2019. [Online]. Available:
https://aws.amazon.com/solutions/case-studies/enterprise

[6] K. R. Jackson et al., “Performance analysis of high performance
computing applications on the Amazon Web Services cloud,” in
Proc. IEEE 2nd Int. Conf. Cloud Comput. Technol. Science, 2010,
pp. 159–168.

[7] S. L. Garfinkel, “An evaluation of Amazon’s grid computing
services: EC2, S3, and SQS,” Harvard Computer Science Group,
Cambridge, MA, Tech. Rep. TR-08–07, 2007.

[8] J. Napper and P. Bientinesi, “Can cloud computing reach the
Top500?” in Proc. Combined Workshops Unconventional High Per-
form. Comput. Workshop Plus Memory Access Workshop, 2009,
pp. 17–20. [Online]. Available: http://doi.acm.org/10.1145/
1531666.1531671

[9] A. Iosup, S. Ostermann, M. N. Yigitbasi, R. Prodan, T. Fahringer,
and D. Epema, “Performance analysis of cloud computing serv-
ices for many-tasks scientific computing,” IEEE Trans. Parallel Dis-
trib. Syst., vol. 22, no. 6, pp. 931–945, Jun. 2011.

[10] K. R. Jackson, K. Muriki, L. Ramakrishnan, K. J. Runge, and
R. C. Thomas, “Performance and cost analysis of the supernova
factory on the Amazon AWS cloud,” Sci. Program., vol. 19, no. 2–3,
pp. 107–119, 2011.

[11] L. Ramakrishnan, R. S. Canon, K. Muriki, I. Sakrejda, and
N. J. Wright, “Evaluating interconnect and virtualization perfor-
mance for high performance computing,” ACM SIGMETRICS Per-
form. Eval. Rev., vol. 40, no. 2, pp. 55–60, 2012.

[12] P. Mehrotra et al., “Performance evaluation of amazon elastic com-
pute cloud for NASA high-performance computing applications,”
Concurrency Comput., Practice Experience, vol. 28, no. 4, pp. 1041–1055,
2016.

[13] AWS elastic fabric adapter, 2019. [Online]. Available: https://
aws.amazon.com/hpc/efa/

[14] AWS Nitro system, 2019. [Online]. Available: https://aws.
amazon.com/ec2/nitro/

[15] J. Scheuner and P. Leitner, “A cloud benchmark suite combining
micro and applications benchmarks,” in Proc. Companion ACM/
SPEC Int. Conf. Perform. Eng., 2018, Art. no. 161–166. [Online].
Available: https://doi.org/10.1145/3185768.3186286

[16] C. Kotas, T. Naughton, and N. Imam, “A comparison of Amazon
Web Services and Microsoft Azure cloud platforms for high per-
formance computing,” in Proc. IEEE Int. Conf. Consum. Electron.,
2018, pp. 1–4.

[17] AWS documentation: Amazon EC2 instance types, 2019. [Online].
Available: https://aws.amazon.com/ec2/instance-types/

[18] A. Gupta and D. Milojicic, “Evaluation of HPC applications on
cloud,” in Proc. 6th Open Cirrus Summit, 2011, pp. 22–26.

[19] I. Sadooghi et al., “Understanding the performance and potential
of cloud computing for scientific applications,” IEEE Trans. Cloud
Comput., vol. 5, no. 2, pp. 358–371, Apr. 2017.

[20] P. Rad, A. Chronopoulos, P. Lama, P. Madduri, and C. Loader,
“Benchmarking bare metal cloud servers for HPC applications,”
in Proc. IEEE Int. Conf. Cloud Comput. Emerg. Markets, 2015,
pp. 153–159.

[21] M. Mohammadi and T. Bazhirov, “Comparative benchmarking of
cloud computing vendors with high performance LINPACK,” in
Proc. 2nd Int. Conf. High Perform. Compilation Comput. Commun.,
2018, pp. 1–5.

[22] W. Gropp, E. Lusk, and A. Skjellum, Using MPI: Portable Parallel Pro-
gramming with the Message-Passing Interface, Cambridge, MA, USA:
MITPress, vol. 1, 1999.

[23] AWS documentation: AWS Lambda, 2019. [Online]. Available:
https://aws.amazon.com/lambda/

[24] A. Friedman and A. Pizarro, “Building high-throughput genomics
batch workflows on AWS,” May 2017. [Online]. Available:
https://aws.amazon.com/blogs/compute/building-high-
throughput-genomics-batch-workflows-on-aws-introduction-
part-1-of-4/

[25] J. Dean and S. Ghemawat, “MapReduce: Simplified data process-
ing on large clusters,” Commun. ACM, vol. 51, no. 1, pp. 107–113,
2008.

[26] AWS documentation: AWS Batch, 2019. [Online]. Available:
https://aws.amazon.com/ec2/

[27] AWS documentation: Amazon EMR, 2019. [Online]. Available:
https://docs.aws.amazon.com/emr/latest/ManagementGuide/
emr-overview.html

[28] F. Billette and S. Brandsberg-Dahl, “The 2004 BP velocity bench-
mark,” in Proc. 67th Annu. Int. Meeting EAGE Expanded Abstracts,
2005, Art. no. B035.

[29] P. A. Witte, M. Louboutin, H. Modzelewski, C. Jones, J. Selvage,
and F. J. Herrmann, “Event-driven workflows for large-scale seis-
mic imaging in the cloud,” in Proc. 9th Annu. Int. Meeting SEG
Expanded Abstracts, 2019, pp. 3984–3988.

[30] A. Tarantola, “Inversion of seismic reflection data in the acoustic
approximation,” Geophysics, vol. 49, no. 8, 1984, Art. no. 1259.
[Online]. Available: + http://dx.doi.org/10.1190/1.1441754

[31] J. Virieux and S. Operto, “An overview of full-waveform inversion
in exploration geophysics,” Geophysics, vol. 74, no. 6,
pp. WCC127–WCC152, Nov./Dec. 2009.

[32] R. G. Pratt, “Seismic waveform inversion in the frequency
domain, part 1: Theory and verification in a physical scale model,”
Geophysics, vol. 64, no. 3, pp. 888–901, 1999. [Online]. Available:
https://doi.org/10.1190/1.1444597

[33] B. Peters, B. R. Smithyman, and F. J. Herrmann, “Projection
methods and applications for seismic nonlinear inverse prob-
lems with multiple constraints,” Geophysics, vol. 84, no. 2,
pp. R251–R269, 2019. [Online]. Available: https://doi.org/
10.1190/geo2018-0192.1

[34] L. Ruthotto and E. Haber, “Deep neural networks motivated by
partial differential equations,” CoRR, vol. abs/1804.04272, 2018.
[Online]. Available: http://arxiv.org/abs/1804.04272

[35] A. Griewank and A. Walther, “Algorithm 799: Revolve: An imple-
mentation of checkpointing for the reverse or adjoint mode of
computational differentiation,” Assoc. Comput. Machinery Trans.
Math. Softw., vol. 26, no. 1, pp. 19–45, Mar. 2000. [Online]. Avail-
able: http://doi.acm.org/10.1145/347837.347846

[36] C. M. Furse, “Faster than Fourier-ultra-efficient time-to-frequency
domain conversions for FDTD,” in Proc. Inst. Elect. Electronics
Engineers: Antennas Propag. Soc. Int. Symp., 1998, pp. 536–539.

[37] R. Abdelkhalek, H. Calandra, O. Coulaud, J. Roman, and G. Latu,
“Fast seismic modeling and reverse time migration on a GPU
cluster,” in Proc. Int. Conf. High Perform. Comput. Simul., 2009,
pp. 36–43.

[38] M. Louboutin et al., “Devito (v3.1.0): an embedded domain-specific
language for finite differences and geophysical exploration,” Geo-
scientific Model Develop., vol. 12, no. 3, pp. 1165–1187, 2019. [Online].
Available: https://www.geosci-model-dev.net/12/1165/2019/

[39] W. W. Symes, D. Sun, andM. Enriquez, “Frommodelling to inver-
sion: Designing a well-adapted simulator,” Geophys. Prospecting,
vol. 59, no. 5, pp. 814–833, 2011. [Online]. Available: 10.1111/
j.1365-2478.2011.00977.x

[40] L. Ruthotto, E. Treister, and E. Haber, “jInv–a flexible Julia pack-
age for PDE parameter estimation,” SIAM J. Sci. Comput., vol. 39,
no. 5, pp. S702–S722, 2017. [Online]. Available: https://doi.org/
10.1137/16M1081063

[41] C. D. Silva and F. J. Herrmann, “A unified 2D/3D large-scale soft-
ware environment for nonlinear inverse problems,” ACM Trans.
Math. Softw., vol. 45, pp. 7:1–7:35, 2017.

[42] P. A. Witte, M. Louboutin, F. Luporini, N. Kukreja, M. Lange,
G. J. Gorman, and F. J. Herrmann, “A large-scale framework for
symbolic implementations of seismic inversion algorithms in
Julia,” Geophysics, vol. 84, pp. A31–V183, 2019.

[43] AWS documentation: How spot instances work, 2019. [Online].
Available: https://docs.aws.amazon.com/AWSEC2/latest/User
Guide/how-spot-instances-work.html

[44] Y. Nesterov, Lectures on Convex Optimization, vol. 137, Berlin,
Germany: Springer, 2018

[45] D. P. Kingma and J. Ba, “Adam: A method for stochastic opti-
mization,” ArXiv e-prints, vol. abs/1412.6980, 2014. [Online].
Available: https://arxiv.org/abs/1412.6980

WITTE ETAL.: EVENT-DRIVEN APPROACH TO SERVERLESS SEISMIC IMAGING IN THE CLOUD 2047

https://doi.org/10.1190/geo2018--0490.1
https://doi.org/10.1190/geo2018--0490.1
https://www.pgs.com/imaging/services/processing-and-imaging/
https://www.pgs.com/imaging/services/processing-and-imaging/
https://aws.amazon.com/solutions/case-studies/enterprise
http://doi.acm.org/10.1145/1531666.1531671
http://doi.acm.org/10.1145/1531666.1531671
https://aws.amazon.com/hpc/efa/
https://aws.amazon.com/hpc/efa/
https://aws.amazon.com/ec2/nitro/
https://aws.amazon.com/ec2/nitro/
https://doi.org/10.1145/3185768.3186286
https://aws.amazon.com/ec2/instance-types/
https://aws.amazon.com/lambda/
https://aws.amazon.com/blogs/compute/building-high-throughput-genomics-batch-workflows-on-aws-introduction-part-1-of-4/
https://aws.amazon.com/blogs/compute/building-high-throughput-genomics-batch-workflows-on-aws-introduction-part-1-of-4/
https://aws.amazon.com/blogs/compute/building-high-throughput-genomics-batch-workflows-on-aws-introduction-part-1-of-4/
https://aws.amazon.com/ec2/
https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-overview.html
https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-overview.html
http://dx.doi.org/10.1190/1.1441754
https://doi.org/10.1190/1.1444597
https://doi.org/10.1190/geo2018-0192.1
https://doi.org/10.1190/geo2018-0192.1
http://arxiv.org/abs/1804.04272
http://doi.acm.org/10.1145/347837.347846
https://www.geosci-model-dev.net/12/1165/2019/
http://dx.doi.org/10.1111/j.1365-2478.2011.00977.x
http://dx.doi.org/10.1111/j.1365-2478.2011.00977.x
https://doi.org/10.1137/16M1081063
https://doi.org/10.1137/16M1081063
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/how-spot-instances-work.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/how-spot-instances-work.html
https://arxiv.org/abs/1412.6980

[46] R. Fletcher and C. M. Reeves, “Function minimization by
conjugate gradients,” Comput. J., vol. 7, no. 2, pp. 149–154, 1964.

[47] A. Beck and M. Teboulle, “A fast iterative shrinkage-thresholding
algorithm for linear inverse problems,” SIAM J. Imaging Sci.,
vol. 2, no. 1, pp. 183–202, 2009.

[48] AWS documentation: Amazon Elastic Compute Cloud, 2019.
[Online]. Available: https://docs.aws.amazon.com/batch/latest/
userguide/what-is-batch.html

[49] Starcluster, 2019. [Online]. Available: http://star.mit.edu/
cluster/

[50] AWS High Performance Computing, 2019. [Online]. Available:
https://aws.amazon.com/hpc/

[51] AWS documentation: AWS Step Functions, 2019. [Online].
Available: https://aws.amazon.com/step-functions/

[52] Iterating a loop using Lambda, 2018. [Online]. Available: https://
docs.aws.amazon.com/step-functions/latest/dg/tutorial-create-
iterate-pattern-section.html

[53] Docker, 2019. [Online]. Available: https://www.docker.com/
[54] AWS documentation: Amazon Simple Storage Service, 2019.

[Online]. Available: https://docs.aws.amazon.com/AmazonS3/
latest/dev/Welcome.html

[55] S. Van Der Walt, S. C. Colbert, and G. Varoquaux, “The NumPy
array: A structure for efficient numerical computation,” Comput.
Sci. Eng., vol. 13, no. 2, 2011, Art. no. 22.

[56] AWS documentation: Amazon Simple Queue Service, 2019.
[Online]. Available: https://docs.aws.amazon.com/AmazonS3/
latest/dev/Welcome.html

[57] F. Luporini et al., “Architecture and performance of Devito, a sys-
tem for automated stencil computation,” ACM Trans. Math. Softw.,
2018. [Online]. Available: https://arxiv.org/abs/1807.03032

[58] D. Joyner, O. �Cert�ık, A. Meurer, and B. E. Granger, “Open source
computer algebra systems: SymPy,” Assoc. Comput. Machinery
Commun. Comput. Algebra, vol. 45, no. 3/4, pp. 225–234, Jan. 2012.
[Online]. Available: http://doi.acm.org/10.1145/2110170.2110185

[59] J. Rad, A. Ragab, and A. Damodar, “Building a tightly coupled
molecular dynamics workflow with multi-node parallel jobs in
AWS Batch,” Nov. 2018. [Online]. Available: https://aws.
amazon.com/blogs/compute/building-a-tightly-coupled-
molecular-dynamics-workflow-with-multi-node-parallel-jobs-in-
aws-batch/

[60] Boto 3 documentation, 2019. [Online]. Available: https://boto3.
amazonaws.com/v1/documentation/api/latest/index.html#

[61] J. Nocedal and S. Wright, Numerical Optimization. Berlin,
Germany: Springer, 2006.

[62] L. Bottou, “Large-scale machine learning with stochastic gradient
descent,” in Proc. 15th Int. Conf. Comput. Statist., 2010, pp. 177–186.

[63] P. A. Witte, M. Louboutin, C. Jones, and F. J. Herrmann,
“Serverless seismic imaging in the cloud,” 2019. [Online]. Avail-
able: https://arxiv.org/abs/1911.12447

[64] M. T. Chung, N. Quang-Hung, M.-T. Nguyen, and N. Thoai,
“Using Docker in high performance computing applications,” in
Proc. IEEE 6th Int. Conf. Commun. Electronics, 2016, pp. 52–57.

[65] A. Valli and A. Quarteroni, Domain Decomposition Methods for Par-
tial Differential Equations, New York, NY, USA: Numerical Mathe-
matics and Scientific Computation, The Clarendon Press, Oxford
Univ. Press, 1999.

[66] AWS documentation: AWS Batch - multi node parallel jobs, 2019.
[Online]. Available: https://docs.aws.amazon.com/batch/latest/
userguide/multi-node-parallel-jobs.html

[67] Amazon EC2 reserved instances pricing, 2019. [Online]. Available:
https://aws.amazon.com/ec2/pricing/reserved-instances/pricing/

[68] Announcing accelerated scale-down of AWS Batch managed
compute environments, 2019. [Online]. Available: https://aws.
amazon.com/about-aws/whats-new/2017/10/announcing-
accelerated-scale-down-of-aws-batch-managed-compute-
environments/

[69] W. Bland, A. Bouteiller, T. Herault, G. Bosilca, and J. Dongarra,
“Post-failure recovery of MPI communication capability: Design
and rationale,” Int. J. High Perform. Comput. Appl., vol. 27, no. 3,
pp. 244–254, 2013.

[70] S. Chakraborty et al., “EReinit: Scalable and efficient fault-toler-
ance for bulk-synchronous MPI applications,” Concurrency Com-
put.: Practice Experience, 2018, Art. no. e4863. [Online]. Available:
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.4863

[71] S. Hukerikar, R. A. Ashraf, and C. Engelmann, “Towards new
metrics for high-performance computing resilience,” in Proc.
Workshop Fault-Tolerance HPC Extreme Scale, 2017, pp. 23–30.

[72] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recog-
nit., 2016, pp. 770–778.

[73] AWS to Azure services comparison, 2019. [Online]. Available:
https://docs.microsoft.com/en-us/azure/architecture/aws-
professional/services

[74] Google Cloud Platform for AWS professionals, 2019. [Online].
Available: https://cloud.google.com/docs/compare/aws/

Philipp A. Witte received the MSc degree in geo-
physics from the University of Hamburg, and
joined the Seismic Laboratory for Imaging and
Modeling (SLIM), in the fall of 2014. He is cur-
rently working toward the PhD degree in the
School of Computational Science and Engineer-
ing, Georgia Institute of Technology. His research
interests include large-scale seismic inverse
problems, cloud computing and physics-driven
machine learning.

Mathias Louboutin received the MSc degree in
applied mathematics and modeling from the Uni-
versity of Rennes 1. He is currently working
toward the PhD degree at the Seismic Laboratory
for Imaging and Modeling (SLIM) at the Georgia
Institute of Technology. His research interests
include seismic inverse problems, numerical
modeling and domain-specific languages for high-
performance computing.

Henryk Modzelewski received the MSc degree
in geophysics from Warsaw University, and the
PhD degree in atmospheric sciences from the
University of British Columbia, Canada. He is cur-
rently a research associate with the Department
of Earth, Ocean and Atmospheric Sciences, Uni-
versity of British Columbia. His research interests
include high-performance and cloud computing,
as well as scientific programming.

Charles Jones received the MSc degree in
exploration geophysics from the University of
Leeds. He is currently the head of development
at Osokey Ltd. He is interested in public cloud to
overcome the CapEx requirements of on-premise
high performance computing.

2048 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 9, SEPTEMBER 2020

https://docs.aws.amazon.com/batch/latest/userguide/what-is-batch.html
https://docs.aws.amazon.com/batch/latest/userguide/what-is-batch.html
http://star.mit.edu/cluster/
http://star.mit.edu/cluster/
https://aws.amazon.com/hpc/
https://aws.amazon.com/step-functions/
https://docs.aws.amazon.com/step-functions/latest/dg/tutorial-create-iterate-pattern-section.html
https://docs.aws.amazon.com/step-functions/latest/dg/tutorial-create-iterate-pattern-section.html
https://docs.aws.amazon.com/step-functions/latest/dg/tutorial-create-iterate-pattern-section.html
https://www.docker.com/
https://docs.aws.amazon.com/AmazonS3/latest/dev/Welcome.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/Welcome.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/Welcome.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/Welcome.html
https://arxiv.org/abs/1807.03032
http://doi.acm.org/10.1145/2110170.2110185
https://aws.amazon.com/blogs/compute/building-a-tightly-coupled-molecular-dynamics-workflow-with-multi-node-parallel-jobs-in-aws-batch/
https://aws.amazon.com/blogs/compute/building-a-tightly-coupled-molecular-dynamics-workflow-with-multi-node-parallel-jobs-in-aws-batch/
https://aws.amazon.com/blogs/compute/building-a-tightly-coupled-molecular-dynamics-workflow-with-multi-node-parallel-jobs-in-aws-batch/
https://aws.amazon.com/blogs/compute/building-a-tightly-coupled-molecular-dynamics-workflow-with-multi-node-parallel-jobs-in-aws-batch/
https://boto3.amazonaws.com/v1/documentation/api/latest/index.html#
https://boto3.amazonaws.com/v1/documentation/api/latest/index.html#
https://arxiv.org/abs/1911.12447
https://docs.aws.amazon.com/batch/latest/userguide/multi-node-parallel-jobs.html
https://docs.aws.amazon.com/batch/latest/userguide/multi-node-parallel-jobs.html
https://aws.amazon.com/ec2/pricing/reserved-instances/pricing/
https://aws.amazon.com/about-aws/whats-new/2017/10/announcing-accelerated-scale-down-of-aws-batch-managed-compute-environments/
https://aws.amazon.com/about-aws/whats-new/2017/10/announcing-accelerated-scale-down-of-aws-batch-managed-compute-environments/
https://aws.amazon.com/about-aws/whats-new/2017/10/announcing-accelerated-scale-down-of-aws-batch-managed-compute-environments/
https://aws.amazon.com/about-aws/whats-new/2017/10/announcing-accelerated-scale-down-of-aws-batch-managed-compute-environments/
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.4863
https://docs.microsoft.com/en-us/azure/architecture/aws-professional/services
https://docs.microsoft.com/en-us/azure/architecture/aws-professional/services
https://cloud.google.com/docs/compare/aws/

James Selvage received the MSc degree in
exploration geophysics from the University of
Leeds. He is head of implementation at Osokey
Ltd. It was in 2016 at an AWS summit in London
that he first heard the phrase “serverless” and left
wondering how this could be applied to geophys-
ical datasets.

Felix J. Herrmann received the PhD degree in
engineering physics from the Delft University of
Technology, and has been a post-doctoral fellow
at the Stanford’s Mathematics Department and
MIT’s Earth Resources Laboratory. He is a pro-
fessor at the Georgia Institute of Technology,
where he is cross appointed in the Schools of
Computational Science and Engineering, Earth
and Atmospheric Sciences as well as Electrical
and Computer Engineering. He is the founder of
the Seismic Laboratory for Imaging and Modeling

(SLIM) and the industry-supported SINBAD Consortium, both of which
have been responsible for major innovations in compressed sensing-
based seismic acquisition, domain-specific languages for seismic
modeling and inversion, and large-scale optimization for wave-equation
based seismic inverse problems. He also served for over a decade on
the Faculty of the University of British Columbia. His research interests
include theoretical and computational aspects of exploration seismology,
compressive sensing, and deep learning.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

WITTE ETAL.: EVENT-DRIVEN APPROACH TO SERVERLESS SEISMIC IMAGING IN THE CLOUD 2049

Efficient Algorithms for Delay-Aware
NFV-Enabled Multicasting in Mobile
Edge Clouds With Resource Sharing
Haozhe Ren, Zichuan Xu ,Member, IEEE, Weifa Liang , Senior Member, IEEE,

Qiufen Xia ,Member, IEEE, Pan Zhou ,Member, IEEE, Omer F. Rana , Senior Member, IEEE,

Alex Galis, Senior Member, IEEE, and Guowei Wu

Abstract—Stringent delay requirements of manymobile applications have led to the development ofmobile edge clouds, to offer low

latency network services at the network edges. Most conventional network services are implemented via hardware-based network

functions, including firewalls and load balancers, to guarantee service security and performance. However, implementing hardware-based

network functions usually incurs both a high capital expenditure (CAPEX) and operating expenditure (OPEX). Network Function

Virtualization (NFV) exhibits a potential to reduce CAPEXandOPEX significantly, by deploying software-based network functions in virtual

machines (VMs) on edge-clouds.We consider a fundamental problem of NFV-enabledmulticasting in amobile edge cloud, where each

multicast request has both service function chain and end-to-end delay requirements. Specifically, eachmulticast request requires chaining

of a sequence of network functions (referred to as a service function chain) from a source to a set of destinationswithin specified end-to-end

delay requirements.We devise an approximation algorithmwith a provable approximation ratio for a singlemulticast request admission if

its delay requirement is negligible; otherwise, we propose an efficient heuristic. Furthermore, we also consider admissions of a given set of

the delay-aware NFV-enabledmulticast requests, for whichwe devise an efficient heuristic such that the system throughput ismaximized,

while the implementation cost of admitted requests isminimized.We finally evaluate the performance of the proposed algorithms in a real

test-bed, and experimental results show that our algorithms outperform other similar approaches reported in literature.

Index Terms—Mobile edge clouds, network function virtualization, multicasting, approximation algorithms, algorithm design

Ç

1 INTRODUCTION

WITH increasing uptake and use of multimedia technolo-
gies, there is an associated increase in data being gen-

erated and transmitted (processed) over our network-based
systems, often to multiple subscribers. Applications can
include video-on-demand, high definition streaming, multi-
media social networks (combing text, audio and video) and
Internet-of-Things (IoTs). This paradigm of data transfer to

multiple concurrent subscribers is referred to as multicasting,
and can significantly stress our current networks. Multicast-
ing not only requires use of various network functions such
as firewalls, Intrusion Detection Systems (IDSs), proxies, and
Wide Area Networks (WAN) optimizers to guarantee data
transfer security, but also tomeet stringent Quality-of-Service
(QoS) requirements to ensure that the traffic is transferred on
time. Considering that most multimedia data needs to be
multicast to mobile users, Mobile Edge-Cloud Computing
(MEC) [6], [15], [16], [18], [23], [27], [33], [46], [47], [50] has
emerged as a promising platform to meet the QoS require-
ments of mobile users, by deploying data processing resour-
ces within the proximity of mobile users. Network Function
Virtualization (NFV) moves network functions from dedi-
cated hardware to (software-based) virtual machines (VMs)
that can run on commodity hardware, thereby reducing the
OPEX and CAPEX of network service providers. In this
paper, we consider NFV-enabled multicasting in an MEC
network, where each user request requires its traffic to pass
through a sequence of network functions, referred to as a ser-
vice function chain, before reaching its destination.

Provisioning NFV-enabled multicasting services in
MEC networks poses many challenges. First, each cloudlet
(resource hosting a software-based Virtual Network Func-
tion (VNF)) in an MEC network usually has limited comput-
ing resource to support VNFs. Allowing multicast requests
to share existing VNF instances can significantly improve

� H. Ren, Z. Xu, and G. Wu are with the Key Laboratory for Ubiquitous
Network and Service Software of Liaoning Province, School of Software,
Dalian University of Technology, Dalian 116620, China.
E-mail: renhaozhe@mail.dlut.edu.cn, {z.xu, wgwdut}@dlut.edu.cn.

� W. Liang is with the Research School of Computer Science, Australian
National University, Canberra, ACT 2601, Australia.
E-mail: wliang@cs.anu.edu.au.

� Q. Xia is with the Key Laboratory for Ubiquitous Network and Service
Software of Liaoning Province, International School of Information Science
and Engineering, Dalian University of Technology, Dalian 116620, China.
E-mail: qiufenxia@dlut.edu.cn.

� P. Zhou is with the School of Cyber Science and Engineering, Huazhong
University of Science and Technology, Wuhan, Hubei 430074, China.
E-mail: panzhou@hust.edu.cn.

� O.F. Rana is with Cardiff University, CF10 3AT Cardiff, United
Kingdom. E-mail: RanaOF@cardiff.ac.uk.

� A. Galis is with University College London, WC1E 6BT London, United
Kingdom. E-mail: a.galis@ucl.ac.uk.

Manuscript received 9 Nov. 2019; revised 25 Feb. 2020; accepted 17 Mar. 2020.
Date of publication 30 Mar. 2020; date of current version 20 Apr. 2020.
(Corresponding author: Zichuan Xu.)
Recommended for acceptance by M. Guo.
Digital Object Identifier no. 10.1109/TPDS.2020.2983918

2050 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 9, SEPTEMBER 2020

1045-9219� 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht_tps://www.ieee.org/publications/rights/index.html for more information.

https://orcid.org/0000-0001-5438-1468
https://orcid.org/0000-0001-5438-1468
https://orcid.org/0000-0001-5438-1468
https://orcid.org/0000-0001-5438-1468
https://orcid.org/0000-0001-5438-1468
https://orcid.org/0000-0002-8207-6740
https://orcid.org/0000-0002-8207-6740
https://orcid.org/0000-0002-8207-6740
https://orcid.org/0000-0002-8207-6740
https://orcid.org/0000-0002-8207-6740
https://orcid.org/0000-0001-7978-4933
https://orcid.org/0000-0001-7978-4933
https://orcid.org/0000-0001-7978-4933
https://orcid.org/0000-0001-7978-4933
https://orcid.org/0000-0001-7978-4933
https://orcid.org/0000-0002-8629-4622
https://orcid.org/0000-0002-8629-4622
https://orcid.org/0000-0002-8629-4622
https://orcid.org/0000-0002-8629-4622
https://orcid.org/0000-0002-8629-4622
https://orcid.org/0000-0003-3597-2646
https://orcid.org/0000-0003-3597-2646
https://orcid.org/0000-0003-3597-2646
https://orcid.org/0000-0003-3597-2646
https://orcid.org/0000-0003-3597-2646
https://orcid.org/0000-0002-3929-3598
https://orcid.org/0000-0002-3929-3598
https://orcid.org/0000-0002-3929-3598
https://orcid.org/0000-0002-3929-3598
https://orcid.org/0000-0002-3929-3598
mailto:renhaozhe@mail.dlut.edu.cn
mailto:z.xu@dlut.edu.cn
mailto:wgwdut@dlut.edu.cn
mailto:wliang@cs.anu.edu.au
mailto:qiufenxia@dlut.edu.cn
mailto:panzhou@hust.edu.cn
mailto:RanaOF@cardiff.ac.uk
mailto:a.galis@ucl.ac.uk

resource utilization in MEC networks and reduce service
cost. It is however challenging to efficiently utilize existing
VNF instances or create new VNF instances to maximize the
number of multicast requests and minimize overall cost –
subject to the computing capacity constraint on each cloudlet
in the MEC network and the end-to-end delay requirement
of each admitted multicast request. The key challenge is to
identify which cloudlets should be used to host VNFs
required within a multicast request service chain, i.e., which
existing VNF instances can be used for which request?
Second, each NFV-enabled multicast request usually has a
QoS requirement to guarantee that its traffic reaches the desti-
nations within the specified end-to-end delay requirement.
Identifying how to meet the end-to-end delay requirement of
each admitted NFV-enabledmulticast request is challenging.
In this paper, we tackle the aforementioned challenges, by
investigating efficient methods that investigate VNF sharing,
service chaining, and routing that canmeetQoS requirements
of NFV-enabledmulticast requests in anMECnetwork.

There are extensive studies on multicasting in conven-
tional networks or software-defined networks, which do not
consider service function chain requirements [17], [18], [51].
These solutions however cannot be directly applied to NFV-
enabled multicasting. There are also recent investigations on
NFV-enabled multicasting. However, these approaches do
not consider end-to-end delay requirements [39], and they
assume that only one service instance is included in the ser-
vice function chain [51], or that the VNFs in each service chain
are consolidated into a single location [45], [47]. For example,
Zhang et al. [51] investigated the NFV-enabled multicast
problem by assuming that there are sufficient computing and
bandwidth resources in a Software Defined Network (SDN)
to accommodate a multicast request. Xu et al. [47] investi-
gated the problem of NFV-enabled multicasting, by devising
an approximation algorithm with a provable approximation
ratio for realizing a single NFV-enabledmulticast request and
an online algorithm with a guaranteed competitive ratio for
the online NFV-enabled multicasting problem. Ren et al. [39]
investigated the NFV-enabled multicasting in an SDN, by
assuming that the traffic of each multicast request can be
processed by multiple instances of the VNFs in its service
chain. These methods are likely to increase the cost/delay of
implementing such multicast requests, as placing VNFs into
multiple cloudlets can lead to a greater delay to form a service
function chain and incur a higher cost.

To the best of our knowledge, we are the first to consider
the problem of delay-sensitive NFV-enabled multicasting
problem in an MEC network, by designing both approxima-
tion algorithms and efficient heuristics. The main contribu-
tions of this paper are as follows.

� We study the NFV-enabled multicasting problem in
an MEC network, with an aim to minimize the
implementation cost of the request while meeting its
delay requirement.

� We propose an efficient heuristic for the NFV-
enabled multicasting problem. We also devise the
very first approximation algorithm with an approxi-
mation ratio, if the delay requirement is neglected.

� We also consider a set of NFV-enabled multicast
request admissions with the aim to maximize the

weighted system throughput. We also propose a
heuristic for this problem.

� We evaluate the performance of the proposed algo-
rithms through experimental simulations in synthetic
networks and within a real test-bed. Experimental
results demonstrate that the proposed algorithms
outperform existing reported approaches.

The rest of the paper is organized as follows. Section 2
reviews related work. Section 3 introduces the system
model, notations, and problem definition. Section 4 devises
an approximation algorithm for the NFV-enabled multicast-
ing problem without end-to-end delay requirements, and
proposes an efficient heuristic for the problem with delay
requirements using the proposed approximation algorithm
as a subroutine. Section 5 devises an efficient heuristic algo-
rithm for the the NFV-enabled multicasting problem with
resource constraints on cloudlets. Section 6 evaluates the
performance of the proposed algorithms experimentally in
a real test-bed, and Section 7 concludes the paper.

2 RELATED WORK

Recently, traffic steering has re-gainedmuch attention due to
the challenges introduced by software defined networking
and network function virtualization [5], [6], [15], [16], [18],
[23], [27], [33], [46], [47], [50]. Unicasting is one of the primary
focus of existing studies. For example, Moens et al. [33]
focused on hybrid networks with both hardware and soft-
ware network functions. Cziva et al. [7] addressed the prob-
lem of the placement of virtual functions by minimizing the
total number of VNF instances. Yu et al. [29] investigated
profit maximization associated with placing VNFs onto a set
of locations, and considered the delay requirement of each
unicast request. Xu et al. [45] studied the offloading problem
of delay-sensitive tasks with network function requirements
in an MEC network, by proposing efficient heuristics and an
online algorithmwith a competitive ratio. Xie et al. [44] inves-
tigated the VNF sharing problem with an aim to improve
resource utilization, by finding a common link for a set of ser-
vice chains, so that the deployed service chains can be shared
by all users. Kiji et al. [19] proposed a virtual network func-
tion placement and routing algorithm for multicast requests
with service chain requests, through merging multiple ser-
vice paths (MSC-M). Although there exist studies that con-
sider the delay requirements of user requests [22], [29], [45],
they only considered unicast requests and their solutions
cannot be applied to the NFV-enabled multicasting problem,
which is a generalization of the NFV-enabled unicasting
problem. Chen and Wu [5] devised algorithms for the VNF
placement to minimize the cost of implementing NFV-
enabled unicast requests by balancing set-up and bandwidth
consumption costs.

There are studies on multicasting in conventional net-
works [2], [14], [24], [25], [34], [43]. Recently, with the emer-
gence of new networking technologies such as mobile edge
computing, software-defined networking (SDN) and NFV,
multicasting has re-gained the attention by the research com-
munity [17], [18]. For example, Huang et al. [18] studied
online multicasting in software-defined networks with both
node and link capacity constraints. Huang et al. [17] studied
the scalability problem ofmulticasting in SDNs, by proposing

REN ETAL.: EFFICIENTALGORITHMS FOR DELAY-AWARE NFV-ENABLED MULTICASTING IN MOBILE EDGE CLOUDS WITH RESOURCE... 2051

an efficient algorithm to find a branch-aware Steiner Tree for
each multicast request. These solutions however cannot be
directly applied to the problem of NFV-enabled multicasting
in MEC networks, because they did not consider the service
chain requirements ofmulticast requests.

Investigations on NFV-enabled multicasting include [1],
[30], [31], [39], [41], [47], [49], [51]. For instance, Zhang
et al. [51] investigated the NFV-enabled multicasting problem
in an SDN without resource capacity constraints, assuming
that data traffic of each multicast request can only be proc-
essed by one server. Xu et al. [47], [48] considered the NFV
multicasting problem by assuming the traffic of each request
can be processed by multiple servers, with the objective to
minimize the implementation cost. Approximation and
online algorithms for the problems are proposed. They how-
ever assumed that the VNFs in each service chain is consoli-
dated into a single data center. Ma et al. [30], [31] proposed an
online algorithm for the NFV-enabled multicasting problem
without taking into account the end-to-end delay require-
ment. Soni et al. [41] proposed a scalablemulticast groupman-
agement scheme and a load balancing method for the routing
of best-effort traffic and bandwidth-guaranteed traffic. These
studies however did not consider end-to-end delay require-
ments of multicast requests. Alhussein et al. [1] devised exact
solutions for the problem of joint VNF placement and routing
for multicast requests in 5G core networks, such that the cost
of provisioningNFV-enabledmulticast services isminimized,
by formulating the problem into a mixed integer linear
program (MILP). The delay requirement of NFV-enabled
requests has not been considered and the MILP-based exact
solutions might not be scalable for large problem sizes.
Yi et al. [49] considered delay requirements of the NFV-
enabled multicasting problem; however VNF sharing is not
explored. To guarantee scalability and solution quality, Ren
et al. [39] proposed approximation algorithmwith an approxi-
mation ratio for the problem of embedding a service graph
that consists of VNF instances into a substrate network, by
assuming that the traffic of eachmulticast request can be proc-
essed by multiple instances of the VNFs in its service chain.
The delay requirement of multicast requests however is not
considered in the study. Similarly, the delay requirement of
multicast requests is not considered [30], [31], and the authors
only consider a singlemulticast request.

3 PRELIMINARIES

In this section, we first introduce the system model, notation
and key concepts. We then define the problem being consid-
ered more precisely.

3.1 System Model

We consider a mobile edge cloud (MEC) networkG ¼ ðV;EÞ
with a set V of switches, a set of cloudlets and a setE of links
between switches and cloudlets. Each cloudlet is attached to
a switch in V via an optical fiber, and the communication
delay between a switch and its attached cloudlet is negligi-
ble. Let VCL be the set of switches with attached cloudlets.
Clearly, VCL � V . Cloudlets are usually deployed in shop-
pingmalls, airports, or base stations that are within the prox-
imity of mobile users. Due to space limitation of installing
cooling equipment in those places, each cloudlet is usually

equippedwith (a small number of) servers and thus has com-
puting resource capacity to implement VNF instances. We
denote byCv the computing capacity of the cloudlet attached
to switch node v 2 VCL. In addition, transferring data
through links in E incurs a communication latency. Let de be
the delay associated with transmitting a unit of data traffic
via link e 2 E. We assume that there is an SDN controller
that both makes traffic steering decisions and manages net-
work function instances that run on a server in the MEC net-
workG. Fig. 1 is an illustrative example of anMEC network.

3.2 NFV-Enabled Multicast Requests and Service
Chains

A delay-aware NFV-enabled multicast request is a request that
transfers an amount of data traffic from a source to a set of
destinations. The data traffic must be processed by a
sequence of VNFs before reaching their destinations, while
also meeting delay constraints.

Let rk be a delay-aware NFV-enabled multicast request,
denoted by a quadruple rk ¼ ðsk;Dk; bk; SCkÞ, where sk 2 V
is the source, Dk is the set of destinations with Dk � V , bk is
the size of its data traffic, and SCk is the service chain of rk
that consists of a sequence of VNFs. Without loss of general-
ity, we consider that the data traffic bk of request rk is given
(derived from historical information).

Let F be the set of VNFs provided by the network service
provider in G. A VNF fl 2 F can be needed by request rk to
form its service function chain SCk. Assume that there are
Lk VNFs in SCk, where 1 � l � Lk for each SCk and
SCk � F . We further assume that there is a number of
already instantiated VNF instances for each type of network
function fl in cloudlets of G. Due to the resource capacity
constraints on cloudlets, we allow the instances of VNF fl to
be shared among different requests.

To admit request rk, all data traffic from source sk of rk
needs to be processed through an instance of each VNF
fl 2 SCk prior to reaching destinations inDk, as illustrated in
Fig. 2. An existing instance must therefore be selected for
each VNF fl 2 SCk, or a new instance of fl must be instanti-
ated in a cloudlet ofG. Existing or newly created VNF instan-
ces of each service chain SCk can be placed in multiple
cloudlets, because a single cloudlet may not have all the
instances of the VNFs in SCk, or it may lack sufficient com-
puting resources to create new instances for all VNFs in SCk.

Each multicast request needs a certain amount of com-
puting resource to process its data traffic. Let CunitðflÞ be

Fig. 1. An MEC network G.

2052 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 9, SEPTEMBER 2020

the number of computing resource needed to process a unit
amount of data traffic. If fl is implemented as a newly cre-
ated instance, the total number of computing resources that
should be assigned to the new instance to process the data
traffic of request rk is CunitðflÞ � bk. Otherwise, an existing
instance of fl should have at least an amount CunitðflÞ � bk of
available computing resource to process the traffic of rk.
Notice that we assume that the accumulative available
resources in the cloudlets of G are higher then the total
resource demand of a single request rk; however, for a spe-
cific cloudlet in VCL, it may not have enough resources to
meet the demand of rk.

3.3 Delay Requirements of Multicast Requests

The end-to-end delay of implementing a multicast request
plays a vital role in guaranteeing the quality of services of
users. We thus consider that each multicast request has a
delay requirement, which specifies the maximum delay it
can tolerate for transmitting its data from its specified source
to its destinations. For a delay-aware NFV-enabledmulticast
request, its experienced delay consists of the total processing
delay in the selected cloudlets and the total transfer delay
from the source to cloudlets and from the cloudlets to the
destinations, which are defined in the following.

Processing Delay. The processing delay experienced by a
multicast request rk depends on both the amount of data traf-
fic that needs to be processed and the computing resource
assigned to process the traffic. Without loss of generality, we
assume that the processing delay dpk;l of each multicast

request rk by VNF fl is proportional to the amount of traffic it
needs to process, i.e.,

dpk;l ¼ al � bk; (1)

where al is a given proportional factor of VNF fl.
The accumulative processing delay incurred due to the

traffic processing by network functions in SCk of rk is

dpk ¼
X

fl2SCk
dpk;l: (2)

Transmission Delay. Let Pk be the set of routing paths from
source sk to destinations in Dk, where each path pm 2 Pk

denotes a routing path from sk to a destination tm 2 Dk. The
transmission delay of each rk is the maximum end-to-end
delay incurred in the paths in Pk. We denote by dtk the trans-
mission delay of request rk, which can be defined as follows:

dtk ¼ maxpm2Pk
X
e2pm

de � bk: (3)

The delay experienced by multicast request rk thus is

dk ¼ dpk þ dtk; (4)

which needs no greater than the specified delay require-
mentDk, i.e.,

dk � Dk: (5)

3.4 Cost Models

As the network service provider of an MEC network G
charges user requests on a pay-as-you-go basis, the major
concern of the service provider is its operational cost, which
consists of computing resource usage costs in cloudlets,
bandwidth resource usage costs in links, and VNF instance
instantiation costs. Let cðeÞ and cðvÞ be the usage costs of
one unit of bandwidth and computing resources at link
e 2 E and cloudlet v 2 VCL, respectively. Denote by clðvÞ the
cost of instantiating an instance of network function fl in
cloudlet v 2 VCL, and let n0l;v be the number of newly created
instances for network function fl in cloudlet v. Denote by
nl;v the number of existing instances of fl in v that are used
to process the traffic of rk.

The operational cost of admitting a delay-aware NFV-
enabled multicast request rk can be specified as

ck ¼
X

fl2SCk

X
v2VCL;rk

ððnl;v þ n0l;vÞ � cðvÞ � bk þ n0l;v � clðvÞÞ

þ
X
e2Tk

cðeÞ � bk;
(6)

where VCL;rk is the set of cloudlets that are used to imple-
ment the instances of VNFs in SCk of request rk, and Tk is
the obtained multicast tree that is used to route the data traf-
fic of rk.

3.5 The Directed Steiner Tree [4]

The Steiner tree problem is defined as follows: given a
graph G ¼ ðV;EÞ with a cost function c on the edges, and a
subset of terminals X � V , the goal is to find a minimum
cost tree that includes all the terminals inX. The found min-
imum cost tree is referred to as the Steiner tree.

3.6 Problem Definition

We consider a mobile edge cloud (MEC) networkG ¼ ðV;EÞ
with a set VCL of cloudlets with VCL � V , and a set of multi-
cast requests R. Given a snapshot of the MEC at a given
time instant and a NFV-enabled multicast request rk, under-
standing how request rk can be realised across a set of VNFs
remains a key challenge. We thus first consider the problem
of admitting a single multicast request rk, such that its oper-
ational cost is minimized. Further, considering that the
accumulated computing resources in an MEC may be insuf-
ficient to implement all requests, another question is identi-
fying how to carry out admission control for multicast
requests to maximize weighted throughput. In the follow-
ing we define these two optimization problems precisely.

Problem 1. Assuming that each multicast request can be imple-
mented using the computing resources assigned to existing
VNF instances, the NFV-enabled multicasting problem
with a single multicast request in MEC network G is to

Fig. 2. A service chain h NAT;Firewall; IDS i with one instance of NAT
and two instances of Firewall and IDS.

REN ETAL.: EFFICIENTALGORITHMS FOR DELAY-AWARE NFV-ENABLED MULTICASTING IN MOBILE EDGE CLOUDS WITH RESOURCE... 2053

route the traffic of request rk to each destination inDk by chain-
ing either existing or newly created instances of VNF, such that
the operational cost (i.e., Eq. (6)) of implementing rk is mini-
mized, while meeting the end-to-end delay requirement Dk of
rk and capacity constraint on each cloudlet v 2 VCL.

Problem 2. Assuming that the computing resource in each
cloudlet in the MEC network G has available capacity. For each
request in R, the network may or may not have enough resour-
ces to admit it, the NFV-enabled multicasting problem in
an MEC network G for a given set R of NFV-enabled multicast
requests is to maximize the system throughput while minimiz-
ing the operational cost, subject to computing capacity on each
cloudlet, where the system throughput is defined as the total
amount of data that is processed and transferred by the system
for admitted multicast requests. Let ST be the weighted
throughput and Rad the set of admitted multicast requests, then

ST ¼
X

rk2Rad

bk: (7)

The NFV-enabled multicasting problems are NP-hard, as
its special case – the traditional multicast problem without
NFV service chain constraints is NP-hard [8].

For clarity, the symbols used in this paper are summa-
rized in Table 1.

4 ALGORITHMS FOR THE ADMISSION OF A SINGLE

NFV-ENABLED MULTICAST REQUEST

In this section, we deal with NFV-enabled multicasting for a
single NFV-enabled multicast request admission. We first
propose an efficient heuristic for the problem. We then con-
sider a special case of the problem without delay require-
ments, by devising an approximation algorithm.

4.1 An Efficient Heuristic

The basic idea of the proposed heuristic is based on an
observation that a feasible solution to the problem needs to
meet the capacity constraints on cloudlets, service function
chain requirements, and the end-to-end delay requirement
of each multicast requests rk. We thus adopt a two-phase
heuristic that progressively considers the mentioned con-
straints and requirements.

Phase One. We first propose an algorithm to jointly con-
sider the capacity constraint and the service chain require-
ment, by ignoring the delay requirement of rk. The proposed

TABLE 1
Symbols

Symbols Meaning

G ¼ ðV;EÞ a mobile edge cloud (MEC) network with a set V of switches and a set E of links
R a set of delay-aware NFV-enabled multicast requests
VCL the set of switches with attached cloudlets, and clearly VCL � V
Cv the computing capacity of the cloudlet attached to a switch node v 2 VCL

rk ¼ ðsk;Dk; bk; SCkÞ a delay-aware NFV-enabled multicast request, where sk 2 V is the source,Dk is the set of destinations withDk � V , bk
is the size of its data traffic, and SCk is the service chain of rk that consists of a sequence of VNFs.

F and fl the set of VNFs provided by the network service provider in G and a VNF fl
Lk The number of VNFs in SCk

CunitðflÞ the amount of computing resource needed to process a unit amount of data traffic
dpk;l the processing delay of each multicast request rk by VNF fl
al a given proportional factor of VNF fl
dpk the accumulative processing delay incurred due to the traffic processing by network functions in SCk of rk
Pk the set of routing paths from source sk to destinations inDk

pm 2 Pk a routing path from sk to a destination tm 2 Dk

dtk the transmission delay of request rk
dk andDk the delay experienced by multicast request rk and its delay requirement
cðeÞ and cðvÞ the usage costs of one unit of bandwidth and computing resources at link e 2 E and cloudlet v 2 VCL

clðvÞ the cost of instantiating an instance of network function fl in cloudlet v 2 VCL

n0l;v the number of newly created instances for network function fl in cloudlet v
nl;v the number of existing instances of fl in v that are used to process the traffic of rk
ck the operational cost of admitting a delay-aware NFV-enabled multicast request rk
VCL;rk the set of cloudlets that are used to implement the instances of VNFs in SCk of request rk
Tk the obtained multicast tree that is used to route the data traffic of rk
ST and Rad the weighted throughput and the set of admitted multicast requests
n0k the number of cloudlets that are used to implement the VNFs in SCk in the current infeasible solution
nk the proper number of cloudlets in the feasible solution of algorithm Heu_Delay

nmax and nmin the minimum and maximum bounds of the binary search range in algorithm Heu_Delay

G0 ¼ ðV 0; E0Þ the auxiliary graph constructed in algorithm Appro_NoDelay

f 0i;l;v and f 00i;l;v the pair of virtual VNF nodes for the ith VNF instance of fl in cloudlet v 2 VCL

wðf 0i;l;v; f 00i;l;vÞ the weight of edge hf 0i;l;v; f 00i;l;vi in the auxiliary graphG0.
v0k;l and v00k;l a pair of virtual cloudlets for the lth VNF and cloudlet v in G0

Wl;v the widget that is built for network function fl in cloudlet v 2 VCL

wsl;v and wdl;v a widget source node and a widget destination node for the widget for network function fl and cloudlet v 2 VCL in
auxiliary graphG0

c� the optimal solution for the NFV-enabled multicasting problem
Lmax the maximum length of the service chains of the requests in R, i.e., Lmax ¼ argmaxrk2RjSCkj.
Lcom and RðLcomÞ the number of common VNFs that requests have in their service chains VNFs in common of their service chains, and

the set of such requests.

2054 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 9, SEPTEMBER 2020

algorithm smartly explores existing VNF instances in each
cloudlet that can be shared with the VNF instances of rk.
Notice that the solution may not be feasible to the NFV-
enabled multicasting problem, because the delay require-
ment of rk is not considered in this phase. For the sake of clar-
ity, we describe the proposed algorithm for the problem
without delay requirement in the next subsection, which is
referred to as Appro_NoDelay. By now, we assume we
already obtained the multicast tree for rk in G without con-
sidering its delay requirement.

Phase Two. We refine the obtained multicast tree into a
feasible solution to meet the delay requirement of rk. In par-
ticular, we observe that a longer delay will be the result if
the VNFs of SCk are implemented in multiple cloudlets.
This is because that if the VNFs are distributed into different
cloudlets, the data traffic transmission among two consecu-
tive VNFs has to be performed by inter-cloudlet links,
which incurs higher delays than those by intra-cloudlet
data transfers. However, putting all VNFs into a single
cloudlet may also incur a longer delay, since the selected
cloudlet may be far away from the destinations of rk. This
means that a large or a small value for the number of cloud-
lets of a request may not be proper to meet the delay
requirement of rk. We thus adopt a binary search to narrow
down the choices of the proper number of cloudlets for rk,
making the delay requirement of rk being met quickly. Spe-
cifically, let n0k be the number of cloudlets that are used to
implement the VNFs in SCk in the current infeasible solu-
tion, and denote by nk the proper number of cloudlets in the
feasible solution. We first set

nk ¼
j jVCLj þ 1

2

k
: (8)

The proposed algorithm first tries to re-assign the VNFs
in service function chain SCk such that they are imple-
mented in exactly nk cloudlets. If nk < n0k, we identify a
number of ðn0k � nkÞ cloudlets that implements VNFs of SCk

in the obtained infeasible solution from the Steiner tree [4]
(i.e., multicast tree) in G0 and have the longest average data
transfer delay from it to the destinations in Dk. Let F

0 be the
set of instances of VNFs in SCk that are implemented in the
identified cloudlets. The VNFs in F 0 are pre-consolidated to
the rest nk cloudlets in V 0 one by one, by selecting a cloudlet
with the lowest implementation cost for each fl 2 Fv0 . If the
pre-consolidation makes the delay requirement of rk being
met, the algorithm terminates with a feasible solution. Oth-
erwise, if the experienced delay of rk is reduced but still
greater than its requirement, we continue the above proce-
dure by searching the appropriate number of cloudlets in
the range of ½1; nk	. The rationale is that the number of
cloudlets in the multicast tree is still too many, and the
inter-cloudlet communication leads to the delay require-
ment violation. The number of cloudlets still needs to be
reduced. Instead, if the experienced delay is increased, we
try to find the appropriate value for nk in the range of
½nk; jVCLj	. This means increasing the number of cloudlets
for rk may reduce the experienced delay of multicast
request rk. On the other hand, if nk > n0k, we need to find
the additional nk � n0k cloudlets that have the lowest imple-
mentation cost for VNFs of rk, and pre-assign VNFs in F 0 to

the cloudlets one by one. The above binary search procedure
continues until a feasible solution is obtained or themulticast
request is rejected. The detailed heuristic is described in
Algorithm 1 and its basic idea is shown in Fig. 3. For simplic-
ity, this algorithm is referred to as algorithm Heu_Delay in
the rest of this paper.

Algorithm 1. Heu_Delay

Input: G ¼ ðV;EÞ, VCL, computing capacity Cv for each cloudlet
v 2 VCL, and a multicast request rk ¼ ðsk;Dk; bk; SCkÞ and
its delay requirement dreqk .

Output: The locations for the VNFs of service chain SCk ofmulti-
cast request rk and themulticast tree Tk to transfer its data.

1: /*Phase one: find cloudlets and routing paths for rk by con-
sidering its service chaining requirement and cloudlet
capacity constraints.*/

2: Find a multicast tree for rk without considering its delay
requirement dreqk , by invoking algorithm Appro_NoDelay;

3: Let n0k be the number of cloudlets that are used to imple-
ment VNFs in SCk of the found multicast tree;

4: /*Phase two: adjust the multicast tree to meet the delay
requirement of rk.*/

5: nmin 1;
6: nmax jVCLj;
7: while nmin <¼ nmax do
8: nk bnminþnmax

2 c;
9: if nk < n0k then
10: Identify the number ofn0k � nk cloudlets that implements

VNFs of SCk in the obtained solution from the Steiner
tree inG0 and has the top-(n0k � nk) highest average data
transfer delays from it to the destinations inDk;

11: Move the VNFs that were implemented in the n0k � nk

cloudlets of the infeasible solution to the rest cloudlets
one by one.

12: else
13: Find the additional nk � n0k cloudlets that have the low-

est implementation cost for VNFs of rk, and assign
VNFs in Fv0 to the cloudlets one by one.

14: if the experienced delay of rk is met then
15: return;
16: else
17: if the experienced delay of rk is decreased then
18: nmax nk;
19: else
20: nmin nk;

Fig. 3. An illustration of the algorithm Heu_Delay.

REN ETAL.: EFFICIENTALGORITHMS FOR DELAY-AWARE NFV-ENABLED MULTICASTING IN MOBILE EDGE CLOUDS WITH RESOURCE... 2055

4.2 An Approximation Algorithm for the Problem
Without Delay Requirements

The proposed approximation algorithm for the problem
without delay requirements is to reduce the problem in G to
the Steiner tree problem in an auxiliary graph G0, via a non-
trivial reduction. Since each cloudlet v 2 VCL has computing
capacity to implement the VNFs of each request, the VNFs in
each service function chain SCk can be implemented in mul-
tiple cloudlets or consolidated into a single cloudlet to save
the communication cost due to the transmissions between
different cloudlets. To ensure that each cloudlet has suffi-
cient computing resource to implement the VNFs in SCk of
eachmulticast request rk, we adopt a conservativemethod of
reserving

P
fl2SCk

bk � CunitðflÞ resource for rk in each cloud-
let. The cloudlet with an amount of available computing
resource that is less than

P
fl2SCk

bk � CunitðflÞ will be
removed from the network G, where the available resource
in idle VNF instances are also accounted.

The Construction of Auxiliary Graph G0 ¼ ðV 0; E0Þ. We now
construct G0 based on the sub-network of G.

We start by constructing the node set V 0 ofG0. Specifically,
we first add source node sk into the auxiliary graph. We also
add each node in V into V 0, i.e., V 0 V 0 [V . Notice that,
since VCL � V , all switch nodes in VCL are added into V as
well. However, only their functionalities of forwarding traf-
fic will be used.

Recall that VNFs in SCk of multicast request rk can be
assigned to existing VNFs or newly instantiated VNF instan-
ces. To determine whether making use of existing VNF
instances or creating new ones, we create a widget for each
cloudlet v 2 VCL and each network function fl 2 SCk to rep-
resent the resource availability of the cloudlet v for fl by two
cases. Case 1: the amount of available computing resource to
instantiate new instances of VNFs; Case 2: existing VNF
instances of fl in v 2 VCL that are available to process the traf-
fic of rk. There is a widget for each pair of cloudlet and VNF,
which actually means a possible placement of a VNF to a
cloudlet.

For Case 1, we add a pair of virtual VNF nodes into the
widget, to represent each of existing VNF instances of fl
with sufficient computing resource processing the data traf-
fic of rk in cloudlet v 2 VCL. Denote by f 0i;l;v and f 00i;l;v the pair
of virtual VNF nodes for the ith VNF instance of fl in cloud-
let v 2 VCL. We then add an edge from f 0i;l;v to f 00i;l;v into the
widget. The weight of edge hf 0i;l;v; f 00i;l;vi is the cost of process-
ing a unit traffic by an existing VNF instance of fl in cloudlet
v, i.e., wðf 0i;l;v; f 00i;l;vÞ ¼ cðvfl;rkÞ.

For Case 2, we add a pair of virtual cloudlets for each cloud-
let v 2 VCL into eachwidget to denote the amount of available
computing resource to instantiate a new instance of fl in
cloudlet v, as shown in Fig. 4. Let v0k;l and v00k;l be such a pair of
virtual cloudlets for the lth VNF and cloudlet v. To jointly con-
sider the processing and transmission costs, we connect each
pair of virtual cloudlets, v0k;l and v00k;l, i.e., E

0 E0 [fhv0k;l;
v00k;lig. The weight of edge hv0k;l; v00k;li is the sum of the instantia-
tion cost of VNF fl and the cost of processing a unit traffic by
the lth VNF in SCk for each multicast request rk in cloudlet v.
That is,wðhv0k;l; v00k;liÞ ¼ clðvÞ

bk
þ cðvfl;rkÞ.

We also add a widget source node wsl;v and a widget destina-
tion node wdl;v for the widget for network function fl and
cloudlet v 2 VCL. Node wsl;v is connected to node v0k;l and

the node f 0l for each existing instance of network function fl
that has enough computing resource to process the data
traffic of rk. In addition, node v0k;l and node f 0l for each exist-
ing instance of network function fl are both connected with
the widget destination node wdl;v. The weights of those
edges are set to zeros. It must be mentioned that widget
source and destination nodes are used to guarantee that
either a new instance for fl is created or an existing VNF
instance of fl is selected to process the traffic of rk, which
will be proved in the algorithm analysis part.

The widgets become part of the auxiliary graph G0.
We then connect the widgets and other nodes in the aux-

iliary graph G0 as follows.

� sk to widget source nodes: There is an edge from source
node sk to each widget source node wsl;v of the wid-
get for the first VNF f1 of SCk and every v 2 VCL. The
weight of edge hsk; wsl;vi is set as the transmission
cost of data traffic of rk.

� widget destination to widget source nodes: Since the data
traffic of rk may be processed by multiple cloudlets,
there is an edge from the widget destination node of
each widget for network function fl to the widget
source node of each widget for VNF flþ1, for each l
with 1 � l � Lk � 1, i.e., E0 E0 [fhwdl;v; wslþ1;uig
for lwith 1 � l � Lk � 1 and v, u in VCL. Theweight of
edge hwdl;v; wslþ1;ui is the transmission cost of a unit
traffic along the shortest path from cloudlet v to cloud-
let u.

� widget destinations of fLk
to cloudlet nodes: We finally

connect each of the widgets that are created for the last
VNF fLk

2 SCk with the cloudlet node. Specifically,
there is an edge from node wdLk;v to cloudlet node u in
V 0, i.e., E0 E0 [fhwdLk;v; uig. The weight of edge
hwdLk;v; ui is the transmission cost of a unit traffic
along the shortest path from cloudlet v to cloudlet u.

An example of the constructed auxiliary graph is shown
in Fig. 5.

Problem Reduction. We now reduce the NFV-enabled
multicasting problem without delay requirements in G to
the Steiner tree problem in the directed auxiliary graph G0.
Recall that in the construction of G0, the VNF processing

Fig. 4. An example of the widget for the VNF fl in SCk and cloudlet
v 2 VCL.

2056 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 9, SEPTEMBER 2020

and transmission costs are considered as theweights of edges.
We thus find a directed Steiner tree in G0 that spans nodes in
fskg [Dk. We then transfer the Steiner tree in G0 to routing
paths for rk in the original networkG. Specifically, if a widget
for fl 2 SCk of and cloudlet v 2 VCL is included in the Steiner
tree, either a newly created VNF instance or an existing one in
cloudlet v will be used to implement fl, depending on which
edge of the widget is included in the Steiner tree. Notice that
the edges among the widgets inG0 correspond to the shortest
paths of their endpoints of the edges in G. We thus replace
each of such edgeswith its shortest path inG.

Algorithm 2. Appro_NoDelay

Input: G ¼ ðV;EÞ, VCL, computing capacity Cv for each cloudlet
v 2 VCL, and a multicast request rk ¼ ðsk;Dk; bk; SCkÞ.

Output: The locations for the VNFs of service chain SCk of mul-
ticast request rk and themulticast tree Tk to transfer its data.

1: Construct an auxiliary directed graph G0 ¼ ðV 0; E0Þ, as
shown in Fig. 5;

2: Find a directed Steiner tree T in G0 that spans nodes in
fskg [Dk, using Charikar’s algorithm [4];

3: For each path from the widget source node to the widget
destination node of a widget in T , condense the path to a
single node;

4: Replace each of all other edges in T with its corresponding
shortest path in network G; /*The edges among widgets
correspond to shortest paths in the original network G. */

4.3 Algorithm Analysis

We now analyze the feasibility of the solution obtained and
performance of the proposed algorithms.

We first show the feasibility of the solution delivered by
Algorithm 2. Intuitively, if a solution to the NFV-enabled
multicasting problem, it needs to satisfy the following three
conditions:

� Condition 1: each VNF fl 2 SCk will be assigned to
one or multiple cloudlets by either creating a new
instance or using an existing instance

� Condition 2: the traffic of rk will be processed by
VNFs as the specified order in SCk

� Condition 3: the processed traffic by the VNFs in SCk

is forwarded to destinations inDk of rk.
For Condition 1, we show that in each of the selected

cloudlets for fl, either a new instance is created or an exist-
ing instance is selected for it in the following lemma.

Lemma 1. If a cloudlet v 2 VCL is selected for VNF fl 2 SCk of
multicast request rk, either an existing instance of fl or a newly
created instance is used to process the traffic of rk.

Proof. Following the construction ofG0, showing the feasibil-
ity of the solution is to show that if the Steiner tree found in
G0 has one path from wsl;v to wdl;v of each selected widget,
the path will be the only path in the Steiner tree, and no
other paths in the widget will be included. Let Wl;v be the
widget that is built for network function fl in cloudlet
v 2 VCL. Assume that widget Wl;v is included into the
Steiner tree for the subgraph, and let p be the path from
wsl;v to wdl;v ofWl;v inG0 that is included in the Steiner tree.
We prove by contradiction. Assume that there is another
instance (either newly created or existing one) of fl is used
to process the traffic of rk. Let the ith instance of fl be such
an additional instance. This means that edge hf 0i;l;v; f 00i;l;vi has
to be included in the Steiner tree found in G0. Edges hwsl;v;
f 0i;l;vi and hf 00i;l;v; wdl;vi have to included, according to the

structure of the widget; otherwise, edge hf 0i;l;v; f 00i;l;vi is a

stand alone edge that can be removed. Let p0 be the path

that consisting of edges hwsl;v; f 0i;l;vi, hf 0i;l;v; f 00i;l;vi, and hf 00i;l;v;
wdl;vi, as shown in Fig. 6. Paths p0 and p however make it
not a tree. Therefore, only one path from wsl;v to wdl;v will

be included in the Steiner tree for the subgraph ofG0 that is
composed of source node sk and the widgets, meaning that

a newly created or existing instance of fl will be selected in

cloudlet v 2 VCL. The lemma holds. tu
We consider Condition 2 in the following lemma.

Lemma 2. The traffic of rk will be processed by the VNF instan-
ces in SCk in the specified order.

Fig. 5. An example of the auxiliary graph G0 ¼ ðV 0; E0Þ with two servers attached at node v and node u and multicast request rk transfer its data to
destinations inDk ¼ fd1; d2g. Note that there is a widget for each pair of VNF fl and cloudlet v, corresponding to a possible assignment of fl. The orig-
inal switches that attach the two cloudlets will just serve as normal forwarding switches.

REN ETAL.: EFFICIENTALGORITHMS FOR DELAY-AWARE NFV-ENABLED MULTICASTING IN MOBILE EDGE CLOUDS WITH RESOURCE... 2057

Proof. Assume that the traffic of rk is not processed by the
specified order in SCk. We have the following two cases:
(1) two instances of the same VNF fl processed the traffic,
and (2) the traffic of rk is processed by a previous VNF
fl�1 after being processed by fl.

For Case (1), the two instances must be in different
cloudlets as shown in Lemma 1. This means that two
widgets of the same VNF fl is selected in the Steiner tree
in G0. According to the construction of G0 and Lemma 1,
if the instances of fl in two cloudlets are used, the source
and destination nodes of the corresponding two widgets
have to be included in the Steiner tree in G0; otherwise,
the edges will be stand alone edges that can be removed
from the Steiner tree. Therefore, according to the problem
transformation method of the algorithm, this will corre-
spond to the processing of rk’s traffic by two instances of
fl in different cloudlets, rather than a sequence process-
ing of the two instances.

Case (2) can be dealt with similarly. Therefore, these
two cases are not possible according to the construction
of G0.

In addition, since each edge in G0 may correspond to a
shortest path inG, making the traffic being forwarded to a
cloudlet more than once. this does not mean that the traf-
fic is to be processed by the cloudlet twice. This is because
we assume in such cloudlets will just forward the traffic
instead of processing.

We thus conclude that the traffic of rk will be processed
by the VNFs in the specified order in SCk. tu
We now show Condition 3 as follows.

Lemma 3. The traffic of rk will be forwarded to its destinations in
Dk after being processed by the instances of its VNFs in SCk.

Proof. In the construction of the auxiliary graph G0, we can
see that the destination nodes of the widgets for the last
VNF fLk

is connected to its corresponding switch node in
the original network. For each WLk;k of such widgets, if its
edges are included in the Steiner tree, edge hwdLk;k; vi has
to be included in the Steiner tree. The reasons include (1)
this is the only edge to the destination nodes in Dk, and
(2) as shown in Lemma 2, the traffic cannot be processed
sequentially by other cloudlets of the same VNF fLk

or the
instances of its previous VNFs in SCk. The lemma holds. tu

Theorem 1. Given an MEC network G ¼ ðV;EÞ with a set VCL

of cloudlets and a multicast request rk (¼ ðsk;Dk; bk; SCkÞ)

that requires to transfer an amount bk of data from its source to
a set Dk of destinations and process its traffic by the VNFs in
SCk. There is an approximation algorithm, i.e., Algorithm 2,
for a special case of the NFV-enabled multicasting problem
without delay requirements, which delivers a feasible solution
that has an approximation ratio of iði� 1ÞjDkj1=i [4], and the
time complexity of OððLk � jV j � Cv

CunitðflÞ þ jV jÞ
i � jDkj2iÞ, where

Lk is the number of VNFs in the service chain SCk of multicast
request rk, i.e., Lk ¼ jSCkj, and i is the level of the directed
Steiner tree [4].

Proof. From Lemmas 1, 2, and 3, we know that the solution
obtained by finding a Steiner tree in G0 is feasible. In the
following, we analyze the approximation ratio and run-
ning time of the proposed approximation algorithm.

Assume c� is the optimal solution for the NFV-enabled
multicasting problem. In Algorithm 2, we find an approxi-
mate Steiner tree T 0 in the auxiliary graph G0. T 0 is then
converted to routing paths for rk inG by (1) selecting either
an existing instance for a network function or a newly cre-
ated instance of each VNF fl in SCk if the widget for fl is
included in the Steiner tree, and (2) replacing the edges
between selected widgets using their corresponding short-
est paths inG. In (1), the processing is determined accord-
ing to which type of VNF instance is selected. In (2), the
replaced auxiliary graph edge has the same weight as the
total cost of its corresponding shortest path inG. Therefore,
the cost do not change in the transfer from tree T 0 to the
multicast tree T for multicast request rk. Since the approxi-

mation ratio of the algorithm in [4] is iði� 1ÞjDkj1=i, the
approximation ofAlgorithm 2 is iði� 1ÞjDkj1=i aswell.

We now show the time complexity of Algorithm 2. It can
be seen that themost time consuming part of the algorithm
is the finding of a Steiner tree in the auxiliary graph. The
time complexity of Charikar’s algorithm in auxiliary graph
G0 ¼ ðV 0; E0Þ is OðjV 0j3Þ [21]. We can see that there are
Oð Cv

CunitðflÞÞ instances of VNF fl in cloudlet v 2 VCL. Accord-

ing to the construction of the auxiliary graph, we thus have

Oð Cv
CunitðflÞ þ 4Þ ¼ Oð Cv

CunitðflÞÞ nodes for each widget. In total,

we have Lk � jVCLj widgets. Therefore, there are OðLk�
jVCLj � Cv

CunitðflÞ þ jV jÞ nodes in auxiliary graph G0. The time

complexity thus isOððLk � jV j � Cv
CunitðflÞ þ jV jÞ

i � jDkj2iÞ. tu
We finally analyze the performance of Algorithm 1 the

following theorem.

Theorem 2. Given an MEC network G ¼ ðV;EÞ with a set VCL

of cloudlets and a multicast request rk (¼ ðsk;Dk; bk; SCkÞ) that
requires to transfer an amount bk of data from its source to a set
Dk of destinations with an end-to-end delay requirement dreqk

and process its traffic by the VNFs in SCk. There is a heuristic
algorithm, i.e., Algorithm 1, for the NFV-enabled multicasting
problem for a single multicast request, which delivers a feasible
solution in time OðblogVCL þ 1c � jV j3 þ ðLk � jV j � Cv

CunitðflÞ þjV jÞi � jDkj2iÞ, where Lk is the number of VNFs in the service
chain SCk of multicast request rk, i.e., Lk ¼ jSCkj, and i is the
level of the directed Steiner tree [4].

Proof. We first show the solution feasibility of the proposed
heuristic by showing that the end-to-end delay require-
ment of rk is met. Algorithm 1 adopts a binary search
based heuristic to find the proper number of cloudlets

Fig. 6. A widget and its paths from its source to destination nodes that
are selected in the Steiner tree.

2058 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 9, SEPTEMBER 2020

each multicast request rk until the end-to-end delay
requirement of rk is met or it is rejected. Therefore, as long
as the request is admitted, its end-to-end delay requirement
ismet.

We then analyze the time complexity of the proposed
heuristic. Clearly, in the worse case, the binary search
can make blogVCL þ 1c iterations. Within each iteration,
the most time consuming parts include (1) the identifica-
tion of cloudlets that involved finding the delays from
cloudlets to destinations in Dk via all pair shortest paths,
which take OðjV j3Þ time, and (2) the assignment of VNFs
one by one, taking OðjSCkjÞ time. In total, the time com-
plexity of the proposed heuristic is OðblogVCLþ 1c � jV j3 �
jSCkj þ ðLk � jV j � Cv

CunitðflÞ þ jV jÞ
i � jDkj2iÞ ¼ Oðblog jV j þ 1c�

jV j3þðLk � jV j � Cv
CunitðflÞ þjV jÞ

i � jDkj2iÞ, assuming that jSCkj
is a small constant. tu

5 ALGORITHM FOR ADMISSIONS OF A SET OF

NFV-ENABLED MULTICASTING REQUESTS

In this section, we consider a set of multicast request admis-
sions. Given a set of NFV-enabled multicast request, we
admit as many as requests in the set such that the weighted
system throughput is maximized, while the accumulated
implementation cost of all admitted requests is minimized,
subject to computing capacities on cloudlets in anMEC.

5.1 Overview

Recall that we proposed both approximate and heuristic sol-
utions for the NFV-enabled multicasting problem for the
admission of a single multicast request, a simple method for
the NFV-enabled multicasting problem is to consider algo-
rithm Heu_Delay as a black-box and admit each request
one by one invoking algorithm Heu_Delay iteratively. This
method however may miss the opportunities of sharing
VNFs among the requests, if the consecutively admitted
requests do not have common VNFs in their service chains.
Further, the constructed auxiliary graph G0 in algorithm
Heu_Delay for a request may no longer useful for the other.
This consequently may lead to a prohibitively long time to
make decisions of request admissions.

The basic idea behind the proposed algorithm is as fol-
lows. We observe that some requests have the same service
chain requirements, and the VNFs in their service chains can
be shared with high opportunities. Fig. 7 illustrates this idea,
fromwhichwe can see that requests are classified into differ-
ent categories, with each category having a set of requests that
share a number of VNFs. Specifically, the algorithm first con-
siders the category in which multicast requests the maxi-
mum number of common VNFs of their service chains.
Then, the requests in this category, we start with the requests
with smaller data traffic, and admit the requests one-by-one.
This procedure continues until no more requests can be
admitted in the category.

5.2 Heuristic Algorithm

We propose an efficient heuristic for the NFV-enabled mul-
ticasting problem for a set of requests with different service
chain requirements, based on Algorithm 1.

Specifically, the heuristic consists of a number of itera-
tions within each iteration, a set of requests with the same
number of VNFs in common are processed. Let Lcom be the
number of common VNFs that requests have in their service
chains. Let Lmax be the maximum length of the service
chains of the requests in R, i.e., Lmax ¼ argmaxrk2RjSCkj.
Initially, Lcom ¼ Lmax. It decreases by one in each iteration
of the algorithm until Lcom ¼ 0.

Within each iteration, we first find the requests that have
Lcom VNFs in common of their service chains. Denote by
RðLcomÞ the set of such requests. We then rank the requests
in RðLcomÞ in increasing order of their data traffic. For each
request rk 2 RðLcomÞ, we invoke the proposed approxima-
tion algorithm in 2. Notice that the requests in RðLcomÞ may
have different source nodes and different destination sets.
We thus need to adjust the auxiliary graph after the admis-
sion of each multicast request, by removing the source node
for the previous request, and add the source node of the cur-
rent request. This means that, before admitting the next
multicast request rkþ1, we make adjustments of the con-
structed auxiliary graph G0 instead of constructing a new
one. Specifically, the widgets that are built for the Lcom

VNFs are updated accordingly, if multicast request rk is
admitted. Also, the widgets for the VNFs that are not among
the Lcom of request rkþ1 is added to the auxiliary graph. This
iteration continues until no more requests can be admitted
within this category. The steps of this algorithm are detailed
in Algorithm 3.

We now analyze the feasibility of Algorithm Heu_Mul-

tiReq in the following theorem.

Theorem 3. Given an MEC network G ¼ ðV;EÞ with a set VCL

of cloudlets, a set R of NFV-enabled multicast requests with
each multicast request rk (¼ ðsk;Dk; bk; SCkÞ) that requires to
transfer an amount bk of data from its source to a set Dk of des-
tinations with an end-to-end delay requirement dreqk and process
its traffic by the VNFs in SCk. There is an efficient algorithm,
Algorithm 3, for the NFV-enabled multicasting problem.

Proof. To show the solution delivered by Algorithm 3 is fea-
sible, we need to show the classification of requests does
not affect the solution feasibility of Algorithm 2. Assume
that the algorithm currently considers request rkþ1. If its

Fig. 7. The basic idea of the proposed heuristic for the NFV-enabled
multicasting problem.

REN ETAL.: EFFICIENTALGORITHMS FOR DELAY-AWARE NFV-ENABLED MULTICASTING IN MOBILE EDGE CLOUDS WITH RESOURCE... 2059

previous request rk is admitted, the widgets of the corre-
sponding cloudlets that implement the VNFs of rk are
then updated, since the resource availabilities of these
cloudlets or statuses of their existing VNF instances
changed. Otherwise, there is not any change of the widg-
ets in the auxiliary graph. Considering that the feasibility
of admitting one request by Algorithm 2 can be shown by
Lemma 2, Algorithm 1 delivers a feasible solution when
multiple requests are considered. tu

Algorithm 3. Heu_MultiReq

Input: G ¼ ðV;EÞ, VCL, Ce for each e 2 E, Cv for each v 2 VCL,
and a set of multicast requests with each multicast request
being denoted by rk ¼ ðsk;Dk; bk; SCkÞ.

Output: The system throughput achieved by the admitted
requests in R.

1: Nad 0;
2: for Lcom 0; 1 . . . ; Lmax do
3: Find the maximum number of requests in R that have

Lcom common VNFs in their service chains, and let
RðLcomÞ be the set of requests;

4: Rank the multicast requests in RðLcomÞ according to their
data traffic;

5: for each request rk 2 RðLcomÞ do
6: T ;;
7: while G is (sk-Dk)-connected OR rk is admitted do
8: Construct auxiliary graph G0 ¼ ðV 0; E0Þ, by creating

Lk � jVCLj widgets, adding all the switch nodes in V
of the original network G, and interconnecting the
added nodes as shown in Fig. 5, or adjust the auxil-
iary graph if it is already constructed in the admis-
sion of previous requests;

9: Find a Steiner tree T for in auxiliary graph G0;
10: if the delay of each branch of T is smaller than dreqk

then
11: Admit multicast request rk;
12: else
13: Find the branches of T that violate delay require-

ment dreqk ;
14: For each of such found branch, identify an edge

with the maximum delay;
15: Remove the identified edges from graph G;
16: if T 6¼ ; then
17: For each path from the widget source node to the

widget destination node of a widget in T , condense
the path to a single node;

18: The widgets that are built for the Lcom VNFs are
updated according to the resource availabilities after
admitting rk;

19: if kþ 1 < jRðLcomÞj then
20: The widgets for the VNFs that are not among the

Lcom of request rkþ1 is added to the auxiliary graph;

6 PERFORMANCE EVALUATION

In this section we evaluate the performance of the proposed
algorithms in a real testbed.

6.1 Test-Bed Setup

We build a test-bed consisting of both an underlay network
with hardware switches and an overlay networkwith virtual

switches, as shown in Fig. 8. The physical underlay consists
of five H3C S5560X-30S-EI switches [12], with the support
for VXLAN for virtual tunnel building and SDN capabilities.
It has also one server with E5 Gold 5218 CPU, 128G RAM
and four PCs with i7-8700 CPU, 16G RAM. Netconf and
SNMP protocols are used to manage the switches and the
links that interconnect them [3], [35].We considered a design
approach that uses the VXLAN functionality provided by
the switch, where VXLAN is a widely used overlay tech-
nology [37]. The H3C S5560X-30S-EI switch implements
a VXLAN tunnel based on hardware, which can greatly
improve performance compared to traditional methods. The
overlaymechanismprovides connectivitywithin, and poten-
tially across multiple testbed sites as it can transit any routed
layer-3 underlay. We use VXLAN as a point-to-point tunnel-
ingmechanism (VXLANVNI identifies a single link between
two nodes [37]). SDN-capable switches can also perform
encapsulation and decapsulation of VXLAN tunnels, each
tunnel corresponds to a port in the switch. Using VXLAN,
we build an overlay networkwith a number of Open vSwitch
(OVS) [36] nodes and VMs. The overlay network is built
following the topology generated using a graph generation
tool GT-ITM [10] and the real network topologies AS1755,
AS4755. Its OVS nodes and VMs are controlled by a Ryu [40]
controller. The proposed algorithms are implemented as
Ryu applications.

6.2 Environment Settings

We consider an MEC network consisting of the number of
nodes from 50 to 250. The number of servers in each network
is set to 10 percent of the network size, and the servers are
randomly co-located with the switches. We also use real net-
work topologies, i.e.,the G�EANT [9] and an ISP network
from [42]. There are nine cloudlets for the G�EANT topology
as set in [11] and the number of data centers in the ISP net-
works are provided by [38]. The computing capacity of
cloudlet varies from 40,000 to 120,000 MHz [13] (cloudlets
with around tens of servers). Five types of network func-
tions, i.e., Firewall, Proxy, NAT, IDS, and Load Balancing,
are considered, and their computing demands are adopted
from [11], [32]. The source and destination nodes of each

Fig. 8. A test-bed with both hardware switches and virtual resources.

2060 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 9, SEPTEMBER 2020

multicast request is randomly generated, the ratio of themax-
imum number Dmax of destinations of a multicast request to
the network size jV j is randomly drawn in the range of
½0:05; 0:2	. The data of each request is randomly drawn from
½10; 200	Megabyte, and the delay requirement of transferring
such data is randomly generated from ½0:05; 5	 seconds.
Notice that the transfer of larger amount of data can be
divided into smaller amounts and transferred by multiple
multicast requests. Unless otherwise specified, these param-
eters will be adopted in the default setting.

We compare the performance of the proposed approxi-
mation and heuristic algorithms against the following
benchmarks.

� We consider the case where the VNFs of each multi-
cast request may be placed to multiple cloudlets for
processingwhile there exist solutions that consolidate
all VNFs of a multicast request into a single location.
We thus compare our solutions with such a solution,
which is referred to as algorithm Consolidated.

� Weevaluate the performance of the proposed approxi-
mation and heuristic algorithms against the one in [39]
that does not consider the delay requirement of multi-
cast requests, and we use NoDelay to represent the
algorithm.

� We also compare the performance of our algorithm
against that of a greedy solution that prefers to select
existing VNF instances for each multicast request rk.
Specifically, it finds the cloudlet that is the closest to
source node sk and has an VNF instance for its first
VNF in SCk, if there does not exist such cloudlets, a
new VNF instance is created in the closest cloudlet.
The procedure continues until all VNFs in SCk are
considered. This greedy algorithm is referred to as
algorithm ExistingFirst.

� Another greedy benchmark prefers to create new
instances for each of the VNFs in SCk, which is
referred to as algorithm NewFirst.

� The fifth benchmark selects the cloudlet that can
achieve the lowest processing cost for each VNF in
SCk. For simplicity, it is referred to as algorithm
LowCost. Specifically, algorithm LowCost finds the
cloudlet that is the closest to the source sk and then
places as many VNFs in SCk to the cloudlet until all
existing VNF instances are used or no computing
resource available to instantiate new ones. If there
are still VNFs in SCk that have not been assigned, it

finds the next cloudlet that is the closest to the found
cloudlets.

6.3 Performance Evaluation of
Algorithms Heu_Delay and Appro_NoDelay

We first evaluate the performance of algorithms Heu_Delay
and Appro_NoDelay against that of algorithms Consoli-
dated, NoDelay, ExistingFirst, NewFirst, and Low-

Cost, in terms of the average operational cost, the average
end-to-end delay, and the running time, by varying the
network size from 50 to 250 while fixing the number of
requests at 100. Fig. 9 shows the results of the proposed
algorithms.

From Fig. 9a, we can see that Algorithm Heu_Delay

achieves a lower operational cost than these of algorithms
ExistingFirst, NewFirst, and LowCost. The reason is
that Algorithm Heu_Delay jointly considers existing VNF
instances and newly instantiated ones. However, the greedy
approaches NewFirst, ExistingFirst, and LowCost

only prefer new, existing, or low processing cost VNF instan-
ces. They unfortunately could miss the opportunities of fur-
ther reducing the operational cost. Specifically, if the use of
existing VNF instances can save the processing cost, New-
First has a higher cost due to creating new instances. Also,
there are some cases when creating new VNF instances can
save transmission costs, which can be missed by algorithm
ExistingFirst. In addition, it can be seen from Fig. 9a
that Algorithm Heu_Delay has a higher operational cost
than algorithms Appro_NoDelay and NoDelay. This is
because algorithms Appro_NoDelay and NoDelay do not
consider the delay requirement of requests, making it choose
cloudlets with lower operational costs.

As shown in Fig. 9b, the average delay experienced by
each multicast request by Algorithm Heu_Delay is much
lower than its comparison counterparts. The reason is that
Algorithm Heu_Delay carefully finds a trade-off between
the delay and cost of implementing a NFV-enabled request.
Also, from Fig. 9c, we can see that the running time of
Algorithm Heu_Delay is around 50 seconds for network size
200,which is slightly larger than those of algorithmsAppro_-
NoDelay and NoDelay and smaller than algorithms Exist-
ingFirst, NewFirst, and LowCost. The reason is that
Heu_Delay has an additional process of binary search to find
a proper number of cloudlets for each request rk. Algorithm
NoDelay has a lower running time comparedwith algorithm
Appro_Delay because the delay requirement of requests is
not considered, which reduces the solution space.

Fig. 9. The performance of algorithms Appro_NoDelay, Consolidated, NoDelay, ExistingFirst, NewFirst, and LowCost.

REN ETAL.: EFFICIENTALGORITHMS FOR DELAY-AWARE NFV-ENABLED MULTICASTING IN MOBILE EDGE CLOUDS WITH RESOURCE... 2061

We then evaluate the performance of algorithms Heu_-

Delay and Appro_NoDelay against that of algorithms
Consolidated, NoDelay, ExistingFirst, NewFirst,
and LowCost, in real networks AS1755 andAS4755, by vary-
ing the ratio of the number of cloudlets to the number of
switches, i.e., jCLj=jV j from 0.05 to 0.2. Fig. 10 illustrates the
results. Figs. 10a and 10d show that algorithms Heu_Delay
and Appro_NoDelay achieve lower operational costs than
algorithms Consolidated, ExistingFirst, and New-

First, while algorithms Appro_NoDelay and NoDelay

has the highest delay.We can also see that the average cost of
implementing a multicast increases first when the ratio
jCLj=jV j increases from 0.05 to 0.1 and then decreases after-
wards. The rationale behind is that VNFs of each multicast
request may be assigned to more cloudlets with the increase
of number of cloudlets, thereby pushing up the transmission
cost from its source to the cloudlets and from the cloudlets to
its destinations. However, with the further increase of cloud-
lets, it is more likely that these cloudlets are deployed in

locations that are close to the source and destinations of the
multicast request. The transmission cost then can be reduced
afterwards.

We then investigate the impact of the maximum delay
requirement on algorithm performance in the real network
AS1755, by varying the maximum delay requirement of
each multicast request from 0.8 seconds to 1.8 seconds with
an increment of 0.2 seconds. Fig. 11 illustrates that the cost
of implementing a multicast request is decreasing with the
increase of the maximum delay requirement. The rationale
behind is that a higher delay requirement of a request
allows the algorithm to select cloudlets with lower costs but
further from the source node of the request. Obviously, the
experienced delay will be higher, as shown in Fig. 11.

6.4 PerformanceEvaluation of Algorithm
Heu_MultiReq

We now compare the performance of Algorithm Heu_Mul-

tiReq against that of algorithms Consolidated, NoDelay,

Fig. 10. The performance of algorithms Appro_NoDelay, Consolidated, NoDelay, ExistingFirst, NewFirst, and LowCost in networks
AS1755 and AS4755.

Fig. 11. The impact of the maximum delay requirement of each multicast request on the performance of algorithms Appro_NoDelay, Consoli-
dated, NoDelay, ExistingFirst, NewFirst, and LowCost.

2062 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 9, SEPTEMBER 2020

ExistingFirst, NewFirst, and LowCost, in terms of the
system throughput, the total operational cost, the average
end-to-end delay, and the running time, by varying the net-
work size from 50 to 250 and fixing the number of requests to
100. Results are shown in Fig. 12, from which we can see that
Algorithm Heu_MultiReq achieves around 30, 30, 35 per-
cent higher system throughput than algorithms Existing-
First, NewFirst, LowCost, and Consolidatedwhen the

network size is 200. The rationale behind is that algorithms
ExistingFirst, NewFirst, and LowCost prefer existing,
newly instantiated, and low processing cost VNF instances
for each multicast request, and the cloudlets for those VNF
instances may not have sufficient computing resource to
implement the request, thereby leading to its rejection. Fur-
ther, from Figs. 12a and 12b, it can be seen Algorithm NoDe-

lay has a higher end-to-end delay than that of Algorithm

Fig. 12. The performance of algorithms Heu_Multicast, Consolidated, NoDelay, ExistingFirst, NewFirst, and LowCost.

Fig. 13. The performance of algorithms Heu_Multicast, Consolidated, NoDelay, ExistingFirst, NewFirst, and LowCost.

REN ETAL.: EFFICIENTALGORITHMS FOR DELAY-AWARE NFV-ENABLED MULTICASTING IN MOBILE EDGE CLOUDS WITH RESOURCE... 2063

Heu_MultiReq, although it delivers a slight higher system
throughput. Similar results can be observed from Fig. 13
when the performance of Algorithm Heu_MultiReq is eval-
uated against that of algorithms Consolidated, NoDelay,
ExistingFirst, NewFirst, and LowCost, in real net-
worksAS1755 andAS4755.

We then investigate the impact of the number of requests
on the performance of algorithms Heu_MultiReq, Con-
solidated, NoDelay, ExistingFirst, NewFirst, and
LowCost, in terms of system throughput, average opera-
tional cost, average end-to-end delay, and running time, by
varying the number of requests from 50 to 300 while fixing
the network size to 100. Fig. 14 shows that the system
throughput increases first with the growth on the number
of requests from 50 to 100, and then keeps stable afterwards,
because the cloudlet capacities are saturated. We can also
see that the average cost of implementing a multicast
increases with the growth of request number. The rationale
behind is that each multicast request may be assigned to
more cloudlets for processing with the increase of number
of requests, considering that the resources in cloudlets are
saturated and may not be enough to implement all VNFs of
a service chain. This eventually increases the transmission
cost for each multicast request.

7 CONCLUSION AND FUTURE WORK

In this paper, we study the problem of delay-aware, NFV-
enabled multicasting in a mobile edge cloud network, by
exploring the sharing of VNF instances of requests. If cloud-
lets have sufficient computing resource to process traffic of
a multicast request, with no delay requirement, we pro-
posed an approximate solution with a provable approxima-
tion ratio; otherwise, we developed an efficient heuristic.
We also considered a set of NFV-enable multicast request
admissions with the aim to maximize the weighted system

throughput, for which we proposed an efficient heuristic.
We finally evaluate the performance of the proposed algo-
rithms against state-of-the-arts approaches in a real test-
bed, and the results show that the performance of our algo-
rithms is promising.

In this paper we considered the sharing of idle VNFs that
have been released by other requests. The requests with the
same service chain requirements may share resources with
high probability. However, requests may have dynamic
resource demands, and may share resources with others as
long as they have complimentary demands. Understanding
how to learn such dynamic complimentary resource
demands among requests is challenging. Therefore, we con-
sider the adoption of machine learning methods to classify
requests with complimentary demands as our future
research study – akin to existing efforts in interference-aware
scheduling in cloud-based data centers. Existing efforts that
make use of an interference index to characterize these com-
peting/ complementary workloads can also be utilized in the
proposed environment. Another is to explore the dynamic
admission of NFV-enabled delay-aware requests, taking
account of uncertainty (variability) of processing and trans-
mission delays. The admission of requests in the current time
slot can impact the admission of future requests. Understand-
ing howonline learning algorithms can adapt to support such
admission control remains another potential research topic.

ACKNOWLEDGMENTS

The authorswould like to thank the three anonymous referees
and the associate editor for their expertise comments and con-
structive suggestions, which have helped them improve the
quality and presentation of this article greatly. The work of
Zichuan Xu, Qiufen Xia, and Guowei Wu was supported in
part by the National Natural Science Foundation of China
(Grant No. 61802048 and 61802047), the fundamental research

Fig. 14. The performance of algorithms Heu_Multicast, Consolidated, NoDelay, ExistingFirst, NewFirst, and LowCost.

2064 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 9, SEPTEMBER 2020

funds for the central universities in China (Grant No.
DUT17RC(3)061, DUT17RC(3)070, DUT19RC(4)035, and
DUT19GJ204), and the “Xinghai Scholar Program” in Dalian
University of Technology, China. The work of Weifa Liang
was supported by the Australian Research Council Discovery
Project (Grant No. DP200101985). The work of Pan Zhou was
supported by the National Natural Science Foundation of
China (GrantNo. 61972448).

REFERENCES

[1] O. Alhussein et al., “Joint VNF placement and multicast traffic
routing in 5G core networks,” in Proc. IEEE Global Commun. Conf.,
2018, pp. 1–6.

[2] S. M. Banik, S. Radhakrishnan, and C. N. Sekharan, “Multicast rout-
ing with delay and delay variation constraints for collaborative
applications on overlay networks,” IEEE Trans. Parallel Distrib. Syst.,
vol. 18, no. 3, pp. 421–431,Mar. 2007.

[3] J. Case et al., “A simple network management protocol (SNMP),”
RFC 1098, IETF, 1990. [Online]. Available: https://tools.ietf.org/
html/rfc1157

[4] M. Charikar et al., “Approximation algorithms for directed Steiner
problems,” in Proc. 9th Annu. ACM-SIAM Symp. Discrete Algo-
rithms, 1998, pp. 192–200.

[5] Y. Chen and J. Wu, “NFV middlebox placement with balanced
set-up cost and bandwidth consumption,” in Proc. 47th Int. Conf.
Parallel Process., 2018, Art. no. 14.

[6] R. Cohen, L. Eytan, J. Naor, and D. Raz, “Near optimal placement of
virtual network functions,” in Proc. IEEE Conf. Comput. Commun.,
2015, pp. 1346–1354.

[7] R. Cziva, C. Anagnostopoulos, and D. P. Pezaros, “Dynamic
latency-optimal vNF placement at the network edge,” in Proc.
IEEE Conf. Comput. Commun., 2018, pp. 693–701.

[8] M. R. Garey and D. S. Johnson, Computers and Intractability: A
Guide to the Theory of NP-Completeness. San Francisco, CA, USA:
Freeman, 1979.

[9] G�EANT. 2000. Accessed: Feb. 2020. [Online]. Available: http://
www.geant.net

[10] E. W. Zegura, K. Calvert, and S. Bhattacharjee, “How to model an
internetwork,” in Proc. IEEE INFOCOM, 1996, pp. 594–602.

[11] A. Gushchin, A. Walid, and A. Tang, “Scalable routing in SDN-
enabled networks with consolidated middleboxes,” in Proc. ACM
SIGCOMM Workshop Hot Topics Middleboxes Netw. Function Virtu-
alization, 2015, pp. 55–60.

[12] H3C SDN Switches. 2019. Accessed: Feb. 2020. [Online]. Avail-
able: http://www.h3c.com/en/Product_Technology/Enterprise_
Products/Switches/Campus_Switches/H3C_S5560X-EI/

[13] Hewlett-Packard Development Company, “L. P. servers for enter-
prise C bladeSystem, rack & tower and hyperscale,” 2015. [Online].
Available: http://www8.hp.com/us/en/products/servers/

[14] K. Han, Y. Liu, and J. Luo, “Duty-cycle-aware minimum-energy
multicasting in wireless sensor networks,” IEEE/ACM Trans.
Netw., vol. 21, no. 3, pp. 910–923, Jun. 2013.

[15] H. Huang, S. Guo, J. Wu, and J. Li, “Service chaining for
hybrid network function,” IEEE Trans. Cloud Comput., vol. 7,
no. 4, pp. 1082–1094, Fourth Quarter 2019.

[16] H. Huang, P. Li, and S. Guo, “Traffic scheduling for deep packet
inspection in software-defined networks,” Concurrency Comput.,
Practice Experience, vol. 29, no. 16, 2016, Art. no. e3967.

[17] L. Huang, H. Hung, C. Lin, and D. Yang, “Scalable Steiner tree for
multicast communications in software-defined networking,” CoRR,
vol. abs/1404.3454, 2014. [Online]. Available: http://arxiv.org/abs/
1404.3454

[18] M. Huang, W. Liang, Z. Xu, W. Xu, S. Guo, and Y. Xu, “Dynamic
routing for network throughput maximization in software-defined
networks,” in Proc. 35th Annu. IEEE Int. Conf. Comput. Commun.,
2016, pp. 1–9.

[19] N. Kiji, T. Sato, R. Shinkuma, and E. Oki, “Virtual network func-
tion placement and routing model for multicast service chaining
based on merging multiple service paths,” in Proc. IEEE 20th Int.
Conf. High Perform. Switching Routing, 2019, pp. 1–6.

[20] S. Knight et al., “The internet topology zoo,” J. Sel. Areas Commun.,
vol. 29, pp. 1765–1775, 2011.

[21] L. Kou, G. Markowsy, and L. Berman, “A faster algorithm for
Steiner trees,” Acta Informatica, vol. 15, pp. 141–145, 1981.

[22] T.-W. Kuo, B.-H. Liou, K. C. Lin, and M.-J. Tsai, “Deploying
chains of virtual network functions: On the relation between link
and server usage,” in Proc. 35th Annu. IEEE Int. Conf. Comput.
Commun., 2016, pp. 1–9.

[23] Y. Li, L. T. X. Phan, and B. T. Loo, “Network functions virtualiza-
tion with soft real-time guarantees,” in Proc. 35th Annu. IEEE Int.
Conf. Comput. Commun., 2016, pp. 1–9.

[24] D. Li et al., “Reliable multicast in data center networks,” IEEE
Trans. Comput., vol. 63, no. 8, pp. 2011–2024, Aug. 2014.

[25] W. Liang, “Approximate minimum-energy multicasting in wire-
less ad hoc networks,” IEEE Trans. Mobile Comput., vol. 5, no. 4,
pp. 377–387, Apr. 2006.

[26] D. H. Lorenz and D. Raz, “A simple efficient approximation
scheme for the restricted shortest path problem,” Operations Res.
Lett., vol. 28, pp. 213–219, 2001.

[27] T. Lukovszki and S. Schmid, “Online admission control and
embedding of service chains,” in Proc. Int. Colloq. Structural Inf.
Commun. Complexity, 2015, pp. 104–118.

[28] L. Mamatas, S. Clayman, and A. Galis, “A service-aware virtual-
ized software-defined infrastructure,” IEEE Commun. Mag.,
vol. 53, no. 4, pp. 166–174, Apr. 2015.

[29] Y. Ma, W. Liang, Z. Xu, and S. Guo, “Profit maximization for admit-
ting requests with network function services in distributed clouds,”
IEEE Trans. Parallel Distrib. Syst., vol. 30, no. 5, pp. 1143–1157,
May 2019.

[30] Y. Ma, W. Liang, J. Wu, and Z. Xu, “Throughput maximization of
NFV-enabled multicasting in mobile edge cloud networks,” IEEE
Trans. Parallel Distrib. Syst., vol. 31, no. 2, pp. 393–407, Feb. 2020.

[31] Y. Ma, W. Liang, and J. Wu, “Online NFV-enabled multicasting in
mobile edge cloud networks,” in Proc. IEEE 39th Int. Conf. Distrib.
Comput. Syst., 2019, pp. 821–830.

[32] J. Martins et al., “ClickOS and the art of network function
virtualization,” in Proc. 11th USENIX Conf. Netw. Syst. Des. Imple-
mentation, 2014, pp. 459–473.

[33] H. Moens and F. D. Turck, “VNF-P: A model for efficient place-
ment of virtualized network functions,” in Proc. 10th Int. Conf.
Netw. Service Manage. Workshop, 2014, pp. 418–423.

[34] M. Mongiov�ı, A. K. Singh, X. Yan, B. Zong, and K. Psounis,
“Efficient multicasting for delay tolerant networks using graph
indexing,” in Proc. IEEE INFOCOM, 2012, pp. 1386–1394.

[35] Netconf Working Group. 2018. [Online]. Available: https://
datatracker.ietf.org/wg/netconf/about/

[36] Open vSwtich. 2016. [Online]. Available: https://www.
openvswitch.org

[37] M. Mahalingam et al., “Virtual extensible local area network
(VXLAN): A framework for overlaying virtualized layer 2 networks
over layer 3 networks,” RFC 7348, IETF. 2014. [Online]. Available:
https://tools.ietf.org/html/rfc7348

[38] Z. A. Qazi, C. C. Tu, L. Chiang, R. Miao, V. Sekar, and M. Yu,
“SIMPLE-fying middlebox policy enforcement using SDN,” in
Proc. ACM SIGCOMMConf., 2013, pp. 27–38.

[39] B. Ren, D. Guo, G. Tang, X. Lin, and Y. Qin, “Optimal service
function tree embedding for NFV Enabled multicast,” in Proc.
IEEE 38th Int. Conf. Distrib. Comput. Syst., 2018, pp. 132–142.

[40] Ryu SDN Controller. 2017. [Online]. Available: https://osrg.
github.io/ryu/

[41] H. Soni, W. Dabbous, T. Turletti, and H. Asaeda, “NFV-based
scalable guaranteed-bandwidth multicast service for software-
defined ISP networks,” IEEE Trans. Netw. Service Manag., vol. 14,
no. 5, pp. 1157–1170, Dec. 2017.

[42] N. Spring, R. Mahajan, and D. Wetherall, “Measuring ISP topolo-
gies with rocketfuel,” in Proc. ACM SIGCOMM Conf., 2002,
pp. 133–145.

[43] J. M. Vella and S. Zammit, “A survey of multicasting over wireless
access networks,” IEEE Commun. Surveys Tuts., vol. 15, no. 2,
pp. 718–753, Second Quarter 2013.

[44] K. Xie, X. Zhou, T. Semong, and S. He, “Multi-source multicast
routing with QoS constraints in network function virtualization,”
in Proc. IEEE Int. Conf. Commun., 2019, pp. 1–6.

[45] Z. Xu, W. Liang, M. Jia, M. Huang, and G. Mao, “Task offloading
with network function services in a mobile edge-cloud network,”
IEEE Trans.Mobile Comput., vol. 18, no. 11, pp. 2672–2685,Nov. 2019.

[46] Z. Xu, W. Liang, A. Galis, and Y. Ma, “Throughput maximization
and resource optimization in NFV-enabled networks,” in Proc.
IEEE Int. Conf. Commun., 2017, pp. 1–7.

REN ETAL.: EFFICIENTALGORITHMS FOR DELAY-AWARE NFV-ENABLED MULTICASTING IN MOBILE EDGE CLOUDS WITH RESOURCE... 2065

https://tools.ietf.org/html/rfc1157
https://tools.ietf.org/html/rfc1157
http://www.geant.net
http://www.geant.net
http://www.h3c.com/en/Product_Technology/Enterprise_Products/Switches/Campus_Switches/H3C_S5560X-EI/
http://www.h3c.com/en/Product_Technology/Enterprise_Products/Switches/Campus_Switches/H3C_S5560X-EI/
http://www8.hp.com/us/en/products/servers/
http://arxiv.org/abs/1404.3454
http://arxiv.org/abs/1404.3454
https://datatracker.ietf.org/wg/netconf/about/
https://datatracker.ietf.org/wg/netconf/about/
https://www.openvswitch.org
https://www.openvswitch.org
https://tools.ietf.org/html/rfc7348
https://osrg.github.io/ryu/
https://osrg.github.io/ryu/

[47] Z. Xu, W. Liang, M. Huang, M. Jia, S. Guo, and A. Galis,
“Approximation and online algorithms for NFV-enabled multicast-
ing in SDNs,” in Proc 37th IEEE Int. Conf. Distrib. Comput. Syst., 2017,
pp. 625–634.

[48] Z. Xu, W. Liang, M. Huang, M. Jia, S. Guo, and A. Galis, “Efficient
NFV-enabled multicasting in SDNs,” IEEE Trans. Commun., vol. 67,
no. 3, pp. 2052–2070,Mar. 2019.

[49] B. Yi, X. Wang, M. Huang, and A. Dong, “A multi-stage solution
for NFV-enabled multicast over the hybrid infrastructure,” IEEE
Commun. Lett., vol. 21, no. 9, pp. 2061–2064, Sep. 2017.

[50] Y. Zhang et al., “StEERING: A software-defined networking for
inline service chaining,” in Proc. 21st IEEE Int. Conf. Netw. Protocols,
2013, pp. 1–10.

[51] S. Q. Zhang, Q. Zhang, H. Bannazadeh, and A. L. Garcia,
“Network function virtualization enabled multicast routing on
SDN,” in Proc. IEEE Int. Conf. Commun., 2015, pp. 5595–5601.

Haozhe Ren received the BSc degree from the
University of Science and Technology Beijing,
Beijing, China, in 2012, and the ME degree from
the Xinjiang Normal University, €Ur€umqi, China, in
2018. He is currently working toward the PhD
degree in the School of Software, Dalian University
of Technology, Dalian, China. His current research
interests include network function virtualization,
software-defined networking, algorithmic game
theory, and optimization problems.

Zichuan Xu (Member, IEEE) received the BSc and
ME degrees from the Dalian University of Technol-
ogy, Dalian, China, in 2008 and 2011, respectively
and the PhD degree from the Australian National
University, Canberra, Australia, in 2016, all in com-
puter science. From 2016 to 2017, he was a
research associate with the Department of Elec-
tronic and Electrical Engineering, University Col-
lege London, United Kingdom. He is currently an
associate professor with the School of Software,
Dalian University of Technology. He is also a

‘Xinghai Scholar’ with the Dalian University of Technology. His research
interests include cloud computing, network function virtualization, soft-
ware-defined networking, wireless sensor networks, routing protocol
design for wireless networks, algorithmic game theory, and optimization
problems.

Weifa Liang (Senior Member, IEEE) received the
BSc degree fromWuhan University, Wuhan, China,
in 1984, the ME degree from the University of Sci-
ence and Technology of China, Hefei, China, in
1989, and the PhD degree from the Australian
National University, Canberra, Australia, in 1998,
all in computer science. He is currently a full profes-
sor with the Research School of Computer Sci-
ence, Australian National University. His research
interests include design and analysis of energy effi-
cient routing protocols for wireless ad hoc and sen-

sor networks, mobile edge computing and cloud computing, network
function virtualization, software-defined networking, design and analysis of
parallel and distributed algorithms, approximation algorithms, combinato-
rial optimization, and graph theory.

Qiufen Xia (Member, IEEE) received the BSc and
ME degrees from the Dalian University of Technol-
ogy, Dalian, China, in 2009 and 2012, respectively
and the PhD degree from the Australian National
University, Canberra, Australia, in 2017, all in com-
puter science. She is currently a lecturer with the
Dalian University of Technology. Her research inter-
ests includemobile cloud computing, query evalua-
tion, big data analytics, big data management in
distributed clouds, and cloud computing.

Pan Zhou (Member, IEEE) received the BS degree
from the Advanced Class of Huazhong University
of Science and Technology (HUST), Wuhan,
China, in 2006, and the PhD degree from the
School of Electrical and Computer Engineering,
Georgia Institute of Technology, Atlanta, Georgia,
in 2011. He is currently an associate professor with
the School of Electronic Information andCommuni-
cations, HUST, Wuhan, China. He was a senior
technical member with Oracle, Inc., America, from
2011 to 2013, Boston, Massachusetts. His current

research interests include security and privacy, machine learning and big
data analytics, and information networks.

Omer F.Rana (SeniorMember, IEEE) received the
BS degree in information systems engineering
from the Imperial College of Science, Technology
and Medicine, London, United Kingdom, the MS
degree in microelectronics systems design from
the University of Southampton, Southampton,
United Kingdom, and the PhD degree in neural
computing and parallel architectures from the
Imperial College of Science, Technology andMedi-
cine, London, United Kingdom. He is a professor of
performance engineering with Cardiff University,

Cardiff, United Kingdom. His current research interests include problem
solving environments for computational science and commercial comput-
ing, data analysis and management for large-scale computing, and scal-
ability in high performance agent systems.

Alex Galis (Senior Member, IEEE) is currently a
professor in networked and service systems with
the University College London. He has co-authored
10 research books and more that 250 publications
in the Future Internet areas: Systemmanagement,
networks and services, networking clouds, 5G vir-
tualisation, and programmability. Hewas amember
of the Steering Group of the Future Internet
Assembly (FIA) and he led the Management and
Service-aware Networking Architecture (MANA)
Working Group. He acted as TPC chair of 14 IEEE

conferences. He is also a co-editor of the IEEECommunicationsMagazine
feature topic onAdvances inNetworking Software. He acted as a vice chair
of the ITU-T SG13Group on Future Networking. He is involved in IETFand
ITU-T SG13 network slicing activities and he is also involved in IEEE SDN
initiative.

Guowei Wu received the PhD degree from Harbin
Engineering University, Harbin, China, in 2003. He
is currently a professor with the School of Software,
Dalian University of Technology (DUT) in China.
His research interests include embedded real-time
system, cyber-physical systems(CPS), and smart
edge computing. He has published more than 100
papers in Journal and Conference.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

2066 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 9, SEPTEMBER 2020

Safety Enhancement for Real-Time Parallel
Applications in Distributed Automotive

Embedded Systems: A Stable
Stopping Approach

Guoqi Xie , Senior Member, IEEE, Gang Zeng ,Member, IEEE, and Renfa Li , Senior Member, IEEE

Abstract—In distributed automotive embedded systems, safety issues run through the entire life cycle, and safety mechanisms for

error handling are desirable for risk control. This article focuses on safety enhancement (i.e., safety mechanisms for error handling) for

a safety-critical automotive application within its deadline. A stable stopping approach used for safety enhancement for an automotive

application is proposed based on the static recovery mechanism provided in ISO 26262. The Stable Stopping-based Safety

Enhancement (SSSE) approach is proposed by combining known backward recovery, proposed forward recovery, and proposed

forward-and-backward recovery through primary-backup repetition. The stable stopping (i.e., SSSE) approach is a convergence

algorithm, which means that when the reliability value reaches a steady state and the algorithm can stop. Experimental results reveal

that the exposure level defined in ISO 26262 drops from E3 to E1 after using SSSE, and such improvement enables a safety guarantee

of higher level.

Index Terms—Distributed automotive embedded systems, safety enhancement, stable stopping

Ç

1 INTRODUCTION

1.1 Background

SAFE driving has been the eternal theme of automobiles
since their invention. Various safety components, such

as safety belt, airbag, and brake-by-wire, have been devel-
oped for automobiles to enhance their safety. The 1st edition
of the functional safety standard ISO 26262 for road vehicles
was officially released in Nov. 2011 to enable different auto-
motive software developers to follow the same principles of
safety development [1], [2], [3]. Currently, the 2nd edition of
the ISO 26262 standard has been released in Dec. 2018 to
further strengthen safety development [4]. Functional safety
refers to the absence of unreasonable risks due to hazards
caused by the malfunctioning behavior of Electrical and
Electronic (E/E) systems according to the definition in ISO
26262 [1], [4]. Safety issues run through the entire life cycle
of automotive development, such that the maximum possi-
ble safety value should be known during the early design
phase to help control risk in the actual development pro-
cess. Safety enhancement (i.e., safety mechanisms for error
handling) is extremely desirable for risk control.

Risk refers to the probability of occurrence of harm and
the severity of that harm [1]; hence, safety can be enhanced
by reducing risk through reducing the probability or the
severity of harm or both. In ISO 26262, severity refers to the
measure of the extent of harm to an individual in a specific
situation [1], and it cannot be changed for a specific automo-
tive application because it is determined by the nature of the
harm. Therefore, risk can only be reduced by reducing the
probability of occurrence of harm. In ISO 26262, the proba-
bility of occurrence of harm is represented by exposure [1].
Reliability is often associated with random hardware fail-
ures, and it is used to represent the probability of the non-
occurrence of harm (i.e., reliability = 1 - exposure) in auto-
motive safety issues [5].

1.2 Motivation

With the increasing distribution and complexity of distrib-
uted automotive embedded systems, safety-critical automo-
tive applications such as brake-by-wire application [6], [7]
and vehicle cruiser control application [8] are parallel appli-
cations, where some tasks can be performed simultaneously
on different Electronic Control Units (ECUs) in parallel,
thereby reducing end-to-end response time. Recently,
Directed Acyclic Graph (DAG) has been used to represent
the above parallel automotive applications in some works
[7], [8] (details about parallel automotive application model-
ing can be found in Section 3).

A real-time application must guarantee correct response
within a specified time constraint (i.e., deadline) [9]. In auto-
motive embedded systems, many safety-critical applica-
tions must be real-time, such as anti-lock brake [10]; If the

� G. Xie and R. Li are with the Key Laboratory for Embedded and Cyber-
Physical Systems of Hunan Province, College of Computer Science and
Electronic Engineering, Hunan University, Changsha, Hunan 410082,
China. E-mail: {xgqman, lirenfa}@hnu.edu.cn.

� G. Zeng is with the Graduate School of Engineering, Nagoya University,
Nagoya, Aichi 4648603, Japan. E-mail: sogo@ertl.jp.

Manuscript received 19 June 2019; revised 2 Feb. 2020; accepted 29 Mar. 2020.
Date of publication 2 Apr. 2020; date of current version 24 Apr. 2020.
(Corresponding author: Renfa Li.)
Recommended for acceptance by B. Di Martino.
Digital Object Identifier no. 10.1109/TPDS.2020.2984719

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 9, SEPTEMBER 2020 2067

1045-9219� 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht_tps://www.ieee.org/publications/rights/index.html for more information.

https://orcid.org/0000-0001-6625-0350
https://orcid.org/0000-0001-6625-0350
https://orcid.org/0000-0001-6625-0350
https://orcid.org/0000-0001-6625-0350
https://orcid.org/0000-0001-6625-0350
https://orcid.org/0000-0003-1663-7981
https://orcid.org/0000-0003-1663-7981
https://orcid.org/0000-0003-1663-7981
https://orcid.org/0000-0003-1663-7981
https://orcid.org/0000-0003-1663-7981
https://orcid.org/0000-0003-4573-7375
https://orcid.org/0000-0003-4573-7375
https://orcid.org/0000-0003-4573-7375
https://orcid.org/0000-0003-4573-7375
https://orcid.org/0000-0003-4573-7375
mailto:xgqman@hnu.edu.cn
mailto:lirenfa@hnu.edu.cn
mailto:sogo@ertl.jp

anti-lock brake cannot be finished within its deadline, vehi-
cle collisionsmay happen due to the delay of the brake action
output, thereby causing harm or injury to people (including
drivers, passengers, and pedestrians) or damage to automo-
biles and roads. Violating the real-time constraint (i.e., dead-
line) is one of systematic failures, which may result in
malfunctioning behaviors [5]. That is, a safety-critical auto-
motive application must be completed correctly within its
deadline, (i.e., guaranteeing the real-time constraint) [5]; oth-
erwise, the probability of occurrence of harm is considered
to be 100 percent. Therefore, the essence of safety enhance-
ment is to enhance the reliability of the automotive applica-
tionwhile guaranteeing its real-time constraint.

Ref. [5] studied the problem of enhancing the safety of a
real-time parallel automotive application by presenting the
Reliability Enhancement Technique (RET). RET is a Back-
ward Safety Enhancement (BSE) approach because it tries to
migrate each task to another ECU that generates maximum
reliability value from the exit task to the entry task (i.e.,
backward recovery) (details about BSE can be found in Sec-
tion 4.1). However, merely using BSE is insufficient to
enhance safety due to the following reasons.

1) BSE merely enhances reliability through backward
recovery (backward means that the recovery pro-
cess is from exit to entry tasks), and it does not
apply forward recovery (forward means that the
recovery process is from entry to exit tasks). For an
end-to-end parallel automotive application, applying
forward-and-backward recovery to enhance safety
could be efficient.

2) BSE is a non-repeated approach, thereby severely
limiting the strength of safety enhancement. In fact,
safety enhancement can be implemented through
repeated recovery, which is an effective fault toler-
ance measure that uses redundancy. Particularly, the
2nd edition of ISO 26262 introduces the concept of
fault tolerance, which means the ability to deliver a
specified application in the presence of one or more
faults [4].

1.3 Main Contributions

The development life cycle of safety-critical automotive
applications includes analysis (concept), design, implemen-
tation, and running phases [5]. This study focuses on safety
enhancement for a real-time parallel automotive application
by using fault tolerance measure during the design phase.
The novel contributions of this study include:

1) Considering that BSE in Ref. [5] is merely a back-
ward recovery, we propose the Forward Safety
Enhancement (FSE) algorithm (Algorithm 1). Differ-
ent from BSE that it handles the recovery process
from exit to entry tasks, FSE handles the recovery
process from entry to exit tasks. FSE is a novel contri-
bution as it tries to forward reallocate each task to
another ECU that can generate maximum reliability
value without violating given constraints. The for-
ward-and-backward recovery is then proposed to
further enhance safety by combining known BSE
and proposed FSE algorithms.

2) Considering that BSE and FSE are merely non-
repeated algorithms, we proposed the Repeated BSE
(RBSE) algorithm (Algorithm 2) and Repeated FSE
(RFSE) algorithm (Algorithm 3). Different from BSE
and FSE that they handle the recovery process with-
out repetition, RBSE and RFSE handle the recovery
process through primary-backup repetition. RBSE
(or RFSE) is a novel contribution as it tries to back-
ward (or forward) add a new replica for each task to
an available ECU that can generate maximum reli-
ability value among all available ECUs without vio-
lating given constraints. The forward-and-backward
recovery through primary-backup repetition is then
proposed to further enhance safety by combining
proposed RBSE and RFSE algorithms.

3) Considering that RBSE and RFSE could be invoked
repeatedly until reaching a stable safety value, the
Stable Stopping-based Safety Enhancement (SSSE)
approach is proposed by combining the above four
algorithms. In other words, SSSE is basically a com-
bination of known BSE algorithm and proposed FSE,
RBSE, and RFSE algorithms. The stable stopping
(i.e., SSSE) approach is a convergence algorithm,
which means that when the reliability value reaches
a steady state, the algorithm can stop. SSSE is a novel
contribution because it is a new combined approach.
There are four algorithms to combine the SSSE
approach, where we propose there new algorithms.

2 RELATED RESEARCH

The objective of this study is to enhance the safety for real-
time parallel automotive applications through considering
two safety properties, namely, reliability and response time.
Therefore, this studymainly reviews existing research on the
reliability and response time of DAG-based applications.

(1) Bi-Criteria (Bi-Objective) Optimization Between Response
Time and Reliability. Simultaneously minimizing response
time and maximizing reliability (i.e., minimizing exposure)
is a bi-criteria optimization problem [11], [12], [13]. Ref. [11]
provided the NP-hard complexity results and the optimal
mapping algorithm for the bi-objective optimization prob-
lem under different variants of multiprocessors, including
homogenous and heterogeneous speeds. Ref. [12] proposed
meta-heuristic algorithm to solve the above bi-objective opti-
mization problem for a parallel application while meeting
the user-defined budget. Ref. [13] proposed a bi-objective
algorithm for a parallel application based on Wind Driven
Optimization (WDO) to implement the trade-off between
minimizing response time andmaximizing reliability.

(2) Response Time Optimization With Reliability Constraint.
Ref. [5] presented an approach to minimize the response
time of an automotive application while guaranteeing the
reliability constraint without primary-backup repetition.
Refs. [14], [15] presented the MaxRe and RR algorithms to
minimize the resource cost of a DAG-based application
while guaranteeing the reliability constraint through pri-
mary-backup repetition. To effectively assure the reliability
requirement, Ref. [16] proposed reliability pre-allocation
technique based on geometric mean, which makes the pre-
allocated reliability values closer to the center. Particularly,

2068 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 9, SEPTEMBER 2020

non-repeated and repeated approaches are both proposed
in Refs. [14], [15], [16].

(3) Reliability Optimization With Real-Time Constraint. Ref.
[5] first studied the problem of enhancing the safety for an
automotive application while guaranteeing its real-time
constraint by presenting the BSE algorithm. As explained in
Section 1, BSE is merely a backward recovery approach
toward safety enhancement and is a non-repeated approach,
thereby severely limiting the strength of safety enhancement.
In other words, BSE is insufficient to enhance safety. This
study aims to propose a novel safety enhancement approach
by introducing backward-and-forward recovery and pri-
mary-backup repetition for parallel automotive applications.

3 MODELS

Readers can refer to Tables 1 and 2 for main abbreviation
and notation, respectively, used in this study.

3.1 Application Model

Fig. 1 shows a simple execution process of the brake-by-
wire application [6], which is represented by a DAG, in a

Controller Area Network (CAN)-based distributed automo-
tive embedded system. For this parallel application, ECU u1

receives the data from the sensor to trigger the entry task
n1, which is executed in u1. n1 finishes its execution and
sends message m1;2 to n2 executed in ECU u4. Notice that
m1;2 is transmitted in the CAN bus.

Let U ¼ fu1; u2; . . . ; ujU jg be a heterogeneous ECU set in
the system. In this study, we uniformly use jXj to represent
the size of the set X. Meanwhile, a motivational automotive
application represented by a DAG G = ðN , W , M, C) is
shown in Fig. 2.

1) Let ni be the ith task ofG. predðniÞ and succðniÞ repre-
sent the immediate predecessor task set and immedi-
ate successor task set of ni, respectively. For instance,
there are predðn8Þ = fn2; n4; n6g and succðn8Þ = fn10g
in Fig. 2. The entry and exit tasks are denoted by nentry

and nexit, respectively. For the application in Fig. 2,
there are nentry = n1 and nexit = n10. The task model
should support time-triggered and event-triggered
paradigms according to the timing analysis of AUTO-
SAR standard [17], and the event-triggered task
model (i.e., a task is released only if it receives the
data from all its predecessor tasks) is considered in
this study. Let DðGÞ be the deadline of automotive
application G, and assume that the period of G is not
less than DðGÞ. Meanwhile, the application and all
the tasks share the same deadline and period.

2) W represents a jNj � jUj matrix, where wi;k denotes
the Worst Case Execution Time (WCET) of ni exe-
cuted in ECU uk. wi;k is infinity (i.e., wi;k ¼ þ1) if ni

cannot be allocated to uk because some ECUs can
only execute specific tasks. The WCETs of each task
in three ECUs fu1; u2; u3g are listed in Table 3. The

TABLE 1
Main Abbreviations in This Article

Abbreviation Definition

RET Reliability Enhancement Technique
BSE Backward Safety Enhancement
RBSE Repeated BSE
FSE Forward Safety Enhancement
RFSE Repeated FSE
SSSE Stable Stopping-based Safety Enhancement
WCET Worst Case Execution Time
WCRT Worst Case Response Time
ECU Electronic Control Unit
DAG Directed Acyclic Graph
EST Earliest Start Time
EFT Earliest Finish Time
LFT Latest Finish Time
AST Actual Start Time
AFT Actual Finish Time

TABLE 2
Main Notations in This Article

Notation Definition

ni A computing task in an automotive application
m

i;j
A CANmessage from tasks ni to nj

wi;k WCET of task ni executed in ECU uk
ci;j WCRT of messagemi;j

�k Failure rate for ECU uk
Rðni; ukÞ Reliability of task ni executed in ECU uk
ualloðniÞ Allocated ECU for task ni

RðGÞ Reliability of applicationG

LBðGÞ Lower bound of applicationG

DðGÞ Real-time constraint of applicationG

EST ðni; ukÞ Earliest start time of task ni executed in ECU uk
EFT ðni; ukÞ Earliest finish time of task ni executed in ECU uk
LFT ðni; ukÞ Latest finish time of task ni executed in ECU uk
AST ðniÞ Actual start time of task ni

AFT ðniÞ Actual finish time of task ni

avaBT ðni; ukÞ Available begin time of task ni executed in ECU uk
avaET ðni; ukÞ Available end time of task ni executed in ECU uk

Fig. 1. Brake-by-wire application [6].

Fig. 2. Motivational automotive application with 10 tasks [5].

XIE ETAL.: SAFETY ENHANCEMENT FOR REAL-TIME PARALLEL APPLICATIONS IN DISTRIBUTED AUTOMOTIVE EMBEDDED... 2069

weight 9 of n1, u3 in Table 3 represents the WCET of
n1 in u3 (i.e., w1;3 = 9).

3) Let ci;j be the Worst Case Response Time (WCRT) of
message mi;j, which is a CAN message from tasks ni

to nj. Considering that the WCRT analysis generally
involves a tight WCRT upper bound within a
pseudo-polynomial computational time, the WCRTs
in this study are the theoretical upper bounds [18].

4) The non-preemptive scheduling for ECUs is adopted
to keep consistent with CAN buses. The motivational
automotive application in Fig. 2 is used as an explana-
tion of the proposed algorithms. For simplicity, the
units of all parameters are ignored in the example.

3.2 Reliability Model

Random hardware failures occur unpredictably during the
lifetime of a hardware element, but random hardware fail-
ure rates can be reasonably predicted because random hard-
ware faults (including permanent and transient faults)
occur based on a probabilistic distribution. [1]. This study
considers transient faults (e.g., single bit faults in case of an
Error Correcting Code (ECC) with single error correction,
double error detection capability as pointed in the 2nd edi-
tion of the ISO 26262 standard [4]), which usually obey the
Poisson distribution [5], [14], [15], [19], [20]. The reliability
of ni executed in uk in its WCET is calculated by

R ni; ukð Þ ¼ e��kwi;k ; (1)

where � is the failure rate of an ECU.
In general, the CAN link’s failure rate (about 10�9) is

much less than ECU’s failure rate (about 10�6) due to the
usage of CRC and ACK in CAN link [21], [22]. Therefore,
communication faults can be disregarded when considering
the ECU faults. Thus, the reliability of the application is the
product of all its tasks [5], [14], [15], [19], [20]:

RðGÞ ¼
Y

ni2N
RðniÞ ¼

Y

ni2N
Rðni; ualloðniÞÞ; (2)

where ualloðniÞ represents the allocated ECU of ni.

3.3 Lower Bound of Application

Definition 1 (Lower Bound). The lower bound means the min-
imum response time of an application without any constraints.

Scheduling tasks with minimum response time in multi-
processors (ECUs) is known to be an NP-hard optimization
problem [23], [24]. Obtaining approximate lower bound
is a fast process. The Heterogeneous Earliest Finish Time
(HEFT) [23] and Optimistic Cost Table (OCT) [24] algo-
rithms are two typical list scheduling algorithm to obtain
approximate lower bounds. This study adopts HEFT to get
the lower bound of the application.

There are two phases in HEFT: 1) tasks in the application
are sorted in ascending order by the upward rank values
(task prioritization phase); 2) each task is allocated to the
ECU that has the minimum EFT combining the insertion
strategy according to the task prioritization standard (task
allocation phase). Ref. [23] provided enough details about
how to obtain the lower bound of the motivational applica-
tion in Fig. 2 by using HEFT.

1) The task prioritization is based on the descending
order of ranku, which is calculated by [23]

rankuðniÞ ¼ wi þ max
nj2succðniÞ

fci;j þ rankuðnjÞg;

where wi represents the average WCET of task ni. In
the motivational example of Fig. 2, the task prioriti-
zation is organized by n1 (rankuðn1Þ = 108), n3

(rankuðn3Þ = 80), n4 (rankuðn4Þ = 80), n2 (rankuðn2Þ =
77), n5 (rankuðn5Þ = 69), n6 (rankuðn6Þ = 63.3), n9

(rankuðn9Þ = 44.3), n7 (rankuðn7Þ = 42.7), n8

(rankuðn8Þ = 35.7), and n10 (rankuðn10Þ = 14.7) using
the HEFT algorithm [23].

2) The task allocation can get the lower bound of the
application. Let EFT ðni; ukÞ be the Earliest Finish
Time (EFT) of task ni executed in ECU uk. The mini-
mum EFT of the exit task should be the lower bound
of the application:

LBðGÞ ¼ min
uk2U

EFT ðnexit; ukÞ
� �

:

Therefore, we can iteratively get the minimum EFT of
each task from the entry to the exit tasks. We can get the
EFT of each task based on

EFT ðni; ukÞ ¼ EST ðni; ukÞ þ wi;k;

where EST ðni; ukÞ represents the Earliest Start Time (EST)
of task ni executed in ECU uk:

EST ðnentry; ukÞ ¼ 0;

EST ðni; ukÞ ¼ max avaBT ðni; ukÞ;maxnh2predðniÞfAFT ðnhÞ þ cp;kh;ig
� �

;

(

(3)

avaBT ðni; ukÞ is the available begin time of uk. nh is an
immediate predecessor task of ni. AFT ðnhÞ is the Actual
Finish Time (AFT) of task nh. ni has different EST ðni; ukÞ
values depending on the allocations of predecessor tasks
because cp;kh;i is not a fixed value.

cp;kh;i ¼
ch;i p6¼k:
0 p¼k:

n
:

Table 4 shows the details of obtaining lower bound of the
motivational example. First, n1 is allocated to u3 (denoted
with bold text) as it has the minimum EFT of 9. Then, n3 is

TABLE 3
WCETs of Tasks on Different ECUs

of the Motivational Automotive
Application in Fig. 2 [5]

Task u1 u2 u3

n1 14 16 9
n2 13 19 18
n3 11 13 19
n4 13 8 17
n5 12 13 10
n6 13 16 9
n7 7 15 11
n8 5 11 14
n9 18 12 20
n10 21 7 16

2070 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 9, SEPTEMBER 2020

allocated to u3 (denoted with bold text) as it has the mini-
mum EFT of 28. The EFTs of n4, n2, n5, n6, n9, n7, n8, and n10

are shown in Table 4. Finally, the lower bound of applica-
tion is 80, as the AFT of the exit task (i.e., n10) is 80. On the
basis of Table 4, Fig. 3 shows the HEFT-generated lower
bound (LBðGÞ ¼ 80) of the motivational automotive appli-
cation G in Fig. 2, whereas the arrows between tasks repre-
sent their communication.

The real-time constraint DðGÞ must be larger than or
equal to LBðGÞ. For the motivational automotive applica-
tion in Fig. 2, we let the real-time constraint be DðGÞ ¼ 100,
as shown in Fig. 3.

3.4 Problem Statement and Two Constraints

Considering that the essence of safety enhancement is
to enhance the reliability of the automotive applicationwhile
guaranteeing its real-time constraint as explained in Sec-
tion 1.2, the problem to be solved in this study is to enhance
the reliability of the parallel automotive applicationG

RðGÞ ¼
Y

ni2N
R nið Þ;

towards enhancing the safety by task allocations, under its
real-time constraint

RT ðGÞ4DðGÞ;
where RT ðGÞ represents the response time of application G.
The problem statement in fact involves two constraints.

Definition 2 (Constraint 1). The precedence constraints
between the current task (i.e., ni) and its immediate predecessor
and immediate successor tasks, namely, the Actual Start Time
(AST) and AFT of ni must adhere to the data dependencies
with other tasks.

For instance, n8 cannot be scheduled before n2, n4, and n6

according to the Constraint 1 in Fig. 3.

Definition 3 (Constraint 2). The real-time constraint of the
automotive application, namely, the AFT of the exit task must
be less than or equal to the deadline of the automotive
application.

In the process of safety enhancement, the above two con-
straints cannot be violated; otherwise, the safety enhance-
ment is not valid.

4 BACKWARD AND FORWARD SAFETY

ENHANCEMENT

4.1 Existing BSE

As explained previously, the BSE algorithm is a backward
approach and its idea is as follows. BSE tries to migrate (i.e.,
re-allocate) the current task ni to another ECU that gener-
ates maximum reliability value for ni without violating Con-
straint 1 and Constraint 2. The above process is explored
from the exit task to the entry task (i.e., backward recovery).
In the following, the idea of BSE is simply explained on the
basis of the HEFT-generated lower bound (Fig. 3).

1) The backward sequence of tasks is sorted by the
descending order of the AFT values generated by
HEFT. For example, the backward sequence of tasks
in Fig. 3 is n10, n9, n8, n7, n6, n2, n5, n3, n4, and n1.

2) The exit task n10 is first considered. n10 has moved its
end time to 100 (i.e., DðGÞ ¼ 100) in fixed ECU u2

without violating Constraint 2, as shown in Fig. 4. We
assume that n10, n9, n8, and n7 have been re-allocated
using BSE, as shown in Fig. 4. Note that n10, n9, n8,
and n7 are only rescheduled on the same ECU with-
out migration. ECU migration is avoided due to one
of the following reasons: 1) the current task ni cannot
be migrated to another ECU otherwise Constraint 1
will be violated; 2) the current task ni can be
migrated to the other ECU without violating Con-
straint 1, but the new ECU cannot obtain a higher
reliability value than the current ECU for ni.

3) The fifth task n6 is prepared to be re-allocated. n6

(denoted with red color) can be migrated from u2 to
u3 because it can generate maximum reliability for
n6 without violating Constraint 1, as shown in Fig. 4.

4) The following tasks use the same principle as the
aforementioned tasks. As shown in Fig. 5, n2, n5, n4,
and n1 are only moved in fixed ECUs without migra-
tion, whereas n3 (denoted with red color) is migrated
from u3 to u2. Finally, the reliability of the automo-
tive application is enhanced from 0.9477163 (Fig. 3)

TABLE 4
Details of Obtaining Lower Bound of

the Motivation Example

Task EFT ðni; u1Þ EFT ðni; u2Þ EFT ðni; u3Þ
n1 14 16 9
n3 32 34 28
n4 31 26 45
n2 40 46 46
n5 52 39 38
n6 53 42 47
n9 69 68 76
n7 58 83 49
n8 62 79 73
n10 102 80 97

Fig. 3. HEFT-generated lower bound of the motivational automotive
application in Fig. 2.

Fig. 4. n10, n9, n8, and n7 move the primary (i.e., the task itself) in fixed
ECU without migration, and n6 is migrated from u2 to u3.

XIE ETAL.: SAFETY ENHANCEMENT FOR REAL-TIME PARALLEL APPLICATIONS IN DISTRIBUTED AUTOMOTIVE EMBEDDED... 2071

to 0.95294318 (Fig. 5) by using RET to migrate n6 and
n3. Fig. 5 shows that Constraint 1 and Constraint 2 are
not violated. In other words, the following facts are
found: 1) each task adheres to the data dependencies
with other tasks; 2) the application is finished within
the deadline.

4.2 Proposed FSE Algorithm

Fig. 5 shows that the begin time of the entry task n1 is not
started at 0 but at 8 after using BSE. An intuitive feeling is
that the begin time of n1 can be set to 0 through making
some possible migrations of n1 and its successor tasks to
enhance safety without violating Constraint 1 and Constraint
2. The above process is explored from the entry task to the
exit task (i.e., forward recovery).

1) The forward sequence of tasks is sorted by the
ascending order of AST values generated by BSE.
For example, the forward sequence of tasks in Fig. 5
is n1, n3, n4, n5, n2, n6, n7, n8, n9, and n10.

2) The entry task n1 is first considered. n1 has moved its
start time and end time to 0 and 8, respectively, in
fixed ECU u3 without migration. The reason is that if
n1 can be migrated, it has already been migrated
with the BSE algorithm, as shown in Fig. 5.

3) n1, n3, n4, and n5 have moved their individual begin
times and end times to smaller values in fixed ECUs
without migration, as shown in Fig. 6.

4) The fifth task n2 is prepared to be re-allocated. n2 can
be migrated from u3 to u1 because it can generate
maximum reliability for n2 without violating Con-
straint 1, as shown in Fig. 6. n2 cannot be migrated
by using BSE. However, n2 can be migrated when
using FSE further. In the following, the migration of
n2 will be explained.

To determinewhether the current task ni can bemigrated,
its EST and Latest Finish Time (LFT) in each ECU are
required to obtain in advance to ensure that Constraint 1 and
Constraint 2 are not violated. The EST of ni in uk has been
shown in Eq. (3), whereas the LFT of ni in uk is calculated by

LFT ðnexit; ukÞ ¼ DðGÞ;
LFT ðni; ukÞ ¼ min avaET ðni; ukÞ;minnj2succðniÞfAST ðnjÞ � ck;qi;j g

� �
;

(

(4)

avaET ðni; ukÞ is the available end time of uk for ni. ni has
different LFT ðni; ukÞ values depending on the allocations of
successor tasks because ck;qi;j is not a fixed value.

ck;qi;j ¼
ci;j k6¼q:
0 k¼q:

n

Take n2 as an example. The avaBT ðn2; ukÞ and avaET ðn2; ukÞ
values are as follows:

avaBT ðn2; u1Þ ¼ 0
avaBT ðn2; u2Þ ¼ 42
avaBT ðn2; u3Þ ¼ 19

8
<
:

avaET ðn2; u1Þ ¼ 77
avaET ðn2; u2Þ ¼ 81
avaET ðn2; u3Þ ¼ 53:

8
<
:

Then, the EST ðn2; ukÞ and LFT ðn2; ukÞ values are as follows:

EST ðn2; u1Þ ¼ 27
EST ðn2; u2Þ ¼ 42
EST ðn2; u3Þ ¼ 19

8
<
:

LFT ðn2; u1Þ ¼ 65
LFT ðn2; u2Þ ¼ 58
LFT ðn2; u3Þ ¼ 53:

8
<
:

After Constraint 1 and Constraint 2 are determined, the
ECU uallo that has the maximum reliability value for ni can
then be selected.

RðniÞ ¼ Rðni; ualloðiÞÞ ¼ max
wi;k4 LFT ðni;ukÞ�EST ðni;ukÞð Þ

Rðni; ukÞ;

where wi;k 4 LFT ðni; ukÞ � EST ðni; ukÞð Þ should be satis-
fied to guarantee Constraint 1 is not violated. Note that uallo

can be the currently allocated ECU ucur to be moved in or a
reallocated ECU unew to be migrated to.

Continuing with n2 as an example. The Rðn2; ukÞ values
are as follows:

Rðn2; u1Þ ¼ 0.99094128
Rðn2; u2Þ ¼ NULL
Rðn2; u3Þ ¼ 0.99282586.

8
<
: (5)

Rðn2; u2Þ is NULL because w2;2 = 19, which is larger than 16
(LFT ðn2; u2Þ - EST ðn2; u2Þ = 58 - 42 = 16), such that allocat-
ing n2 to u2 will violate Constraint 1. Given that Rðn2; u3Þ
has the maximum reliability values in Eq. (5), n2 is migrated
from u1 to u3.

The AST and AFT of ni are correspondingly updated to

AST ðniÞ ¼ EST ðni; ualloðiÞÞ;and

AFT ðniÞ ¼ AST ðniÞ þ wi;alloðiÞ;

respectively. For example, the AST and AFT of n2 are as
follows:

AST ðn2Þ ¼ EST ðn2; u3Þ ¼ 19;
and

AFT ðn2Þ ¼ AST ðn2Þ þ w2;3 ¼ 19þ 18 ¼ 37:

5) The following tasks use the same principle as the
aforementioned tasks. As shown in Fig. 7, n6, n7, n8, n9, and
n10 are moved in fixed ECUs without migration. Finally, the
reliability of the automotive application is enhanced from

Fig. 5. BSE-generated lower bound of the motivational automotive appli-
cation in Fig. 2.

Fig. 6. n1, n3, n4, and n5 have moved their individual begin times and end
times to small values in fixed ECUs without migration.

2072 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 9, SEPTEMBER 2020

0.95294318 (Fig. 5) to 0.95475549 (Fig. 7) by using FSE to
migrate n2. Fig. 7 shows that Constraint 1 and Constraint 2
are still not violated.

The FSE algorithm is proposed on the basis of the afore-
mentioned analysis, as shown in Algorithm 1.

Algorithm 1. The FSE Algorithm

Input: U ¼ fu1; u2; . . . ; ujU jg, G, DðGÞ, task mapping generated
by the previous algorithm

Output: RðGÞ, RT ðGÞ, and task mapping
1: The tasks’ forward sequence forward seq is also sorted by

the ascending order of the AST values generated by the
previous algorithm;

2: while (there are tasks in forward seq) do
3: ni forward seq:outðÞ;
4: ucurðiÞ indicates the currently allocated ECU.
5: Move the ni in ECU ucurðiÞ by AST ðniÞ EST ðni; ucurðiÞÞ

and AFT ðniÞ AST ðniÞ þ wi;curðiÞ
� �

;

6: for (each ECU uk 2 U) do
7: Calculate EST ðni; ukÞ using Eq. (3);
8: Calculate LFT ðni; ukÞ using Eq. (4);
9: if (ðLFT ðni; ukÞ � EST ðni; ukÞð Þ < wi;k) then
10: continue;
11: end if
12: Calculate Rðni; ukÞ using Eq. (1);
13: end for
14: Select the ECU unewðiÞ with the maximum reliability value

under Rðni; unewðiÞÞ > Rðni; unewðiÞÞ
15: if (unewðiÞ is not NULL) then
16: Migrate the ni to ECU unewðiÞ by AST ðniÞ EST ðni; unewðiÞÞ

and AFT ðniÞ AST ðniÞ þ wi;newðiÞ
� �

;
17: end if
18: end while
19: Calculate the reliability RðGÞ using Eq. (2);

Overall, FSE tries to forward reallocate each task to
another ECU that can generate maximum reliability value
without violating Constraint 1 and Constraint 2. The details
are explained as follows. The time complexity of FSE is

OðjNj2 �jUj) and is explained below. (1) Traversing all
tasks requires OðjN j) time (Lines 2–18). (2) Calculating
EST ðni; ukÞ and LFT ðni; ukÞ requires OðjN j � jU j) time
(Lines 6–11). Therefore, the time complexity of the FSE algo-
rithm is the same as those of HEFT and BSE.

5 REPEATED SAFETY ENHANCEMENT

5.1 Proposed RBSE Algorithm

Fig. 7 shows that the end time of the exit task n10 is not
ended at 100 but at 92 after using FSE. An intuitive feeling

is that the end time of n10 can be set to 100 through making
some possible migrations of tasks by BSE again. Setting the
end time of n10 to 100 is necessary, but making possible
migrations of tasks by BSE again is unfeasible. The reason is
that through the backward-and-forward recovery of BSE
and FSE in Section 4, the migration of tasks has reached the
extreme. Continually invoking BSE or FSE recovery can not
generate new migrations. Fortunately, primary-backup rep-
etition is an effective fault tolerant measure (i.e., recovery
through repetition) to implement safety enhancement.

Passive repetition and active repetition are two types of
primary-backup repetition paradigms [14], [15]. Passive rep-
etition aims to reschedule the task on a a backup ECU when
this task fails in the primary ECU. Active repetition will
simultaneously execute " replicas of the task in " ECUs. Each
ECU only execute one replica for the same task, such that the
maximumnumber of replicas is the number of ECU.Homog-
enous redundancy and heterogeneous redundancy are two
types of redundancy paradigms [4]. Homogeneous redun-
dancy means the duplication of homogeneous elements,
whereas heterogeneous redundancy means the combina-
tion of hardware devices and software tasks. In this study,
active repetition and homogeneous redundancy are adopted
because such combination implements independence among
tasks. In addition, as pointed out in the 2nd edition of ISO
26262, homogeneous redundancy during the design phase
focuses primarily on controlling the effects of transient faults
or random faults in the hardware (i.e., ECU in this study), on
which a similar software is executed (e.g., temporal redun-
dant execution of software). The aforementioned features
are consistent with the automotive application and reliability
models of this study.

Given that the reliability of ni in uk is R ni; ukð Þ ¼ e��kwi;k

according to Eq. (1), the failure probability of ni in uk with-
out repetition is

Failðni; ukÞ ¼ 1�R ni; ukð Þ ¼ 1� e��kwi;k :

Assume that there are numi (numi 4 jUj) replicas for ni, the
failure probability of ni through active repetition is

FailðniÞ ¼
Ynumi

b¼1
Fail nb

i ; ualloðnb
i
Þ

� 	

¼
Ynumi

b¼1
1�R nb

i ; ualloðnb
i
Þ

� 	� 	
;

where u
alloðnb

i
Þ represents the allocated ECU of replica nb

i .

Therefore, the reliability of ni is

R nið Þ ¼ 1� FailðniÞ ¼ 1�
Ynumi

b¼1
1�R nb

i ; ualloðnb
i
Þ

� 	� 	
; (6)

(1) The backward sequence of tasks is sorted by the
descending order of the AFT values. For example, the back-
ward sequence of the tasks in Fig. 7 is n10, n8, n7, n9, n6, n4,
n2, n3, n5, and n1.

(2) The exit task n10 is first considered. n10 just moves its
begin time and end time to 93 and 100, respectively, in fixed
ECU u2 without any repetition. Repetitions on u1 or u3 will
violate Constraint 1. The details are explained below. The
EST and LFT of n10 are

Fig. 7. FSE-generated task mapping of the motivational automotive
application in Fig. 2.

XIE ETAL.: SAFETY ENHANCEMENT FOR REAL-TIME PARALLEL APPLICATIONS IN DISTRIBUTED AUTOMOTIVE EMBEDDED... 2073

EST ðn10; u1Þ ¼ 85
EST ðn10; u2Þ ¼ 85
EST ðn10; u3Þ ¼ 85

8
<
:

LFT ðn10; u1Þ ¼ 100
LFT ðn10; u2Þ ¼ 100
LFT ðn10; u3Þ ¼ 100:

8
<
:

The LFT values of n10 on u1 and u3 are

LFT ðn10; u1Þ �EST ðn10; u1Þ ¼ 100� 85 ¼ 15 < w10;1 ¼ 21;

and

LFT ðn10; u3Þ �EST ðn10; u3Þ ¼ 100� 85 ¼ 15 < w10;3 ¼ 16;

hence, neither u1 nor u3 can be added with replicas.
(3) The second task n8 is considered to be repeated. A

replica can be added to u2 for n8 because this operation
does not violate Constraint 1, as shown in Fig. 8. Why a rep-
lica can be added to u2 for n8 is explained in the following.

The EST and LFT values of n8 are

EST ðn8; u1Þ ¼ 69
EST ðn10; u2Þ ¼ 65
EST ðn8; u3Þ ¼ 69

8
<
:

LFT ðn8; u1Þ ¼ 82
LFT ðn8; u2Þ ¼ 93
LFT ðn8; u3Þ ¼ 82:

8
<
:

The LFT values of n8 on u2 and u3 are

LFT ðn8; u2Þ �EST ðn8; u2Þ ¼ 93� 65 ¼ 28 > w8;2 ¼ 11;

and

LFT ðn8; u3Þ � EST ðn8; u3Þ ¼ 82� 69 ¼ 13 < w10;3 ¼ 14;

hence, a replica can be added to u2, whereas a replica cannot
be added to u3 for n8, as shown in Fig. 8.

(3) The following tasks use the same principle as the
aforementioned tasks. As shown in Fig. 9, n7, n6, n4, and n3

add individual replicas in ECUs. Finally, the reliability of
the automotive application is enhanced from 0.95475549
(Fig. 7) to 0.97584149 (Fig. 9) by using RBSE to add replicas
for n8, n7, n6, n4, and n3.

The RBSE algorithm is proposed on the basis of the afore-
mentioned analysis, as shown in Algorithm 2.

Overall, RBSE tries to backward add a new replica for
each task to an available ECU that can generate maximum

reliability value among all available ECUs without violating
the Constraint 1 and Constraint 2. The time complexity of
RBSE is also OðjNj2 �jU j) , which is the same as those of
HEFT and BSE.

Algorithm 2. The RBSE Algorithm

Input: U ¼ fu1; u2; . . . ; ujU jg, G, DðGÞ, task mapping generated
by the previous algorithm

Output: RðGÞ, RT ðGÞ, and task mapping
1: The tasks’ backward sequence backward seq is also sorted

by the descending order of the AFT values generated by
the previous algorithm;

2: while (there are tasks in backward seq) do
3: ni backward seq:outðÞ;
4: Ucur indicates that the ECU set has been allocated;
5: for (each ECU ucurðiÞ 2 ðUcurÞ) do
6: Move the ni in ECU ucurðiÞ by AFT ðniÞ LFT ðni; ucurðiÞÞ

and AST ðniÞ AFT ðniÞ � wi;k

� �
;

7: end for
8: for (each ECU uk 2 ðU � UcurÞ) do
9: Calculate EST ðni; ukÞ using Eq. (3);
10: Calculate LFT ðni; ukÞ using Eq. (4);
11: if (ðLFT ðni; ukÞ � EST ðni; ukÞð Þ < wi;k) then
12: continue;
13: end if
14: Calculate Rðni; ukÞ using Eq. (1);
15: end for
16: Select the ECU unewðiÞ with the maximum reliability value

under Rðni; unewðiÞÞ > Rðni; unewðiÞÞ
17: if (unewðiÞ is not NULL) then
18: Add the replica of ni to ECU unewðiÞ byAFT ðniÞ LFT ðni;

unewðiÞÞ andAST ðniÞ AFT ðniÞ � wi;newðiÞ
� �

;
19: end if
20: Calculate the reliability RðniÞ using Eq. (6);
21: end while
22: Calculate the reliability RðGÞ using Eq. (2);

5.2 Proposed RFSE Algorithm

Similar to the non-repeated FSE, a repeated FSE can be
implemented by adding a possible replica in an ECU for
each task.

1) Similar to FSE, the forward sequence of tasks is also
sorted by the ascending order of the AST values gen-
erated by RBSE. For example, the forward sequence
of tasks in Fig. 9 is n1, n3, n5, n4, n2, n6, n7, n9, n8, and
n10.

2) The entry task n1 is first handled. The begin time and
end time of n1 are just moved to 0 and 8, respec-
tively, in fixed ECU n3. No additional replicas are
added for n3, n5, n4, n2 until n6; a new replica for n6

Fig. 8. A replica is added to u2 for n8.

Fig. 9. RBSE-generated task mapping of the motivational automotive
application in Fig. 2.

Fig. 10. A new replica is added to u1 for n6 by using RFSE.

2074 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 9, SEPTEMBER 2020

is added to u1. That is, n6 has a total of three replicas,
as shown in Fig. 10.

3) The tasks n1, n3, n5, n4, n2, and n6 have been handled
in Fig. 10. Similar to already handled tasks, the
remaining tasks n7, n9, n8, and n10 will be handled;
however, no additional replicas are added for n7, n9,
n8, and n10, as shown in Fig. 11. Finally, the reliabil-
ity of the automotive application is enhanced from
0.97584149 (Fig. 9) to 0.97586917 (Fig. 11) by using
RFSE to add replicas for n6.

Finally, the RFSE algorithm is proposed and is shown in
Algorithm 3.

Algorithm 3. The RFSE Algorithm

Input: U ¼ fu1; u2; . . . ; ujU jg, G, DðGÞ, task mapping generated
by the previous algorithm

Output: RðGÞ, RT ðGÞ, repðGÞ, and task mapping
1: The tasks’ forward sequence forward seq is also sorted by

the ascending order of the AST values generated by the
previous algorithm;

2: while (there are tasks in forward seq) do
3: ni forward seq:outðÞ;
4: Ucur indicates that the ECU set has been allocated;
5: for (each ECU ucurðiÞ 2 ðUcurÞ) do
6: Move the ni in ECU ucurðiÞ by AST ðniÞ EST ðni; ucurðiÞÞ

and AFT ðniÞ AST ðniÞ þ wi;k

� �
;

7: end for
8: for (each ECU uk 2 ðU � UcurÞ) do
9: Calculate EST ðni; ukÞ using Eq. (3);
10: Calculate LFT ðni; ukÞ using Eq. (4);
11: if (ðLFT ðni; ukÞ � EST ðni; ukÞð Þ < wi;k) then
12: continue;
13: end if
14: Calculate Rðni; ukÞ using Eq. (1);
15: end for
16: Select the ECU unewðiÞ with the maximum reliability value

under Rðni; unew(i)Þ > Rðni; unewðiÞÞ
17: if (unewðiÞ is not NULL) then
18: Add the replica of ni to ECU unewðiÞ byAST ðniÞ EST ðni;

unewðiÞÞ andAFT ðniÞ AFT ðniÞ þ wi;newðiÞ
� �

;
19: end if
20: Calculate the reliability RðniÞ using Eq. (6);
21: end while
22: Calculate the reliability RðGÞ using Eq. (2);

5.3 Proposed SSSE Approach

After a round of backward-and-forward recovery using
RBSE and RFSE, the second round, the third round, and so
on can continue until the reliability value reaches a stable
and fixed value. We have explained that continually doing

non-repeated BSE or FSE recovery can not enhance safety in
Section 5.1. Fortunately, invoking repeated RBSE and RFSE
recovery could enhance safety by adding a possible new
replica to an ECU for each task in each round instead of
task migration. The flow chart of SSSE is shown in Fig. 12.

Table 5 shows the reliability enhancement process of the
motivational automotive application in Fig. 2 by using
related algorithms. BSE, FSE, RBSE (first round), RFSE (first
round) gradually enhance the reliability value from
0.94771638 to 0.97586917. 0.97586917 is a stable and fixed
value because the same result is obtained using RFSE (first
round), RBSE (second round), and RFSE (second round). As
the motivational automotive application only includes three
ECUs, the second round does not reflect the difference from
the first round. The final response time RT ðGÞ is 98, and the
number of replicas repðGÞ is 16 for the motivational automo-
tive application in Fig. 2. SSSE is proposed by combing the
existing HEFT and BSE algorithms and the proposed FSE,
RBSE, RFSE algorithms. SSSE can invoke RBSE and RFSE
repeatedly until reaching a stable value. Notice that RBSE
and RFSE will not always enhance the reliability due to the
limited ECUs and strict Constraint 1 and Constraint 2. There-
fore, SSSE can stop in the while loop.

It is worth pointing out that SSSE is consistent with the
static recovery mechanism in the automotive functional
safety standard ISO 26262, where backward recovery, for-
ward recovery, and recovery through repetition have been
recommended as static recovery mechanism as pointed in
Section 7.4.12, Part 6 of the 2nd edition of ISO 26262 [4]. The

Fig. 11. RFSE-generated task mapping of the motivational automotive
application in Fig. 2.

Fig. 12. Flowchart of the proposed SSSE approach.

TABLE 5
Reliability Enhancement Process of the Motivational

Automotive Application in Fig. 2

RðGÞ RT ðGÞ DðGÞ repðGÞ Figure

HEFT 0.94771638 80 100 10 Fig. 3
BSE 0.95294318 92 100 10 Fig. 5
FSE 0.95475549 92 100 10 Fig. 7
RBSE (first round) 0.97584149 98 100 15 Fig. 9
RFSE (first round) 0.97586917 98 100 16 Fig. 11
RBSE (second round) 0.97586917 98 100 16 Fig. 11
RFSE (second round) 0.97586917 98 100 16 Fig. 11

XIE ETAL.: SAFETY ENHANCEMENT FOR REAL-TIME PARALLEL APPLICATIONS IN DISTRIBUTED AUTOMOTIVE EMBEDDED... 2075

SSSE approach proposed in this study is actually a recovery
through repetition based on backward recovery and for-
ward recovery of the static recovery mechanism. Therefore,
the special idea of SSSE is the organic combination of the
aforementioned three recoveries under the Constraint 1 and
Constraint 2. Therefore, the SSSE approach complies with
the automotive functional safety standard from a practical
perspective. In other words, the stable stopping (i.e., SSSE)
approach is a convergence algorithm, which means that
when the reliability value reaches a steady state, the algo-
rithm can stop. There is no denying that the proposed SSSE
approach has burden or disadvantages in terms of the ECU
they have due to the use of repetition.

1) If repetition is not adopted, a task only causes one
Message Receiving Interrupt (MRI) to one of its suc-
cessor task in the ECU receiving its message. For
instance, task n8 is a successor task of task n6 in the
motivational automotive application of Fig. 2; after
task n6 is finished, it only needs to send one message
to n8, such that n6 only causes one MRI to n8.

2) If repetition is adopted, a task only causes multiple
MRIs to its one successor task in the ECU receiving
its message. For instance, after using the SSSE
approach, n6 causes four message MRIs to n8. The
details are shown in Fig. 11, where n6 has three repli-
cas of n1

6, n
2
6, and n3

6, while n8 has two replicas of n1
8,

and n2
8. In Fig. 11, n6 cause four MRIs (denoted with

red arrows) to n8.
Too many unnecessary MRIs bring considerable ECU

load due to the execution of Interrupt Service Routine (ISR)
and interrupt-triggered switch overhead between tasks.
These disadvantages are not negligible for safety-critical
distributed automotive embedded systems, especially for
ECUs running at relatively low clock speeds and with small
memory space in automotive ECUs [25], [26], [27]. There-
fore, although the SSSE approach enhances the reliability of
the automotive application, it also brings considerable ECU
load that would affect the quality of task scheduling.

6 EXPERIMENTS

The state-of-the-art BSE algorithm is selected to compare
with the proposed algorithms. The metrics are response
time RT ðGÞ, reliability RðGÞ, and replica number repðGÞ.
As this study focuses on the early design phase, the applica-
tion parameters are known on the basis of their real deploy-
ment. The parameter values of a real automotive are
adopted. The failure rate falls in the range of 10�6/ms -
16� 10�6/ms. The WCETs of the tasks and the WCRTs of
the messages fall under the range of 100 ms - 400 ms gener-
ated by uniform distribution. The ECU number is 16.

According to the related description in ISO 26262, fault
tolerance is merely a static recovery mechanism during the
design phase to maintain the safe state of automotive appli-
cation, and does not involve the final operational results [4].
Considering that fault tolerance does not address the con-
text where the application is used to switch off the system
and the context where a safe state can be directly reached
by switching off the application, and not all imaginable
faults can be tolerated as pointed out in the 2nd edition of
ISO 26262 [4], this study focuses on safety prevention using

safety enhancement technique during the design phase, and
does not determine the final execution result during the
running phase. Therefore, the automotive applications in
this study will be tested by simulation to implement safety
enhancement in a static recovery manner.

6.1 ASIL Determination in ISO 26262

We introduce the Automotive Safety Integrity Level (ASIL)
in advance because it is related to the safety evaluation of
an automotive application. In ISO 26262, ASIL is a risk clas-
sification scheme to define the safety requirements. The
ASIL is established by performing a Hazard Analysis and
Risk Assessment (HARA) of a potential hazard by evaluat-
ing at the severity, exposure and controllability of the auto-
motive operating scenario. An ASIL is the combination of
severity, exposure, controllability [1], [28]. There are four
ASILs identified by the ISO 26262: ASIL A, ASIL B, ASIL C,
ASIL D [1], [4]. The higher the ASIL, the greater the risk and
the more effort required to reduce the risk.

Severity means an estimate of the extent of harm that
may occur in a potentially hazardous event; there are four
severity levels: S0 (no injuries), S1 (light and moderate inju-
ries), S2 (severe and life-threatening injuries), and S3 (fatal
injuries). Exposure means the state of being in an opera-
tional situation where it is hazardous if the situation is coin-
cident with the failure mode under the analysis; there are
five exposure levels: E0 (incredibly), E1 (very low probabil-
ity), E2 (low probability), E3 (medium probability), and E4
(high probability). Controllability means the ability to avoid
specified harm or damage through the timely reactions of
the persons involved; there are four controllability levels:
C0 (controllable in general), C1 (simply controllable), C2
(normally controllable), and C3 (uncontrollable). Notice that
the controllability is related to the driver’s driving state
rather than the system.

ISO 26262 provides the ASIL determination formed by a
combination of severity, exposure, and controllability, as
shown in Table 6 [4]. Each ASIL is the combination of sever-
ity, exposure, and controllability values. There is a subtle
difference about ASIL determination between the 1st and
2nd editions of the ISO 26262 standard. In the 1st edition,

TABLE 6
ASIL Determination Formed by a Combination of Severity, Expo-

sure, and Controllability Provided in ISO 26262 [4]

Severity Exposure
Controllability

C1 C2 C3

S1

E1 QM QM QM
E2 QM QM QM
E3 QM QM A
E4 QM A B

S2

E1 QM QM QM
E2 QM QM A
E3 QM A B
E4 A B C

S3

E1 QM QM A/QM
E2 QM A B
E3 A B C
E4 B C D

2076 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 9, SEPTEMBER 2020

the combination of S3, E1, and C3 is ASIL A. However, in
the 2nd edition, this combination may be Quality Manage-
ment (QM) if several unlikely situations are combined and
the change may result in a lower probability of exposure
than E1. QM indicates that software can be developed
according to the quality management process to manage the
identified risk, and no safety-related design needs to be con-
sidered. QM is not an ASIL but may be specified in the
HARA [1], [4]. Severity has been decided after HARA and
cannot be changed. Controllability is a fixed value during
the design phase. Therefore, to enhance safety for a real-
time parallel automotive application, the feasible measure is
to drop the exposure of the application according to Table 6.

6.2 Real-Life Parallel Automotive Application

The real-life parallel automotive application with 31 tasks
from Ref. [5] are adopted. This application contains six
blocks: engine controller (n1-n7), automatic gear box
(n8-n11), anti-locking brake (n12-n17), wheel angle sensor
(n18-n19), suspension controller (n20-n24), and body work
(n25-n31).

The HEFT-generated lower bound of the application is
630 ms. As the real-time constraint must be larger than or
equal to the lower bound explained in Section 3.3, The real-
time constraint is changed from 630 ms to 1430 ms with 200
ms increments. The results are shown in Fig. 13.

1) Fig. 13(a) shows that the response time values using
all the algorithms are less than or equal to corre-
sponding real-time constraints. As the HEFT-gener-
ated response time is the lower bound, it is fixed at
630 ms. Except that the real-time constraint is equal
to the lower bound (i.e., 630 ms), Fig. 13(a) shows the
BSE and FSE-generated response time values are less
than the real-time constraints; such results indicate
that BSE and FSE still leave a larger optimization
space for RBSE, RFSE, and SSSE.

2) Fig. 13(b) shows that a long response time could lead
to a high reliability, and the results basically confirm
that minimizing response time and maximizing reli-
ability is a bi-criteria optima problem. In addition,
Fig. 13(b) clearly shows that the reliability values are
divided into three gradients: 1) HEFT; 2) BSE and
FSE; and 3) RBSE, RFSE, and SSSE. As expected,
SSSE generates the maximum reliability values, fol-
lowed by RFSE, RBSE, FSE, BSE, and HEFT. HEFT

has the lowest reliability value of 0.94920261. By
backward-and-forward recovery using BSE and FSE,
the reliability value are increased to 0.962–0.980.
Through further primary-backup repetition using
RBSE and RFSE, the reliability values are increased
to 0.974–0.998. With the continuous involvement of
RBSE and RFSE (i.e., using SSSE), the reliability val-
ues can reach a stable state in each case. SSSE only
increases a small amount of reliability compared
with RFSE because SSSE only invokes RBSE and
RFSE twice at most. Even so, as long as the slack
response time increases, safety enhancement can be
maximized as much as possible.

Automotive functional safety standard ISO 26262 pro-
vides the duration/probability of exposure levels of E1
(very low probability with reliability goal of < 0.99), E2
(low probability with reliability goal 0.99), E3 (medium
probability with reliability goal > 0.9 and < 0.99), and E4
(high probability with reliability goal <¼ 0.9) (see Table 7).
Take Fig. 15(b) as an example, the maximum reliability
value using BSE is 0.97987526 (E3), whereas using SSSE
reaches 0.99877734 (E1). That is, the exposure level drops
from E3 to E1 after using SSSE. Such exposure drop (i.e.,
reliability enhancement, safety enhancement) enables a
safety guarantee of higher level. For example, Table 6 shows
the ASIL determination formed by a combination of sever-
ity, exposure, and controllability in the 2nd edition of ISO
26262 [4]. According to the ASIL determination in Table 6,
there are two combinations of ASIL C. We consider one
combination, where the severity of the application is S3, the
exposure of the application is E3, and the controllability of
the driver is C3. Severity and controllability are fixed values
during the design phase as explained in Section 3.2. There-
fore, to achieve QM availability for the ASIL C application,
one possible measure is to drop the exposure of the applica-
tion from E3 to E1 according to Table 6.

Fig. 13. Values of the real-life parallel automotive application in different real-time constraints.

TABLE 7
Classes of Probability of Exposure Regarding Duration/

Probability of Exposure in ISO 26262 [1], [4]

Exposure level Probability of exposure Reliability goal

E1 Very low probability Not specified At least exceeds 0.99
E2 Low probability < 1% 0.99
E3 Medium probability [1%, 10%] > 0.9
E4 High probability > 10% <=0.9

XIE ETAL.: SAFETY ENHANCEMENT FOR REAL-TIME PARALLEL APPLICATIONS IN DISTRIBUTED AUTOMOTIVE EMBEDDED... 2077

Even though SSSE has very little reliability enhancement
over RBSE and RFSE in Fig. 13(b), the results are still useful
for safety-sensitive distributed automotive embedded sys-
tems. The classes of probability of exposure in ISO 26262
shown in Table 7 are informative, not prescriptive, and
leave a great deal of discretion to whoever is building each
component system and ultimately to the automakers and
suppliers [29]. For instance, the probability of exposure E1
in ISO 26262 is not specified, and its corresponding reliabil-
ity goal at least exceeds 0.99, as shown in Table 7. Therefore,
different automakers and suppliers can choose different
reliability goals according to their product and market ori-
entations as long as the values belong to the same exposure.
For instance, it is feasible that the reliability goal for E3 is
0.99877730 because this value exceeds 0.99, and ISO 26262
requires high accuracy in reliability value. When the real-
time constraint is 1430 ms shown in Fig. 13(b), SSSE drops to
E1, whereas RBSE and RFSE only drops to E2. This result
sufficiently reflects the advantages of SSSE.

3) Fig. 13(c) clearly shows that the HEFT-, BSE-, and FSE-
generated replicas are fixed at 31 because they do not imple-
ment primary-backup repetition. The replicas produced by
RBSE, RFSE, and SSSE progressively increase; for example,
when the real-time constraint is 630 ms, the numbers of
RBSE-, RFSE-, and SSSE-generated replicas are 44, 49, and
54, respectively. As the reliability value increases with the
increased real-time constraint, the number of replicas
required also rises through primary-backup repetition; for
example, when the real-time constraint is 1430 ms, the num-
bers of RBSE, RFSE, and SSSE-generated replicas reach 60,
88, and 122, respectively. Although primary-backup repeti-
tion is a practical fault tolerance measure to enhance safety,
it has some weaknesses. That is, RBSE, RFSE, and SSSE,
especially SSSE increase the burden on ECUs due to the
additional replicas and affect the control efficiency of ECUs
due to the time-consuming extra code. These problems
should be considered the weaknesses of fault tolerance
measure.

(4) In each case, the time required to calculate the result
using SSSE is very short and is within 1 s. The reason is that
SSSE only invokes RBSE and RFSE twice at most.

6.3 Synthetic Parallel Application

In addition to using a real-life parallel automotive applica-
tion to confirm the advantage of the proposed algorithms, an
additional synthetic application with 100 tasks are adopted

to analyze the results. This synthetic application has the
same parameter values as those of a real-life parallel automo-
tive application. A randomly generated application can be
obtained by using a task graph generator [30]. The following
parameters are set in this experiment: the communication-
to-computation ratio is 1, the shape parameter is 1, and the
heterogeneity factor is 0.5. The heterogeneity factor values
are in the 0-1 scope in the task graph generator, where 0.1
and 1 are the lowest and highest heterogeneity factors,
respectively. The HEFT-generated lower bound of the appli-
cation is 2642 ms. As the real-time constraint must be larger
than or equal to the lower bound explained in Section 3.3, the
real-time constraint is changed from 2642 ms to 5042 mswith
600ms increments. The results are shown in Fig. 14.

1) Similar to Fig. 13(a), Fig. 14(a) shows that the
response time values using all the algorithms are
also less than or equal to the corresponding real-time
constraints. Overall, Fig. 13(a) and Fig. 14(a) have
the same regular pattern.

2) Similar to Fig. 13(b), Fig. 14(b) also clearly divides
the reliability values into three gradients: 1) HEFT; 2)
BSE and FSE; and 3) RBSE, RFSE, and SSSE. HEFT
has the lowest reliability value of 0.88677322, which
is much lower than 0.94920261 shown in Fig. 13(b).
The reason is that the reliability value of the applica-
tion is the product of all tasks, such that the applica-
tion reliability value generated by 100 tasks is
naturally lower than that generated by 31 tasks (the
real-life parallel automotive application contains 31
tasks). Overall, Fig. 13(b) and Fig. 14(b) present the
same regular pattern for all the algorithms.

3) Fig. 14(c) shows the same regular pattern as Fig. 13(c).
By synthesizing the data in Figs. 13(c) and 14(c), the fol-
lowing facts are confirmed. 1) HEFT, BSE, and FSE
have fixed numbers of replicas jN j due to the absence
of primary-backup repetition, and jNj represents the
size of task set of the application. 2) The numbers of
RBSE-generated replicas are between jNj and 2� jN j
because each task is repeated once atmost. 3) The num-
bers of RFSE-generated replicas are between jN j and
3� jN j because each task is repeated at most once on
the basis of RBSE; 3) SSSE-generated replicas are theo-
retically between jN j and jU j � jN j, where jU j repre-
sents the size of processor set, but approximately
4� jN j in the actual situations. However, asmentioned

Fig. 14. Values of synthetic application in different real-time constraints.

2078 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 9, SEPTEMBER 2020

earlier, the main weaknesses of RBSE, RFSE, and SSSE
are that they increase the burden on ECUs due to the
additional replicas and affect the control efficiency of
ECUs due to the time-consuming extra code.

4) In each case, the time required to calculate the result
using SSSE is still within 1 s because SSSE only
invokes RBSE and RFSE five times at most for an
automotive application with 100 tasks.

7 CONCLUSION

The SSSE approach for a real-time parallel automotive
application to enhance safety to a stable value was proposed
in this study. SSSE consists of existing HEFT and BSE algo-
rithms and pretested FSE, RBSE, and RFSE algorithms. SSSE
enhances the safety by using stable stopping approach on
the basis of the forward-and-backward recovery through
primary-backup repetition. SSSE can make the exposure
level drops from E3 to E1 towards safety guarantee for
higher level. SSSE is actually a recovery through repetition
based on backward recovery and forward recovery of the
static recovery mechanism pointed out in the 2nd edition of
ISO 26262. It is believed that the stable stopping approach
can serve as a guideline in the safety design of automotive
applications. The future work could further study the safety
enhancement of distributed automotive embedded systems
by considering multiple automotive applications with dif-
ferent deadlines.

ACKNOWLEDGMENTS

The authors would like to express their gratitude to the asso-
ciate editor and three anonymous reviewers for their con-
structive comments which have helped to improve the
quality of this article. This workwas supported in part by the
National Natural Science Foundation of China under Grants
61702172, 61932010, 61672217, and 61972139, the CCF-Ten-
cent Open Fund under Grant CCF-TecentRAGR20190119,
the Open Research Project of the State Key Laboratory of
Synthetical Automation for Process Industries (SAPI),
Northeastern University, China under Grant PAL-N201803,
the Natural Science Foundation of Hunan Province under
Grant 2018JJ3076, and the Fundamental Research Funds for
the Central Universities, HunanUniversity, China.

REFERENCES

[1] “Road vehicles-functional safety, iso 26262,” Nov. 2011. [Online].
Available: https://www.iso.org/standard/43464.html

[2] S. S. Williamson, A. K. Rathore, and F. Musavi, “Industrial elec-
tronics for electric transportation: Current state-of-the-art and
future challenges,” IEEE Trans. Ind. Electron., vol. 62, no. 5,
pp. 3021–3032, May 2015.

[3] A. Nardi and A. Armato, “Functional safety methodologies for
automotive applications,” in Proc. 36th Int. Conf. Comput.-Aided
Des., 2017, pp. 970–975.

[4] “Road vehicles-functional safety, ISO 26262,” Dec. 2018. [Online].
Available: https://www.iso.org/standard/68383.html

[5] G. Xie, G. Zeng, Y. Liu, J. Zhou, R. Li, and K. Li, “Fast functional
safety verification for distributed automotive applications during
early design phase,” IEEE Trans. Ind. Electron., vol. 65, no. 5,
pp. 4378–4391, May 2018.

[6] E. Rolf, “Formal performance analysis in automotive systems
design - a rocky ride to new grounds,” in Proc. 23rd Int. Conf.
Comput. Aided Verification, 2011. [Online]. Available: http://
formalverification.cs.utah.edu/cav2011/content/presentations/
CAV 2011V3.pdf

[7] G. Xie et al., “Reliability enhancement towards functional safety
goal assurance in energy-aware automotive cyber-physical sys-
tems,” IEEE Trans. Ind. Informat., vol. 14, pp. 5447–5462, Dec. 2018.

[8] W. Jiang, P. Pop, and K. Jiang, “Design optimization for security-
and safety-critical distributed real-time applications,”Microproces-
sors Microsyst., vol. 52, pp. 401–415, Jul. 2017.

[9] J. M. Rivas, J. J. Guti�errez, J. C. Palencia, and M. G. Harbour,
“Deadline assignment in edf schedulers for real-time distributed
systems,” IEEE Trans. Parallel Distrib. Syst., vol. 26, no. 10,
pp. 2671–2684, Sep. 2015.

[10] “Real-time computing - wikipedia,” Apr. 2014. [Online]. Avail-
able: https://en.wikipedia.org/wiki/Real-time_computing

[11] A. Benoit, F. Dufoss�e, A. Girault, and Y. Robert, “Reliability and
performance optimization of pipelined real-time systems,” J. Par-
allel Distrib. Comput., vol. 73, no. 6, pp. 851–865, Jun. 2013.

[12] N. Kaur and S. Singh, “A budget-constrained time and reliability
optimization bat algorithm for scheduling workflow applications
in clouds,” Procedia Comput. Sci., vol. 98, pp. 199–204, Jan. 2016.

[13] P. Singh, M. Dutta, and N. Aggarwal, “Bi-objective hwdo algo-
rithm for optimizing makespan and reliability of workflow sched-
uling in cloud systems,” in Proc. 14th IEEE India Council Int. Conf.,
2017, pp. 1–9.

[14] L. Zhao, Y. Ren, Y. Xiang, and K. Sakurai, “Fault-tolerant schedul-
ing with dynamic number of replicas in heterogeneous systems,”
in Proc. 12th IEEE Int. Conf. High Perform. Comput. Commun, 2010,
pp. 434–441.

[15] L. Zhao, Y. Ren, and K. Sakurai, “Reliable workflow scheduling
with less resource redundancy,” Parallel Comput., vol. 39, no. 10,
pp. 567–585, Jul. 2013.

[16] G. Xie, Z. Li, N. Yuan, R. Li, and K. Li, “Toward effective reliabil-
ity requirement assurance for automotive functional safety,”
ACM Trans. Des. Autom. Electron. Syst., vol. 23, no. 5, pp. 1–26,
Aug. 2018.

[17] 2020. https://www.autosar.org/standards/classic-platform/
[18] X. Yong, Z. Gang, C. Yang, R. Kurachi, H. Takada, and L. Renfa,

“Worst case response time analysis for messages in controller area
network with gateway,” IEICE Trans. Inf. Syst., vol. 96, no. 7,
pp. 1467–1477, Jul. 2013.

[19] A. Girault and H. Kalla, “A novel bicriteria scheduling heuristics
providing a guaranteed global system failure rate,” IEEE Trans.
Dependable Secure Comput., vol. 6, no. 4, pp. 241–254, Oct./Dec. 2009.

[20] B. Zhao, H. Aydin, and D. Zhu, “Onmaximizing reliability of real-
time embedded applications under hard energy constraint,” IEEE
Trans. Ind. Informat., vol. 6, no. 3, pp. 316–328, Aug. 2010.

[21] M. Di Natale, H. Zeng, P. Giusto, and A. Ghosal, Understanding
and Using the Controller Area Network Communication Protocol: The-
ory and Practice. Berlin, Germany: Springer, 2012.

[22] A. Kazeminia, “Reliability optimization of hardware components
and systems topology during early design phase,” J. Amer. Assoc.
Pediatric Ophthalmology Strabismus, vol. 18, no. 4, 2014, Art. no. e9.

[23] H. Topcuoglu, S. Hariri, andM.-Y.Wu, “Performance-effective and
low-complexity task scheduling for heterogeneous computing,”
IEEE Trans. Parallel Distrib. Syst., vol. 13, no. 3, pp. 260–274,
Mar. 2002.

[24] H. Arabnejad and J. G. Barbosa, “List scheduling algorithm for
heterogeneous systems by an optimistic cost table,” IEEE Trans.
Parallel Distrib. Syst., vol. 25, no. 3, pp. 682–694, Mar. 2014.

[25] F. P€olzlbauer, R. I. Davis, and I. Bate, “Analysis and optimization
of message acceptance filter configurations for controller area net-
work (CAN),” in Proc. 25th Int. Conf. Real-Time Netw. Syst., 2017,
pp. 247–256.

[26] R. I. Davis, S. Altmeyer, and A. Burns, “Mixed criticality systems
with varying context switch costs,” in Proc. IEEE Real-Time Embed-
ded Technol. Appl. Symp., 2018, pp. 140–151.

[27] P. Patel, M. Vanga, and B. B. Brandenburg, “Timershield: Protect-
ing high-priority tasks from low-priority timer interference (out-
standing paper),” in Proc. IEEE Real-Time Embedded Technol. Appl.
Symp., 2017, pp. 3–12.

[28] G. Xie, Y. Chen, Y. Liu, R. Li, and K. Li, “Minimizing development
cost with reliability goal for automotive functional safety during
design phase,” IEEE Trans. Rel., vol. 67, no. 1, pp. 196–211,
Mar. 2018.

[29] C. Hobbs and P. Lee, “Understanding iso 26262 asils,” Jul. 2013.
[Online].Available: https://www.electronicdesign.com/embedded/
understanding-iso-26262-asils

[30] “Task graph generator,” 2015. https://sourceforge.net/projects/
taskgraphgen/

XIE ETAL.: SAFETY ENHANCEMENT FOR REAL-TIME PARALLEL APPLICATIONS IN DISTRIBUTED AUTOMOTIVE EMBEDDED... 2079

https://www.iso.org/standard/43464.html
https://www.iso.org/standard/68383.html
http://formalverification.cs.utah.edu/cav2011/content/presentations/CAV 2011V3.pdf
http://formalverification.cs.utah.edu/cav2011/content/presentations/CAV 2011V3.pdf
http://formalverification.cs.utah.edu/cav2011/content/presentations/CAV 2011V3.pdf
https://en.wikipedia.org/wiki/Real-time_computing
https://www.autosar.org/standards/classic-platform/
https://www.electronicdesign.com/embedded/understanding-iso-26262-asils
https://www.electronicdesign.com/embedded/understanding-iso-26262-asils
https://sourceforge.net/projects/taskgraphgen/
https://sourceforge.net/projects/taskgraphgen/

Guoqi Xie (Senior Member, IEEE) received the
PhD degree in computer science and engineering
from Hunan University, in 2014. He is currently an
associate professor of embedded and cyber-
physical systems with Hunan University. He was
a postdoctoral research fellow with Nagoya Uni-
versity. His current research interests include
embedded and cyber-physical systems, parallel
and distributed systems, and safety- and
security-critical systems. He received the Best
Paper Award at IEEE ISPA 2016 and the 2018

IEEE TCSC Early Career Researcher Award. He is currently serving
on the editorial boards of Journal of Systems Architecture, Journal
of Circuits, Systems and Computers, and Microprocessors and
Microsystems. He is an ACM senior member.

Gang Zeng (Member, IEEE) received the PhD
degree in information science from Chiba Univer-
sity, in 2006. He is an associate professor at the
Graduate School of Engineering, Nagoya Univer-
sity. From 2006 to 2010, he was a researcher,
and then assistant professor at the Center for
Embedded Computing Systems (NCES), the
Graduate School of Information Science, Nagoya
University. His research interests mainly include
power-aware computing and real-time embedded
system design. He is a member of IPSJ.

Renfa Li (Senior Member, IEEE) is currently the
professor and chair of embedded and cyber-
physical systems with Hunan University. He is the
chair of the Key Laboratory for Embedded and
Cyber-Physical Systems. His major interests
include computer architectures, embedded com-
puting systems, cyber-physical systems, and
Internet of things. He is a member of the council
of CCF, and a senior member of ACM.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

2080 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 9, SEPTEMBER 2020

Customizable Scale-Out Key-Value Stores
Ali Anwar , Yue Cheng , Hai Huang, Jingoo Han, Hyogi Sim ,

Dongyoon Lee , Fred Douglis , Fellow, IEEE, and Ali R. Butt

Abstract—Enterprise KV stores are often not well suited for HPC applications, and thus cumbersome end-to-end KV design

customization is required to meet the needs of modern HPC applications. To this end, in this article we present BESPOKV, an adaptive,

extensible, and scale-out KV store framework. BESPOKV decouples the KV store design into the control plane for distributed

management and the data plane for local data store. For the control plane, BESPOKVprovides pre-built modules, called controlets,

supporting common distributed functionalities (e.g., replication, consistency, and topology) and their various combinations. This

decoupling allows BESPOKV to take a user-provided single-server KV store, called a datalet, and transparently enables a scalable and

fault-tolerant distributed KV store service. The resulting distributed stores are also adaptive to consistency or topology requirement

changes and can be easily extended for new types of services. Such specializations enable innovative uses of KV stores in HPC

applications, especially for emerging applications that utilize KV-friendly workloads. We evaluate BESPOKV in a local testbed as well as

in a public cloud settings. Experiments show that BESPOKV-enabled distributed KV stores scale horizontally to a large number of nodes,

and performs comparably and sometimes 1.2� to 2.6� better than the state-of-the-art systems.

Index Terms—Key-value stores, HPC KV stores, scale-out KV stores, application tailored storage

Ç

1 INTRODUCTION

THE underlying storage and I/O fabric ofmodern high per-
formance computing (HPC) increasingly employ new

technologies such as flash-based systems and non-volatile
memory (NVM). While improving I/O performance, e.g., via
providing more efficient and fast I/O burst buffer, such tech-
nologies also provide for opportunities to explore the use of
in-memory storage such as key-value (KV) stores in the HPC
setting. Distributed KV stores are beginning to play an
increasingly critical role in supporting today’s HPC applica-
tions. Examples of this use include dynamic consistency
control [1], coupling applications [2], [3], and storing interme-
diate results [4], among others. Relatively simple data
schemas and indexing enable KV stores to achieve high per-
formance and high scalability, and allow them to serve as a
cache for quickly answering various queries,where user expe-
rience satisfaction often determines the success of the applica-
tions. Consequently, a variety of distributed KV stores have

been developed, mainly in two forms: natively-distributed
and proxy-basedKV stores.

The natively-distributed KV stores [5], [6], [7], [8], [9],
shown in Fig. 1a, are designed with distributed services
(e.g., topology, consistency, replication, and fault tolerance)
in mind from the beginning, and are often specialized for
one specific setting. For example, HyperDex [10] supports
Master-Slave topology and Strong Consistency (MS+SC).
Facebook relies on its own distributed Memcache [8] with
Master-Slave topology and Eventual Consistency (MS+EC).
Amazon employs Dynamo [6] with Active-Active1 topology
and Eventual Consistency (AA+EC).

The key limitation of natively-distributed KV stores lie in
their inflexible monolithic design where distributed features
are deeply baked with backend data stores. Such a design
allows the developers to highly optimize the KV store perfor-
mance. However, such optimizations are not portable to any
other KV store. The rigid design implies that these KV stores
are not adaptive to ever-changing user demands for different
backend, topology, consistency, or other services. For
instance, Social Artisan [11] and Behance [12] moved from
MongoDB to Cassandra for scalability and maintenance rea-
sons [13]. Conversely, Flowdock [14] migrated from Cassan-
dra to MongoDB due to stability issues. Unfortunately,
this migration process is very frustrating and time/money-
consuming as requires data remodeling and extra migration
resources [13].

Alternatively, proxy-based distributed KV stores leverage
a proxy layer to add distributed services into existing back-
end data stores. For example, Mcrouter [15], and Twem-
proxy [16] can be used as a proxy to enable a basic form of
distributed Memcached [17] with partitioning, as shown in
Fig. 1b. Twemproxy supports additional Redis [18] backend

� A. Anwar is with IBM Research–Almaden, San Jose, CA 95120-6099.
E-mail: ali.anwar2@ibm.com.

� Y. Cheng is with George Mason University, Fairfax, VA 22030.
E-mail: yuecheng@gmu.edu.

� H. Huang is with IBM Research–T.J. Watson, Ossining, NY 10562.
E-mail: haih@us.ibm.com.

� J. Han and A.R. Butt are with Virginia Tech, Blacksburg, VA 24061.
E-mail: jingoo@vt.edu, butta@cs.vt.edu.

� H. Sim is with Oak Ridge National Laboratory, Oak Ridge, TN 37830.
E-mail: simh@ornl.gov.

� D. Lee is with Stony Brook University, Stony Brook, NY 11794, and also
with Virginia Tech, Blacksburg, VA 24061.
E-mail: dongyoon@cs.stonybrook.edu.

� F. Douglis is with Perspecta Labs, Basking Ridge, NJ 07920.
E-mail: fd-ic@douglis.org.

Manuscript received 11 June 2019; revised 25 Feb. 2020; accepted 8 Mar. 2020.
Date of publication 30 Mar. 2020; date of current version 24 Apr. 2020.
(Corresponding author: Ali Anwar.)
Recommended for acceptance by J. Wang.
Digital Object Identifier no. 10.1109/TPDS.2020.2982640 1. Active-Active is also called multi-master in database literature.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 9, SEPTEMBER 2020 2081

1045-9219� 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht_tps://www.ieee.org/publications/rights/index.html for more information.

https://orcid.org/0000-0003-4487-2436
https://orcid.org/0000-0003-4487-2436
https://orcid.org/0000-0003-4487-2436
https://orcid.org/0000-0003-4487-2436
https://orcid.org/0000-0003-4487-2436
https://orcid.org/0000-0003-1695-4864
https://orcid.org/0000-0003-1695-4864
https://orcid.org/0000-0003-1695-4864
https://orcid.org/0000-0003-1695-4864
https://orcid.org/0000-0003-1695-4864
https://orcid.org/0000-0003-2485-2171
https://orcid.org/0000-0003-2485-2171
https://orcid.org/0000-0003-2485-2171
https://orcid.org/0000-0003-2485-2171
https://orcid.org/0000-0003-2485-2171
https://orcid.org/0000-0002-2240-3316
https://orcid.org/0000-0002-2240-3316
https://orcid.org/0000-0002-2240-3316
https://orcid.org/0000-0002-2240-3316
https://orcid.org/0000-0002-2240-3316
https://orcid.org/0000-0003-2472-0339
https://orcid.org/0000-0003-2472-0339
https://orcid.org/0000-0003-2472-0339
https://orcid.org/0000-0003-2472-0339
https://orcid.org/0000-0003-2472-0339
mailto:ali.anwar2@ibm.com
mailto:yuecheng@gmu.edu
mailto:haih@us.ibm.com
mailto:jingoo@vt.edu
mailto:butta@cs.vt.edu
mailto:simh@ornl.gov
mailto:dongyoon@cs.stonybrook.edu
mailto:fd-ic@douglis.org

as well. Recently, Netflix Dynomite [19] extended Twem-
proxy to support high availability and cross-datacenter rep-
lication, as illustrated in Fig. 1c.

Unlike monolithic natively-distributed KV stores, the use
of a separate proxy layer enables support for multiple back-
ends. Each single-server KV store such as Memcached [17],
Redis [18], LevelDB [20], andMasstree [21] has own its merit,
so the ability to choose one or mix is an ample reward. How-
ever, existing proxy-based KV stores are still limited to a sin-
gle topology and consistency: e.g., Dynomite supports AA
+EC only. We see that existing solutions have not yet
extracted the full potential of proxy-based distributed KV
stores. Table 1 summarizes the limitations of existing proxy-
based KV solutions such as Dynomite and Twmemproxy.

This paper presents BESPOKV, a flexible, ready-to-use,
adaptive, and extensible distributed KV store framework.
Fig. 1d illustrates BESPOKV’s distributed KV store architecture.
BESPOKV takes as input a single-server KV store, whichwe call
datalet, and transparently enables a distributed KV store ser-
vice, supporting a variety of cluster topologies, consistency
models, replication options, and fault tolerance (Section 3).
For the control plane, BESPOKV provides a set of distributed

management units, referred to as controlets. To the best of our
knowledge, BESPOKV is the first system supporting multiple con-
sistency techniques, multiple network topologies, dynamic topology/
consistency adaptation, automatic failover, and programmability,
all at the same time.

Table 2 shows the benefit of the proposed BESPOKV frame-
work. Here, four snippet implementations of the core func-
tions for a simple KV store are presented in pseudocode. To
implement everything from scratch ((a) Vanilla), a devel-
oper creates her own concurrency control functionality
(Lock(), Unlock()), and consistency and quorum man-
agement logic (Sync(), Quorum()). Using a distributed
lock server ((b) Lockserver-based), the developer can
avoid implementing synchronization functions. Similarly,
using Vsync [22] library ((c) Vsync-based) for consis-
tency management further reduces engineering effort. How-
ever, there are two limitations. First, developers still need to
familiarize themselves with a large collection of system/
library interfaces to use them appropriately in the applica-
tion code. Second, such approaches often provide only a sin-
gle technique for replication or consistency: e.g., Vsync uses
only a virtual synchrony to replicate data. In contrast, using
BESPOKV (option (d)), developers only need to implement a
non-distributed version of the KV store (datalet), and then
BESPOKV transparently scales it out to a variety of distributed
environments with different requirements.

Fig. 1. Different approaches to enable distributed KV stores: (a) natively-
distributed (b-d) proxy-based.

TABLE 1
BESPOKV versus State-of-the-Art Systems for KV Stores

S: Sharding; R: Replication; MB: Multiple backends; MC: Multiple consistency
techniques, e.g. strong, eventual, per-request, etc.; MT: Multiple network topol-
ogies, e.g. Master-Slave, Master-Master, Peer-to-Peer, etc.; AR: Automatic
failover recovery; P: Programmable.

TABLE 2
An Example of Four Possible Approaches to Developing a Distributed KV Store With the Last One Being the Proposed Approach

In case of (a) vanilla, LoC of Lock, Unlock, Sync, and Quorum is not shown. Similarly, LoC to implement Lock and Unlock recipe for ZooKeeper is
not shown. Vsync is available in C# and requires use of proper APIs but for the sake of simplicity and consistency we assume a C++ language grammar.

2082 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 9, SEPTEMBER 2020

BESPOKV’s decoupled control and data plane architecture,
configurability, and extensibility enable new solutions for
emergingHPC systems andworkloads. First, BESPOKVmakes
it easy for HPC developers to explore different design trade-
offs in future HPC systems with heterogeneous hardware
resources. Prior solutions are developed for one architecture.
For instance, SKV [4] is designed for the IBM Blue Gene
Active Storage I/O nodes equippedwith flash storage, while
PapyrusKV [1] is designed to leverage non-volatile memory
(NVM) in HPC systems. Future HPC architectures are
expected to have hierarchical, heterogeneous resources such
as DRAM, NVM, and high-bandwidth memory (HBM).
BESPOKV seamlessly supports the use of different datalets,
each of which can be tuned for different memory and storage
architecture. BESPOKV’s proxy-based design may add perfor-
mance overhead with an additional layer in theory, but we
found them they remain small during our evaluation.

Second, BESPOKV enables new HPC services for emerging
workloads such as deep learning andmassive IoT data proc-
essing: (1) Data layout: While existing KV solutions are
rigid/fixed for one setting, BESPOKV allows storing data in
different datalets, adapt and switch datalets as needed, and
thus can handle diverse characteristics of new data work-
loads. For example, a datalet using B-tree as main data struc-
ture is better suited for read-intensive workloads (e.g., deep
learning), while Log Structured Merge (LSM) tree based
datalet is a better choice for write-intensive workloads due
to high write amplification and no fragmentation. (2) Multi-
tenancy and geo-distribution: IoT applications increasingly
requiremulti-tenancy support, e.g., smart road big data used
by different applications. Different tenant would require dif-
ferent consistency and topologies. Even for a single tenant
the topology requirements may change. For example, simple
MS topology may be sufficient for sensors deployed in one
building but as the scale of deployment increases, AA may
become more beneficial. Existing systems do not provide
such support. (3) Low latency: deep learning queries require
ultra low latency to take advantage of in-memory KV stor-
age. For this purpose, we added support for DPDK kernel
bypassing in BESPOKV.

This paper makes the following contributions:

� We propose a novel distributed KV store architecture
that follows best architectural practices such as decou-
pling of control and data planes. Decoupling allows
BESPOKV to transparently turn a user-provided (single-
server) datalet into scalable, fault-tolerant distributed
KV stores. Such specialization will enables innovative
uses of KV stores in HPC applications, especially for
emerging applications that utilize KV-friendly work-
loads. Our implementation of BESPOKV is publicly
available at https://github.com/tddg/bespokv.

� We demonstrate that BESPOKV can be easily extended
to offer advanced features such as range query, per-
request consistency, polyglot persistence, and more.
To the best of our knowledge, BESPOKV is first to sup-
port a seamless on-the-fly topology/consistency adap-
tation. As examples, we present a novel mechanism to
make transitions from MS+EC to MS+SC, and from
AA+EC to MS+EC. We also present several use cases
to show effectiveness of BESPOKV.

� Wedeploy BESPOKV-enabled distributedKV stores in a
local testbed aswell as in a public cloud (GoogleCloud
Platform [23]) and evaluate their performance. Using
five (two new and three existing) datalets, We show
that with all the aforementioned benefits, BESPOKV-
enabled distributed KV stores scale horizontally and
performs comparable (and sometimes 1.2� to 2.6�
better) to state-of-the-art distributedKV stores.

2 CHALLENGES

Several challenges arise when designing BESPOKV tomeet the
competing goals of compatibility, versatility, modularity,
and performance.

Compatibility. BESPOKV strives to transparently make a non-
distributed KV store into a distributed one. It should be
easy to use, such that a developer simply “drops” the non-
distributed version of the store into BESPOKV; in turn, BESPOKV
will automatically clone and convert the store into various
types of highly scalable and reliable distributed clusters.

However, in reality, every datalet is different, resulting in
compatibility issues. Moreover, KV stores use different
communication protocols. For instance, Redis’s protocol is
different from Cassandra’s. This implies that BESPOKV’s com-
munication substrate should be designed to understand the
basic message semantics, e.g., request routing. We describe
this in Section 3.1.

Versatility. Due to the diversity of data storage and
retrieval requirements, almost all the points on the cluster
topology (MS, AA, etc.), consistency (strong, eventual, etc.),
replication, and fault tolerance spectrum are valid. However,
existing systems only support a fixed single design point,
which limits flexibility and adaptability. Therefore, BESPOKV
architecture should be versatile enough to cover various
design options, and be flexible to support reconfiguration.

Different storage applications implement their distrib-
uted management and protocols with preference on diverse
dimensions such as cluster topology and consistency. To
support applications with tradeoffs among these different
dimensions through a generic framework, one should ensure
that each configurable dimension has a clear boundary and
well defined interface. Hence, different dimensions can be
seamlessly combined with each other to form a highly versa-
tile choice of options for application developers. Moreover,
the distributed network architecture should be flexible
enough to support these wide range of options. Section 3
presents this aspect of BESPOKV’s versatile architecture.

Modularity. Building various design options using differ-
ent implementations is simply a matter of putting in more
engineering effort and not as challenging. In fact, such a
naive monolithic redesign approach would essentially be
similar to the current approach of per-application imple-
mentations. Instead, BESPOKV should be designed in a mod-
ular fashion, which makes it possible to reuse a previously
developed component. For instance, a controlet supporting
MS+SC or AA+EC can be reused for multiple backend data
stores. Furthermore, the modules in BESPOKV should be
expandable to meet the ever-growing needs for advanced
features.

Performance. Achieving the above goals is the major focus
of our work. However, BESPOKV should be realized without

ANWAR ETAL.: CUSTOMIZABLE SCALE-OUT KEY-VALUE STORES 2083

https://github.com/tddg/bespokv

sacrificing performance. Design choices for protocol han-
dling, network architecture, and diverse components should
be carefullymadewith efficiency inmind.

3 BESPOKV DESIGN

In this section, we describe the design of BESPOKV and how it
provides compatibility, versatility, modularity, and high
performance for supporting distributed KV stores. Fig. 2
shows the overall architecture of BESPOKV comprising five
modules: datalet, controlet, coordinator, client library, and
optional components. A collection of datalets form the data
plane, the rest of the modules makes up the control plane.

Datalet is supplied by the user and responsible for storing
data within a single node. Datalet should provide the basic
I/O interfaces (e.g., Put and Get) for the KV stores to be
implemented. We refer to this interface as the datalet API.
For example, a user can develop a simplest form of in-
memory hash table. Users can also mix and match datalets
with each datalet using a different data structure.

Controlet is supplied by BESPOKV and provides a datalet
with distributed management services to realize and enable
the distributed KV stores associated with the datalet. The
controlet processes client requests and routes the requests to
the associated entities: e.g., to a datalet for storing data.
BESPOKV provides a default set of controlets, and allows
advanced users to extend and design new controlets as
needed for realizing a service that may require specialized
handling in the controlet.

BESPOKV allows an arbitrary mapping between a controlet
and a datalet. A controlet may handle N (� 1) instances of
datalets, depending on the processing capacity of the con-
trolet and its datalets, and can leverage physical resource
(datacenter) heterogeneity [24], [25] for better overall utili-
zation. For instance, a controlet running on a high-capacity
node may manage more datalet nodes than a controlet run-
ning on a low-capacity node. For simplicity, we use one-to-
one controlet–datalet mappings in the rest of the paper.

Coordinator provides three main functions. (1) It main-
tains the metadata regarding the whole cluster topology
and provides a query service as a metadata server. (2) It
tracks the liveness of the cluster by exchanging periodic
heartbeat messages with the controlets. (3) It coordinates
failover in case of a node failure. The coordinator can run
on separate node or alongside other controlets.

BESPOKV implements the coordinator on top of Zoo-
Keeper [26] for better resilience. Similar to designing spe-
cialized controlets, advanced users have the option to
design customized coordinators if needed. It is also possible

to design a new coordinator as a special form of controlet
from scratch using the BESPOKV-provided controlet pro-
gramming abstraction as shown in Section 3.2. Nonetheless,
because it is widely used across many KV stores, BESPOKV
includes the coordinator as a default module in the control
plane.

Client library is provided by BESPOKV and used by the cli-
ent applications to utilize the services created by BESPOKV.
The library provides a flexible means for mapping data to
controlets. The client application uses the library interface
to consult with the coordinator and fetch data partitioning
and mapping information, which is then used to route
requests to appropriate controlets. BESPOKV allows different
developers to choose their own partitioning techniques
such as consistent hashing and range-based partitioning.

Optional Components. BESPOKV provides two optional com-
ponents facilitating the controlet development: 1) a distrib-
uted lock manager (DLM) for a locking service, and 2) a
Shared Log for an ordering service. One can build such a dis-
tributed management service as a special form of controlets
from the scratch, but given its common use in distributed KV
store development, BESPOKV imports existing solutions (e.g.,
Redlock [27] for DLM, and ZLog [28], [29], [30] for Shared
Log) and provides interface libraries (Section 3.2, Table 4).

3.1 Data Plane

A collection of datalets running on different distributed
nodes form the data plane for BESPOKV. A single-server data-
let is completely unaware of other datalets.

Datalet Development. BESPOKV supports multiple backends.
Users can make use of off-the-shelf single-serve data stores
such as Redis [18], SSDB [31], and Masstree [21]. In addition,
BESPOKV provides datalet templates based on commonly
used data structures: currently, a hash-table-based tHT, a
log-based tLog, and a tree-based tMT. For the ease of dev-
elopment, BESPOKV furnishes an asynchronous event-driven
network programming framework in which developers can
design new datalets, starting from existing templates. We
evaluate the reduced engineering effort in Section 8.

APIs and Protocol Parsers. For compatibility and modular-
ity, BESPOKV provides a clean set of datalet APIs (between
controlet and datalet) and client APIs (between client app
and client library). Table 3 presents example datalet and
client APIs. As these APIs are consistent with existing I/O
interfaces of existing KV stores. Datalet developers can
adopt them in a straightforward manner to enable distrib-
uted services. This is much easier than library-based replica-
tion solutions such as Vsync [22] where developers should
learn complex new APIs.

Fig. 2. BESPOKV architecture and the interactions between components. LSM Tree: Log-structured merge-tree. DLM: Distributed lock manager.

2084 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 9, SEPTEMBER 2020

To offer compatibility and be able to understand applica-
tion protocols to process incoming requests properly,
BESPOKV’s communication substrate supports two options.
(1) It provides a BESPOKV-defined protocol using Google
Protocol Buffers [32]. This option is suitable for new datalets
and is preferred due to its ease of use and better program-
mability. (2) BESPOKV allows developers to provide a parser
for their own protocols. This option is mainly available for
porting existing datalets such as Redis or SSDB.

3.2 Control Plane

BESPOKV provides a set of pre-built controlets that provide
datalets with common distributed management. Given a
datalet, BESPOKV makes distributed KV stores immediately
ready-to-use. Developers can also extend these pre-built
controlets or design new ones from scratch for advanced
services.

Pre-Built Controlets. BESPOKV identifies four core compo-
nents for distributed management, and provides pre-built
controlets that support common design options in existing
distributed KV stores. The choice is based on our compre-
hensive study of existing systems that revealed three key
observations: (1) cluster topology, consistency model, repli-
cation, and fault tolerance generally define distributed fea-
tures of KV stores; (2) for the topology, MS and AA are
common; and (3) for the consistency model, SC and EC are
popular. Detailed descriptions of exemplary controlets sup-
porting MS+SC, MS+EC, AA+SC, and AA+EC options fol-
low in Section 4.

Controlet Development. To support advanced users and
new kinds of services, BESPOKV provides an asynchronous
event-driven network programming framework for contro-
let development as well. For each event (e.g., Put request,
timeout, etc.), developer can define event handlers to
instruct how the controlet should process the event to
enable versatile distributed management services in the
control plane. The aforementioned pre-built controlets
indeed consist of a set of pre-defined event handlers for
common distributed services.

Discussion. Load imbalance due to hot keys (i.e., hot-
spots) can be solved by integrating a small metadata cache
at BESPOKV’s client library to keep track of hot keys [33];
once the popularity of hot keys exceeds a certain pre-
defined threshold, client library replicates this key on a
shadow server that is rehashed by adding a suffix to the
key. In fact, our proxy-based architecture naturally fits for

adding a controlet-side small cache or data migration/repli-
cation for load balancing purpose [34], [35], [36], [37], [38].

Control Plane Configuration. To configure the system, each
controlet takes as input (1) a JSON configuration file that
specifies the basic system deployment parameters such as
topology, consistency model, the number of replicas, and
coordinator address; and (2) a datalet host file containing
the list of datalets to be managed. BESPOKV loads the runtime
configuration information at the coordinator, which serves
as the query point for the client library and controlets to
periodically retrieve configuration updates. Any change in
configuration at runtime (e.g., topology/consistency switch)
results in replacing old controlets with new ones. We
describe dynamic adaptation mechanisms in Section 5 in
detail.

Controlet Programming Abstraction. BESPOKV uses asynchro-
nous event-driven programming model to achieve high
throughput. For each event (e.g., incoming network input,
timer, etc.), developers are asked to define event handlers to
process the event. There are two types of events in BESPOKV:
basic and extended events. Basic events represent pre-defined
conditions. Developers can create their own extended events
by using basic or existing extended events.

Other Controlet APIs. BESPOKV provides a set of libraries
and APIs with common features for controlet development,
shown in Table 4.

4 BESPOKV-BASED DISTRIBUTED KV STORES

BESPOKV, to be specific its control plane, transparently turns
a user-provided single-server datalet to a scalable, fault-
tolerant distributed KV store. Using hash-based tHT datalet
and consistent hashing for the client library as an example,
this section presents support for MS+SC, MS+EC, AA+SC,
AA+EC and four examples to enable new forms of distrib-
uted services by combining existing controlets or extending
ones.2

TABLE 3
APIs to Put, Get, and Del a KV Pair

Datalet API (provided by application developers)

Put(key, val) Write the {key,val} pair to the datalet
val=Get(key) Read val of key from the datalet
Del(key) Delete {key,val} pair from the datalet

Client API (provided by BESPOKV)
CreateTable(T) Create a table T to insert data
Put(key, val, T) Write the {key,val} pair to table T
val=Get(key, T) Read val of key from table T
Del(key, T) Delete {key,val} pair from table T
DeleteTable(T) Delete table T

Datalet and Client APIs are for using pre-built controlets.

TABLE 4
APIs for Events, Shared Log, DLM, and Coordinator

for New Controlet Development

Events API (provided by BESPOKV)

Register(c,e,cb) Register basic event e for conn c to call func cb
Enable(c,e) Enable event e to be triggered onc time for connc

On(e,cb) Register extended event e to call func cb
Emit(e) Emit event e

Shared Log API (provided by BESPOKV)
CreateLog Creates a new log instance L
PutSharedLog(m, L) Append message m to log L

AsyncFetch(L) Asynchronous read from log L

DLMAPI (provided by BESPOKV)
Lock(key) Acquire lock on key

Unlock(key) Unlock key

Coordinator API (provided by BESPOKV)
LogHeartbeat(c,d) Log heartbeat for controlet c & datalet d
map=GetShardInfo(s) Get controlet & datalet list for shard s

c=LeaderElect(s) Elect new Master controlet for shard s

Due to space limitation, we list only important APIs.

2. Please note that these examples present just one way to imple-
ment each combination. Controlet developers can easily implement
their own versions.

ANWAR ETAL.: CUSTOMIZABLE SCALE-OUT KEY-VALUE STORES 2085

4.1 Master-Slave & Strong Consistency

We start from a KV store supporting the MS topology with
the SC model (MS+SC). Perhaps the simplest way to ensure
SC is to rely on a locking mechanism using ZooKeeper [26]
at the cost of serialization. However, alternative scalable
designs exist such as chain replication (CR) [39], value-
dependent chaining [10], and their variants. The pre-built
BESPOKV controlet for MS+SC leverages CR algorithm. Our
modular design allows BESPOKV to adopt other optimiza-
tions for CR [40], [41] as well, but so far we have not imple-
mented those. The original CR paper describes the tail
sending a message directly back to the client; but similar to
CRAQ [41], our implementation lets the head respond after
it receives an acknowledgment from the tail, given its pre-
existing network connection with the client.

Example. Fig. 3 shows how MS+SC is implemented in
BESPOKV. Here, clients route Puts to the head of the corre-
sponding controlet–datalet chains via consistent hashing
(step 1). The head controlet forwards the incoming Put

request to its local datalet (step 2) and then to mid node
(step 3), which forwards the request to its local datalet and
then to tail (step 4). Tail first forwards the request to local data-
let and then sends Ackback to mid, which sends Ack back to
head (step 5). Once the head controlet receives the Ack from
the mid, the head controlet marks the request completed and
responds to the client (step 6). Gets are routed to the tail node
of the corresponding chains. This provides the SC guarantee
as clients are only notified of the successful completions of
Puts after the data is persisted through the tail nodes.

Failover. In all cases (MS+SC, MS+EC, AA+SC, and AA
+EC), when the coordinator detects a node failure using a
periodic heartbeat message, it launches a new controlet–
datalet pair in recovery mode on one of the standby nodes.
The new controlet then recovers the data from one of the
datalets.

In particular, for MS+SC using chain replication, the coor-
dinator performs the chain recovery process and adds the
new pair as the new tail to the end of the chain. The former
chain recovery process depends on the location of the failure
in the replica chain as follows. If a middle node fails, the
coordinator notifies the head controlet to skip forwarding
requests to the failed node. In case the tail node fails, the
coordinator informs the head controlet to skip forwarding
requests to the tail datalet and temporarily marks the second
to the last node as the new tail so that future incoming Get

requests can be redirected properly. If the head node fails,
the coordinator appoints the second node in chain as the
new head, and updates the cluster metadata. Upon seeing
the change, the clients redirect future writes to the new head.

Every node maintains a list of requests received but not yet
processed by the tail, which is used to resolve in-flight
requests [39], [41].

4.2 Master-Slave & Eventual Consistency

BESPOKV’s pre-built controlet takes a simple approach to
support MS+EC where the master copies the data to slaves
asynchronously.

Example. Fig. 4a shows an example for MS+EC. Here,
upon receiving an incoming Put request (step 1), the master
node commits the request to the local datalet (step 2) before
it sends an acknowledgement back to the client (step 3).
Unlike the previous SC case, the master does not wait until
the propagation finishes.3 Subsequently, BESPOKV provides
EC by asynchronously forwarding Put requests to other
datalets (step 4).

Failover. Upon a node failure, the coordinator launches a
new controlet–datalet pair, and then the new controlet
recovers the requests from another datalet. For MS+EC, the
new pair is added as a slave. If the master node fails, the
coordinator promotes one of the slave nodes to master after
a leader election process. The coordinator then updates the
cluster topology metadata so that future incoming writes
can be routed to the new master, similar to the case of head
failure in MS+SC.

4.3 Active-Active & Strong Consistency

Supporting AA and SC is expensive in general. AA allows
multiple nodes to handle Put requests and SC requires
global ordering (serialization) between them. Thus, CR-like
optimization is not applicable under AA. For simplicity and
comparison purposes, the current BESPOKV’s AA+SC contro-
let takes the distributed locking based implementation, using
the DLM library (Section 3.2). For performance improve-
ment, optimistic concurrency control [42] and inconsistent
replication [9] can be added. Instead of using DLM, one can
also enable SC using a Shared Log to maintain a global and
sequential order of concurrent requests, which we used for
AA+EC later in a relaxedmanner.

Example. Fig. 4b shows a DLM-based AA+SC example.
Clients’ Put requests are routed to any controlet (step 1 and
step 2). Concurrent Puts from another client (step 2 in our
example) are synchronized via the distributed locking ser-
vice. The first receiving controlet acquires a write lock
(step 3) on the key and updates all the relevant datalets
(step 4 & 5), releases the lock (step 6), and finally acknowl-
edges to the client (step 7). For a Getrequest, the controlet
that receives the request acquires a read lock on that key,
reads the value from the local datalet, releases the lock, and
then sends a response back to the client.

Failover.Like the previous cases, when a node fails the coor-
dinator launches a new controlet–datalet pair. The new con-
trolet then performs data recovery from another datalet. As
AA+SC uses locking, ensuring SC for the new node and add-
ing it as an active node are trivial because all writes are syn-
chronized using locks. However, deadlock freedom should

Fig. 3. Put/Get paths in MS+SC. M means master; Sn means the nth
slave; Dmeans datalet.

3. This way at least one datalet is written straight away as in Cassan-
dra [7]. An alternative design choice is to forward the request to more
than one datalet and then acknowledge back. However, this decision
solely depends on the type of eventual consistency that is desired.

2086 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 9, SEPTEMBER 2020

be guaranteed. Thus, BESPOKV enforces that locks are released
after a configurable period of time. If a controlet fails after
acquiring a lock, the lock is auto-released after it expires. Note
that if a lock is auto-released, but a controlet has not failed
and was simply unresponsive for a while, it is terminated to
ensure proper continuation of operations. Also, one of the
master nodes cleans up the in-flight requests.

4.4 Active-Active & Eventual Consistency

For an AA topology, relaxed data consistency is more
widely used in practice for performance as in Dynamo [6],
Cassandra [7]), and Dynomite [19]. In particular, these sys-
tems use gossip-based protocols and provide a weaker data
consistency model, e.g., acknowledging back to the client if a
Put request iswritten to one node,N nodes, or a quorum [43].

In order to ensure EC, when multiple masters receive
concurrent PUT requests, AA should be able to resolve con-
flicts and agree on the global order of them, unlike MS
where one master gets all the writes. In this sense, Dynomite
does not support (a strict form of) EC when conflicting PUT
requests arrive within a time period less than the latency of
replication [44].

To address this issue, BESPOKV’s AA+EC controlet uses a
Shared Log to keep track of the request ordering. From the
Shared Log, asynchronous propagation of writes occur to
support EC. One disadvantage of this approach is that we
need to scale the Shared Log setup as BESPOKV scales. Alter-
native approach is to add anti-entropy/reconciliation [45].

Example. Fig. 4c depicts how BESPOKV supports AA+EC. In
AA, clients can route Get/Put to any of the master contro-
lets (step 1a). On a Put, the receiving controlet (in our exam-
ple the leftmost one) writes to the Shared Log first (step 2a),
commits the request on its local datalet (step 3a), and then
responds back to the client (step 4a). All the controlets asyn-
chronously fetch the request (step 5). Gets can be handled
by any of the corresponding controlets by retrieving the data
from their local datalets. The duration to keep the requests in
Shared Log is configurable.

Failover.For AA+EC, the failover is handled like with MS
+EC, except that leader election is not needed in this case.

5 DYNAMIC ADAPTATION TO CONSISTENCY

AND TOPOLOGY MODEL CHANGES

Separating the control and data planes bring another bene-
fit: BESPOKV-enabled distributed KV stores can seamlessly

adapt to consistency and topology model changes at run-
time by switching the controlets while keeping the datalets
unchanged. At a high level, upon a consistency and/or
topology change request, Coordinator launches a new set of
controlets that will provide new services. Two old and new
controlets are mapped to one datalet during the transition
phase. The old controlet provides the old service with no
downtime, and forwards some requests to the new controlet
so that it can prepare the new service. When the transition
completes, the new controlet takes over the old one. The
transition protocol differs per each case. BESPOKV supports
any transition between four aforementioned topology and
consistency combinations, among which we describe two
interesting cases in detail. Section 9.4 presents the experi-
mental results on this aspect.

5.1 Transition From MS+EC to MS+SC

To make a transition from EC to SC, the master node needs
to make sure that all the Put requests 1) that have arrived
before the transition starts and 2) that arrive during transi-
tion are fully propagated to the slave nodes. For the former,
the old master keeps flushing out any pending propagation.
For the latter, the old master forwards an incoming Put

request to the new master controlet which uses chain repli-
cation for SC, instead of propagating it asynchronously.
When there is no more pending propagation left in the old
controlet, the transition is over. SC guarantees will be
enforced after the transition has completed. During the tran-
sition, any node may respond to Get requests, providing
EC guarantee. This means that a Get request, even after the
reconfiguration was requested, may experience EC until the
transition is over. As controlet developers are responsible
for developing the transition functionality for the various
consistency/topology modes. A controlet developer can
choose an alternative route to fence all writes as soon as the
reconfiguration is requested so that all reads observe the
same and latest applied value.

Fig. 5a shows transition fromMS+EC to MS+SC.4 Client 1
sends a Put request (Step 1a) to the old master controlet C1.
A concurrent Get request (Step 1b) from Client 2 gets ser-
viced as it used to be. The old master forwards Put request
(Step 2) to the new master controlet which guarantees SC.

Fig. 4. The Put/Get paths in MS+EC (a), AA+SC (b), and AA+EC (c). The Get path is same in all three, except in AA+SC, where the difference is
that each Get needs to acquire a read lock before proceeding. Mnmeans the nth master.

4. Reverse transition from MS+SC to MS+EC is trivial as the new
master just needs to start using asynch. propagation instead of chain
replication.

ANWAR ETAL.: CUSTOMIZABLE SCALE-OUT KEY-VALUE STORES 2087

When the new master completes its chain replication pro-
cess, it acknowledges the old master, which in turn acknowl-
edges Client 1. When the transition completes, a Put request
(Step 3) is routed to the newmaster controlet.

5.2 Transition From AA+EC to MS+EC

In AA+EC, any active node can get a Put request. To
maintain a global ordering between concurrent Puts, an
active node relies on the Shared Log that propagates Puts
to the other nodes on its behalf. On the other hand, in MS
+EC, only the master node gets Put requests and is in
charge of propagating them to the slaves. Therefore, the
key operation in the transition from AA+EC to MS+EC is
to move the role of propagating Puts from the Shared Log
to the new master. To this end, when the transition starts,
the new master node takes the in-flight Puts that have not
been propagated yet from the Shared Log and starts prop-
agating them by itself. When an old active controlet
receives a Put request during transition, it does not con-
sult with Shared Log, but forwards the request to the new
master node which will eventually propagates the request.
The Get requests are not affected. Fig. 5b shows an exam-
ple where a Put request (Step 1) is forward to the new
master (Step 2) during transition. When the transition
completes, a Put request (Step 3) is serviced by the new
master. The transition from MS+EC to AA+EC can be sup-
ported by the reverse step order.

6 EXTENSIONS TO KV STORES

BESPOKV is immediately ready-to-use for popular distrib-
uted KV store use cases. If desired, BESPOKV’s control plane
can be extended to enable new forms of distributed services
by combining existing controlets or extending ones. This
section demonstrates four examples. We evaluated perfor-
mance of Scan requests (range query) in Section 9.2, and
the next two per-request consistency and polyglot persis-
tence in Section 9.5.

6.1 Range Query

We support range query or scan operations as follows. For
datalets, the Masstree-based tMT template is used and
extended to expose a range query API such as GetRange

(Start, End). The client library supports range-based
partitioning, e.g., dividing the name space by alphabetical
order (e.g., A-C on one node, D-F on another node, and so
on). The controlet divides a client request into sub-requests
and forwards the sub-range query requests to correspond-
ing datalets that store the specified range.

6.2 Per-Request Consistency

We extend the client library GET API to support consis-
tency/topology specification on a per-request basis. For
instance, under MS+SC, if the user specifies a lower value
of consistency level, GETs can go to any of the replicas, thus
only eventual consistency is guaranteed.

6.3 Polyglot Persistence

A use case for KV store is to support businesses that may be
divided into different components, and each component
requires its own private data storage. BESPOKV supports such
polyglot persistence [46] by launching custom controlets for
cross-app lazy synchronization (eventual consistency).

6.4 Other Topologies

BESPOKV also supports an AA-MS hybrid topology by config-
uring anMS topology for each shard on top of the logical AA
overlay. Similarly, a P2P-like topology can also be enabled
by allowing clients to send a request to any controlet, which
then routes the request to the actual controlet that manages
the requested data. In this case, a controlet needs to maintain
a routing map similar to a finger table [47] to determine the
location of keys.

Variants of AA. BESPOKV can support Adding routing flex-
ibility to the AA topology is straightforward. Clients can
simply send a request to any of the controlets (or use some
load balancing techniques such as round robin), which then
routes the request to the actual controlet–datalet that holds
the requested data. The extra logic we need to add into con-
trolets is a routing map similar to a finger-table [47] to deter-
mine the location of keys.

6.5 Other Consistency Models

Our Shared Log-based asynchronous fetches for eventual
consistency can be easily configured to support bounded
staleness. Developers simply specify a T -sec polling period,
so that clients are guaranteed not to see the stale data for
more than T sec. Similarly, causal consistency can also be
supported if the controlet serving the Get request fetches
all the pending data from the shared log and communicates
it to other controlets before replying back to the client.

7 BESPOKV’S USE CASES

7.1 Hierarchical and Heterogeneous Storage of HPC

HPC big data problems require efficient and scalable storage
systems, but load balancing I/O servers at scale remains
a challenge. Statistical analysis [48] and Markov chain
model [49] have been used to predict shared resource usage.
A KV store can be used to collect runtime statistics from
HPC storage systems for accurate prediction. However,
existing KV stores are designed for one type of storage archi-
tecture (in-memory, SSD, NVM, etc.), leading to suboptimal
performance.

BESPOKV supports the use of different datalets to store
replicas of a KV pair, where each of these datalet can be
tuned for different memory and storage architecture. By
doing so, BESPOKV unifies multiple data abstraction together
and enables multifaceted view on shared data with configu-
rable consistency and topology. Fig. 6 shows an example of

Fig. 5. Transition: MS+EC to MS+SC and AA+EC to MS+EC.

2088 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 9, SEPTEMBER 2020

how BESPOKV unifies three different data abstractions – a
log-structure merge-tree, Masstree, and log, and transpar-
ently provides master-slave topology (MS) and eventual
consistency (EC). Data is replicated asynchronously in batch
mode from master to slaves. In this design, it is possible
to run applications with different properties (e.g., write-
intensive and read-intensive apps) together.

There are two advantages of this design architecture.
First, different applications can choose datalet that best suits
their need. As a typical use case, monitoring data collection
is write-intensive workload, and prefers a scalable solution
that is able to persist all data on persistent storage. Whereas,
analytical models incur read intensive workload which
could benefit from high read throughput. Second, replicas
in different datalets are not evicted simultaneously. For
instance, a replica of a KV pair may evict from in-memory
based datalet due to size restriction but another replica may
stay longer in NVM/SSD based datalet or stay forever in log
based datalet that uses HDD.

7.2 Building Burst Buffer File Systems

Burst buffer file systems are becoming an indispensable
framework to quickly absorb application I/O requests in
exascale computing [50], [51], [52], [53]. Many burst buffer
file systems adopt KV stores to manage file systemmetadata.
BESPOKV allows to develop similar file systems with less
development effort. In particular, the dynamic and flexible
nature of BESPOKV well suits with ephemeral burst buffer file
systems [50]. An ephemeral burst buffer file system has to
be dynamically constructed and destroyed within compute
nodes assigned to a corresponding job. In such a scenario,
BESPOKV can quickly initialize the distributed KV store for
storing file systemmetadata.

Furthermore, BESPOKV also allows to dynamically tune
the file system behavior. For instance, it is often preferred to
relax the strong POSIX consistency semantics for certain
HPC workloads (e.g., checkpointing) to maximize the paral-
lel I/O performance [54]. BESPOKV can simplify the develop-
ment of such a file system, because it natively supports an
instantiation of the distributed KV store with desired con-
sistency and reliability levels.

7.3 Accelerating the File System Metadata
Performance

KV store is also widely adopted to enhance the performance
of file systemmetadata operations in HPC systems. Metadata
performance is one of the major limitations in HPC parallel
file systems. A popular approach to address this limitation is
to stack up a special file system atop the parallel file
system [55], [56], [57]. The stacked file system then quickly
absorbs the metadata operations by exploiting a distributed

KV store. BESPOKV can accelerate the development of such a
stacked file system (evaluated in Section 9.2). Specifically,
BESPOKV allows to explore various datalets in backend, and
also dynamically tune the file system behavior to complywith
the desired performance, consistency and reliability levels.

7.4 Resource and Process Management

KV store has also been used to aid the resource and process
management in HPC systems [2], [58]. BESPOKV can help
develop an advanced job launching system, because it can
adapt to different topology and consistency models on the
fly. For example, the simple MS topology may be sufficient
for handling jobs on a single cluster, but the AA topology
may become more suitable when jobs spans multiple
clusters (evaluated in Sections 9.2 and 9.4).

8 BESPOKV IMPLEMENTATION

Current implementation of BESPOKV consists of~69k lines of
C++/Python code without counting comments or blank
lines. Except controlets, BESPOKV consists of five components.
(1) Control Core implements the control plane backbone with
support for event and message handling. (2) Client library
helps clients route requests to appropriate controlets, and is
extended from libmc [59], a in-memory KV store client
library. (3) Coordinator uses ZooKeeper [26] to store topology
metadata of the whole cluster and coordinates leader elec-
tions during failover. It includes a Python-written failover
manager that directly controls the data recovery as well as
handling BESPOKV process failover. (4) Lock server APIs imple-
ment two lock server options—ZooKeeper-based [60] and
Redlock-based [27]. (5) Shared Log handler is implemented
using ZLog [28], based on CORFU.

The BESPOKV prototype has four pre-built controlets as
described in Section 4. All controlet shares the sample event-
handling controlet template of 150 LoC. In addition, BESPOKV
supports multiple backend datalets with protocol parsers.
Using the common datalet template of 966 LoC, we imple-
mented three new datalets with a Protobuf-based [32]
parser: tHT, an in-memory hash table; tLog, a persistent log-
structured store that uses tHT as the in-memory index; and
tMT, a Masstree-based [61] store. In addition, BESPOKV are
compatible with existing single-server KV stores SSDB [31]
and Redis [18] that use a simple text-based protocol parser.
With protocol parsers, we refer them tSSDB and tRedis,
respectively. Docker based BESPOKV is partially supported
right now. We plan to use Kubernetes [62] to simplify
deployment in near future.

Using the template-based design approach, we note that
for developers (with few years of C/C++ programming
experience) non familiar to BESPOKV it took almost three and
six person-days time to develop datalet and controlet,
respectively. This underscores BESPOKV’s ability to ease
development of distributed KV stores.

9 EVALUATION

Our evaluation answers the following questions:

� Are BESPOKV-enabled distributed KV stores scalable
(Section 9.2), adaptive to topology and consistency
changes (Section 9.4), and extensible (Section 9.5)?

Fig. 6. Put/Get paths in MS+EC for HPCmonitoring to perform I/O load
balancing.

ANWAR ETAL.: CUSTOMIZABLE SCALE-OUT KEY-VALUE STORES 2089

� How does BESPOKV compare to existing proxy-based
(Section 9.6), and natively-distributed (Section 9.7)
KV stores?

� Howwell BESPOKVhandles a node failure? (Section 10)

9.1 Experimental Setup

Testbeds and Configuration. We perform our evaluation on
Google Cloud Engine (GCE) and a local testbed. For larger
scale experiments (Sections 9.2, 9.3, 9.4, 9.5, and 9.6), we
make use of VMs provisioned from the us-east1-b

Zone in GCE. Each controlet–datalet pair runs on an n1-

standard-4 VM instance type, which has 4 virtual CPUs
and 15 GB memory. Workloads are generated on a separate
cluster comprising nodes of n1-highcpu-8 VM type with
8 virtual CPUs to saturate the cloud network and server-
side CPUs. A 1 Gbps network interconnect was used.

For performance stress test (Section 9.7) and fault toler-
ance experiments (Section 10), we use a local testbed consist-
ing of 12 physical machines, each equipped with 8 2.0 GHz
Intel Xeon cores, 64 GB memory, with a 10 Gbps network
interconnect. The coordinator is a single process (backed-up
using ZooKeeper [26] with a standby process as follower)
configured to exchange heartbeat messages every 5 sec with
controlets. We deploy the DLM, Shared Log, Coordinator
and ZooKeeper on separate set of nodes. BESPOKV’s coordina-
tor communicate with ZooKeeper for storingmetadata.

Workloads. We use two workloads obtained from typical
HPC services: job launch, and I/O forwarding and three
workloads from the Yahoo! Cloud Serving Benchmark
(YCSB) [63].

We use approach similar to [2] to generate HPC work-
loads. The job launch workload is obtained by monitoring
the messages between the server and client during a MPI
job launch. Control messages from the distributed servers
are treated as Get whereas results from the compute nodes
back to the servers as Put. The I/O forwarding workloads
is generated by running SeaweedFS [64], a distributed file
system which supports KV store for metadata management.
The clients first create 10,000 files, and then performs reads

or writes (with 50 percent probability) on each file. We col-
lect the log of the metadata server. We extend these work-
loads several times until reaching 10M requests with the
goal to reflect the time serialization property of the obtained
messages.

For YCSB we use an update-intensive workload (Get:
Put ratio of 50%:50%), a read-mostly workload (95 percent
Get), and a scan-intensive workload (95 percent Scan and
5 percent Put). All workloads consist of 10 million unique
KV tuples, each with 16 B key and 32 B value, unless
mentioned otherwise. Each benchmark process generates
10 million operations following a balanced uniform KV
popularity distribution and a skewed Zipfian distribution
(where Zipfian constant ¼ 0:99). The reported throughput is
measured in terms of thousand queries per second (kQPS)
as an arithmetic mean of three runs.

9.2 Scalability

In this test, we evaluate the scalability of the BESPOKV-
enabled distributed KV store using four datalets: tHT and
tLog, as examples of newly developed datalets; and tSSDB
and tMT, as representatives of existing persistent KV stores.
Fig. 7 shows the scalability of BESPOKV-enabled distributed
tHT. We measure the throughput when scaling out tHT
from 3 to 48 nodes on GCE. The number of replicas is set to
three. We present results for all four topology and consis-
tency combinations: MS+SC, MS+EC, AA+SC, and AA+EC.
For all cases, BESPOKV scales tHT out linearly as the number
of nodes increases for both read-intensive (95 percent Get)
and write-intensive (50 percent Get) workloads. For SC, MS
+SC using chain replication scales well, while AA+SC per-
forms worse as expected in locking based implementation.
For EC, the results show that our EC support scales well for
both MS+EC and AA+EC. Performance comparison to exist-
ing distributed KV stores will follow in Section 9.7.

Fig. 8 shows similar trend for HPC oriented workloads.
We again observe that MS outperforms AA for SC whereas
the trend is opposite for EC where AA performs better than
MS. We also observe that performance of I/O forwarding is
slightly better than Job launch. This is because I/O forward-
ing workload has 12 percent more reads than Job launch
with Get:Put ratio of 62%:38%.

Fig. 9 shows the scalability when varying the number of
nodes from 3 to 48, with tSSDB, tLog, and tMT as datalet. Due
to space constraints, we only present the result with the MS
+EC configuration. While enabling eventual consistency with
fault tolerance, BESPOKVprovides good scalability for all three.
In terms of performance, tMT is an in-memory database and
thus outperforms both tLog and tSSDB which persist data on

Fig. 7. BESPOKV scales tHT horizontally.

Fig. 8. BESPOKV scales HPC workloads.

2090 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 9, SEPTEMBER 2020

disk. It is as expected that the throughput of Scans (range
queries) is much lower than point queries. A 48 node tMT
cluster gives 18k QPS on Zipfian 95 percent Scan, while Uni-
form yields slightly higher throughput (21k). Interestingly,
this test covers a potential use case of BESPOKV+tLog for flash
storage disaggregation, where users can exploit the scale-out
capacity of an array of fast SSD (flash) devices/nodes with
low-latency datacenter network [65], [66].

9.3 Impact of Varying Replication Factor

Next, we analyze the impact of varying the replication fac-
tor on performance. Fig. 10 shows the average throughput
of an 8-shard cluster when varying the number of replicas
from 1 to 3.

For cluster configurations with EC under read-intensive
(uniform and Zipfian 95 percent Get) workloads, a larger
replication factor results in higher performance. This is
because there are more nodes that can serve Get requests.
The effect is more significant for uniform workload, as the
load is more balanced.

On the other hand, for MS+SC, scaling the number of
replicas does not improve performance. Performance stops
scaling above 2 replicas under read-intensive workloads,
and it actually degrades by a factor of 2 to 3 for write-
intensive workloads. This is because BESPOKV uses chain
replication to support MS+SC, and all Puts are going to the
head controlets, which need to do more work as the length
of the chain increases.

Increasing the number of replicas does increase the per-
formance for AA+SC under read-intensive workloads but
with limited improvement. This is due to the high cost of
distributed locking. Zipfian workloads severely increase the
lock contention at the lock server, leading to the observed
performance drop.

9.4 Adaptability

We evaluate BESPOKV’s adaptability in switching online con-
sistency levels and topology configurations (Section 5). In
all the tests we use 3 shards with a Zipfian workload of
95 percent Get. As shown in Fig. 11, the transition is

scheduled to be triggered at 20 sec. The throughput drops to
the lowest point for all three cases. This is because clients
switch connection to the new controlets. Performance stabil-
izes in~5 sec, because all the in-flight requests are handled
during this process. We observe similar trends for other pos-
sible transitions that can be enabled by BESPOKV. This demon-
strates BESPOKV’s flexibility and adaptability in switching
between different key designs & configurations. This also
shows that BESPOKV is able to complete switching in
extremely short time compared to existing solutions because
BESPOKV does not require datamigration or down time.

9.5 Extensibility and New Services

As sketched in Section 4, BESPOKV can be extended to sup-
port new forms of distributed services. This section evalu-
ates two examples: per-request consistency and polyglot
persistence.

We evaluate the per-request consistency service
(Section 6.2) under MS+SC and a Zipfian workload with a
25:75 percent ratio of SC:EC as the desired consistency. We
observed the performance to be between MS+SC and MS
+EC as shown in Fig. 7; for example, with 24 nodes, we
obtain �300k QPS for 95 percent Get and �270k QPS for
50 percent Get workloads. We also evaluate the average
latency of each request. With a weaker consistency requ-
irement, the GET latency is 0.67 ms. We get an average of
1.02 ms latency with default strong consistency.

We test polyglot persistence (Section 6.3) by storing each
replica in a different type of datalet. We use tHT, tLog and
tMT in MS topology with eventual consistency. The perfor-
mance of the resulting configuration under Uniform work-
load is very similar to the numbers in Figs. 7 and 9; for
example, with 24 nodes, we obtain 375k QPS for 95 percent
Get and 200k QPS for the 50 percent Getworkload.

9.6 Comparison to Proxy-Based Systems

This section shows that BESPOKV can support new topologies
and consistency models for existing single-server KV store,
and them compares BESPOKVwith two state-of-the-art Proxy-
based KV stores. We test BESPOKV+Redis (tRedis) running in
MS+SC, MS+EC and AA+EC modes, reusing SSDB’s text-
based protocol parser for Redis. Wemeasure the throughput
of tRedis on eight 3-replica shards across 24 nodes on GCE,
and compare it with Dynomite [19] supporting AA+EC only,
and Twemproxy [16] supporting MS+EC only. We perform
each test at three different periods of time to capture inter-
fernce caused by cloud-basedmulti tenancy.

Fig. 12 shows the throughput. BESPOKV enables new MS
+SC (�500kQPS under Zipfian 95 percent Get) and AA+EC
(�750k QPS under Zipfian 95 percent Get) configurations

Fig. 9. BESPOKV scales tSSDB, tLog, and tMT with MS+EC.

Fig. 10. Varying the number of replicas in BESPOKV.

Fig. 11. BESPOKV seamlessly adapts service from MS-EC to MS-SC, AA-
EC, and AA-SC.

ANWAR ETAL.: CUSTOMIZABLE SCALE-OUT KEY-VALUE STORES 2091

with reasonable performance. As expected, MS+SC is more
expensive than MS+EC. Twemproxy is just a proxy to route
requests using consistent hashing to a pool of backend serv-
ers. Hence, Twemproxy+Redis in supporting MS+EC per-
forms slightly better than BESPOKV in supporting MS+EC.5

However, we observed the same performance for Dynomite
+Redis in supporting AA+EC configuration for Redis as
BESPOKV in supporting AA+EC. The small error bars in
Fig. 12 show that inherent multi tenancy effect of cloud-
based environment is almost negligible.

9.7 Comparison to Natively-Distributed Systems

In this experiment, we compare BESPOKV-enabled KV stores
with two widely used natively-distributed (off-the-shelf) KV
stores: Cassandra [7] and LinkedIn’s Voldemort [67]. These
experiments were conducted on our 12-node local testbed in
order to avoid confounding issues arising from sharing a vir-
tualized platform. We launch the storage servers on six
nodes and YCSB clients on the other four nodes to saturate
the server side. The coordinator, lock server (only for AA
+SC), ZLog (only for AA+EC), and ZooKeeper are launched
on separate nodes. We use tHT as a datalet to show high effi-
ciency of BESPOKV-enabled KV stores.

For Cassandra, we specify consistency level of one to
make consistency requirements less stringent. Cassandra’s
replication mechanism follows the AA topology with
EC [68]. For Voldemort we use a server-side routing policy,
all-routing as the routing strategy, a replication factor of
three, one as the number of reads or writes that can succeed
without client getting an exception, and persistence set to
memory.

Fig. 13 shows the latency and throughput for all tested
systems/configurations when varying the number of clients

to increase the throughput in units of kQPS.6 For AA+EC,
BESPOKV outperforms Cassandra and Voldemort. For read-
intensive workload, BESPOKV’s throughput gain over Cassan-
dra and Voldemort is 4.5� and 1.6�, respectively. For write-
intensive workload, BESPOKV’s throughput gain is 4.4� over
Cassandra and 2.75� over Voldemort. In this experiment
Cassandra was configured to use persistent storage. How-
ever even using tLog as a datalet for BESPOKV(also uses persis-
tent storage) we observed a throughput gain of 2.6� and
1.2� over Cassandra and Voldemort, respectively. We sus-
pect that this is because Cassandra uses compaction in its
storage engine which significantly effects the write perfor-
mance and increases the read latency due to use of extra
CPU and disk usage [69]. Voldemort uses the same design
and both are based on Amazon’s Dynamo paper [6]. Further-
more, our findings are consistent with Dynomite in terms of
the performance comparisonwith Cassandra [69].

As an extra data point, we also see interesting tradeoffs
when experimenting with different configurations sup-
ported by BESPOKV. For instance, MS+EC achieves perfor-
mance comparable to AA+EC under 95 percent Get

workload since both configurations serve Gets from all rep-
licas. AA+EC achieves 47 percent higher throughput than
MS+EC under 50 percent Get workload, because AA+EC
serves Puts from all replicas. For AA+SC, lock contention
at the DLM caps the performance for both read- and write-
intensive workloads. As a result, MS+SC performs 3:2� bet-
ter than AA+SC for read-intensive workload and~2� better
for the write-intensive workload.

9.8 DPDK Optimization

We recently added support for DPDK based communica-
tion between clients, controlets, and datalets in to BESPOKV.
In this experiment, we show performance of socket versus
DPDK based communication. We deployed a single shard
on our local testbed (Section 9.1) and measured latency and
throughput using YCSB. Each node in our local setup is
equipped with Intel ethernet controller X540-AT2. We used
Intel’s DPDK framework version 17.05. Fig. 14 shows that
DPDK reduces latency by up to 65 percent. We also observe
3� improvement in throughput compared to socket based
communication. Another interesting finding is that DPDK
based communication results in more stable performance.

10 FAILOVER & DATA RECOVERY

We also evaluate how BESPOKV performs in case of a node
failure, and compare it with Redis’s replication used by
Dynomite for failover recovery. In this set of tests, we use 3
shards (each with 3 replicas) to clearly reflect the impact of
a failure on throughput. The workload consists of 1 million

Fig. 12. BESPOKV adds MS+SC and AA+EC for Redis. Comparison with
Dynomite (Dyno) and Twemproxy (Twem).

Fig. 13. Average latency versus throughput achieved by various systems
under Zipfian workloads.

Fig. 14. Latency and throughput improvements by using DPDK.

5. Twemproxy itself does not provide any consistency support. 6. Uniform workloads show similar trend, hence are omitted.

2092 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 9, SEPTEMBER 2020

KV tuples generated with a Zipfian distribution. We inten-
tionally crash a node to emulate a failure, and Fig. 15 shows
the resulting throughput change.

MS topology. For MS+SC, we bring down the head node
under the write-intensive workload (50 percent Put, as
shown in the bottom half of Fig. 15a) and the tail node for
the read-intensive workload (95 percent Get, as shown in
top half of the figure), to maximize the performance disrup-
tion on the respective workloads. For MS+EC, we take
down the master node for the write-intensive workload and
a random slave node for the read-intensive workload.

We observe that for MS+SC, Put throughput goes down
by about 1=3 when the head node crashes at 20 sec, as we
have 3 shards. The coordinator detects the node failure from
the lack of heartbeat message before assigning the master role
to the second node in the chain. The coordinator then
launches a new controlet–datalet pair in recovery mode, and
inserts the pair to the end of the chain once data recovery com-
pletes at around 35 sec. Meanwhile the throughput stabilizes.
MS+EC failover shows a similar trend. The top half of Fig. 15a
shows the impact of node failure on Get performance under
MS topology. For MS+SC, killing the tail brings down Get

throughput by 1=3. Once failure is detected, the coordinator
makes the 2nd-from-last node in the chain the new tail, and
updates the topology metadata. Once clients see the update,
they reroute the corresponding Gets to the new tail. Hence,
the throughput goes back to normal in~5 sec. MS+EC behaves
differently as Gets are served by any of the 3 replicas. Thus,
the slave failure drops throughput by only~1=9.

AA Topology. In BESPOKV’s AA and Dynomite (with Redis)
failover test, we randomly kill a node at 20 sec and record the
overall throughput. As shown in Fig. 15b, the throughput is
slightly impacted in all cases, because both BESPOKV AA and
Dynomite serve reads andwrites from all replicas. Dynomite
leverages Redis’ master-slave replication to recover data
directly from the surviving nodes. We observe trend similar
to Dynmoite as BESPOKV also uses datalet’s callback functions
to import and export the data. Please note that users can
choose to add more replicas to increase the overall perfor-
mance so that in case of a single node failure or a topology/
consistency switch the performance drop is not significant
enough to affect the HPC application.

11 RELATED WORK

Dynomite [19] adds fault tolerance and consistency support
for simple data stores such as Redis. Dynomite only
supports eventual consistency with AA topology. It also
requires the single-server applications to support distributed

management functions such as Redis’ streaming data recov-
ery/migration mechanism. BESPOKV’s datalet is completely
oblivious of the upper-level distributed management, which
offers improved flexibility and programmability.

Pileus [70] is a cloud storage system that offers a range of
consistency-level SLAs. Some storage systems offer tunable
consistency, e.g., ManhattanDB [71]. Flex-KV [72] is another
flexible key-value store that can be configured to act as a
non-persistent/durable store and operates consistently/
inconsistently. Morphus [73] provides support towards
reconfigurations for NoSQL stores in an online manner.
MOS [74], [75] and hatS [76], [77] provide flexible and elastic
resource-level partitioning for serving heterogeneous object
store workloads. ClusterOn [78] proposes to offer generic
distributed systems management for a range of distributed
storage systems. MBal [36], [37] provides fine-grained
service-level differentiation via flexible data partitioning. To
the best of our knowledge, BESPOKV is the first generic frame-
work that offers a broad range of consistency/topology
options for both users and KV store application developers.

Vsync [22] is a library for building replicated cloud serv-
ices. BESPOKV embeds single-node KV store application code
and automatically scales it with a rich choice of services.
Going one step further, BESPOKV can be an ideal platform to
leverage Vsync to further enrich flexibility. EventWave [79]
elastically scales inelastic cloud programs. PADS [80] pro-
vides policy architecture to build distributed applications.
Similarly, mOS [81] provides reusable networking stack to
allows developers to focus on the core application logic
instead of dealing with low-level packet processing. BESPOKV
focuses on a specific domain with a well-defined limited set
of events–KV store applications.

12 CONCLUSION

We have presented the design and implementation of
BESPOKV, a framework, which takes a single-server data store
and transparently enables a scalable, fault-tolerant distrib-
uted KV store service. BESPOKV’s decoupled control and data
plane architecture, configurability, and extensibility enable
new solutions for emerging HPC systems and workloads.
BESPOKV can be easily extended to offer advanced features
such as range query, per-request consistency, polyglot per-
sistence, and more. To the best of our knowledge, BESPOKV is
first to support a seamless on-the-fly topology/consistency
adaptation. As examples, we present a novel mechanism to
make transitions from MS+EC to MS+SC, and from AA+EC
to MS+EC. We also present several use cases to show effec-
tiveness of BESPOKV to support HPC applications. Evaluation
shows that BESPOKV is flexible, adaptive to new user require-
ments, achieves high performance, and scales horizontally.
BESPOKV has been open-sourced and is available at https://
github.com/tddg/bespokv

ACKNOWLEDGMENTS

This work was sponsored in part by the US National Science
Foundation under the Grants: CNS-1565314, CNS-1405697,
CNS-1615411, CCF-1919075, CCF-1919113, and CNS-1814430.
This work was performed while Fred Douglis was employed
by Dell EMC and gratefully acknowledges Dell EMC’s
support.

Fig. 15. Throughput timeline on failover. EC: eventual consistency; SC:
strong consistency; Dyno: Dynomite.

ANWAR ETAL.: CUSTOMIZABLE SCALE-OUT KEY-VALUE STORES 2093

https://github.com/tddg/bespokv
https://github.com/tddg/bespokv

REFERENCES

[1] J. Kim, S. Lee, and J. S. Vetter, “PapyrusKV: A high-performance
parallel key-value store for distributed NVM architectures,” in
Proc. Int. Conf. High Perform. Comput. Netw. Storage Anal., 2017,
Art. no. 57.

[2] K. Wang, A. Kulkarni, M. Lang, D. Arnold, and I. Raicu, “Using
simulation to explore distributed key-value stores for extreme-
scale system services,” in Proc. Int. Conf. High Perform. Comput.
Netw. Storage Anal., 2013, Art. no. 9.

[3] Z. W. Parchman, F. Aderholdt, and M. G. Venkata, “SharP hash: A
high-performing distributed hash for extreme-scale systems,” in
Proc. IEEE Int. Conf. Cluster Comput., 2017, pp. 647–648.

[4] S. Eilemann et al., “Key/value-enabled flash memory for complex
scientific workflows with on-line analysis and visualization,” in
Proc. IEEE Int. Parallel Distrib. Process. Symp., 2016, pp. 608–617.

[5] MongoDB, Accessed: Aug. 2019. [Online]. Available: https://
www.mongodb.com/

[6] G. DeCandia et al., “Dynamo: Amazon’s highly available key-
value store,” in Proc. 21st ACM SIGOPS Symp. Operating Syst.
Princ., 2007, pp. 205–220.

[7] A. Lakshman and P. Malik, “Cassandra: A decentralized struc-
tured storage system,” ACM SIGOPS Operating Syst. Rev., vol. 44,
pp. 35–40, 2010.

[8] R. Nishtala et al., “Scaling Memcache at Facebook,” in Proc. 10th
USENIX Conf. Netw. Syst. Des. Implementation, 2013, pp. 385–398.

[9] I. Zhang, N. K. Sharma, A. Szekeres, A. Krishnamurthy, and D. R.
K. Ports, “Building consistent transactions with inconsistent repli-
cation,” in Proc. 25th Symp.Operating Syst. Princ., 2015, pp. 263–278.

[10] R. Escriva, B. Wong, and E. G. Sirer, “HyperDex: A distributed,
searchable key-value store,” in Proc. ACM SIGCOMM Conf. Appl.
Technol., Archit. Protocols Comput. Commun., 2012, pp. 25–36.

[11] Social Artisan, Accessed: Aug. 2019. [Online]. Available: http://
socialartisan.co.uk/

[12] Behance, Accessed: Aug. 2019. [Online]. Available: https://www.
behance.net/

[13] The Migration Process, Accessed: Aug. 2019. [Online]. Available:
https://academy.datastax.com/planet-cassandra//mongodb-to-
cassandra-migration/#data_model

[14] Why flowdock migrated from cassandra to mongodb, Accessed:
Aug. 2019. [Online]. Available: http://blog.flowdock.com/2010/
07/26/flowdock-migrated-from-cassandra-to-mongodb/

[15] R. Nishtala et al., “Scaling Memcache at Facebook,” in Proc. 10th
USENIX Conf. Netw. Syst. Des. Implementation, 2013, pp. 385–398.

[16] Twitter’s Twemproxy, Accessed: Aug. 2019. [Online]. Available:
https://github.com/twitter/twemproxy

[17] Memcached, Accessed: Aug. 2019. [Online]. Available: https://
memcached.org/

[18] Redis, Accessed: Aug. 2019. [Online]. Available: http://redis.io/
[19] Netflix’s Dynomite, Accessed: Aug. 2019. [Online]. Available:

https://github.com/Netflix/dynomite
[20] LevelDB, Accessed: Aug. 2019. [Online]. Available: https://

github.com/google/leveldb
[21] Y. Mao, E. Kohler, and R. T. Morris, “Cache craftiness for fast mul-

ticore key-value storage,” in Proc. 7th ACM Eur. Conf. Comput.
Syst., 2012, pp. 183–196.

[22] Vsync, Accessed: Aug. 2019. [Online]. Available: https://vsync.
codeplex.com/

[23] Google Cloud Platform, Accessed: Aug. 2019. [Online]. Available:
https://cloud.google.com/compute/

[24] C. Delimitrou and C. Kozyrakis, “Paragon: QoS-aware scheduling
for heterogeneous datacenters,” in Proc. 18th Int. Conf. Archit. Sup-
port Program. Lang. Operating Syst., 2013, pp. 77–88.

[25] J. Mars, L. Tang, and R. Hundt, “Heterogeneity in “Homogeneous”
warehouse-scale computers: A performance opportunity,” IEEE
Comput. Archit. Lett., vol. 10, no. 2, pp. 29–32, Jul.–Dec. 2011.

[26] P. Hunt, M. Konar, F. P. Junqueira, and B. Reed, “ZooKeeper:
Wait-free coordination for internet-scale systems,” in Proc. USE-
NIX Conf. USENIX Annu. Tech. Conf., 2010, Art. no. 11.

[27] Distributed locks with Redis, Accessed: Aug. 2019. [Online].
Available: http://redis.io/topics/distlock

[28] ZLog, Accessed: Aug. 2019. [Online]. Available: https://github.
com/noahdesu/zlog

[29] M. Balakrishnan, D. Malkhi, V. Prabhakaran, T. Wobbler, M. Wei,
and J. D. Davis, “CORFU: A shared log design for flash clusters,”
in Proc. 9th USENIX Symp. Netw. Syst. Des. Implementation, 2012,
pp. 1–14.

[30] M. A. Sevilla et al., “Malacology: A programmable storage sys-
tem,” in Proc. 12th Eur. Conf. Comput. Syst., 2017, pp. 175–190.

[31] SSDB, Accessed: Aug. 2019. [Online]. Available: https://github.
com/ideawu/ssdb

[32] Google Protocol Buffers, Accessed: Aug. 2019. [Online]. Available:
https://developers.google.com/protocol-buffers/

[33] Y.-J. Hong and M. Thottethodi, “Understanding and mitigating
the impact of load imbalance in the memory caching tier,” in Proc.
4th Annu. Symp. Cloud Comput., 2013, Art. no. 13.

[34] B. Fan, H. Lim, D. G. Andersen, and M. Kaminsky, “Small cache,
big effect: Provable load balancing for randomly partitioned
cluster services,” in Proc. 2nd ACM Symp. Cloud Comput., 2011,
pp. 1–12.

[35] X. Li, R. Sethi, M. Kaminsky, D. G. Andersen, and M. J. Freedman,
“Be fast, cheap and in control with SwitchKV,” in Proc. 13th Usenix
Conf. Netw. Syst. Des. Implementation, 2016, pp. 31–44.

[36] Y. Cheng, A. Gupta, and A. R. Butt, “An in-memory object caching
framework with adaptive load balancing,” in Proc. 10th Eur. Conf.
Comput. Syst., 2015, pp. 1–16.

[37] Y. Cheng, A. Gupta, A. Povzner, and A. R. Butt, “High perfor-
mance in-memory caching through flexible fine-grained services,”
in Proc. 4th Annu. Symp. Cloud Comput., 2013, Art. no. 56.

[38] X. Jin et al., “NetCache: Balancing key-value stores with fast in-
network caching,” in Proc. 26th Symp. Operating Syst. Princ., 2017,
pp. 121–136.

[39] R. van Renesse and F. B. Schneider, “Chain replication for sup-
porting high throughput and availability,” in Proc. 6th Conf. Symp.
Operating Syst. Des. Implementation, 2004, Art. no. 7.

[40] S. Almeida, J. A. Leit~ao, and L. Rodrigues, “ChainReaction: A
causal+ consistent datastore based on chain replication,” in Proc.
8th ACM Eur. Conf. Comput. Syst., 2013, pp. 85–98.

[41] J. Terrace and M. J. Freedman, “Object storage on CRAQ: High-
throughput chain replication for read-mostly workloads,” in Proc.
Conf. USENIX Annu. Tech. Conf., 2009, Art. no. 11.

[42] H.-T. Kung and J. T. Robinson, “On optimistic methods for
concurrency control,” ACM Trans. Database Syst., vol. 6, no. 2,
pp. 213–226, 1981.

[43] Cassandra Configuration, Accessed: Aug. 2019. [Online]. Available:
http://docs.datastax.com/en/cassandra/2.0/cassandra/dml/dml_
config_consistency_c.html

[44] How Dynomite handles the data conflict, Accessed: Aug. 2019.
[Online]. Available: https://github.com/Netflix/dynomite/
issues/274

[45] R. Van Renesse, D. Dumitriu, V. Gough, and C. Thomas, “Efficient
reconciliation and flow control for anti-entropy protocols,” in
Proc. ACM Workshop Large-Scale Distrib. Syst. Middleware, 2008,
Art. no. 6.

[46] Polyglot persistence, Accessed: Aug. 2019. [Online]. Available:
https://en.wikipedia.org/wiki/Polyglot_persistence

[47] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan,
“Chord: A scalable peer-to-peer lookup service for internet
applications,” ACM SIGCOMM Comput. Commun. Rev., vol. 31,
pp. 149–160, 2001.

[48] B. Xie et al., “Characterizing output bottlenecks in a super-
computer,” in Proc. Int. Conf. High Perform. Comput. Netw. Storage
Anal., 2012, Art. no. 8.

[49] A. K. Paul et al., “I/O load balancing for big data HPC
applications,” in Proc. IEEE Int. Conf. Big Data, 2017, pp. 233–242.

[50] T. Wang, K.Mohror, A.Moody, K. Sato, andW. Yu, “An ephemeral
burst-buffer file system for scientific applications,” in Proc. Int. Conf.
High Perform. Comput. Netw. Storage Anal., 2016, Art. no. 69.

[51] T. Wang, S. Oral, Y. Wang, B. Settlemyer, S. Atchley, and W. Yu,
“BurstMem: A high-performance burst buffer system for scientific
applications,” in Proc. IEEE Int. Conf. Big Data, 2014, pp. 71–79.

[52] D. Shankar, X. Lu, and D. K. D. Panda, “Boldio: A hybrid and
resilient burst-buffer over lustre for accelerating big data I/O,” in
Proc. IEEE Int. Conf. Big Data, 2016, pp. 404–409.

[53] X. Shi, M. Li, W. Liu, H. Jin, C. Yu, and Y. Chen, “SSDUP: A traf-
fic-aware SSD burst buffer for HPC systems,” in Proc. Int. Conf.
Supercomput., 2017, Art. no. 27.

[54] R. Rajachandrasekar, A. Moody, K. Mohror, and D. K. Panda, “A 1
PB/s file system to checkpoint three million MPI tasks,” in Proc.
22nd Int. Symp. High-Perform. Parallel Distrib. Comput., 2013,
pp. 143–154.

[55] S. Patil and G. Gibson, “Scale and concurrency of GIGA+: File sys-
tem directories with millions of files,” in Proc. 9th USENIX Conf.
File Stroage Technol., 2011, Art. no. 13.

2094 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 9, SEPTEMBER 2020

https://www.mongodb.com/
https://www.mongodb.com/
http://socialartisan.co.uk/
http://socialartisan.co.uk/
https://www.behance.net/
https://www.behance.net/
https://academy.datastax.com/planet-cassandra//mongodb-to-cassandra-migration/#data_model
https://academy.datastax.com/planet-cassandra//mongodb-to-cassandra-migration/#data_model
http://blog.flowdock.com/2010/07/26/flowdock-migrated-from-cassandra-to-mongodb/
http://blog.flowdock.com/2010/07/26/flowdock-migrated-from-cassandra-to-mongodb/
https://github.com/twitter/twemproxy
https://memcached.org/
https://memcached.org/
http://redis.io/
https://github.com/Netflix/dynomite
https://github.com/google/leveldb
https://github.com/google/leveldb
https://vsync.codeplex.com/
https://vsync.codeplex.com/
https://cloud.google.com/compute/
http://redis.io/topics/distlock
https://github.com/noahdesu/zlog
https://github.com/noahdesu/zlog
https://github.com/ideawu/ssdb
https://github.com/ideawu/ssdb
https://developers.google.com/protocol-buffers/
http://docs.datastax.com/en/cassandra/2.0/cassandra/dml/dml_config_consistency_c.html
http://docs.datastax.com/en/cassandra/2.0/cassandra/dml/dml_config_consistency_c.html
https://github.com/Netflix/dynomite/issues/274
https://github.com/Netflix/dynomite/issues/274
https://en.wikipedia.org/wiki/Polyglot_persistence

[56] K. Ren, Q. Zheng, S. Patil, and G. Gibson, “IndexFS: Scaling file
system metadata performance with stateless caching and bulk
insertion,” in Proc. Int. Conf. High Perform. Comput. Netw. Storage
Anal., 2014, pp. 237–248.

[57] Q. Zheng, K. Ren, G. Gibson, B. W. Settlemyer, and G. Grider,
“DeltaFS: Exascale file systems scale better without dedicated
servers,” in Proc. 10th Parallel Data Storage Workshop, 2015, pp. 1–6.

[58] R. H. Castain, D. G. Solt, J. Hursey, and A. Bouteiller, “PMIx: Pro-
cess management for exascale environments,” in Proc. 24th Eur.
MPI Users’ Group Meet., 2017, pp. 14:1–14:10.

[59] libmc, Accessed: Aug. 2019. [Online]. Available: https://github.
com/douban/libmc

[60] ZooKeeper Recipes and Solutions, Accessed: Aug. 2019. [Online].
Available: https://zookeeper.apache.org/doc/r3.1.2/recipes.
html

[61] Embedded Masstree, Accessed: Aug. 2019. [Online]. Available:
https://github.com/rmind/masstree

[62] Kubernetes: Production-Grade Container Orchestration,
Accessed: Aug. 2019. [Online]. Available: https://kubernetes.io/

[63] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears,
“Benchmarking cloud serving systems with YCSB,” in Proc. 1st
ACMSymp. Cloud Comput., 2010, pp. 143–154.

[64] SeaweedFS, Accessed: Aug. 2019. [Online]. Available: https://
github.com/chrislusf/seaweedfs

[65] A. Klimovic, C. Kozyrakis, E. Thereska, B. John, and S. Kumar,
“Flash storage disaggregation,” in Proc. 11th Eur. Conf. Comput.
Syst., 2016, Art. no. 29.

[66] N. Zhao et al., “Chameleon: An adaptive wear balancer for flash
clusters,” in Proc. IEEE Int. Parallel Distrib. Process. Symp., 2018,
pp. 1163–1172.

[67] R. Sumbaly, J. Kreps, L. Gao, A. Feinberg, C. Soman, and S. Shah,
“Serving large-scale batch computed data with project Voldemort,”
inProc. 10thUSENIXConf. File Storage Technol., 2012, Art. no. 18.

[68] N. Carvalho et al., “Finding consistency in an inconsistent world:
Towards deep semantic understanding of scale-out distributed
databases,” in Proc. 8th USENIX Conf. Hot Topics Storage File Syst.,
2016, pp. 66–70.

[69] Why not Cassandra, Accessed: Aug. 2019. [Online]. Available:
http://www.dynomitedb.com/docs/dynomite/v0.5.6/faq/

[70] D. B. Terry, V. Prabhakaran, R. Kotla, M. Balakrishnan,
M. K. Aguilera, and H. Abu-Libdeh, “Consistency-based service
level agreements for cloud storage,” in Proc. 24th ACMSymp.Operat-
ing Syst. Princ., 2013, pp. 309–324.

[71] Manhattan, our real-time, multi-tenant distributed database for
Twitter scale, Accessed: Aug. 2019. [Online]. Available: http://
goo.gl/7EThfo

[72] A. Phanishayee, D. G. Andersen, H. Pucha, A. Povzner, and
W. Belluomini, “Flex-KV: Enabling high-performance and flexible
KV systems,” in Proc. Workshop Manage. Big Data Syst., 2012,
pp. 19–24.

[73] M. Ghosh, W. Wang, G. Holla, and I. Gupta, “Morphus: Supporting
online reconfigurations in sharded NoSQL systems,” IEEE Trans.
Emerg. Topics Comput., vol. 5, no. 4, pp. 466–479, FourthQuarter 2017.

[74] A. Anwar, Y. Cheng, A. Gupta, and A. R. Butt, “Taming the cloud
object storage with MOS,” in Proc. 10th Parallel Data Storage Work-
shop, 2015, pp. 7–12.

[75] A. Anwar, Y. Cheng, A. Gupta, and A. R. Butt, “MOS: Workload-
aware elasticity for cloud object stores,” in Proc. 25th ACM Int.
Symp. High-Perform. Parallel Distrib. Comput., 2016, pp. 177–188.

[76] K. Krish, A. Anwar, and A. R. Butt, “hatS: A heterogeneity-aware
tiered storage for hadoop,” in Proc. 14th IEEE/ACM Int. Symp.
Cluster Cloud Grid Comput., 2014, pp. 502–511.

[77] K. Krish, A. Anwar, and A. R. Butt, “[phi] Sched: A heterogeneity-
aware hadoop workflow scheduler,” in Proc. IEEE 22nd Int. Symp.
Modelling Anal. Simul. Comput. Telecommun. Syst., 2014, pp. 255–264.

[78] A. Anwar, Y. Cheng, H. Huang, and A. R. Butt, “ClusterOn: Build-
ing highly configurable and reusable clustered data services using
simple data nodes,” in Proc. 8th USENIX Conf. Hot Topics Storage
File Syst., 2016, pp. 51–55.

[79] W.-C. Chuang, B. Sang, S. Yoo, R. Gu, M. Kulkarni, and C. Killian,
“EventWave: Programming model and runtime support for
tightly-coupled elastic cloud applications,” in Proc. 4th Annu.
Symp. Cloud Comput., 2013, pp. 1–16.

[80] N. M. Belaramani, J. Zheng, A. Nayate, R. Soul�e, M. Dahlin, and
R. Grimm, “PADS: A policy architecture for distributed storage
systems,” in Proc. 6th USENIX Symp. Netw. Syst. Des. Implementa-
tion, 2009, pp. 59–73.

[81] M. Jamshed, Y. Moon, D. Kim, D. Han, and K. Park, “mOS: A
reusable networking stack for flow monitoring middleboxes,” in
Proc. 14th USENIX Conf. Netw. Syst. Des. Implementation, 2017,
pp. 113–129.

Ali Anwar received the PhD degree in computer
science from Virginia Tech, Blacksburg, Virginia.
He is currently a research staff member with IBM
Almaden Research Center. In his earlier years, he
worked as a tools developer (GNUGDB) at Mentor
Graphics. His research interests include distributed
computing systems, cloud storage management,
file and storage systems, AI platforms, and inter-
section of systems andmachine learning.

Yue Cheng received the PhD degree in computer
science from Virginia Tech, Blacksburg, Virginia,
in 2017. He is currently an assistant professor of
computer science with George Mason University.
His research interests include distributed sys-
tems, cloud computing, and high-performance
computing.

Hai Huang received the BSE degree in computer
science and engineering (CSE) from the Ohio
State University, Columbus, Ohio, in 2000, and the
MS and PhD degrees in computer science
and engineering from the University of Michigan,
Ann Arbor, Michigan, in 2006. He is a currently
research staff with the Cloud Computing Depart-
ment, IBM Research. His research interests
include cloud computing, operating systems, dis-
tributed systems management, software testing,
and anomaly detection.

Jingoo Han is currently working toward the PhD
degree with the Department of Computer Science,
Virginia Tech, Blacksburg, Virginia. In his earlier
years, he hasworked as a senior software engineer
with Samsung Electronics. His research interests
include distributed systems, deep learning, and
high-performance computing.

Hyogi Sim received the BS degree in civil engi-
neering and the MS degree in computer engineer-
ing from Hanyang University, Seoul, South Korea,
and the MS degree in computer science from
Virginia Tech, Blacksburg, Virginia, in 2014 and
is currently working toward the PhD degree at
Virginia Tech, Blacksburg, Virginia. He joined Oak
Ridge National Laboratory in 2015, as a post-
masters associate. During this appointment, he
conducted research and development on active
storage systems and scientific data management

for HPCsystems. He is currently anHPCsystemsengineer withOakRidge
National Laboratory. His primary role is to design and develop a checkpoint-
restart storage system for the exascale computing project. His areas of
interest include storage systems and distributed systems.

ANWAR ETAL.: CUSTOMIZABLE SCALE-OUT KEY-VALUE STORES 2095

https://github.com/douban/libmc
https://github.com/douban/libmc
https://zookeeper.apache.org/doc/r3.1.2/recipes.html
https://zookeeper.apache.org/doc/r3.1.2/recipes.html
https://github.com/rmind/masstree
https://kubernetes.io/
https://github.com/chrislusf/seaweedfs
https://github.com/chrislusf/seaweedfs
http://www.dynomitedb.com/docs/dynomite/v0.5.6/faq/
http://goo.gl/7EThfo
http://goo.gl/7EThfo

Dongyoon Lee received the MS and PhD degrees
in computer science and engineering from the
University of Michigan, Ann Arbor, Michigan. He is
currently an assistant professor of computer sci-
ence with Stony Brook University, where he works
on computer systems, software reliability, program
analysis, concurrency, security, computer architec-
ture, and software engineering. From 2014 to 2019,
he was an assistant professor of computer science
with Virginia Tech. He has won a Distinguished
Paper Award at FSE 2018 and a Best Paper Award

at ASPLOS 2011. His SC 2016 paper was nominated as a Best Student
Paper Finalist. He has received a Virginia Tech ICTASJunior Faculty Award
in 2017, a Google Research Award in 2015, a ProQuest Distinguished Dis-
sertation Award in 2013, and a VMWare Graduate Fellowship in 2011. His
co-authored paperswon the best student paper finalist at SC 2016, and the
best paper at ASPLOS2011.

Fred Douglis (Fellow, IEEE) received the
PhD degree in computer science from the
U.C. Berkeley, Berkeley, California. He is a chief
research scientist with Perspecta Labs since
January 2018, where heworks on applied research
in the areas of blockchain, network optimization,
and security. He was previously with companies
including Matsushita, AT&T, IBM, and (Dell) EMC.
His research interests included storage, distributed
systems, web tools and performance, and mobile
computing. He is a member of the IEEE Computer
Society Board ofGovernors.

Ali R. Butt is currently a professor of computer
science with Virginia Tech. He is a recipient of an
NSF CAREER, IBM Faculty Awards, NetApp Fac-
ulty Fellowships, and a VTCOEFaculty Fellowship.
He has served on the editorial board of the IEEE
Transactions on Cloud Computing, ACM Transac-
tions on Storage, and IEEE Transactions on Paral-
lel and Distributed Systems. He is an alumni of the
NAEFOEandNASAAsymposia (2010 organizer).
His research interests include scalable distributed
computing systems, cloud computing, edge com-

puting, file and storage systems, and Internet-of-Things. At Virginia Tech,
he leads the DistributedSystems &Storage Laboratory (DSSL).

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

2096 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 9, SEPTEMBER 2020

Energy-Efficient Parallel Real-Time Scheduling
on Clustered Multi-Core

Ashikahmed Bhuiyan , Di Liu , Aamir Khan, Abusayeed Saifullah , Nan Guan , and Zhishan Guo

Abstract—Energy-efficiency is a critical requirement for computation-intensive real-time applications on multi-core embedded

systems. Multi-core processors enable intra-task parallelism, and in this work, we study energy-efficient real-time scheduling of

constrained deadline sporadic parallel tasks, where each task is represented as a directed acyclic graph (DAG). We consider a

clustered multi-core platform where processors within the same cluster run at the same speed at any given time. A new concept named

speed-profile is proposed to model per-task and per-cluster energy-consumption variations during run-time to minimize the expected

long-term energy consumption. To our knowledge, no existing work considers energy-aware real-time scheduling of DAG tasks with

constrained deadlines, nor on a clustered multi-core platform. The proposed energy-aware real-time scheduler is implemented upon an

ODROID XU-3 board to evaluate and demonstrate its feasibility and practicality. To complement our system experiments in large-scale,

we have also conducted simulations that demonstrate a CPU energy saving of up to 67 percent through our proposed approach

compared to existing methods.

Index Terms—Parallel task, real-time scheduling, energy minimization, cluster-based platform, heterogeneous platform

Ç

1 INTRODUCTION

MULTI-CORE processors appear as an enabling platform
for embedded systems applications that require real-

time guarantees, energy efficiency, and high performance.
Intra-task parallelism (a task can be executed on multiple
cores simultaneously) enables us to exploit the capability of
the multi-core platform, and facilitates a balanced distribu-
tion of the tasks among the processors. Such a balanced dis-
tribution leads to energy efficiency [1]. Directed Acyclic
Graph (DAG) task model [2] is one of the most generalized
workload model for representing deterministic intra-task
parallelism. Recently, quite some effort has been spent on
developing real-time scheduling strategies and schedulabil-
ity analysis of DAG tasks, few to mention [2], [3], [4], [5],
[6], [7], [8].

There are several real-world application that uses the
DAG model. For example, the work in [3] studies problems
related to scheduling parallel real-time tasks, modeled as
DAG, on multiprocessor architectures. In a homogeneous
computing environment, a low-complexity compile-time
algorithm for scheduling DAG tasks is proposed in [9].

Another example would be systems that control asynchro-
nous devices, such as the local-area network adapters that
implement real-time communication protocols.

Since many of those applications are battery-powered,
considering energy-efficient approaches for designing such
a platform is crucial. Thanks to the fact that modern genera-
tion processors support dynamic voltage and frequency
scaling (DVFS), where each processor can adjust the voltage
and frequency at runtime to minimize power consumption,
per-core energy minimization becomes possible during run-
time. Despite the hardness of the problem [10], a significant
amount of work has considered power minimization for
non-parallel tasks on a multi-core platform (refer to [11] for
a survey). Regarding parallel tasks, Guo et al. studied
energy-efficient real-time scheduling for DAG tasks as an
early research effort [12]. They adopted the federated sched-
uling and task decomposition framework [2] for minimizing
system energy consumption via per-core speed modulation.
As the only step (that we are aware of) towards energy-
aware scheduling of real-time DAG tasks, they targeted an
exciting problem and laid some of the foundations of this
work. However, the attention of [12] is restricted to implicit
deadline tasks with a system model of per-core DVFS.

Unfortunately, per-core DVFS becomes inefficient as it
increases the hardware cost [13]. For balancing the energy
efficiency and the hardware cost, there is an ongoing trend
to group processors into islands, where processors in the
same island execute at the same speed. For example, a big.
LITTLE platform (e.g., ODROID XU-3 [14]) consists of high
performance (but power-hungry) cores integrated into ‘big’
clusters and low-power cores into ‘LITTLE’ clusters. Such a
platform executes several real-life applications with heavy
computational demands (e.g., video streaming [15]) in an
energy-efficient manner. Apart from the energy consump-
tion issue, a multi-core platform enables task execution with

� A. Bhuiyan and Z. Guo are with the Department of Electrical and
Computer Engineering, University of Central Florida, Orlando, FL 32816.
E-mail: abvn2@mst.edu, zsguo@ucf.edu.

� D. Liu is with Yunnan University, Kunming 650106, China.
E-mail: d.liu@liacs.leidenuniv.nl.

� A. Khan is with Brainco Inc., Somerville, MA 02143.
E-mail: aamir.khan@brainco.tech.

� A. Saifullah is with the Department of Computer Science, Wayne State
University, Detroit, MI 48202. E-mail: saifullah@wayne.edu.

� N. Guan is with the Department of Computing, Hong Kong Polytechnic
University, Hong Kong. E-mail: csguannan@comp.polyu.edu.hk.

Manuscript received 24 July 2019; revised 6 Mar. 2020; accepted 1 Apr. 2020.
Date of publication 14 Apr. 2020; date of current version 24 Apr. 2020.
(Corresponding author: Ashikahmed Bhuiyan.)
Recommended for acceptance by Q. Zheng.
Digital Object Identifier no. 10.1109/TPDS.2020.2985701

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 9, SEPTEMBER 2020 2097

1045-9219� 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht_tps://www.ieee.org/publications/rights/index.html for more information.

https://orcid.org/0000-0002-4668-4247
https://orcid.org/0000-0002-4668-4247
https://orcid.org/0000-0002-4668-4247
https://orcid.org/0000-0002-4668-4247
https://orcid.org/0000-0002-4668-4247
https://orcid.org/0000-0002-4365-2768
https://orcid.org/0000-0002-4365-2768
https://orcid.org/0000-0002-4365-2768
https://orcid.org/0000-0002-4365-2768
https://orcid.org/0000-0002-4365-2768
https://orcid.org/0000-0002-7922-0836
https://orcid.org/0000-0002-7922-0836
https://orcid.org/0000-0002-7922-0836
https://orcid.org/0000-0002-7922-0836
https://orcid.org/0000-0002-7922-0836
https://orcid.org/0000-0003-3775-911X
https://orcid.org/0000-0003-3775-911X
https://orcid.org/0000-0003-3775-911X
https://orcid.org/0000-0003-3775-911X
https://orcid.org/0000-0003-3775-911X
https://orcid.org/0000-0002-5967-1058
https://orcid.org/0000-0002-5967-1058
https://orcid.org/0000-0002-5967-1058
https://orcid.org/0000-0002-5967-1058
https://orcid.org/0000-0002-5967-1058
mailto:abvn2@mst.edu
mailto:zsguo@ucf.edu
mailto:d.liu@liacs.leidenuniv.nl
mailto:aamir.khan@brainco.tech
mailto:saifullah@wayne.edu
mailto:csguannan@comp.polyu.edu.hk

high-performance demand and tight deadlines, essential for
computation-intensive real-time systems, e.g., autonomous
vehicles [16].

Despite the urgent need, to our knowledge, no work has
been done that considered the energy-efficient scheduling
of DAG tasks in clustered multi-core platforms, where cores
form a group of frequency/voltage clusters. Such kind of
system balances the energy efficiency and hardware cost
compared to the traditional (with individual frequency scal-
ing feature) multi-core models. The scheduling problem
becomes highly challenging on such platforms because:

(i) The relationship between the execution time, fre-
quency, and the energy consumption is nonlinear,
making it highly challenging to minimize energy
consumption while guaranteeing real-time correct-
ness, i.e., none of the tasks miss their deadline.

(ii) Existing solution (e.g., [12]) relies on the assumption
that each processor can freely adjust its speed. That
solution performs poorly as the assumption is no
longer valid under a more realistic platform model
considered in this paper.

(iii) The speed of a cluster becomes unpredictable when
shared bymultiple taskswith sporadic release patterns.

Contribution. In this paper, we propose a novel technique
for energy-efficient scheduling of constrained deadline DAG
tasks in a cluster-based multi-core system. To the best of our
knowledge, no work has investigated the energy-efficient
scheduling of DAG tasks on such a cluster-based platform. It
is also the first work that has addressed the power awareness
issue considering constrained deadline DAG tasks. Specifi-
cally, wemake the following contributions:

� We consider a more practical cluster-based system
model where the cores must execute at the same
speed at any time instant within each cluster.

� To better handle constrained deadlines, one need to
capture the gaps between deadlines and upcoming
releases, as well as handling sporadic releases. Con-
sidering a continuous frequency scheme, we first
propose a novel concept of speed-profile to present the
energy-consumption behavior for each task as well
as each cluster, such that they could guide task parti-
tioning in an energy-efficient manner. An efficient
greedy algorithm is proposed to partition DAG tasks
according to the constructed speed-profiles.

� We propose an approach to creating the speed-profile
to adapt to the discrete frequency scheme. Also, we
extend our approach to apply to the heterogeneous
platform.

� To evaluate the effectiveness of our proposed tech-
nique, we implement it on the ODROID XU-3 board, a
representative multi-core platform for embedded sys-
tems [14]. The experiments report that our approach
can save energy consumption by 18 percent compared
to a reference approach. For larger-scale evaluation,
we perform simulations using synthetic workloads
and compare our technique with two existing base-
lines [12], [17]. The simulation results demonstrate
that our method can reduce energy consumption by
up to 66 percent compared to the existing ones under
the cluster-based platform setting.

Organization. The rest of the paper is organized as fol-
lows. Section 2 presents the workload, power, and platform
models, and the problem statement. Section 3, describes the
importance of creating a speed-profile for an individual task
and the whole cluster. Section 4 discusses the approaches to
create the speed-profile (considering both the continuous
and discrete frequency mode) for each task. In this section,
we also propose a greedy algorithm to allocate multiple
tasks in the same cluster. Sections 5 and 6 presents the
experimental and simulation results. Section 7 discusses
related work including a detailed comparison with our
existing work [12], [18]. Section 8 concludes this paper.

2 SYSTEM MODEL, PROBLEM STATEMENT,
AND BACKGROUND

2.1 System Model and Problem Statement

Workload Model. We consider a set of sporadic parallel task
denoted by t ¼ ft1; . . . ; tng, where each ti 2 t ð1 � i � nÞ is
represented as a DAG with a minimum inter-arrival separa-
tion (i.e., period) of Ti time units, and a relative deadline of
Dið� TiÞ time units. An implicit deadline task has the same
relative deadline and period, i.e., Di ¼ Ti. As a DAG task,
the execution part of task ti contains a total of Ni nodes,
each denoted by N j

ið1 � j � NiÞ. A directed edge from N j
i

to N k
i ðN j

i ! N k
i Þ implies that execution of N k

i can start if
N j

i finishes for every instance (precedence constraints). In
this case, N j

i is called a parent of N k
i (N k

i is a child of N j
i). A

node may have multiple parents or children. The degree of
parallelism, Mi, of ti is the number of nodes that can be
simultaneously executed. cji denotes the execution require-

ment of node N j
i . Ci :¼

PNi
j¼1 c

j
i denotes the worst case exe-

cution requirement (WCET) of ti.

A critical path is a directed path with the maximum total
execution requirements among all other paths in a DAG. Li

is the sum of the execution requirements of all the nodes
that lie on a critical path. It is the minimum make-span of ti,
i.e., in order to make ti schedulable, at least Li time units
are required even when number of cores is unlimited. Since
at least Li time units are required for ti, the condition
Ti � Li (implicit deadline tasks) and Di � Li (constrained
deadline tasks) must hold for ti to be schedulable. A sched-
ule is said to be feasible if upon satisfying the precedence
constraints, all the sub-tasks (nodes) receive enough execu-
tion from their arrival times, i.e., Ci within Ti (implicit dead-
line) or Di (constrained deadline) time units. These terms
are illustrated in Fig. 2a.

Platform Model. We consider a clustered multi-core plat-
form, where processors within the same cluster run at the
same speed (frequency and supply voltage) at any given
time. Such additional restriction comparing to traditional
multi-core platform makes the model more realistic in
many senarios. For example, our experiment is conducted
on the ODROID XU-3 platform with one ‘LITTLE’ cluster of
four energy-efficient ARM Cortex-A7 and one ‘big’ cluster
of four performance-efficient ARM Cortex-A15. Note that
we do not restrict the hardware-dependent energy parame-
ters (e.g., a;b and g in the power model discussed below) to
be identical across different clusters—these parameters can
be derived using any curve-fitting method, e.g., [19].

2098 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 9, SEPTEMBER 2020

Energy Model.Assuming frequency (speed) of a processor
at a specific instant t is sðtÞ (in short, denoted as s), then its
power consumption P ðsÞ can be calculated as

P ðsÞ ¼ Ps þ PdðsÞ ¼ bþ asg : (1)

Here, Ps and PdðsÞ respectively denote the static and
dynamic power consumption. Whenever a processor
remains on, it introduces Ps in the system (due to leakage
current). Switching activities introduce PdðsÞ which is fre-
quency dependent and represented as asg . Here, the a > 0
depends on the effective switching capacitance [20]; g 2 ½2; 3�
is a fixed parameter determined by the hardware; b > 0 rep-
resents the static part of power consumption. From this
model, the energy consumption over any given period ½b; f�
is calculated asEðb; fÞ ¼ R f

b P ðsðtÞÞ dt.
Our motivation behind selecting this power model comes

from the fact that it complies with many existing works in
the community, few to mention [10], [12], [18], [20], [21],
[22], [23]. Beside this, recently this model was shown to be
highly realistic by showing its similarity with actual power
consumption [21]. Fig. 1 shows comparison between the
original power consumption results from [24] and the
power model in Equation (1).

Assumptions. In this paper, we make the following
assumptions: (i) we focus on CPU power consumption, and
(ii) Dynamic power management (DPM) is not considered.
Appendix B, which can be found on the Computer Society
Digital Library at http://doi.ieeecomputersociety.org/
10.1109/TPDS.2020.2985701, provides the details behind
these assumptions, their impacts, and some hints to over-
come the drawbacks.

Problem Statement. Considering a constrained deadline
sporadic DAG task-set on a clustered multi-core platform,
we focus on finding a correct scheduling strategy, while the
CPU power consumption is minimized.

2.2 Background and Existing Concepts

In this section, we describe some existing concepts and tech-
niques for handling real-time parallel task scheduling, and
that constitute an initial step for our proposed work.

Task Decomposition. The well-known task decomposition
technique [2] transforms a parallel task ti into a set of
sequential tasks as demonstrated in Fig. 2b. Upon task
decomposition, each node N l

i 2 ti is converted into an indi-
vidual sub-task with its scheduling window (defined by its
own release time and deadline) and execution requirement
(cli). The allocation of release time and deadline respect all
the dependencies (represented by edges in the DAG). Con-
sidering that a task is allowed to execute on an unlimited
number of cores, starting from the beginning, a vertical line

is drawn at every time instant where a node N l
i starts or

ends. So the DAG is partitioned into several segments
which may contain single/multiple thread(s). Threads
assigned to the same segment share equal amount of execu-
tion length; e.g., N 3

i , N 4
i , and N 5

i all have 2-time units
assigned to the 3rd segment, as demonstrated in Fig. 2b.

Segment Extension. The deadline for each node via task
decomposition may be unnecessarily restrictive, e.g., the
decomposition of the DAG in Fig. 2a will restrict N 3

i within
the 2nd and 3rd segment. To eliminate such unnecessary
restriction and allow N 3

i to execute in the 4th segment, seg-
ment extension should be applied, e.g., the green rectangle
forN 3

i in the 4th segment in Fig. 2b.
Intra-Task Processor Merging. After applying task decom-

position and segment extension upon a DAG task ti, some
of these cores (where ti is allocated) can be very lightly
loaded. Those core cause massive leakage power consump-
tion in the long run and should be avoided when necessary.
Intra-task merging [12] seeks to merge those cores to gain
overall energy efficiency by reducing the total number of
active cores. For example, in Fig. 2b, the third core (execut-
ing N 5

i) is lightly loaded, and thus it is better to merge
all the execution into the second core and shut it off
completely. Such a reduction on the number of active cores
minimizes leakage power consumption (see Equation (1)
and Fig. 2 in [12]) as well as the total number of clusters.

3 SPEED-PROFILE FOR TASK AND CLUSTER

This section discusses how different tasks share a cluster
where all processors in a cluster execute at the same speed.
When multiple tasks share a cluster, they may not align
well due to sporadic releases and different periods. In a
cluster-based platform, the processor having the maximum
speed dominates the others in the same cluster. Hence,
existing energy-saving techniques may perform poorly in a
cluster-based platform. To tackle this problem, we propose
a new concept called speed-profile. We provide the definition
of speed-profile and its motivation in Section 3.1. Section 3.2
describes how speed-profiles are handled when two tasks
are partitioned into the same cluster.

3.1 Speed-Profile for Each DAG

Interesting energy-saving techniques (e.g., segment exten-
sion) have been proposed in [12] for the implicit deadline
tasks. For the constrained deadline tasks, this technique
becomes incompetent because of the non-negligible idle gaps
between the task deadline and its next release. For example,
consider the task ti in Fig. 2b with Di ¼ 10 and Ti ¼ 12. Seg-
ment extension can stretch N 3

i to the end of the 4th segment
but cannot utilize the idle time of 2 units. Besides, the sub-

Fig. 1. Comparison of the power model (Equation (1)) with experimental
results in [24]. Here, a ¼ 1:76Watts=GHz3, g ¼ 3, and b ¼ 0:5 Watts.
This figure is adopted from [20].

Fig. 2. (a) A DAG, ti (b) transformed DAG ti after applying task decom-
position. Both of them are adopted from [12].

BHUIYAN ETAL.: ENERGY-EFFICIENT PARALLEL REAL-TIME SCHEDULING ON CLUSTERED MULTI-CORE 2099

http://doi.ieeecomputersociety.org/10.1109/TPDS.2020.2985701
http://doi.ieeecomputersociety.org/10.1109/TPDS.2020.2985701

optimal solution provided in [12] becomes non-convex (in a
convex function, we can find the global maximum or mini-
mum, for some variables of this function, which does not
hold for a non-convex function) in a cluster-based platform
(see Lemma 1).

Lemma 1. In a cluster-based platform, the convex optimization
problem constructed in [12] becomes non-convex.

Proof. The following set of constraints ensure the real-time
correctness for each nodeN l

i 2 ti, i.e.,N l
i receives enough

time to finish execution within its scheduling window

8l : N l
i 2 ti ::

Xdli

j¼bl
i

tcjsi;j � c
N l

i
i : (2)

We introduce the following inequalities to bound the
total length for all segments in task ti

XZ

j¼1
tcj � Ti: (3)

Any value of execution speed and segment length
ensures real-time correctness if Equations (2) and (3) are
respected. However, the work in [12] considered that the
execution speed of a node, N l

i, is constant within its
scheduling window (from bli to dli), and can be repre-
sented by a function of nodes execution requirement and
its scheduling window. Also, the work in [12] considered
that a single DAG executes at a time, and, hence the exe-
cution speed of a node is not affected by the execution
speed of other nodes (of other tasks). In this work, we
consider the cluster-based platform, and the execution
speed of a node depends on the execution speed of other
nodes (of other tasks) in the same cluster. As a result, we
cannot express the execution speed of a node as a func-
tion of its execution requirement, resulting in quadratic
inequality constraints (Equation (2)). This makes the opti-
mization problem non-convex. tu
Due to the characteristics of a clustered platform, at each

instant, all cores in a cluster must execute at the speed of the
fastest one. If these tasks are not well aligned (concerning
their execution speed), the cluster as a whole will perform
poorly (w.r.t. energy efficiency). Assigning tasks with simi-
lar speed shape on the same cluster may not be an energy
efficient option (due to their sporadic releases pattern).
Fig. 3 and Example 1 demonstrates one such scenario.

Example 1. In this example, we describe how the sporadic
arrival pattern of a task influences the energy efficiency of
the whole cluster. Consider two tasks t1 and t2 with the
predefined necessary speed of execution on two process-
ors each, to be partitioned on to the same cluster (of four
processors). Fig. 3a shows the synchronous release case,
where the whole cluster could run at 0 speed between
[3,4) and [7,8). While Fig. 3b shows the scenario when t1’s
initial release is delayed by one-time unit, where the
whole cluster will need to run at a higher speed (of 0.8)
most (75 percent) of the time and thus consumes more
energy.

In this example, from t2’s perspective, direct energy
reduction with existing per-task WCET based techniques

may not help much, as it may be another task dominating
the speed of the whole cluster most of the time. The criti-
cal observation is that, due to the extra restriction of the
more realistic platform model, the speed of a cluster is
determined by the heavier DAG running on it, as well as
how synchronous are the releases, which could be
entirely random. Moreover, even a task finishes its execu-
tion early (say, t2 requires no execution over [5,7)), we
may not be able to reduce the cluster speed at all.

To address this issue, we propose a novel concept of
speed-profile to capture the energy consumption behavior
of all possible alignment scenarios.

Definition 1. The Speed-profile of a task describes the percent-
age/likelihood of all possible speeds that the task may execute at
over a period. It is a random variable S with an associated prob-
ability function (PF) fSðsÞ ¼ PðS ¼ sÞ, where s is a speed
from the finite set of possible speeds, and fSðsÞ represents the
portions of the time (likelihoods) when it is running at speed s.

Example 2. Let us consider a task ti with Ti ¼ 15 executing
at a speed of 0.6 for 5 time units (not necessarily to
be continual), and at a speed of 0.5 for the rest of
the time. The speed-profile of the task is thus Si ¼

0:6 0:5
5=15 10=15

� �
¼ 0:6 0:5

0:33 0:67

� �
. At any specific time, t,

there is about 33 percent probability that the cores are run-
ning at the speed of 0.6 unit and about 67 percent probabil-
ity that the cores are running at the speed of 0.5 unit.

It is evident that from another task’s point of view, the
speed-profile provides probabilistic information on how the
task of interest would restrict the lower bound to the speed of
the cluster over time. As the alignment of releases between
any two tasks is unknown, we assume in the future analysis
that any phase difference is of equal chance over the long run.

Remark 1. The speed-profile Si of a given task ti remains
the same for an initial phase (release offset) fi � 0.
Regarding inter-task combinations, we assume uniform
distribution for the phase of any task; i.e., fi � U ½0; TiÞ.
Section 4.1 details the calculation for task speed-profile.

Here, we describe the calculation of the cluster speed-profile
when two tasks are combined on to the same cluster.

Fig. 3. When two tasks t1 and t2 with fixed speed patterns each are par-
titioned on to the same cluster, the resultant speed pattern (t12) of the
cluster may vary for their (t1 and t2) different release offsets. In order to
satisfy platform model restrictions while guaranteeing the correctness,
the processors (of the same cluster) must run at the maximum/larger of
the two individual speeds at each instant.

2100 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 9, SEPTEMBER 2020

3.2 Speed-Profile for the Cluster

As stated earlier, the property of the clustered platform and
sporadic arrival pattern of a task makes the exact speed of
the cluster unpredictable at a specific time instant (see Fig. 3
and Example 1). As a result, when two tasks ti and tj (with
speed-profiles) are being considered allocating to the same
cluster, we need to construct the merged speed-profile of
the cluster (executing them both). To perform such calcula-
tion, we introduce a special � operator that takes the maxi-
mum of the two profiles on a probability basis.1

Definition 2. The special operator � operates on two (or more)
random variables X and Y. During this operation, each entry
X i 2 X is compared with each entry Yj 2 Y and the value Zij

is calculated as Zij ¼ maxðX i;YjÞ, with a combined (multi-
plied) probability. If there are multiple occurrences of an entry,
all of them are merged into a single entry, and their associated
probability are summed together.

Example 3. Let Si ¼ 6 5
0:4 0:6

� �
, Sj ¼ 6 2

0:4 0:6

� �
. Then

Si � Sj ¼ 6 6 6 5
0:16 0:24 0:24 0:36

� �
¼ 6 5

0:64 0:36

� �
:

Note that we allocate two different DAGs (with same/
different periods) to the same cluster. The speed-profile
indicates how long a DAG executes at different speeds
within its deadline, i.e., the probability that a DAG executes
at a specific speed. The task’s period becomes irrelevant as
speed-profile is a probability-based measurement. Once ti
and tj are allocated to the same cluster, we use Sij to denote
the speed-profile of the cluster (see Example 3).

In summary, energy minimization in a cluster-based
platform is challenging because of sporadic release pattern
and the idle gaps between a task deadline and its period. To
tackle these problems, we have introduced the concept of
speed-profile for both an individual task and a cluster
where multiple tasks can be allocated.

4 TASK PARTITIONING ALGORITHM

The ultimate goal of the paper is to partition all DAGs into
clusters, such that overall platform energy consumption is
minimized. Recall that on a clustered multiprocessor plat-
form, at a given instant, all processors in the same cluster
must execute at the same speed. Due to this property of a
cluster-based platform, if two tasks that are not well-aligned
(in terms of execution speed) are allocated to the same cluster,
it will result in reduced energy efficiency. So, we have pro-
posed the concept of speed-profiles (refer to Section 3) which
is a tool to measure the potential long-term energy saving of a
cluster when partitioning any pair of DAGs into this cluster.
So far we have discussed the importance of the concept of
speed-profile but did not mention how to create them given a
DAG task, which is the focus on Section 4.1. Then, Section 4.4
describes the task-to-cluster partitioning algorithm.

4.1 Creating the Speed-Profile of a Task

Given a DAG task ti, we provide two approaches to create
the speed-profile Si.

Approach A: Considering the Maximum Speed from all the
Cores. Upon applying the task decomposition, segment
extension, and intra-task processor merging techniques
(Section 2), some vital information (e.g., the speed of a core
at a specific time and number of cores required) becomes
available. This information plays a role to calculating the
speed-profile Si of task ti. At any time instant t, we consider
the maximum speed from all the cores available. It ensures
the sufficient speed so that even the heaviest node can finish
execution within its scheduling window (defined after task
decomposition). We consider constrained deadline (i.e.,
Di � Ti), so the task must have to finish by Di and rest of
the time (Ti �Di) it remains idle. For each segment j 2 ti,
(summation of the length of these segments is equal to Di),
we create a pair ðsi;j; pi;jÞ. For the jth segment, si;j and pi;j
respectively denote the maximum execution speed and the
probability that the cluster will run at this speed. Let, M
cores are allocated to ti. At jth segment, we calculate si;j
and pi;j as follows:

si;j ¼ max
k�M
fsi;j;kg; pi;j ¼

tcj
Ti

:

Here, si;j;k denotes the speed of kth core at jth segment and
tcj is the length of jth segment. The speed-profile Si will be

Si ¼ si;1 si;2 	 	 	 si;z 0
pi;1 pi;2 	 	 	 pi;z ðTi �DiÞ=Ti

� �
:

The last pair reflects the fact that the core remains idle for
the (Ti �Di) time units at the end of each period.

Example 4. Consider a task ti with Ti ¼ 15, Di ¼ 12 and
Ci ¼ 6:5. Let, the task is partitioned into three segments
of length 5, 7 and 3 time units respectively, where the pro-
cessor is executing at a (maximum) speed of 0.6 in the first
segment, speed of 0.5 in the second segment, and remain
idle in the third segment The speed-profile is

Si ¼ 0:6 0:5 0
0:33 0:47 0:2

� �
:

Note that, if a cluster contains a single task ti, then Si also
represents the cluster speed-profile. If ti and tj (or more
tasks) are executing on the same cluster, then the technique
described in Section 3.2 needs to be applied before making
any choices. The greedy choosing approach for task parti-
tion is detailed in Section 4.4.

Approach B: A Single Speed Throughout. Theorem 4 of [12]
shares a valuable insight: The total energy consumption
(assuming processor remains on) is minimized in any scheduling
window when execution speed remains uniform (the same)
throughout the interval.Motivated by it,2 we propose another
approach of selecting a single speed for a DAG task (job)
during the whole duration from its release until its deadline.

1. Although the appearance of the proposed operator is identical
to [25], the calculation is quite different. This is due to the “larger value
dominating” nature of the platform model considered in this paper.

2. Note that [12] considered that the speed remains constant within a
scheduling slot for each processor. Also, they assumed per core speed
scaling and calculated the speed within each scheduling slot through a
convex optimization method. This paper considers the clustered plat-
form where the objective function becomes non-convex (see Lemma 1)
and thus the existing approach is inefficient.

BHUIYAN ETAL.: ENERGY-EFFICIENT PARALLEL REAL-TIME SCHEDULING ON CLUSTERED MULTI-CORE 2101

In this approach, we consider the maximum workload
(or the execution requirement) from all the cores available
and determine the aggregated workload. Upon dividing the
aggregated workload by the deadline, we get the desired
single speed. Let M cores be allocated to task ti. At jth seg-
ment, the execution requirement of the kth core is denoted
by wi;j;k, which is calculated as follows:

wi;j;k ¼ si;j;k
 tcj:

We determine the maximum execution requirement as
follows:

wi;j ¼ max
k�M
fwi;j;kg:

Let Z denotes the total number of segments in ti. The maxi-
mum total workload wi and the desired single speed si is
calculated using the following equations:

wi ¼
XZ

j¼1
wi;j; si ¼ wi

Di
: (4)

Other than the idle pair ð0; ðTi �DiÞ=TiÞ, we consider a sin-
gle speed throughout the deadline so only a single pair
ðsi; piÞ is required, where si ¼ wi=Di and pi ¼ Di=Ti.

Example 5. Consider the task described in Example 4
(Ti ¼ 15, Di ¼ 12 and Ci ¼ 6:5). It must finish 6.5 unit of
workloads within 12-time units. Using this approach its
speed-profile is

Si ¼ 0:54 0
0:8 0:2

� �
:

Lemma 2. If a task ti executes according to the speed-profile Si,
it guarantees real-time correctness.

Proof. It has been observed in [12] that the following con-
straint guarantees the real-time correctness

8l : N l
i 2 ti ::

Xdli

k¼bl
i

tckS
Ml

i
k � c

N l
i

i : (5)

Here, bli and dli denotes the release time and deadline of

N l
i,Ml

i denotes the node-to-processor mapping and S
Ml

i
k

is the speed of the processor (where N l
i is allocated) at

kth segment. Unlike to [12], at any time instant t, we
choose either the maximum speed from all the cores run-
ning on the same cluster (Approach A) or a single speed
that can guarantee the maximum execution requirement
for the whole duration up to ti’s deadline (Approach B).
So, at any time instant, the cluster speed is larger or
equals to the speed of any individual core. Considering
Equations (2) and (5) we can deduce that

8l : N l
i 2 ti ::

Xdli

k¼bl
i

tcksi;k �
Xdli

k¼bl
i

tckS
Ml

i
k � c

N l
i

i :

So,we conclude that Executing a taskwith speed according
to the speed-profile Si guarantees real-time correctness. tu

An Efficient Approach for Implicit Deadline System. By
adopting simple modification in Equation (4), it is possible
to apply the process mentioned above for the implicit dead-
line tasks also. The workload wi should be divided by the
period instead of the deadline. We consider the same speed
through the task period, so only a single pair ðsi; piÞ is
required, where si ¼ wi=Ti and pi ¼ 1.

Example 6. Now we create the speed-profile for the task
described in Examples 4 and 5 considering implicit dead-
line. So it has Ti ¼ Di ¼ 15 and Ci ¼ 6:5. Let’s assume
that it is executed at a speed of 0.6 for 5-time units, at a
speed of 0.35 for 10-time units. According to Approach A,
the speed-profile is

Si ¼ 0:6 0:35
0:33 0:67

� �
;

and according to Approach B, the speed-profile is

Si ¼ 0:43
1

� �
:

4.2 Discretization of the Speed-Profile

In Section 4.1, we have described two approaches to create
the speed-profile for an individual task. While creating the
speed-profiles, those approaches assume a continuous fre-
quency scheme. From a practical point of view, discrete fre-
quency mode should be preferred over the continuous
frequency mode, because a real platform supports only a set
of frequencies. Now, we describe the technique to discretize
all the speeds available in a speed-profile (assuming that
the speed-profile is already created).

Suppose, we execute a task ti (and its speed-profile is Si)
in a real-platform, and this platform supports only those
speeds available on a speed-set Z. Note that the content of
Z is dependent on the platform. For example, ODROID XU-
3 supports a frequency range of 200-1400 MHz (LITTLE
cluster) and 200-2000 MHz (big cluster) with scale steps of
100 MHz). Now, for each entry si;j 2 Si, we find the mini-
mum speed Zk 2 Z, where Zk � si;j. Once, we find an
appropriate Zk; we set the value of si;j as si;j ¼ Zk.

Example 7. Consider a task ti with the same speed-profile
from Example 4. Let us assume that we will execute ti in
a platform where Z ¼ f0; 0:2; 0:4; 0:55; 0:75, and 1g, i.e.,
this platform supports only six discrete speeds, and all
the speeds are normalized w.r.t. the maximum speed sup-
ported by this platform. Considering the speed-profile Si
(from Example 4) and the speed-set Z, we find that:

(a) si;1 � fZ5 and Z6g
(b) si;2 � fZ4;Z5 and Z6g, and
(c) si;3 � fZ1;Z2;Z3;Z4;Z5 and Z6g.
Now, we choose the minimum Zk 2 Z such that

Zk � si;j. So, we assign Z5 to si;1; Z4 to si;2; and Z1 to si;3.
Now, the updated (i.e., discretized) speed-profile becomes

Si ¼ 0:75 0:55 0
0:33 0:47 0:2

� �
:

Theorem 1. When a task executes with its discretized speed-pro-
file, it guarantees that the task will not miss the deadline.

2102 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 9, SEPTEMBER 2020

Proof. We have shown in Lemma 2 that a task ti will not
miss the deadline if executed according to its speed-pro-
file Si. If we discretize ti’s speed-profile and execute ti
according to this speed-profile, then the task still guaran-
tees the real-time correctness. This is because any speed
si;j of the discretized speed-profile is greater than or equal
to si;j when it was continuous. tu

4.3 Handling Platform Heterogeneity

In this section, we discuss a specific type of multi-core plat-
form with diverse computing abilities: heterogeneous
multi-core platform. We first discuss different types of het-
erogeneous platforms, and then explain how our proposed
techniques can be extended to handle heterogeneity. In a
heterogeneous platform, different cores have different
computational capabilities. In terms of speed, Funk defined
a widely-accepted classification of the heterogeneous plat-
form [26] as follows, where the speed of the processor
denotes the work completed (while executing a task) in a
single-time unit by this processor.

(i) Identical multiprocessors: On Identical multiproces-
sors, all tasks are executed at the same speed on any
processor;

(ii) Uniform multiprocessors: On Uniform multiproces-
sors, all the tasks execute at the same speed if allo-
cated on the same processor, but at a different speed
on different processors. So, the execution speed of a
task depends on the processor where the task is
allocated.

(iii) Unrelated multiprocessors: On Unrelated multiproces-
sors, execution speeds of different tasks may vary on
the same processor, i.e., a task’s execution speed
depends on both the task itself and the processor
where it is allocated.

In a heterogeneous platform, each core is designed with a
different computational capability, and an efficient task-to-
core mapping improves the system resource efficiency. In
the context of energy efficiency, two major directions have
been mentioned in [27] for any heterogeneous platform:

(i) Find an appropriate core/cluster for task mapping to
reduce the overall power consumption of the whole
platform.

(ii) Deploy energy-aware scheduling techniques on each
core/cluster to reduce power consumption.

Our proposed approach covers both directions. First, we
use speed profile to identify efficient core/cluster to task
mapping and then try to reduce the overall cluster speed as
much as possible. It works for an identical heterogeneous
platform (a.k.a., homogeneous multiprocessor) as task-to-
core mapping does not impact energy consumption much.

Now, we extend our approach to apply to the uniform
heterogeneous platform by modifying the parameters in
the power model in Equation (1), i.e., setting different
a;b; and g values for the ‘big’ and ‘LITTLE’ cluster. Under
such consideration, different clusters no longer share the
same power model, and the same task may have different
execution requirements on different clusters. We report the
estimated values of a;b; and g in Table 1. These parameters
are adopted from [15]. The work in [15] estimated these
parameters for the ODROID XU-3 board using the real
power measurements along with a curve fitting method.
They have also assumed that there is another contributor to
the total power consumption of a cluster, i.e., the “uncore”
power consumption (reported in Table 2). The “uncore”
power consumption introduced in the system from some
components other than a processor, e.g., a shared cache.
Similar to the dynamic power consumption, the “uncore”
power consumption also depends on the processor fre-
quency. However, unlike the dynamic power consumption,
there is always some “uncore” power consumption as long
as the cluster remains on (even if there is no workload on a
processor).

Considering all the parameters from Tables 1 and 2, we
bring the following modification in Equation (1)

P ðsÞ ¼ Npbþ asg þ PsðfÞ: (6)

Here, Np denotes the number of cores per cluster, and PsðfÞ
denotes the “uncore” power consumption.

We have a different power model for the “big” and the
”LITTLE” cluster, but we still don’t know what the basis of
assigning a task to a cluster is. Recall that, while creating
the speed-profile, some vital information (e.g., the speed of
a core at a specific time) were known to us (Section 4.1). If
the execution speed of a task is greater than a certain thresh-
old at any point from its release to its deadline, then we
assign this task to the big cluster. Else, we assign this task to
the LITTLE cluster. For the platform we consider (ODROID
XU-3), we set the threshold to 0.7. It is the ratio of the maxi-
mum speed supported by the big cluster and the LITTLE
cluster (see Table 2).

4.4 Task Partition: Greedy Merging With
Speed-Profiles

We are now equipped with tools (speed-profiles) to mea-
sure the potential long-term energy saving of a cluster
when partitioning any pair of DAG tasks into it. This sub-
section describes the scheme for selecting pair by pair so
that the total number of clusters can be significantly smaller
than the total number of tasks.

TABLE 1
Estimated Parameters for Different Cluster of

an ODROID XU-3 Board

Cluster Type bðWÞ aðW=MHzgÞ g

big 0.155 3.03
10�9 2.621
LITTLE 0.028 2.62
10�9 2.12

This table is adopted from [15].

TABLE 2
The “Uncore” Power Consumption for Different Cluster

of an ODROID XU-3 Board

Freq(GHz) 2 1.8 1.6 1.4 1.2 1.0

big cluster(W) 0.8 0.528 0.39 0.309 0.244 0.182
Freq(GHz) 1.4 1.2 1.0 0.8 0.6 0.4
LITTLE cluster(W) 0.04 0.04 0.04 0.04 0.04 0.04

This table is adopted from [15].

BHUIYAN ETAL.: ENERGY-EFFICIENT PARALLEL REAL-TIME SCHEDULING ON CLUSTERED MULTI-CORE 2103

Let, we decide for each taskwhether it should be allocated
on a LITTLE or a big cluster using the technique described in
Section 4.3. To select a (task) pair that will share the same
cluster, we greedily choose the pair that provides maximum
power saving, as depicted in Algorithm 1. Note that we
allow the pairing of two DAGs that are not merged previ-
ously. Also, if any task usesmore cores thanwhat is available
in a cluster, that task cannot bemergedwith that cluster.

Algorithm 1. Greedy Merging

1: Input: Task-set t, with speed-profile Si (computed using
approach A or approach B) for each task

2: Output: Speed-profile ~S (with processor power saving).
3: �S; ~S ;" All the possible/selected speed-profiles
4: for i ¼ 1 to n do
5: for j ¼ iþ 1 to n do
6: Sij Si � Sj; �S �S [Sij;
7: end for
8: end for
9: while 9Sxy 2 �S and Sxy provides non-zero power saving do
10: Sxy the pair from �S with maximum power saving
11: ~S ~S [Sxy
12: for k ¼ 1 to n do
13: �S �S � Skx � Sxk � Sky � Syk
14: end for
15: end while
16: return ~S.

Algorithm 1 creates two empty lists �S and ~S that will
contain all the possible and selected speed-profiles (Line 3).
Lines 4–8, calculate all the possible speed-profiles and insert
them into �S. We greedily select a pair of DAGs that provide
the maximum power saving (calculated using Equations (6)
and (10) from [12]) and update the list �S by removing the
pair from any further merging (Lines 9–15). The list ~S is also
updated by adding the selected pair (Line 11). We conclude
by returning the updated list ~S (Line 16).

Theorem 2. Executing a task with a speed according to the clus-
ter speed-profile guarantees real-time correctness.

Proof.Wehave shown in Lemma 2 that a task ti will notmiss
the deadline if executed according to its speed-profile Si. If
ti share a cluster with another task tj and executes accord-
ing to themerged (i.e., cluster) speed-profile Sij, then it still
guarantees the real-time correctness, because Sij � Si
holds at any time instant. tu

Remark 2. For n tasks, the time complexity to generate all
possible speed-profiles, �S, is Oðn2ZÞ, where Z is the maxi-
mum number of segments of all DAGs in the set after
decomposition (related to the structure and size of the
DAGs). Algorithm 1 greedily choose a speed-profile by
iterating through S and then update, which takes Oðn2Þ
time as well. Thus the total complexity of the proposed
method is Oðn2Þ.
In summary, we have proposed twomethods (Section 4.1)

to create the speed-profile for a constrained-deadline DAG.
We also show that if a task executes according to the speed-
profile, it ensures real-time correctness. According to the
techniques provided in Section 3, we could evaluate and
compare all potential pairs of the combination by calculating

the cluster speed-profile after merging. Finally, Section 4.4
discussed how to use these speed-profiles to find suitable
partners to share a cluster greedily.

5 SYSTEM EXPERIMENTS

In this section, we present experimental results conducted
on an ODROID XU-3 board. The platform runs on Ubuntu
16.04 LTS with Linux kernel 3.10.105. It is fabricated with
Samsung Exynos5422 Octa-core SoC, consisting of two
quad-core clusters, one ‘LITTLE’ cluster with four energy-
efficient ARM Cortex-A7 and one ‘big’ cluster with four per-
formance-efficient ARM Cortex-A15. Four TI INA231 power
sensors are integrated onto the board to provide real-time
power monitoring for the A-7 and A-15 clusters, GPU, and
DRAM. An energy monitoring script, emoxu3 [28], is used
to log energy consumption of the workloads.

DAG Generation. In this experiment, we generate two task
sets each with 300 DAGs, and use the widely used Erdos-
Renyi [29] method to generate a DAG. We tune a parameter
p, that denotes the probability of having an edge between
two nodes. In this experiment, we set p to 0.25 generate
DAGs with an uncomplicated structure. If a disconnected
DAG is generated, we add the fewest number of edges to
make it connected. For experimentation, we have consid-
ered arbitrary task periods, and it is determined using
Gamma distribution [30]. We set the periods with Ti ¼ Liþ
2ðCi=mÞð1þ Gð2; 1Þ=4Þ [2]. Here, Li is the critical path length
of ti, calculated according to the definition of Li (refer to
Section 2).

After generating the topology of each DAG of a set, we
partition them into two subsets according to the proposed
approach, one to the “big” and the other one to the “LITTLE”
cluster, and measure the energy consumption over the
hyper-period of all DAGs. We use rt-app [31] to emulate
the workload for each node. rt-app simulates a real-time
periodic load and utilizes the POSIX threads model to call
and execute threads. For each thread, an execution time
needs to be assigned. In this experiment, for each node,
we randomly select an execution time ranged between
½300 ms; 700 ms�. rt-app itself has a latency that varies ran-
domly between 13� 150 ms per thread. Therefore, we add
the maximum latency of rt-app, i.e., 150 ms, to the execution
time of each thread from an analytical point of view.

DAG Scheduling. We use the Linux built-in real-time
scheduler sched_FIFO to schedule the DAGs. Compared
to the other system tasks, DAGs are assigned with higher
priorities so that they can execute without interference. Our
approach is also applicable to other preemptive schedulers
which feature the work-conserving property.

Frequency Scaling. According to the frequency/speed-
profile (Section 4), we use cpufreq-set program (from
cpufrequtils package) to change the system’s frequency
online. We use the ODROID XU-3 board, where scaling-
down (up) the frequency of the big cluster takes at most
60 ð40Þ ms, respectively. On the LITTLE cluster, both the
operation takes at most 15 ms. Due to this delay, the hyper-
period of all DAGs becomes large (230s, in this experiment).
We detail the reasons behind this delay in Appendix B.2,
available in the online supplemental material.

The Reference Approach. Since no work has studied the
same problem considered in this paper, we do not have a

2104 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 9, SEPTEMBER 2020

direct baseline for comparison. So, we propose a reference
approach based on the studies for energy-efficient schedul-
ing of sequential tasks [32]. They assigned an operational
frequency to each task, and at run-time, schedule them
according to their frequency. In this reference approach, we
compute an operational frequency for each DAG. This fre-
quency stretches out execution length of these DAGs as
much as possible without violating their deadlines. As
stated earlier, the reference approach executes the DAGs
with the same partition, but without the merging techniques
proposed in Section 4.

Results. The experimental results are plotted in Figs. 4
and 5. In these figures, we show (i) the energy consumption
over the hyper-period (230s), where the three lines show the
energy consumption of the big and LITTLE cluster, and the
total system; and (ii) frequency variation during the run-
time, where the diamond and star marks denote the opera-
tional frequency of the big and the LITTLE cluster at a spe-
cific time instant, respectively. Note that the GPU and
DRAM also contribute the energy consumption of the total
system. Hence, the total energy consumption is a bit higher
than the summation of the contribution of the big and the
LITTLE cluster, but it is observed that there is a negligible
difference for the energy consumption of GPU and DRAM
between the two approaches. Besides, it is worth noticing
that this energy consumption also accounts for energy con-
sumption of the operating system.

Table 3 summarizes the comparison of the experimental
results, where the energy consumption of the two clusters
and the total system is presented, and the energy saving
from our approach is given. As can be seen, our approach

consumes 312J and 32J on the big and the LITTLE cluster,
respectively. Comparing to the reference approach, we save
energy consumption by 20 and 16 percent. In total, our
approach saves energy consumption by 18 percent.

The result can be justified as the reference approach
changes the frequency for each DAG, while ours have a
fine-grained frequency adjustment at each segment
(Section 4.1), and could scale down the frequency if
required. Fig. 6 presents the frequency occurrence probabil-
ity of two clusters which is recorded per second by emoxu3.
We observe that within the same time interval the reference
approach has a higher probability to execute at a higher fre-
quency, while our approach is more likely to execute at the
lower frequencies, thus reducing the energy consumption.

Remark 3. Each heavy DAG (Ci > Ti) needs two or more
cores while executing and the ODROID XU-3 board con-
tains four cores per cluster. So, in this experimental setup,
we can not execute more than four heavy DAGs at a time.
Such a restriction is not applicable to the light DAGs
(Ci � Ti). We also consider that a heavy DAG cannot be
allocated in multiple clusters.

6 SIMULATIONS

For large-scale evaluation, we perform simulations and
compare the results with existing baselines. We generate
DAGs using the Erdos-Renyi method (Section 5). We con-
sider two types of task periods; (a) harmonic periods, where
the task period Ti is enforced to be an integral power of 2.
We define Ti as Ti ¼ 2a, where a is the minimum value
such that 2a � Li, where Li is the critical path length of ti(b)
arbitrary periods, Ti is determined using Gamma distribution
(see Section 5).

We compare our approaches with some existing baselines
studied in [12], [17], [33]. Total power consumption by our
approach and by these baselines are calculated using

Fig. 4. The energy consumption and the frequency variation of our pro-
posed approach on ODROID XU-3.

Fig. 5. The energy consumption and the frequency variation of the refer-
ence approach on ODROID XU-3.

TABLE 3
Summary of Experimental Results

Ours (J) Ref (J) Energy Saving (%)

big cluster 312 389 20
LITTLE cluster 32 38 16
Total 387 472 18

Fig. 6. Frequency occurrence probabilities.

BHUIYAN ETAL.: ENERGY-EFFICIENT PARALLEL REAL-TIME SCHEDULING ON CLUSTERED MULTI-CORE 2105

Equation (6). As mentioned earlier, [12] considered per-core
DVFS, i.e., each core individually is an island of the cluster-
based platform. For a fair comparison, according to the
scheduling policy of [12], when a task is allocated on some
cores at any time instant t, we choose the maximum speed
among all these cores. We consider [12] as a baseline because
that work is closely related to ours. Although they have con-
sidered per-core DVFS and restrict their attention only to
implicit deadline tasks, the task and the power model are
same. Besides, although this work and [12] propose different
approaches to power saving, the initial (preparation) steps of
both approaches are based on commonly known techniques
like task decomposition, taskmerging, etc.

The work in [17] studied a greedy slack stealing (GSS)
scheduling approach considering inter-dependent sequential
tasks. It considered theDAGmodel to represent dependencies
among the tasks. In GSS, the slack (unused time in actual com-
putation requirement of a task) is reclaimed by one task by
shifting others towards the deadline. They did not consider
repetitive tasks; hence it can be regarded as scheduling a sin-
gle task. Besides this, the power and graphmodel used in [17]
is different from ours. To ensure a fair comparison,we execute
the GSS algorithm using the power model in Equation (1) and
assume that once introduced in the system; a processor
remains active.We also consider aminimum inter-arrival sep-
aration for a DAG. That work considered three different kinds
of nodes: AND, OR, and Computation nodes (Section 2.1 in
[17]). A computation node has both the maximum and aver-
age computation requirement. To comply with our work
where the focus in energy reduction while guaranteeing
worst-case temporal correctness, we execute the GSS algo-
rithm considering only the computationnodeswith theirmax-
imum computation requirement. We made all the changes in
order to provide a fair comparison. Despite these differences,
we chose [17] as a baseline because they studied a GSS
approach for energy minimization. They considered the inter-
dependent sequential tasks and their dependencieswas repre-
sented by aDAG,which is similar to our taskmodel.

We also consider [33] as a baseline because this work
considered scheduling a set of independent periodic appli-
cations, where each application is modeled as a DAG. They
proposed an approach for energy minimization combining
the DVFS and the DPM policy. Similar to [12] and [17], the
work in [33] considered per-core DVFS.

We compare power consumption by varying two param-
eters for each task: task periods (utilization) and the number of
nodes. We randomly generate 25 sets of DAG tasks and com-
pare the average power consumption.

Notations of Referenced Approaches. For the task partition-
ing step, either we randomly choose any two and allocate
them to the same cluster, or greedily choose the ones with
lowest speed as proposed. Regarding speed-profile calcula-
tion, there are also two options (Approaches A and B in
Section 4.1). Combining these options in two steps lead to
four baselines: MaxSpeed_Greedy, SingleSpeed_Greedy, Max-
Speed_Random, SingleSpeed_Random. Also, three baselines
mentioned above are included for comparison:

� Federated schedulingwith intra-task processormerging
[12], denoted by Fed_Guo;

� GSS algorithm [17], denoted by GSS_Zhu.

� DVFS and DPM combination [33], denoted by
com_Chen.

6.1 Uniform Heterogeneous Platform With
a Continuous Frequency Scheme

In this section, considering the uniform heterogeneous plat-
form and a continuous frequency scheme, we report the
power consumption comparison for different approaches
mentioned earlier. Under such a platform, different clusters
no longer share the same power model and we use the
power model described in Equation (6). We present the
power comparison results in an identical heterogeneous
platform (from [34]) in Appendix A, available in the online
supplemental material.

6.1.1 Constrained Deadline Task

Here, we report the power consumption under the scheme
for constrained deadline tasks mentioned in Section 4. We
evaluate the efficiency of our proposed method by changing
two parameters; task period (utilization) and the number of
nodes in the task.

Effect of Varying Task Periods (Utilization).Here we control
the average task utilization through varying the task period.
In order to make the task schedulable, the critical path
length Li of task ti should not exceed its deadline Di. We
vary the period in a range (Li � Ti � Ci). The parameter Li

and Ci are measured once the DAG is generated according
to the technique described in Section 5. We also use the fol-
lowing equation (according to [12]) to ensure that the value
of Ti satisfies the range (Li � Ti � Ci)

Ti ¼ Li þ ð1� kÞðCi � LiÞ: (7)

Here, k 2 [0, 1] is task utilization. As we are considering the
constrained deadline tasks, Di is randomly picked from the
range (Li � Di � Ti). The results are presented in Fig. 7a.
Note that when any parameter (e.g., number of nodes in a
DAG, task utilization) changes, savings in energy randomly
vary within a small range and we consider the minimum
value among them. The results indicate a proportional rela-
tionship between the average power consumption and aver-
age task utilization. It happens because a higher task
utilization imposes tighter real-time restrictions. It restricts
(refer to Fig. 2b) the space for the segment length optimiza-
tion. In this experiment, the number of nodes is fixed to 30.
Fig. 7a shows that SingleSpeed_Greedy approach performs
better for a higher utilization value. On average, the Single-
Speed_Greedy approach leads to a power saving of at least
30.23 and 60.2 percent compared to Fed_Guo and GSS_Zhu
approaches, respectively. In SingleSpeed_Greedy approach, a
task executes with a single speed throughout the deadline.
During the task partitioning step, a suitable partner (with
similar speed-profile) leads to energy efficiency. However,
for the other approaches task speed may vary throughout
the deadline. In that case, evil alignment and a significant
variation in the speed may reduce energy efficiency (see
Fig. 3 and Example 1).

Effect of Varying the Numbers of Nodes. Now we vary the
number of nodes (10 to 55) (Ti is fixed) and report the aver-
age power consumption. We report the average power con-
sumption for harmonic deadline tasks in Fig. 7b and

2106 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 9, SEPTEMBER 2020

arbitrary deadline tasks in Fig. 7c.We observe that the power
consumption pattern does not change that much, i.e., Single-
Speed_Greedy approach outperforms other approaches
especiallywhen the number of nodes (in each DAG) are high,
35 or higher. Specifically, under harmonic task periods, the
SingleSpeed_Greedy incurs 40.19 and 65.9 percent less power
on average compared to Fed_Guo and GSS_Zhu; under arbi-
trary task periods, the savings potential are 33.43 and 61.96
percent, respectively.

6.1.2 Implicit Deadline Task

Effect of Varying Task Periods (Utilization). Using previous
setup (Section 6.1.1), We observe that the average energy

consumption is directly proportional to the average task
utilization.

Fig. 8a shows that SingleSpeed_Greedy approach performs
better for a higher utilization value and on average, saves at
least 35.21 and 62.52 percent compared to Fed_Guo and
GSS_Zhu approaches, respectively.

Effect of Varying the Numbers of Nodes. Figs. 8b and 8c report
the average power consumption for the harmonic and arbi-
trary deadline tasks, respectively.We observe that the Single-
Speed_Greedy approach outperforms other approaches
when the number of nodes (in each DAG) are high. Under
harmonic task periods, the SingleSpeed_Greedy incurs 44.84
and 67.55 percent less power on average compared to

Fig. 7. Power consumption comparison between different approaches for the constrained deadline tasks considering a continuous frequency scheme
on the uniform heterogeneous platform.

Fig. 8. Power consumption comparison between different approaches for the implicit deadline tasks considering a continuous frequency scheme on
the uniform heterogeneous platform.

Fig. 9. Power consumption comparison between different approaches for the constrained deadline tasks considering a discrete frequency scheme on
the uniform heterogeneous platform.

BHUIYAN ETAL.: ENERGY-EFFICIENT PARALLEL REAL-TIME SCHEDULING ON CLUSTERED MULTI-CORE 2107

Fed_Guo and GSS_Zhu; under arbitrary task periods, the
savings potential are 42.33 and 67.19 percent, respectively.

6.2 Uniform Heterogeneous Platform With
a Discrete Frequency Scheme

In this section, we report the power consumption com-
parison for the (previously mentioned) approaches con-
sidering the uniform heterogeneous platform and a
discrete frequency scheme. Under such a platform, we
discretize the frequency using the technique described in
Section 4.2.

6.2.1 Constrained Deadline Task

Here, we consider the constrained deadline tasks and report
their average power consumption by changing two parame-
ters: task period (or utilization) and the number of nodes.

Effect of Varying Task Periods (Utilization). Similar to the
Figs. 7a, and 8a, we observe that the (i) average energy con-
sumption is directly proportional to the average task utiliza-
tion. (ii) SingleSpeed_Greedy approach consumes less power
than other approaches (see Fig. 9a).

Effect of Varying the Numbers of Nodes. We vary the num-
ber of nodes (10 to 55) and report the average power con-
sumption for harmonic (arbitrary) deadline tasks in Fig. 9b
(Fig. 9c). Similar to the Figs. 7 and 8, we observe that the (i)
Performance of SingleSpeed_Random, SingleSpeed_Greedy,
MaxSpeed_Greedy, and MaxSpeed_Random does not vary that
much for a small number of nodes (typically 10 to 25) per
DAG. (ii) SingleSpeed_Greedy approach performs better (i.e.,
consume less power) than other approaches when the num-
ber of nodes per DAG is high.

6.2.2 Implicit Deadline Task

Now, we report the average power consumption using the
same setup as described in Section 6.2.1, i.e., (a) for a fixed
number of nodes (30) per task, change their utilization
value, and (b) vary the number of nodes (10 to 55) per task,
while keeping Ti fixed. We report the average power con-
sumption in Fig. 10. From this figure, we observe that the (i)
Performance of SingleSpeed_Random, SingleSpeed_Greedy,
MaxSpeed_Greedy, and MaxSpeed_Random does not vary that
much for a smaller task utilization or when the number of
nodes per DAG is small (typically 10 to 35). (ii) Single-
Speed_Greedy approach performs better (i.e., consume less

power) compared to the other approaches when the number
of nodes per DAG is high.

7 RELATED WORK

Muchwork has been done aimed at energy-efficient schedul-
ing of sequential tasks in a homogeneous multi-core plat-
form (see [11] for a survey). Considering the mixed-
criticality task model and varying-speed processors, the
works on [23], [35], [36], [37], [38] proposed an approach to
handle the energy minimization problem. The work in [27],
[39], [40], [41], [42], [43] presented an energy-efficient
approach for the heterogeneous platform. Considering the
real-time tasks in clustered heterogeneous platforms, the
work in [39] studied the partitioned EDF scheduling policy,
while [42] proposed an optimal task-coremapping technique
that is fully-migrative. Considering the heterogeneousmulti-
core platform, a two-phase algorithm was proposed by [27].
In the first phase, they proposed a tasks-core allocation
approach with the aim of reducing the dynamic energy con-
sumption, while the second phase seeks for a better sleep
state to reduce the leakage power consumption. A low over-
head, DVFS-cum-DPM enabled energy-aware approach,
HEALERS, was proposed by [43]. However, none of them
considered the intra-task parallelism. Considering a clus-
tered heterogeneous MPSoC platform, a migrative cluster
scheduling approachwas proposed by [15]. In this approach,
run-time migration (within different cores in the same clus-
ter) for a task is allowed to improve resource utilization. The
work in [44] studied the technique to utilize the parallelism
in a hard real-time streaming application (represented as a
Synchronous Data Flow (SDF) graph) in a clustered hetero-
geneous platform.

Till date, considering both the intra-task parallelization
and power minimization has received less attention. A
greedy slack stealing algorithm is proposed in [17] that deals
with task represented by graphs but did not consider the
periodic DAGs. Assuming per-core DVFS, [33] provided the
technique to combine DVFS and DPM. Considering the real-
time jobs (represented as aDAG) in cloud computing systems
and in a heterogeneous multi-core platform, the work in [45],
[46] studied a QoS-aware and energy-efficient scheduling
strategy. They proposed a scheduling policy that utilizes per-
core DVFS. With the aim of improving energy-efficiency in a
heterogeneous real-time platform, [47] proposed a combined

Fig. 10. Power consumption comparison between different approaches for the implicit deadline tasks considering a discrete frequency scheme on the
uniform heterogeneous platform.

2108 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 9, SEPTEMBER 2020

approach considering the approximate computation and bin
packing strategy. [48] investigated the energy awareness for
cores that are grouped into blocks, and each block shares the
same power supply scaled by DVFS. Benefits of (in terms of
power saving) intra-task parallelism is proven theoretically
in [1]. Considering the fork-join model, [49] reported an
empirical evaluation of the power savings in a real test-bed.
Based on level-packing, [50] proposed an energy efficient
algorithm for implicit deadline tasks with same arrival time
and deadline.

None of these works allows intra-task processor sharing
considering the sporadic DAG task model. The recent work
in [12], [18] is most related to ours. However, these works
are significantly different from ours w.r.t the task model,
platform, real-time constraints (deadlines), solution techni-
ques, and the evaluation. First, the work in [12] considered
a simplified model where only one DAG task executes at a
time, while the work in [18] extends this work by allowing
inter-task processor sharing. However, both of these works
assumed that the number of cores are unlimited. Second,
Both the works in [12], [18] assumed per-core speed scaling.
However, many of the existing platforms (e.g., ODROID
XU-3) do not support such speed scaling—speeds of pro-
cessors under the same cluster must execute at the same
speed. As the number of cores fabricated on a chip
increases, per-core speed scaling design is less likely to be
supported due to the inefficiency on hardware levels [13].
Third, Both of these works have studied only the implicit
deadline tasks and did not consider the constrained deadline
tasks. Hence, the non-negligible idle gaps between the task
deadline and its next release remain un-utilized. Finally, the
evaluations in [12], [18] were done based on simulations
without any implementation on a real platform.

8 CONCLUSION

In this paper, we have studied real-time scheduling of a set
of implicit and constrained deadline sporadic DAG tasks.
We schedule these tasks on the cluster-based multi-core
platforms with the goal of minimizing the CPU power con-
sumption. In a clustered multi-core platform, the cores
within the same cluster run at the same speed at any given
time. Such design better balances energy efficiency and
hardware cost and appears in many systems. However,
from the resource management point of view, this addi-
tional restriction leads to new challenges. By leveraging a
new concept, i.e., speed-profile, which models energy con-
sumption variations during run-time, we can conduct
scheduling and task-to-cluster partitioning while minimiz-
ing the expected overall long-term CPU energy consump-
tion. To our knowledge, this is the first work that has
investigated energy-efficient scheduling of DAGs on clus-
tered multi-core platform. Also, no work considered
energy-aware real-time scheduling of constrained deadline
DAG tasks.

We have implemented our result on an ODROID XU-3
board to demonstrate its feasibility and practicality. We
have also complemented our system experiments on a
larger scale through realistic simulations that demonstrate
an energy saving of up to 57 percent through our proposed
approach compared to existing methods. In this work, we

have restricted our attention mainly to the CPU power con-
sumption. In the future, we plan to consider other compo-
nents that may affect the total power consumption, e.g.,
cache misses, context switches, I/O usage, etc. We also plan
to study the effect of tasks sporadic release patterns (to the
overall power consumption) and propose a task reallocation
scheme.

ACKNOWLEDGMENTS

This work was partially supported by the National Science
Foundation CNS-1850851, CNS-1742985 and National Natu-
ral Science Foundation of China 61801418.

REFERENCES

[1] A. Paolillo, J. Goossens, P. M. Hettiarachchi, and N. Fisher,
“Power minimization for parallel real-time systems with mallea-
ble jobs and homogeneous frequencies,” in Proc. IEEE 20th Int.
Conf. Embedded Real-Time Comput. Syst. Appl., 2014, pp. 1–10.

[2] A. Saifullah, D. Ferry, J. Li, K. Agrawal, C. Lu, and C. D. Gill,
“Parallel real-time scheduling of DAGs,” IEEE Trans. Parallel Dis-
trib. Syst., vol. 25, no. 12, pp. 3242–3252, Dec. 2014.

[3] M. Qamhieh, F. Fauberteau, L. George, and S. Midonnet, “Global
EDF scheduling of directed acyclic graphs on multiprocessor sys-
tems,” in Proc. 21st Int. Conf. Real-TimeNetw. Syst., 2013, pp. 287–296.

[4] S. Baruah, V. Bonifaci, A. Marchetti-Spaccamela, L. Stougie, and
A. Wiese, “A generalized parallel task model for recurrent real-
time processes,” in Proc. IEEE 33rd Real-Time Syst. Symp., 2012,
pp. 63–72.

[5] J. Li, K. Agrawal, C. Lu, and C. Gill, “Analysis of global EDF for
parallel tasks,” in Proc. 25th Euromicro Conf. Real-Time Syst., 2013,
pp. 3–13.

[6] V. Bonifaci, A. Marchetti-Spaccamela, S. Stiller, and A. Wiese,
“Feasibility analysis in the sporadic DAG task model,” in Proc.
25th Euromicro Conf. Real-Time Syst., 2013, pp. 225–233.

[7] J. Li, J. J. Chen, K. Agrawal, C. Lu, C. Gill, and A. Saifullah,
“Analysis of federated and global scheduling for parallel real-
time tasks,” in Proc. 26th Euromicro Conf. Real-Time Syst., 2014,
pp. 85–96.

[8] S. Baruah, V. Bonifaci, and A. Marchetti-Spaccamela, “The global
EDF scheduling of systems of conditional sporadic DAG tasks,”
in Proc. 27th Euromicro Conf. Real-Time Syst., 2015, pp. 222–231.

[9] T. Hagras and J. Janecek, “A high performance, low complexity
algorithm for compile-time job scheduling in homogeneous com-
puting environments,” in Proc. Int. Conf. Parallel Process. Work-
shops, 2003, pp. 149–155.

[10] H. Aydin and Q. Yang, “Energy-aware partitioning for multipro-
cessor real-time systems,” in Proc. Int. Parallel Distrib. Process.
Symp., 2003, p. 9

[11] M. Bambagini, M. Marinoni, H. Aydin, and G. Buttazzo, “Energy-
aware scheduling for real-time systems: A survey,” ACM Trans.
Embedded Comput. Syst., vol. 15, no. 1, 2016, Art. no. 7.

[12] Z. Guo, A. Bhuiyan, A. Saifullah, N. Guan, and H. Xiong,
“Energy-efficient multi-core scheduling for real-time DAG tasks,”
in Proc. 29th Euromicro Conf. Real-Time Syst., 2017, pp. 22:1–22:21.

[13] S. Herbert and D. Marculescu, “Analysis of dynamic voltage/fre-
quency scaling in chip-multiprocessors,” in Proc. Int. Symp. Low
Power Electron. Des., 2007, pp. 38–43.

[14] 2017. [Online]. Available: http://www.hardkernel.com/
[15] D. Liu, J. Spasic, G. Chen, and T. Stefanov, “Energy-efficient map-

ping of real-time streaming applications on cluster heterogeneous
MPSoCs,” in Proc. 13th IEEE Symp. Embedded Syst. Real-Time Multi-
media, 2015, pp. 1–10.

[16] J. Kim, H. Kim, K. Lakshmanan, and R. R. Rajkumar, “Parallel
scheduling for cyber-physical systems: Analysis and case study
on a self-driving car,” in Proc. ACM/IEEE Int. Conf. Cyber-Physical
Syst., 2013, pp. 31–40.

[17] D. Zhu, D. Mosse, and R. Melhem, “Power-aware scheduling for
AND/OR graphs in real-time systems,” IEEE Trans. Parallel Dis-
trib. Syst., vol. 15, no. 9, pp. 849–864, Sep. 2004.

[18] A. Bhuiyan, Z. Guo, A. Saifullah, N. Guan, and H. Xiong,
“Energy-efficient real-time scheduling of DAG tasks,” ACM Trans.
Embedded Comput. Syst., vol. 17, no. 5, 2018, Art. no. 84.

BHUIYAN ETAL.: ENERGY-EFFICIENT PARALLEL REAL-TIME SCHEDULING ON CLUSTERED MULTI-CORE 2109

http://www.hardkernel.com/

[19] W. M. Kolb, “Curve fitting for programmable calculators,”
IMTEC, 1984.

[20] S. Pagani and J.-J. Chen, “Energy efficient task partitioning based
on the single frequency approximation scheme,” in Proc. IEEE
34th Real-Time Syst. Symp., 2013, pp. 308–318.

[21] S. Pagani and J.-J. Chen, “Energy efficiency analysis for the single
frequency approximation (SFA) scheme,” ACM Trans. Embedded
Comput. Syst., vol. 13, no. 5s, 2014, Art. no. 158.

[22] P. Huang, P. Kumar, G. Giannopoulou, and L. Thiele, “Energy
efficient DVFS scheduling for mixed-criticality systems,” in Proc.
Int. Conf. Embedded Softw., 2014, pp. 1–10.

[23] S. Narayana, P. Huang, G. Giannopoulou, L. Thiele, and R. V. Prasad,
“Exploring energy saving for mixed-criticality systems on multi-
cores,” in Proc. IEEE Real-Time Embedded Technol. Appl. Symp., 2016,
pp. 1–12.

[24] J. Howard et al., “A 48-core IA-32 processor in 45 nm CMOS using
on-die message-passing and DVFS for performance and power
scaling,” IEEE J. Solid-State Circuits, vol. 46, no. 1, pp. 173–183,
Jan. 2011.

[25] D. Maxim and L. Cucu-Grosjean, “Response time analysis for
fixed-priority tasks with multiple probabilistic parameters,” in
Proc. IEEE 34th Real-Time Syst. Symp., 2013, pp. 224–235.

[26] S. H. Funk, EDF Scheduling on Heterogeneous Multiprocessors.
Chapel Hill, NC, USA: Univ. of North Carolina, 2004.

[27] M. A. Awan, D. Masson, and E. Tovar, “Energy efficient mapping
of mixed criticality applications on unrelated heterogeneous mul-
ticore platforms,” in Proc. 11th IEEE Symp. Ind. Embedded Syst.,
2016, pp. 1–10.

[28] 2017. [Online]. Available: https://github.com/tuxamito/emoxu3
[29] D. Cordeiro, G. Mouni�e, S. Perarnau, D. Trystram, J.-M. Vincent,

and F. Wagner, “Random graph generation for scheduling simu-
lations,” in Proc. 3rd Int. ICST Conf. Simul. Tools Techn., 2010,
Art. no. 60.

[30] 2017. [Online]. Available: http://en.wikipedia.org/wiki/Gamma
distribution

[31] 2017. [Online]. Available: https://github.com/scheduler-tools/rt-
app/

[32] J.-J. Chen and C.-F. Kuo, “Energy-efficient scheduling for real-
time systems on dynamic voltage scaling (DVS) platforms,” in
Proc. 13th IEEE Int. Conf. Embedded Real-Time Comput. Syst. Appl.,
2007, pp. 28–38.

[33] G. Chen, K. Huang, and A. Knoll, “Energy optimization for real-
time multiprocessor system-on-chip with optimal DVFS and DPM
combination,” ACM Trans. Embedded Comput. Syst., vol. 13, no. 3s,
2014, Art. no. 111.

[34] Z. Guo, A. Bhuiyan, D. Liu, A. Khan, A. Saifullah, and N. Guan,
“Energy-efficient real-time scheduling of DAGs on clustered
multi-core platforms,” in Procc. IEEE Real-Time Embedded Technol.
Appl. Symp., 2019, pp. 156–168.

[35] S. Baruah and Z. Guo, “Mixed-criticality scheduling upon vary-
ing-speed processors,” in Proc. IEEE 34th Real-Time Syst. Symp.,
2013, pp. 68–77.

[36] S. Baruah and Z. Guo, “Scheduling mixed-criticality implicit-
deadline sporadic task systems upon a varying-speed processor,”
in Proc. IEEE Real-Time Syst. Symp., 2014, pp. 31–40.

[37] Z. Guo and S. Baruah, “The concurrent consideration of uncertainty
in WCETs and processor speeds in mixed-criticality systems,” in
Proc. 23rd Int. Conf. Real-TimeNetw. Syst., 2015, pp. 247–256.

[38] A. Bhuiyan, S. Sruti, Z. Guo, and K. Yang, “Precise scheduling of
mixed-criticality tasks by varying processor speed,” in Proc. 27th
Int. Conf. Real-Time Netw. Syst., 2019, pp. 123–132.

[39] A. Colin, A. Kandhalu, and R. Rajkumar, “Energy-efficient alloca-
tion of real-time applications onto heterogeneous processors,” in
Proc. IEEE 20th Int. Conf. Embedded Real-Time Comput. Syst. Appl.,
2014, pp. 1–10.

[40] J.-J. Chen, A. Schranzhofer, and L. Thiele, “Energy minimization
for periodic real-time tasks on heterogeneous processing units,”
in Proc. IEEE Int. Symp. Parallel Distrib. Process., 2009, pp. 1–12.

[41] C. Liu, J. Li, W. Huang, J. Rubio, E. Speight, and X. Lin, “Power-
efficient time-sensitive mapping in heterogeneous systems,” in Proc.
21st Int. Conf. Parallel Archit. Compilation Techn., 2012, pp. 23–32.

[42] H. S. Chwa, J. Seo, J. Lee, and I. Shin, “Optimal real-time schedul-
ing on two-type heterogeneous multicore platforms,” in IEEE
Real-Time Syst. Symp., 2015, pp. 119–129.

[43] S. Moulik, R. Devaraj, and A. Sarkar, “HEALERS: A heteroge-
neous energy-aware low-overhead real-time scheduler,” IET Com-
put. Digit. Techn., vol. 13, no. 6, pp. 470–480, Nov. 2019.

[44] J. Spasic, D. Liu, and T. Stefanov, “Energy-efficient mapping of
real-time applications on heterogeneous MPSoCs using task repli-
cation,” in Proc. Int. Conf. Hardware/Softw. Codes. Syst. Synthesis,
2016, pp. 1–10.

[45] G. L. Stavrinides and H. D. Karatza, “Energy-aware scheduling of
real-time workflow applications in clouds utilizing DVFS and
approximate computations,” in Proc. IEEE 6th Int. Conf. Future
Internet Things Cloud, 2018, pp. 33–40.

[46] G. L. Stavrinides and H. D. Karatza, “An energy-efficient, QoS-
aware and cost-effective scheduling approach for real-time work-
flow applications in cloud computing systems utilizing DVFS and
approximate computations,” Future Gener. Comput. Syst., vol. 96,
pp. 216–226, 2019.

[47] G. L. Stavrinides and H. D. Karatza, “Scheduling real-time DAGs
in heterogeneous clusters by combining imprecise computations
and bin packing techniques for the exploitation of schedule
holes,” Future Gener. Comput. Syst., vol. 28, no. 7, pp. 977–988,
2012.

[48] X. Qi and D.-K. Zhu, “Energy efficient block-partitioned multicore
processors for parallel applications,” J. Comput. Sci. Technol., vol.
26, no. 3, 2011, Art. no. 418.

[49] A. Paolillo, P. Rodriguez, N. Veshchikov, J. Goossens, and
B. Rodriguez, “Quantifying energy consumption for practical fork-
join parallelism on an embedded real-time operating system,” in
Proc. 24th Int. Conf. Real-Time Netw. Syst., 2016, pp. 329–338.

[50] H. Xu, F. Kong, and Q. Deng, “Energy minimizing for parallel
real-time tasks based on level-packing,” in Proc. IEEE Int. Conf.
Embedded Real-Time Comput. Syst. Appl., 2012, pp. 98–103.

[51] A. Dunkels, F. Osterlind, N. Tsiftes, and Z. He, “Software-based
on-line energy estimation for sensor nodes,” in Proc. 4th Workshop
Embedded Netw. Sensors, 2007, pp. 28–32.

[52] H.-Y. Zhou, D.-Y. Luo, Y. Gao, and D.-C. Zuo, “Modeling of node
energy consumption for wireless sensor networks,” Wireless
Sensor Netw., vol. 3, no. 01, 2011, Art. no. 18.

Ashikahmed Bhuiyan received the bachelor of
science degree in computer science and engineer-
ing from the Bangladesh University of Engineering
and Technology (BUET), Dhaka, Bangladesh, in
2013.He is currentlyworking toward thePhDdegree
in the Department of Electrical and Computer Engi-
neering, University of Central Florida (UCF),
Orlando, Florida, under the supervision of Zhishan
Guo and Abusayeed Saifullah (from the Wayne
State University). He is a member of the Real-Time
& Intelligent Systems Lab, UCF. His research

focuses on improving energy efficiency in real-time embedded systems, par-
allel computing, and mixed-criticality scheduling. He has received the Best
Student Paper Award at the 40th IEEE Real-Time Systems Symposium
(RTSS2019).

Di Liu received the BEng and MEng degrees
from Northwestern Polytechnical University, Xi’an,
China, in 2007 and 2011, respectively, and the
PhD degree from Leiden University, Leiden, The
Netherlands, in 2017. He is currently an assistant
professor with the School of Software, Yunnan
University, China. His research interests include
the fields of real-time systems, energy-efficient
multicore/many core systems, and cyber-physical
systems.

Aamir Khan received the MS degree from the
Computer Engineering Department, Missouri
University of Science and Technology, Rolla, Mis-
souri, in 2018. He is currently an embedded sys-
tems engineer with BrainCo Tech in Boston. His
areas of interest includes real-time systems and
body-machine interface products.

2110 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 9, SEPTEMBER 2020

https://github.com/tuxamito/emoxu3
http://en.wikipedia.org/wiki/Gamma distribution
http://en.wikipedia.org/wiki/Gamma distribution
https://github.com/scheduler-tools/rt-app/
https://github.com/scheduler-tools/rt-app/

Abusayeed Saifullah received the PhD degree in
computer science and engineering with Turner
Dissertation Award from Washington University in
St Louis, St. Louis, Missouri, in 2014. He is an
assistant professor of the Computer Science
Department, Wayne State University. His research
primarily concerns Internet-of-Things, cyber-
physical systems, real-time systems, embedded
systems, and low-power wide-area networks. He
received seven Best Paper Awards/Nominations in
highly competitive conferences including ACM

SenSys (2016 nomination), IEEE RTSS (2019, 2014, 2011), IEEE ICII
(2018), and IEEE RTAS (2012 nomination). He also received multiple
young investigator awards including the CAREER award (2019) and the
CRII award (2016) of the National Science Foundation (NSF). He is serv-
ing as the program chair of IEEE ICESS 2020, served as a track chair of
IEEE ICCCN 2019 and as a program committee member for various con-
ferences including ACM SenSys, IEEE RTSS, ACM/IEEE IoTDI, IEEE
RTAS, ACM/IEEE ICCPS, ACM MobiHoc, IEEE INFOCOM, EWSN, and
ACM IWQoS. He also served as a guest editor of the IEEE Transactions
on Industrial Informatics, and is currently an editor of the Elsevier Perva-
sive andMobile Computing Journal.

Nan Guan received the PhD degree from Uppsala
University, Uppsala, Sweden. He is currently an
assistant professor with the Department of Comput-
ing, Hong Kong Polytechnic University. He worked
with Northeastern University, China before joining
The Hong Kong Polytechnic University. His research
interests include the design and analysis of real-time
systems, embedded systems, cyber-physical sys-
tems, and Internet-of-Things (IoT) systems. He
received the EDAAOutstanding Dissertation Award
in 2014, the CCFOutstanding Dissertation Award in

2013, the Best Paper Award of IEEERTSS in 2009, the Best Paper Award of
DATE in 2013, the Best Paper Award of ACM e-Energy 2018 and the
Best Paper Award of IEEE ISORC 2019. He served as the TPC co-chair of
EMSOFT 2015, ICESS 2017, SETTA 2019, the TPC track chair of
RTAS 2018.

Zhishan Guo received the BE (with honor)
degree in computer science and technology from
Tsinghua University, Beijing, China, in 2009, the
MPhil degree in mechanical and automation engi-
neering from the Chinese University of Hong
Kong, Hong Kong, in 2011, and the PhD degree
in computer science from the University of North
Carolina at Chapel Hill, Chapel Hill, North
Carolina, in 2016. He is an assistant professor
with the Department of Electrical and Computer
Engineering, University of Central Florida. His

research and teaching interests include real-time scheduling, cyber-
physical systems, and neural networks and their applications.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

BHUIYAN ETAL.: ENERGY-EFFICIENT PARALLEL REAL-TIME SCHEDULING ON CLUSTERED MULTI-CORE 2111

SaberLDA: Sparsity-Aware Learning
of Topic Models on GPUs
Kaiwei Li , Jianfei Chen, Wenguang Chen, and Jun Zhu

Abstract—Latent Dirichlet Allocation (LDA) is a popular tool for analyzing discrete count data such as text and images, which are

required tomodel datasets and a large number of topics, e.g., tens of thousands of topics for industry scale applications. Although

distributed CPU systems have been used to address this problem, they are slow and resource inefficient. GPU-based systems have

emerged as a promising alternative because of their high computational power andmemory bandwidth. However, existing GPU-based

LDA systems can only learn thousands of topics, because they use dense data structures, and have linear time complexity to the number

of topics. In this article, we propose SaberLDA, a GPU-based LDA system that implements a sparsity-aware algorithm to achieve

sublinear time complexity to learn a large number of topics. To address the challenges introduced by sparsity, we propose a novel data

layout, a warp-based sampling kernel, an efficient sparsematrix countingmethod, and a fine-grained load balancing strategy. SaberLDA

achieves linear speedup on 4 GPUs and is 6–10 times faster than existing GPU systems in thousands of topics. It can learn 40,000 topics

from a dataset of billions of tokens in two hours, which was previously only achievable using clusters of tens of CPU servers.

Index Terms—GPU acceleration, latent dirichlet allocation, topic models, machine learning

Ç

1 INTRODUCTION

BIG data, such asweb pages, user activities and images, are
pervasive nowadays. Machine learning helps extract

underlying information from the data andmake predictions.
Among various machine learning algorithms, Probabilis-

tic graphical models (PGMs) is a class of popular unsuper-
vised machine learning algorithms. PGMs provide a flexible
way of defining models that incorporate human knowledge
and have been used extensively in various scientific and
engineering domains (see [13] for an overview).

In this paper, we focus on topic modeling, an important
subclass of PGMs, and demonstrate the challenges and solu-
tions encountered to accelerate PGMs with GPUs. Topic
models provide a suite of widely adopted statistical tools
for feature extraction and dimensionality reduction for bag-
of-words (i.e., discrete count) data, such as text documents
and images in a bag-of-words format [7]. Given an input cor-
pus, topic models automatically extract a number of latent
topics, which are in unigram distributions over the words in
a given vocabulary. The high-probability words in each topic
are semantically correlated. Latent Dirichlet Allocation
(LDA) [4] is the most popular topic model due to its simplic-
ity. It has been deployed as a key component in data

visualization [16], text analysis [5], [42], computer vision [7],
network analysis [8], [11], and recommendation systems [12].

In practice, it is not uncommon to encounter large-scale
datasets, e.g., text analysis typically consists of hundreds of
millions of documents [36], and recommendation systems
need to tackle hundreds of millions of users [1]. Furthermore,
as the scale of datasets increases, model sizes need to increase
as well because we need a larger number of topics to exploit
the richer semantic structure underlying the data. Having ten
thousands of topics is a reasonable design goal for modern
topic modeling systems, to have good coverage for both
industry-scale applications [32] and researching [5], [7], [16].

However, it is highly challenging to efficiently train large
LDA models. The time complexity of training LDA is high
because it involves iteratively scanning the input corpusmany
times (e.g., 100), and the time complexity of processing each
token is not constant but is related to the number of topics.

To train LDA in acceptable time, CPU clusters are often
used. However, due to the limited memory bandwidth and
low computational power of CPUs, large clusters are typi-
cally required to learn large topic models [1], [35], [36]. For
example, a 32-machine cluster is used to learn 1,000 topics
from a 1.5-billion-token corpus.

A promising alternative is to train LDA with GPUs,
leveraging their high computational power and memory
bandwidth. There have been several previous attempts using
this approach. For example, Yan et al. [33] implemented the
collapsed Gibbs sampling algorithm, BIDMach [41] imple-
mented the variational Bayes algorithm as well as amodified
Gibbs sampling algorithm, and Tristan et al. [28] proposed
an expectation-maximization algorithm. These GPU-based
systems are reportedly to achieved superior performance
compared to CPU-based systems [28], [33], [41].

Unfortunately, current GPU-based LDA systems can only
learn a few hundred topics (See Table 1), which may not be

� K. Li, J. Chen, and J. Zhu are with the Department of Computer Sciences and
Technology, Tsinghua University, Beijing 100084, China. E-mail: {likw17,
chenjian14}@mails.tsinghua.edu.cn, dcszj@tsinghua.edu.cn.

� W. Chen is with the Department of Computer Sciences and Technology,
Tsinghua University, Beijing 100084, China, and also with Beijing
National Research Center for Information Science and Technology
(BNRist). E-mail: cwg@tsinghua.edu.cn.

Manuscript received 8 Aug. 2019; revised 20 Feb. 2020; accepted 28 Feb. 2020.
Date of publication 8 Apr. 2020; date of current version 24 Apr. 2020.
(Corresponding authors: Wenguang Chen and Jun Zhu.)
Recommended for acceptance by S. He.
Digital Object Identifier no. 10.1109/TPDS.2020.2979702

2112 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 9, SEPTEMBER 2020

1045-9219� 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht_tps://www.ieee.org/publications/rights/index.html for more information.

https://orcid.org/0000-0002-8015-0812
https://orcid.org/0000-0002-8015-0812
https://orcid.org/0000-0002-8015-0812
https://orcid.org/0000-0002-8015-0812
https://orcid.org/0000-0002-8015-0812
mailto:likw17@mails.tsinghua.edu.cn
mailto:chenjian14@mails.tsinghua.edu.cn
mailto:dcszj@tsinghua.edu.cn
mailto:cwg@tsinghua.edu.cn

sufficient to capture the rich semantic structure underlying
the large datasets in industry-scale applications [31]. It is fun-
damentally difficult for these systems to learn more topics
because they use algorithms on dense data structures whose
time and space complexity is linear to the number of topics.

To address this problem, we propose SaberLDA, a novel
GPU-based system that adopts a state of the art sparsity-
aware algorithm for LDA. Sparsity-aware algorithms are
based on the insight that a single document is not likely to
have many topics. A Sparsity-aware algorithm has the same
model accuracy as the algorithm without sparsity optimiza-
tion, and it is able to achieve sub-linear (or even amortized
constant) time complexity with respect to the number of
topics. Representative examples include AliasLDA [17], F
+LDA [35], LightLDA [36], WarpLDA [9], and ESCA [39],
which are implemented in general-purpose CPU systems.

However, it is considerablymore challenging to design and
implement sparsity-aware algorithms onGPUs than onCPUs.

� Compared with CPUs, GPUs have considerably
higher thread counts, smaller per thread cache size,
and larger cache line size, which makes it very diffi-
cult to use caches to mitigate the random access
problems introduced by sparsity.

� The branch divergence issues of GPUs suggest that
we should fully vectorize the code. However, for
sparse data structures, loop length is no longer fixed
and the data are not aligned, indicating that straight-
forward vectorization is not feasible.

� The limited GPU memory capacity requires stream-
ing input data and model data. This adds another
dimension of complexity for data partition and lay-
out to simultaneously enable parallelism, good local-
ity and efficient sparse matrix updates.

� Finally, the calculation based on the skew vocabu-
lary requires fine-grained parallelism in multi-GPU
with hundreds of streaming multiprocessors, or it
would be imbalanced because the workload of the
largest word exceeds the average workload of all
GPU blocks.

SaberLDA addresses all these challenges by supporting
sparsity-aware algorithms on multi-GPUs. Our key techni-
cal contributions are as follows:

� A novel hybrid data layout named partition-by-docu-
ment and order-by-word (PDOW) that simultaneously
maximizes the locality and reduces the GPU mem-
ory consumption;

� Awarp-based sampling kernel that is fully vectorized,
and is equipped with a W-ary sampling tree that sup-
ports both efficient construction and sampling;

� A multi-GPU based shuffle and segmented count (SSC)
algorithm for updating sparse count matrices; and

� A split index optimization based on the Compressed
Row (CSR) format representing a sparse matrix of
vocabulary, which solves the imbalance of multiple
GPU workloads.

Our experimental results demonstrate that SaberLDA is
able to train LDA models with up to 40,000 topics, which is
more than an order of magnitude larger than previous
GPU-based systems [28], [33], [41]. SaberLDA is also highly
efficient; using a single GPU, SaberLDA converges five
times faster than previous GPU-based systems and four
times faster than CPU-based systems. With 4 GPUs, Saber-
LDA is able to learn 40,000 topics from a dataset of billions
of tokens, which was previously only achievable using clus-
ters of tens of machines [35].

The rest the paper is organized as follows. Section 2
introduces the basics of LDA. Section 3 presents the design
of SaberLDA. Section 4 contains the experiments. Section 5
discusses related work. Section 6 discusses the limitations
of this study and future work. In Section 7 we summarize
the paper.

2 LATENT DIRICHLET ALLOCATION

In this section, we introduce the Latent Dirichlet Allocation
(LDA)model, its sampling algorithm, and the sparsity-aware
optimization.

2.1 Definition

LDA is a statistical model that infers topics from a given
corpus. A corpus consists ofmultiple documents. Each docu-
ment is represented as a bag of words, disregarding gram-
mar and even word order, but keeping multiplicity. Each
occurrence of a word in such document is called a token. The
set of all words forms the vocabulary. The definitions of the
corpus are:

� D: The number of documents in a corpus;
� V : The size of the vocabulary; and
� T : The total number of tokens among all documents.
We also define the number of topics to infer, K, which is

given by the user.

� K: The number of topics to infer from the corpus.
The text corpus is represented as a token list T : List½ðd;

v; kÞ�. The terms d, v, and k refer to the document-id, word-id,
and topic-id, respectively. Training LDA involves assigning a
topic assignment k for each token ðd; v; kÞ. Note that duplicated
words occuring in the same document are treated as multiple
tokens since they can be assigned to different topics.

According to the topics from each token in T, we can cal-
culate the topic count for a document or a word. Hence, we
define the document-topic count matrix A and word-topic
count matrix B, as well as the global topic distribution
vector C:

� A: D�K sparse matrix, Adk is the number of occur-
rences of topic k in document d;

� B: V �K sparse matrix, but usually more dense than
A.Bvk is the count of those tokens with word vwhich
has been assigned to topic k; and

TABLE 1
Summary of LDA Systems WhereD is the Number of
Documents,K is the Number of Topics, V is the Size

of Vocabulary, and T is the Number of Tokens

Implementation D K V T

Yan et al. [33] 300k 128 100k 100M
BIDMach [41] 300k 256 100k 100M
Steele and Tristan [28] 50k 20 40k 3M
AGA-LDA [22] 300k 128 100k 100M

LI ETAL.: SABERLDA: SPARSITY-AWARE LEARNING OF TOPIC MODELS ON GPUS 2113

� C: a dense vector of K elements, where Ck is the
count of all tokens with topic k.

Fig. 1 is an example of token list and count matrices.

2.2 Inference

Given the token list T, our goal is to infer the topic assign-
ment k for each token t ¼ ðd; v; kÞ. Informally, the LDA
model is designed in a way that maximizes some objective
function (the likelihood) related to the topic assignments of
each token. We omit the mathematical details and refer the
interested readers to standard LDA literature [4], [15].

There are many inference algorithms, such as variational
inference [4], Markov chain MonteCarlo [15], and expecta-
tion maximization [9], [28]. We choose the state-of-the-art
algorithm [28] to implement on GPU for its following
advantages:

� It is sparsity-aware, so the time complexity is sub-
linear with respect to the number of topics. This
property is critical to support the efficient training of
large models;

� It enjoys the best degree of parallelism because the
count matrices A and B only need to be updated
once per iteration. This matches with the massively
parallel nature of GPU to achieve high performance.

The pseudo code of ESCA is shown in Algorithm 1,
which is a bulk synchronous parallel (BSP) programming
model. In each iteration, the topics of all tokens are sampled
independently. Initially, all tokens are assigned randomly.
The inference method has multiple iterations. Each iteration
first calculates A, B, and C by their definitions and then
samples the topic k of each token based on:

Pk ¼ ðAdk þ aÞðBvk þ bÞ
Ck þ V b

: (1)

Here, P is the measure of topic distribution of token ðd; vÞ
where Pk is proportional to the probability of choosing topic
k. The token ðd; vÞ has larger probability in topic k when its
document d has more tokens in topic k (larger Adk), and the
word v in all documents are more assigned by topic k (larger
Bvk). a and b are two user specified parameters that control
the granularity of topics. Large a and b values mean that we
want to discover a few general topics, while small a and b

values mean that we want to discover many specific topics.

2.3 Sampling

We now introduce the sampling function at line 12 in
Algorithm 1. The input distribution array P consists of K
floating point numbers. The output is a topic k, where k is an
integer between 1 and K. Algorithm 2 is a straightforward

method to generate the output topic from a given array of
probabilities, which takes the following steps. Compute the
the prefix-sum of P and set the result to the variable S. Ran-
dom a float number m from the uniform distribution of 0 to
SK , where SK is the summation of P. Use binary search to
find the sampled topic kwherewhere Sk�1 < m � Sk.

Algorithm 1. ESCA Algorithm for LDA

1: Input: token list T
2: for ðd; v; kÞ 2 T do
3: k Randomð1;KÞ
4: end for
5: for i 1 to num iteration do
6: A Int½D�½K�;B Int½V �½K�;C Int½K�
7: for ðd; v; kÞ 2 T do
8: INCREASE(Adk;Bvk; Ck)
9: end for
10: for ðd; v; kÞ 2 T do
11: P ðAd þ aÞ � ðBv þ bÞ=ðCþ V � bÞ
12: k SampleðPÞ
13: end for
14: end for

Algorithm 2. Sample From Topic Distribution Array

1: Input:K: Int, P: float[K] //Starting from index 1
2: S PrefixSumðPÞ where S0 ¼ 0; Sk ¼

Pk
i¼1 Pi

3: Randomm 2 ð0; SK �
4: Binary search kwhere Sk�1 < m � Sk

5: return k

2.4 Sparsity-Aware Optimization

The time complexity of constructing and sampling of P is
OðKÞ. However, the complexity is not sparsity-aware, which
means that it is proportional to the number of topics. For
example, for a given corpus, inferring 1000 topics will be 10
times slower than inferring 100 topics. The sparsity-aware
optimizations [1], [28] utilize the sparsity of A, and improve
the time complexity to OðKDÞ, where OðKDÞ � OðKÞ.KD is
the average number of non-zero entries per row ofA.

According to Eq. (1), for a given token with document d
and word v, its topic distribution is Pdv. The sparsity-aware
optimization decomposes the original sampling problem Pdv

as two easier sampling subproblems Xdv and Yv. Sampling
Pdv is exactly equal to sample the subproblem Xdv with the

probability of jXdvj
jXdvjþjYvj, and sampling Yv with the probability

of jYvj
jXdvjþjYvj, where jVj means the summation of the elements

in vectorV. The two sub-problems are derived by the follow-
ing equations:

Pdv ¼ ðAd þ aÞðBv þ bÞ
Cþ V b

¼ AdQv þ aQv ¼ Xdv þ Yv (2a)

where: Xdv ¼ AdQv;Yv ¼ aQv;Qv ¼
Bv þ b

Cþ V b
(2b)

We now analysis the time complexity of constructing and
sampling of these two subproblems Xdv and Yv.

Xdv has a factor Ad, which is a sparse vector most of the
time, so the sparsity of Xdv is equal to Ad. Since Ad is the

Fig. 1. An example of token list and count matrices.

2114 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 9, SEPTEMBER 2020

topic count of document d, the number of the non-zero ele-
ment nnzðAdÞ is no more than the number of tokens of docu-
ment d. In most corpora like NYTimes and PubMed, a
document has dozens to hundreds of tokens. However, it is
common to infer thousands to millions of topics, which is
far more than the tokens in one document. This can be
described by the following inequation:

KD � nnzðAdÞ � j Tdj � 100� K; (3)

where the function nnz is the number of non-zero elements
of a vector, Td is the group of all tokens of document d, KD

is the average of nnzðAdÞ among all documents. Conse-
quently, Xdv is a sparse vector with OðKDÞ elements, and
the time complexity of construction and sampling of Xdv are
both OðKDÞ, which is sparsity-aware.

Yv is the product of a andQv which depends on the topic
count vector Bv and C. Since many tokens belong to the
same word v in the vocabulary, it is possible to reuse Yv for
those tokens. The construction of Yv can be pre-processed
before Before sampling tokens. Hence the time complexity
is OðKÞ for constructing each Yv, and OðVKÞ for all unique
words in the vocabulary.

At last, we look at sampling Yv. Since Yv is a dense vec-
tor of K non-zero elements, the straightforward sampling
Algorithm 2 is not sparsity-aware here. Previous works [17],
[36] used AliasTable with OðKÞ built time for each word v
and Oð1Þ for sampling each token. Yu et al. [35] used a Fen-
wick tree, which was also built inOðKÞ and can then sample
a topic in Oðlog 2KÞ. For convenience, we respectively name
the initialize and sampling functions PreBuilt() (line 3) and
FastSample() (line 17).

Algorithm 3. Sparsity Aware Optimization

1: for i 1 to num iteration do
2: A DocTopicCountðTÞ
3: B WordTopicCountðTÞ
4: C TopicCountðTÞ
5: Q;Y Float½V �½K�
6: for v 1 to V do
7: Qv ðBv þ bÞ=ðCþ V bÞ // OðKÞ
8: Yv a�Qv

9: Treev PreBuiltðYvÞ
10: end for
11: for ðd; v; kÞ 2 T do
12: Xdv Ad �Qv // OðKDÞ
13: R RandFloatð0; jXdvj þ jYvjÞ
14: if R � jXdvj then
15: k SparseSampleðXÞdv // OðKDÞ
16: else
17: k FastSampleðTreevÞ // Oðlog 2KÞ
18: end if
19: end for
20: end for

The sparsity-aware optimization is shown in Algorithm 3.
At the beginning of each iteration, the time complexity of
constructing count matrices A, B and C is OðT Þ. Before sam-
pling tokens, constructing Qv, Yv and additional data struc-
ture Tree v hasOðKV Þ time complexity.When sampling each
token, the time complexity is OðKD þ log 2KÞ for Fenwick

tree and OðKD þ 1Þ for AliasTable. Hence the the time com-
plexity for sampling all tokens is OðKV þ TKDÞ Conse-
quently, the overall time complexity in each iteration is
OðKV þ TKDÞ, which sparsity-aware for large topics and it
is far less than the originalOðTKÞ algorithm.

3 DESIGN AND IMPLEMENTATION

In this section, we illustrate the design and implementation of
SaberLDA.We re-iterate the design goals of SaberLDAhere:

� Supporting industrial-grade large models on GPUs,
e.g., tens of thousands topics;

� Supporting large dataset with billions of tokens; and
� Providing significant speedup with GPUs to CPU

solutions.
To achieve these goals, SaberLDA adopts the state-of-the-

art embarrassingly parallel LDA algorithm with sparsity-
aware optimization (Algorithm 3) in multiple GPUs. In the
rest part of this section, we organize the content by demon-
strating how different segments of Algorithm 3 are designed
and implemented in SaberLDA.

The first challenge we faced is to design the layout of
large datasets and matrices on memory-limited multi-GPU
architecture. Section 3.1 discusses the computing and mem-
ory impacts of different kinds of data layouts.

We next focus on the most time-consuming part of the
sparsity-aware algorithm, which is the sampling of tokens
(lines 11-19). We analyze the memory access localities of dif-
ferent for-looping orders in Section 3.2.

Section 3.3 discusses how to assign tokens into massive
GPU cores with fine-grained parallelism. It also demon-
strates the vectorized optimization used in element-wise
product (line 12) and sampling methods (line 15 and 17).

Since it is challenging to achieve good load balance
with skew vocabulary distributions especially in multi-GPU.
Section 3.4 proposes a hybrid parallelism strategy named
split index to further parallelize themost frequent words.

The matrices counting methods (line 2 and line 3) take
lower order of complexity than sampling, however, it is still
challenging to use GPU efficiently if compute them into
sparse format. We named this problem shuffle and segmented
count and propose a multi-GPU solution in Section 3.5.

3.1 Data Layouts

A modern GPU has more than 10 gigabytes memory on
board. A typical industrial LDAmodel [32] learns 10k topics
with 210k unique words in the vocabulary, which forms 8.4
gigabytes of a count matrix B storing 32-bit integers as its
elements. Using the dense format for storing the model
matrix B is suitable for most cases of LDA training.

The web-scale datasets for LDA training have no less
than millions of documents, which makes the size of docu-
ment-topic count matrix A tens to hundreds of times larger
than word-topic count matrix B. To reduce the memory
requirements and enable the sparsity-aware algorithm,
SaberLDA uses a sparse layout CSR to store A. However,
the size of A still has dozens to hundreds of gigabytes,
hence it has to be partitioned before computing in GPUs.

Since the token list T and the document-topic count
matrix A are too large to be kept in GPU memory, they are

LI ETAL.: SABERLDA: SPARSITY-AWARE LEARNING OF TOPIC MODELS ON GPUS 2115

divided into small partitions. A partition contains the parti-
tion of A and T that belongs to the same document group.
The size of each partition is some gigabytes, so it is able to
be entirely transferred to GPU memory.

During the computation, partitions of A and T are suc-
cessively transferred to GPUs. When the computation of a
partition finishes, the data are transferred back to the CPU.
The GPU memory space is recycled for the next partition.

Inmultiple GPUs, the computation of tokensT can be sep-
arated evenly in multiple GPU, because they are embarrass-
ingly parallelized. However, computing token ðd; vÞ with
document-id d and word-id v requires reading the rows Ad

and Bv, which causes the matrices must be shared across
multiple GPUs for reading. The shared data can either be rep-
licated in all GPUs or be remote accessed through PCI-e bus or
NVLink. Fortunatedly, if grouping the tokens of the same
document (or word) into single GPU, visiting the data of
countmatrixA (orB) is localized.

It must be decided how to group the tokens. If grouping
tokens with the same document in a GPU, we can either rep-
licate the whole matrix B into all GPUs, or distribute B and
remotely access the different parts. Unfortunatedly, reapli-
cating the large dense matrix B is not scalable and wasting
memory, and remoting access data from other GPUs has
very high latency. Grouping tokens with the same word is
much more better. At this time, visiting matrix B is localized.
Replicating the matrix A and the token list T into multiple
GPUs take no significant overhead, because they are already
spending time on CPU-GPU transferring.

Table 2 demonstrates the data layout of a typical short
video dataset for recommendation. The first row is the
num- ber of elements. The second row is the estimated size.
The third row is the partition strategy and the size of each
partition for CPU-GPU transferring, and the last row is the
grouping strategy in multi-GPU.

3.2 Choosing Sampling Order

In this subsection, we introduce the design and optimiza-
tion of token sampling in SaberLDA. The procedure of
token sampling is found in lines 11-19 in Algorithm 3. The
order of sampling tokens in the GPU is the looping order of
tokens T. Theoretically, these tokens can be sampled in any
order, but the ordering greatly impacts the locality.

As illustrated in Fig. 2a, sampling k for a token ðd; v; kÞ
requires evaluating an element-wise product of two rows
(Line 12 of Algorithm 3), the dth row of the document-topic
count matrix Ad and the vth row of the word-topic factor
matrix Qv. The element-wise product involves accessing all
non-zero entries of Ad (sequential), and accessing elements
ofQv indexed by the non-zero entries of Ad (random).

There are two particular visiting orders that reuse the
result of previous memory accesses for better locality. The
doc-major order sorts the tokens by their document-ids, so
that tokens belonging to the same document are adjacent in
the token list. Before processing the tokens in the dth docu-
ment, the row Ad can be fetched into the shared memory
and reused to sample all the subsequent tokens in that doc-
ument. By contrast, the access of Qv cannot be reused
because each token needs to access random elements (indexed
by non-zero entries of Ad) in a random row of the word-topic
count matrix Q, as shown in Fig. 2b. The bottleneck of this
approach is accessing Q, where both the row index and col-
umn index are random.

By constract, the word-major order sorts the tokens by their
word-ids, so that tokens belonging to the same word are
adjacent in the token list. Before processing the tokens of the
vthword, the rowQv can be calculated in the sharedmemory
on the fly and reused to sample all the subsequent tokens of
that word. Each token needs to access all the elements of a ran-
dom row Ad (Fig. 2c). The bottleneck of this approach is
accessingA, where only the row index d is random.

The memory hierarchies can be quite different on CPUs
and GPUs. CPUs have larger cache size (> 30 MB) and
smaller cache line (64B), whereas GPUs have smaller cache
size (> 2MB) and larger cache line. On CPUs, whenK and V
are small, the document-major order can have better cache
locality than the word-major order because the matrixQ can
fit in the cache [39] for small datasets. However, for GPUs,
the word-major order has a clear advantage in that it fully
utilizes the cache line by accessing whole rows of Ad instead
of random elements. Therefore, we choose the word-major
order for SaberLDA. The pseudo code of sampling tokens in
word-major is shown in Algorithm 4.

Combining this sampling order with the document parti-
tion strategy, SaberLDA adopts a hybrid data layout called

TABLE 2
Data Layout Overview of SaberLDA for a Typical

Short Video Dataset for Recommendation

T AðD�KÞ BðV �KÞ
10B 10M � 10k 100k � 10k
Size 80 GB Sparse 40 GB Dense 4 GB
Partitioning By d 	2 GB By d 	2 GB Suitable in GPUs
Grouping By v Replicated By v

Fig. 2. Memory Access Pattern.

2116 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 9, SEPTEMBER 2020

partition-by-document and order-by-word (PDOW), which
means to first partition the token list by document-id, and
then sort the tokens within each partition by word-id.
Unlike simple layouts such as sorting all tokens by docu-
ment-id or by word-id in previous systems [28], [33], [35],
[36], [39], [41], PDOW combines the advantages of both
by-document partitioning and word-major ordering, and
simultaneously maximizes cache locality with the word-
major order, while keeping the GPU memory consumption
small with the by-document partitioning.

3.3 Warp-Based Sampling

We now turn to the inner loop of sampling tokens within a
word, i.e., line 7 in Algorithm 4, which is the most time con-
suming part of LDA. To understand the challenges and effi-
ciency-related considerations, it is helpful to briefly review
GPU architecture.

Algorithm 4. Sampling Tokens in Word-Major Order

1: for i 1 to num iteration do
2: A;B;C CountT
3: for v 1 to V do // by block
4: shared Qv ðBv þ bÞ=ðCþ V bÞ
5: shared S a� jQvj
6: shared Treev PreBuiltðQvÞ
7: for ðd; kÞ 2 Tv do // by warp
8: Xdv Ad �Qv

9: R RandFloatð0; jXdvj þ SÞ
10: if R � jXdvj then
11: k SparseSampleðXdvÞ
12: else
13: k TreeSampleðTreevÞ
14: end if
15: end for
16: end for
17: end for

GPUs follow a single instruction multiple data (SIMD)
pattern, where the basic SIMD unit is a warp, which has 32
data lanes. Each lane has its own arithmetic logic unit (ALU)
and registers, and all the lanes in a warp execute the same
instruction. In NVIDIA’s CUDA, each thread is executed on
a lane, and every adjacent 32 threads share the same instruc-
tion. Readers can make an analogy between GPU warp
instruction and CPU vector instruction.

3.3.1 Thread-Based Versus Warp-Based

The most straightforward implementation of sampling on a
GPU is thread-based sampling, which samples each token
with a GPU thread. Therefore, 32 tokens are processed in
parallel with a warp. Thread-based sampling is acceptable
when A is dense because the number of product operations
(Line 8 of Algorithm 4) is always K, and there is no need to
use if-branches for sparse sampling.

However, this approach has several disadvantages when
using sparse sampling in word-major order. First, because
each token corresponds to different rows of A, the numbers
of product operations are different (Line 8 of Algorithm 4).
In this case, all the threads need to wait for the slowest one,
creating long waiting time. Second, the branch choosing the

sampling function causes the thread divergence problem,
i.e., if some of the threads go to one branch and other threads
go to another branch, the warp needs to perform the instruc-
tions of both branches, which increases the waiting time.
Finally, the memory access to A is unconcealed (Line 8 of
Algorithm 4) because the GPU threads are accessing differ-
ent and discontinuous addresses of the global memory.

To overcome the disadvantages of thread-based sam-
pling, SaberLDA adopts warp-based sampling, in which all
the threads in a warp collaboratively sample a single token.
However, there are also challenges for warp-based sam-
pling–all the operations need to be vectorized to maximize
the performance. In the next part of this section, we intro-
duce how to individually vectorize the element-wise prod-
uct, the sparse sample and the tree sampling functions.

3.3.2 Element-Wise Product

The element-wise product step is vectorizable by simply let-
ting each thread process an index, and a warp then com-
putes the element-wise product for 32 indices at a time. All
the threads are fully utilized except for the last 32 indices in
the case if the number of non-zero entries of Ad is not a mul-
tiple of 32. The waste is very small since the entries of Ad

ary typically many more than 32, e.g., 100.

3.3.3 Choosing the Branch

This step only consists of a random number generation and
a comparison, whose costs are negligible. Note that thread
divergence will not occur since the whole warp goes to one
branch.

3.3.4 Sparse Sampling

This step samples a topic from the sparse probability
array Xdv, by vectorizing the sampling function listed in
Algorithm 2,

First, we vectorize the computation of the prefix sum by
using the __shuf_down intrinsic Oðlog 232Þ times [20]. We
refer to this routine as the warp_prefix_sum.

Given the prefix sum, we need to determine the index of
the first element that is greater than or equal to the random
value just generated. This can be achieved in two steps:

1) Use the warp-vote intrinsic __ballot to make a 32-bit
integer, whose ith bit is set to one if the ith prefix
sum is greater than or equal to the random value ,
vise versa.

2) Use the intrinsic __ffs to return the index of the first
bit 1 of the 32-bit integer.

We call these two steps the warp_vote, which returns an
index that is greater than or equal to the given value, or is
equal to -1 if there is no such index. The threads in the warp
continue to fetch the next 32 values in the loop, or stop if
they find such an index.

In addition to the eliminated waiting time and thread
divergence, the memory access behavior of our implementa-
tion is also good. For the element-wise product, the access to
A is continuous. Specifically, the warp accesses two 128-byte
cache lines from the global memory, and each thread con-
sumes two 32-bit numbers (an integer index and a float32
value). The accesses to Q are random, but they are still

LI ETAL.: SABERLDA: SPARSITY-AWARE LEARNING OF TOPIC MODELS ON GPUS 2117

efficient since the current row Qv has been loaded into the
sharedmemory or cached.

3.3.5 Tree Sampling

We now present the details for sampling Qv (Lines 6
and 13 of Algorithm 4). Note thatTreev is built fromYv which
has the same distribution as Qv (Yv ¼ aQv). Hence, Qv can
also be used to build the sampling tree. As discussed in
Section 2.3, this sampling problem is essentially the same
problem as sampling from Xdv, but the basic sampling algo-
rithm has OðKÞ time complexity for each token, so we want
another approach. From the literature, there are two main
optimizations based on the pre-processing of Yv, and we
briefly review their data structures.

� An alias table [29] can then be built in OðKÞ time,
and each sample can be obtained in Oð1Þ time. How-
ever, building the alias table is sequential.

� The Fenwick tree [35] can be built in OðKÞ time, and
each sample can then be obtained in Oðlog 2KÞ time.
However, the branching factor of the Fenwick tree is
only two, so the 32-thread GPU warp cannot be fully
utilized.

Both approaches are designed for CPUs, and are slow to
construct on a GPU because they cannot be vectorized. Vec-
torization is critical because using only one thread for pre-
processing is much slower than using a full warp for pre-
processing.

To allow vectorized pre-processing, we propose a W -ary
tree (each node has no more than W children), which can be
constructed in OðKÞ time with full utilization of GPU warp.
Subsequent samples can be obtained in OðlogWKÞ time,
whereW is the number of threads in a GPU warp, i.e., 32.

We emphasize that our main focus is efficient construction
of the tree instead of efficient sampling using the tree, because
the cost of sampling using the tree is negligible compared
with sampling from Xdv. Moreover, the sampling using our
W -ary tree is efficient because In SaberLDA, K is no more
than 1million, and logWK ¼ 4, soOðlogWKÞ ¼ Oð4Þ is on the
same level as theOð1Þ alias table algorithm.

Our W -ary tree is designed to efficiently find the location
of a given number in the prefix-sum array. Each node of the
tree stores a number, where the bottom-most level nodes
stores the prefix-sums of the given array. The length of an
upper level is equal to the length of the lower level divided
by W , and the ith node in an upper level is equal to the
(iW � 1)-th node in the lower level. Fig. 3 illustrates the con-
struction of the tree. This procedure is efficient because all
the nodes in one layer can be constructed in parallel. There-
fore, the GPU warp can be fully utilized with the aforemen-
tioned warp_prefix_sum function, which uses W threads to
compute the prefix-sum ofW numbers in parallel.

To find the position of a given value in the prefix-sum
array, we recursively find the position on each level, from
top to bottom (Fig. 3). Based on the particular construction of
our tree, if the position on the lth level is i, then the position
on the lþ 1-th level is between iW and iW þW � 1. There-
fore, only W nodes need to be checked on each level. This
checking can be achieved efficiently using the aforemen-
tioned warp_vote function. Also, the memory access is effi-
cient because the tree can be cached in the shared memory

(Section 3.2), and it only needs to readW continuous floating
point numbers, i.e., a 128-byte cache line for each level.

3.4 Load Balancing

We now analyze the load balance of warp-based sampling
in GPUs. A GPU can schedule GPU blocks overall comput-
ing units (SMs), and schedule warps of a block within one
computing unit. We let a GPU block compute all tokens
with the same word and each warp in the GPU block fetches
one token at a time. We randomly partition the words into
groups for multiple GPUs, so the computing workloads
among GPUs are nearly the same. The word scheduling
order is based on the descending order of word frequencies;
hence, the GPU can use many blocks of small words to
achieve balance among SMs.

However, using only one GPU block to compute the most
frequent word may take longer than computing all other
words in other blocks. For instance, one V100 GPU has 80
SMs and two V100s have 160 SMs. Each SM has to compute
the 0.625 percent of the total workload for perfect balancing.
By constrast,in the PubMed dataset, the computing work-
load of the most popular word is more than 1 percent. If we
limit the computation of one word in a single GPU block,
this will cause 60 percent imbalance overhead, which is
unacceptable. Therefore, it is necessary to split the computa-
tion of popular words into multiple GPU blocks.

Our work proposes a split index format, which makes
changes to the CSR index of the token list. In the traditional
CSR format, each index represents the range of tokens
belonging to a word in the vocabulary. In our split index
format, the indices of those popular words are split into
multiple pieces. A split parameter P is given to split the
indices of words that have more than P tokens. If a word
has t tokens, the index is split into dt=Pe pieces.

Fig. 4 shows an example. Without the split index format,
block 0 computes the entire workload of word 1, which is
larger than any other blocks and creates imbalance. With
the help of the split index, the workload of word 1 is split
into blocks 0 and 1, so each block has a similar workload
and the heavy block is eliminated, avoiding the imbalance.

3.5 Efficient Sparse Matrix Counting

In this section, we introduce how to count the sampled
topics into sparse count matrices A and B (line 2 in Algo-
rithm 4). Use of a sparse matrix format can greatly reduce
memory space consumption and accelerate construction
time. The theoretical time complexity of counting topics is

Fig. 3. Building a 3-ary tree and sampling from the tree.

2118 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 9, SEPTEMBER 2020

proportional to the number of tokens, i.e.,OðT Þ, which is less
than the sampling tokens ðTKDÞ. However, sparse matrix
counting has an undeterministic result size, which may lead
to extra space exceeding the limited GPU memory. More-
over, if not well optimized in the GPU, the time consumption
of counting becomes greater than the sampling step.

3.5.1 Count Doc-Topic Matrix A

Based on theword-major sampling order, the topics sampled
from tokens are grouped by word, but are with random
documents. It is difficult to directly update the document
count matrix. Fortunately, since the tokens are partitioned
by document, we can calculate the partition of count matrix
Awhen the sampling of the partition is finished.

A naı̈ve approach to count the matrix is to sort all the
tokens by first document-id d, then topic assignment k, and
then perform a linear scan. However, the sorting is expen-
sive since the global memory must be frequently accessed.
Moreover, the efficiency of sorting decreases as the size of
the token list increases.

We propose a procedure called shuffle and segmented count
(SSC) to address this problem. We first perform a shuffle to
organize the token list by the document-id’s, i.e., segment
the tokens into D small lists where the tokens in each list
share the same document. The shuffle can be achieved by
sorting all the tokens by the document-id d, but the sorting
need not be actually performed because the target place of
each token is fixed. We pre-process an index array of target
places of tokens in the CPU, and transfer it to the GPU fol-
lowing the document partition.

Then, we parallelly count each segment (tokens of each
document) in the GPU, which is a common problem known
as segmented count. Unlike similar problems, such as

segmented sort [25], and segmented reduce [24], which
have fully optimized algorithms for GPUs, an efficient GPU
solution of segmented count has not yet been well studied.

We propose a solution of segmented count that is suffi-
ciently efficient for SaberLDA. Our procedure consists of
three steps, as illustrated in Fig. 5:

1) Perform a radix sort of each segment. Since a seg-
ment is short, it can be accelerated by caching in the
shared memory;

2) Calculate the prefix sum of the adjacent difference, to
get the number of different topics and the order
number of each topic; and

3) Assign the topic number at the corresponding order
number, and increase the count of the same topic.

In the multi-GPU system, tokens are grouped by different
words and split into different GPUs. Our goal is to construct
the doc-topic modelA and replicate it to all GPUs. Although
its computing time is considerably shorter than the kernel
sampling function, using only one GPU to compute still
hurts the multi-GPU scalability. Our work extends the shuffle
and segmented count method into a multi-GPU system. To
achieve good scalability, we rearrange the tokens in docu-
ment order and re-partition them to all GPUs. Therefore, the
segmented count calculation is evenly separated in each
GPU.We implement a distributed doc-topicmatrix construc-
tion according to the following steps, shown in Fig. 6:

1) For eachGPU, shuffle the tokens into document order.
2) Use the All-to-All transfer method to send tokens to

the corresponding GPU.
3) Shuffle the tokens in each GPU again, ordering all

tokens by document id.
4) Call the segmented count kernel of each document

partition. Thus each document has its topic count
distribution.

5) Use the All-gather method to broadcast every docu-
ment count partition to all GPUs. Each GPU receives
all document count partitions and assembles them
into a complete doc-topic matrix.

Like the single GPU version, the shuffle index of each
token is unchanged among all estimate iterations. All shuffle
indices and all-to-all metadata can be pre-possessed in the

Fig. 4. Split Index Format.

Fig. 5. Segmented count.

Fig. 6. Construct Doc-Topic Matrix A in multiple GPUs.

LI ETAL.: SABERLDA: SPARSITY-AWARE LEARNING OF TOPIC MODELS ON GPUS 2119

CPU before the first iteration. To save the transfer bandwidth
between the CPU and the GPU, the doc-topic matrix is only
temporally calculated and used inside GPUs. Only indices
andmetadata are transferred fromCPU to GPUs.

We use NVLink instead of PCI-e for communications
betweenGPUs for its high bandwidth and extra-communica-
tion channels. For example, while learning 1000 topics from
PubMed dataset in our experiment platform (in Table 3), the
computation time per iteration takes about 500 ms with
4 GPUs. The communication between GPUs needs 17ms via
NVLink, while it requiresmore than 70ms via PCI-e.

3.5.2 Count Word-Topic Matrix B

Finally, we discuss how to efficiently update the dense count
matrices B. When the sampling of all tokens with the same
word is finished, the corresponding rowBv of the word-topic
count matrix is ready to be updated. The atomicAdd function
must be used because there may be GPU blocks updating the
same row, but the overhead is very low since the time com-
plexity of updating is lower than the time complexity of sam-
pling. The word-topic probability matrix Q can be easily
generated according to Eq. (2b) from B after all the updates
are finished. Maximal parallel performance can be achieved
since bothmatrices are dense.

4 EVALUATION

In this section, we provide an extensive set of experiments to
analyze various aspects of the performance of SaberLDA,
and to compare SaberLDA with other cutting-edge open
source implementations. We analyze the performance on a
modernmulti-GPUplatform and process it on large datasets.
The code of SaberLDA is about 3,000 lines, written in CUDA
and C++.

4.1 Experiment Setup

4.1.1 Test Platforms

We have two test platforms to test our program as well as
other existing solutions.

Platform A has two Intel E5-2670v3 CPUs, with 12 cores
per CPU, 128 GB main memory and an NVIDIA GTX 1080
GPU. Platform B is a multi-GPU machine which consists of
4 NVIDIA V100 NVLink-connected GPUs. The bi-direc-
tional bandwidth between each pair of GPUs is 96 GB/s. A
PCI-e x16 bus is in charge of transferring data between CPU
and GPUs. It has 12 GB/s bandwidth for a single direction.

4.1.2 Dataset

We use the dataset from the UCI machine learning reposi-
tory. NYTimes consists of news articles and PubMed has

biomedical literature abstracts. We also use ClueWeb12 [6]
dataset, which is a crawl of web pages, as a large dataset. We
first extract text from the HTML pages, remove stop words,
and tokenize them. A subset of ClueWeb12 that can be fit in
main memory is randomly selected. The statistic details of
the datasets we used for testing are listed in Table 4.

The hyper-parameters a ¼ 50=K and b ¼ 0:01 are set
according to previous works [9], [17], [34], [35].

4.1.3 Experiment Metrics

The training time of LDAdepends on both the number of iter-
ations to converge and the time for each iteration. The former
depends on the algorithm, e.g., variational Bayes algo-
rithm [4] typically requires fewer iterations than ESCA [39] to
converge. The latter depends on the time complexity of sam-
pling each token as well as the implementation, e.g., the spar-
sity-aware algorithm has OðKDÞ time complexity, and faster
performance than the OðKÞ vanilla algorithms. We use vari-
ousmetrics to compare LDA implementations as follows.

We use time per iteration or throughput to compare differ-
ent implementations of the same algorithm, e.g., SaberLDA
with a CPU implementation of the ESCA algorithm, because
they require the same number of iterations to converge. The
throughput is defined as

Throughput ¼ number of tokens T processed

running time
;

and the unit is million tokens per second (MToken/s).
We compare different algorithms by the required time to con-

verge to a certain model quality, because some algorithms may
require more iterations to converge, but cost less for each iter-
ation. The model quality is assessed by holdout log-likelihood,
using the partially-observed document approach [30]. The
log-likelihood of each tokenLd;v is calculated by the following
equation:

Ld;v ¼ log

P
k Pk

jTdj þKa
; (4)

where Pk and Td are defined in Eqs. (1) and 3, respectively.
Higher log-likelihood indicates better model quality.

4.2 Impact of Optimizations

We first investigate the impact of each optimization tech-
nique proposed in previous sections by training the LDA on
the NYTimes dataset with 1,000 topics for 100 iterations,
with the result shown in Fig. 7. The total elapsed time is
decomposed as the Sample function, rebuilding the docu-
ment-topic matrix A, constructing pre-processed data struc-
tures for sampling, and data transferring the between CPU
and GPU.

TABLE 3
Test Platforms

Platform A B

CPU
Intel Xeon E5-2670 v3

12 cores x2
Intel Xeon E5-2620 v4

8 cores x2
Memory 128 GB 256 GB

GPU NVIDIA GTX 1080 NVIDIA Tesla V100 x4
Memory 8 GB 16 GB x4

TABLE 4
Statistics of Tested Datasets

Dataset D T V T=D

NYTimes [2] 300k 100M 102k 332
PubMed [2] 8.2M 738M 141k 90
ClueWeb12 subset [6] 33.1M 8.9B 100k 268

2120 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 9, SEPTEMBER 2020

G0 is the most straightforward sparsity-aware imple-
mentation on GPU which sorts all tokens by documents,
performs the pre-processed sampling with the alias table,
and builds count matrices by naı̈ve sorting of all tokens. G1
adopts the word-major order proposed in Section 3.2, and the
time of sampling is reduced by almost 40 percent because of
the improved locality for sampling. Note that G1 takes
more time than G0 to rebuild the doc-topic matrix A
because the tokens are ordered by word, and the sorting
becomes slower.

The bottleneck of G1 is the construction of the alias table,
since it is hard to vectorize. In G2, we replace the alias table
with the W -ary tree in Section 3.3.5, which fully utilizes
warps to greatly reduce the construction time by 98 percent.

We optimize the rebuilding of the document-topic matrix
A with shuffle and segmented count (Section 3.5.1) in G3,
and reduce the rebuilding time by 89 percent. Now, the time
for updating A and pre-processing is negligible. Finally, in
G4, we enable multiple workers running asynchronously to
hide the data transfer between the CPU and GPU. This
reduces the total running time by 12.3 percent. Overall, these
optimizations combined achieve 2.9x speedup comparing
with the baseline version G0. We emphasize that G0 is
already highly optimized, and handle more topics than pre-
vious GPU implementations because it adopts the sparsity-
aware algorithmwith time complexityOðKDÞ.

4.3 Profiling Analysis

Next, we analyze the utilization of hardware resources with
NVIDIA visual profiler in Platform A. We focus on memory
bandwidth because LDA is a memory intensive task [9].

Table 5 is thememory bandwidth utilization of the first 10
iterations on NYTimes with K ¼ 1; 000. Statistics show that
the throughput of device memory reaches more than 140
GB/s, which is approximately 50 percent of the bandwidth.

This shows clear advantage over CPUs, given that the band-
width between themainmemory and CPU is only 40-80 GB/
s. The throughputs of the L2 cache, unified L1 cache, and
shared memory are 203 GB/s, 894 GB/s, and 458 GB/s
respectively, while the utilization is lower than 25 percent.
Therefore, these are not the bottlenecks of the overall system
performance.

We further use performance counters to examine the ker-
nel function, which shows that the memory dependency is
the main reason of instruction stall (47 percent), and the sec-
ond reason for execution dependency (27 percent). The hot-
spot is computing the element-wise product between the
sparse vector Ad and the dense vectorQv, which is expected
because it accesses global memory.

4.4 Comparison With Other Implementations

We compare SaberLDAwith one previous GPU-based imple-
mentation, BIDMach [41], as well as three CPU-based imple-
mentations, ESCA (CPU), DMLC [38], and WarpLDA [9].
BIDMach [41] is the open-source GPU-based implementation.
It is a general GPU-based machine learning tool whose algo-
rithms are implemented in Scala, and the basic kernel func-
tions, such asmatrixmanipulation are compiled to the CUDA
library. BIDMach reports better performance than Yan et al.’s
implementation [33], [41], and Steele and Tristan’s implemen-
tation only reports tens of topics in their paper. Therefore, we
think it is reasonable to compare SaberLDA with BIDMach,
and we choose the batched Variational Bayes algorithm of
BIDMach because it has better convergence than other algo-
rithms on thousands of topics. ESCA (CPU) is a carefully opti-
mized CPU version of the ESCA algorithm that SaberLDA
also adopts. DMLChas a collection ofmulti-thread LDA algo-
rithms on CPU , and we choose the FTreeLDA algorithm that
achieved the best performance among all algorithms pro-
vided by DMLC. WarpLDA uses a state-of-art Metropolis-
Hastings sampling algorithm with Oð1Þ time complexity
per token.

We compare the time to converge of these implementa-
tions on four settings on the NYTimes and PubMed datasets,
with the number of topicsK ¼ 1000. Fig. 8 shows the conver-
gence over time. We compare the time to converge to the log-
likelihood of �8:0 and �7:3, for NYTimes and PubMed,
respectively. SaberLDA is 5.0 - 6.2 times faster than BIDMach.
We also attempt to perform the comparison with 3,000 and
5,000 topics, and find that BIDMach is more than 10 times
slower than SaberLDA with 3,000 topics, and reports an out-
of-memory errorwith 5,000 topics. This is as expected because
the time consumption of BIDMach grows linearly with
respect to the number of topics, and its dense matrix format is
much more memory consuming than SaberLDA. SaberLDA

Fig. 7. Impact of optimizations tested in Platform A. G0: Baseline; G1:
World-major order; G2: W -ary tree; G3: Shuffle and Segmented Count;
G4: Asynchronous.

TABLE 5
Memory Bandwidth Utilization, NYTimes K=1000

Throughput (GB/s) Utilization

Device memory 144 50%
L2 cache 203 30%
L1 unified cache 894 20%
Shared memory 458 20%

Fig. 8. Convergence over time with 1000 topics in Platform A.

LI ETAL.: SABERLDA: SPARSITY-AWARE LEARNING OF TOPIC MODELS ON GPUS 2121

is about 4 times faster than ESCA (CPU) and 5.4 times faster
than DMLC on the two datasets with K ¼ 1; 000. WarpLDA
converges to a worse local optimum possibly because of its
inexact algorithm and the different metric we used to assess
model quality compared with its paper [9]. This shows that
SaberLDA ismore efficient than other implementations.

4.5 Multi-GPU Performance

We now analyze the performance of SaberLDA on Platform
B, which has 4 V100 NVLink-connected GPUs.

4.5.1 Scalability

Fig. 9 shows the throughput and speedup in multi-GPUs.
The throughput is the average among 100 iterations. We use
the NYTimes dataset and split the documents into two par-
titions for overlapping of the peer-to-peer transferring and
calculating steps. All data stays in the GPU, avoiding the
PCI-e transferring bottleneck between the CPU and GPUs.
The shared memory is used to fetch the current row of Qv

when estimating 1000 topics while processing 3k and 10k
topics would use the global memory.

Our work achieves throughput of 1.83 GToken/s with the
NYTimes dataset and 1000 topics with 4 GPUs. When the
number of topics increases, the throughput reduces to 1.34
GToken/s for 3k topics and 1.19 MToken/s for 10k topics.
This is because of the increasing size of the vector B, which
leads to more cache miss rate in the sampling kernel. The
right subfigure of Fig. 9 shows that the speedup achieves
about 1.92xwith 2 GPUs and 3.61x to 3.7xwith 4 GPUs.

4.5.2 Benefits of Split Index

Weanalyze the benefit of theSplit Indexproposed in Section 3.4.
We test the throughput of 100 iterations with the PubMed
dataset with 1000 topics. Those word indices are split if its
percentage of workload is larger than the average workload
per GPU SM. The results shows are presented in Fig. 10. Both
versions have the same performance with a single GPU. With

4GPUs, the original version has less than 3x speedup,whereas
the split-index version has nearly 4x speedup. The split index
method is effective when estimating skew vocabularies in
multi-GPUs.

4.5.3 Convergence and Throughput

We then analyze the convergence and throughput in the small
datasets of NYTimes and PubMed. The numbers of topics are
1k, 10k, and 40k andweuse an estimated 300 iterations, which
is enough for the model to attain convergence. The results are
shown in Fig. 11. SaberLDA finishes in 16, 27, and 77 seconds
for NYTimes with the different numbers of topics, and takes
143, 186, and 466 seconds to finish for PubMed. The through-
put achieves 2.05 GToken/s for NYTimes with 1000 topics
and it becomes stable at 490 MToken/s when estimating for
PubMedwith 40k topics.

4.5.4 Large Dataset

Finally, to demonstrate the ability of SaberLDA to process
large datasets, we test the performance of SaberLDA on a
large subset of the ClueWeb12 dataset. In this experiment,
we used the 4-GPU platform B as our test machine. We run
SaberLDA in 300 iterations with 1,000, 10,000 and 40,000
topics separately, and the result are shown in Fig. 12. The
throughput of estimating 1,000 and 10,000 topics are about
500 Mtoken/s, which is limited by the PCI-e x16 link con-
nected between the CPU and the PCI-e hub in this platform.
The throughput of estimating 40,000 topics is approximately

Fig. 9. Multi-GPU Speedup of NYTimes Dataset with 100 Iterations in
Platform B.

Fig. 10. Benefits of Split Index: PubMed 1000 Topics in Platform B.

Fig. 11. Convergence and throughput for NYTimes and PubMed data-
sets with 300 iterations in Platform B.

Fig. 12. ClueWeb12 subset in Platform B.

2122 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 9, SEPTEMBER 2020

460 MToken/s. It takes 1.6 hours iterations and get the con-
vergence of likelihood at -5.688.

5 RELATED WORK

LDA Algorithms. The classic inference algorithms such as
variational Bayes [4], [26], expectation propagation [21], and
Collapsed Gibbs sampling (CGS) [15] have linear time com-
plexity OðKÞ for each token. Various algorithms have been
proposed to optimize the time complexity to average
topics per word OðKW Þ (SparseLDA [34]), average topics
per documents OðKDÞ (AliasLDA [18], ESCA [39], F
+LDA [35]), and constant time complexity Oð1Þ (Light-
LDA [36], WarpLDA [9]).

Distributed CPU LDA Systems. Distributed LDA systems
were designed to accelerate training large datasets. They are
based on MPI and OpenMP primitives (PLDA [31], AD-
LDA [23], Peacock [32], F+LDA [35], WarpLDA [9] and [27]),
parameter server abstraction (LDA* [37], LightLDA [36],
Yahoo!LDA [1]), and Spark (ZenLDA [40]). The state-of-the-
art distributed implementation [9] can infer 1 million topics
and reach good scalability at 256 servers.

GPU LDA Systems. Yan et al. [33], BIDMach [41], Steele and
Tristan [28], AGA-LDA [22], and Pyro [3] implemented LDA
in GPU(s), supporting at most a thousand topics because of
theirOðKÞ algorithms.

LDA Model Extensions. As extensions of the classic flat
topic models. Hierarchical [14] and DAG-structured [19]
LDA models can learn topics of different levels of abstrac-
tion. Chen et al. [10] implemented a distributed hierarchical
LDA system with 50 machines.

6 LIMITATIONS, DISCUSSION, AND FUTURE WORK

One limitation of SaberLDA is that it can only scale-up to a
server with multiple NVLink connected GPUs. We plan to
extend the current implementation to multiple servers to
make the training process even faster.

The other limitation is that SaberLDA holds all input
data in the main memory of the CPU server and streams
this data to GPUs. This can be improved by using NVMe
SSD disks to support larger input data size.

Although we focus on the classic LDA algorithm in this
paper, we believe the techniques proposed in this paper are
generally applicable to hierarchical and DAG-structured
LDA models, which also have sparse models.

7 CONCLUSION

We presented SaberLDA, a high-performance sparsity-aware
LDA system on a multi-GPU system. By adopting sparsity-
aware algorithms, SaberLDA overcomes the problems of pre-
vious GPU-based systems, which support only a small num-
ber of topics. We proposed a novel data layout, a warp-based
sampling kernel, and an efficient sparse count matrix updat-
ing algorithm to address the challenges induced by sparsity.
We thendemonstrated the power of SaberLDAwith extensive
experiments. It can efficiently handle large-scale datasetswith
up to 8.9 billion tokens and learn large LDAmodelswith up to
40,000 topics, which is orders of magnitude larger than exist-
ing GPU-based LDA systems. With the split index structure,
and workload balancing algorithm, SaberLDA has linear

speedup on 4 V100 NVLink connected GPUs and is more
than 20 times faster than amodern dual CPU server. We hope
our work will motivate more research on supporting more
sparsitymachine learning algorithmswith GPUs.

ACKNOWLEDGMENTS

This work was supported in part by NSFC for Distinguished
Young Scholars under Grant No. 61525202 and Beijing
Academy of Artificial Intelligence (BAAI).

REFERENCES

[1] A. Ahmed, M. Aly, J. Gonzalez, S. Narayanamurthy, and
A. J. Smola, “Scalable inference in latent variable models,” in Proc.
5th ACM Int. Conf.Web Search DataMining, 2012, pp. 123–132.

[2] D. Dua and C. Graff, “UCI machine learning repository,” Uni-
versity of California, Irvine, School of Information and Computer
Sciences, 2017. [Online]. Available: http://archive.ics.uci.edu/ml

[3] E. Bingham et al., “Pyro: Deep universal probabilistic pro-
gramming,” The J.Mach. Learn. Res., vol. 20, no. 1, pp. 973–978, 2019

[4] D. M. Blei, A. Y. Ng, and M. I. Jordan, “Latent dirichlet
allocation,” J. Mach. Learn. Res., vol. 3, pp. 993–1022, 2003.

[5] J. L. Boyd-Graber, D. M. Blei, and X. Zhu, “A topic model for word
sense disambiguation,” in Proc. Conf. Empir. Methods Natural Lan-
guage Process. Comput. Natural Lang. Learn., 2007, pp. 1024–1033.

[6] J. Callan, “The lemur project and its ClueWeb12 dataset,” in
Proc. Invited Talk SIGIR Workshop Open-Source Inf. Retrieval, 2012,
pp. 11–20

[7] L. Cao and L. Fei-Fei, “Spatially coherent latent topic model for
concurrent segmentation and classification of objects and scenes,”
in Proc. IEEE 11th Int. Conf. Comput. Vis., 2007, pp. 1–8.

[8] J. Chang and D. Blei, “Relational topic models for document
networks,” in Proc. 12th Int. Conf. Artif. Intell. and Statist., 2009,
pp. 81–88.

[9] J. Chen, K. Li, J. Zhu, and W. Chen, “WarpLDA: A cache efficient
o (1) algorithm for latent dirichlet allocation,” in Proc. VLDB
Endowment, vol. 16, 2016, pp. 744–755.

[10] J. Chen, J. Zhu, J. Lu, and S. Liu, “Scalable training of hierarchical
topic models,” Proc. VLDB Endowment, vol. 11, no. 7, pp. 826–839,
2018.

[11] N. Chen, J. Zhu, F. Xia, and B. Zhang, “Discriminative relational
topic models,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 37, no. 5,
pp. 973–986, May 2015.

[12] W.-Y. Chen, J.-C. Chu, J. Luan, H. Bai, Y. Wang, and E. Y. Chang,
“Collaborative filtering for orkut communities: Discovery of user
latent behavior,” in Proc. 18th Int. Conf. World Wide Web, 2009,
pp. 681–690.

[13] Z. Ghahramani, “Probabilistic machine learning and artificial
intelligence,” Nature, vol. 521, no. 7553, 2015, Art. no. 452.

[14] T. L. Griffiths, M. I. Jordan, J. B. Tenenbaum, and D. M. Blei,
“Hierarchical topic models and the nested chinese restaurant proc-
ess,” inProc. Advances Neural Inf. Process. Syst., 2004, pp. 17–24.

[15] T. L. Griffiths and M. Steyvers, “Finding scientific topics,” Proc.
Nat. Acad. Sci., vol. 101, no. (suppl 1), pp. 5228–5235, 2004.

[16] T. Iwata, T. Yamada, and N. Ueda, “Probabilistic latent semantic
visualization: Topic model for visualizing documents,” in Proc.
14th ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining, 2008,
pp. 363–371.

[17] A. Q. Li, A. Ahmed, S. Ravi, and A. J. Smola, “Reducing the sam-
pling complexity of topic models,” in Proc. 20th ACM SIGKDD Int.
Conf. Knowl. Discovery Data Mining, 2014, pp. 891–900.

[18] M. Li et al., “Scaling distributed machine learning with the param-
eter server,” in Proc. 11th USENIX Conf. Operating Syst. Des. Imple-
mentation, 2014, pp. 583–598.

[19] W. Li and A. McCallum, “Pachinko allocation: Dag-structured
mixture models of topic correlations,” in Proc. 23rd Int. Conf.
Mach. Learn., 2006, pp. 577–584.

[20] M. Harris, S. Sengupta, and J. Owens, “Parallel prefix sum (scan)
with CUDA,” 2017. [Online]. Available: http://http.developer.
nvidia.com/GPUGems3/gpugems3_ch39.html

[21] T. Minka and J. Lafferty, “Expectation-propagation for the genera-
tive aspect model,” in Proc. 18th Conf. Uncertainty Artif. Intell.,
2002, pp. 352–359.

LI ETAL.: SABERLDA: SPARSITY-AWARE LEARNING OF TOPIC MODELS ON GPUS 2123

http://archive.ics.uci.edu/ml
http://http.developer.nvidia.com/GPUGems3/gpugems3_ch39.html
http://http.developer.nvidia.com/GPUGems3/gpugems3_ch39.html

[22] G. E. Moon, I. Nisa, A. Sukumaran-Rajam, B. Bandyopadhyay,
S. Parthasarathy, and P. Sadayappan, “Parallel latent dirichlet allo-
cation on gpus,” inProc. Int. Conf. Comput. Sci., 2018, pp. 259–272.

[23] D. Newman, A. Asuncion, P. Smyth, and M. Welling, “Distributed
algorithms for topic models,” J. Mach. Learn. Res., vol. 10,
pp. 1801–1828, 2009.

[24] NVIDIA, “Segmented reduction,” 2013. [Online]. Available:
https://nvlabs.github.io/moderngpu/segreduce.html

[25] NVIDIA, “Segmented sort and locality sort,” 2013. [Online].
Available: https://nvlabs.github.io/moderngpu/segsort.html

[26] Y. W. Teh, D. Newman, and M. Welling, “A collapsed variational
Bayesian inference algorithm for latent dirichlet allocation,” in
Proc. 19th Int. Conf. Neural Inf. Process. Syst., 2006, pp. 1353–1360.

[27] S. Tora and K. Eguchi, “Mpi/openmp hybrid parallel inference
for latent dirichlet allocation,” in Proc. 3rd Workshop Large Scale
Data Mining: Theory Appl., 2011, Art. no. 5.

[28] J.-B. Tristan, J. Tassarotti, and G. Steele, “Efficient training of LDA
on a GPU by mean-for-mode estimation,” in Proc. 32nd Int. Conf.
Mach. Learn., 2015, pp. 59–68.

[29] A. J. Walker, “An efficient method for generating discrete random
variables with general distributions,” ACM Trans. Math. Softw.,
vol. 3, no. 3, pp. 253–256, 1977.

[30] H. M. Wallach, I. Murray, R. Salakhutdinov, and D. Mimno,
“Evaluation methods for topic models,” in Proc. 26th Annu. Int.
Conf. Mach. Learn., 2009, pp. 1105–1112.

[31] Y. Wang, H. Bai, M. Stanton, W.-Y. Chen, and E. Y. Chang,
“PLDA: Parallel latent dirichlet allocation for large-scale
applications,” in Proc. Int. Conf. Algorithmic Aspects Inf. Manage.,
2009, pp. 301–314.

[32] Y. Wang et al., “Peacock: Learning long-tail topic features
forindustrial applications,” ACM Trans. Intell. Syst. Technol., vol. 6,
no. 4, pp. 1–23, 2015.

[33] F. Yan, N. Xu, and Y. Qi, “Parallel inference for latent dirichlet
allocation on graphics processing units,” in Proc. Advances Neural
Inf. Process. Syst., 2009, pp. 2134–2142.

[34] L. Yao, D. Mimno, and A. McCallum, “Efficient methods for topic
model inference on streaming document collections,” in Proc. 15th
ACM SIGKDD Int. Conf. Knowl. Discovery and Data Mining, 2009,
pp. 937–946.

[35] H.-F. Yu, C.-J. Hsieh, H. Yun, S. Vishwanathan, and I. S. Dhillon,
“A scalable asynchronous distributed algorithm for topic mod-
eling,” in Proc. 24th Int. Conf. World Wide Web, 2015, pp. 1340–1350.

[36] J. Yuan et al., “Lightlda: Big topic models on modest compute
clusters,” inProc. 24th Int. Conf.WorldWideWeb, 2015, pp. 1351–1361.

[37] L. Yut, C. Zhang, Y. Shao, and B. Cui, “LDA*: A robust and large-
scale topic modeling system,” Proc. VLDB Endowment, vol. 10,
no. 11, pp. 1406–1417, 2017.

[38] M. Zaheer, “Dmlc experimental-LDA,” 2016. [Online]. Available:
https://github.com/dmlc/experimental-lda

[39] M. Zaheer, M. Wick, J.-B. Tristan, A. Smola, and G. L. Steele Jr,
“Exponential stochastic cellular automata for massively parallel
inference,” in Proc. 19th Int. Conf. Artif. Intell. Statist., 2015,
pp. 966–975.

[40] B. Zhao, H. Zhou, G. Li, and Y. Huang, “Zenlda: Large-scale topic
model training on distributed data-parallel platform,” Big Data
Mining Analytics, vol. 1, no. 1, pp. 57–74, 2018.

[41] H. Zhao, B. Jiang, J. F. Canny, and B. Jaros, “Same but different:
Fast and high quality gibbs parameter estimation,” in Proc. 21th
ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining, 2015,
pp. 1495–1502.

[42] J. Zhu, A. Ahmed, and E. P. Xing, “MedLDA: Maximum margin
supervised topicmodels,” J.Mach. Learn. Res., vol. 13, pp. 2237–2278,
2012.

Kaiwei Li received the bachelor’s degree from
Tsinghua University, in 2014, and currently he is
working toward the PhD degree in the Institute of
High Performance Computing of Tsinghua Uni-
versity. His major research interests include par-
allel computing, machine learning accelerating,
and GPU programming and distributed systems.

Jianfei Chen received BS and PhD degrees in
computer science from Tsinghua University, in
2014 and 2019, respectively. He is currently a
postdoctoral researcher with the Department of
Computer Science and Technology, Tsinghua
University. His major research interests effi-
cient machine learning algorithms, probabilistic
inference, and topic models.

Wenguang Chen received the BS and PhD
degrees in computer science from Tsinghua Uni-
versity, in 1995 and 2000, respectively. He was the
CTO of Opportunity International Inc. from 2000–
2002. Since January 2003, he joined TsinghuaUni-
versity. He is currently a professor and associate
head with the Department of Computer Science
and Technology, Tsinghua University. His research
interest includes parallel and distributed computing
and programmingmodel.

Jun Zhu received the BS, MS, and PhD degrees
from the Department of Computer Science and
Technology, Tsinghua University. He is currently
a professor with the Department of Computer
Science and Technology, Tsinghua University. He
was an adjunct faculty and a post-doctoral fellow at
Machine Learning Department, Carnegie Mellon
University. His research interest is on machine
learning. He has published extensively at leading
journals and conferences. He was selected as one
of IEEE AI’s to Watch, MIT TR35 China and China
Computer Federation (CCF) YoungScientists.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

2124 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 9, SEPTEMBER 2020

https://nvlabs.github.io/moderngpu/segreduce.html
https://nvlabs.github.io/moderngpu/segsort.html
https://github.com/dmlc/experimental-lda

CURE: A High-Performance, Low-Power,
and Reliable Network-on-Chip Design

Using Reinforcement Learning
KeWang , Student Member, IEEE and Ahmed Louri, Fellow, IEEE

Abstract—We propose CURE, a deep reinforcement learning (DRL)-based NoC design framework that simultaneously reduces

network latency, improves energy-efficiency, and tolerates transient errors and permanent faults. CURE has several architectural

innovations and a DRL-based hardware controller to manage design complexity and optimize trade-offs. First, in CURE, we propose

reversible multi-function adaptive channels (RMCs) to reduce NoC power consumption and network latency. Second, we implement a

new fault-secure adaptive error correction hardware in each router to enhance reliability for both transient errors and permanent faults.

Third, we propose a router power-gating and bypass design that powers off NoC components to reduce power and extend chip

lifespan. Further, for the complex dynamic interactions of these techniques, we propose using DRL to train a proactive control policy to

provide improved fault-tolerance, reduced power consumption, and improved performance. Simulation using the PARSEC benchmark

shows that CURE reduces end-to-end packet latency by 39 percent, improves energy efficiency by 92 percent, and lowers static and

dynamic power consumption by 24 and 38 percent, respectively, over conventional solutions. Using mean-time-to-failure, we show that

CURE is 7.7�more reliable than the conventional NoC design.

Index Terms—Computer architecture, network-on-chip(NoC), reliability, deep reinforcement learning

Ç

1 INTRODUCTION

NETWORK-ON-CHIPS (NoCs) [1], [2] have emerged as the
standard interconnect solutions for connecting multi-

ple cores, memory modules, and other hardware compo-
nents. With continuous aggressive technology scaling, the
reliability issue of NoCs becomes considerably more pro-
nounced because the transistors and wires in NoCs are
becoming increasingly vulnerable to faults, which are pre-
dominantly classified as permanent faults (induced by
hardware aging) and transient errors (caused by runtime
variations, overheated hardware, transistor delays, etc.).

A significant amount of work has been proposed to
enhance the robustness of NoC [3], [4], [5], [6], [7], [8], [9],
[10]. Unfortunately, these existing fault-tolerant methodolo-
gies have some critical defects. First, these techniques are
limited, because they only focus on either faults within
routers (at the gate-level) [3], [4] or faults that occur on
inter-router links (at the link-level) [6], [7], [8], [9], [10]. Sec-
ond, these conventional error-handling techniques can be
expensive: SHIELD [3] and Vicis [4] duplicate the logic cir-
cuitry in routing pipeline stages or use redundant input
ports, which consume massive chip area, while other re-
transmission-based fault-handling schemes, such as [5] and

[6], generally incur substantial power consumption and pro-
hibitive latency.

Deploying power-saving and performance-enhancing
techniques to compensate the cost and performance degrada-
tion caused by fault-tolerant methodologies is indispensable
yet extremely complex. Different optimization techniques,
when being used simultaneously, can conflict and offset each
other’s desired goals, which presents various design trade-
offs. For example, channel buffers [7], [11], [12] replace the
power-consuming router buffers with link storage to save
power, but result in performance loss due to the limited
throughput of link storage. Power-gating techniques [13],
[14], [15] are proposed to take advantage of idle router periods
to save power; however, they incur prohibitive wake-up
latency. Dynamic voltage and frequency scaling [13], [16]
intends to balance power savings and network throughput,
but it can lead to increased transient faults [17]. Due to the
explosion and complexity of the design space, we intend to
use machine learning techniques to optimize the dynamic
interactions of different techniques and automatically learn
an optimal control policy to address the challenges of simulta-
neously decreasing power consumption, increasing perfor-
mance, and improving reliability.

In this paper, we propose CURE, a learning-based NoC
design framework, that handles permanent and transient
faults at both the gate-level and link-level in a high-perfor-
mance, low-power-consumption manner. CURE uniquely
utilizes a per-router deep reinforcement learning (DRL)-
based [18], [19], [20] control policy to explore the dynamic
interactions among NoC components and system-level
performance metrics as well as optimizing the trade-offs

� The authors are with the Department of Electrical and Computer Engineer-
ing, George Washington University, Washington, DC 20052.
E-mail: {cory, louri}@gwu.edu.

Manuscript received 16 July 2019; revised 18 Dec. 2019; accepted 4 Apr. 2020.
Date of publication 8 Apr. 2020; date of current version 1 May 2020.
(Corresponding authors: Ke Wang.)
Recommended for acceptance by M. Guo.
Digital Object Identifier no. 10.1109/TPDS.2020.2986297

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 9, SEPTEMBER 2020 2125

1045-9219� 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht_tps://www.ieee.org/publications/rights/index.html for more information.

https://orcid.org/0000-0001-7189-9293
https://orcid.org/0000-0001-7189-9293
https://orcid.org/0000-0001-7189-9293
https://orcid.org/0000-0001-7189-9293
https://orcid.org/0000-0001-7189-9293
mailto:cory@gwu.edu
mailto:louri@gwu.edu

at runtime. The major contributions of this paper are as
follows:

� Improved Inter-Router Channel Design: We improve
our previous proposed channel buffers [8] by design-
ing reversible multi-function adaptive channel
(RMC) buffers. RMC buffers have three basic func-
tions: (1) forward/backward regular repeaters for
flit propagation, (2) forward/backward buffers for
link storage, and (3) forward/backward re-transmis-
sion buffers for handling faults. RMC is beneficial in
several ways. First, with the additional storage avail-
able on the inter-router channel, dynamic power
consumption for on-chip storage is reduced at high
network loads without any performance degrada-
tion. Second, RMC provides flexibility for improving
reliability at the link-level via re-transmission buffers
and reversing the propagation direction to avoid
faulty links. Third, the reversibility of RMC enhances
performance by allowing the NoC to dynamically
adapt to traffic because it provides extra link band-
width in a specific direction at high network loads.
Additionally, we utilize the bypass route proposed
in [8], for the purpose of enhancing reliability, to
retain NoC connectivity when permanent faults
occur on RMCs.

� Robust Router Microarchitecture Design: We signifi-
cantly improve the NoC robustness for both tran-
sient errors and permanent faults. First, we propose
per-router self-diagnosis adaptive error control
hardware to detect/correct faults at the link-level.
The proposed error correction hardware adapts to
the error level of each port and dynamically deploys
the most efficient error detection/correction and flit
re-transmission schemes with minimized power and
latency overheads. Additionally, a low-cost, fault-
vulnerable detector is implemented inside the error
control hardware to detect malfunctions of the error
control hardware itself. Second, we modify the cir-
cuitry of the router to mitigate transient errors and

permanent faults that occur in the routing pipeline
stages at the gate-level. Additionally, we propose a
power-gating scheme that dynamically powers off
NoC components (router buffers, crossbar, error con-
trol hardware, etc.) when needed to achieve power
savings and mitigate aging effects.

� DRL-Based Control Policy Design: We propose a set of
unique operation modes for each router with a DRL-
based control policy to handle the dynamic interactions
and optimize the trade-offs. The goal of dynamically uti-
lizing different operation modes is to achieve improved
performance, maximized power savings, and enhanced
reliability. At runtime, per-router DRL agents observe
and learn from the entire NoC environment and auto-
matically evolve optimal per-router control policies that
select the optimal operationmodes at any given time.

We evaluate the performance of the proposed CURE
architecture using a modified Booksim2 [21] simulator with
PARSEC benchmarks on an 8 � 8 2D mesh architecture. We
show that the proposed CURE provides significant power
savings, enhanced reliability, higher performance, and lower
area overhead compared to multiple state-of-the-art NoC
designs with power-saving and fault-tolerant mechanisms.

2 CURE MICROARCHITECTURE

In this section, we demonstrate the architectural innova-
tions of the proposed framework. The overall microarchi-
tecture of the proposed design is shown in Fig. 1. The
proposed design consists of inter-router links based on
reversible multi-function channels (RMCs), a fault-tolerant
router design, dynamic fault-secure error correction hard-
ware, and a router bypass route for power savings and
stress management. Additionally, a DRL-based controller
is located in each router to handle the dynamic interactions
and optimize the trade-offs. The implementation of RMCs
is described in Section 2.1. The fault-tolerant router design
is presented in Section 2.2. The adaptive error correction
(ECC) hardware is presented in Section 2.3, and the bypass
route is discussed in Section 2.4.

Fig. 1. CURE architecture design. CURE consists of (a) a reversible multi-function adaptive channel (RMC) between adjacent routers, (b) a new fault-
tolerant router design with modified VA & SA & ST (crossbar) and adaptive error detection/correction hardware, (c) a router bypass route, and (d) a
reinforcement learning (DRL)-based control policy.

2126 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 9, SEPTEMBER 2020

2.1 Reversible Multi-Function Channels (RMCs)

Although previous research [7], [11], [12] has shown that the
excessive power consumption of router buffers can be
reduced by moving storage to inter-router links or channels,
the performance loss has not been thoroughly considered. In
this paper, we borrow the idea of reversible links in [7] and
extend the multi-function adaptive channel (MFAC) buffers
in [8] to reversible multi-function adaptive channel buffers
(RMC buffers), with the objective of improving network per-
formance. With the newly designed channel architecture,
RMC storage, links, and router storage are dynamically allo-
cated according to traffic patterns to reduce power consump-
tion. As shown in Fig. 2, each RMC buffer consists of an
inverter and two tri-state transistors to enable store/propa-
gation and four transmission control gates to reverse the link
direction. The reversibility of RMC allows the links to adapt
to different traffic loads for enhanced network throughput
and the wear-out on different links for enhanced reliability.

Each RMC between two adjacent routers has four physical
links, and the channel buffers are evenly allocated on
those links.

Next, we use an RMC controller to dynamically and
independently configure the transmission/buffer functions
of the physical links to perform multiple RMC functions, as
shown in Fig. 3. As described in detail in Section 2.1.1,
RMCs can function as (1) forward/backward transmission
repeaters, (2) forward/backward link storage, and (3) for-
ward/backward re-transmission buffers. The dynamic
selection of RMC functionalities is explained in Section 3.
Because our design may lead to a latency penalty (due to
the control overhead of the RMC buffers) and potential con-
gestion (due to the head-of-line blocking of router buffers),
we use dynamic router buffer allocation to maximize net-
work throughput, as detailed in Section 2.1.2.

2.1.1 RMC Buffer Functionalities

Previous designs [8], [12] show that tri-state transistors can be
used for propagating or storing flits. Fig. 2 shows the proposed
RMC buffers based on those tri-state transistors. The proposed
RMC between two adjacent routers consists of four physical
links, with four buffer stages per link. Each physical link can
be used for either storage or transmission as regular repeaters,
in both directions, controlled by the additional four transmis-
sion gates. The direction and functionality of each RMC link
are configured by the added RMC controller. The RMC con-
troller first uses the a single-bit reversal (rev and rev’) signal to
enable/disable the four transmission gates. In this way, the
link can be configured in a specific direction. For example,
when the rev signal is high, the RMC buffer will store/propa-
gate flits forward. After configuring the direction, the RMC
controller will send a function selection signal along with the
1-bit congestion signal from the downstream router to enable
one of the functions of the RMC buffer. The RMC buffer can
implement three basic functions in both directions, namely,
link storage, transmission repeaters, and re-transmission buf-
fers, which are illustrated in Fig. 3 and discussed below.

(1) Forward/Backward Transmission Repeater (Fig. 3a): In
this case, the RMC buffer links are configured as repeaters.
When the RMC controller is set to forward the congestion
signal and the 1-bit congestion signal is low, the transistors
connected to GND and Vdd are enabled, allowing the RMC
to act as a transmission channel.

Fig. 2. Proposed reversible multi-function adaptive channel (RMC). Each
RMC consists of four physical links with four buffer stages per link.

Fig. 3. Multi-function adaptive channel (RMC) buffers assume three different functions: (a) forward/backward regular repeaters for flit transmission,
(b) forward/backward link buffers for storage on the link itself, and (c) forward/backward re-transmission buffers to store a copy of error-free flit for
fault-tolerance.

WANG AND LOURI: CURE: A HIGH-PERFORMANCE, LOW-POWER, AND RELIABLE NETWORK-ON-CHIP DESIGN USING... 2127

(2) Forward/Backward Link Storage (Fig. 3b): In this case, the
RMC buffer links are configured as link storage. When the
RMC controller is set to forward the congestion signal and
the 1-bit congestion signal is high, the transistors connected
to GND and Vdd are disabled. Flits are then buffered in the
transistors’ capacitance.

(3) Forward/Backward Re-transmission Buffer (Fig. 3c): This
functionality can only be activated when at least two physical
RMC links are in the same direction. In this case, we use one of
the RMCbuffer links to store flits for re-transmission purposes,
whereas all other RMC buffer links are used for transmission.
In conventional re-transmission-based error control design, a
copy of the transmittedflit is stored in the local re-transmission
buffer (in the upstream router) until it receives an acknowledg-
ment (ACK) message back from the downstream router. The
implementation of local re-transmission buffers can lead to
excessive power and area overhead, especially when these re-
transmission buffers are underutilized in low-error scenarios.
Therefore, replacing the traditional in-router re-transmission
buffers with RMC buffers is beneficial because the original flit
will only be stored when needed (under higher error rates).
Under this condition, the RMC controller will send the same
packets/flits to both RMC buffer links. The RMC controller
configures one of the RMC buffer links for storage (by apply-
ing a ”hold” signal) and the other RMC buffer links for for-
warding the flit (regular transmission). Upon receiving a
NACK signal, the RMC controller releases the flit for re-trans-
mission. If an ACK signal is received, the flit is discarded
because the original transmission is error-free.

2.1.2 RMC Buffer Allocation and Flow Control

In CURE, to ensure connectivity in all directions, at least one
of the four physical links in each RMC is allocated to each
direction. For instance, as shown in Fig. 2, the top link is
always facing -X, while the bottom link is facing +X. How-
ever, the middle links can be dynamically configured to
face either direction. Therefore, the RMC has three different
configurations (with the top link always facing -X, and the
bottom link always facing +X):(1) the middle links are facing
-X and +X, (2) both the middle links are facing -X, and (3)
both the middle links are facing +X. For the ease of explana-
tion, we name these three configurations RMC2:2, RMC3:1,
and RMC1:3, according to the link number of each direction.

As mentioned above, determining which direction to
allocate the RMC links is critical. Network traffic is mea-
sured using link utilization and buffer utilization values
monitored by the corresponding router. The RMC control-
ler analyzes the network throughput in each direction,
using the number of propagated packets, and calculates
the ratio of these two throughput numbers. The RMC con-
troller will allocate the RMC links with the configuration
that is nearest to the ratio. For example, if the ratio of the
-X traversal to the +X traversal is 2.6, the RMC3:1 configura-
tion will be utilized.

After allocating the direction of RMC links, the RMC buf-
fers will be allocated using a unified buffer state table (BST),
as shown in Fig. 4. The proposed BST is router-associated
and shared by all the input ports within the router and
remains accessible even if the router is power-gated (power-
gating information is recorded in the yellow and orange

entries shown in Fig. 4). The proposed BST is a modified ver-
sion of the conventional virtual channel (VC) state table. The
conventional VC table consists of the following information,
or entries: the VC identifier (VC), read pointer (RP), write
pointer (WP), allocated output port (OP), output VC (OVC),
status (Stat), and credit count (CR). In the conventional VC
state table, the header flit carries the packet information for
route computation (RC) and VC allocation. The VC state
table allocates a free VC slot to the header flit and records the
VC information (VCID) and output information (output VC
and output port). The body flits of the packet simply follow
the VCID to find the correct output port from the VC state
table. Thus, the packet is routed correctly.

In CURE, we modify the VC state table and implement
BST to support RMC channel buffers and record routing
information when the router is power-gated. Compared to
input-port-associated VC state tables, the proposed BST is
router-associated and shared by all input ports within the
router. Other than the entries of the conventional VC state
table, the proposed BST also consists of additional entries for
allocating channel buffers: input port identifier (Port) that
indicates the input port of the incoming flit, downstream
router status (DRS) that indicates if the downstream router is
power-gated, a channel buffer pointer (CBP) and channel
buffer credit (CBC) that indicate the occupancy status of the
associated RMC buffers. We also create two entries, OPX
and OPY, to replace the conventional output port entry to
support adaptive XY/YX routing. To enable BST functioning
when the router is power-gated, we consider a separate sup-
ply voltage that is not powered-off for BST.

The flow control is simple. While the router is powered
on, the body flits simply follow the VC and output port
information carried by the header flit using the BST. Simi-
larly, when the router is power-gated, the BST also records
the VC and OP information of the header flit. Thus, the
body flits can be routed to the associated output port by
looking up the information. When the flit leaves the bypass
switch, a credit is sent back to its upstream router for updat-
ing the credit information. This guarantees that the flow
control operates normally, irrespective of whether the
router is powered on or off. The BST is powered by a sepa-
rate voltage supply. Additionally, the congestion control
block monitors and updates the BST by recording all the
available router buffer and RMC buffer slots. If all the router
buffer slots and RMC buffer slots of an input direction are
occupied, a congestion signal will be triggered.

Fig. 4. Proposed unified buffer state table (BST). The green arrows indi-
cate buffer slot allocation and credit signals by BST, while congestion
signals are shown with red arrows.

2128 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 9, SEPTEMBER 2020

To further balance traffic and utilize RMC resources, we
propose an adaptive XY/YX routing algorithm to mitigate
traffic in high-intensity ports/links to underutilized ports/
links after RMC is configured. This can provide more routing
options when flits compete for the same output port. At the
RC stage, for a packet from the local injection port, the RCunit
calculates the output ports out of both the XY and YX routes
and stores the results in the corresponding VC state table
entry. For a packet fromother input ports, the routing identifi-
cation bit in its head flit decides which routing computation
unit is used. Because XY and YX routes can be calculated
simultaneously with symmetric logic, the proposed RC unit
does not introduce extra delays in the RC stage. The VC allo-
cation stage utilizes the unified BST. All VC states are stored
in the unified BST. The OP entry is extended to two parts: the
output port for XY routing (OPX) and the output port for YX
routing (OPY). For a packet newly injected from the injection
port of the current router, the information of the output ports
of both XY and YX routing is useful in the VA stage. For a
packet just passing by the current router, the routing algo-
rithm has already been determined; thus, only one of two out-
put ports is valid. The other output port will be ignored based
on the additional routing identification bit in the head flit. The
proposed routing scheme is deadlock-free.

Note that in the 4-pipeline-stage router, the arbitration
logic for VA/SA stages dominates the critical path and
determines the minimum clock period. Using the Synopsys
Design Compiler, we determined the critical delay of VA/
SA to be 0.318 nsec (VA)/0.386 nsec (SA) for conventional
routers and 0.246 nsec (VA)/0.453 nsec (SA) for CURE. Both
of the critical delays are fulfilled within 0.5nsec clock (i.e.,
2.0 GHz clock frequency).

2.2 Fault-Tolerant Router Design

A typical NoC router consists of input/output ports, buf-
fers, routing logic, and a crossbar that connects the input
ports to output ports for packet routing. The conventional
router has four pipeline stages: routing computation stage,
virtual channel allocation stage (VA), switch allocation stage
(SA), and switch traversing (ST) , which is also known as the
crossbar stage. Permanent faults occasionally occur in the
last three stages if the corresponding hardware (i.e., arbiter,
switch, link, and crossbar) is faulty [3]. In this paper, we
propose a new router design that can tolerate permanent
faults in the VA, SA, and ST (crossbar) pipeline stages.

VA and SA Stages. The CURE architecture uses the uni-
fied BST to allocate VC and switches. Conventional VA has
two stages. In the first stage, each input VC that has a head

flit arbitrates for an empty VC at the downstream router
using the RC results. In the second stage, head flits across
different input VCs that have been allocated the same vir-
tual channel in the downstream router compete with each
other. Similar to the VA stage, the SA stage also has two
stages: the first stage decides which VC of an input port can
propagate its flit to the crossbar stage, while the second
stage resolves the competition between VCs of different
input ports trying to access the same output port. Each of
these stages is composed of a set of arbiters associated with
a specific VC. Permanent faults may occur when any of the
arbiters are faulty.

In this paper, several simple MUXes/DEMUXes are
added to the conventional VA and SA stages to allow the
router to bypass the faulty arbiter and borrow the unoccu-
pied arbiter to perform VC and switch allocation. We modi-
fied the SHIELD [3] architecture to fit the proposed CURE
using RMC buffers and unified BST. The proposed architec-
ture is shown in Fig. 5. As shown in Fig. 5, in the VA and
SA stages, arbiters from the virtual channels of the same
input port can be shared.

ST (Crossbar) Stage. A crossbar is considered faulty if any
of the MUXes/DEMUXes located in the crossbar are faulty
and the packet fails to be forwarded to the output port. To
overcome such faults, additional MUXes and DEMUXes are
added to each output port to create a backup flit ejection
path. The modified crossbar is shown in Fig. 5c. The cross-
bar is fault-free as long as either the original path or the
backup path is not faulty.

2.3 Fault-Secure Adaptive ECC Hardware Design

Conventional static error correction hardware is either not
power efficient or not powerful enough to handle transient
faults: lightweight error control schemes (e.g., end-to-end
CRC) can lead to excessive re-transmission traffic at high
error rates, and powerful error correction schemes (e.g.,
double-error correction triple-error detection (DECTED)) are
power consuming. We use three existing static error control
schemes, namely end-to-end CRC, per-hop SECDED, and
per-hop DECTED, to evaluate the trade-offs between NoC
performance metrics of different static error mitigation tech-
niques. The evaluation result is shown in Fig. 6. As shown
in Fig. 6, for low error levels, SECDED and DECTED both
negatively impact system performance due to their encod-
ing and decoding overheads. However, as the error level
increases, it is beneficial to deploy SECDED and DECTED
to mitigate re-transmission packets. Therefore, there is a
strong need for a dynamic error control hardware that can
adapt to different error levels and apply the most efficient
error mitigation technique at runtime. To this end, we pro-
pose a per-router-based adaptive error control hardware to

Fig. 5. Proposed fault-tolerant router.

Fig. 6. Trade-offs of different static error control schemes.

WANG AND LOURI: CURE: A HIGH-PERFORMANCE, LOW-POWER, AND RELIABLE NETWORK-ON-CHIP DESIGN USING... 2129

mitigate soft errors in RMC links for balanced NoC power,
performance, and reliability. Additionally, since transistors
are less reliable with aggressive technology scaling, the com-
binational logic of ECC hardware is also vulnerable to
faults. Thus, we also enhance the router with self-diagnosis
function to ensure that the error control circuitries (i.e., ECC
encoder and decoder) are fault-secure.

The proposed adaptive error correction hardware is
shown in Fig. 7. The proposed error control hardware can
be configured as end-to-end CRC, per-hop SECDED, and
per-hop DECTED. At runtime, the ECC hardware dynami-
cally deploys the most appropriate error control scheme
guided by the DRL-based control policy discussed in
Section 4. We reinforce the fault-prone ECC hardware
design by proposing a self-diagnosis ECC fault detector to
achieve fault-tolerance in both the communication channels
and the ECC circuitry. The proposed self-diagnosis detector
can verify the correctness of the ECC hardware operations
using low-density parity-check (LDPC) codes [22]. As
shown in Figs. 7a and 7b, each ECC encoder, decoder, and
corrector is assigned to an ECC fault detector. The detector
applies LDPC codes to each syndrome vector (the 9-bit
Hamming code C0 to C8) from the outputs of different ECC
hardware. The circuitry details of the proposed ECC fault
detector are shown in Fig. 7c. The last OR gate has 12 inputs.
The first 9 inputs are the required LDPC input. Because
LDPC codes are proven to detect all the error combinations
in the 9-bit syndrome vector [23], the proposed detector can
detect malfunctions in the ECC hardware due to transient
errors. To enhance the tolerance of the ECC hardware to
permanent faults, we uniquely add three more inputs to the
last OR gate of the error detector. These three bits can indi-
cate the location of the faulty bit in the 9-bit Hamming code.
If an error occurs in the same bit repeatedly, the correspond-
ing gates in the ECC hardware will be marked as faulty, and

the specific faulty gate will be power-gated, while the bit-
level operations will be performed by the other underutil-
ized gates (e.g., the XOR gates for DECTED). Additionally,
note that the proposed ECC fault detectors are only acti-
vated when the SECDED/DECTED scheme is enabled.

2.4 Router Bypass Route Design

In this paper, we modify the stress-relaxing bypass technique
originally proposed in [8], which proactively power-gates and
bypasses the NoC router to save power and prevent overheat-
ing by adding an extra escape link. All of the inter-router
escape links together construct a bypass-ring network to retain
connectivity when there are a significant number of failures.
The bypass-ring network fully connects each router in the
NoC. An example of a chip-level bypass ring in a 4� 4 2D
mesh is demonstrated with red arrows on the left-hand side in
Fig. 8. When all the possible links are faulty in one direction
(i.e., all the corresponding RMCs are faulty), the escape link
will be activated. Each escape link has one single-flit latch as
the link in the stress-relaxing bypass route. The incoming flit
will be stored at that single-flit latch and propagated using a
round robin scheme. In this way, packets can pass through the
faulty router and proceed to the next router. In addition, the
proposed design continues to utilize the BST for routing infor-
mation while the router is bypassed. This retains the connec-
tivity of that direction and eliminates resource starvation to
prevent deadlock. In this way, the new bypass route with
escape links can further enhance reliability in the presence of
faults. Additionally, to reduce the area overhead of the cross-
router bypass-ring network, the ring network does not support
bypassing in all directions, which means that each network
interface can accept packets from only one specific upstream
router and forward packets to specific downstream router.

3 PROACTIVE OPERATION MODES

In this section, we propose ten proactive operation modes (1
power-gating mode and 9 fault-tolerant modes) for CURE
routers. Each operation mode has various configurations of
RMC, adaptive error control hardware, and power-gating
strategies. Each CURE router occasionally and indepen-
dently selects and deploys an operation mode proactively
using a DRL-based control policy (described in Section 4).
The operation modes are detailed below.

� Operation Mode 0 - Power-Gating Mode: In this mode,
the router is power-gated, while the bypass route is
enabled. The RMC channel is configured as 2:2 for

Fig. 7. Proposed fault-secure adaptive error control hardware. (a) Fault-
secure adaptive error control hardware, including encoders located in
the router’s output port and decoders located in the router’s input port.
SECDED is active when logic circuits in green and blue are enabled,
DECTED is active when logic circuits in green, orange, and blue are
enabled. The red arrow shows flits with CRC enabled. (b)Proposed ECC
fault detector. The green OR gates detect malfunctions in ECC hard-
ware, while the yellow OR gates indicate if a permanent fault occurs.

Fig. 8. Microarchitecture of a bypass route in each router. An example of
the constructed bypass ring is shown on the left side.

2130 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 9, SEPTEMBER 2020

both directions, and the RMC buffers are used to store
the incoming flits. This operation mode is activated
either when the router is underutilized or when a high
risk of overheating is predicted. This mode mitigates
permanent faults and saves static power.

� Operation Modes 1, 2, and 3 - CRC-Only Mode: Opera-
tion modes 1, 2 , and 3 have different RMC direc-
tion configurations: 2:2 for mode 1, 1:3 for mode 2,
and 3:1 for mode 3. However, these operation
modes share the same error control configurations.
In these modes, the RMCs are configured as storage
buffers, and the entire adaptive ECC hardware is
power-gated, so that only CRC is enabled. These
operation modes are beneficial to save power and
eliminate ECC computational overhead when the
error level is low.

� Operation Modes 4, 5, and 6 - Per-hop SECDED Mode:
In these modes, the router’s adaptive ECC hardware
is partially activated to perform per-hop SECDED.
This configuration is beneficial when SECDED can
handle most of the faults. Otherwise, it will either
lead to unnecessary power and latency penalties
(when the error level is low) or excessive re-trans-
missions (when errors cannot be corrected by
SECDED). The RMC buffers are configured as re-
transmission buffers. Similar to operation modes 1,
2, and 3, the RMC direction configurations are set to
2:2 for mode 4, 1:3 for mode 5, and 3:1 for mode 6.

� Operation Modes 7, 8, and 9 - Per-hop DECTED Mode:
In these modes, the router activates the entire adap-
tive ECC hardware to enable DECTED. This is the
situation where the flits are more likely to contain
errors of 2 or more bits. The RMC buffers are config-
ured as re-transmission buffers. Similarly, the RMC
direction configurations are set to: 2:2 for mode 7, 1:3
for mode 8, and 3:1 for mode 9.

The dynamic selection of operation modes is performed
by each router independently in a sequence of discrete time
steps using the DRL-based control policy presented in
Section 4. At each time step, each router decides which
operation mode to apply for the following time step and
passes the decision to the downstream router. In this way,
the downstream router will be informed to configure the
ECC decoder located in the corresponding input port to
apply the correct ECC coding, such that it is synchronized
with the ECC coding of the upstream router’s encoder at
output port at the next time step. As demonstrated, the pro-
posed dynamic operation modes allow individual routers
to utilize the most suitable technique at runtime, resulting
in greater benefits for the entire network.

4 PROPOSED DEEP REINFORCEMENT LEARNING
(DRL)-BASED CONTROL POLICY

We present a new per-router deep reinforcement learning-
based control policy to dynamically select operation modes
that can lead to the maximum system-level performance.
Reinforcement learning is an online learning algorithm that
learns and optimizes the behavior of autonomous RL
agents [20](e.g., routers) from the dynamic interactions
between the agents and the environment (e.g., NoC system)

at runtime. Specifically, in CURE, each router (agent), acts
as a learner and a decision-maker and interacts with the
NoC system (environment), in a sequence of discrete time
steps t = 0, 1, 2, 3, and so on. At time step t, the router
observes the current state by extracting runtime system
attributes(e.g., buffer utilization, temperature, etc.), takes an
action by selecting one of the proposed operation modes
and applies it at the next step t0 ¼ tþ 1. Next, at time step t
+1, upon taking the action selected in the previous step, the
NoC attributes change and result in a new state s0. The new
state is fed back to the agent, and the time step is incre-
mented. In addition to observing the new state, the agent
also receives a reward r. A policy p maps states to actions,
specifying how to choose actions given the state of the envi-
ronment to maximize the cumulative reward. For the router,
the cumulative reward will be a function of energy, perfor-
mance, and reliability over the entire sequence of actions.
An RL algorithm continually evolves the policy based on
the router’s past interactions with the NoC system.

Design Space and Action-Value Function. In CURE, the state
space S is defined as a vector of several NoC system metrics,
or features, listed in Fig. 9. These features contain input-
related metrics (attributes 1 to 10), output-related metrics
(attributes 11 to 15), RMC related metrics (attributes 16 to
19), and local operation temperature (attribute 20). At each
time step, the agent takes an action according to the moni-
tored state. The action space A = fa0; a1; a2; . . . ; a9g contains
the ten operation modes from which the routers can select.

The goal of the agent is to optimize its long-term return,
which is represented by the discounted sum of future
rewards. The return at time step t is defined as

Rt ¼ rtþ1 þ grtþ2 þ g2rtþ3 þ . . . : (1)

The variable g (where 0� g �1) is a discount rate, which
determines the impact of future rewards on the total return:
as g approaches 1, the agent becomes less near-sighted by
giving more weight to future rewards.

In this paper, with the goal of simultaneously improve
performance, energy-efficiency, and reliability, we design
the reward function for router i at time step t as

Fig. 9. Router attributes selected in the state vector.

WANG AND LOURI: CURE: A HIGH-PERFORMANCE, LOW-POWER, AND RELIABLE NETWORK-ON-CHIP DESIGN USING... 2131

ri;t ¼ �log aðLatencyi;tÞ � log bðPoweri;tÞ � log �ðAgingi;tÞ:
(2)

The Latency refers to the average end-to-end latency of
the specific router i, Power contains both static and dynamic
power consumption. Additionally, the aging factor is calcu-
lated using the aging model, which is described in detail in
Section 5.1. The a, b, and � is used to emphasize the impor-
tance of each individual desired goal. In this paper, we set
all three parameters, a, b, and �, to 1.

Deep Q-Learning Approach. In DRL, a model of the envi-
ronment, specified through a probability distribution
pðstþ1; rtþ1jst; atÞ, characterizes how the state of the envi-
ronment changes as a result of an agent action, and the
reward that the agent receives after each action. Corre-
spondingly, DRL agents compute an action-value func-
tion Qpðs; aÞ that estimates the return that they are
expected to receive in this model of the environment if
they start in state s, take action a, and follow the policy
p for the remaining actions.

To find the optimal Q-value function Q*(s, a) that maxi-
mizes the expected return, we use the tabular Q-learning
algorithm [18]. Q-values are initialized with zeros for all
possible (s, a) pairs at the beginning. At each time step, the
Q-learning algorithm chooses actions based on the current
Q such that, over many time steps, all actions are taken in
all states. After taking an action a and observing the reward
r and new state s0, the action-value entry Q(s, a) is changed
using the following temporal difference rule:

Qðs; aÞ ¼ ð1� aÞQðs; aÞ þ a½rþ g maxa0Qðs0; a0Þ�: (3)

The learning rate a can be reduced over time and deter-
mines how well Q-learning will converge. It can be shown
that for appropriate values of a, Q-learning converges to
the optimal Q-value function Q* and its corresponding
optimal policy p� [18]. To explore unvisited regions of the
state-action space, an �-greedy policy is also applied to p�,
where agents also have a probability of � to select a ran-
dom action rather than always taking the action with the
maximum Q-value [24].

Note that we intentionally design a reward function with
a negative value to achieve a better high-level performance
of RL. Because the Q-values of all the visited state-action
pairs are negative and all the unvisited pairs have Q-values
equal to zero, the RL agent will always select unvisited
state-action pairs (zero is greater than any negative num-
ber). It allows the RL agents to explore the state-action pairs
as much and as fast as possible, which leads to shorter con-
vergence time for optimal decision making.

In conventional RL, the optimal policy p� is recorded in a
state-action mapping table called Q-table, where all Q-val-
ues are stored. As mentioned, each state vector consists of a
number of features. When the RL agent observes any new
state-action pair, it creates a new entry in the Q-table to
record its actions and associated Q-values. Although the
feature values are discretized into limited bins, the area
consumption for the Q-table is excessive. To address this
problem, we implement deep Q-learning by replacing the
state-action table with an offline-trained artificial neural net-
work (ANN) to reduce the hardware costs. The ANN

calculates the state-action value rather than storing the
entire state-action table in the router, thus eliminating the
storage space for state-action pairs.

In CURE, each ANN consists of 20 neurons at the input
layer, 30 neurons at the hidden layer, and 10 neurons at the
output layer. For training, we use a cycle-accurate network
simulator to simulate the dynamic interactions and the
online process of reinforcement learning. At this stage, Q-
values of different state-action pairs are explored using
real-world applications. All the visited state vectors and
their corresponding Q-values (calculated with the reward
function) are recorded as training sets for the ANN. Specifi-
cally, the attribute values of the state vector are ANN
inputs, and the Q-values are the desired outputs. During
each time step, similarly to updating the Q-value using
reward values in conventional RL, the ANN follows the Q-
value update rule and record DQ as the output error. Then,
it uses mini-batch gradient descent to back propagate this
error to the hidden layer to tune the weights. The training
time is not counted to the timing overhead of the proposed
NoC system. During the testing (or inference) phase, the
ANN monitors the attribute values and uses the input val-
ues and weights to calculate 10 Q-values. The action with
the highest Q-value will be selected.

The timing and area overheads of the proposed deep Q-
learning are discussed in Section 6.4.

The Working of the Proposed DRL-based Controller. Fig. 10
demonstrates the working of the DRL-based control logic
when running a benchmark. At each time step, the process
goes through several stages. In the first stage, the router
uses the feature values F1; F2; . . . ; F20 in the state vector s as
inputs of the ANN. In Fig. 10, we assume current state s
matches state sx in the mapping table. In the second stage,
the ANN calculates the Q-values of all possible state-action
pairs in the current state entry, and the router selects an
action a, which has the maximum Qðs; aÞ-value for the next
time step (we assume that a0 in Fig. 10 has the maximum Q-
value). Upon taking the action a, the NoC system transits to
a new state s’. In the last stage of the current time step, the

Fig. 10. Q-Learning process. For time step t, the action a0 with the maxi-
mum Q-value of current state sx is selected. The reward for action a0 will
be calculated after a0 impacts the NoC environment. The Q-value will be
updated following the Q-value updating rule. a is a learning rate , and g
is the discount rate.

2132 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 9, SEPTEMBER 2020

NoC system provides a reward r (defined in 2) to the router.
The reward will be used to update Qðs; aÞ. Each router will
repeat all of these stages at each time step.

The initialization of the per-router controller and the
state-action mapping table will be discussed in Section 5.2.

5 EVALUATION METHODOLOGY

In this section, we present the fault injection model used in
our experiments to inject timing errors into NoC, the simu-
lation setup, and the benchmarks that we use. Faults that
occur in the routing table and machine learning module are
beyond the scope of this paper.

5.1 Fault Injection Models

To quantify the reliability improvement of the proposed
designs for timing errors, we first create a transient error
injection model to realistically produce a probability of tim-
ing errors for each link. The proposed transient fault injec-
tion model is a combination of the existing VARIUS [25]
fault model and HotSpot [26] thermal model. At runtime,
first, HotSpot uses the values of router supply voltage, oper-
ation frequency, and link utilization to obtain router operat-
ing temperature at runtime. The temperature values are fed
into the VARIUS transient error model to generate the prob-
ability of timing errors (Re) for each transmitted bit. Using
Re, the probability of which n-bit flit is faulty can be calcu-
lated as follows:

Pfault ¼ 1� ð1�ReÞn: (4)

To assess the reliability improvement for permanent
faults, we utilize the permanent fault model proposed in
[8]. Specifically, we model and calculate the aging factor in
(2) by correlating the shift in the threshold voltage of the
transistor (DVth). The DVth is calculated using both DVth NBTI

given by [27], [28] and DVth HCI given by [29], [30].
We model the aging factor given in (2) as follows:

DVth ¼ DVth NBTI þ DVth HCI

Aging ¼ 1þ DVth
Vth0

� 100%

�
: (5)

Note that the aging factor is designed to have a value greater
than 1 such that it can be used in the reward function.

5.2 Simulation Setup

We evaluate our proposed architecture using a modified
version of the cycle-accurate network simulator Book-
sim2 [21]. We also use Netrace [31] to capture cycle-accurate
benchmark traces for the network simulator. Table 1 shows
the simulation setup.

As mentioned, DRL parameters (a; g, and �) and ANN
setups (e.g., neuron numbers) can impact the performance
of DRL [32], [33]. In this paper, we set a, g and � to 0.1, 0.9
and 0.05, respectively. The operation modes of all routers
are initialized to mode 1.

Workloads from PARSEC benchmarks [34] are tested. The
benchmarks from PARSEC are transformed into trace files
that contain trace format packet injection/ejection events and
offer runtime information (such as time, packet size, transmis-
sion source, destination, and event type). Because CURE is
the first NoC design framework that is fault-secure to both
link failure and router failure, it is difficult to find a single
state-of-the-art technology to compare with. Therefore, we
conduct two sets of experiments to evaluate the performance
of CURE in Section 6. In Section 6.1, we compare the perfor-
mance of the proposed RL framework to the performances of
the following state-of-the-art techniques: a static baseline
using SECDED, QORE [7], and IntelliNoC [8] while link fail-
ures are injected. In Section 6.2, we compare CURE with
SHIELD [3] and Vicis [4] while intra-router permanent faults
are injected. For the RL-based IntelliNoC and DRL-based
CURE, we train the per-router policy using a subset of PAR-
SEC (blk, dedup, fre, and swa). Then, we use the remaining
applications in PARSEC to test performance. The testing
phase for each benchmark lasts a full application execution
time. The control policy is dynamically updated by applying
the temporal difference rule (3) every 1,000 cycles.

6 EVALUATION RESULTS AND ANALYSIS

6.1 Performance Analysis With Faulty Links

In this subsection, system-level performance metrics are
evaluated when link failures are injected. Before runtime,
permanent faults are randomly inserted into a percentage of
links with a probability of 5 percent. At runtime, transient
errors are injected into the links using the error injection
model presented in Section 5. The evaluation results are pre-
sented below.

Execution Speed-up. The speed-up is obtained by calculat-
ing the ratio of the full application execution time of various
techniques (baseline, QORE, and IntelliNoC) to the execu-
tion time using the proposed CURE technique running dif-
ferent benchmarks. The speed-up comparison is shown in
Fig. 11. As shown in Fig. 11, CURE achieves the largest

TABLE 1
Simulation Environment Setup

� RB: router buffer, VC: virtual channel, and CB: channel buffer.

Fig. 11. Speed-up of full application execution time comparison, normal-
ized to the SECDED baseline (higher is better).

WANG AND LOURI: CURE: A HIGH-PERFORMANCE, LOW-POWER, AND RELIABLE NETWORK-ON-CHIP DESIGN USING... 2133

speed-up of all evaluated techniques. QORE achieves a
14 percent speed-up over the SECDED baseline since the
dual-direction links can improve the NoC throughput by
dynamically allocating the limited link bandwidth for unbal-
anced traffic. IntelliNoC results in an average speed-up of 18
percent due to the ability to reduce ECC overhead and re-
transmission traffic. However, in some benchmarks (i.e., fer
and vips), IntelliNoC achieves worse performance than
QORE. This is because IntelliNoC’s fixed-directionMFAC can
be the bottleneck when multiple link failures occur on the
same channel. However, because CURE does not have such
limitations, it successfully accelerates benchmark execution
by 27 percent.

Network Latency. We define network latency as the aver-
age end-to-end latency of all transmitted packets of the full
execution of each benchmark application. To measure the
end-to-end latency, first, when a packet is injected from the
source node, the injection time is recorded. Second, when
the packet reaches the destination node and accepted by the
destination node (after passing the error checking), the
packet acceptance time is also recorded. The end-to-end
latency for that packet is the time difference between injec-
tion time and acceptance time, which is recorded using the
number of clock cycles. Fig. 12 shows the normalized net-
work latency for different techniques. CURE achieves an
average of end-to-end latency reduction of 39 percent. Note
that QORE only achieves a 9 percent latency reduction over
the baseline due to the timing overhead of channel buffer
allocation and static error control scheme. Techniques with
RL-based policies (i.e., IntelliNoC and CURE) both achieve
latency reductions of over 30 percent, which implies that
dynamic proactive policy such as the RL-based policy can
minimize re-transmission and thus improve overall latency.

Energy-Efficiency.We define energy-efficiency as

Energy� E f ficiency ¼ ��
Pstatic þ Pdynamic

�� Texec

��1
:

(6)

Pstatic and Pdynamic are static and dynamic power consump-
tion, respectively. We first model the static power with Syn-
opsys Library Compiler for the designed NoC. Since
Synopsys cannot evaluate the dynamic power accurately for
different benchmark applications, we fed the static power
parameters captured by Synopsys to DSENT [35] power
model. During application execution, DSENT calculates the
average dynamic power by the number of buffer writes,
crossbar, and VA/SA activities within full application exe-
cution time. Texec is the benchmark execution time. Fig. 13
shows the energy-efficiency measurements for all techni-
ques studied and normalized to the SECDED baseline.
CURE improves energy-efficiency by 92 percent compared
to the baseline, while the energy-efficiency improvements
using QORE and IntelliNoC are 36 and 77 percent,
respectively.

Overall Static Power Consumption. Fig. 14 shows the over-
all static power consumption for the various techniques.
QORE reduces static power consumption by 11 percent due
to the elimination of router buffers. IntelliNoC achieves a
static power reduction of 27 percent thanks to its power-gat-
ing and bypass scheme. Similar to IntelliNoC, the use of
power-gating and bypass is beneficial in CURE. However,
due to the extra logic and circuitry in the modified ECC and
pipeline stages, the proposed CURE only achieves a static
power reduction of 24 percent.

Overall Dynamic Power Consumption.As discussed, dynamic
power consumption can be lowered by reducing the number
of router buffers and/or by mitigating faults and reducing the
number of re-transmissions. CURE, using RMC and dynamic
error control, is able to significantly reduce re-transmission
traffic. Consequently, CURE outperforms all other techniques
in reducing dynamic power consumption as shown in Fig. 15.

6.2 Performance Analysis With Intra-Router
Failures

In this subsection, permanent faults are injected into the
router circuit (including VA, SA, crossbar, and ECC hard-
ware). Before runtime, faults are randomly inserted into a

Fig. 12. Network latency comparison using average end-to-end latency,
normalized to the SECDED baseline (lower is better).

Fig. 13. Energy-efficiency comparison, normalized to the SECDED
baseline (higher is better).

Fig. 14. Overall static power consumption comparison, normalized to the
SECDED baseline (lower is better).

Fig. 15. Overall dynamic power consumption comparison, normalized to
the SECDED baseline (lower is better).

2134 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 9, SEPTEMBER 2020

percentage of the router components ranging from 5 to
15 percent. At runtime, transient faults are injected only to the
links using the proposed error injection model. The transient
fault-handling technique used by SHIELD and Vicis is static
SECDED, while CURE utilizes the proposed adaptive error
control hardware. The network latency and energy efficiency
of different techniques are evaluated, and the results are nor-
malized to the static SECDED baseline. Because the SECDED
baseline cannot tolerate router failures, the intra-router error
rate is set to 0 percent for the baseline.

Network Latency. Fig. 16 shows the normalized network
latency for different techniques at various error rates. The
proposed CURE framework achieves at least 30 percent net-
work latency reduction under 5, 10, and 15 percent router
failure rates. However, both of the other fault-tolerant tech-
niques incur excessive network latency.

Energy-Efficiency. Fig. 17 shows the normalized energy-
efficiency for different techniques. The energy-efficiency of
all the techniques tends to decrease as the error rate
increases. However, there are some exceptions to Vicis.
When the error rate exceeds 10 percent, Vicis re-configures
itself less often, which can significantly reduce execution
time. As shown in the figure, the proposed CURE frame-
work achieves the highest energy-efficiency among all the
other techniques. This result implies that the use of channel
buffers and adaptive error control hardware can substan-
tially reduce power and execution time.

6.3 Reliability Improvement Analysis

We use mean-time-to-failure (MTTF) to evaluate the reliabil-
ity of the proposed design for permanent faults [36], [37].
Fig. 18 shows the normalized MTTF comparison. As shown

in Fig. 18, the proposed CURE framework is 7.7� more
reliable than the baseline router which is unprotected from
permanent faults, while the highest normalized MTTF
value of other fault-tolerant designs is 4.6� (SHIELD). This
improvement is achieved thanks to the reduced operation
temperature by the RL-based control policy and the modi-
fied pipeline and ECC hardware in each router.

6.4 Overhead Analysis

We evaluated the area overhead of each technique with Syn-
opsys and 32 nm technology library with the supply voltage
set to 1.0 Volt, and clock frequency set to 2.0 GHz. The area
overhead is shown in Table 2.

As shown in this table, IntelliNoC, QORE, and CURE
consume less area than the baseline due to the use of link
storage. Due to the additional circuitry design, Vicis has the
largest area overhead. CURE and IntelliNoC incur addi-
tional area overheads thanks to the RL-based controlling
modules. The area overhead of the DRL-based controller

Fig. 16. Network latency comparison using average end-to-end latency, normalized to the SECDED baseline (lower is better). Each benchmark is
tested under 5, 10, and 15 percent permanent fault rates in router.

Fig. 17. Energy-efficiency comparison, normalized to the SECDED baseline (higher is better). Each benchmark is tested under 5, 10, and 15 percent
permanent fault rates in router.

Fig. 18. Mean-time-to-failure (MTTF) comparison, normalized to the
SECDED baseline (higher is better).

WANG AND LOURI: CURE: A HIGH-PERFORMANCE, LOW-POWER, AND RELIABLE NETWORK-ON-CHIP DESIGN USING... 2135

includes the area consumption of both ALUs (adder, multi-
plier, and Sigmoid function) and SRAM for calculating,
updating, and storing the ANN. The simulation shows that
the area overhead for ALUs and SRAM are 992.2mm2 and
838.6mm2, respectively. This implies 0.8 and 0.7 percent of
the area consumption of the baseline router. Therefore, the
area cost is reduced as compared to the 4 percent area over-
head of table-based RL in previous designs. Moreover,
CURE requires additional timing overhead for calculating
the Q-values using ANN. Using [38], it shows that at each
time step, the timing overhead of CURE is estimated to be 160
ns. Using the similar method as [39], this latency can be over-
lapped by a large time step. Specifically, we use two sets of
different intervals for monitoring the attributes and the con-
trolling to minimize the negative effect of this latency. The
two sets of intervals are offset by the ANN computation time,
which can pipeline the overhead effectively. By doing so, the
ANN control computing does not block either the monitoring
process or the controlling. Therefore, the use of ANNwill not
negatively impact the overall performance metrics. Addition-
ally, the timing overheads for the MFAC (IntelliNoC) and
RMC (CURE) configurations are both estimated around
45 to 50 cycles. Furthermore, The control logic of the proposed
DRL consumes an additional 0.26mw power, which implies 4
percent of the static power consumption of the baseline router.

6.5 Sensitivity Study

Impact of Input Data Size. In this test, we explore the impact of
different input data sizes on network latency and energy-
delay product (EDP), and the blackscholes application in the
PARSEC benchmark is used. Lower network latency and EDP
indicate better system performance. The evaluation result
illustrated in Fig. 19 shows that as input data size increases,
the performance metrics remain the same. This is because the
traffic patterns, network intensity, and workload allocations
for the same benchmark processing phase are the same, for
different data input sizes. However, by reducing the NoC size
to a 4� 4 mesh, which incurs a higher network intensity, the

proposed adaptive ECC hardware can achieve better network
performance, as compared to the static SECDED baseline.

Impact of Time Step Length. In this test, we varied the time
step t starting from 200 to 10,000 clock cycles. The evalua-
tion results using the blackscholes application are illus-
trated in Fig. 20a. As shown in Fig. 20a, a longer cycle time
(10K cycles) has a negative impact on performance due to
coarse-grain control. Meanwhile, aggressively reducing the
length of time steps (200 clock cycles) also leads to a degra-
dation in performance because the computational overhead
of DRL-based control policy will dominate performance.

Impact of Discount Rate g. Fig. 20b indicates the impact of
the discount rate g on network latency and EDP. The black-
scholes application is used in this test. As shown in Fig. 20b,
the network latency and EDP initially improve with larger g,
yet aggressively increasing g can also lead to Q-learning fail-
ing to converge, which negatively affects the system perfor-
mance. The best performance is achievedwhen g equals 0.9.

Impact of Exploration Probability �. Fig. 20c shows the
impact of � values on network latency and EDP, using the
blackscholes application. When � is 0, the router always
selects the initial mode most of the time. As � increases from
0 to 1, the router tends to explore new state-action pairs
more frequently. Further, when � equals 1, the router will
take actions entirely at random. As shown in Fig. 20c, the
best system performance is achieved when � equals 0.05.

Impact of the Hidden Layer Size of the ANN. Because the
number of neurons used in the hidden layer of the ANN can
affect the accuracy of calculating Qðs; aÞ, thereby impacting
the decision making of the DRL controller, we vary the size of

TABLE 2
Area Overhead Comparison (mm2Þ�

Fig. 19. Impact of different input data sizes and different NoC sizes.

Fig. 20. Impact of (a) time step length, (b)discount rate g, (c) exploration
probability �, and (d) hidden layer size of of DQL on network performance
metrics. Results are normalized to the baseline.

2136 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 9, SEPTEMBER 2020

the hidden layer to study its impact on calculation accuracy,
as shown in Fig. 20d. Fig. 20d shows that the calculation accu-
racy improves as the hidden layer size increases. To save area
consumption and reduce the timing overhead of the ANN,
we select the hidden layer of 30 neurons.

7 RELATED WORKS

There has been considerable work in improving the energy-
efficiency and reliability in NoCs. In the following, we
briefly highlight some of the directly relevant works.

Power-Saving Designs for NoCs. Because static power con-
sumption has become a substantial portion of overall net-
work power, power-gating (PG) techniques that power off
underutilized network components have been shown to be
effective for static power savings [14], [15], [40]. However,
conventional power-gating schemes for routers tend to sub-
stantially increase network latency due to a reduced num-
ber of active routers in the network and extra control
overhead in managing power-gating. Another approach
proposed for reducing network power is reducing router
buffers. Michelogiannakis and Dally [11] and Kodi et al. [7],
[12]have shown that eliminating router buffers is beneficial
for both static and dynamic power reduction. However,
simply replacing router buffers with channel buffers leads
to penalties in network congestion and latency [7], [11], [12].

Fault-Tolerant Designs for NoCs. In NoC, both transient and
permanent faults can manifest during transmission. CRC [6]
is a basic transient fault detection technique that is often used
for NoCs. Flits are encoded by a local CRC encoder in the
router before transmission, and are decoded by the destina-
tion CRC decoder to perform error detection. If the destina-
tion router detects errors, a re-transmission request is sent to
the source router to re-transmit the flit. To mitigate transient
faults, per-hop error correction codes (ECCs) are generally
deployed. SECDED is one of the most commonly used ECC
techniques in NoCs [4]. To handle permanent faults caused
by transistor aging [29], a number of techniques have been
proposed using load-balancing [7], circuitry redundancy [37],
and adaptive routing techniques [4] among others. Note
that most of the techniques are static in nature, with CRCs
or SECDEDs being deployed all the time, regardless of
whether faults are present. Reliability-enhancement mecha-
nisms based on static techniques have been shown to require
excessive power consumption, and longer delays, thereby
significantly degradingNoCperformance [17], [37], [41].

Learning-Enabled NoC Designs. Multiple machine learning
techniques have been introduced to balance design trade-
off or predict traffic in NoCs. These works target achieving
high power efficiency [8], [16], [24], [39], [42], [43], [44], [45],
and enable fault-tolerant design [5], [8], [45]. For example,
[44] discovers that the wake-up latency of PG and perfor-
mance degradation of using DVFS are the bottlenecks of
implementing PG and DVFS simultaneously. Hao et al. [44]
have shown that applying machine learning to handle the
dynamic trade-offs of DVFS and PG can achieve optimal
power savings. [45] introduces a proactive fault-tolerant
mechanism to optimize energy efficiency and performance
with reinforcement learning (RL). Further, [8] proposes
to use channel buffers to achieve higher power savings
in addition to [45]. We extend these existing works by

proposing link reversibility, adding hard error tolerance,
and using DRL to reduce control overhead.

8 CONCLUSION

In this paper,we proposeCURE, a learning-basedNoCdesign
that can simultaneously improve performance, energy-
efficiency, and reliability. CURE consists of reversible multi-
function adaptive channel, enhanced fault-tolerant router
circuitry, ten unique operation modes, and a DRL-based
dynamic control policy. With DRL, each router learns from
the NoC behavior and updates a control policy to select an
optimal operating mode at any given time. The experimental
results illustrate that CURE decreases network latency by
39 percent, improves energy efficiency by 92 percent over the
static SECDED baseline. Using the mean-time-to-failure
metric, we show that the proposed framework is 7.7� more
reliable than the baselineNoC architecture.

ACKNOWLEDGMENTS

This research was supported in part by NSF Grants
CCF-1420718, CCF1513606, CCF-1703013, CCF-1547034,
CCF-1547035, CCF-1540736, and CCF-1702980. The authors
would like to sincerely thank the anonymous reviewers for
their excellent feedback.

REFERENCES

[1] L. Benini and G. De Micheli, “Networks on chips: A new SoC
paradigm,” Computer, vol. 35, no. 1, pp. 70–78, 2002.

[2] W. J. Dally and B. Towles, “Route packets, not wires: On-chip inte-
connection networks,” in Proc. 38th Annu. Des. Autom. Conf., 2001,
pp. 684–689.

[3] P. Poluri and A. Louri, “Shield: A reliable network-on-chip router
architecture for chip multiprocessors,” IEEE Trans. Parallel Distrib.
Syst., vol. 27, no. 10, pp. 3058–3070, Oct. 2016.

[4] D. Fick, A. DeOrio, J. Hu, V. Bertacco, D. Blaauw, and D. Sylvester,
“Vicis: A reliable network for unreliable silicon,” in Proc. 46th ACM/
EDAC/IEEEAnnu. Des. Autom. Conf., 2009, pp. 812–817.

[5] D. DiTomaso, T. Boraten, A. Kodi, and A. Louri, “Dynamic error
mitigation in NoCs using intelligent prediction techniques,” in Proc.
49th Annu. IEEE/ACM Int. Symp.Microarchit., 2016, pp. 1–12.

[6] S. Lin and D. J. Costello, Error Control Coding, 2nd ed. NJ, USA:
Prentice Hall, 2004.

[7] D. DiTomaso, A. Kodi, and A. Louri, “QORE: A fault tolerant
network-on-chip architecture with power-efficient quad-function
channel (QFC) buffers,” in Proc. 20th Int. Symp. High Perform.
Comput. Archit., 2014, pp. 320–331.

[8] K. Wang, A. Louri, A. Karanth, and R. Bunescu, “IntelliNoC:
A holistic design framework for energy-efficient and reliable on-
chip communication for manycores,” in Proc. 46th Int. Symp.
Comput. Archit., 2019, pp. 589–600.

[9] K. Aisopos, A. DeOrio, L.-S. Peh, and V. Bertacco, “ARIADNE:
Agnostic reconfiguration in a disconnected network environment,”
in Proc. Int. Conf. Parallel Archit. Compilation Techn., 2011, pp. 298–309.

[10] J. Kim, C. Nicopoulos, D. Park, V. Narayanan, M. S. Yousif, and
C. R. Das, “A gracefully degrading and energy-efficient modular
router architecture for on-chip networks,” ACM SIGARCH Com-
put. Archit. News, vol. 34, no. 2, pp. 4–15, 2006.

[11] G. Michelogiannakis and W. J. Dally, “Elastic buffer flow control
for on-chip networks,” IEEE Trans. Comput., vol. 62, no. 2,
pp. 295–309, Feb. 2013.

[12] A. K. Kodi, A. Sarathy, and A. Louri, “iDEAL: Inter-router dual-
function energy and area-efficient links for network-on-chip
(NoC) architectures,” ACM SIGARCH Comput. Archit. News, vol.
36, no. 3, pp. 241–250, 2008.

[13] H. Matsutani, M. Koibuchi, D. Ikebuchi, K. Usami, H. Nakamura,
and H. Amano, “Ultra fine-grained run-time power gating of on-
chip routers for CMPs,” in Proc. 4th ACM/IEEE Int. Symp. Netw.-
on-Chip, 2010, pp. 61–68.

WANG AND LOURI: CURE: A HIGH-PERFORMANCE, LOW-POWER, AND RELIABLE NETWORK-ON-CHIP DESIGN USING... 2137

[14] R. Das, S. Narayanasamy, S. K. Satpathy, and R. G. Dreslinski,
“Catnap: Energy proportional multiple network-on-chip,” ACM
SIGARCHComput. Archit. News, vol. 41, no. 3, pp. 320–331, 2013.

[15] A. Samih, R. Wang, A. Krishna, C. Maciocco, C. Tai, and Y. Solihin,
“Energy-efficient interconnect via router parking,” in Proc. IEEE 19th
Int. Symp. High Perform. Comput. Archit., 2013, pp. 508–519. [Online].
Available: http://dx.doi.org/10.1109/HPCA.2013.6522345

[16] M. Clark, A. Kodi, R. Bunescu, and A. Louri, “LEAD: Learning-
enabled energy-aware dynamic voltage/frequency scaling in
NoCs,” in Proc. 55th ACM/ESDA/IEEE Des. Autom. Conf., 2018,
pp. 82:1–82:6. [Online]. Available: http://doi.acm.org/10.1145/
3195970.3196068

[17] Y. Chen, M. F. Reza, and A. Louri, “DEC-NoC: An approximate
framework based on dynamic error control with applications to
energy-efficient NoCs,” in Proc. IEEE 36th Int. Conf. Comput. Des.,
2018, pp. 480–487.

[18] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduc-
tion. Cambridge, MA, USA: MIT Press, 2018.

[19] L. Busoniu, R. Babuska, and B. De Schutter, “Multi-agent rein-
forcement learning: A survey,” in Proc. 9th Int. Conf. Control
Autom. Robot. Vis., 2006, pp. 1–6.

[20] V. François-Lavet et al., “An introduction to deep reinforce-
ment learning,” Found. Trends� Mach. Learn., vol. 11, no. 3/4,
pp. 219–354, 2018.

[21] N. Jiang et al., “A detailed and flexible cycle-accurate network-on-
chip simulator,” in Proc. IEEE Int. Symp. Perform. Anal. Syst. Softw.,
2013, pp. 86–96.

[22] H. Naeimi and A. DeHon, “Fault secure encoder and decoder for
nanomemory applications,” IEEE Trans. Very Large Scale Integr.
(VLSI) Syst., vol. 17, no. 4, pp. 473–486, Apr. 2009.

[23] S. Lin and D. J. Costello, Error Control Coding, 2nd ed. Upper Sad-
dle River, NJ, USA: Prentice-Hall, 2004.

[24] Q. Fettes, M. Clark, R. Bunescu, A. Karanth, and A. Louri,
“Dynamic voltage and frequency scaling in NoCs with supervised
and reinforcement learning techniques,” IEEE Trans. Comput.,
vol. 68, no. 3, pp. 375–389, Mar. 2019.

[25] S. R. Sarangi, B. Greskamp, R. Teodorescu, J. Nakano, A. Tiwari,
and J. Torrellas, “VARIUS: A model of process variation and
resulting timing errors for microarchitects,” IEEE Trans. Semicond.
Manuf., vol. 21, no. 1, pp. 3–13, Feb. 2008.

[26] W. Huang, S. Ghosh, S. Velusamy, K. Sankaranarayanan, K. Skadron,
andM. R. Stan, “HotSpot: A compact thermalmodelingmethodology
for early-stage vlsi design,” IEEE Trans. Very Large Scale Integr. (VLSI)
Syst., vol. 14, no. 5, pp. 501–513,May 2006.

[27] M. A. Alam and S. Mahapatra, “A comprehensive model of PMOS
NBTI degradation,” Microelectronics Rel., vol. 45, no. 1, pp. 71–81,
2005.

[28] S. Bhardwaj, W. Wang, R. Vattikonda, Y. Cao, and S. Vrudhula,
“Predictive modeling of the NBTI effect for reliable design,” in
Proc. Custom Integr. Circuits Conf., 2006, pp. 189–192.

[29] D. Lorenz, G. Georgakos, and U. Schlichtmann, “Aging analysis of
circuit timing considering NBTI and HCI,” in Proc. 15th IEEE Int.
On-Line Testing Symp., 2009, pp. 3–8.

[30] H. Kim, A. Vitkovskiy, P. V. Gratz, and V. Soteriou, “Use it or
lose it: Wear-out and lifetime in future chip multiprocessors,”
in Proc. 46th Annu. IEEE/ACM Int. Symp. Microarchit., 2013,
pp. 136–147.

[31] J. Hestness, B. Grot, and S. W. Keckler, “Netrace: Dependency-
driven trace-based network-on-chip simulation,” in Proc. 3rd Int.
Workshop Netw. Chip Archit., 2010, pp. 31–36.

[32] E. Ipek, O. Mutlu, J. F. Mart�ınez, and R. Caruana, “Self-optimizing
memory controllers: A reinforcement learning approach,” ACM
SIGARCH Comput. Archit. News, vol. 36, no. 3, pp. 39–50, 2008.

[33] Y. Bai, V. W. Lee, and E. Ipek, “Voltage regulator efficiency aware
power management,” in Proc. 22nd Int. Conf. Archit. Support
Program. Lang. Operating Syst., 2017, pp. 825–838.

[34] C. Bienia and K. Li, “Parsec 2.0: A new benchmark suite for chip-
multiprocessors,” in Proc. 5th Annu. Workshop Model. Benchmarking
Simul., 2009, vol. 2011, p. 37.

[35] C. Sun et al., “DSENT-A tool connecting emerging photonics with
electronics for opto-electronic networks-on-chip modeling,” in
Proc. IEEE/ACM 6th Int. Symp. Netw.-on-Chip, 2012, pp. 201–210.

[36] J. Shin, V. Zyuban, Z. Hu, J. A. Rivers, and P. Bose, “A framework for
architecture-level lifetime reliability modeling,” in Proc. 37th Annu.
IEEE/IFIP Int. Conf. Dependable Syst. Netw., 2007, pp. 534–543.

[37] K. Constantinides et al., “BulletProof: A defect-tolerant CMP
switch architecture,” in Proc. 12th Int. Symp. High-Perform. Comput.
Archit., 2006, pp. 5–16.

[38] M. Horowitz, “1.1 computing’s energy problem (and what we can
do about it),” in Proc. IEEE Int. Solid-State Circuits Conf. Dig. Tech.
Papers, 2014, pp. 10–14.

[39] J.-Y. Won, X. Chen, P. Gratz, J. Hu, and V. Soteriou, “Up by their
bootstraps: Online learning in artificial neural networks for CMP
uncore power management,” in Proc. 20th Int. Symp. High Perform.
Comput. Archit., 2014, pp. 308–319.

[40] L. Chen and T. M. Pinkston, “NoRD: Node-router decoupling for
effective power-gating of on-chip routers,” in Proc. 45th Annu.
IEEE/ACM Int. Symp. Microarchit., 2012, pp. 270–281.

[41] M. Koibuchi, H. Matsutani, H. Amano, and T. M. Pinkston,
“A lightweight fault-tolerant mechanism for network-on-chip,” in
Proc. 2nd ACM/IEEE Int. Symp. Netw.-on-Chip, 2008, pp. 13–22.

[42] S. Van Winkle, A. K. Kodi, R. Bunescu, and A. Louri, “Extending
the power-efficiency and performance of photonic interconnects
for heterogeneous multicores with machine learning,” in Proc.
24th IEEE Int. Symp. High-Perform. Comput. Archit., 2018,
pp. 480–491.

[43] D. DiTomaso, A. Sikder, A. Kodi, and A. Louri, “Machine learning
enabled power-aware network-on-chip design,” in Proc. Des.
Autom. Test Eur. Conf., 2017, pp. 1354–1359.

[44] H. Zheng and A. Louri, “An energy-efficient network-on-chip
design using reinforcement learning,” in Proc. 56th Annu. Des.
Autom. Conf., 2019, pp. 47:1–47:6. [Online]. Available: http://doi.
acm.org/10.1145/3316781.3317768

[45] K. Wang, A. Louri, A. Karanth, and R. Bunescu, “High-
performance, energy-efficient, and fault-tolerant network-on-chip
design using reinforcement learning,” in Proc. Des. Autom. Test
Europe Conf. Exhib., 2019, pp. 1166–1171.

Ke Wang (Student Member, IEEE) received the
BS degree in electrical engineering from Peking
University, Beijing, China, in 2013, and the MS
degree in electrical engineering from Worcester
Polytechnic Institute, Worcester, Massachusetts,
in 2015. He is currently working toward the PhD
degree in computer engineering in the School of
Engineering and Applied Science, George Wash-
ington University, Washington, DC. His research
work focuses on optimized NoC design of high
performance, power efficiency, and reliability
using machine learning.

Ahmed Louri (Fellow, IEEE) received the PhD
degree in computer engineering from the University
of Southern California, Los Angeles, California, in
1988. He is the David and Marilyn Karlgaard
Endowed chair professor of electrical and computer
engineering with theGeorgeWashington University,
Washington, DC, and the director of theHighPerfor-
mance Computing Architectures and Technologies
Laboratory. From 2010 to 2013, he served as a pro-
gram director with the National Science Founda-
tions (NSF) Directorate for computer and

information science and engineering. He conducts research in the broad
area of computer architecture and parallel computing, with emphasis on
interconnection networks, optical interconnects for scalable parallel comput-
ing systems, reconfigurable computing systems, and power-efficient and
reliableNetwork-on-Chips (NoCs) for multicore architectures. He is currently
serving as the editor-in-chief of the IEEETransactions onComputers.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

2138 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 9, SEPTEMBER 2020

http://dx.doi.org/10.1109/HPCA.2013.6522345
http://doi.acm.org/10.1145/3195970.3196068
http://doi.acm.org/10.1145/3195970.3196068
http://doi.acm.org/10.1145/3316781.3317768
http://doi.acm.org/10.1145/3316781.3317768

Heterogeneous Edge Offloading With Incomplete
Information: A Minority Game Approach
Miao Hu ,Member, IEEE, Zixuan Xie , Di Wu , Senior Member, IEEE, Yipeng Zhou ,

Xu Chen , and Liang Xiao , Senior Member, IEEE

Abstract—Task offloading is one of key operations in edge computing, which is essential for reducing the latency of task processing

and boosting the capacity of end devices. However, the heterogeneity among tasks generated by various users makes it challenging to

design efficient task offloading algorithms. In addition, the assumption of complete information for offloading decision-making does not

always hold in a distributed edge computing environment. In this article, we formulate the problem of heterogeneous task offloading in a

distributed environment as a minority game (MG), in which each player must make decisions independently in each turn and the

players who end up on the minority side win. The multi-player MG incentivizes players to cooperate with each other in the scenarios with

incomplete information, where players don’t have full information about other players (e.g., the number of tasks, the required

resources). To address the challenges incurred by task heterogeneity and the divergence of naive MG approaches, we propose an MG

based scheme, in which tasks are divided into subtasks and instructed to form into a set of groups as possible, and the left ones

are scheduled to perform decision adjustment in a probabilistic manner. We prove that our proposed algorithm can converge to a

near-optimal point, and also investigate its stability and price of anarchy in terms of task processing time. Finally, we conduct a series of

simulations to evaluate the effectiveness of our proposed scheme and the results indicate that our scheme can achieve around 30%

reduction of task processing time compared with other approaches. Moreover, our proposed scheme can converge to a near-optimal

point, which cannot be guaranteed by naive MG approaches.

Index Terms—Heterogeneous edge offloading, incomplete information, minority game

Ç

1 INTRODUCTION

EDGE computing is a new computing paradigm that
allows data produced by end devices (e.g., vehicles,

cameras, IoT devices) to be processed at the edge of the net-
work where the data is being generated, instead of sending
it back to the cloud (or data center) along long routes. By
exploiting computation resources of edge nodes to process
offloaded tasks, edge computing can provide real-time local
data analytics capability, which cannot be offered by the
cloud. As an example, self-driving cars are commonly
equipped with a multitude of sensory devices, including
cameras, LIDAR, sonar devices, and so on. For these cars to
operate safely, it is essential to process the huge amount of
collected data (e.g., over 1.38 GB per second for a self-driving
car [1]) in a timely manner. The latency in processing speed
is critical for vehicle safety, but transmitting such a large

volume of data back-and-forth over a network is very time-
consuming. One feasible solution is to process the sensory
data at the edge, so that the cars can react to their surround-
ings right away and take driving actions accordingly [2].
Although at a nascent stage, edge computing has proven its
superiority in quite a few areas. According to the report by
CB Insights[1], the global market of edge computing is esti-
mated to reach $6.72 billion by 2022.

It should be pointed out that the edge and the cloud are
complementary components of a whole computing system.
Compared to high-end cloud servers, edge servers (or edge
nodes) in the proximity commonly have much lower capac-
ity. The edge needs to work with the cloud in tandem to
process tasks offloaded by end users more efficiently [3],
[4], [5]. However, it is challenging to determine how to con-
duct efficient task offloading in a distributed environment,
where cloud (or edge) servers are physically distributed in
different locations. The reasons are multi-fold: first, edge
servers have limited processing capacity and transmission
bandwidth, and an improper offloading decision may over-
load edge servers and cause wastage of CPU cycles; second,
given that complete information is not always available in a
distributed environment, it is difficult to find the optimal
offloading scheme. We need to design offloading algorithms
that only require local and incomplete information, espe-
cially for users with their own interests.

From the perspective of any end user, its objective is to
minimize the amount of processing time for its tasks. The
user needs to determine whether to conduct task offloading,
where to offload the task (e.g., to the edge or the cloud), the

� M.Hu, Z. Xie, D.Wu, andX. Chen are with the School of Data andComputer
Science, Sun Yat-sen University, Guangzhou, Guangdong 510275, China,
and also with the Guangdong Key Laboratory of Big Data Analysis and Proc-
essing, Guangzhou, Guangdong 510006, China. E-mail: humiao@outlook.
com, xiezx6@mail2.sysu.edu.cn, {wudi27, chenxu35}@mail.sysu.edu.cn.

� Y. Zhou is with the Department of Computing, Faculty of Science and
Engineering, Macquarie University, Sydney, NSW 2109, Australia, and
also with Peng Cheng Laboratory, Shenzhen, Guangdong 518000, China.
E-mail: yipeng.zhou@mq.edu.au.

� L. Xiao is with the Department of Communication Engineering, Xiamen
University, Xiamen, Fujian 361005, China. E-mail: adalittlel@gmail.com.

Manuscript received 25 June 2019; revised 2 Mar. 2020; accepted 11 Apr.
2020. Date of publication 17 Apr. 2020; date of current version 1 May 2020.
(Corresponding author: Di Wu.)
Recommended for acceptance by R. Yahyapour.
Digital Object Identifier no. 10.1109/TPDS.2020.2988161

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 9, SEPTEMBER 2020 2139

1045-9219� 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht_tps://www.ieee.org/publications/rights/index.html for more information.

https://orcid.org/0000-0002-1518-002X
https://orcid.org/0000-0002-1518-002X
https://orcid.org/0000-0002-1518-002X
https://orcid.org/0000-0002-1518-002X
https://orcid.org/0000-0002-1518-002X
https://orcid.org/0000-0002-9386-3635
https://orcid.org/0000-0002-9386-3635
https://orcid.org/0000-0002-9386-3635
https://orcid.org/0000-0002-9386-3635
https://orcid.org/0000-0002-9386-3635
https://orcid.org/0000-0002-9433-7725
https://orcid.org/0000-0002-9433-7725
https://orcid.org/0000-0002-9433-7725
https://orcid.org/0000-0002-9433-7725
https://orcid.org/0000-0002-9433-7725
https://orcid.org/0000-0003-1533-0865
https://orcid.org/0000-0003-1533-0865
https://orcid.org/0000-0003-1533-0865
https://orcid.org/0000-0003-1533-0865
https://orcid.org/0000-0003-1533-0865
https://orcid.org/0000-0001-9943-6020
https://orcid.org/0000-0001-9943-6020
https://orcid.org/0000-0001-9943-6020
https://orcid.org/0000-0001-9943-6020
https://orcid.org/0000-0001-9943-6020
https://orcid.org/0000-0003-2402-611X
https://orcid.org/0000-0003-2402-611X
https://orcid.org/0000-0003-2402-611X
https://orcid.org/0000-0003-2402-611X
https://orcid.org/0000-0003-2402-611X
mailto:humiao@outlook.com
mailto:humiao@outlook.com
mailto:xiezx6@mail2.sysu.edu.cn
mailto:wudi27@mail.sysu.edu.cn
mailto:chenxu35@mail.sysu.edu.cn
mailto:yipeng.zhou@mq.edu.au
mailto:adalittlel@gmail.com

amount of offloaded tasks, and so on. However, as complete
information is not available, each user has no idea about
decisions made by others when making its own decision.
Therefore, they have to make offloading decisions indepen-
dently, which may cause unexpected results. It is possible
that too many tasks are assigned to the same edge server
and the processing time is significantly prolonged due to
server overloading. In another extreme, if too few tasks are
assigned to an edge server, it will lead to low execution effi-
ciency of edge resources.

Due to the importance of task offloading in edge comput-
ing, researchers have made significant efforts in this field. In
most of previous studies, the scheduler of task offloading is
very aggressive in collecting task-related information. It is
based on the assumption that a better offloading decision
can be made with more information. Centralized schedulers
proposed by [6], [7], [8], [9], [10] extensively collected infor-
mation from end users before making offloading decisions.
Due to the high volume of message traffic, the above cen-
tralized approaches cannot work well in a large-scale dis-
tributed environment. Some work [11], [12] started to
investigate the design of distributed schedulers for task off-
loading in edge computing systems. It normally requires
pair-wise information exchange among all users to obtain a
complete view of the system. Inevitably, the communication
overhead will increase considerably with the increase of
user population in the system. The problem will be further
complicated by the loss of direct communication between
two users. In the real-world environment, it is more com-
mon that each user needs to make decisions with partial
information.

In this paper, we formulate the problem of heteroge-
neous task offloading in a distributed environment as a
multi-player game, in which complete information is not
required by the scheduler to make offloading decisions. We
apply the theory of minority game (MG) to design the
scheduling algorithm for task offloading. MG is efficient in
modeling collective behaviors of users where they have to
compete for limited resources without complete informa-
tion [13]. However, a naive MG solution cannot guarantee
to converge to the optimal point and also is not applicable
in the case with heterogeneous task loads. To overcome
the above obstacles, we propose an MG based scheme for
the heterogeneous edge computing scenario, in which tasks
generated by the same user are divided into subtasks and
instructed to form into groups, and compete for computa-
tion resources in a batch in order to minimize the task proc-
essing time. The left subtasks are scheduled to make their
offloading decisions in a probabilistic manner iteratively.
We prove that our proposed algorithm can converge to a
near-optimal point, and also investigate its stability and
price of anarchy in terms of task processing time. The com-
munication overhead is low as the scheduler does not need
to collect complete information for decision-making.

In summary, our contributions in this paper can be con-
cluded as below:

� We formulate the problem of heterogeneous task off-
loading in the distributed edge computing environ-
ment as a multi-player game, in which end users are
modeled as players, and each user chooses to make

offloading decisions independently with incomplete
information.

� We propose an MG based scheme for efficient task
offloading in heterogeneous edge computing, in
which groups are formed among subtasks to com-
pete resources with others. For subtasks not included
in any group, they are scheduled by a probabilistic
decision adjustment policy. We further prove that
the proposed scheme can converge to a near-optimal
point, and an expression of the gap is derived follow-
ing derivations on attendance and price of anarchy.

� We conduct a series of simulations to evaluate the
effectiveness of our proposed scheme and the results
indicate that our scheme can achieve around 30%
reduction of task processing time compared with
other approaches. Moreover, our scheme is verified
that can converge to a near-optimal point.

The remainder of this paper is organized as follows.
Section 2 introduces the system model and formulates a
task offloading game with incomplete information. The MG
based offloading framework and properties are introduced
in Section 3. An extension to a fully distributed edge com-
puting architecture is presented in Section 4. Experimental
results are shown in Section 5, and some related studies are
summarized in Section 6. Finally, Section 7 concludes our
work and points out possible future work.

2 SYSTEM MODEL AND GAME FORMULATION

In this section, we introduce the systemmodel and formulate
the problem of heterogeneous task offloading in a distrib-
uted environment as a multi-player game with incomplete
information.

2.1 System Model

Fig. 1 shows a typical heterogeneous edge computing sys-
tem for processing video streams captured by cameras,
where the video analytics tasks (e.g., object detection, track-
ing, recognition) have different resource requirements [14].
In such a system, there exist multiple edge servers with dif-
ferent capacity (e.g., CPU, memory), which work together
with remote clouds for task execution. We first consider a
partially distributed architecture, in which all edge servers

Fig. 1. A partially distributed architecture of a heterogeneous edge com-
puting system.

2140 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 9, SEPTEMBER 2020

can be abstracted as a single cluster and the master edge
server is the entry point of task offloading, as illustrated in
Fig. 1. Such a partially distributed architecture has been
proven to be effective in managing large-scale networked
systems (e.g., SDN controllers, Kubernetes). Anyway, the
whole edge computing system can also be organized in a
fully distributed way (as illustrated in Fig. 2).

In Fig. 1, end users can choose to offload their tasks to
either cloud servers or edge servers. The internal scheduling
of task offloading within the edge server cluster is transpar-
ent to end users. Our main contribution in this architecture
is to determine which side (i.e., edge server side, cloud
server side) should be chosen when only incomplete infor-
mation is available. The extension to a fully distributed
architecture will be discussed in Section 4.

Suppose that there are K users (e.g., cameras) in the sys-
tem, each of which generates tasks with different amounts
of computation load. Each task is further divided into a set
of subtasks with equal size in terms of computation load. For
a parallelizable task focused in this paper, it can be divided
into a set of subtasks that can be run in parallel. A typical
example is video analytics task, in which a video can be
divided into a series of frames and the video analytics task
(e.g., object detection) can be conducted on each frame sepa-
rately [15], [16]. The size of a subtask is denoted by C0 in the
unit of CPU cycles. Let Rk be the computation requirement
of a user k, and Nk be the number of subtasks generated by
the user k. Thus, we have Rk ¼ NkC0. In one decision
period, all users generateN ¼ P

k Nk subtasks in total. Simi-
lar to many previous studies (e.g., [11] and [12]), to enable
tractable analysis and get useful insights, we consider a
quasi-static scenario where the set of end users remains
unchanged during a computation offloading period (e.g.,
several hundred milliseconds). For a better understanding
of the work, we list the key defined symbols in Table 1.

As the key performance metric, the task processing time
consists of task delivery time and task execution time. The
task delivery time from the user to the server is influenced
by the communication model. While task execution time
refers to the time to process a task on the server, which is
mainly affected by the computation model. In the following,
we will introduce the communication model and the com-
putation model, respectively.

(1) Communication Model: To analyze our scheme in the
wireless environment,we introduce awireless communication

model [17] into our system model, based on which we derive
the user uplink rate and transmission delay. Thewireless com-
municationmodel has beenwidely adopted in the previous lit-
erature (e.g., [12], [17], [18]). According to the model, with the
channel state information at the user side, we have the uplink
capacity fromuser k to serverm as:

CUL
m;k ¼ B log2 1þ SNRkð Þ; (1)

where B represents the transceiver bandwidth, and SNRk ¼
jhm;kj2Pk=s

2 denotes the signal to noise ratio (SNR) for user
k, where jhm;kj2 is the gain of the channel between the trans-
mitter k and the base station for server m and Pk represents
the transmission power of user k. The uplink capacity CUL

m;k

can be achieved by certain physical layer technologies,
which has been commonly assumed in many previous stud-
ies, e.g., [19], [20], [21]. For the partially distributed case, the
uplink rate is denoted as CUL

e;k and CUL
c;k for the edge server

cluster and cloud server, respectively.
Let tk;e and tk;c denote the task transmission time from

user k to the edge server cluster and the cloud server,
respectively. Then we have

te;k ¼ D

CUL
e;k

and tc;k ¼ D

CUL
c;k

þ tRTT; (2)

where D is the data size of one subtask in terms of bits, and
tRTT denotes the expected transmission delay between the
base station and the cloud server. The reference value of
tRTT can be obtained from statistics in field experiments [22].

(2) Computation Model: In our system, servers support the
processing of multiple tasks by using the technique of vir-
tual parallel processing [23]. Let ze;k and zc;k denote the task
execution time on the edge server and the cloud server,
respectively. Then we have

Fig. 2. A fully distributed architecture of a heterogeneous edge comput-
ing system.

TABLE 1
A List of the Key Defined Symbols

Notation Definition

K;K the number of users and the user set
C0 the baseline computation load
Nk the number of subtasks from user k
Nk the subtask set from user k
N;N the number of subtasks and the subtask set
Ce; Cc computation capacity for edge/cloud server
r a value to balance the server importance
t observation/decision time slot
s subtask scheduling profiles
sn the subtask scheduling decision for subtask n
v user scheduling profiles
vk # subtasks offloaded to edge server for user k
v�k scheduling profiles of all other users except k
Uðvk; v�kÞ the utility function for user k given strategy vk
E;C the subtask set offloaded to edge/cloud server
ne; nc the number of subtasks offload to edge/cloud
ne;k; nc;k # subtasks offload to edge/cloud from user k
TeðneÞ processing time for tasks in edge server
TcðncÞ processing time for tasks in cloud server
Tsðne; ncÞ task processing time from system viewpoint
Vk the set of strategies for user k
nr;k # subtasks not in a group formed by user k
c the cut-off value
b one-bit control information
p decision adjustment probability
M the number of distributed edge servers

HU ETAL.: HETEROGENEOUS EDGE OFFLOADING WITH INCOMPLETE INFORMATION: A MINORITYGAME APPROACH 2141

ze;k ¼
ne;kC0

Ce;k
and zc;k ¼

nc;kC0

Cc;k
; (3)

where ne;k is the number of subtasks from user k processed
by the edge, and nc;k represents the number of subtasks
from user k processed by the cloud. The parameters Ce;k

and Cc;k are defined as the computation capacity of the edge
server and cloud server respectively. In terms of the unit of
measures for computation capacity, similar to the defini-
tions in the previous work (e.g., [9], [20], [21]), we focus
more on CPU speed, which can be measured by the number
of CPU cycles per unit time (e.g., second). Specifically, the
amount of allocated computation resource on the edge (or
cloud) (namely, Ce;k or Cc;k) is determined by the results of
competition among multiple users. Our goal in this paper is
to minimize the overall task processing time, and thereby it
is important to avoid the congestion of any particular edge
server, unless the whole system is overloaded with too
many tasks for processing.

2.2 Game Formulation

We model the decision-making problem of heterogeneous
task offloading as a multi-player game, in which users are
modeled as players. Within a decision-making period t,
each user can choose its own task offloading strategy inde-
pendently. A strategy is a vector, in which each element
indicates the number of subtasks that should be offloaded
to each resource provider.

Let v ¼ ½v1; v2; . . . ; vK �T denote a vector of user offloading
strategies1, where vk is the number of subtasks generated by
user k that are offloaded to the edge server. Furthermore,
we let s ¼ ½s1; s2; . . . ; sN �T denote the subtask scheduling
profile, where sn denotes the decision on subtask n and sn 2
f0; 1g. If sn ¼ 1, subtask n is offloaded to an edge server;
otherwise, subtask n is offloaded to the cloud. Thus, we
have vk ¼

P
n2Nk

sn, where Nk denotes the subtask set of
user k. Apparently, the payoff of a user depends on the
actions conducted by the other users. Let v�k ¼ ½v1;
v2; . . . ; vk�1; vkþ1; . . . ; vK �T denote the offloading decisions
made by all other users except user k.

Following the classical definition [13], the game can be
formally defined as below.

Definition 1. A minority game model for task offloading with
incomplete information. We formulate a minority game G ¼
hK;Vk; Uðvk; v�kÞi, where the set of users K is regarded as the
set of players, Vk is the set of strategies for user k, and the pay-
off for user k can be defined as the utility function Uðvk; v�kÞ.
The set of strategies Vk are only known by the user instead of
any opponent, however, the payoff function Uðvk; v�kÞ depends
not only on your own strategy but on strategies chosen by your
opponents.

Our formulated minority game belongs to the game with
incomplete information due to the following two reasons:

1) Each player in our game does not know its opponents’
possible action spaces. In our paper, an action strategy
is defined by a profile indicating the number of

subtasks that are offloaded to each server. Formally,
let s ¼ ½s1; s2; . . . ; sNk

�T denote the action profile,
where sn denotes the decision on subtask n and
sn 2 f0; 1g. If sn ¼ 1, subtask nwill be offloaded to an
edge server; otherwise, subtask n will be offloaded to
the cloud. The action spaces are related to the value of
Nk, i.e., the number of generated tasks. As Nk varies
with k and a player may not know the properties of
tasks generated by its opponents, the action spaces of
players can be treated as incomplete information.

2) Each player in our game does not know its opponents’
payoffs. Recall that the payoff function is defined as
the utility Uðvk; v�kÞ, v ¼ ½v1; v2; � � � ; vK �T. This indi-
cates that the payoff is determined by not only the
individual action vk, but also actions of the other play-
ers v�k. Diverse action spaces induce different payoff
functions for our game.

In the formulated MG model, user k aims to make a deci-
sion vk to maximise the utility for its own tasks, i.e.,
maxvk2f0;1;���;NkgUðvk; v�kÞ. For an edge (or cloud) server, the
processing time is a function of the amount of assigned task
load. Let TeðneÞ denote the task processing time on an edge
server, and TcðncÞ denote the task processing time on a
cloud server. We consider the total latency determined by
the slowest subtask, then the payoff function can be repre-
sented as:

Uðvk; v�kÞ ¼
1=Teðne;�k þ vkÞ; if vk ¼ Nk

1=Tcðnc;�k þNk � vkÞ; if vk ¼ 0
1=maxfTeðne;�k þ vkÞ; Tcðnc;�k þNk � vkÞg;

otherwise

8
>><
>>:

;

(4)

where ne;�k denotes the number of subtasks being offloaded
to the edge server from the other users except user k, and
nc;�k denotes the number of subtasks being offloaded to the
cloud server from other users except user k.

Combining Eqs. (2) and (3), we have the time experi-
enced by tasks that are offloaded to the edge server as:

TeðneÞ ¼ te þ neC0
Ce

; (5)

where te ¼ Ekfte;kg refers to the expected value and ne ¼P
n2N sn. Similarly, we have the task processing time on the

cloud server as:

TcðncÞ ¼ tc þ ncC0
Cc

; (6)

where tc ¼ te þ tRTT and nc ¼ N � ne.
For each player, minimizing its task processing time is

the strategy to win the game. However, without the knowl-
edge of actions chosen by the other users, it is not easy to
make the right choice. A solution to the MG based task off-
loading design with incomplete information will be pre-
sented in the following sections.

2.3 Preliminary of Minority Game

Minority game is efficient inmodeling collective behaviors of
users when they have to compete for limited resources with
incomplete information. In its original form, namely, the El
Farol Bar problem, players make their decisions on whether
to attend a bar each night. Going to a bar is only enjoyable
only if it is not too crowded, otherwise people would rather

1. The time symbol t is omitted to keep our presentation concise
since the scheduling rule is identically designed for each round
decision.

2142 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 9, SEPTEMBER 2020

stay at home. Intuitively, players adjust their behavior based
on their expectations on what other players are going to do
next, and these expectations are generated by the attendance
decision of the other players. At each round of MG, each
player determines his/her own action based on historical
and preference factors. After all decisions are made, the
action associated with less players is declared as minority
side strategy and those players get the chance to win certain
payoffs. The game result is broadcast back to all players such
that they can update their information and make necessary
adjustments in future expectations. As each player makes
his/her own decision independently, the game is carried out
in a decentralizedmanner [23], [24], [25], [26].

In a basic MG, the players select between two alterna-
tives and the players belonging to the minority group win.
The minority is typically defined by using a cut-off value.
The collective sum of the selected actions by all players is
referred to as the attendance. These two key terminologies,
the cut-off value and attendance, are defined as below.

Definition 2. Cut-off value c is defined as a threshold value for
the number of subtasks offloaded to the edge server such that the
task processing time is minimized, i.e.,

min
c2R

lðcÞ ¼ min
c2R

maxfTeðcÞ; TcðN � cÞg:

From Eqs. (5) and (6), TcðncÞ and TeðneÞ are monotonically
increasing functions with the number of subtasks. Then, TeðcÞ
monotonically increases with c, while TcðN � cÞ monotoni-
cally decreases with c. To obtain an optimal cut-off value c�, it
should be guaranteed that TcðN � c�Þ ¼ Teðc�Þ, and we have

c� ¼ NC0Ce � ðtc � teÞCcCe

C0ðCc þ CeÞ : (7)

In the practical system, the cut-off value c can be approxi-
mated by an rounding integer, and we have

c ¼ c�b c; if lð c�b cÞ � lð c�d eÞ;
c�d e; otherwise:

�
(8)

The cut-off value c, as the key factor of minority game,
explains how users play the game by making offloading
decisions. If ne � c (equivalent to Te � Tc), subtasks off-
loaded to the edge (i.e., majority) lose and subtasks off-
loaded to the cloud (i.e., minority) win. In contrast, when
ne � c (equals to Te � Tc), the subtasks offloaded to the
edge (i.e., minority) win and the others lose.

In the standardMG, attendance is defined as the collective
sum of the selected actions by all players, originally for deci-
sion scenarios with homogeneous tasks [13]. For example, in
the El Farol Bar problem mentioned in Section 2.3, players
make their decisions on whether to attend a bar every night.
Let “to attend the bar” as strategy 1 and “not to attend the
bar” as strategy 2. It is introduced inMGby labelling strategy
1 as 1 and strategy 2 as -1, which is called a spin. Then the
attendance A can be represented as A ¼ n1 � n2, where ni

denotes the number of users choosing strategy i. To accom-
modate heterogeneous computing capacity in the practical
system,we redefine it as below.

Definition 3 (Attendance). Let r denote a ratio on the capaci-
ties between edge servers and cloud servers, where 0 < r � 1.

The derivation of r will be introduced later. We have redefined
“attendance” as:

A ¼ ne � rnc: (9)

Specifically, this definition considers the asymmetric
processing capacity between edge servers and cloud servers
[23], [24], [25], [26]. As our objective is to minimize the task
processing time, we derive a lemma to establish the connec-
tion between attendance and the payoff function.

Lemma 1. The system performance (e.g., task processing time) is
optimized when the absolute value of the attendance is minimized.

Proof. Recall Eq. (9), since nc ¼ N � ne, we have

A ¼ ne � rðN � neÞ ¼ ð1þ rÞne � rN: (10)

With Eq. (5), we have that Te increases as ne increases,
which is linearly proportional to a positive A from
Eq. (10). Similarly, Tc increases with the decrease of A.
Overall, the task processing time increases with jAj.
Therefore, we can conclude that the task processing
time can be optimized when the absolute value of A is
minimized. tu
Recall the optimal cutoff value defined in Eq. (7), we

define the ratio r such that A ¼ c� � rðN � c�Þ ¼ 0. By
solving this equation, we have

r ¼ NCe þ ðtc � teÞCcCe

NCc � ðtc � teÞCcCe
; (11)

and 0 < r � 1. Especially, in the general condition
Ceðtc � teÞ < Ccðtc � teÞ < < N , we have r 	 Ce=Cc.

3 TASK OFFLOADING FOR PARTIALLY

DISTRIBUTED ARCHITECTURE

In this section, we propose anMG based task offloading algo-
rithm for the partially distributed architecture of a heteroge-
neous edge computing scenariowith incomplete information,
and prove that the proposed algorithm can approach the
optimality.

3.1 MG-Based Task Offloading Schedule

In the standard MG based offloading schemes, tasks are
assumed to be homogeneous in terms of computation
requirements, based on which the offloading decisions are
made. However, tasks generated by users in real environ-
ments are commonly heterogeneous. Moreover, a naive MG
solution cannot guarantee to converge to the optimal point.
To address these challenges, we propose a novel MG based
offloading algorithm, which not only makes decision with
incomplete information but handles heterogeneous tasks
generated by different users and servers with heteroge-
neous processing capacities. Besides, our algorithm is
proven to be able to converge to a near-optimal point.

To handle the general case that tasks are commonly het-
erogeneous in the computation requirements, we introduce
the concept of group, based on which our MG based task
offloading algorithm is proposed.

Definition 4 (Group). A “group” is the smallest unit when
conducting the offloading procedure in our algorithm. Namely,

HU ETAL.: HETEROGENEOUS EDGE OFFLOADING WITH INCOMPLETE INFORMATION: A MINORITYGAME APPROACH 2143

all the subtasks are offloaded in groups and one group of sub-
tasks is mapped to only one server.

By introducing groups, we can achieve high flexibility
when offloading heterogeneous tasks and reduce the com-
plexity of offloading decision-making. In our algorithm, the
problem of task offloading is decomposed into two phases:

1) Server selection, i.e., mapping each group to a server
side, either edge server side or cloud server side.

2) Task scheduling, i.e., matching each subtask with a
specific server.

These two phases will be introduced as follows.

3.1.1 MG Based Server Selection

In Algorithm 1, we propose an MG based server selection
algorithm, which contains three major steps:

Algorithm 1.MG Based Server Side Selection

1: Given:N;K;Nk; r; sn ¼ f0; 1g; t ¼ 1
2: % initial allocation
3: for k ¼ 1 : K do
4: Calculate ne;k, nc;k and nr;k following Eq. (12);
5: Allocate ne;k subtasks to side 1, nc;k subtasks to side 0;
6: Allocate nr;k subtasks following Eq. (14);
7: end for
8: repeat
9: Calculate the attendance A following Eq. (9);
10: if A > 0 then
11: bðtÞ ¼ 0
12: else
13: bðtÞ ¼ 1
14: end if
15: % scheduler broadcasts the winner information bðtÞ
16: % user adjusts decision with probability p in Eq. (17)
17: for n ¼ 1 : N do
18: if sn 6¼ bðtÞ then
19: if ðrandðÞ%NÞ < absðAÞ � 1 then
20: sn ¼ ðsn þ 1Þ%2
21: end if
22: end if
23: end for
24: t ¼ tþ 1
25: until p ¼ 0

1) Subtask grouping and initial allocation. First, subtasks
are grouped to match servers with different process-
ing capacities. Given the capacity balancing ratio r,
we initially allocate the number of subtasks gener-
ated by user k to the edge server cluster as:

ne;k ¼ rNk

1þ r

� �
: (12)

Our allocation follows the same procedure as that in
the classical papers (e.g., [12], [27], [28]). The crux of
the allocation infers from the fact that the transmis-
sion time increases with the workload offloaded to
the server. Similarly, the number of subtasks off-
loaded to the cloud server is initially set as

nc;k ¼ ne;k=r: (13)

After initial subtask grouping, theremay exist residual
subtasks without being scheduled, i.e., nr;k ¼ Nk�
ne;k � nc;k, where nr;k denotes the number of subtasks
that are not in an initial group division. The offloading
decisions for these subtasks followprobability

pe ¼ r

1þ r
and pc ¼ 1

1þ r
: (14)

This principle is proposed to minimize the absolute
value of the attendance.

2) Information collection and winner broadcast. Following
the offloading principle in Eqs. (12)-(14), the sched-
uler can calculate the values of ne and nc as

ne ¼
XK

k¼1

ne;k and nc ¼
XK

k¼1

nc;k: (15)

Then, the scheduler broadcasts the winning group
with one-bit control information bðtÞ, defined as

bðtÞ ¼ 1; if ne < c

0; otherwise:

�
: (16)

When bðtÞ ¼ 1, the subtasks offloaded to the edge
server win; otherwise, the subtasks offloaded to the
cloud server win. Given the control information,
users could change their strategies to improve deci-
sion-making for the next round offloading.

3) Decision adjustment and iterative scheduling. It is essen-
tial for the subtasks in the majority to adjust their
decisions to achieve a better performance. For exam-
ple, suppose that the subtasks offloaded to the
“cloud server” win, then, in the next round, we keep
decision for subtasks that choose the “cloud server”
action, however, subtasks in the “edge server” may
set to change their decisions by the user.

We propose a decision adjustment policy. The
subtasks in the majority change their offloading deci-
sions according to the probability

p ¼
jAj�1
N ; if jAj > 1

0; otherwise:

�
(17)

The task offload decision adjustment and scheduling
iteratively continue until p ¼ 0.

For clarity, we use an example with two users to describe
our algorithm (as shown in Fig. 3). User 1 generates seven
subtasks in one time slot, while user 2 generates five sub-
tasks in one slot. We set the edge/cloud server capacity
ratio as r ¼ 1=2. In Step 1, initial groups are formed among
users. Following the principles defined in Eqs. (12) and (13),
we have ne;1 ¼ 2 and nc;1 ¼ 4 for user 1. While for user 2, we
have ne;2 ¼ 1 and nc;2 ¼ 2 in the initial two groups. With
these operations, we have the number of residual subtasks
that are not included in any initial group, i.e., nr;1 ¼ 1 and
nr;2 ¼ 2. In total, we have Nr ¼ nr;1 þ nr;2 ¼ 3 subtasks for
random offloading schedule. In this example, we assume
the three residual subtasks selecting “edge server”, i.e., the
edge offloading group is in “majority” while the cloud off-
loading group is in “minority”. In Step 2, we have the atten-
dance A ¼ ne � rnc ¼ 3, which is broadcast to all the users
in the network. Since the attendance value is greater than 1,
we need to adjust the decision profile in Step 3. As defined

2144 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 9, SEPTEMBER 2020

in Eq. (17), we have the decision adjustment probability as
p ¼ ðjAj � 1Þ=N ¼ ð3� 1Þ=12 ¼ 1=6. That is, the subtasks in
the majority change their decisions with probability p, while
the subtasks in the minority stay unchanged. With such a
policy, the decision profile iteratively changes until achiev-
ing the balanced state, when no subtask can change decision
to achieve a smaller attendance value. Finally, we have four
subtasks offloaded to the edge server and eight subtasks to
the cloud server.

3.1.2 Intra-Cluster Task Scheduling

Here we propose an intra-cluster task scheduling algorithm.
Assume that the edge cluster is composed of J edge servers.
Let ne;j denote the number of subtasks allocated to the edge
server j, and

P
j ne;j ¼ ne. Recall that edge servers support

computation on multiple tasks with virtual parallel process-
ing. The number of subtasks allocated to each edge server
should be proportional to its capacity. This model has been
widely used for designing allocation policies (e.g., [12], [27],
[28]) for computation resources. For example, in [27], the
CPU cycles at the edge server are proportionally allocated
to each device such that they experience the same execution
latency. Then we have the optimal number of subtasks
scheduled to the edge server j as

ne;j ¼ neCjP
j Cj

: (18)

Note that the number of subtasks in Eq. (18) might not be an
integer, and we refine the allocation as

n0
e;j ¼

neCjP
j Cj

$ %
; (19)

and we have
P

j n
0
e;j � ne. Let Dj denote the gap between

ne;j defined in Eq. (18) and n0
e;j defined in Eq. (19), and we

have Dj ¼ ne;j � n0
e;j. Let J D denote the set containing the

first ne �
P

j n
0
e;j values on Dj. Then we have the revised

subtask allocation among edge servers as

n�
e;j ¼

neCj=
P

j Cj

l m
; for j 2 J D

neCj=
P

j Cj

j k
; otherwise:

8
<
: (20)

The intra-cluster task allocation, conducted by the master
node of the edge cluster, is illustrated in Algorithm 2.

Algorithm 2. Intra-Cluster Task Scheduling

1: Given: the number of subtasks offloaded to edge server clus-
ter ne, the capacity Cj for edge server j.

2: % Step 1: Subtasks Allocation Policy Calculation
3: for j ¼ 1 : J do
4: Calculate n�

e;j following Eqs. (18)-(20).
5: end for
6: % Step 2: Subtasks Allocation
7: for j ¼ 1 : J do
8: Allocate n�

e;j subtasks to edge node j.
9: end for

To theoretically verify the performance of our intra-cluster
scheduling, we derive the gap of task processing time bet-
ween the practical case with a single edge server cluster and
the optimal case with resource pool. In the optimal case, edge
servers are perceived as a resource pool by consolidating the
computation resources of all edge servers.

In the optimal case, we have the task processing time as

T �
e ¼ te þ neC0P

j Cj
: (21)

With the intra-cluster scheduling, we have the practical task
processing time as

T 0
e ¼ te þmax

ne;1C0

C1
;
ne;2C0

C2
; . . . ;

ne;JC0

CJ

� �
(22)

which might be greater than T �
e due to the heterogeneity of

servers. For the performance gap between T 0
e and T �

e , we
have the following proposition.

Proposition 2. The performance gap on task processing time
between the practical case with a single edge server cluster and
the optimal case is not greater than C0=minjfCjg, where C0 is
the computation requirement for one unit subtask and Cj is the
computing capacity of edge server j.

Proof. Comparing Eqs. (21) and (22), we can conclude that
the practical task processing performance can achieve the
optimal value if and only if Eq. (18) holds. As we assume
that servers support computation on multiple tasks with
virtual parallel processing, subtasks allocated to edge
servers are proportional to the capacity. It should be
noted that the difference between n�

e;m and ne;m is not
greater than one. As the system performance is mainly
constrained by the slowest edge server, we have the

Fig. 3. An example of the proposed MG based offloading procedure.

HU ETAL.: HETEROGENEOUS EDGE OFFLOADING WITH INCOMPLETE INFORMATION: A MINORITYGAME APPROACH 2145

difference on task processing time between the practical
system and optimal value as T 0

e � T �
e � C0=minjfCjg. tu

In practical, the computing capacity of an edge server is
generally greater than 10 Gigacycles per second. Meanwhile,
with efficient task partition, the computation requirement for
each subtask can be lower than 100 CPU Megacycles. Thus,
the performance gap will be lower than 10 milliseconds,
showing the effectiveness of our design. With Proposition 2,
a way to reduce the gap is to set a small size of partitioned
subtaskC0.

3.2 Performance Analysis

In this section, we analyze the properties of our MG based
scheduling algorithm, and check its equilibrium, conver-
gence, and performance bound.

3.2.1 Nash Equilibrium

Nash equilibrium (NE) is used to discuss the equilibrium
state in general game models. An Nash equilibrium is
defined as a strategy profile that maximizes the expected
payoff for each player given their beliefs and the strategies
played by the other players. That is, a strategy profile Vk is
an NE if and only if for every player keeping the strategies
of every other player fixed, strategy vk maximizes the
expected payoff of player k according to his/her belief. In
the following, we prove the existence of at least one NE
point for the proposed game.

Based on the utility function defined in Eq. (4), the NE in
a pure strategy for the MG is given as below.

Definition 5. For player k, the strategy profile fv�k;Nk � v�kg is a
NE of the MG if at the equilibrium, the utility cannot be
improved by unilaterally changing the strategy, i.e.,

Uðv�k; v�kÞ � Uðv�k þ 1; v�kÞ; (23)
and

Uðv�k � 1; v�kÞ � Uðv�k; v�kÞ: (24)

Thus, the individual player’s utility cannot be improved by
unilaterally deviating from the equilibrium.

Proposition 3. The NE state can be reached if and only if v�k sub-
tasks are offloaded to the edge server from player k, given that
lð c�b cÞ 6¼ lð c�d eÞ.

Proof. Please see Appendix A, which can be found on
the Computer Society Digital Library at http://doi.
ieeecomputersociety.org/10.1109/TPDS.2020.2988161, for
details. tu

Proposition 4. If lð c�b cÞ ¼ lð c�d eÞ, NE can be achieved by
assigning either c�b c or c�d e subtasks to the edge server.

Proof. Similar to the proof for Proposition 3, we can obtain
two NE points c�b c � ne;�k and c�d e � ne;�k, since both of
these points satisfy Eqs. (23) and (24) simultaneously.
That is, if lð c�b cÞ ¼ lð c�d eÞ, NE can be achieved by assign-
ing either c�b c � ne;�k or c�d e � ne;�k subtasks from user
k to the edge server. This completes the proof. tu

3.2.2 Convergence

For the convergence of our MG based task offloading algo-
rithm, we have the following proposition.

Theorem 5. With the MG based algorithm, the attendance jAj
can converge to a value not greater than 1. That is, 9� � 1 and
9T > 0, such that jAðtÞj ¼ � for t � T .

Proof. Please see Appendix B, available in the online sup-
plemental material, for details. tu
With Proposition 5, we find that the attendance jAj can

converge to a value no more than one with our proposed
MG based offloading scheme. Recall that attendance meas-
ures how tasks are allocated to servers with different capaci-
ties. Although we cannot directly acquire task processing
performance with attendance, the conclusion is still essen-
tial as the state with large attendance will result in bad per-
formance in terms of task processing time.

3.2.3 Performance Bound

We then study the performance bound of the task process-
ing time by utilizing the price of anarchy (PoA).

Let Z denote the set of Nash equilibria of the multi-player
offloading game and v� ¼ fv1; v2; . . . ; vKg denote the opti-
mal solution that maximizes the number of users that can
maximize their payoffs. Then the PoA is defined as

PoA ¼ maxv2Z
P

k2K tkðvÞ
minv2V

P
k2K tkðvÞ : (25)

Note that, for the metric of the task processing time, a
smaller PoA is better.

For our proposed MG based offloading scheme, we have
the following theorem on PoA.

Theorem 6. For the multi-player MG offloading game, the PoA
of the task processing time satisfies that

1 � PoA �
max te þ ðn�eþ1ÞC0

Ce
; tc þ n�cC0

Cc

n o

min te þ n�eC0
Ce

; tc þ ðn�c�1ÞC0
Cc

n o ; (26)

where n�
e ¼ bc�c.

Proof. Please see Appendix C, available in the online sup-
plemental material, for details. tu
Theorem 6 indicates that when the computation of one

subtask decreases (i.e., C0 is small), the worst-case perfor-
mance of Nash equilibrium can be improved. Moreover,
when servers have plenty of computing resources (i.e., Cc

and Ce are large), the worst-case Nash equilibrium is closer
to the optimum and hence the PoA is lower.

4 TASK OFFLOADING FOR FULLY DISTRIBUTED

ARCHITECTURE

To further prove the feasibility of our approach, we extend
our design to a fully distributed scenario with multiple dis-
tributed edge servers. This is a general case since edge serv-
ers deployed by different operators might be restricted in
mutually resource sharing. Although the standard MG the-
ory provides a scalable extension (e.g., simplex game [29])
to the cases where each decision maker owns multiple
choices, the task offloading scheduling for the heteroge-
neous edge computing scenario is still challenging.

Let M denote the number of edge servers and M the
server set. The cut-off value can be generalized as below.

2146 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 9, SEPTEMBER 2020

http://doi.ieeecomputersociety.org/10.1109/TPDS.2020.2988161
http://doi.ieeecomputersociety.org/10.1109/TPDS.2020.2988161

Definition 6. General cut-off value. The general cut-off value
cm denotes a threshold for the number of subtasks offloaded to
edge server m, such that the task processing time can be mini-
mized. Let Cm denote the processing capacity of server m, then
we have

cm ¼ NCmPM
m¼1 Cm

: (27)

With the cut-off value set C ¼ fc1;c2; . . . ;cMg in con-
junction with multiple distributed servers as offloading
choices, there will be more than one winner (i.e., minority).
The tasks offloaded to server m is in minority if nm � cm.
Otherwise, the tasks in serverm are in majority.

With the general cut-off values, we can extend the MG
based algorithm to the case with multiple choices, with
three key procedures presented as follows.

1) Subtask grouping and initial scheduling. For the Nk sub-
tasks generated from the user k, the number of sub-
tasks offloaded to edge serverm is initially set as

nm;k ¼ CmPM
m¼1 Cm

Nk

$ %
: (28)

The key idea of the initial subtask scheduling is to
make the most efficient decision from the user’s per-
spective. After initial scheduling, some residual sub-
tasks might still be unscheduled, i.e.,

nr;k ¼ Nk �
X

m

nm;k; (29)

where nr;k denotes the number of subtasks that have
not been scheduled initially. These subtasks are ini-
tially scheduled to edge servermwith probability

pm ¼ CmPM
m¼1 Cm

: (30)

2) Information collection and winner broadcast. After the
offloading decision is made, the scheduler can collect
the information on the number of subtasks offloaded
to edge serverm as

nm ¼
XK

k¼1

nm;k: (31)

With network information for the tth iteration, the
edge server m is in minority, if nm is not greater than
cm, then, the subtasks offloaded to edge server m
win; otherwise, the subtasks offloaded to edge server
m lose. After information collection, the scheduler
broadcasts the winning side by sending M-bit con-
trol information fbmðtÞgm2M defined as

bmðtÞ ¼ 1; if nm < cm

0; otherwise:

�
(32)

After receiving the control information, users could
evaluate their strategies to improve decision-making
for the ðtþ 1Þ-th round offloading.

3) Decision adjustment and iterative scheduling. Following
the insights from the MG theory, subtasks in the
majority side should change their decisions to
achieve better performance. Let Mþ denote the
server set in majority, i.e., m 2 Mþ if nm > cm. Oth-
erwise, let M� denote the server set in minority, i.e.,
m 2 M� if nm � cm.

Suppose that edge server m wins, then we keep
decision unchanged for subtasks that choose edge
server m in the next round. Otherwise, subtasks in
edge serverm are set to adjust their decisions follow-
ing probability defined as follows. For m 2 Mþ;
m0 2 M�,

qmm0 ¼ nm � cm

nm|fflfflfflfflffl{zfflfflfflfflffl}
PartI

� cm0 � nm0P
m0 ðcm0 � nm0 Þ|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

PartII

� 1

1þ e�ktm=tm0
|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

PartIII

(33)

where Part I represents a high decision adjustment
probability with a large gap between the actual off-
loading subtasks nm and the optimal cm for servers
in the majority, Part II denotes a high decision adjust-
ment probability for servers in the minority with a
large gap between the optimal cm and the actual off-
loading subtasks nm, Part III illustrates the probabil-
ity that the offloading decision changes from a server
in the majority with transmission delay tm to a server
in theminority with transmission delay tm0 .

Note that some subtasks in the majority should
keep the current offloading decision with the proba-
bility of

qmm ¼ nm � cm

nm
; (34)

where Part II and Part III in Eq. (33) are not included
as the offloading decision is not changed.

As a normalized form of qmm0 , we define the prac-
tical decision change probability pmm0 as

pmm0 ¼ qmm0P
m02M� qmm0 þ qmm

: (35)

The task offloading determination is conducted
until pmm0 ¼ 0; 8m;m0 2 M.

Note that the cut-off value defined in Eq. (27) can-
not be guaranteed to be an integer, which might
cause the algorithm not to be convergent since
pmm0 6¼ 0. Alternatively, we refine the definition of
the general cut-off value as

c0
m ¼ NCm=

XM

m¼1

Cm

$ %
: (36)

However, this might cause
PM

m¼1 c
0
m 6¼ N , which

might also introduce a divergent case. Nevertheless,
let Dm denote the gap between cm defined in Eq. (27)
and c0

m defined in Eq. (36), and we have

Dm ¼ NCmPM
m¼1 Cm

� NCmPM
m¼1 Cm

$ %
: (37)

HU ETAL.: HETEROGENEOUS EDGE OFFLOADING WITH INCOMPLETE INFORMATION: A MINORITYGAME APPROACH 2147

Let MD denote the set containing the first N �PM
m¼1 c

0
m values on Dm. Then we have the revised

cut-off generalization value as

c�
m ¼ dNCm=

PM
m¼1 Cme; form 2 MD

bNCm=
PM

m¼1 Cmc; otherwise:

�
(38)

Following the idea in Proposition 4, we can also
prove that our MG based offloading algorithm with
multiple choices can converge to the revised cut-off
generalization value defined in Eq. (38). The detailed
proof is omitted here due the page limit.

The MG based task offloading algorithm for the fully dis-
tributed scenario is illustrated in Algorithm 3.

Algorithm 3. MG Based Task Offloading for Fully Distrib-
uted Architecture

1: Given: Cm;N;Nk; sn ¼ f1; 2; . . . ;Mg
2: % Step 1: Subtask grouping and initial allocation
3: Calculate general cut-off value c�

m following Eq. (38);
4: for k ¼ 1 : K do
5: Calculate nm;k and nr;k following Eqs. (28) and (29);
6: Allocate nm;k subtasks to edge serverm;
7: end for
8: % Step 2: Information collection and winner broadcast
9: for t ¼ 1 : T do
10: Collect information and calculate nm following Eq. (31);
11: if nm < c�

m then
12: bmðtÞ ¼ 1
13: else
14: bmðtÞ ¼ 0
15: end if
16: % Step 3: Decision adjustment and iterative scheduling
17: Calculate normalized prob. pmm0 following Eq. (35)
18: end for

With multiple edge servers, the competition between dis-
tributed servers and the diverse communication delays to
different servers cause a gap of task processing time com-
pared to the scenario where edge servers can form a single
cluster. Thus, we introduce an upper bound on the gap of
the task processing time between the case with fully distrib-
uted edge servers and the optimal solution with an edge
resource pool. The result is shown as follows.

Proposition 7. The performance gap between the practical case
with fully distributed servers and the optimal case with a resource
pool is not greater than C0=minmfCmg þmaxftm � tm0 g,
where C0 is the computation requirement for one unit subtask,
Cm is the computing capacity of edge server m, and tm is the
transmission delay to edge serverm.

Proof. As the processing capacities of servers are identical
for the scenario with distributed multiple servers, and the
scenario where edge servers form a cluster. They all sup-
port computations on multiple tasks with virtual parallel
processing, and the number of subtasks allocated to edge
servers is proportional to their capacity. Recall the conclu-
sion in Proposition 2, the task execution time difference is
less than C0=minmfCmg.

Different from Proposition 2, we should take the
transmission delay into account as the task delivery time

to different servers is usually different. We have the gap
shown as the maximum difference between delivery
time of all tasks, i.e.,maxftm � tm0 g.

In total, the performance gap between Tc and Td is not
greater than C0=minmfCmg þmaxftm � tm0 g. tu

5 PERFORMANCE EVALUATION

In this section, we conduct simulations with various settings
to verify our analysis and demonstrate the performance
gain achieved by the proposed algorithm.

5.1 Simulation Settings

In our experiments, we simulate an edge computing system
that contains both cloud and edge servers. In default, there
are 20 users in the system and each user can generate tasks
independently. The default number of CPU cycles to com-
plete the basic unit computation load of one subtask C0

equals to 50 Megacycles. Based on the empirical results in
[28], [30], we set the range of the workload as ½2:5 � 108; 5 �
109� CPU cycles. For each user, the number of generated
task loads obeys a uniform distribution as referred in [27],
which is set to be in the range of (0, 100] in our simulations.

Considering the difference in terms of distance to the cloud
(or edge) servers, the round-trip-time from a user to cloud (or
edge) servers is set as tc ¼ 100ms (or te ¼ 10ms) respectively
according to [22]. In addition, the computing capacity of the
edge server and the cloud server is set as Ce ¼ 2:5 GHz and
Cc ¼ 10 GHz in default, respectively. In reality, the cloud
capacity is configurable and can be expanded by installing
more CPU cores if necessary [27]. In each experiment, algo-
rithms are executed 32 times to obtain the average results. In
each simulation run, decisions on 1000 periods are evaluated
and statistically collected [26]. Table 2 lists the key parameters
with corresponding values adopted in our simulations.

For performance evaluation, the scheduling results are
compared among the following schemes:

� Random scheme, in which each task randomly deter-
mines whether offloading its computation to the
edge server or the cloud server [31].

� Standard MG scheme, where each subtask is sched-
uled based on strategy iteration techniques [23], and
subtasks respond to the aggregate action of all sub-
tasks in the previous round.

� Bonding MG scheme, where users make offloading
decisions according to the standard MG principle,
where tasks generated by one user are scheduled in
a bonding manner [26]. The bonding MG scheme is

TABLE 2
Default Simulation Settings on Key Parameters

Parameter Description Value Units

K the number of users 20
N the number of subtasks 125� 2000
Ce edge server capacity 2.5 GHz
Cc cloud server capacity 2:5� 12:5 GHz
Nit iterations per run 32
Npd the number of periods 1000
tc cloud communication delay 100 ms
te edge communication delay 10-50 ms

2148 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 9, SEPTEMBER 2020

an extension of the standard MG scheme under sce-
narios for heterogeneous task load.

� Heterogeneous MG scheme (“hetero MG” for short),
which is proposed in Algorithm 1 and applicable for
the heterogeneous edge computing scenarios.

� Optimal scheme, where each players know the actions
taken by the rivals, i.e., this is the solution for game
with complete information.

5.2 Results for Partially Distributed Architecture

In this section, we will report and analyze our simulation
results in terms of major metrics, including task processing
delay and convergence time.

5.2.1 Task Processing Time

Fig. 4a compares the task processing time versus the num-
ber of subtasks in the system, given a constant subtask load
C0. Among the compared schemes, our proposed “hetero
MG” scheme outperforms all other schemes by achieving a
minimum task processing time. With the increase of N (the
number of subtasks in the system), all curves go upwards
indicating that the system load is critical for task processing
performance. Meanwhile, the gap between our scheme and
others increases with the increase of N , showing that our
scheme is even better in heavy load scenarios. From the
result, we also find that the “hetero MG” scheme achieves

pretty good performance which is close to the optimal solu-
tion for the scenario with complete information.

Fig. 4b presents the task processing time versus the cloud
processing capacity Cc, given a static edge capacity Ce.
Again, the “hetero MG” scheme is the best one consuming
the least amount of time to process tasks. As the cloud
capacity increases, we can observe that the task processing
time decreases for all schemes except the random scheme.
The “hetero MG” scheme is always better than baselines,
while approaches the optimal solution with complete infor-
mation. Again, the random scheme, which does not take the
beliefs of the other players into the offloading design, is the
worst one in most cases.

Fig. 5 compares the task processing time versus the edge
communication delay te. In the simulations, we fix the task
delivery time to the cloud server at tc ¼ 100 ms, and vary
the task delivery time to the edge server tc from 10 ms to
50 ms with two basic subtask loads (i.e., C0 ¼ 10 and
C0 ¼ 50 Megacycles). From the figure, we can observe that
our “hetero MG” scheme is always the best one achieving
the lowest task processing time, and the task processing
time will be prolonged significantly for all schemes because
of the increase of the basic subtask load from C0 ¼ 10 to
C0 ¼ 50 Megacycles. By comparing the two cases with dif-
ferent basic subtask loads, we find that the task processing
time T will go upwards slightly as we increase te with
C0 ¼ 10 Megacycles. However, such phenomena cannot be
observed for the case with C0 ¼ 50 Megacycles, in which
the task processing time is very stable with te. This

Fig. 4. The task processing time EðT Þ versus the number of subtasks in
the system N and the cloud processing capacity Cc, where “-1c” denotes
the case with a single cluster (partially distributed architecture).

Fig. 5. The task processing time EðT Þ versus the task delivery time to the
edge server te with different basic task loads.

HU ETAL.: HETEROGENEOUS EDGE OFFLOADING WITH INCOMPLETE INFORMATION: A MINORITYGAME APPROACH 2149

difference can be explained from the influence of the task
delivery time with different C0. The larger the value C0 is,
the smaller influence the delivery time will play on the task
processing time.

5.2.2 Algorithm Convergence

Fig. 6 evaluates the algorithm convergence by comparing
the number of iterations taken to reach the equilibrium state
versus the number of subtasks in the system. For the pro-
posed “hetero MG” scheme, the criteria of the equilibrium
state is the attendance less than 1 (i.e. jAj � 1). Since the
other two schemes might not converge to the equilibrium,
we set the identical convergence principle for a convenient
comparison. The simulation results show that all schemes
except our “hetero MG” scheme need more iterations to
converge to the optimal state with the increase of Cc. In
Fig. 6a, we can see that there is a clear upward trends of the
number of iterations for both “standard MG” and “bonding
MG” with the increase of the number of subtasks in the sys-
tem. We can also observe that Cc increases the number of
iterations for “standard MG” and “bonding MG” schemes
significantly, especially when the number of subtasks is not
very large by comparing Figs. 6a and 6b. The large number
of iterations consumed by “standard MG” and “bonding
MG” schemes imply that it is difficult for them to achieve
the equilibrium state in reality. In contrast, the number of
iterations of our scheme is almost unchanged for all cases.
In fact, our “hetero MG” scheme will organize subtasks
(generated by the same user) to form groups, which can
substantially reduce convergence iterations.

Fig. 7 illustrates the converging tendency on the atten-
dance A versus the decision epoch. Importantly, neither the
“standard MG” nor the “bonding MG” could guarantee the
convergence to a small value on the attendance, which is an
essential factor representing the server utilization efficiency.
The task processing performance cannot be guaranteed
because of a large difference between the number of sub-
tasks offloaded to the two kinds of servers. While for our
“hetero MG” scheme, it can fast converge to a small atten-
dance value, which verifies the effectiveness of the group
formation and the decision adjustment policy.

5.3 Results for Fully Distributed Architecture

The experiment results on the extended case for the fully
distributed architecture in Section 4 are shown as follows.
In our experiments, the computing capacity of the edge
servers follows the uniform distribution with the expecta-
tion m and the variance s2, i.e., Cm
 Uðm; s2Þ. The variance

s2 is an essential factor indicating the heterogeneity of the
processing capacity of the servers. With a higher value of
s2, it achieves a larger gap between the server with maxi-
mum capacity and the server with minimum capacity. In
the following experiments, the expected server capacity is
set as a constant (e.g., 5 GHz), while we evaluate the offload-
ing performance versus different levels of server heteroge-
neity (i.e., variance of server capacity).

Fig. 8a illustrates the task processing time versus the var-
iance of server capacity for the scenarios where edge servers
form a cluster. We find that our “hetero MG” scheme out-
performs the other two schemes, including the “standard
MG” and the random schemes. The performance improve-
ment mainly comes from taking the heterogeneity issues of
the edge computing environment into account.

Fig. 8a also illustrates the performance gap between the
“hetero MG” scheme and the optimal solution. Apparently,
the gap on the task processing time increases with the diver-
sity of the edge capacity. This might be due to that a small
server processing capacity exists with a high probability
given a large variance on server capacity.

For the fully distributed scenarios, Fig. 8b illustrates the
task processing time versus the variance of server capacity.
Again, we find that our proposed “hetero MG” scheme out-
performs the other two schemes, including the “standard
MG” scheme and the random scheme. With the increase of
the capacity variance, the results from the other two
schemes show an obvious increasing trend. This might be
due to the mismatch between the scheduled tasks and their
computation requirements without considering the influ-
ence of the heterogeneity of the edge computing scenario.

Fig. 6. Convergence time (i.e., the number of iterations before reaching
condition jAj � 1) versus the number of subtasks in the system.

Fig. 7. The convergence on attendance A versus the decision epoch.

2150 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 9, SEPTEMBER 2020

Similarly, Fig. 8b illustrates the performance gap
between the results from “hetero MG” scheme and the opti-
mal solution. Again, the gap on the task processing time
increases with the diversity among edge capacities. Com-
pared to the gap in Fig. 8a, the gap of the scenario with mul-
tiple edge servers is a bit larger, which might be caused by
various transmission delays to different edge servers.

Fig. 9 compare the task processing time versus the num-
ber of split tasks. Different from Fig. 4a with constant sub-
task load, the task load of the network is set as a constant in
Fig. 9. Again, for both partially and fully distributed archi-
tectures, the proposed “hetero MG” scheme outperforms
the other two compared schemes, while approaches the
optimal solution with complete information. This verifies
the performance of the MG based algorithm design for het-
erogeneous edge offloading.

For the performance gap, in Fig. 9a with a single edge
cluster, we find a decreasing trend on the practical gap
between “hetero MG-1c” solution and the optimal solution
with the increase of the number of split tasks. This might be
due to that, the finer the granularity of task split is, the better
the match between subtasks and heterogeneous computing
resources will be. In Fig. 9b, we can find a similar trend on
the gap between the “hetero MG-mc” solution and the opti-
mal solution. Differently, the gap for the “hetero MG-mc”
solution is relatively larger than that for the “hetero MG-1c”

solution. This is reasonable since the computing resources
are more heterogeneous for the fully distributed architecture
compared to the partially distributed architecture.

6 RELATED WORK

The edge computing framework has been designed to meet
the time-critical real-world use cases, as referred in many
studies [32], [33], [34]. In the environment of edge computing,
a task can be offloaded to a nearby edge server or a remote
cloud server to reduce latency and increase throughput.
Many previous studies formulated the two-way offload deci-
sion as a knapsack problem and solved it using methods,
such as dynamic programming andMarkov decision process
(MDP). For example, Wu et al. [6] modeled the task schedul-
ing problem as a knapsack problem, and proposed both off-
line and online algorithms to maximize the user’s quality of
experience satisfaction degree cost effectively. Goudarzi et al.
[8] proposed a genetic algorithm to timely achieve the best
offloading outcome in a heterogeneous multisite context.
Sun et al. [9] developed a user-centric task offloading scheme
to optimize task processing delay, based on Lyapunov opti-
mization and multi-armed bandit theories. Kochovski et al.
[35] proposed a new MDP based management method for
service level agreements to facilitate an automated decision-
making process. However, these schemes require a scheduler
to collect information andmake decisions, which is time con-
suming and not suitable for decentralized edge computing
scenarios.

Fig. 9. The task processing time versus the number of split tasks, where
the task load of the network is set as a constant.Fig. 8. The task processing time versus the variance of server capacity,

where “-1c” denotes the case with a single cluster (partially distributed
architecture) and “-mc” denotes the case with multiple clusters (fully dis-
tributed architecture).

HU ETAL.: HETEROGENEOUS EDGE OFFLOADING WITH INCOMPLETE INFORMATION: A MINORITYGAME APPROACH 2151

For distributed scheduling, game theory-driven schemes
have attracted much attention. Chen et al. [11], [12] formu-
lated the computation offloading decision among devices as
a multi-player strategic game. Some work (e.g., [36]) estab-
lished a non-cooperative game framework to systematically
study the stabilization of a competitive mobile edge com-
puting environment, and proposed an iterative algorithm to
find the Nash equilibrium of the games. He et al. [37] pro-
posed a game-theoretic approach that formulates the cost-
effective edge user allocation problem as a potential game,
and designed a novel decentralized algorithm for finding a
Nash equilibrium. To consider the computation require-
ment difference between users, these game based schemes
always require state information exchange between task ini-
tiators, which might introduce problems in scalability and
internode interaction overhead.

The above-mentioned games assume the players have
complete information about other players’ strategies, includ-
ing the knowledge of other players’ choices (e.g., Stackelberg
game) in some cases. But in some real scenarios, there is a
lack of information about the environment. In the cases with
incomplete information, minority game shows its efficiency
on players’ distributed cooperation decision [13]. Ranad-
heera et al. [23] studied the applicability of MG to solve the
distributed decision-making problems in wireless networks.
The authors in [26] developed an MG based distributed
server activation mechanism for computation offloading in
order to guarantee energy-efficient activation of servers. Fur-
thermore, the asymmetric processing capacity between edge
servers and clouds has been investigated by a revision ofMG
with arbitrary cut-offs [23], [26]. However, these works
assumed that users are homogeneous with respect to tasks
potentially to be offloaded, which cannot be directly adapted
to heterogeneous task scheduling scenario.

7 CONCLUSION

In this paper, to address the challenges incurred by incom-
plete information and task heterogeneity, we proposed a
minority game (MG) based offloading algorithm to perform
task offloading in a heterogeneous environment with
incomplete information. In our scheme, tasks are divided
into subtasks and instructed to form into a set of groups as
possible, and the left ones are scheduled to perform decision
adjustment in a probabilistic manner. We investigate the
properties of our proposed algorithm theoretically and
prove that our algorithm can approach a near optimal point.
Finally, we conducted extensive simulations to validate our
heterogeneous MG scheme and compared its performance
with other alternatives. In the future, we plan to explore
task offloading in more realistic scenarios with user dynam-
ics and time-varying network conditions.

ACKNOWLEDGMENTS

This work was supported by the National Natural
Science Foundation of China under Grants 61802452,
U1911201, 61972432, 61971366, and 61872420, Guangdong
Special Support Program under Grant 2017TX04X148, the
Natural Science Foundation of Guangdong under Grant
2018A030310079, the Program for Guangdong Introducing
Innovative and Enterpreneurial Teams under Grant

2017ZT07X355, the Pearl River Talent Recruitment Program
under Grant 2017GC010465, and the project of “FANet: PCL
Future Greater-Bay Area Network Facilities for Large-scale
Experiments and Applications” under Grant LZC0019.

REFERENCES

[1] CBInsights, “Market sizings of edge computing,” 2018. [Online].
Available: https://www.cbinsights.com/market-sizings

[2] W. Shi and S. Dustdar, “The promise of edge computing,” Com-
puter, vol. 49, no. 5, pp. 78–81, May 2016.

[3] L. Xiao, Y. Li, X. Huang, and X. Du, “Cloud-based malware detec-
tion game for mobile devices with offloading,” IEEE Trans. Mobile
Comput., vol. 16, no. 10, pp. 2742–2750, Oct. 2017.

[4] L. Xiao, X. Wan, C. Dai, X. Du, X. Chen, and M. Guizani, “Security
in mobile edge caching with reinforcement learning,” IEEE Wire-
less Commun., vol. 25, no. 3, pp. 116–122, Jun. 2018.

[5] M.Min et al., “Learning-based privacy-aware offloading for health-
care IoT with energy harvesting,” IEEE Internet Things J., vol. 6,
no. 3, pp. 4307–4316, Jun. 2019.

[6] T. Wu, W. Dou, Q. Ni, S. Yu, and G. Chen, “Mobile live video
streaming optimization via crowdsourcing brokerage,” IEEE
Trans. Multimedia, vol. 19, no. 10, pp. 2267–2281, Oct. 2017.

[7] Y. Zhou, L. Chen, M. Jing, Z. Ming, and Y. Xu, “Performance anal-
ysis of thunder crystal: A crowdsourcing-based video distribution
platform,” IEEE Trans. Circuits Syst. Video Technol., vol. 28, no. 4,
pp. 997–1008, Apr. 2018.

[8] M. Goudarzi, Z. Movahedi, and M. Nazari, “Efficient multisite
computation offloading for mobile cloud computing,” in Proc.
IEEE Conf. Ubiquitous Intell. Comput., 2016, pp. 1131–1138.

[9] Y. Sun, S. Zhou, and J. Xu, “EMM: Energy-aware mobility man-
agement for mobile edge computing in ultra dense networks,”
IEEE J. Sel. Areas Commun., vol. 35, no. 11, pp. 2637–2646,
Nov. 2017.

[10] M. Hu, L. Zhuang, D. Wu, Y. Zhou, X. Chen, and L. Xiao,
“Learning driven computation offloading for asymmetrically
informed edge computing,” IEEE Trans. Parallel Distrib. Syst.,
vol. 30, no. 8, pp. 1802–1815, Aug. 2019.

[11] X. Chen, “Decentralized computation offloading game for mobile
cloud computing,” IEEE Trans. Parallel Distrib. Syst., vol. 26, no. 4,
pp. 974–983, Apr. 2015.

[12] X. Chen, L. Jiao, W. Li, and X. Fu, “Efficient multi-user computa-
tion offloading for mobile-edge cloud computing,” IEEE/ACM
Trans. Netw., vol. 24, no. 5, pp. 2795–2808, Oct. 2016.

[13] D. Challet, M. Marsili, and Y. Zhang, Minority Games: Interacting
Agents in Financial Markets. London, U.K.: Oxford Univ. Press,
2013.

[14] M. Hu, L. Zhuang, D. Wu, Z. Huang, and H. Hu, Edge Computing
for Real-Time Video Stream Analytics. Cham, Switzerland: Springer,
2018, pp. 1–5.

[15] Z. Lu, K. S. Chan, and T. L. Porta, “A computing platform for
video crowdprocessing using deep learning,” in Proc. IEEE Conf.
Comput. Commun., 2018, pp. 1430–1438.

[16] Z. Lu, K. Chan, S. Pu, and T. L. Porta, “CrowdVision: A comput-
ing platform for video crowdprocessing using deep learning,”
IEEE Trans. Mobile Comput., vol. 18, no. 7, pp. 1513–1526, Jul. 2019.

[17] T. S. Rappaport et al., Wireless Communications: Principles and Prac-
tice, vol. 2, New Jersey, NJ, USA: Prentice Hall, 1996.

[18] W. Rhee and J. M. Cioffi, “On the capacity of multiuser wireless
channels with multiple antennas,” IEEE Trans. Inf. Theory, vol. 49,
no. 10, pp. 2580–2595, Oct. 2003.

[19] D. Huang, P. Wang, and D. Niyato, “A dynamic offloading algo-
rithm for mobile computing,” IEEE Trans. Wireless Commun.,
vol. 11, no. 6, pp. 1991–1995, Jun. 2012.

[20] Y. Mao, J. Zhang, and K. B. Letaief, “Dynamic computation
offloading for mobile-edge computing with energy harvesting
devices,” IEEE J. Sel. Areas Commun., vol. 34, no. 12, pp. 3590–
3605, Dec. 2016.

[21] H. Guo and J. Liu, “Collaborative computation offloading
for multiaccess edge computing over fiber090009wireless netw-
orks,” IEEE Trans. Veh. Technol., vol. 67, no. 5, pp. 4514–4526,
May 2018.

[22] D. A. Popescu, N. Zilberman, and A. W. Moore, “Characterizing
the impact of network latency on cloud-based applications’ per-
formance,” Univ. Cambridge, Cambridge, U. K., Tech. Rep.
UCAM-CL-TR-914, Nov. 2017.

2152 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 9, SEPTEMBER 2020

https://www.cbinsights.com/market-sizings

[23] S. Ranadheera, S. Maghsudi, and E. Hossain, “Minority games
with applications to distributed decision making and control in
wireless networks,” IEEE Wireless Commun., vol. 24, no. 5,
pp. 184–192, Oct. 2017.

[24] M. Marsili and Y.-C. Zhang, “Fluctuations around Nash equilibria
in game theory,” Physica A-statistical Mechanics Appl., vol. 245,
no. 1, pp. 181–188, 1997.

[25] M. C. Canellas, K. M. Feigh, and Z. K. Chua, “Accuracy and effort
of decision-making strategies with incomplete information: Impli-
cations for decision support system design,” IEEE Trans. Human-
Mach. Syst., vol. 45, no. 6, pp. 686–701, Dec. 2015.

[26] S. Ranadheera, S. Maghsudi, and E. Hossain, “Computation off-
loading and activation of mobile edge computing servers: A
minority game,” IEEE Wireless Commun. Lett., vol. 7, no. 5,
pp. 688–691, Oct. 2018.

[27] C. You, K. Huang, H. Chae, and B. Kim, “Energy-efficient
resource allocation for mobile-edge computation offloading,”
IEEE Trans. Wireless Commun., vol. 16, no. 3, pp. 1397–1411,
Mar. 2017.

[28] X. Lyu, H. Tian, C. Sengul, and P. Zhang, “Multiuser joint task off-
loading and resource optimization in proximate clouds,” IEEE
Trans. Veh. Technol., vol. 66, no. 4, pp. 3435–3447, Apr. 2017.

[29] P. Mertikopoulos and A. L. Moustakas, “The simplex game: Can
selfish users learn to operate efficiently in wireless networks?” in
Proc. Int. Conf. Perform. Eval. Methodologies Tools, 2007, pp. 1–10.

[30] Y. Tao, C. You, P. Zhang, and K. Huang, “Stochastic control of
computation offloading to a helper with a dynamically loaded
cpu,” IEEE Trans. Wireless Commun., vol. 18, no. 2, pp. 1247–1262,
Feb. 2019.

[31] J. Ghaderi, “Randomized algorithms for scheduling VMs in the
cloud,” in Proc. Annu. IEEE Int. Conf. Comput. Commun., 2016,
pp. 1–9.

[32] S. Taherizadeh, V. Stankovski, and M. Grobelnik, “A capillary
computing architecture for dynamic Internet of Things: Orchestra-
tion of microservices from edge devices to fog and cloud
providers,” Sensors, vol. 18, no. 9, 2018, Art. no. 2938.

[33] P. Stefanic et al., “Switch workbench: A novel approach for the
development and deployment of time-critical microservice-based
cloud-native applications,” Future Gener. Comput. Syst., vol. 99,
pp. 197–212, 2019.

[34] P. Kochovski, S. Gec, V. Stankovski, M. Bajec, and P. D. Drobintsev,
“Trust management in a blockchain based fog computing platform
with trustless smart oracles,” Future Gener. Comput. Syst., vol. 101,
pp. 747–759, 2019.

[35] P. Kochovski, P. D. Drobintsev, and V. Stankovski, “Formal qual-
ity of service assurances, ranking and verification of cloud deploy-
ment options with a probabilistic model checking method,” Inf.
Softw. Technol., vol. 109, pp. 14–25, 2019.

[36] P. Guan, X. Deng, Y. Liu, and H. Zhang, “Analysis of multiple cli-
ents behaviors in edge computing environment,” IEEE Trans. Veh.
Technol., vol. 67, no. 9, pp. 9052–9055, Sep. 2018.

[37] Q. He et al., “A game-theoretical approach for user allocation in
edge computing environment,” IEEE Trans. Parallel Distrib. Syst.,
vol. 31, no. 3, pp. 515–529, Mar. 2020.

Miao Hu (Member, IEEE) received the BS
and PhD degrees in communication engineering
from Beijing Jiaotong University, Beijing, China, in
2011 and 2017, respectively. He is currently
an associate research fellow in computer science
with the School of Data and Computer Science,
Sun Yat-Sen University, Guangzhou, China. From
2014 to 2015, he was a visiting scholar with the
Pennsylvania State University, PA. His research
interests include edge computing and software
defined networks.

Zixuan Xie received the BE degree in soft-
ware engineering from Northeastern University,
Shenyang, China, in 2017. He is currently working
toward the MS degree in the School of Data
and Computer Science, Sun Yat-Sen University,
Guangzhou, China. His research interests include
edge computing and cloud computing.

Di Wu (Senior Member, IEEE) received the BS
degree from the University of Science and Tech-
nology of China, Hefei, China, in 2000, the MS
degree from the Institute of Computing Technol-
ogy, Chinese Academy of Sciences, Beijing,
China, in 2003, and the PhD degree in computer
science and engineering from the Chinese Uni-
versity of Hong Kong, Hong Kong, in 2007. He
was a post-doctoral researcher with the Depart-
ment of Computer Science and Engineering,
Polytechnic Institute of New York University,

Brooklyn, NY, from 2007 to 2009, advised by Prof. K. W. Ross. He is cur-
rently a professor and the assistant dean of the School of Data and Com-
puter Science with Sun Yat-sen University, Guangzhou, China. His
research interests include cloud computing, multimedia communication,
Internet measurement, and network security. He was a co-recipient of
the IEEE INFOCOM 2009 Best Paper Award. He has served as an editor
of the Journal of Telecommunication Systems (Springer), the Journal of
Communications and Networks, Peer-to-Peer Networking and Applica-
tions (Springer), Security and Communication Networks (Wiley), and
the KSII Transactions on Internet and Information Systems, and a
guest editor of the IEEE Transactions on Circuits and Systems for Video
Technology. He has also served as the MSIG chair of the Multimedia
Communications Technical Committee in the IEEE Communications
Society from 2014 to 2016. He served as the TPC co-chair of the IEEE
Global Communications Conference - Cloud Computing Systems, and
Networks, and Applications, in 2014, the Chair of the CCF Young Com-
puter Scientists and Engineers Forum - Guangzhou from 2014 to 2015,
and a member of the Council of China Computer Federation.

Yipeng Zhou received the bachelor’s degree in
computer science from the University of Science
and Technology of China (USTC). He is currently
a lecturer in computer science with the Depart-
ment of Computing at Macquarie University,
and the recipient of ARC Discovery Early Career
Research Award, 2018. From August 2016 to
February 2018, he was a research fellow with the
Institute for Telecommunications Research (ITR)
with University of South Australia. From 2013 to
2016, He was a lecturer with the College of Com-

puter Science and Software Engineering, Shenzhen University. He was
a postdoctoral fellow with the Institute of Network Coding (INC) of The
Chinese University of Hong Kong (CUHK) from 2012 to 2013. He won
his PhD degree supervised by Prof. Dah Ming Chiu and Mphil degree
supervised by Prof. Dah Ming Chiu and Prof. John C.S. Lui from Informa-
tion Engineering (IE) Department of CUHK.

HU ETAL.: HETEROGENEOUS EDGE OFFLOADING WITH INCOMPLETE INFORMATION: A MINORITYGAME APPROACH 2153

Xu Chen received the PhD degree in information
engineering from the Chinese University of Hong
Kong, in 2012. He is a full professor with Sun Yat-
sen University, Guangzhou, China, and the vice
director of the National and Local Joint Engineer-
ing Laboratory of Digital Home Interactive Appli-
cations. He was a post-doctoral research
associate with Arizona State University, Tempe,
from 2012 to 2014, and a Humboldt Scholar Fel-
low with the Institute of Computer Science, Uni-
versity of Goettingen, Germany, from 2014 to

2016. He was a recipient of the Prestigious Humboldt Research Fellow-
ship awarded by Alexander von Humboldt Foundation of Germany, the
2014 Hong Kong Young Scientist Runner-Up Award, the 2016 Thousand
Talents Plan Award for Young Professionals of China, the 2017 IEEE
Communication Society Asia€CPacific Outstanding Young Researcher
Award, the 2017 IEEE ComSoc Young Professional Best Paper Award,
the Honorable Mention Award of 2010 IEEE international conference on
Intelligence and Security Informatics, the Best Paper Runner-Up Award
of 2014 IEEE International Conference on Computer Communications
(INFOCOM), and the Best Paper Award of 2017 IEEE International Con-
ference on Communications. He is currently an area editor of IEEE
Open Journal of the Communications Society, an associate editor of the
IEEE Transactions Wireless Communications, the IEEE Internet of
Things Journal and the IEEE Journal on Selected Areas in Communica-
tions (JSAC) Series on Network Softwarization and Enablers.

Liang Xiao (Senior Member, IEEE) received the
BS degree in communication engineering from
the Nanjing University of Posts and Telecommuni-
cations, China, in 2000, the MS degree in electri-
cal engineering from Tsinghua University, China,
in 2003, and the PhD degree in electrical engi-
neering from Rutgers University, NJ, in 2009. She
is currently a professor with the Department of
Communication Engineering, Xiamen University,
Xiamen, China. She has served in several edito-
rial roles, including an associate editor of the

IEEE Trans. Information Forensics & Security and IET Communications.
Her research interests include wireless security, smart grids, and wire-
less communications. She won the best paper award for 2016 IEEE
INFOCOM Bigsecurity WS. She was a visiting professor with Princeton
University, Virginia Tech, and University of Maryland, College Park.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

2154 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 9, SEPTEMBER 2020

Minority Disk Failure Prediction Based on
Transfer Learning in Large Data Centers of

Heterogeneous Disk Systems
Ji Zhang , Ke Zhou ,Member, IEEE, Ping Huang , Xubin He , Senior Member, IEEE, Ming Xie,

Bin Cheng, Yongguang Ji, and Yinhu Wang

Abstract—The storage system in large scale data centers is typically built upon thousands or even millions of disks, where disk failures

constantly happen. A disk failure could lead to serious data loss and thus system unavailability or even catastrophic consequences if

the lost data cannot be recovered. While replication and erasure coding techniques have been widely deployed to guarantee storage

availability and reliability, disk failure prediction is gaining popularity as it has the potential to prevent disk failures from occurring in the

first place. Recent trends have turned toward applying machine learning approaches based on disk SMART attributes for disk failure

predictions. However, traditional machine learning (ML) approaches require a large set of training data in order to deliver good

predictive performance. In large-scale storage systems, new disks enter gradually to augment the storage capacity or to replace failed

disks, leading storage systems to consist of small amounts of new disks from different vendors and/or different models from the same

vendor as time goes on. We refer to this relatively small amount of disks as minority disks. Due to the lack of sufficient training data,

traditional ML approaches fail to deliver satisfactory predictive performance in evolving storage systems which consist of

heterogeneous minority disks. To address this challenge and improve the predictive performance for minority disks in large data

centers, we propose a minority disk failure prediction model named TLDFP based on a transfer learning approach. Our evaluation

results in two realistic datasets have demonstrated that TLDFP can deliver much more precise results and lower additional

maintenance cost, compared to four popular prediction models based on traditional ML algorithms and two state-of-the-art transfer

learning methods.

Index Terms—Disk failure, machine learning, transfer learning, cloud computing, data center

Ç

1 INTRODUCTION

HARD disks are widely used as the common and primary
storage devices for large-scale storage systems in mod-

ern data centers. In such data centers, it has been an
extremely challenging undertake to ensure high availability
and reliability for IT management, as various disk failures
constantly occur in the field, whether being hard disks [2],
[3], [4], flash-based SSDs [5], [6] or NVMes. Disk failures
can lead to temporary data loss and thus system unavail-
ability or even permanent data loss if the lost data cannot
be recovered by existing data protection schemes, e.g., rep-
lication and erasure codes [7], [8] due to disk failures
exceeding the designed correction capability. A disk is a

rather complex system consisting of a variety of magnetic,
mechanical, and electronic components, each of which
could fail. As a result, disk failures show different manifes-
tations and extents of severeness [9] for numerous reasons,
which has been observed in data centers from major IT
companies [10], [11]. Compared with the traditional pas-
sive fault tolerance techniques like Erasure Code (EC) and
Redundant Arrays of Independent Disks (RAID) [12], pro-
active disk failure prediction tends to ensure the reliability
and availability of large-scale storage systems in advance.
Therefore, successful disk failure prediction not only
reduces the risk of losing data but also reduces the data
recovery cost (i.e., network bandwidth) associated with
recovering the data residing on failed disks.

Disk manufacturers implement the self-monitoring, analy-
sis and reporting technology (SMART) technology [13] in the
disk firmware. Most of the SMART attributes contain infor-
mation about gradual degradations and possible defects of
disks. Internally, a disk uses the so-called “threshold method”
[14] based on SMART values to claim its failure status, which
means the hard disk would raise an alarm if the value of an
SMART attribute crosses the corresponding predefined
threshold. However, this “threshold method” only achieves a
failure detection rate (FDR) of 3-10 percent with 0.1 percent
false alarm rate (FAR) [14] (FDR and FAR see Section 5.1.2
in detail). In other words, these numbers highlight the

� J. Zhang and K. Zhou are with the Wuhan National Laboratory for Opto-
electronics (Huazhong University of Science and Technology), Key Labora-
tory of Information Storage System, Intelligent Cloud Storage Joint
Research Center, Huazhong University of Science and Technology, Wuhan
430074, China, and also with Tencent, Shenzhen 518057, China.
E-mail: {jizhang, k.zhou}@hust.edu.cn.

� P. Huang and X. He are with Temple University, Philadelphia, PA 19122.
E-mail: {templestorager, xubin.he}@temple.edu.

� M.Xie, B. Cheng, Y. Ji, and Y.Wang are with Tencent Inc., Shenzhen 518057,
China. E-mail: {reganxie, bencheng, raidmanji, yhwang}@tencent.com.

Manuscript received 30 Aug. 2019; revised 13 Feb. 2020; accepted 21 Mar. 2020.
Date of publication 6 Apr. 2020; date of current version 1 May 2020.
(Corresponding author: Ke Zhou.)
Recommended for acceptance by K. Mohror.
Digital Object Identifier no. 10.1109/TPDS.2020.2985346

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 9, SEPTEMBER 2020 2155

1045-9219� 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tps://www.ieee.org/publications/rights/index.html for more information.

https://orcid.org/0000-0002-3770-1463
https://orcid.org/0000-0002-3770-1463
https://orcid.org/0000-0002-3770-1463
https://orcid.org/0000-0002-3770-1463
https://orcid.org/0000-0002-3770-1463
https://orcid.org/0000-0002-2161-8796
https://orcid.org/0000-0002-2161-8796
https://orcid.org/0000-0002-2161-8796
https://orcid.org/0000-0002-2161-8796
https://orcid.org/0000-0002-2161-8796
https://orcid.org/0000-0002-4931-4663
https://orcid.org/0000-0002-4931-4663
https://orcid.org/0000-0002-4931-4663
https://orcid.org/0000-0002-4931-4663
https://orcid.org/0000-0002-4931-4663
https://orcid.org/0000-0002-5071-2861
https://orcid.org/0000-0002-5071-2861
https://orcid.org/0000-0002-5071-2861
https://orcid.org/0000-0002-5071-2861
https://orcid.org/0000-0002-5071-2861
mailto:jizhang@hust.edu.cn
mailto:k.zhou@hust.edu.cn
mailto:templestorager@temple.edu
mailto:xubin.he@temple.edu
mailto:reganxie@tencent.com
mailto:bencheng@tencent.com
mailto:raidmanji@tencent.com
mailto:yhwang@tencent.com

conservative nature of this method, i.e., it would rather miss
chances to detectmore disk failures than report false alarms at
a higher rate.

To improve the predictive performance, several machine
learning (ML) algorithms based disk failure prediction mod-
els [15], [16], [17], [18] have been proposed, which leverage
training SMART data to predict disk failures. Unfortunately,
these works focused on a large number of homogeneous
disks which have sufficient training data. In large-scale stor-
age system scenarios, bunches of new disks enter gradually
to replace failed disks, resulting in storage systems consist-
ing of heterogeneous disks from different vendors and dif-
ferent models from the same vendor as time goes on.
Heterogeneous disks with numerous disk models are com-
mon in data centers [19], [20], [21]. Moreover, in evolving
storage systems, some disk models are dramatically fewer
than others and we call this relatively small amount of disks
minority disks (conversely the large amount of disks as
majority disks) in large data centers of heterogeneous disk
systems. We found that about 25 percent of disks with
numerous models (more than 50) are minority disks in two
real-world data centers as detailed in Section 3.1. Due to the
small sample and insufficient training data of minority
disks, traditional ML algorithms using the training data of
minority disks would dramatically increase the risk of over-
fitting (Section 3.1) or poor generalization [22] which will
weaken the performance of predictive models and seriously
affect the reliability of the storage system. Therefore, we are
poised to develop a disk failure prediction model TLDFP to
predict failures for minority disks under the condition of
having rich heterogeneous disk datasets. Our basic idea is
to predict minority disk failures from the available majority
disk datasets, which is an application of transfer learning.

In this paper, we aim to seek answers to the following
problems: (1) What is the definition of a minority disk data-
set as far as failure predication is concerned? (2) Why should
we use transfer learning for minority disks failure predic-
tion? (3) How to use transfer learning methods to predict
minority disks failure? (4) When to use transfer learning for
minority disks failure prediction? Besides, when applied to
three real-world datasets from the public Backblaze and Ten-
cent which is one of the largest social network companies in
the world, our method TLDFP achieves on average
96 percent failure detection rate with 0.5 percent false alarm
rate based on 5 disk manufacturers (Hitachi, Seagate, Hita-
chi Global Storage Technologies and Western Digital) in
3 different storage media (HDD, SSD and NVMe) when
making cross-disk models failure prediction in addressing
realistic system challenges.

2 BACKGROUND AND RELATED WORK

2.1 SMART Technology

Almost all hard disk drives, flash-based SSDs and NVMes
come with built-in Self-Monitoring, Analysis and Report-
ing Technology, which are indicators of disk health status.
The specification of SMART technology contains up to 30
attributes, reporting various disk operating conditions.
SMART data directly or indirectly reflects the health condi-
tion of disks and even contains some statistical informa-
tion. SMART data can be obtained through specified disk

protocols upon which the disk manufacturer reached
agreement. The disk would raise an alarm if the value of
an SMART attribute crosses the corresponding predefined
threshold. Each SMART attribute entry consists of five
elements described as a tuple (ID, Normalized, Raw, Thresh-
old, Worst).

� ID: The designated sequence number of the SMART
attribute.

� Normalized: Current or last normalized value (most
are normalized to a value between the best value 253
and the worst value 1 calculated by manufacturer-
specific algorithms using its raw value).

� Raw: The original value corresponding to counts or
physical states provided by a sensor and vendor-
specific.

� Threshold: The threshold value beyond which a disk
alarms a failure.

� Worst: The lowest or worst value for a given
attribute.

Not all five elements in a tuple are used. In our paper, we
focus on the first three elements ðID;Normalized; andRawÞ
in our collected datasets. For convenience, we use
“smart_ID_Raw: V” to denote the raw value of a SMART
attribute whose ID is V . For example, smart_1_Raw: 10
means that the raw value of the read error rate attribute
(ID: 1) is 10 and smart_5_Normalized: 56 means that the nor-
malized value of the reallocated sectors count attribute (ID:
5) is 56. More specific information about the SMART attrib-
utes we use in our evaluation is given in Table 6.

2.2 Large Scale SMART Data Collection

We not only used the publicly available SMART datasets
from Backblaze,1 but also collected the real-world datasets
from Tencent Inc.,. Tencent Inc., founded in November 1998,
is currently one of the world’s biggest internet companies.
In China, Tencent has four major data centers located in
Shenzhen, Tianjin, Shanghai and Chongqing, respectively.
Among them, Tianjin data center is the largest in Asia.
According to Tencent’s statistics, as of 2019, Tencent hosts a
total of more than 700 thousand servers and 8 million disks.
In the Tencent Cloud Foundation Department where we
obtained our SMART dataset in this paper, there are about
400 thousand servers (5 million disks) supporting a variety
of business applications, such as WeChat, Qcloud (Cloud of
Tencent), TencentVideo, and the QQ photo store QQphoto.

We configure the collection interval as one hour. In prac-
tice, the size of one sampled SMART data per disk is about
2 KB, which results in 201.4 GB data per day. Moreover,
suppose the disk life is about 4-5 years, then we need to
store 350.1 TB SMART data for a period of five years. In
each hour, nearly 400 thousand servers send their SMART
data to one server, which parses, processes and stores mas-
sive amounts of data at the same time. It imposes a great
challenge to collect and store such a large-scale set of
SMART data. To well handle this situation, we have
proposed a scalable framework for collecting large-scale
SMART data and it has been deployed in the Tencent’s data
centers in practice.

1. https://www.backblaze.com/b2/hard-drive-test-data.html

2156 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 9, SEPTEMBER 2020

https://www.backblaze.com/b2/hard-drive-test-data.html

As it is shown in Fig. 1, the scalable SMART data collec-
tion framework mainly contains five components:

� Agent: An agent runs on the same server with multi-
ple disks, typically 11 disks in Tencent’s servers. It
periodically issues protocol-compliant requests to
disks to obtain SMART data and sends SMART
data files to two dedicated servers via Tencent Gate
Way (TGW).

� TGW:2 Due to all servers in Tencent data centers not
locating in the same network and high concurrency
easily happening, we leverage the open source tech-
nology Tencent Gate Way to forward data file send
requests. TGW enables multi-network unified accesses
and also supports automatic load balancing. Upon
receiving SMART data files from agents, TGW for-
wards them to one of two dedicated servers in a ran-
dom manner (For illustration purpose, we draw two
servers in the figure. However, TGW can easily scale
up to connectmore servers as needed).

� TDAgent: A dedicated server which receives raw
binary SMART data files from TGW and converts
them to regular text files for data transformation
(these files will remain for 3 days temporarily).
After this processing, it then periodically forwards
the resultant text files to TDW for further storage
and analysis.

� Alarm Log: The extracted disk alarm events and the
feedback information from diskmanufacturers, which
are used for disk labeling. This alarm log is important
for us to redeploy the collected data in new settings
and to label disks in supervised learning.

� TDW:3 Tencent Distributed Data Warehouse (TDW),
is an open-source system of distributed data proc-
essing based on Hadoop, Hive and PostgreSQL
which provides massive data storage and analysis
functionality.

The framework of large-scale SMART data collection we
proposed can effectively solve the problem of mass storage
and difficult retrieval. Besides, these key technologies of our
framework are all open source, thus more conducive to
achieve and apply. Last but not the least, the high-quality

SMART data is essential for a firm foundation for modeling
of disk failure prediction.

2.3 Related Work

There have proposed a host of ML algorithms for disk failure
predictionmodels based on SMART data. Hamerly and Elkan
[23] employ two Bayesian methods to model disk failure
based on SMART data from Quantum Inc., which
consists of 1,927 good drives and 9 failed drives. They catego-
rize the problem as anomaly detection and establish amixture
model called NBEM, short for Naive Bayes clusters trained
using expectation-maximization and another method called
naive Bayes classifier. They achieve failure detection rates of
35-40 percent forNBEM and 55 percent for naive Bayes classi-
fier at about 1 percent FAR. Hughes et al. [24] explore two sta-
tistical methods to improve predictive performance. They
explore the capabilities of statistical tests like the rank sum
test and OP-ed single variate test, and test both methods with
7,744drives data (out ofwhich 36 are failures) from twodiffer-
ent disk models spanning across a period of 3 months. They
achieved a failure detection rate (FDR) of 60 and 0.5 percent
false alarm rate (FAR). Murray et al. [25] compare the
predictive performance of Support Vector Machine (SVM),
rank-sum test, unsupervised clustering and reverse arrange-
ments test.

Zhu et al. [15] explore the capability of a Backpropagation
(BP) neural network and an improved SVM model to estab-
lish the prediction model based on SMART data. Many
researchers use a SVM [26] because they claim SVM can effi-
ciently perform a non-linear classification using the kernel
trick, implicitly mapping their inputs into high-dimensional
feature spaces [27], [28]. In order to improve the stability
and interpretability of the disk failure prediction model, Li
et al. [29] propose a new hard drive failure prediction model
based on Classification And Regression Trees (CART). The
Regression Tree can give the disk a heath assessment rather
than a simple classification result. Gradient Boosted Regres-
sion Tree (GBRT [30]) has been proposed to model disk fail-
ure [31], [32], where GBRT is a gradient descent boosting
technique based on tree averaging, and is an accurate and
effective ML method that can used for both regression and
classification problems. To avoid over-fitting, the GBRT
algorithm trains many tree stumps as week learners, rather
than full, high variance trees. Moreover, the Regularized
Greedy Forests (RGF [33]) approach is a powerful, non-
linear classification method. It is a variation of GBRT in
which the structure search and optimization are decoupled
and it utilizes the concept of structured sparsity to perform
greedy search directly over the forest nodes based on the
forest structure. Mirela Madalina Botezatu et al. employ this
method to model disk failure and achieve good results [34].
Xu et al. [35] present a Recurrent Neural Networks (RNN
[36], [37]) method to leverage sequential information for
predicting hard disk failure. They use a dataset collected
from a real-word data center containing 3 different disk
models represented asW , S andM and establish the predic-
tion model for those disk models, respectively. They model
the long-term dependent sequential SMART data and dem-
onstrate the capability of their predictive model. More
recently, Mahdisoltani et al. [38] propose to use traditional
ML algorithms to predict disk sector errors using SMART

Fig. 1. The scalable SMART data collection framework deployed in the
Tencent Inc. data center.

2. http://wiki.open.qq.com/wiki/TGW
3. https://github.com/tonycody/tencent-tdw

ZHANG ET AL.: MINORITY DISK FAILURE PREDICTION BASED ON TRANSFER LEARNING IN LARGE DATA CENTERS OF... 2157

http://wiki.open.qq.com/wiki/TGW
https://github.com/tonycody/tencent-tdw

datasets. Our goals in this paper are to make whole disk fail-
ure predictions which require much higher accuracy due to
cost consideration. Note that all these studies focus only on
HDDs and none of them has investigated NVMe SSDs.

As previously mentioned, the need for transfer learning
occurs when there is a limited availability of training data
from a new disk model, which regularly happens to evolving
storage systems. With big data repositories becoming more
prevalent, using existing datasets that are related to, but not
exactly the same as, a target domain of focus point or interest
makes transfer learning solutions an attractive approach.
There are various applications in which transfer learning has
been successfully applied to, including multi-language text
classification [39], [40], image classification [41], human activ-
ity classification [42], text sentiment classification [43], Web
document classification [44] and so on. Unsurprisingly, in
recent years, researchers have started to use transfer learning
method to solve minority disks failure prediction problems
[20], [34].MirelaMadalina Botezatu et al. proposed the sample
selection de-biasing method [34], which we denoted as SSDB
in our paper. Its main idea is to train a classifier that can rank
the observations linked to a specific diskmodel based on their
similarity to samples pertaining to the target disk model. This
method is also a single-source domain transfer learning
method in spirit similar to TLDFP algorithm. FLF Pereira et al.
proposed the multi-source domain transfer learning for
Bayesian network [20], which we denoted as TLBN in our
paper. It proposes a new source building method called clus-
tering-based information source and groups several HDDs
according to their similarity to build a novel information
source for transfer learning. Although thesemethods also pro-
vide a solution to minority disks failure prediction, we have
compared TLDFPwith them and show our approach delivers
better predictive performance. Besides, note that our work is
the first to systematically (What, Why, How andWhen) propose
using the transfer learning method to solve minority disks
failure prediction based on SMART attributes for large-scale,
active, evolving storage systems.

3 PRELIMINARY STUDY AND MOTIVATION

In this section, we define minority disk datasets via experi-
mental examination, investigate the distributions of SMART
data, and justify why we use transfer learning for minority
disk failure prediction.

3.1 Minority Disk Datasets

As mentioned previously, we aim to improve disk failure pre-
dictive performance for a disk dataset which has insufficient
training data and where traditional ML algorithms deliver

suboptimal performance. In this section, we give the definition
of aMinority Disk Dataset and quantitatively evaluate them via
experimentally showing the training loss and testing loss [45] of
four popular ML algorithms (GBRT, RGF, SVM, and RNN) in
disk failure prediction [28], [31], [34], [35]. A loss is a number
indicating how bad a model’s prediction. Note that we have
added a regularization term to construct the loss function in all
four methods which can effectively prevent over-fitting caused
by the model having a very large number of parameters. Fig. 2
illustrates the results. As can be seen from the figure, with the
dataset increasing, the loss of training set increases to a certain
extent while the loss of testing set decreases because the
increase in dataset leads to more complex situations where
the training model needs to be fitted. More specifically, when
the amount of disks is less than 1,500, the gap between the loss
of training and testing decreases as the dataset enlarges, which
is called over-fitting causedbyminority disks.When the amount
of disks goes over 1,500, the gapbecomes smaller and stabilizes.
Therefore, we can draw the following conclusions: (1) A disk
dataset containing fewer than 1500 disks could lead to over-
fitting which we name it asMinority Disk Datasets; (2) The four
popular traditional ML algorithms cannot deliver satisfactory
performance when the dataset contains fewer than 1,500 disks.
As far aswe know,we are the first to defineminority disk data-
sets and quantitatively evaluate them through extensive data
analysis and experiments. We studied two real data centers
and categorized the disk quantities by the threshold of 1500. As
shown in Table 1, in data center BackBlaze, 91 different disk
models only account for less than 24 percent of all diskswhile 12
models account formore than 76 percent.We call these 91mod-
elsminority disks.A similar observation has been found indata
center ofTencent.

The above description and analysis implies that making
disk failure prediction for minority disks is a realistic prob-
lem that needs to be resolved.

3.2 The Baseline Results of Using Traditional ML
Only Trained on Minority Disk Datasets

In order to investigate the predictive results of using tradi-
tional ML methods only trained on minority disk datasets,
we use 7 minority disk models from 5 disk manufacturers

Fig. 2. The training loss and testing loss of four popular traditional ML algorithms. Note that the y-axis means loss values as the dataset size
increases.

TABLE 1
Characteristics of Disk Population

Data Center Disk Number Disk Models Total Number Percentage

Backblaze � 1500 12 114,570 76.61%
< 1500 91 34,978 23.39%

Tencent � 1500 8 52,235 73.32%
< 1500 52 18,996 26.67%

2158 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 9, SEPTEMBER 2020

to conduct this experiment based on four popular traditional
ML methods: GBRT, RGF, SVM and RNN which include the
popular tree structure algorithms and deep learning algo-
rithms and have been commonly used in disk failure predic-
tion. Note that we only use 70 percent of the minority disk
datasets as training sets and the remaining 30 percent as test-
ing sets without any other datasets. Besides, we consistently
use the following acronyms for these five vendors throughout
the paper which are also used in their disk models: Hitachi
(HDS) and Seagate (STX) from Backblaze, Hitachi Global Stor-
age Technologies (HGST), Western Digital (WDC) and SAM-
SUNG come from Tencent. As can be seen from the Table 2,
none of the four traditional ML methods can deliver a high
FDR and low FAR. We know the poor predictive perfor-
mance due to over-fitting caused by using small homoge-
neous datasets based on traditionalML.

We have also conducted experiments to directly use
large datasets of the available majority disks to predict
minority disk failures based on the four popular tradi-
tional ML techniques, the performance is not satisfactory
either (details are shown in Fig. 6 in Section 5). To under-
stand the reason, we analyze the SMART data distribu-
tions as below.

3.3 SMART Data Distributions

It is interesting to observe that the values of SMART attributes
indicating disk health conditions of different disk models from
the samemanufacturer exhibit similar distribution patterns.We
have analyzed both the publicly available SMART dataset from
Backblaze and a dataset from the data center of Tencent. Fig. 3
shows the revealed SMART data distribution patterns. Each

subfigure shows a pair of SMART attribute values’ distribution
pattern (we also investigatemany other different SMART attrib-
utes, which lead to similar results) of two different disk models
from the samemanufacturer and each circle is used to highlight
different disk models. As it is evidently shown, the relationship
between Abnormal and Normal states indicated by the two
SMART attributes of two disk models shows a similar pattern,
with only the difference of SMART values being in different
ranges. Figs. 3a, 3b, 3c and 3d respectively show that theAbnor-
mal state is above, below, and to the left of the Normal state for
the two diskmodels from the samemanufacturer. Furthermore,
the SMART values are distributed in different spectrums. Take
Fig. 3b Seagate as an example, the distribution region of model
STX-B is right-lower than that of model STX-A. Note that even
if we ignore the y-axis (smart_241_Raw, LBAs written), there
are still differences in thedistributionof SMARTdata from these
two different disk models (the distribution region of model
STX-B is right to that of model STX-A). Traditional ML algo-
rithms deliver good predictive performance only when both
training and testing data are drawn from the same distribution
[46]. Therefore, they fail to perform satisfactorily when it comes
to cross-diskmodels failure prediction due to different distribu-
tion spectrums as revealed in Fig. 3.

In order to take an in-depth look at the distributions of
SMART values of different disk models from the samemanu-
facturer and further motivate the transfer learning from one
disk model to a different model and explain why we use
transfer learning for minority disks failure prediction, we
investigate the differences in the distributions of SMART data
and present a intuitive analysis comparing different disk
models from the same manufacturer. Probability Density

TABLE 2
The Results of Minority Disk Failure Prediction via Traditional ML on SATA SSDs From STX andWDC and NVMe SSDs From

SAMSUNG

Type Methodology Manufacturer FDR FAR

HDD GBRT HDS/STX/HGST/WDC 27.3%/37.5%/31.6%/38.5% 29.0%/19.4%/17.6%/21.8%
RGF HDS/STX/HGST/WDC 36.4%/50.0%/47.4%/53.8% 44.3%/22.4%/ 53.4%/36.6%
SVM HDS/STX/HGST/WDC 50.0%/41.7%/57.9%/30.8% 20.7%/47.8%/ 24.0%/43.7%
RNN HDS/STX/HGST/WDC 40.9%/33.3%/36.8%/30.8% 28.3%/31.3%/ 39.7%/38.7%

SSD GBRT STX/WDC/SAMSUNG 23.7%/38.2%/52.8% 25.5%/27.2%/40.1%
RGF STX/WDC/SAMSUNG 35.6%/46.0%/60.4% 20.5%/32.7%/30.1%
SVM STX/WDC/SAMSUNG 15.6%/39.5%/47.2% 16.3%/41.4%/22.4%
RNN STX/WDC/SAMSUNG 40.7%/52.6%/62.3% 14.3%/22.5%/30.9%

Fig. 3. The distributions of two SMART attributes of two disk models from four manufacturers, i.e., Hitachi, Seagate, HGST, and WDC. Each subfig-
ure shows the Abnormal and Normal states indicated by a randomly chosen pair of SMART attributes of two disk models. These four subfigures indi-
cate that two disk models of each manufacturer exhibit similar failure patterns represented by the two SMART attributes distributions and the
SMART data are distributed in different value ranges, which motivates us to apply transfer learning to make cross-model disk failure predictions.

ZHANG ET AL.: MINORITY DISK FAILURE PREDICTION BASED ON TRANSFER LEARNING IN LARGE DATA CENTERS OF... 2159

Function statistic (PDFs) is frequently used to describe the
intensity of continuous random variable. For easy observa-
tions, we use the Gaussian Kernel Density Estimation (GKDE)
as the kernel function,which results in smooth curves.

Fig. 4 shows the PDFs of the value of a SMART attribute of
two models from four manufactures. The distributions of the
SMART data of two disk models are different but similar in
that they show similar spikes though at different points and
magnitudes. We refer to this phenomenon as covariate shift
[47] among relevant predictors between different models
from the samemanufacturer. Therefore, we conclude that dif-
ferent disk models from the same manufacturer exhibit

varying SMART value distributions. For the problem of
minority disks failure prediction, the implication is that a pre-
diction model built upon traditional ML algorithms using
training data from one disk model is not applicable to other
different models even from the same manufacturer. There-
fore, to leverage a prediction model for a disk model built on
adequately sufficient SMART training data to build a predic-
tivemodel for a differentmodel forwhich there is only limited
training data, we could employ transfer learning algorithm
which is inherently suitable for transferring health state infor-
mation from one disk model to another disk model from the
samemanufacturer.

Fig. 4. PDFs of a SMART attribute value of two different disk models from four manufacturers.

Fig. 5. The overall structure of TLDFP, which contains the transfer learning algorithm TrAdaBoost and the Instances Map to Disk Algorithm (IMDA).
Source domain contains a fully labeled dataset of majority disk model A and a small portion of labeled dataset of minority disk model B. The testing
data in the target domain is the remaining unlabeled dataset of minority disk model B.

Fig. 6. The results of FDR, FAR, F-Score and AUC-ROC using four disk models based on TLDFP compared to four traditional ML methods.

2160 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 9, SEPTEMBER 2020

Considering the above regularity of relationship between
Abnormal and Normal disk states and varying SMART data
distribution spectrums across different disk models, we are
motivated to apply transfer learning to predict disk failures
for minority disks using the knowledge from the majority
disks, which we name as TLDFP.

4 MINORITY DISK FAILURE PREDICTION

In this section, we answer the questions of how and when to
use transfer learning for minority disk failure prediction.
Specifically we detail our transfer learning method for
minority disks failure prediction TLDFP, followed by our
method of selecting source domain based on KLD.

4.1 TLDFP: Transfer Learning for Minority Disk
Failure Prediction

We elaborate on how to use transfer learning to predict
minority disk failure in this section. Fig. 5 illustrates the over-
all structure of our proposed predictive method TLDFP. It
main consists of two components: a transfer learning algo-
rithm TrAdaBoost [48] and an instance map to disk algorithm
IMDA. Note that we randomly divide the SMART data of
minority disk model B into two parts. The first part includes
a small portion (e.g., 10 percent) of the labeled target domain
data, which is then put together with the data of majority
disk model A as a combined source domain to establish the
relationship between the two different disk models so as to
reduce variation between their distributions. The other part
contains the remaining unlabeled data as testing data. Then
we use our TLDFP method to establish a predictive model
and make failure prediction for the minority disk model B
training data. With the above description, the problem we
aim to solve in this paper can then be formally defined as:
given enough labeled training data Sa, a small amount of
labeled training Sb and unlabeled testing data Tb, the main
objective is to leverage the useful portions of Sa and Sb and
train a classifier C which achieves a good performance of
classifying the unlabeled training set Tb. The TrAdaBoost is
an extension of the traditional ML method AdaBoost. Ada-
Boost is an iterative algorithm and its key procedure includes
training several different weak classifiers with different
weights and then consolidating those weak classifiers to a
strong classifier to boost predictive performance. According
to the AdaBoost algorithm, it first gives an initial weight to all
training instances. When an instance in the source domain is
found to be misclassified, we consider this instance as
difficult to classify and thus increase its weight. In this
way, the significance of this instance will become greater in
the next iteration. However, AdaBoost is a traditional ML
method that can only build effective predictive model for
testing data which has the same distribution as the training
data. In the transfer learning algorithm TrAdaBoost, when an
instance of disk model B from the combined source domain
is misclassified, we increase the weight of this instance in the
next iteration, which is similar to AdaBoost. However,
when an instance of disk model A is mispredicted, the
instance is assumed to be different from disk model B.
Therefore, unlike Adaboost, it decreases the weight of that
instance in the next iteration to reduce its influences on the

target domain. The details of TrAdaBoost are showed in
Algorithm 1.

Algorithm 1. TrAdaBoost Algorithm

Require:
The source domain containing labeled disk model A data
Sa ¼ fa1; a2; . . . ; ang, a small amount of labeled disk model
B data Sb ¼ fbnþ1; bnþ2; . . . ; bnþmg, the target domain con-
taining all unlabeled disk model B data Tb, and the maxi-
mum iteration T .
Note: n is the number of disk model A data and m is the
number of disk model B data in the source domain

1: Begin;
2: Initialize weights distribution Wt

j , where t is the sequence
of iteration, i.e.,W 1 ¼ fw1

1; w
1
2; . . .w

1
nþmg:

w1
j ¼

1=n; j ¼ 1; 2; . . . ; n
1=m; j ¼ n; nþ 1; . . . ; nþm

�
(1)

3: Set ’ ¼ 1=ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 lnn=T

p þ 1Þ;
4: for t ¼ ½1; T � do
5: Set the weights of instances as:

It ¼ Wt

Pj¼nþm
j¼1 wt

j

(2)

6: Apply the basic learner to Sa and Sb with weights of
instances It, and also to the unlabeled target domain
disk model B dataset Tb. We can achieve a classifier
ht;

7: Calculate the error rate of ht on the labeled source domain
disk model B datasets Sb, note that cðxjÞ is the true label
of the jth SMART sample xj :

�t ¼
Xnþm

j¼nþ1

jcðxjÞ � htðxjÞjwt
jPnþm

j¼nþ1 w
t
j

(3)

8: Set ’t ¼ �t=ð1� �tÞ: Note that if �t is greater than 1/2, it
needs to be reset to 1/2;

9: Update the weight distributions as below:

wtþ1
j ¼ wt

j’
jcðxjÞ�htðxjÞj; j ¼ 1; . . . ; n

wt
j’

jcðxjÞ�htðxjÞj
t ; j ¼ n; . . . ; nþm

(
(4)

10: end for
11: Map the instance to disk results using IMDA;
Ensure: Classify the disk as good(-1) or failed(1);

The input of the TrAdaBoost algorithm includes two disk
models’ training and testing data, and the maximum num-
ber of iterations T . It initializes the weights of training data
and performs the iteration process. In each cycle, we use the
basic learner, such as GBRT, RGF, SVM, RNN, and the
weight distribution It to build a classifier hb on testing data
and calculate the error rate on the labeled source domain
disk model B dataset Sb. Lastly, we set the new weights
based on the previous iteration results and the error rate.
Note that if majority disk model A instances of the source
domain are misclassified, they are considered to be different
from the minority disk model B. As a result, we reduce the
weights of these instances in order to reduce their influences

ZHANG ET AL.: MINORITY DISK FAILURE PREDICTION BASED ON TRANSFER LEARNING IN LARGE DATA CENTERS OF... 2161

on the predictive model in the next iteration. Specifically,
we multiply the instances by wt

j’
jcðxjÞ�htðxjÞj, where ’ ranges

from 0 to 1 and cð�Þ is the true label of a SMART attribute.
On the other hand, if the disk model B instances in the
combined source domain are misclassified, we increase
the weights of these instances to gain more attention in the
next iteration through multiplying these instances by

wt
j’

jcðxjÞ�htðxjÞj
t , where ’t is greater than 1. After several iter-

ations (we will investigate the impact of this value on the
predictive performance in Section 6.4), the instances of
majority disk model A in the source domain that fit minor-
ity disk model B will gain greater weights and those differ-
ent from disk B will have smaller weights.

Since the inputs of the failure prediction model include
many SMART instances from a lot of disks at different
moments, each output result indicates the prediction result
for a particular instance rather than the disk health state.
Therefore, we need to map the results of multiple SMART
instances to the final disk state. To achieve that, we propose
an Instances Map to Disk Algorithm (IMDA) by extensive
experiments and analysis using the majority disk dataset in
the training progress. IMDA determines the final health
state of a minority disk in testing progress (practical use).
Specifically, it performs a prediction for each minority disk
once every day, if any instance of one disk is predicted as a
failure, the corresponding disk will be considered as failure.
Besides, we discuss other alternative options are discussed
in Section 6.5 and our method outperforms all others in
terms of predictive result.

4.2 Source Domain Selection Based on KLD

When can we use TLDFP for minority disks failure predic-
tion? To answer this question, we use Kullback Leibler
Divergence (KLD), which is a metric measuring the diver-
gence degree of one probability distribution from another
expected probability distribution [49]. KLD values indicate
the disparities between two random variable distributions.
A zero KLD value means that the two random distributions
are the same, while the KLD value increases as the differen-
ces between two random distributions widen. In general,
the bigger a KLD value is, the greater differences between
two distributions will be and the more difficult the knowl-
edge transfer between two distributions will be. Table 3
gives KLD values corresponding the PDFs showed in Fig. 4.
Table 3 shows that all KLD values are not equal to zeros,
confirming that the respective SMART data distributions
are indeed not the same. Note that as indicated in Table 3,
the KLD value trend, which is consistent with the PDF dif-
ferences increase from HDS, to STX, to HGST, to WDC
shown in Fig. 4. Considering that TLDFP is a method to
decrease the data distribution differences between source

domain and target domain, so we infer that the bigger KLD
value between one disk model and another is, the harder
TLDFP can transfer experience. The predictive results in
Section 5.2 proves our conjecture and we also conduct
detailed experiments and discussions in Section 6.1. There-
fore, the value of KLD can guide us to select appropriate
majority disk dataset (source domain) for training the
minority disk failure predictive model. As far as we know,
we are the first attempt to present a novel method based on
KLD values as an effective indicator to select proper major-
ity disk models and improve disk failure prediction. Note
that we also use the Jensen-Shannon Divergence (JSD) and
Wasserstein Distance (WD) but find KLD is the best metric
to guide us to select an appropriate majority disk dataset
and results in better prediction performance. More specifi-
cally, JSD (WD) only achieves on average 79.6 percent (83.1
percent) FDR and 3.2 percent (2.1 percent) FAR. Our evalu-
ation results in Section 6.1 demonstrate that our approach of
using KLD is very effective and practical.

5 EXPERIMENTAL EVALUATION

In this section, we evaluate the predictive performance of
TLDFP. We first describe the methodology, followed by the
experimental results of comparing TLDFP against four ML
algorithms and two state-of-the-art transfer learning meth-
ods according to the evaluation metrics.

5.1 Methodology

We describe the characteristics of three real-world SMART
datasets in our experiments and SMART attributes selec-
tion. Then we introduce four evaluation metrics commonly
used in ML and some testing methods we use to conduct all
our experiments.

5.1.1 Datasets and Attribute Selections

Datasets. Defining a failed disk is a difficult task in varying
deployment scenarios. Based on experience and post-mor-
tem analysis in Tencent Inc., we define a disk that cannot
function properly as failed if it was replaced as part for
repair. Specifically, it includes three cases: the disk has a
write operation error, the system loses connection to the
disk and an operation (i.e., disk scrubbing, read and write
calls) exceeds the timeout threshold. Note that not all sam-
ples of failed disks need to be used in the training set; other-
wise, those good samples of failed disks which are far from
the actual failure would disturb the training of the detection
model. Therefore, only the last 14 continuous samples (our
goal is to predict disk failure 14 days in advance) before the
moment of failure of the training disks can be regarded as
failed samples. We use three SMART datasets from real-
world data centers for evaluations. Table 4 gives the overall
characteristics of the two datasets. Every disk is classified
either as “Good” or “Failed”. “Sample” indicates SMART
records. Each good disk or failed disk has many SMART
records. As the original dataset has more samples of good
disks than failure disks, we use majority class under-
sampling to improve training in the case of imbalanced clas-
ses to create training datasets. We have chosen a 1:3 ratio of
failure disk to good disk [38]. When performing the training
in traditional ML method, we divide the data into 70 percent

TABLE 3
The KLD Values of the PDFs in Fig. 4

Source Domain Target Domain SMART Attribute KLD

HDS �A HDS �B 5_RAW 0.61
STX �A STX �B 190_RAW 0.89
HGST �A HGST �B 197_RAW 1.35
WDC �A WDC �B 194_RAW 0.56

2162 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 9, SEPTEMBER 2020

training and 30 percent testing data for our experiments which
is in line with existing work [20]. Note that all the results of
our experiments are obtained by cross-validation [50] in
order to avoid fortuitous accident which is common used in
ML. Table 5 lists our chosen disks for evaluations.

SMART Attribute Selections. Each SMART observation
can contain up to 30 meaningful SMART attributes. How-
ever, some attributes are irrelevant to our disk failure pre-
dictive model because they are immutable or have not
experienced noticeable abnormal changes. Therefore, we
selectively keep those attributes that are relevant to the disk
health state according to a feature selection process based
on Principle Component Analysis (PCA) while ignoring
other irrelevant attributes. The selected SMART attributes
of HDDs, SATA SSDs and NVMe SSDs are listed in Table 6.
For each SMART sample, we use the Normalized Value and
Raw Value. The normalized value typically represents the
current value of an attribute. However, certain normalized
values lose accuracy when transformed from the raw value
and some raw values are more sensitive to the predictive
model. We also use other methods of feature selection like
[20], [34], [38]. However, the impact on the experimental
results is not significant, so we do not discuss further due to
limited space.

In addition, different SMART attributes have different out-
put ranges, which will lead to different impacts on the predic-
tivemodel. In order tomake a fair comparison among different
SMART attributes in our disk failure predictivemodel, we nor-
malize the range of all selected SMART attributes using the
min-max scalingwhich is in linewith existingwork [38]

xnorm ¼ x� xmin

xmax � xmin
;

where x is the original value of a SMART attribute, xmax and
xmin are the maximum and minimum value of the attribute
in the training set, respectively.

5.1.2 Evaluation Metrics

Confusion matrix [51] is a tool of visualization for inter-
preting the performance of machine learning algorithms.

Each column in a confusion matrix denotes the classified
true class and each row denotes the predictive class.
Table 7 shows the confusion matrix used in disk failure
prediction. We refer to a failed disk sample as a Positive
instance (denoted as “P”), and a good disk sample as
Negative instance (denoted as “N”). The prediction result
takes on only two values: True (denoted as “T”) or False
(denoted as “F”). Therefore, “TP” standing for “True
Positive”, means that a failed disk is correctly predicted
and “FP” standing for “False Positive”, means that a
good disk is falsely predicted as a failed disk. By a simi-
lar reasoning, we can get the meanings of both “FN”
and “TN”. Using the statistics information about the
four metrics, we can construct many evaluation criteria
which are often utilized in judging machine learning
algorithms. In our evaluations, we use the following four
metrics to report the results in our experiments which
are commonly used for evaluating the capability of a
classification model in ML [52].

TABLE 4
SMART Datasets

Data center Duration Good Good Sample Failed Failure Sample

BackBlaze 50 months 141,891 106,867,099 7,657 7,689
Tencent 26 months 68,436 774,994,430 2795 31,574,341

TABLE 5
Selected Disk Models Used in Evaluations

TABLE 6
SMART Attributes of HDD, SATA SSD, and NVMe SSD

Selected for Our Evaluations

Type #ID SMART Attribute Name Attribute type

HDD 001 Raw Read Error Rate Normalized&Raw
003 Spin-Up Time Normalized
005 Reallocated Sectors Count Normalized&Raw
007 Seek Error Rate Normalized&Raw
009 Power-On Hours Normalized&Raw
184 I/O Error Detection and Correction Normalized&Raw
187 Reported Uncorrectable Errors Normalized&Raw
188 Command Timeout Raw
189 High Fly Writes Normalized&Raw
190 Airflow Temperature Normalized&Raw
193 Load/Unload Cycle Count Normalized&Raw
194 Temperature Normalized&Raw
197 Current Pending Sector Count Normalized&Raw
240 Head Flying Hours Raw
198 Offline Uncorrectable Sector Count Normalized&Raw
241 Total LBAs Written Raw
242 Total LBAs Read Raw

SATA
SSD

001 Raw Read Error Rate Normalized&Raw
005 Retired Block Count Normalized
009 Power On Hours Count Normalized&Raw
012 Power Cycle Count Normalized
171 Program Fail Count Normalized&Raw
172 Erase Fail Count Normalized&Raw
174 Unexpected Power Loss Count Normalized&Raw
177 Wear-Range Data Normalized&Raw
187 Reported Uncorrectable Errors Normalized&Raw
188 Command Timeout Normalized
195 On the Fly Reported Uncorrectable

Error Count
Raw

196 Reallocated Event Count Normalized&Raw
197 Read Failure block Count Normalized&Raw
206 Write Error Rate Normalized
208 Erase Count Average Normalized&Raw

NVMe
SSD

001 Temperature Normalized&Raw
002 Available Spare Normalized
003 Available Spare Threshold Normalized
004 Percentage Used Normalized
005 Controller Busy Time Normalized&Raw
006 Power Cycles Normalized&Raw
007 Power On Hours Normalized&Raw
008 Unsafe Shutdowns Normalized&Raw
009 Media and Data Integrity Errors Normalized&Raw
010 Error Information Log Entries Normalized&Raw

ZHANG ET AL.: MINORITY DISK FAILURE PREDICTION BASED ON TRANSFER LEARNING IN LARGE DATA CENTERS OF... 2163

FDR. Failure Detection Rate (FDR ¼ TP
TPþFN) also called

recall rate. It captures the proportion of true failed disks that
are correctly predicted as failed. The higher the FDR is, the
better the model is.

FAR. False Alarm Rate (FAR ¼ FP
FPþTN), the proportion of

good disks that are falsely predicted as failed. The lower the
FAR is, the better the model is.

F-Score. F-Score is a balance between FDR and Prediction
Precision (PP ¼ TP

TPþFP). PP is the proportion of predictive
failed disks that are correctly predicted as failed. Therefore,
the specific calculation formula of F-Score is 2�FDR�PP

FDRþPP . The
higher the F-Score is, the better the model is.

AUC-ROC Curve. The Area Under the Curve-Receiver Oper-
ating Characteristic (AUC-ROC) curve is a performance mea-
surement for classification problem at various threshold
settings. ROC is a probability curve and AUC represents
degree or measure of separability. It is plotted with FDR
against the FAR where FDR is on y-axis and FAR is on the
x-axis. In disk failure prediction, a higher the AUC means
the model is better at distinguishing failed and good disks.

5.1.3 Testing Methods and Configurations

To verify the effectiveness of our proposed TLDFP, we con-
duct experiments in three scenarios: 1) to use traditional ML
methods only trained on the minority disk datasets, 2) to
compare TLDFP with traditional ML techniques (baseline),
and 3) to compare TLDFP with other transfer learning
approaches. The settings are described below.

1) Traditional ML methods only trained on minority disk:
The detailed description see Section 3.2.
2) TLDFP with traditional ML techniques:
In this scenario, we conduct experiments to investigate the

performance of minority disks failure prediction based on
four traditional ML algorithms using large heterogeneous
datasets for training from both different disk models and the

same disk manufacturer. Table 8 shows the training and test-
ing datasets. Note that we randomly choose 10 percent testing
datasets for trainingwith all training datasets.

3)TLDFP with other transfer learning approaches:
In addition to traditional ML techniques, we also com-

pare our TLDFP with two state-of-the-art transfer learning
methods (SSDB and TLBN) of predicting minority disks fail-
ure. Note that we use the same datasets for the two methods
in [34] and [20] for fair comparison in all our experiments.

5.2 Experimental Results

In this section, we show the HDD, SATA SSD andNVMe SSD
results of the TLDFP compared to traditional ML methods
and other transfer learningmethodswith four evaluationmet-
rics mentioned in Section 5.1.2 respectively. Note that we had
showed the poor baseline results of using traditional ML methods
only trained on the minority disk datasets in Section 3.2.

5.2.1 Evaluations Compared to Traditional

ML Approaches

� FDR/Recall Rate: We conduct experiments to investi-
gate the FDR of TLDFP and four popular traditional
ML methods using four HDD models from two real
data centers. As can be seen from the Fig. 6a, none of
the four traditional ML methods can deliver a high
FDR using large heterogeneous datasets. However,
the TLDFP use the above GBRT, RGF, SVM, RNN
algorithms respectively as the basic learners all
achieved higher FDR.

� FAR: Note that the goal of our TLDFP is not only to
achieve high FDR but also low FAR for minority disk
failure prediction. The results of FAR are showed in
Fig. 6b. All other methodologies show higher FAR
which is unacceptable in realistic data centers. Fur-
ther, none of the four traditional ML methods can
deliver both a high FDR and a low FAR on minority
disks except for TLDFP. Based on the analysis in
Section 3.3, we know the poor predictive perfor-
mance caused by the traditional ML methods do not
have the ability to reduce the distribution difference
between the minority disk datasets in target domain
and majority disk datasets in source domain.

TABLE 7
Confusion Matrix Used in Disk Failure Prediction

True failed disk True good disk

Predictive failed disk TP FP
Predictive good disk FN TN

TABLE 8
Datasets of Minority Disk Failure Prediction Using Large Heterogeneous Dataset Based on Traditional ML

Data Center Manufacturer Training Disk
Model

Testing Disk
Model

Training set Testing set

Backblaze Hitachi HDS-A HDS-B 4774 good HDS-A and 225 failedHDS-A 105
good HDS-B and 7 failedHDS-B

943 good HDS-B and 65
failed HDS-B

STX STX-A STX-B 37006 good STX-A and 3157 failed STX-A 22
good STX-B and 8 failed STX-B

200 good STX-B and 73
failed STX-B

Tencent HGST HGST-A HGST-B 13367 good HGST-A and 451 failedHGST-A 68
good HGST-B and 6 failedHGST-B

611 good HGST-B and 57
failedHGST-B

WDC WDC-A WDC-B 6847 goodWDC-A and 259 failedWDC-A 47
goodWDC-B and 4 failedWDC-B

425 goodWDC-B and 38
failedWDC-B

STX SSD-S-A SSD-S-B 8672 good SSD-S-A and 397 failed SSD-S-A 92
good SSD-S-B and 14 failed SSD-S-B

830 good SSD-S-B and
121 failed SSD-S-B

WDC SSD-W-A SSD-W-B 13972 good SSD-W-A and 489 failed SSD-W-A
68 good SSD-W-B and 8 failed SSD-W-B

611 good SSD-W-B and
68 failed SSD-W-B

SAMSUNG NVMe-A NVMe-B 2653 good NVMe-A and 136 failedNVMe-A 39
goodNVMe-B and 5 failedNVMe-B

353 good NVMe-B and 48
failed NVMe-B

2164 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 9, SEPTEMBER 2020

� F-Score: Fig. 6c compares the F-Score of the different
prediction models on the two datasets using four disk
models. As can be seen, TLDFP has much higher F-
Score than other different traditional ML methods. As
an example, the F-Score of TLDFPwith RBF as its basic
learner TLDFP(RBF) is almost 9 times as high as the
algorithm RBF forWDC disks from data center of Ten-
cent. As we recall in Section 4.2, the bigger KLD value
of HGST dataset will lead to more difficult knowledge
transfer. This conclusion is also confirmed by the F-
Score observations given that the F-Score of TLDFP for
HGST are generally lower that other cases. We will further
discuss this issue in detail in Section 6.1.

� AUC-ROCCurve:Weplot theAUC-ROC curve in Fig. 6d
using WDC disk model in Tencent. As it is shown, the
AUC-ROC curve of TLDFP are all close to the top left
corner and TLDFP(RGF) achieving the higher AUC
value compared to other two transfer learningmethods.
The four traditional ML methods achieved lower AUC
values, reflecting their poor classification ability in per-
forming cross-diskmodel failure predictions.

5.2.2 Evaluations Compared to Other Transfer

Learning Approaches

As it is shown in Table 9,TLDFP shows higher FDR/F-Score and
lower FAR than SSDB and TLBN. The reason is that although
SSDB matches the distribution of the source domain with the
target domain, it only ranks the observations in source domain,
while TLDFP makes more effective weight adjustments to
every observation. Considering the TLBN is a multi-source
domain transfer learningmethod and TLDFP is a single-source
domain transfer learning method, we analyze the KLD values
between each disk model in the source domain and the minor-
ity disk model in the target domain. The results are showed in
Table 10. We find the data in the disk model with a large KLD
value in the source domain (such as ST320005XXXX and
ST1500DL003). However, TLDFP only uses the disk model
which has the smallest KLD value as source domain. A large
KLD value leads to difficulties forTLBN inmitigating the distri-
bution differences between the source and target domains. This
result also shows that single-source domain transfer learning
performs better than multi-source domain transfer learning
and there is a goodmetric (e.g, KLD) for evaluating differences
between different domains.

5.2.3 Evaluations on SATA SSD and NVMe SSD

In addition to the experimental results of HDDs failure predic-
tion, we also conduct experiments on SATA SSD and NVMe

SSD in the three scenarios mentioned in Section 5.1.3 and verify
the good performance of ourTLDFP. Table 2 illustrates the poor
results of first scenarios (see Section 3.2). As can be seen from
the Table 11, whether with traditional ML methods or other
transfer learning approaches, our TLDFP can achieve higher
FDR, F-Score, AUC and lower FAR at same time. That shows the
effectiveness of ourTLDFP ondifferent storagemedia.

In summary, the results have demonstrated that TLDFP
can effectively solve the problem ofminority disk failure pre-
diction with much better predictive performance than tradi-
tional ML methods and two other transfer learning methods
for the same datasets. More specifically, TLDFP not only
delivers high FDR, F-Score and AUC, but also shows a rather
low FAR at the same time. The main reason for the compari-
son results is that our TLDFP algorithm is able to utilize the
small number of labeled target disk data to establish the rela-
tionship between source and target diskmodels, which helps
the large heterogeneous disk model to be well trained
toward the characteristics of the minority target disk model.
In other words, TLDFP reduces the difference in data distri-
bution between the source and target domain, which we will
further discuss in Section 6.2. Note that we don’t include the
results of all methods or disk models due to space limit. From all
our tests, TLDFP demonstrates the best performance.

6 OBSERVATIONS AND SENSITIVITY STUDY

In this section, we provide several additional sensitivity
studies from six aspects.

6.1 The Impact of KLD in Source Domain Selection

In order to verify our conjecture in Section 4.2 and further
explain the results in Section 5.2.1 and Section 5.2.2, we ana-
lyze the relationship between KLD and F-Score in TLDFP

TABLE 9
The FDR, FAR, F-Score, and AUC of the Comparisons

Between TLDFP and SSDB, TLBN

Methods Manufacturer FDR FAR F-Score AUC

TLDFP (RGF) VS
SSDB

STX 94.9%/
85.8%

1.6%/
3.0%

92.6%/
83.7%

0.93/
0.86

Hitachi 97.1%/
70.8%

0.9%/
5.4%

95.7%/
69.0%

0.96/
0.81

TLDFP (RGF) VS
TLBN

STX 91.3%/
73.1%

0.6%/
2.6%

91.3%/
70.4%

0.91/
0.83

TABLE 10
KLD Values Between Each Disk Model in the Training Sets and
the Minority Disk Model in the Testing Set Using Method TLBN

Training Disk
Model

Testing Disk
Model

SMART
Attribute

KLD

ST320005XXXX ST33000651AS 5_RAW 5.6
ST32000542AS 190_RAW 2.7
ST1500DL003 188_RAW 7.1
ST31500341AS 190_RAW 1.5
ST31500541AS 197_RAW 0.83

TABLE 11
The Results of Evaluations on SATA SSD and NVMe SSD

Model Methodology FDR(%) FAR(%) F-Score(%) AUC

SSD-S-
B

TLDFP(GBRT) 92.6 0.8 93.6 0.88

GBRT/SSDB/
TLBN

18.5/68.9/

65.2

34.2/12.3/

13.6

10.6/54.5/

50.6

0.39/0.71/

0.68

SSD-W-
B

TLDFP(RGF) 93.4 1.2 91.6 0.90

RGF/SSDB/
TLBN

28.9/76.3/
82.9

41.4/13.5/
11.8

11.7/56.2/
57.6

0.42/0.73/
0.75

NVMe-
B

TLDFP(RNN) 94.3 1.0 93.4 0.91

RNN/SSDB/
TLBN

50.9/66.0/

77.4

46.4/20.2/

16.8

20.6/41.9/

51.2

0.51/0.58/

0.6

ZHANG ET AL.: MINORITY DISK FAILURE PREDICTION BASED ON TRANSFER LEARNING IN LARGE DATA CENTERS OF... 2165

using several minority disk models as testing disk model and
large heterogeneous datasets of one disk model for training
from the same manufacturer in two real data centers. The
results are shown in Fig. 7a and Table 12. We observed that
the value of F-Score keeps rising as the value ofKLDdecreases.
In other words, it shows that the smaller the difference in
SMART data distribution between the source and target
domain, the easier knowledge transfer in TLDFP can be.
Therefore, we use KLD as an effective indicator for source
domain selection of large heterogeneous dataset and usually
select the onewhich has the smallestKLD value.

6.2 The Change of KLD Value in TLDFP

In order to more intuitively observe how the TLDFP method
reduces the difference in data distribution between the source
domain and the target domain, we record the value of KLD
between the training set and the dataset after each iteration of
the model during the training process of TLDFP(GBRT), as
illustrated in Fig. 7b. We can see that as the number of itera-
tions of the model increases, the KLD value between the
source domain and the target domain decreases continuously,
and stabilizes at a smaller valuewhen the number of iterations
is about 22. This shows that our TLDFP model continuously
reduces the difference of the SMART data distribution
between the two domains in the training process, enabling us
to use the large heterogeneous disk data to predict the minor-
ity disk data and realize knowledge transfer.

6.3 Varying Samples from Target Domain

As discussed previously our prediction model TLDFP uses
a portion of labeled dataset from target domain as part of its

source domain dataset. In this section, we investigate how
the percentage number affects predictive performance of
TLDFP. We report the results of TLDFP with RGF as its
basic learner and using the disk data of WDC model from
Tencent data center, as the other three basic learners show
similar results. Fig. 7c shows the relationship between the
FDR and the percentage of target domain data put in the
source domain. As it clearly shows, the FDR increases dra-
matically when the percentage increases from 2 to 10 per-
cent. When the percentage goes beyond 10 percent, the FDR
does not continue to increase but remains a relatively high
level, meaning putting more target domain data to the
source domain does not help further improving predictive
performance. Consequently, we randomly choose 10 percent
target domain data in our previous experiments.

6.4 The Impact of Iterations

The TrAdaBoost algorithm takes an input parameter to cap
the iterations performed by the algorithm. In this section,
we study how the iteration parameter affects predictive per-
formance in terms of F-Score. We report the results of TLDFP
with RGF as its basic learner. Fig. 7d shows how F-Score
changes as the number of iterations varies for different data-
sets. From this figure, we can make similar observations as
in the preceding subsection. As the number of iterations
increases, the F-Score increases quickly and reaches a stable
level at 22 iterations (fast convergence). It also shows that as
the algorithm adjusts instance weights in each iteration,
TLDFP gradually adjusts to converge toward the testing
data. Since the number of 22 represents a inflection point,
we adopt this iteration number in our previous experi-
ments. Note that the number of iterations is not fixed
according to the different datasets and model parameters.
In general, the model would be stopped for training after
the model loss bottoms.

6.5 The Sensitivity Study of IMDA

In Section 4.1, we introduced the algorithm KLD. Specifi-
cally, if any instance is classified as failure, the correspond-
ing disk is considered as failure. Here we conduct
experiments to evaluate the impact of different instances,
specifically, 1 instance, 1/3 of all instances, 1/2 of all
instances, 2/3 of all instances, and all instances being clas-
sified as failure.

The result of this experiment using TLDFP(RNN) based
on the WDC disk model data in Tencent is showed in
Table 13. It is clear that the option we use (one instance fail-
ure indicates the corresponding disk failure) achieves the

Fig. 7. (a) The fitting curves of KLD and F-Score. (b) KLD value decrease in training. (c) The relationship between FDR and percentage of target
domain data drawn into source domain. (d) The relationship between FDR and the number of iterations in the TLDFP.

TABLE 12
The F-Score Varies With the Value of KLD

Data
Center

Method Training
Model

Testing
Model

KLD F-Score

BackBlaze TLDFP
(GBRT)

HGST-K HGST-L 2.67 76.8%
HGST-M 1.76# 85.9%"
HGST-N 0.91# 93.5%"
HGST-O 0.69# 95.7%"
HGST-P 0.47# 97.6%"

Tencent TLDFP
(SVM)

STX-K STX-L 3.57 71.6%
STX-M 2.58# 78.2%"
STX-N 2.26# 83.4%"
STX-O 1.35# 93.1%"
STX-P 1.17# 92.2%#
STX-Q 0.71# 95.3%"
STX-R 0.66# 96.6%"

2166 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 9, SEPTEMBER 2020

best performance. In practice, we perform a prediction for
each minority disk once a day. If any instance of the disk is
predicted as a failure, the corresponding disk will be con-
sidered as failure.

6.6 Cost Benefits

As we have demonstrated so far that TLDFP achieves both
high FDR and low FAR. It is easily understandable that
improving FDR, i.e., disk failures are correctly predicted,
can reduce the probability of data loss occurring. In this
section, we discuss the benefits brought by low FAR in ML
methods. A FAR will trigger responsive procedures to be
launched, e.g., data migration, disk replacement, etc.,
which incurs extra cost to the IT management. Assume
that disk failures are independent events with a probability
of �d and the number of disks in a data center is N . A disk
will fail after a certain period of time, which is called disk
lifespan. For instance, the Tencent’s data centers assume
the lifespan T to be 4-5 years. The disk failure rate over a
period of time is dependent on the time T and �d. There-
fore, we use fðT; �dÞ to denote the failure rate of disks in a
data center that are failed over a period of T . The total
number of failed disks in the period T can be expressed as
N*fðT; �dÞ and the total number of failed disks per unit
time can be described as:

N � fðT; �dÞ
T

:

The total number of good disks is thus given by

N � ð1� fðT; �dÞ
T

Þ:

Given a FAR, the number of all non-faulty disks which are
wrongly predicted to be failed can be described as

FAR �N � ð1� fðT; �dÞ
T

Þ:

Assume cð$Þ is the statistic average cost of replacing one
disk (including many disks out of the warranty period),
which contains the cost of manual replacement c1 and the
cost of a new disk c2 as well as the cost c3 caused by copying
the data from the failed disk to a new disk. The total addi-
tional cost is

Cost ¼ c � FAR �N � ð1� fðT; �dÞ
T

Þ:

Therefore, if FAR = 0, the cost will be 0. On the other hand, if
FAR = 1, meaning all good disks are wrongly predicted to
be failed and replaced, the cost would be maximum. Last
but not the least, the total additional cost caused to the data
center is proportional to the FAR of the prediction model.

The larger FAR is, the more additional cost will be. The tra-
ditional machine learning methods and other transfer learn-
ing methods, lead to an average of 60 and 4 percent FAR,
when they are used to predict disk failures for minority
disks, while our TLDFP achieves an average of 0.5 percent
FAR, which can be translated to 120X and 8X reduction in
additional cost. According to an average cost was estimated
as c = $426 in Tencent data centers in 2018, the Tencent com-
pany can save about $105 to $1,800 milions per year. In
addition, we get a higher FDRwith lower FARwhich means
TLDFP predicts true failed disks as a good disk rarely,
reducing the inestimable cost due to disk failures.

7 CONCLUSION

In this paper, we develop a model called TLDFP to effec-
tively predict minority disk failure leveraging the transfer
learning based on different storage media, where traditional
ML approaches perform poorly. Our main contributions
include: (1) we are the first to define minority disk datasets
and quantitatively evaluate them through extensive data
analysis and experiments in data centers of heterogeneous
disk models, (2) we are the first to present a novel method
based on KLD values to select proper majority disk models,
and (3) we develop a method of making crossing-disk
model (HDD, SATA SSD and NVMe SSD) failure predic-
tion, which has important practical applicability as different
disk models are gradually placed into the realistic storage
systems to replace failed disks. Our experiments with three
datasets from real-world data centers have shown that
TLDFP well outperforms representative traditional ML
methods and existing transfer learning approaches in terms
of failure detection rate and false alarm rate. TLDFP
achieves on average 96 percent failure detection rate with
only 0.5 percent false alarm rate in performing crossing-
disk models failure prediction and reduces inestimable cost
to data centers.

ACKNOWLEDGMENTS

This work was supported by the Innovation Group Project
of the National Natural Science Foundation of China
No.61821003, the National Key Research and Development
Program of China under Grant No.2016YFB0800402 and the
U.S. National Science Foundation Grants CCF-1717660 and
CCF-1813081. A preliminary version [1] appeared in the
proceedings of the 48th International Conference on Parallel
Processing (ICPP), 2019.

REFERENCES

[1] Z. Ji et al., “Transfer learning based failure prediction for minority
disks in large data centers of heterogeneous disk systems,” in
Proc. 48th Int. Conf. Parallel Process., 2019, pp. 1–10.

[2] B. Schroeder and G. A. Gibson, “Disk failures in the real world:
What does an MTTF of 1, 000, 000 hours mean to you?” in Proc.
5th USENIX Conf. File Storage Technol., 2007, pp. 1–16.

[3] E. Pinheiro et al., “Failure trends in a large disk drive population,”
in Proc. 5th USENIX Conf. File Storage Technol., 2007, pp. 17–28.

[4] L. N. Bairavasundaram et al., “An analysis of latent sector errors in
disk drives,” in Proc. ACM SIGMETRICS Int. Conf. Meas. Model.
Comput. Syst., 2007, pp. 289–300.

[5] J. Meza et al., “A large-scale study of flash memory failures in the
field,” in Proc. ACM SIGMETRICS Int. Conf. Meas. Model. Comput.
Syst., 2015, pp. 177–190.

TABLE 13
The Sensitivity Study Results of IMDA in TLDFP

Methods Metrics 1 1/3 1/2 2/3 All

TLDFP FDR 95% 32% 24% 8% 3%
FAR 0.7% 0.7% 0.5% 0.2% 0.2%

ZHANG ET AL.: MINORITY DISK FAILURE PREDICTION BASED ON TRANSFER LEARNING IN LARGE DATA CENTERS OF... 2167

[6] B. Schroeder et al., “Flash reliability in production: The expected
and the unexpected,” in Proc. 14th USENIX Conf. File Storage Tech-
nol., 2016, pp. 67–80.

[7] B. Calder et al., “Windows azure storage: A highly available cloud
storage service with strong consistency,” in Proc. 23rd ACM Symp.
Operating Syst. Princ., 2011, pp. 143–157.

[8] C. Huang et al., “Erasure coding in windows azure storage,” in
Proc. USENIX Conf. Annu. Tech. Conf., 2012, pp. 15–26.

[9] S. Huang and S. Fu, Q. Zhang, and W. Shi, “Characterizing disk
failures with quantified disk degradation signatures: An early
experience,” in Proc. IEEE Int. Symp. Workload Characterization,
2015, pp. 150–159.

[10] Y. Xu et al., “Improving service availability of cloud systems by
predicting disk error,” in Proc. USENIX Conf. Usenix Annu. Tech.
Conf., 2018, pp. 481–494.

[11] H. S. Gunawi et al., “Fail-slow at scale: Evidence of hardware per-
formance faults in large production systems,” ACM Trans. Storage,
vol. 14, no. 3, pp. 23:1–23:26, 2018.

[12] D. A. Patterson et al., “A case for redundant arrays of inexpensive
disks (RAID),” in Proc. ACM Int. Conf. Manage. Data, 1988,
pp. 109–116.

[13] B. Allen, “Monitoring hard disks with SMART,” Linux J., vol. 117,
pp. 60–65, 2004.

[14] J. F. Murray et al., “Machine learning methods for predicting fail-
ures in hard drives: A multiple-instance application,” J. Mach.
Learn. Res., vol. 6, pp. 783–816, 2005.

[15] B. Zhu, G. Wang, X. Liu, D. Hu, S. Lin, and J. Ma, “Proactive drive
failure prediction for large scale storage systems,” in Proc. IEEE
29th Symp. Mass Storage Syst. Technol., 2013, pp. 1–5.

[16] W. Yang, D. Hu, Y. Liu, S. Wang, and T. Jiang, “Hard drive failure
prediction using big data,” in Proc. IEEE 34th Symp. Reliable Dis-
trib. Syst. Workshop, 2015, pp. 13–18.

[17] T. Pitakrat et al., “A comparison of machine learning algorithms
for proactive hard disk drive failure detection,” in Proc. 4th Int.
ACM Sigsoft Symp. Architecting Critical Syst., 2013, pp. 17–21.

[18] J. Zhang et al., “Tier-scrubbing: An adaptive and tiered disk scrub-
bing scheme with improved MTTD and reduced cost,” in Proc.
57th ACM/EDAC/IEEE Des. Autom. Conf., 2020, pp. 1–6.

[19] W. Jiang et al., “Are disks the dominant contributor for storage
failures—A comprehensive study of storage subsystem failure
characteristics,” ACM Trans. Storage, vol. 4, no. 3, pp. 7:1–7:25,
2008.

[20] F. L. F. Pereira, F. D. dos Santos Lima, L. G. de Moura Leite,
J. P. P. Gomes, and J. de Castro Machado, “Transfer learning for
Bayesian networks with application on hard disk drives failure
prediction,” in Proc. Brazilian Conf. Intell. Syst., 2017, pp. 228–233.

[21] J. Zhang et al., “An end-to-end automatic cloud database tuning
system using deep reinforcement learning,” in Proc. Int. Conf.
Manage. Data, 2019, pp. 415–432.

[22] I. V. Tetko et al., “Neural network studies, 1. Comparison of over-
fitting and overtraining,” J. Chem. Inf. Comput. Sci., vol. 35, no. 5,
pp. 826–833, 1995.

[23] G. Hamerly and C. Elkan, “Bayesian approaches to failure fredic-
tion for disk drives,” in Proc. 18th Int. Conf. Mach. Learn., 2001,
pp. 202–209.

[24] G. F. Hughes, J. F. Murray, K. Kreutz-Delgado, and C. Elkan,
“Improved disk-drive failure warnings,” IEEE Trans. Rel., vol. 51,
no. 3, pp. 350–357, Sep. 2002.

[25] J. F. Murray et al., “Hard drive failure prediction using non-
parametric statistical methods,” in Proc. Int. Conf. Artif. Neural
Netw., 2003, pp. 1–4.

[26] C. Cortes and V. Vapnik, “Support-vector networks,” Mach.
Learn., vol. 20, no. 3, pp. 273–297, 1995.

[27] F. Salfner et al., “A survey of online failure prediction methods,”
ACM Comput. Surv., vol. 42, no. 3, pp. 10:1–10:42, 2010.

[28] S. E. A. Ganguly, “A practical approach to hard disk failure pre-
diction in cloud platforms: Big data model for failure management
in datacenters,” in Proc. IEEE 2nd Int. Conf. Big Data Comput. Ser-
vice Appl., 2016, pp. 105–116.

[29] J. Li et al., “Hard drive failure prediction using classification and
regression trees,” in Proc. 44th Annu. IEEE/IFIP Int. Conf. Depend-
able Syst. Netw., 2014, pp. 383–394.

[30] J. H. Friedman, “Greedy function approximation: A gradient boost-
ing machine,” Ann. Statist., vol. 29, no. 5, pp. 1189–1232, 2001.

[31] J. Li, R. J. Stones, G. Wang, Z. Li, X. Liu, and K. Xiao, “Being accu-
rate is not enough: New metrics for disk failure prediction,” in
Proc. 35th IEEE Symp. Reliable Distrib. Syst., 2016, pp. 71–80.

[32] J. Li et al., “Hard drive failure prediction using decision trees,” Rel.
Eng. Sys. Saf., vol. 164, pp. 55–65, 2017.

[33] R. Johnson and T. Zhang, “Learning nonlinear functions using
regularized greedy forest,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 36, no. 5, pp. 942–954, Mar. 2014.

[34] M. M. Botezatu et al., “Predicting disk replacement towards reli-
able data centers,” in Proc. 22nd ACM SIGKDD Int. Conf. Knowl.
Discov. Data Mining, 2016, pp. 39–48.

[35] C. Xu, G. Wang, X. Liu, D. Guo, and T.-Y. Liu, “Health status
assessment and failure prediction for hard drives with recur-
rent neural networks,” IEEE Trans. Comput., vol. 65, no. 11,
pp. 3502–3508, Nov. 2016.

[36] T. Mikolov, S. Kombrink, L. Burget, J. �Cernock�y, and S. Khudan-
pur, “Extensions of recurrent neural network language model,” in
Proc. IEEE Int. Conf. Acoust. Speech Signal Process., 2011, pp. 5528–
5531.

[37] T. Mikolov, J. Kopecky, L. Burget, O. Glembek, and J. �Cernock�y,
“Neural network based language models for highly inflective
languages,” in Proc. IEEE Int. Conf. Acoust. Speech Signal Process.,
2009, pp. 4725–4728.

[38] F. Mahdisoltani et al., “Improving storage system reliability with
proactive error prediction,” in Proc. USENIX Conf. Usenix Annu.
Tech. Conf., 2017, pp. 391–402.

[39] J. T. Zhou et al., “Hybrid heterogeneous transfer learning through
deep learning,” in Proc. 28th AAAI Conf. Artif. Intell., 2014,
pp. 2213–2220.

[40] P. Prettenhofer and B. Stein, “Cross-language text classification
using structural correspondence learning,” in Proc. 48th Annu.
Meeting Assoc. Comput. Linguistics, 2010, pp. 1118–1127.

[41] B. Kulis, K. Saenko, and T. Darrell, “What you saw is not what
you get: Domain adaptation using asymmetric kernel trans-
forms,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2011,
pp. 1785–1792.

[42] M. Harel and S. Mannor, “Learning from multiple outlooks,” in
Proc. 28th Int. Conf. Mach. Learn., 2011, pp. 401–408.

[43] H. Wang, A. Kl€aser, C. Schmid, and C.-L. Liu, “Action recognition
by dense trajectories,” in Proc. IEEE Conf. Comput. Vis. Pattern Rec-
ognit., 2011, pp. 3169–3176.

[44] K. Sarinnapakorn and M. Kubat, “Combining subclassifiers in
text categorization: A DST-based solution and a case study,”
IEEE Trans. Knowl. Data Eng., vol. 19, no. 12, pp. 1638–1651,
Dec. 2007.

[45] R.-E. Fan et al., “LIBLINEAR: A library for large linear classi-
fication,” J. Mach. Learn. Res., vol. 9, pp. 1871–1874, 2008.

[46] S. Pan and Q. Yang, “A survey on transfer learning,” IEEE Trans.
Knowl. Data Eng., vol. 22, no. 10, pp. 1345–1359, Oct. 2010.

[47] H. Shimodaira, “Improving predictive inference under covariate
shift by weighting the log-likelihood function,” J. Statist. Planning
Inference, vol. 90, no. 2, pp. 227–244, 2000.

[48] W. Dai et al., “Boosting for transfer learning,” in Proc. 24th Int.
Conf. Mach. Learn., 2009, pp. 193–200.

[49] S. Kullback and R. A. Leibler, “On information and sufficiency,”
The Ann. Math. Statist., vol. 22, pp. 79–86, 1951.

[50] R. Kohavi, “A study of cross-validation and bootstrap for accu-
racy estimation and model selection,” in Proc. 14th Int. Joint Conf.
Artif. Intell., 1995, pp. 1137–1143.

[51] S. V. Stehman, “Selecting and interpreting measures of thematic
classification accuracy,” Remote Sens. Environ., vol. 62, no. 1,
pp. 77–89, 1997.

[52] D. Powers, “Evaluation: From precision, recall and F-measure to
ROC, informedness, markedness and correlation,” J. Mach. Learn.
Technol., vol. 2, pp. 37–63, Jan. 2007.

Ji Zhang is currently working toward the PhD
degree in computer science and technology from
the Huazhong University of Science and Technol-
ogy (HUST), Wuhan, China and currently a visiting
scholar with the Center for Data Science of New
York University, New York. His major is computer
system structure. He has been an internship at the
Intelligent Cloud Storage Joint Research center of
HUST and Tencent. Currently, his main research
interests are using artificial intelligence (AI) technol-
ogies to optimize the systemof data storage or data

management. He has published papers in international conferences and
journals including SIGMOD, ICPP, DAC, FAST, TPDS, andNEDB, etc.

2168 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 9, SEPTEMBER 2020

Ke Zhou (Member, IEEE) received the BE, ME,
and PhD degrees in computer science and tech-
nology from the Huazhong University of Science
and Technology (HUST), China, in 1996, 1999,
and 2003, respectively. He is currently a profes-
sor of the School of Computer Science and
Technology and Wuhan National Laboratory for
Optoelectronics, HUST. His main research inter-
ests include computer architecture, cloud stor-
age, parallel I/O, and storage security. He has
more than 50 publications in journals and interna-

tional conferences, including ACM SIGMOD, ICCP, the IEEE Transac-
tions on Parallel and Distributed Systems, the Performance Evaluation
(PEVA), FAST, USENIX ATC, MSST, ACM MM, INFOCOM, SYSTOR,
MASCOTS, ICCD, etc. He is a member of USENIX.

Ping Huang received the PhD degree from the
Huazhong University of Science and Technology,
China, in 2013. He is currently a research assistant
with the Department of Computer and Information
Sciences, Temple University, Philadelphia, Penn-
sylvania. His main research interest includes non-
volatile memory, operating system, distributed
systems, DRAM,GPU, Key-value systems, etc. He
has published papers in various international con-
ferences and journals, including SYSTOR, NAS,
MSST, USENIX ATC, Eurosys, IFIP Performance,

INFOCOM, SRDS,MASCOTS, ICCD, the Journal of Systems Architecture
(JSA), the Performance Evaluation (PEVA), the Sigmetrics, ICPP, the
IEEE Transactions on Parallel and Distributed Systems (TPDS), the ACM
Transactions on Storage, etc.

Xubin He (Senior Member, IEEE) received the
BS and MS degrees in computer science from
the Huazhong University of Science and Technol-
ogy, China, in 1995 and 1997, respectively, and
the PhD degree in electrical engineering from the
University of Rhode Island, Kingston, Rhode
Island, in 2002. He is currently a professor with
the Department of Computer and Information Sci-
ences, Temple University, Philadelphia, Pennsyl-
vania. His research interests include computer
architecture, data storage systems, virtualization,

and high availability computing. He received the Ralph E. Powe Junior
Faculty Enhancement Award, in 2004 and the Sigma Xi Research Award
(TTU Chapter) in 2005 and 2010. He is a member of the IEEE Computer
Society and USENIX.

Ming Xie is currently a general manager in Cloud
Architecture Platform Department at Tencent
Corporation. His main research includes cloud
computing, massive data storage, and intelligent
operation and maintenance.

Bin Cheng is currently a director in Cloud Archi-
tecture Platform Department at Tencent Corpora-
tion. His main research includes cloud computing,
massive data storage, machine learning and
database system, etc.

Yongguang Ji is currently a group leader in
Cloud Architecture Platform Department at Ten-
cent Corporation. His main research includes
cloud computing, cloud block storage, I/O sys-
tems and performance optimization, etc.

Yinhu Wang is currently a senior staff engineer
in Cloud Architecture Platform Department at
Tencent Corporation. His main research includes
distributed systems, massive data storage sys-
tem, disk failure prediction, etc.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

ZHANG ET AL.: MINORITY DISK FAILURE PREDICTION BASED ON TRANSFER LEARNING IN LARGE DATA CENTERS OF... 2169

The Workflow Trace Archive: Open-Access
Data From Public and Private
Computing Infrastructures

Laurens Versluis , Roland Math�a , Sacheendra Talluri, Tim Hegeman, Radu Prodan ,

Ewa Deelman , and Alexandru Iosup

Abstract—Realistic, relevant, and reproducible experiments often need input traces collected from real-world environments. In this

work, we focus on traces of workflows—common in datacenters, clouds, and HPC infrastructures. We show that the state-of-the-art in

using workflow-traces raises important issues: (1) the use of realistic traces is infrequent and (2) the use of realistic, open-access

traces even more so. Alleviating these issues, we introduce the Workflow Trace Archive (WTA), an open-access archive of workflow

traces from diverse computing infrastructures and tooling to parse, validate, and analyze traces. The WTA includes > 48million

workflows captured from > 10 computing infrastructures, representing a broad diversity of trace domains and characteristics. To

emphasize the importance of trace diversity, we characterize the WTA contents and analyze in simulation the impact of trace diversity

on experiment results. Our results indicate significant differences in characteristics, properties, and workflow structures between

workload sources, domains, and fields.

Index Terms—Workflow, open-source, open-access, traces, characterization, archive, survey, simulation

Ç

1 INTRODUCTION

WORKFLOWS are already a significant part of private
datacenter and public cloud infrastructures [1], [2].

This trend is likely to intensify [3], [4], as organizations
and companies transition from basic to increasingly more
sophisticated cloud-based services. For example, 96 percent
of companies responding to RightScale’s 2018 survey are
using the cloud [5], up from 86 percent in 2012 [6]; the
average organization combines services across five public
and private clouds. To maintain, tune, and develop the com-
puting infrastructures for running workflows at the massive
scale and with the diversity suggested by these trends, the
systems community requires adequate capabilities for test-
ing and experimentation. Although the community is
aware that workload traces enable a broad class of realistic,
relevant, and reproducible experiments, currently such
traces are infrequently used, as we summarize in
Fig. 1 (left) and quantify in Section 2. Toward addressing
this problem, we focus on improving trace availability and
understanding by proposing a new, free and open-access

Workflow Trace Archive (WTA), as detailed in Fig. 1 (right)
and in the remainder of this work.

The need for workflow traces is stringent [4], [7]. In
this work, we adopt the workflow model of Coffman
and Graham [8]. In this model, a workflow is considered
a directed acyclic graph (DAG) where each vertex repre-
sents a task and an edge a computation/data constraint.
As such, we do not consider workflow formalisms with
iteration (loops) and human interaction, such as BPMN/
BPEL [9] and Petri nets [10]. We consider as tasks a
broad range of activities, that is, black boxes ranging
from simple compute and data operations to entire
workflows, recursively.

A workflow trace is a recording of useful, relevant infor-
mation during the processing of the workflow. Traces can
be used to createmodels with, or used in emulations and sim-
ulations to replay the execution of a workflow in a controlled
environment, etc. Not only the sheer volume of workloads
has increased significantly over time [2], but also the users
of datacenters and cloud operations are expecting increas-
ingly better Quality of Service (QoS) from the workflow-
management systems, including elasticity, reliability, and
low-cost, under strong assumptions of validation [4], [7] and
reproducibility [3], [11]. Developing workflow management
systems tomeet these requirements requires considerable sci-
entific and technical advances and, correspondingly, compre-
hensive trace-based experimentation and testing. This can be
conducted (i) in vivo, i.e., experimenting in live/production
settings, (ii) in vitro, i.e., experimenting using emulation, and
(iii) in silico i.e., experimenting in simulation [12].

Testing such systems, especially at cluster and data-
center scale, often cannot be done in vivo, due to

� L. Versluis, T. Hegeman, S. Talluri, and A. Iosup are with Computer Science,
Vrije Universiteit Amsterdam, 1081 HV Amsterdam, Netherlands. E-mail: {l.
f.d.versluis, A.Iosup}@vu.nl, {sacheendra.t, tim.m.hegeman}@gmail.com.

� R. Math�a is with the Institute of Computer Science, Universitat Innsbruck,
6020 Innsbruck, Tyrol, Austria. E-mail: roland@dps.uibk.ac.at.

� R. Prodan is with the Institute of Software Technology, University of
Klagenfurt, 9020 Klagenfurt am, Austria. E-mail: radu@itec.aau.at.

� E. Deelman is with Information Sciences Institute, University of Southern
California, Los Angeles, CA 90292. E-mail: deelman@isi.edu.

Manuscript received 8 July 2019; revised 5 Mar. 2020; accepted 22 Mar. 2020.
Date of publication 14 Apr. 2020; date of current version 1 May 2020.
(Corresponding author: Laurens Versluis.)
Recommended for acceptance by T. Kosar.
Digital Object Identifier no. 10.1109/TPDS.2020.2984821

2170 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 9, SEPTEMBER 2020

1045-9219� 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tps://www.ieee.org/publications/rights/index.html for more information.

https://orcid.org/0000-0002-6999-7297
https://orcid.org/0000-0002-6999-7297
https://orcid.org/0000-0002-6999-7297
https://orcid.org/0000-0002-6999-7297
https://orcid.org/0000-0002-6999-7297
https://orcid.org/0000-0001-5165-2576
https://orcid.org/0000-0001-5165-2576
https://orcid.org/0000-0001-5165-2576
https://orcid.org/0000-0001-5165-2576
https://orcid.org/0000-0001-5165-2576
https://orcid.org/0000-0002-8247-5426
https://orcid.org/0000-0002-8247-5426
https://orcid.org/0000-0002-8247-5426
https://orcid.org/0000-0002-8247-5426
https://orcid.org/0000-0002-8247-5426
https://orcid.org/0000-0001-5106-503X
https://orcid.org/0000-0001-5106-503X
https://orcid.org/0000-0001-5106-503X
https://orcid.org/0000-0001-5106-503X
https://orcid.org/0000-0001-5106-503X
https://orcid.org/0000-0001-8030-9398
https://orcid.org/0000-0001-8030-9398
https://orcid.org/0000-0001-8030-9398
https://orcid.org/0000-0001-8030-9398
https://orcid.org/0000-0001-8030-9398
mailto:l.f.d.versluis@vu.nl
mailto:l.f.d.versluis@vu.nl
mailto:A.Iosup@vu.nl
mailto:sacheendra.t@gmail.com
mailto:tim.m.hegeman@gmail.com
mailto:roland@dps.uibk.ac.at
mailto:radu@itec.aau.at
mailto:deelman@isi.edu

downtime or the operational costs required. Instead,
workflow traces can be replayed in silico, allowing mul-
tiple setups to run in parallel, testing individual compo-
nents, etc. without the downtime nor costs. Although
realistic workflow traces are key for testing, tuning, vali-
dating, and inspiring system designs, they are currently
still scarce [13]. Prior work, such as WorkflowHub [14],
has introduced numerous workflow traces, yet only from
the science domain. As Fig. 1 (left) indicates, and Sec-
tion 2 quantifies and explains, less than 40 percent of rel-
evant articles focusing on workflow systems conduct
experiments with realistic traces, and less than 15 percent
conduct experiments with realistic and open-source traces.

The current scarcity of traces forces researchers to
either use synthetically generated workloads or to use
one of the few available traces. Synthetic traces may
reduce the representatives and quality of experiments, if
they do not match relevant real-world settings. Using
realistic traces that correspond to a narrow application-
domain may result in overfitting; Amvrosiadis et al. [15]
demonstrate this for cluster-based infrastructures. Addi-
tionally, a lack of realistic traces may lead to limited or
even wrong understanding of workflow characteristics,
their performance, and their usage, which hampers the
reuse of the systems tested with such (workloads of)
workflows [16]. This gives rise to the research question
RQ-1: How diverse are the workflow traces currently used by
the systems community?

We identify the need to share workflow traces collected
from relevant environments running relevant workloads
under relevant constraints. Effective sharing requires uni-
fied trace formats, and also support for emerging and new
features. For example, since the introduction of commercial
clouds, clients have increasingly started to ask for better
QoS, and in particular have started to increasingly express
non-functional requirement (NFRs) such as availability, pri-
vacy, and security demands in traces [4], [17]. This leads us
to research question RQ-2: How to support sharing workflow
traces in a common, unified format? How to support in it arbi-
trary NFRs?

Persuading both academia and industry to release
data is vital to address the problems stated prior. We

tackle this issue with two main approaches. First, by
offering tools to obscure sensitive information, while still
retaining significant detail in shared traces. Second, by
encouraging the same organization to share the data
across its possibly multiple workflow management
systems (sources), and by explicitly aiming to collect data
across diverse application domains and fields. The avail-
ability of diverse data and tools stimulate the benefits
of making available such traces, while simultaneously
reducing the concerns of competitive disadvantage or
of an (accidental) disclosure of sensitive information.
The community is already helping with both approaches,
by increasingly focusing on the problem of reproducibil-
ity. For example, ACM introduced artifact review and
badges to stimulate the release of both software and
data artifacts for reproducibility and verification pur-
poses [18]. We add to this community-effort ours, which
is scientific in nature: RQ-3: What is the impact of the
source and domain of a trace on the characteristics of
workflows?

Addressing research questions 1–3, our contribution is
four-fold:

1) To answer RQ-1, we conduct the first comprehensive
survey of how the systems community uses work-
flow traces (Section 2). We collect, select, and label
articles from top conferences and journals covering
workflow management. We analyze the types of
traces used in the community, and the domains and
fields covered in published studies. To improve
reproducibility and promote extensions, we make
public all (raw) data used for this survey.

2) To answer RQ-2, we design the WTA for open-access
to traces of workloads of workflows (Section 3). We
identify a comprehensive set of requirements for a
workflow trace archive. A key conceptual contribu-
tion of the WTA is the design of a unified trace for-
mat for sharing workflows, the first to generalize
NFRs support at both workflow- and task-levels.
The WTA currently archives a diverse set of (1) real
workflow traces collected from real-world environ-
ments, (2) realistic workflow traces used in peer-
reviewed publications, and (3) workflow traces col-
lected from simulated and emulated environments
commonly used by the systems community. WTA
also introduces tools to detail and compare its traces.

3) To address RQ-3, we compare key workload charac-
teristics across traces, domains, and sources (Section 4).
Our effort is the first to characterize the new trace from
Alibaba, and the first to investigate the critical path
task length, level of parallelism, and burstiness using
theHurst exponent onworkloads of workflows. Over-
all, the archive comprises 96 traces, featuring more
than 48 million workflows containing over 2 billion
CPU core hours.

4) To validate our answers to RQs 1–3, we analyze vari-
ous threats (Section 5). We conduct a trace-based
simulation study and qualitative analysis. Our
results for the former indicate systems should be
tested with different traces to validate claims about
the generality of the proposed approach.

Fig. 1. A visual map to this work: (left) The problem: infrequent use of
Realistic (� 40%) and Open-source (� 15%) workflow-traces in represen-
tative articles (see Section 2), which can affect the relevance and repro-
ducibility of experiments for the entire community. (right) Toward an
answer: the WTA stakeholders, process, and tools provide the commu-
nity with open-source traces of relevant workflows running in public and
private computing infrastructures.

VERSLUIS ET AL.: WORKFLOW TRACE ARCHIVE: OPEN-ACCESS DATA FROM PUBLIC AND PRIVATE COMPUTING INFRASTRUCTURES 2171

2 A SURVEY OF WORKFLOW TRACE USAGE

To assess the current usage of workflow traces in the sys-
tems community and the need for a workflow archive, we
systematically survey a large body of work published in top
conferences and journals, and investigate articles that per-
form experiments using workflow traces, either through
simulation or using a real-world setup. The process and out-
come of this survey answer RQ-1.

2.1 Article Selection and Labeling

Selection. Fig. 2 displays our systematic approach to select
articles relevant to this survey, based on [19]. First, we col-
lect data from DBLP [20] and Semantic Scholar [21]. We fil-
ter them by venue, retaining only articles from the 10 key
conferences and journals in distributed systems listed in the
caption of Table 1, including TPDS. While not an exhaustive
list, this covers a significant part of the systems community.
This yields 18,412 articles. Next, we automatically select all
articles from the last decade (2009–2018) containing the
word “workflow” in either title or abstract, yielding 397
articles. This step provides articles that focus on all aspects
of workflows, e.g., scheduling, analysis, and design. Finally,
to obtain insights into workflow traces usage, we manually
check the 397 articles. Overall, this systematic process yields
104 articles using workflow traces. To highlight the rele-
vance of papers, we use Google Scholar to obtain citation
counts. In total the 104 papers have been cited 3,965 times.

Labeling. We label for each of the 104 articles the type of
trace usage. For articles explicitly describing their use, we
use the label realistic for traces collected from real-world
workflow executions. For all others, including workflows
extrapolated from real-world data or generated from known
statistical distributions, we use the label synthetic.

We further label traces as open-access (or open-source) if
they are available online and to a broad audience, and
closed-access (or closed-sources) otherwise. In our analysis,
we include among the open-access traces only those that are
also realistic.

We also label traces by domain and field. Domains are corre-
sponding to the area of study of which the trace originates
from. We label sub-domains within these domains as fields.
We adopt the domains and fields reported by the respective
authors, where mentioned. If the domain or field are not men-
tioned, yet the application appears in another article by name

and with labels, we remain consistent in our labeling
by adopting the domain/field from this prior article.
We have not encountered cases where an application is
labelled as belonging to multiple domains or fields. We
identify in articles explicit use of traces from the domains
“scientific”, “engineering”, “multimedia”, “governmental”,
and “industry”, and from fields such as “bioinformatics”,
“astronomy”, “physics”, etc. We further label a trace with
uncategorizedwhen its origin remains unexplained.

All data used in this survey is available as open-access
data1 and can be used to verify and extend this survey.

2.2 Types of Traces Used in the Community

We analyze here the types of traces used by the community,
with the following Observations (Os):

O-1: Less than 40 percent of articles use realistic traces.
O-2: Only one-seventh of all articles use open-access traces.

Table 1 presents the types of traces used in the commu-
nity, focusing on realistic (R) and open-access (R+O) traces.
The community uses traces for experiments across both con-
ference and journal articles, across various levels of (high)
quality. In contrast to this positive finding, the results indi-
cate that, from the total number of articles using traces at
all, the fraction of articles using realistic and even open-
access traces is relatively small. Across all venues, only
38 percent of the articles use at least one realistic trace, and
only 13 percent of the articles use at least one open-access
trace.

These findings match the perceived difficulty in repro-
ducing studies in the field [11], [12], and may hint why so
few of these seemingly successful designs are adopted for
use in practice [22].

2.3 Workflow Domains and Fields

We analyze the domains and fields from which the commu-
nity sources workflows, with as main observations:

O-3: The community sources workflows from 5+ domains
and 25+ fields.

O-4: Traces containing scientificworkflows are used signifi-
cantlymore (20x) thanworkflows from other domains,
e.g., industry and engineering, in the surveyed articles.

O-5: Bioinformatics workflows are the most commonly
used, but three other fields exhibit usage within a fac-
tor of 3.

O-6: Many traces have uncategorized domain (14 percent)
and/or field (31 percent).

Overall, we find that the community uses diverse work-
flows, sourced from 5+ domains and 25+ fields.

We further investigate the distribution of use, per
domain and per field. Fig. 3 (top) shows that the scientific
domain is over-represented in the literature in the top-five
trace domains encountered, due to the large number of
available open-access traces and from their conventional
use in prior work. In particular, a large portion of the
articles use workflow traces from the Pegasus project, which
covers the scientific domain. The number of traces in this
domain exceeds 200, which is larger than the number of

Fig. 2. The article selection process. Subsequent stages decrease the
amount of articles: from a corpus of 18 412 articles, down to 104 relevant
references.

1. https://github.com/atlarge-research/wta-analysis

2172 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 9, SEPTEMBER 2020

https://github.com/atlarge-research/wta-analysis

articles in the study as each article uses multiple traces. In
contrast, the next-largest domains are industry and engi-
neering, each with less than 10 traces representing less than
one-twentieth of the scientific domain.

We remark the positive diversity of the workflow
domains, considering that the entire community is tem-
pered by the extreme focus on scientific workflows. This
confirms the bias demonstrated by Amvrosiadis et al. [23]
with the popular Google-cluster traces. A similar situation
appears for fields, but more tempered, as Fig. 3 (bottom)
indicates. A large portion of the traces have their domains
and fields as “uncategorized” (14 and 31 percent, respec-
tively) which is unhelpful when determining if the pro-
posed solution works in a certain environment.

Overall, the results reveal that the community has a
strong bias for one domain (scientific) and favors scientific
fields (especially bioinformatics). We conjecture the large
amount of open-access data from these fields facilitates
this bias. This is consistent with our findings O-4 and O-5,
and with the assumption of people selecting traces with
equal probability. An alternative is that the domains and
fields whose data are used more, share artifacts that are
more easily reused and rerun. An example of a well-
known initiative for reproducibility in the scientific domain
is the MyExperiment repository [24]. To overcome such
biases, and to further reduce the large fraction of uncatego-
rized traces evident in both plots of Fig. 3, we posit the
community should require that open-access and diverse
traces be used in articles claiming the generality of their
techniques and indicate the domains and fields of the
workflows used.

3 THE WORKFLOW TRACE ARCHIVE

In this section, we outline the design of the WTA, the uni-
fied trace format used, tools to support consumers with the
trace selection according to their use-case, and give a sum-
marized overview of the current contents of the archive.
Furthermore, that facilitates the continuous growth of the
archive, we provide tools for trace anonymization and a col-
lection of trace parse scripts for different trace sources.

Similar to how the design of experiments is now com-
monly described in publications in our field, as the setup
leading to experimental results, we include an overview of
the design process that led to the design presented in this
section. Outlining the design and the process that led to the
design is important for understanding how the final design
came to be and how it fits the intended goal [25].

We started by listing initial requirements (see Section 3.1)
that the WTA has to fulfill, and co-evolved the requirements
with the development of the solution (the archive). For example,
we added explicitly the requirement to provide scripts and
datasets to aid users in building their own tools, as we dis-
covered how difficult it was to engineer them from scratch
(see Section 3.6). Next, we defined an initial format, cen-
tered around a number of unique features, such as non-
functional requirements (NFRs) that are missing in other
workflow trace formats. We improved this format itera-
tively, to meet the requirements and/or to pass various
thought experiments. For the latter, whenever we encoun-
tered a new data-format that was not fully covered by our
format, we discussed which properties and/or objects
should be added to the format (see Section 3.4). We assessed
the trade-off between format comprehensiveness (what to
include?) and brevity (what is too much or too complex?)
based on personal experience, on the perceived importance
of data-fields in literature, and on their frequency of use in
other archives. Finally, we designed the analysis tools itera-
tively, including in them initially our own ideas and then
aspects highlighted by other archives, literature reports,
and perceived shortcomings.

3.1 Use Cases and Requirements

We foresee four direct use cases for the WTA. First, trace
characterization and workload analysis for understanding
and tuning systems. As workloads evolve it is important to
characterize the changes in, e.g., structure and resource con-
sumption to see if schedulers require change, can be
improved or if these changes can be exploited. Such charac-
terizations can provide interesting insights (see Section 4).

Second, experimentation using emulation or simulation.
As discussed in Section 1, emulations and simulations may

Fig. 3. (top) Top-5 (out of 6) domains and (bottom) Top-5 (out of 28)
fields from which the community sources workflows. (“Uncategorized”
for unclear domain or field.)

TABLE 1
Workflow Trace Usage in Venues Having at Least One Paper Returned in the Initial Query

Acronym Total FGCS CCGrid TPDS Other

T Articles using traces 104 37 17 17 33

R Articles using realistic traces 40 (38%) 13 (35%) 8 (47%) 6 (35%) 13 (39%)
R+O Articles using traces that are both realistic and open-access 14 (13%) 6 (16%) 2 (12%) 3 (18%) 3 (9%)

The venues with > 5 hits have their individual column. The column “Other” shows combined results for conferences with � 5 hits: ATC, CLOUD, CLUSTER,
e-Science, Euro-Par, GRID, HPDC, JSSPP, IC2E, ICDCS, ICPE, IPDPS, NSDI, OSDI, SC, SIGMETRICS, and WORKS. Percentages are computed from the
total in the corresponding column, e.g., 13 out of 37 for the cell corresponding to row R and column FGCS.

VERSLUIS ET AL.: WORKFLOW TRACE ARCHIVE: OPEN-ACCESS DATA FROM PUBLIC AND PRIVATE COMPUTING INFRASTRUCTURES 2173

be the only viable option for specific scenarios (e.g., what
if?, long-term operational analysis). Having an archive that
offers diverse, heterogeneous traces allows for more diverse
testing scenarios. Especially when a new scheduler is devel-
oped for multiple domains or scenarios, it is important to
experiment with diverse workloads covering the scenarios
and domains targeted (see Section 5, C-1).

Third, workload and operational models can arise from
the characterization and simulation results. In turn, these
models can lead to new insights or to new variations to
experiment with.

Last, such data can be used for education and training.
As systems grow more complex, education and training
becomes more important for both students and employ-
ees [26]. Models and heterogeneous traces are useful in edu-
cation, to demonstrate scenarios and to provide hands-on
experience.

To meet these use cases, we identify five key require-
ments for the structure, content, and operation of a useful
archive for workflow traces.

R-1: Diverse Traces for Academia, Industry, and Education.
Trace archives, such as Google’s and Alibaba’s, offer only
workloads from a single domain, e.g., industrial workloads.

We identify as requirement that an archivemust include a
diverse set of traces to cover a broad spectrum of workflow
sizes, structures, and other characteristics, including both
general characteristics to many domains and fields, and idio-
syncratic characteristics corresponding to only one domain
or field. This requirement is based on the conjectures that dif-
ferent traces can have workflows with significantly different
characteristics (tested in Section 4) and such differences
impact system performance (tested in Section 5,C-1).

Addressing this requirement is important for academia
to demonstrate the generality and applicability of a novel
approach, for industry to test production-ready systems or
to validate techniques proposed by academia [27], and for
education to train employees on more complex systems.

R-2: A Unified Format for Workload of Workflows
Traces.

To improve the reusability of diverse traces and to support
the reproducibility of experimental results, long-term, we
identify as a requirement the use of a unified trace format for
workloads of workflows. The format must cover a broad set
of data about theworkloads and about the workflowmanage-
ment systems including: workload metadata; workflow-level
data including NFRs; task-level data including per-task NFRs
and operational metadata; inter-dependencies between tasks
and other operational elements such as data transfers;
system-level information including resource provisioning,
allocation, and consumption; etc.

Addressing this requirement simplifies trace exchange
and integration effort, prevents redundant work for other
users, and supports the development of dataset indepen-
dent tools (expressed as R-3).

R-3: User level adapted insights into Trace Properties.
To improve trace discovery, the archive must provide

detailed trace insights adapted to the level of the broad audi-
ence, from beginner to expert, as implied by R-1. Broad
insights include extrinsic properties, such the number of work-
flows and tasks, and intrinsic properties, such the workflow
arrival patterns and the resource consumption per-task. In

contrast, detailed expert-level insights include analysis of sin-
gle traces at workload-, workflow-, and system-level; and col-
lective analysis across all traces or traces filtered by a feature
(e.g., all traces of a domain or field). These properties must
be accessible through readily available tools (see R-4) and,
possibly, through interactive online reports. Addressing this
requirement helps to correlate information across different
traces, resulting in better quantitative evidence, intuition
about otherwise black-box applications, and understanding
that helps avoiding common pitfalls [28].

R-4: Tools for Trace Access, Parsing, Analysis, Validation.
The most important tool is the online presence of the

archive itself. The archivemust further provide tools to parse
traces from different sources to the unified format (see
also R-2), to provide insight into traces (see also R-3), and to
validate common properties (e.g., the presence of and correct-
ness of properties). An absence of such tools would lead to
users unable to select appropriate traces, validate their prop-
erties, and compare them.

The archive should further aid users in building more
sophisticated tools. Newly built tools can then be added to
the selection of tools so more parties can make use of them
(contributing to R-5)

R-5: Methods for Contribution.
The archive must reflect the continuous evolution of

workflow use in practice, by increasing the coverage of dif-
ferent scenarios. Wemake a distinction between two types of
contribution: (1) traces from a new domain or application-
field, and (2) traces, introducing new properties. To facilitate
the former contribution, the archive must provide a method
for the upload and (basic) automated traces verification. To
facilitate the latter, the format must integrate specific provi-
sions that enable upgrades and long-term maintainability,
such as adding a version to each component of the format.

Addressing this requirement encourages new and exist-
ing contributors to submit new traces. In particular, tools to
add new domains are of particular importance, to support
emerging paradigms with realistic data.

3.2 Overview of the WTA

We design the WTA as a process and set of tools helping a
diverse set of stakeholders. We consider three roles for the
WTA community members, outlined in Fig. 1. The contribu-
tor supplies, as the legal owner or representative, one or
more traces to the WTA. A workflow trace contains histori-
cal task execution data, resource usage, NFRs, resource
description, inputs and outputs, etc. To fulfill R-5, the WTA
team assists the contributor in parsing, anonymizing, and
converting the traces into the unified format (Section 3.4),
minimizing the risk of competitive disadvantage, and veri-
fying their integrity. WTA fulfills R-1 as it incrementally
expands with contributors of traces from different domains
with different properties.

The user represents non-expert or expert trace consumers.
Non-expert users often need to rely on generic domain or
trace properties, whereas the expert users have detailed
knowledge of their system and require fine-grained details
for selecting the correct trace. In addition, expert users may
comment on (missing) properties and may develop new
tools, models or other techniques to further compare and
rank the traces. Both user types require assistance in selecting

2174 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 9, SEPTEMBER 2020

the most suitable trace given a set of criteria (Section 3.5) as
well as analysis and validation (Section 3.6) from the avail-
able set of traces (Section 3.7). To support both user types, the
WTAdiscloses both high-level and low-level details.

3.3 Workflow Model

There are numerous types of workflow models used across
different communities. A 2018 study by Versluis et al. finds
DAGs are the most commonly used formalism in computer
system conferences [29]. Popular formalisms such as
CWL [30] and Condor DAG [31] are also DAG-based. There-
fore, for the first design of this archive, we adopt DAGs as
theworkflowmodel.

A workflow constructed as a DAG in which nodes are
computational tasks and directed edges depict the computa-
tional or data constraints between tasks. Entry tasks are
tasks with no incoming dependencies and, once submitted
to the system, immediately are eligible for execution. Simi-
larly, end tasks are nodes that have no outgoing edges. A
collection of workflows submitted to the same infrastruc-
ture over a certain period of time is considered a workload.

Although popular, we specifically do not focus in this
work on BPMN and BPEL, Petri nets, hyper graphs, general
undirected, or cyclic graphs. These formalisms either
include business and human-in-the-loop elements [32] or
add additional complexity due to having a large set of con-
trol structures such as loops, conditions, etc. [9] which we
consider out of scope for this work.

Executable formalisms are meant to define what resour-
ces and software should be available before execution. Our
formalism needs to capture the system state during execu-
tion. Both types of formalisms are needed, and are comple-
mentary to each other. For example, a person could use the
CWL to define and run their workload, then turn to our for-
malism and tools to analyze its execution and subsequently
improve various operational aspects.

Given the different nature of these formalisms, if we
were to extend an existing executable workflow formalism,
e.g., CWL, several elements would not be used. This would
lead to feature creep. Conversely, the additions made by our
formalism could be regarded as feature-creep by the CWL
community. This is emphasized by the CWL community

currently developing CWLProv [33]. This formalism aims at
fully reproducible workflows, including re-execution which
is not a goal of the WTA. While promising, CWLProv is still
a work in progress; elements such as capturing resource
usage (e.g., CPUs and power consumption) are still lacking.

3.4 Unified Trace Format

Creating a unified format (R-2) requires from the designer a
careful balance between limiting the number of recorded
fields while supporting a diverse set usage scenarios for all
stakeholders in Section 3.2. Modern logging and tracing
infrastructure can capture thousands of metrics for each
machine and workflow-task involved [34], from which the
designer must select. We specifically envision support for
common system and workflow properties found in the typi-
cal scenarios considered in the top venues surveyed in
Section 2, such as engineering a workflow engine [35], char-
acterizing the properties of workloads of workflows [36],
and designing and tuning newworkflow schedulers [37].

Our unified format attempts to cover different trace
domains, while preserving valuable information, such as
resource consumption and NFRs, contributing to fulfilling
R-1 and 3. The full technical description of the format can
be found in our technical report [38] and on the WTA web-
site.2 By analyzing the raw data formats, we carefully
selected useful properties to include in our unified format,
omitting low-level details, such as cycles per instruction,
page cache sizes, etc.

Answering RQ-2 and fulfilling R-2, our trace format is
the first to support arbitrary NFRs both at task and work-
flow levels. For example, one of the LANL traces (intro-
duced in Table 2) contains deadlines per workflow and the
Google cluster data features task priorities, both are sup-
ported by the WTA unified format. Capturing these proper-
ties is important to test QoS-aware schedulers.

As depicted in Fig. 4, the WTA format includes seven
objects: Workload, Workflow, Task, TaskState Resource, Resour-
ceState, and DataTransfer. Each of these objects contains a
version field, updated whenever the set of properties is
altered (R-5).

TABLE 2
Overview of the Current WTA Content, Grouped by Source

Source ID. Name #WL D DS #PA #PL #S #A #WF #T #U #G Year(s) Timespan TCH

S1. Askalon Old 2 Eng - - 1 - mixed 4,583 167,677 *7 *6 2007 19 months 4,685,300
S2. Askalon New 67 Sci - *2 2 67 *3 1,835 91,599 *67 *67 2016 47 days 193
S3. LANL 2 Sci - - 1 - mixed 1,988,397 475,555,927 - - 2011-2016 63 months *9,625,431
S4. Pegasus 8 Sci - - *6 - 8 56 10,573 9 - 2011 4 days 1,477
S5. Shell 1 Ind - - 1 - mixed 3,403 10,208 - - 2016 10 minutes 25
S6. SPEC 2 Sci - - 1 - mixed 400 28,506 - - 2017 - 1,231
S7. Two Sigma z 2 Ind - - 1 - mixed 41,607,237 50,518,481 610 1 2016 16 months 69,992,196
S8.WorkflowHub 10 Sci *5 *4 5 - 3 10 14,275 10 - 2017 - 52
S9. Alibaba 1 Ind - - 1 - mixed 4,210,365 1,356,691,136 1 1 2018 8 days 1,526,925,484
S10. Google 1 Ind - 1 1 - mixed 494,179 17,810,002 430 1 2011 29 days 434,821,345

Total 96 - *5 *7 *20 67 - 48,310,465 1,900,898,384 *1,134 *76 - - 2,046,052,734

Legend: D = Domain, DS = Datasets, PA = parameters, PL = Platform, S = Setup, A = Applications, WL = workload, WF=workflow, T = task, U = user, G =
group, * = minimum, Eng = Engineering, Sci = Scientific, Ind = Industry, and TCH = Total Core Hours. Items in bold are workloads introduced by this work.
Items where workflows are for the first time analyzed in this work are in italics. The symbol z next to S7 indicates data with promise to release, but for which the
legal forms have not been completed yet; WTA can already release all other workloads.

2. https://wta.atlarge-research.com/traceformat.html

VERSLUIS ET AL.: WORKFLOW TRACE ARCHIVE: OPEN-ACCESS DATA FROM PUBLIC AND PRIVATE COMPUTING INFRASTRUCTURES 2175

https://wta.atlarge-research.com/traceformat.html

Each trace is a single workload, consisting of multiple
workflows and their arrival process. Workload properties
include the number of workflows, tasks, users, domain and
field when available, authors list, and resource consumption
statistics. Each workload belongs to one or more domains.
and contains a description including its source, execution
environment, etc.

Each workflow in the workload has a unique identifier, an
arrival time, and contains a set of tasks and several proper-
ties, including scheduler used, number of tasks, critical path
length, NFRs, and resource consumption. Each workflow
also has the name of its field of study, when possible. Differ-
ent related fields constitute a domain.

Each Task has a unique identifier and lists its submission
and waiting time, runtime and resource requirements,
including required (compute) resource type, memory, net-
work, and energy usage. Additionally, each task provides
optional dictionaries for task-specific execution parameters
and NFRs. To model dependencies between tasks, the WTA
format maintains for each workflow its topology by specify-
ing parents and children per task. Similarly, data dependen-
cies are recorded as a list of data transfers.

Resource objects cover various resource types, such as
cloud instances, cluster nodes, and IoT devices. A resource
has a unique identifier and contains several properties, such
as resource type (e.g., CPU, GPU, threads), number, proces-
sor model, memory, disk space, and operating system. An
optional dictionary provides further details, such as instance
type or Cloud provider. The ResourceState event snapshots
periodically the resource state, including availability and uti-
lization. Analogous to the ResourceState, the TaskState
records periodically the resource consumption of the task
(the Task object records the resource demand).

Each DataTransfer describes a file transfer from a source
to a destination task, which can be a local copy on the same
resource or a network transfer from a remote source, etc. To
support bandwidth analysis, a data transfer introduces sub-
mission time, transfer time, and data size. Each data transfer
also provides an optional dictionary with detailed event
timestamps (e.g., pause, retry).

3.5 Mechanisms for Trace Selection

We address R-3 by assisting archive users in retrieving
appropriate traces for their scenarios, using filter and selec-
tion mechanisms. The website is the most important such
filter and mechanism, containing an overview of all traces
in a general table with the number of workflows, tasks,
users, etc. This table is sortable and searchable, allowing
website users to interact with the more than 90 traces cur-
rently in the WTA (column “#WL”, row “Total” in Table 2).

We provide, online and as separate tools, a detailed report
for each trace. Each report includes automatically generated
statistics, such as the number of workflows and tasks, then
resource properties such as compute, memory, and IO, and
job and task arrival times and runtime distributions (see
Section 4). The metrics featured in the report are reported as
important by prior studies [39], [40] and enable developers
to select traces appropriate for their intended use-case.

3.6 Tools for Analysis and Validation

We implement the unified trace format using the Parquet
file format and the Snappy compression algorithm. Parquet
is a binary file format that is supported by many big data
tools such as Apache Spark, Flink, Druid, and Hadoop [41].
Many programming languages also have libraries to parse
this format, such as PyArrow for Python and parquet-avro
for Java. Snappy3 compression reduces the size of the data-
set significantly and has low CPU usage during extraction.

Beside trace selection support and to address R-4, the
WTA offers several tools to facilitate and incentivize the
continuous growth of the archive. Most of these tools
required significant engineering effort to develop, due to
the typical challenges of big data processing (high volume,
noisy data, diverse input-formats, etc.). The WTA simplifies
the upload of new traces by providing a set of parsing
scripts for different trace sources, such as Google, Pegasus,
and Alibaba. Parsing traces can become non-trivial, once
they grow both in complexity and size. Such traces require
big data tools, such as Apache Spark, and enough resources,
a cluster, to compute. Noisy data raise another non-trivial
issue: both Google’s and Alibaba’s cluster data contained
either anomalous fields, undocumented attributes, and non-
DAG workflows. Some of these issues were never discov-
ered by their respective communities and were corrected in
our parsing tools. Debugging, filtering, and correcting noisy
big data requires significant compute power and detailed
engineering.

Because traces may contain sensitive information, the
WTA offers a trace anonymization tool, which supports users
to automatically replace privacy and security-related infor-
mation, to avoid an accidental reveal of proprietary infor-
mation. Specifically, to remove sensitive information from
trace files, we use two common techniques [42], culling and
transforming. Culling is done during trace conversion, by
omitting parts of the raw trace data which do not match our
workflow trace format. For the transformation, as presented
in Table 3, our anonymization tool automatically scans the

Fig. 4. The WTA trace format.

TABLE 3
Trace Anonymization Methods Used in WTA Tools

Obfuscation method Description

IP Encodes IPv4 addresses
Mail and host Obfuscate mail and host names
File paths Hide file paths in Linux and Windows format
Executable files Encode executable file names, e.g., py, sh, exe, jar
All files Hide all file names, ending with 2, 3, or 4 letters
Keywords Anonymize a list of custom keywords
All Apply all obfuscation methods listed above

3. https://github.com/google/snappy

2176 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 9, SEPTEMBER 2020

https://github.com/google/snappy

workflow trace file for sensitive data, such as IP addresses,
file paths, names, etc., by string pattern matching. Beside
these standard sensitive-data checks, the WTA offers the
option to search for custom privacy-critical strings.

Finally, all matched strings are replaced by a salted SHA-
256 hash key. This approach using cryptographic hash
functions offers protection of sensitive data, while preserv-
ing the relationships between the matched values in the
same trace file [42]. Additionally, our tool hides potential
relations to other trace files by adding a salt of length 16 to
the hash key generation, which is randomly generated on
each tool run.

To validate traces, the WTA provides a validation script
that checks the integrity and summarizes important charac-
teristics of a trace. During trace conversion, using the valida-
tion script, we successfully identified several parse bugs and
inconsistencies in the data that we subsequently corrected.

Specifically, because tasks build the base of each trace,
our tool checks if all contained tasks are well defined. This,
for example, means that all parsed control dependencies,
such as children and parents, link only to existing tasks
with valid properties. A task property is valid, if the parsed
property type matches the property type definition, and the
property value is allowed e.g., task runtime > 0. Based on
and similar to this fundamental validation, our tool pro-
vides options to check the workflow and data transfer prop-
erties to identify inconsistencies, as well.

These tools help combating perceived barriers to share
data described by Sayogo et al. [43]. Several technological
barriers are addressed by using a unified format and valida-
tion (data architecture, quality, and standardization), Legal
and policy barriers are more difficult to address. Our ano-
nymization tool aids in overcoming the data protection bar-
rier, yet legal and other enforced policies may require
tailored solutions.

Besides offering these tools, the WTA also hosts the trace
data, addressing logistic and economical barriers. The
increasing focus on sharing data artifacts by the community,
is lowering the barrier regarding competition for merit and
reputation for quality and bolsters the culture of open shar-
ing. Finally, each trace has its own DOI by also uploading it
to Zenodo4 which can be cited and thus provides authors
with the appropriate credits (incentive barrier).

3.7 Current Content

Having a diverse set of traces available is necessary to use in
experimentation. When using traces in experimentation, dif-
ferent traces should be used to prove generality of the pro-
posed approach (see Section 5). Gathering and parsing raw
logs and other traces requires significant computing effort.
Using 16 nodes (32 eight-core Xeon E5-2630 v3 and 1TB
RAM) from the Dutch DAS5 super computer [44], several
traces require up to a day to compute using big data tools
such as Apache Spark. In total, the WTA team spent more
than two person months on converting traces to the unified
trace format. By offering these parse scripts and the data,
we contribute to R-4.

The WTA features currently 96 workloads from 10 differ-
ent sources, with over 48 million workflows and 2 billion
CPU core hours. All of them are available on theWTA archive
website.5 Each workload is uniquely identified by a combina-
tion of the following properties if available: source, runtime
environment, application, and application parameters [45].
Tables 2 and 4 summarize these traces. From these tables we
observe that WTA contains a vast amount of different traces,
from different sources and domains, with various number of
workflows, properties, number of tasks, timespans, and core
hour counts. Although supported by our format, no trace cur-
rently has information on energy consumption, highlighting
the need of such traces [14]. These traces are collected by com-
bining open-access data (logs, traces, etc.) and closed-access
data throughout the years in collaboration with both industry
and academia. This contributes toR-1.

This diversity enables new workflow management tech-
niques and systems to be thoroughly tested for their feasi-
bility, strengths, and, equally important, weaknesses.

4 A CHARACTERIZATION OF WORKLOADS OF

WORKFLOWS

To answer RQ-3, we perform in this section a characteriza-
tion of the workloads in the WTA. These workloads origi-
nate from publicly available archives combined with
workloads we obtained from collaborations. As we expect
these workloads to be heterogeneous in many dimensions,
we characterize them using a variety of metrics and proper-
ties, including workflow size, resource usage, and structural

TABLE 4
Overview of Properties Available Per Source

Source ID Task details Task resource req. Structural information Disk Memory Network Energy NFRs

S1 @ @ @
S2 @ @ @
S3 � @ � @
S4 @ @ @
S5 @ @ @

S6 @ @ @ @
S7 @ @ � @
S8 @ @ @ @ @
S9 @ @ @ @ @ @
S10 @ � @ @ @

Legend: @ = available, � = partially available, blank = not available, and Task details = individual task information.

4. https://zenodo.org/ 5. https://wta.atlarge-research.com/

VERSLUIS ET AL.: WORKFLOW TRACE ARCHIVE: OPEN-ACCESS DATA FROM PUBLIC AND PRIVATE COMPUTING INFRASTRUCTURES 2177

https://zenodo.org/
https://wta.atlarge-research.com/

patterns. Our characterization reveals significant differences
between workloads from different domains and sources.
Such differences further support our claim that the commu-
nity needs to look beyond just scientific workloads, and con-
sider a wider range of domains and sources for experimental
studies when developing workflow management systems
aimed at multiple domains or for general applicability.

We present in this section only detailed insights that lead
to new observations for the community. We include in our
technical report other types of analysis, such as task and
workflow inter-arrival times, task and workflow runtimes,
and their breakdown per domain and source [38].

4.1 Structural Patterns

O-7: Scientific, industrial, and engineering workflows
exhibit various structural patterns, but at least 60 per-
cent of tasks in a domain match the dominant pattern
of that domain.

O-8: Industry workflows stand out by exhibiting primarily
scatter patterns, as opposed to pipeline operations.

This characterization quantifies five structural patterns in
workflows often used by researchers [46]: scatter (data dis-
tribution), shuffle (data redistribution), gather (data aggre-
gation), pipeline, and standalone (process). Investigating
these structural patterns is important to understand the
types of applications being executed and tune a system’s
performance. We exclude from this analysis the LANL,
Two Sigma, and Google traces, which lack structural infor-
mation, that is, task parent-child relationship information.

Fig. 5 depicts the structural patterns found per domain.
From this figure, we observe that in each domain a domi-
nant pattern emerges that accounts for 61–85 percent of
tasks. In the scientific and engineering domains, the major-
ity of tasks are simple pipelines. Interestingly, the industrial
workflows include primarily scatter operations. This obser-
vation matches known properties of the Alibaba trace,
which accounts for over 99 percent of tasks with structural
information we analyzed in this domain. In particular, the
Alibaba trace includes MapReduce jobs, each consisting of
many “map” tasks (scatter operations) and a smaller num-
ber of “reduce” tasks (gather operations).

4.2 Arrival Patterns

O-9: From all domains, industrial traces show on average
orders ofmagnitude higher rates of task arrival.

O-10: Scientific traces can show high variability in task
arrival rates, unlike industrial and engineering
traces.

O-11: Two Sigma shows a typical workday diurnal pattern.

To investigate theweekly trends thatmay appear inwork-
load traces, we depicts in Fig. 6 for several traces the average
number of tasks that arrive per day of the week. We omit the
Askalon new source from the hourly task-arrival plot as they
contain 4 or 5 data points, which is too few to plot a trend.
We observe that traces have significantly different arrival
rates and patterns. The Alibaba trace features the highest
task arrival rates, peaking at over 10,000,000 tasks per hour.
Google and the Two Sigma workloads follow with 100-
10,000 tasks per hour. This shows that industrial workloads
included in this work have significantly more tasks per hour
than the other compute environments, which agrees with
companies such as Alibaba and Google operating at a global
scale. The non-industrial traces show significant fluctuations
throughout the week, whereas both Alibaba and Google do
not. This might be due to the global, around-the-clock opera-
tion of Alibaba’s and Google’s services, which can lead to a
more stable task arrival rate.

To observe differences in daily trends, we depict the
average task rate per hour of day in Fig. 7. This figure reaf-
firms our observation that the two largest traces–Alibaba
and Google–have a relatively stable arrival pattern through-
out the day. In contrast, the Two Sigma 1 trace exhibits a

Fig. 5. Structural workflow patterns, per domain.

Fig. 6. Daily task-arrival trend, per source.

Fig. 7. Hourly task-arrival trend, per source.

2178 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 9, SEPTEMBER 2020

typical office hours pattern; task arrival rates increase
around hour 7 and start dropping around 17. The same pat-
tern occurs to a lesser extent in the Two Sigma 2 trace. The
highly variable arrival rates of tasks in the LANL traces, as
observed in Fig. 6, are also evident in our analysis of daily
trends. We study this in more depth in Section 4.3.

4.3 Burstiness

O-12: Most traces investigated exhibit bursty behavior
within small window sizes.

O-13: The LANL trace exhibits maximum burstiness at
medium window sizes.

O-14: The largest traces (Alibaba and Google) exhibit
uniquely bursty behavior: low burstiness at small
and high burstiness at large, window sizes.

To investigate if workloads expose bursty behavior, a
special kind of arrival pattern, the Hurst exponent H is
used. H quantifies the effect previous values have on the
present value of the time series. A value of H < 0:5 indi-
cates a tendency of a series moving in the opposite direction
based on the previous values, and thus exhibit jittery behav-
ior (sporadic burst). A value of H > 0:5 indicates a ten-
dency to move in the same direction, and thus towards well
defined peaks (sustained burst). When H ¼ 0:5, the series
behaves like a random Brownian motion.

In this experiment, we inspect busty behavior by com-
puting the Hurst exponent for task arrivals. The results of
this experiment are visible in Fig. 8. From this figure, we
observe most traces depict bursty behavior at least for one
of small, medium, and large window size. They are also not
bursty for at least one window size. This is expected, as in
most systems task arrivals vary at (sub-)second interval.
Interestingly, LANL traces exhibit most bursty behavior at

medium window sizes. This might be due to national labo-
ratories workflows being submitted in batches. A batch of
tasks is submitted all at once, leading to a burst. But, the
batch itself is processed at a constant rate. The workload is
also stable over longer time periods as evidenced by
H � 0:5 for larger windows. Finally, the two largest traces
in this work, Alibaba and Google, exhibit increasingly burst
behavior for larger windows. This indicates that for larger
arrival times, the workloads (in absolute numbers) vary
more than for the other sources. This matches the observa-
tions in Section 4.2.

4.4 Parallelism in Workflows

O-15: Task parallelism per workflow can differ signifi-
cantly between workload domains and sources.

O-16: Industrial workflows exhibit the highest level of
parallelism.

O-17: Out of all sources, Alibaba workflows have the high-
est level of parallelism, followed by Pegasus and
WorkflowHub.

With the structural patterns observed, we investigate if
the large occurrence of the pass-through patterns expresses
in a high level of parallelism. The level of parallelism indi-
cates how many tasks can maximally run in parallel for a
given workflow, provided sufficient resources. Fig. 9
depicts the approximated level of parallelism per domain.
The approximation algorithm used produces results very
close to the true level of parallelism as demonstrated by
Ilyushkin et al. [47]. From this figure, we observe the indus-
trial domain exhibits the highest level of 99th percentile par-
allelism, up to hundreds of thousands of tasks. This is likely
a consequence of the many MapReduce workflows, which
are highly-parallel by nature, that are present in the Alibaba
trace. Alibaba also contains bag of tasks workflows, which
by nature have a high parallelism. Scientific workflows
exhibit low median parallelism but high 99th percentile par-
allelism, featuring levels of parallelism up to thousands of
tasks. Engineering traces exhibit a moderate amount of

Fig. 8. Hurst exponent estimations for different time windows per trace.
Horizontal axis does not start at zero. Fig. 9. Workflow level-of-parallelism, per domain.

TABLE 5
The Design and Setup of our Characterization

ID Section Description Traces Metric Granularity

E1 4.1 Analyze structural patterns in workflows per domain All but S3, 7, 10 Structural patterns Workflow level
E2 4.2 Longitudinal analysis S1, S3, S7, S9, S10 Tasks per day Workload level
E3 4.3 Analysis of burstiness per trace All but S4-8 Hurst exponent Workload level
E4 4.4 Measure the level of parallelism per workflow All but S3, 7, 10 Level of parallelism Workflow level
E5 4.5 Analysis of critical path length All but S3, 7, 10 Critical path length Workflow level

VERSLUIS ET AL.: WORKFLOW TRACE ARCHIVE: OPEN-ACCESS DATA FROM PUBLIC AND PRIVATE COMPUTING INFRASTRUCTURES 2179

median parallelism, between industry and scientific, with at
most 1000 concurrent running tasks.

Fig. 10 shows the level-of-parallelism per source. From
this figure, we observe that Alibaba exhibits the highest lev-
els of parallelism, as discussed previously. Second are the
Pegasus and WorkflowHub workflows. These sources con-
tain a variety of scientific applications, commonly known
for their parallel structures, as observed in Section 4.1. Other
traces demonstrate less parallelism, with up to 1000 concur-
rent running tasks. As Shell exist entirely of sequential pipe-
lines, the source does not exhibit any variation.

4.5 Limits to Parallelism in Workflows

O-18: Workflows from the scientific domain have signifi-
cantly different critical-path lengths.

O-19: The amount of tasks on the critical path is the highest
for engineering workflows.

O-20: Although highly parallel, industrial workflows exhibit
longer critical paths than scientificworkflows.

The critical path (CP) refers to the longest sequence of
dependent tasks in a workflow, from any entry task to any
exit task. By quantifying the CP length, we investigate if
workflow runtimes are primarily dominated by a few heavy
tasks, or by many small tasks. Fig. 11 presents the results of
this characterization per workload domain. From this figure
we observe the CP length for engineering workflows is the
highest. This matches with the parallelism observations in
Sections 4.1 and 4.4. Interestingly, even though industrial
workflows are often highly parallel, their critical paths are
often longer than those of scientific workflows. This indi-
cates that industrial workflows are bigger in size than scien-
tific workflows, which our data supports.

Fig. 12 presents the results of CP characterization per
workload source. From this figure we observe the CP length
differs significantly per trace. Based on the prior findings,

the engineering traces are expected to show longer critical
paths. As we can observe, the Askalon old traces contains
workflows with the longest critical path. Alibaba workflows
also exhibit long critical paths, indicating their workflows
next to being highly parallel, also contain a lot of tasks with
stages. More concentrated, the other traces exhibit lower
critical path lengths, yet the traces are still clearly distinct.
As the Shell trace contains solely sequential workflows, the
critical path length is one.

5 ADDRESSING CHALLENGES OF VALIDITY

In this section, we discuss challenges to the validity of this
work. We address the challenges through either trace-based
simulation (the first) or argumentation (the others).

Challenge C-1. Trace diversity does not impact the perfor-
mance of workflow schedulers. As outlined in Sections 3.7
and 4, theWTA traces are diverse. However,what is the impact
of trace diversity?

To demonstrate the impact of trace diversity on scheduler
performance, we conduct a trace-based simulation study. The
simulator used is an optimized version of DGSim [48] which
we publish as open-access artifact.6 We simulate workloads
from five sources using two scheduler configurations. We
equip the simulated scheduler with either the first-come first-
serve (FCFS) or the shortest job first (SJF) queue sorting policy.
For both scheduler configurations, we further use a best-fit
task placement policy. We do not use a fixed resource envi-
ronment to prevent bias when sampling or scaling traces [28].
Instead, we tailor the amount of available resources for each
trace to reach roughly a 70 percent resource utilization on
average, based on the amount of CPU (core) seconds of trace
and its length. Although ambitious, 70 percent resource utili-
zation is achievable in parallel HPC environments [49] and
can be seen as a target for cloud environments. To evaluate
the performance of each scheduler, we use three metrics com-
monly used to assess schedulers’ performance [50], [51]: task
response time (ReT), bounded task slowdown (BSD, using a
lower bound of 1 second), and normalizedworkflow schedule
length (NSL, the ratio between a workflow’s response time
and its critical path). The entire experiment, including soft-
ware and data, can be reproduced onCodeOcean.7

We report the performance of each simulated scheduler in
Table 6 per source. From this table we observe significant dif-
ferences between schedulers and trace sources. In particular,

Fig. 10. Workflow level-of-parallelism, per source. Curves are shaded by
domain, to further reveal patterns.

Fig. 11. Workflow level-of-parallelism, per domain.

Fig. 12. Workflow level-of-parallelism, per source. Curves are shaded by
domain, to further reveal patterns.

6. Available at https://github.com/atlarge-research/wta-sim
7. https://doi.org/10.24433/CO.8484557.v1

2180 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 9, SEPTEMBER 2020

https://github.com/atlarge-research/wta-sim
https://doi.org/10.24433/CO.8484557.v1

we find that the relative performance of schedulers differs
between trace sources. For example, SJF outperforms FCFS
on the normalized schedule length metric by up to two
orders of magnitude on traces from Askalon Old and Pega-
sus. In contrast, on traces from Askalon New and Shell, the
scheduling policies perform similarly. For other metrics,
these differences are present, but less pronounced. SJF per-
forms better than FCFS on response time and slowdown for
each trace source, but the differences in performance
between the schedulers vary greatly across traces.

Overall, we kept the working environment fixed per
trace, yet obtained significantly different results depending
on the scheduler and input trace. Thus, our trace-based sim-
ulations give practical evidence that researchers require
experimenting with different traces to claim generality and
feasibility of their proposed approaches.

C-2. Limited venue selection in the survey. Besides
omitting venues that yielded no results on our initial query,
we made sure that journals, workshops, and conferences
were covered at various levels in term of quality. The
selected venues are highly ranked in several of the available
rankings, including CORE,8 Google Scholar.9 and AMiner.10

As these rankings use different metrics to define the top-
ranking, we made a selection that covers different types of
venues that also match our experience in terms of quality,
see the list in Table 1. We believe this covers the field of sys-
tems community to a degree where conclusions can be
drawn from. We specifically focus on articles published in
the systems communities as specialized communities, e.g.,
bioinformatics, focus on systems that solve domain-specific
problems, but rarely conduct in-depth experiments, includ-
ing trace-based, to test the system-level capabilities and
behavior.

C-3. Level of data anonymization. The Google team pub-
lished interesting work data [42], but their anonymization
approach, of normalizing values of both resource consump-
tion and available resources, reduces significantly the
usability of traces and the characterization details they pro-
vide. We argue this type of anonymization is not preferred.
When available resources per machine, e.g., available disk

space, memory, etc., and resource consumption numbers
are normalized, reusing traces for different environments
becomes difficult. Researchers then need to make assump-
tion on what kind of hardware the workflows were exe-
cuted as done in the work of Amvrosiadis et al. [15] or need
to assume a homogeneous environment. Instead, obfusca-
tion techniques, such as multiplying both consumption and
resources by a certain factor, allow for relative comparisons
and the possibility to replay scheduling the workload on
the resources while still concealing the original data.

C-4. The Workflow Trace Format. A fourth challenge is
the properties included in the workload trace format. For
each encountered property in other formats, we carefully
decided whether to include it or not. Low-level details such
as page caches are omitted to not complicate unnecessarily
the traces. If future work demands change, the versioning
schema per object will allow for these additions. In defining
the fields of our trace format, we also looked at a variety of
workflow specification languages and formalisms, from the
very generic (e.g., BPMN/BPEL and Petri net) to the execut-
able workflow formalisms (e.g., CWL and DAX).

6 RELATED WORK

We survey in this section the relevant body of work focus-
ing on trace archives and on characterizing workloads. Dif-
ferently from other archives, the WTA focuses on workloads
of workflows, preserving workflow-level arrival patterns and
task inter-dependencies not found in other archives. Differ-
ently from other characterization work, ours is the first to
reveal and compare workflow characteristics across differ-
ent domains and fields of application.

Open-Access Trace Archives. Closest to this work is Work-
flowHub [14], which archives traces of workflows executed
with the Pegasus workflow engine and offers them in a uni-
fying format containing structural information. Workflow-
Hub also provides a tool to convert Pegasus execution logs
to traces, similar to our parsing tools. Different from this
work, WorkflowHub’s traces include a single workflow and
thus not a workload with a job-arrival pattern. WorkFlow-
Hub also does not provide statistical insights per trace and
thus, they do not meet requirements R-1 and R-3, and only
partially meet R-4.

Also relatively close to this work, the ATLAS repository
maintained by the Carnegie Mellon University [15] contains
two traces (the S3 traces in this work), with other two traces
announced but not yet released (as announced, the S7 traces
in this work). None of their published traces contains task-
interdependency data, so, although overlapping with our
S3 and S7, the ATLAS work is different in scope and in par-
ticular does not address workflows. Further, they do not
consider different domains nor fields, and their archive
lacks a unified format, statistical insights, selection mecha-
nisms, and tooling—thus, they do not meet our require-
ments R1–4.

Other trace-archives with similarities to this work
include the MyExperiment archive (ME) [24], the Parallel
Workloads

Archive (PWA) [52], and the Grid Workloads Archive
(GWA) [53]. ME stores workflow executables, and semantic
and provenance-data, but not provide execution traces as
WTA does and thus has different scope. The PWA includes

TABLE 6
The Performance in Simulation of Two Schedulers for Traces

From Different Sources

Source of Trace

Metric Policy Askalon Old Askalon New Pegasus Shell SPEC

Avg. ReT FCFS 2:02 � 105 s 167 s 2:43 � 104 s 9.76 s 491 s
SJF 1:74 � 105 s 113 s 2:12 � 104 s 9.52 s 248 s

Avg. BSD FCFS 1:53 � 104 65.1 1:31 � 103 1.13 47.4
SJF 0:14 � 104 11.6 0:10 � 103 1.06 2.2

Avg. NSL FCFS 1:05 � 105 2.50 2:35 � 103 1.12 13.9
SJF 0:01 � 105 3.14 0:06 � 103 1.07 1.78

Lower values are better.

8. http://portal.core.edu.au/conf-ranks
9. https://scholar.google.com/citations?view_op=top_venues&hl=

en&vq=eng_computingsystems
10. https://cn.aminer.org/ranks/conf

VERSLUIS ET AL.: WORKFLOW TRACE ARCHIVE: OPEN-ACCESS DATA FROM PUBLIC AND PRIVATE COMPUTING INFRASTRUCTURES 2181

http://portal.core.edu.au/conf-ranks
https://scholar.google.com/citations?view_op=top_venues&hl=en&vq=eng_computingsystems
https://scholar.google.com/citations?view_op=top_venues&hl=en&vq=eng_computingsystems
https://cn.aminer.org/ranks/conf

traces collected from parallel production environments,
which are largely dominated by tightly-coupled parallel jobs
and, more recently, by bag-of-tasks applications. The GWA
includes traces collected from grid environments; differently
from this work, these traces are dominated by bag-of-tasks
applications and by virtual-machine lease-release data.

Workload Characterization, Definition, and Modeling. There
is much related and relevant work in this area, from which
we compare only with the closely related; other characteriza-
tion work does not focus on comparing traces by domain
and does not cover a set of characteristics as diverse as this
work, leading to so many findings. Closest to this work, the
Google cluster-traces have been analyzed from various
points of view, e.g., [54], [55], [56]. Amvrosiadis et al. [15],
[23] compare the Google cluster traces with three other clus-
ter traces, of 0.3-3 times the size and 3-60 times the duration,
and find key differences; our work adds new views and
quantitative data on diversity, through both survey and
characterization techniques. Bharathi et al. [46] provide a
characterization on workflow structures and the effect of
workflow input sizes on said structures. Five scientific work-
flows are used to explain in detail the compositions of their
data and computational dependencies. Using the characteri-
zation, a workflow generator for parameterized workflows
is developed. Juve et al. [36] provide a characterization of six
scientific workflows using workflow profiling tools that
investigate resource consumption and computational char-
acteristics of tasks. The teams of Feitelson and Iosup have
provided many characterization and modeling studies for
parallel [57], grid [58], and hosted-business [59] workloads;
and Feitelson has written a seminal book on workload
modeling [60]. In contrast, this work addresses in-depth the
topic of workloads of workflows.

7 CONCLUSION AND ONGOING WORK

Responding to the stringent need for diverse workflow
traces, in this work we propose the Workflow Trace Archive
(WTA), which is an open-access archive containing work-
flow traces.

We conduct a survey of how the systems community
uses workflow traces, by systematically inspecting articles
accepted in the last decade in peer-reviewed conferences and
journals. We find that, from all articles that use traces, less
than 40 percent use realistic traces, and less than 15 percent
use any open-access trace. Additionally, the community
focuses primarily on scientific workloads, possibly due to the
scarcity of traces from other domains. These findings suggest
existing limits to the relevance and reproducibility of work-
flow-based studies and designs.

We design and implement the WTA around five key
requirements. At the core of the WTA is an unified trace for-
mat that, uniquely, supports both workflow- and task-level
NFRs. The archive contains a large and diverse set of traces,
collected from 10 sources and encompassing over 48 million
workflows and 2 billion CPU core hours.

Finally, we provide deep insight into the WTA traces,
through a statistical characterization revealing that: (1) there
are large differences in workflow structures between scien-
tific, industrial, and engineering workflows, (2) our two big-
gest traces– from Alibaba and Google—have the most stable

arrival patterns in terms of tasks per hour, (3) industrial
workflows tend to have the highest level of parallelism, (4)
the level of parallelism per domain is clearly divided, (5)
engineering workloads tend to have the most tasks on the
critical path, (6) the three domains inspected in this work
show distinct critical path curves, (7) in order to claim gener-
ality of an approach, one should test a system with a variety
of traces with different properties, possibly from different
domains.

In ongoing work, we aim to attract more organizations to
contribute real-world traces to the WTA, and to encourage
the use of theWTA content and tools in educational and pro-
duction settings. One of our goals is to develop a library sys-
tem administrators can integrate into their systems to
generate traces in our format. Our preliminary experience
with this learns that developing such a library, even for a sin-
gle system, requires significant engineering effort and is thus
left for future work. We aim to support other formalisms in
the future, including directed graphs, BPMNworkflows, etc.
based on the community’s needs. Investigating if formalisms
such as CWLProv can be used to further enhance the
archive’s content, possibly bymerging, is another interesting
item for future work. Finally, we aim to improve the trace
format and statistics we report for each trace, based on com-
munity feedback.

REPRODUCIBILITY STATEMENT

We support reproducible science. A full description on how
to reproduce our findings can be found in our technical
report [38]. The WTA datasets are available online on the
archive’s website https://wta.atlarge-research.com/. The
WTA tools, simulator, and parse scripts and survey data are
available as free open-source software at https://github.
com/atlarge-research/wta-tools, https://github.com/
atlarge-research/wta-sim, and https://github.com/atlarge-
research/wta-analysis, respectively. The experiment con-
ducted in Section 5, C-1 can be reproduced using our
Code Ocean capsule available at https://doi.org/10.24433/
CO.8484557.v1.

ACKNOWLEDGMENTS

This work was supported by the projects Vidi MagnaData,
Commit, the European Union’s Horizon 2020 Research and
Innovation Programme, under Grant 801091 “ASPIDE”,
and the National Science Foundation award 1664162.

REFERENCES

[1] A. Ilyushkin et al., “An experimental performance evaluation of
autoscaling policies for complex workflows,” in Proc. 8th ACM/
SPEC Int. Conf. Perform. Eng., 2017, pp. 75–86.

[2] F. Wu et al., “Workflow scheduling in cloud: A survey,” J. Super-
computing, vol. 71, pp. 3373–3418, 2015.

[3] P. K. Isom et al., Is Your Company Ready for Cloud. Indianapolis, IN,
USA: IBM Press, 2012.

[4] E. Deelman et al., “The future of scientific workflows,” Int. J. High
Perform. Comput. Appl., vol. 32, pp. 159–175, 2018.

[5] K. Weins, “Cloud computing trends: 2018 state of the cloud sur-
vey. rightscale,” 2018.

[6] M. Kelly, “86 percent of companies use multiple cloud services,”
2012. [Online]. Available: https://venturebeat.com/2012/05/10/
cloud-services-data/

2182 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 9, SEPTEMBER 2020

https://wta.atlarge-research.com/
https://github.com/atlarge-research/wta-tools
https://github.com/atlarge-research/wta-tools
https://github.com/atlarge-research/wta-sim
https://github.com/atlarge-research/wta-sim
https://github.com/atlarge-research/wta-analysis
https://github.com/atlarge-research/wta-analysis
https://doi.org/10.24433/CO.8484557.v1
https://doi.org/10.24433/CO.8484557.v1
https://venturebeat.com/2012/05/10/cloud-services-data/
https://venturebeat.com/2012/05/10/cloud-services-data/

[7] A. Iosup et al., “Massivizing computer systems: A vision to under-
stand, design, and engineer computer ecosystems through and
beyond modern distributed systems,” in Proc. IEEE 38th Int. Conf.
Distrib. Comput. Syst., 2018, pp. 1224–1237.

[8] E. G. Coffman and R. L. Graham, “Optimal scheduling for two-
processor systems,” Acta Inf., vol. 1, pp. 200–213, 1972.

[9] A. Slominski, “Adapting BPEL to scientific workflows,” in Proc.
Workflows e-Sci., 2007, pp. 208–226.

[10] T. Murata, “Petri nets: Properties, analysis and applications,” Proc.
IEEE, vol. 77, no. 4, pp. 541–580, Apr. 1989.

[11] Y. Gil et al., “Examining the challenges of scientific workflows,”
Computer, vol. 40, no. 12, pp. 24–32, Dec. 2007.

[12] J. T. Dudley et al., “In silico research in the era of cloud
computing,”Nat. Biotechnol., vol. 28, no. 11, pp. 1181–1185, 2010.

[13] S. Cohen-Boulakia et al., “Search, adapt, and reuse: the future of sci-
entific workflows,” ACM SIGMOD Record, vol. 40, pp. 6–16, 2011.

[14] R. F. da Silva et al., “Community resources for enabling research in
distributed scientific workflows,” in Proc. IEEE 10th Int. Conf. e-
Sci., 2014, pp. 177–184.

[15] G. Amvrosiadis et al., “On the diversity of cluster workloads and
its impact on research results,” in Proc. USENIX Conf. Usenix
Annu. Tech. Conf., 2018, pp. 533–546.

[16] L. Ramakrishnan et al., “A multi-dimensional classification model
for scientific workflow characteristics,” in Proc. 1st Int. Workflow
Approaches New Data-Centric Sci., 2010, pp. 1–12.

[17] J. Cardoso et al., “Workflow quality of service,” in Proc. Int. Conf.
Enterprise Integration Modeling Technol., 2002, pp. 303–311.

[18] ACM, “Artifact review and badging,” 2017. [Online]. Available:
https://www.acm.org/publications/policies/artifact-review-
badging

[19] B. Kitchenham et al., “Systematic literature reviews in software
engineering–a systematic literature review,” Inf. Softw. Technol.,
vol. 51, pp. 7–15, 2009.

[20] M. Ley, “The DBLP computer science bibliography: Evolution,
research issues, perspectives,” in Proc. Int. Symp. String Process.
Inf. Retrieval, 2002, pp. 1–10.

[21] W. Ammar et al., “Construction of the literature graph in semantic
scholar,” in Proc. Conf. North Amer. Chapter Assoc. Comput. Linguis-
tics: Human Lang. Technol., 2018, pp. 84–91.

[22] W. Schwiegelshohn, “How to design a job scheduling algorithm,”
in Proc. Workshop Job Scheduling Strategies Parallel Process., 2014,
pp. 147–167.

[23] G. Amvrosiadis et al., “Bigger, longer, fewer: What do cluster jobs
look like outside google?” Carnegie Mellon Univ., Pittsburgh, PA,
Tech. Rep. CMU-PDL-17–104, 2017.

[24] C. Goble et al., “myExperiment: Social networking for workflow-
using e-scientists,” in Proc. 2nd Workshop Workflows Support Large-
Scale Sci., 2007, pp. 1–2.

[25] A. Iosup et al., “The atLarge vision on the design of distributed
systems and ecosystems,” in Proc. Int. Conf. Distrib. Comput. Syst.,
2019. [Online] Available as arXiv e-print, https://arxiv.org/pdf/
1906.07471.pdf

[26] A. Iosup et al., “The openDC vision: Towards collaborative data-
center simulation and exploration for everybody,” in Proc. 16th
Int. Symp. Parallel Distrib. Comput., 2017, pp. 85–94.

[27] D. Klus�a�cek et al., “On interactions among scheduling policies:
Finding efficient queue setup using high-resolution simu-
lations,” in Proc. Eur. Conf. Parallel Process., 2014, pp. 138–149.

[28] E. Frachtenberg and D. G. Feitelson, “Pitfalls in parallel job sched-
uling evaluation,” in Proc. Workshop Job Scheduling Strategies Paral-
lel Process., 2005, pp. 257–282.

[29] L. Versluis et al., “An analysis of workflow formalisms for work-
flows with complex non-functional requirements,” in Proc. ACM/
SPEC Int. Conf. Perform. Eng., 2018, pp. 107–112.

[30] Amstutz et al., “Common workflow language, v1. 0,” Figshare,
2016.

[31] P. Couvares et al., “Workflow management in condor,” in Proc.
Workflows e-Science, 2007, pp. 357–375.

[32] W. V. der Aalst et al., “Advanced topics in workflowmanagement:
Issues, requirements, and solutions,” J. Integr. Des. Process Sci.,
vol. 7, 2003.

[33] F. Z. Khan et al., “Sharing interoperable workflow provenance: A
review of best practices and their practical application in
CWLProv,” GigaScience, vol. 8, pp. 1–27, 2019.

[34] P. Xiong et al., “vPerfGuard: An automated model-driven frame-
work for application performance diagnosis in consolidated cloud
environments,” in Proc. 4th ACM/SPEC Int. Conf. Perform. Eng.,
2013, pp. 271–282.

[35] A. C. Zhou et al., “A declarative optimization engine for
resource provisioning of scientific workflows in IaaS clouds,”
in Proc. 24th Int. Symp. High-Perform. Parallel Distrib. Comput.,
2015, pp. 223–234.

[36] G. Juve et al., “Characterizing and profiling scientific workflows,”
Future Gener. Comput. Syst., vol. 29, pp. 682–692, 2013.

[37] Q. Sun et al., “Adaptive data placement for staging-based coupled
scientific workflows,” in Proc. Int. Conf. High Perform. Comput.
Netw. Storage Anal., 2015, Art. no. 65.

[38] L. Versluis et al., “Theworkflow trace archive: Open-access data from
public and private computing infrastructures – technical report,”
2019, arXiv:1906.07471[cs.DC]. [Online]. Available: https://ui.
adsabs.harvard.edu/abs/2019arXiv190607471V

[39] Y. L. Simmhan et al., “A framework for collecting provenance in
data-centric scientific workflows,” in Proc. IEEE Int. Conf. Web
Services, 2006, pp. 427–436.

[40] W. Chen et al., “Using imbalance metrics to optimize task cluster-
ing in scientific workflow executions,” Future Gener. Comput. Syst.,
vol. 46, pp. 69–84, 2015.

[41] S. Talluri et al., “Characterization of a big data storage workload in
the cloud,” in Proc. ACM/SPEC Int. Conf. Perform. Eng., 2019,
pp. 33–44.

[42] C. Reiss et al., “Obfuscatory obscanturism: making workload
traces of commercially-sensitive systems safe to release,” in Proc.
IEEE Netw. Operations Manage. Symp., 2012, pp. 1279–1286.

[43] D. S. Sayogo and T. A. Pardo, “Exploring the determinants
of scientific data sharing: Understanding the motivation
to publish research data,” Government Inf. Quart., vol. 30,
pp. S19–S31, 2013.

[44] H. Bal et al., “A medium-scale distributed system for computer
science research: Infrastructure for the long term,” Computer,
vol. 49, no. 5, pp. 54–63, May 2016.

[45] D. Kr�ol et al., “Workflow performance profiles: Development and
analysis,” in Proc. Eur. Conf. Parallel Process., 2016, pp. 108–120.

[46] S. Bharathi et al., “Characterization of scientific workflows,”
Proc. 3rd Workshop Workflows Support Large-Scale Sci., 2008,
pp. 1–10.

[47] A. Ilyushkin et al., “Scheduling workloads of workflows with
unknown task runtimes,” in Proc. 15th IEEE/ACM Int. Symp. Clus-
ter Cloud Grid Comput., 2015, pp. 606–616.

[48] A. Iosup et al., “DGSim: Comparing grid resource management
architectures through trace-based simulation,” in Proc. Eur. Conf.
Parallel Process., 2008, pp. 13–25.

[49] J. P. Jones and B. Nitzberg, “Scheduling for parallel supercom-
puting: A historical perspective of achievable utilization,” in
Proc. Workshop Job Scheduling Strategies Parallel Process., 1999,
pp. 1–16.

[50] Y. K. Kwok and I. Ahmad, “Benchmarking and comparison of the
task graph scheduling algorithms,” in Proc. 1st Merged Int. Parallel
Process. Symp. Parallel and Distrib. Process., vol. 59, pp. 531–537,
1999.

[51] D. G. Feitelson et al., “Theory and practice in parallel job sched-
uling,” in Proc. Workshop Job Scheduling Strategies Parallel Process.,
1997, pp. 1–34.

[52] D. G. Feitelson, “Parallel workload archive,” 2007. [Online]. Avail-
able: http://www. cs. huji. ac. il/labs/parallel/workload

[53] A. Iosup et al., “The grid workloads archive,” Future Gener. Com-
put. Syst., vol. 24, pp. 381–422, 2008.

[54] C. Reiss et al., “Heterogeneity and dynamicity of clouds at scale:
Google trace analysis,” in Proc. 3rd ACM Symp. Cloud Comput.,
2012, pp. 1–13.

[55] Y. Chen et al., “Analysis and lessons from a publicly available goo-
gle cluster trace,” Univ. California, Berkeley, CA, Tech. Rep.
UCB/EECS-2010–95, 2010.

[56] A.K. Mishra et al., “Towards characterizing cloud backend work-
loads: insights from google compute clusters,” ACM SIGMETRICS
Perform. Eval. Rev., vol. 37, pp. 34–41, 2010.

[57] D. G. Feitelson et al., “Experience with using the parallel work-
loads archive,” J. Parallel Distrib. Comput., vol. 74, pp. 2967–2982,
2014.

[58] A. Iosup and D. Epema, “Grid computing workloads,” IEEE Inter-
net Comput., vol. 15, no. 2, pp. 19–26, Mar./Apr. 2011.

[59] S. Shen et al., “Statistical characterization of business-critical work-
loads hosted in cloud datacenters,” in Proc. 15th IEEE/ACM Int.
Symp. Cluster Cloud Grid Comput., 2015, pp. 465–474.

[60] D. G. Feitelson, Workload Modeling for Computer Systems
Performance Evaluation. Cambridge, U.K.: Cambridge Univ.
Press, 2015.

VERSLUIS ET AL.: WORKFLOW TRACE ARCHIVE: OPEN-ACCESS DATA FROM PUBLIC AND PRIVATE COMPUTING INFRASTRUCTURES 2183

https://www.acm.org/publications/policies/artifact-review-badging
https://www.acm.org/publications/policies/artifact-review-badging
https://arxiv.org/pdf/1906.07471.pdf
https://arxiv.org/pdf/1906.07471.pdf
https://ui.adsabs.harvard.edu/abs/2019arXiv190607471V
https://ui.adsabs.harvard.edu/abs/2019arXiv190607471V
http://www. cs. huji. ac. il/labs/parallel/workload

Laurens Versluis received the BSc and MSc
degrees in computer science from the Delft Uni-
versity of technology, The Netherlands. Cur-
rently, he is working toward the PhD degree in
the Massiving Computer Systems Group, Depart-
ment of Computer Science, Faculty of Sciences,
VU Amsterdam, The Netherlands. His research
interests include cloud computing, distributed
systems, scheduling, complex workflows, image
processing, and privacy enhancing technologies.

Roland Math�a received the BSc degree in com-
puter science and the MSc degree from the Uni-
versity of Innsbruck, Austria, in 2011 and 2014,
respectively. Since January 2015, he is working
toward the PhD degree under the guidance of
prof. Radu Prodan. His research interests include
Cloud simulations, workflow applications, and
multi-objective optimisations.

Sacheendra Talluri received the MSc degree
from the Delft University of Technology, The
Netherlands. In the spring of 2018, he was a
research intern at big data company Databricks,
working on resource management and schedul-
ing across the memory-storage stack.

TimHegeman received the BSc andMSc degrees
in computer science from the Delft University of
Technology, The Netherlands. He is currently
working toward the PhD degree at Vrije Universiteit
Amsterdam, The Netherlands under guidance of
prof. Alexandru Iosup. His research interests
include distributed systems, big data, and perfor-
mance engineering.

Radu Prodan received the PhD degree from the
Vienna University of Technology, in 2004. He
was a associate professor until 2018 at the Uni-
versity of Innsbruck, Austria. He is currently a
professor in distributed systems at the Institute of
Software Technology, University of Klagenfurt.
He has participated in numerous national and
European projects, as is currently principal coor-
dinator of the H2020-ICT project ARTICONF
(smART socIal media eCOsystem in a block-
chaiN Federated environment). He is the author

of one book, more than 100 journal and conference publications, and is
the recipient of two IEEE best paper awards.

Ewa Deelman received the PhD degree in com-
puter science from Rensselaer Polytechnic Insti-
tute. She is currently a research professor with the
Computer Science Department and the assistant
director for the Science Automation Technologies
group at the University of Southern California Infor-
mation Sciences Institute. Her research focuses on
distributed computing, in particular regarding how
to best support complex scientific applications on a
variety of computational environments, including
campus clusters, grids, and clouds.

Alexandru Iosup received the PhD degree in
computer science fromTUDelft, TheNetherlands,
in 2009. He is currently a tenured full professor
and University Research chair with the Vrije Uni-
versiteit Amsterdam, The Netherlands. He is also
chair of the SPEC Research Cloud Group. He
was awarded the yearly Netherlands Prize for
Research in Computer Science (2016), the yearly
Netherlands Teacher of the Year (2015), and
several SPECtacular awards (2012–2017). His
research interests include massivizing computer

systems, that is, making computer systems combine desirable properties
such as elasticity, performance, and availability, yet maintain their ability
to operate efficiently in controlled ecosystems. Topics include cloud com-
puting and big data, with applications in big science, big business, online
gaming, and (upcoming) massivized education.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

2184 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 9, SEPTEMBER 2020

Boosting the Performance of SSDs via Fully
Exploiting the Plane Level Parallelism

Congming Gao , Liang Shi , Kai Liu , Chun Jason Xue, Jun Yang,

and Youtao Zhang ,Member, IEEE

Abstract—Solid state drives (SSDs) are constructed withmultiple level parallel organization, including channels, chips, dies, and planes.

Among these parallel levels, plane level parallelism, which is the last level parallelism of SSDs, has themost strict restrictions. Only the

same type of operations that access the same address in different planes can be processed in parallel. In order to maximize the access

performance, several previousworks have been proposed to exploit the plane level parallelism for host accesses and internal operations

of SSDs. However, our preliminary studies show that the plane level parallelism is far fromwell utilized and should be further improved.

The reason is that the strict restrictions of plane level parallelism are hard to be satisfied. In this article, a from plane to die parallel

optimization framework is proposed to exploit the plane level parallelism through smartly satisfying the strict restrictions all the time.

In order to achieve the objective, there are at least two challenges. First, due to that host access patterns are always complex, receiving

multiple same-type requests to different planes at the same time is uncommon. Second, there aremany internal activities, such as

garbage collection (GC), whichmay destroy the restrictions. In order to solve above challenges, two schemes are proposed in the SSD

controller: First, a die level write construction scheme is designed to make sure there are alwaysN pages of data written by each write

operation. Second, in a further step, a die level GC scheme is proposed to activate GC in the unit of all planes in the same die. Combing

the die level write and die level GC, write accesses from both host write operations andGC induced valid pagemovements can be

processed in parallel at all time. To further improve the performance of SSDs, host write operations blocked by GCs are suggested to be

processed in parallel with GC induced valid pagemovements, bringing lesser waiting time cost of host write operations. As a result, the

GC cost and averagewrite latency can be significantly reduced. Experiment results show that the proposed framework is able to

significantly improve the write performance without read performance impact.

Index Terms—SSD, parallelism, storage, scheduling, performance improvement

Ç

1 INTRODUCTION

SOLID state drives (SSDs) are widely adopted in modern
computer systems, ranging from embedded systems,

personal computers, to large servers in data centers. SSDs
have many advantages, such as shock resistance, high ran-
dom access performance, and low power consumption [1].
An SSD usually consists of multiple channels with each
channel having multiple chips, each chip having multiple
dies, and each die having multiple planes [2], [3]. To achieve
high performance, the prior studies strive to exploit the par-
allelism at channel/chip/die/plane levels so that multiple
accesses, such as reads, writes, and erases, can be processed
in different parallel units simultaneously [4], [5], [6].

However, the parallelism at the last level, referred to as
plane level parallelism, exhibits strict restrictions – for two
operations that can be issued simultaneously to two different
planes, they not only need to be of the same type (i.e., read or
write) but also need to have the same in-plane address (i.e.,
the same offset within each plane), making it challenging to
explore as shown in recent studies [7], [8], [9], [10], [11], [12].
For example, to concurrently write two planes, their write
points need to be aligned. Unfortunately, a host often sends
uneven numbers of write requests to different planes [9] and
the activities originated from SSDs (e.g., garbage collection
operations) are often imbalanced across different planes [9],
[13]. Such asynchronicity leads to sub-optimal exploration of
plane level parallelism and prevents modern SSDs from
achieving further performance improvement.

To exploit plane level parallelism, Tavakkol et al. pro-
posed TwinBlk to write data to the different planes in a die in
a round-robin fashion [11] such that concurrent writes can be
issued to different planes at the same time. However, the
write points from different planesmay bemis-aligned due to
(1) single-page write operations; (2) GC or wear leveling
activities originated inside the SSD [9], [13], [14], [15], dis-
abling the concurrent writes in these cases. To reduce GC-
induced write point mis-alignment, Shahidi et al. proposed
ParaGC to activate GC from all planes of the same die at the
same time [9], which opportunistically exploits the plane
level parallelism when all the pages at the same address of

� C. Gao is with the College of Computer Science, Chongqing University,
Chongqing 400044, P.R. China, and also with the University of Pittsburgh,
Pittsburgh, PA 15260. E-mail: albertgaocm@gmail.com.

� K. Liu is with the College of Computer Science, Chongqing University,
Chongqing 400044, P.R. China. E-mail: liukai0807@gmail.com.

� J. Yang and Y. Zhang are with the University of Pittsburgh, Pittsburgh,
PA 15260. E-mail: juy9@pitt.edu, zhangyt@cs.pitt.edu.

� L. Shi is with the School of Computer Science and Technology, East China
Normal University, Shanghai 200241, P.R. China.
E-mail: shi.liang.hk@gmail.com.

� C. Xue is with the Department of Computer Science, City University of
Hong Kong, Kowloon, Hong Kong. E-mail: jasonxue@cityu.edu.hk.

Manuscript received 9 July 2019; revised 18 Feb. 2020; accepted 8 Apr. 2020.
Date of publication 15 Apr. 2020; date of current version 5 May 2020.
(Corresponding author: Liang Shi.)
Recommended for acceptance by C. Ding.
Digital Object Identifier no. 10.1109/TPDS.2020.2987894

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 9, SEPTEMBER 2020 2185

1045-9219� 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht_tps://www.ieee.org/publications/rights/index.html for more information.

https://orcid.org/0000-0003-2611-2652
https://orcid.org/0000-0003-2611-2652
https://orcid.org/0000-0003-2611-2652
https://orcid.org/0000-0003-2611-2652
https://orcid.org/0000-0003-2611-2652
https://orcid.org/0000-0002-9977-529X
https://orcid.org/0000-0002-9977-529X
https://orcid.org/0000-0002-9977-529X
https://orcid.org/0000-0002-9977-529X
https://orcid.org/0000-0002-9977-529X
https://orcid.org/0000-0001-5865-7724
https://orcid.org/0000-0001-5865-7724
https://orcid.org/0000-0001-5865-7724
https://orcid.org/0000-0001-5865-7724
https://orcid.org/0000-0001-5865-7724
https://orcid.org/0000-0001-8425-8743
https://orcid.org/0000-0001-8425-8743
https://orcid.org/0000-0001-8425-8743
https://orcid.org/0000-0001-8425-8743
https://orcid.org/0000-0001-8425-8743
mailto:albertgaocm@gmail.com
mailto:liukai0807@gmail.com
mailto:juy9@pitt.edu
mailto:zhangyt@cs.pitt.edu
mailto:shi.liang.hk@gmail.com
mailto:jasonxue@cityu.edu.hk

different planes are valid. TwinBlk can concurrently activate
multiple GCs by choosing multiple blocks with the same off-
set in different planes. It cannot process all valid page move-
ments in parallel when not all paired pages are valid.
Superpage enabled SSDs [1], [16], [17] strip requests to all
planes in a die, which increases the number of sequential
writes as well as concurrent write opportunities. However,
activating GC in one plane introduces mis-aligned free
blocks so that subsequent requests can not be processed in
parallel. In summary, a major limitation of existing studies is
that they explore plane level parallelism passively, making it
difficult to satisfy the access restrictions all the time. In par-
ticular, it is challenging to construct multi-plane command
after GC and/or wear leveling mis-align the write points in
different planes.

In this paper, we propose SPD, an SSD from plane to die
parallel optimization framework, to fully exploit the plane
level parallelism of SSDs for performance improvement. We
summarize our contributions as follows.

� We propose SPD to treat all planes (e.g., N planes) in
a die as a single unit so that a die write results in N
page writes while a die read fetches N or fewer
pages. Similarly, internal activities, e.g., GC, get trig-
gered for N blocks from different planes that have
the same in-plane block address. To our best knowl-
edge, this is the first work on actively maintaining
aligned write points for multiple planes in a die com-
bining writes from both host and internal activities
for all the time;

� We then propose die level write construction and die
level GC schemes to fully exploit the plane level paral-
lelism enabled by SPD. Thewrite construction scheme
is to construct write operation with N pages of data
and issue them to a die at once; The die level GC
scheme is to process valid page movements, aligning
thewrite points of all planes in the same die.

� To further improve the write performance, we pro-
pose SPD+, which is designed to process host write
operations blocked by die level GCs in parallel with
GC induced valid page movements. Therefore, host
write operations are able to be completed with lesser
waiting time.

� We evaluate the proposed approach using a signifi-
cantly extended SSDSim [10] and compare it to the
state-of-the-arts. The experimental results show that
proposed approach is able to significantly improve
write performance of SSDs without read perfor-
mance impact.

The rest of this paper is organized as follows: In Section 2,
the background is presented. In Section 3, the problem state-
ment is presented. In Section 4, the SPD framework is pre-
sented. In Sections 5 and 6, the experiment setup and
evaluations are presented. In Section 7, related works are
discussed. Finally, the work is concluded in Section 8.

2 BACKGROUND

In this section, we briefly discuss the background, including
SSD organization, advanced SSD commands, parallelism,
and garbage collection (GC).

2.1 SSD Organization

A modern SSD usually consists of multiple channels with
each channel containing multiple flash chips. Within each
flash chip, there are multiple dies with each die containing
multiple planes. Fig. 1 illustrates the organization of a typical
SSD that has 4 channels, 2 chips per channel, 2 dies per chip,
and 2 planes per die. The SSD parallelism can be exploited at
channel/chip/die/plane levels, which have one major focus
of previous studies for performance improvement [2], [13],
[18]. To manage the flash memory as well as to explore the
parallelism, an SSD controller comprises several compo-
nents, including flash translation layer (FTL), data allocation
(DA), wear leveling (WL), garbage collection (GC).

The FTL is to manage the mapping between logical
addresses and physical addresses. Based on the operation
granularity, there are three types of mapping schemes, i.e.,
page mapping [4], block mapping [19], and hybrid mapping
[20] [21], [22]. In this work, we assume the widely adopted
page mapping as it tends to have its better performance. The
data allocation is to determine the allocations of chan-
nel, chip, die and plane for write operations. The wear

leveling is to distribute written data evenly to flash pages
for prolonging the SSD lifetime [23], [24]. Since flashmemory
cannot reprogram a programmed flash page before execut-
ing an erase operation to reclaim the whole block, modern
SSDs widely adopt out-of-place-update scheme for data
updating. To reclaim invalid pages, GC is activated while the
number of free pages drops below a predefined threshold.

In addition, modern SSDs widely equip a built-in Ran-
dom Access Memory (RAM), referred to as the SSD buffer,
within SSD controller for temporarily storing hot data and
metadata. Since the access latency of RAM is much smaller
than that of flash memory, buffer-equipped-SSDs can pro-
vide much better performance for data hit in the buffer [25],
[26], [27], [28].

2.2 Parallelism and Advanced Commands

The hierarchical SSD architecture provides four level paral-
lelism, from channel, chip, die to plane. For channel and
chip level parallelism, data can be processed in different
chips in parallel. The parallelism of these two levels is natu-
rally supported by SSDs while that of the rest two levels are
supported by advanced commands [9], [10], [12], [18], [29].
The die and plane level parallelism is also referred to as
internal parallelism [3].

For die level parallelism, operations issuing to the same
chip but different dies can be processed in parallel with

Fig. 1. The organization of SSDs.

2186 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 9, SEPTEMBER 2020

interleaving command [9], [10]. There is no restriction on
when to use the interleaving command. For the last level
parallelism, plane level parallelism may be exploited to fur-
ther improve performance through processing operations
concurrently on different planes of the same die. Due to cir-
cuit restrictions [7], as shown in the open NAND flash inter-
face (ONFI) standard specification [8], the plane level
parallelism can be exploited when satisfying the two opera-
tion type and in-plane address restrictions of multi-plane
command. A multi-plane command improves plane utilization
as it operates multiple planes within the same die in parallel
and only takes the time to finish one operation. However,
when the restrictions can not be met, it processes different
planes sequentially to the requested operation. In particular,
an operation processed on one plane blocks other planes of
the same die from servicing other operations.

2.3 Garbage Collection

Within flash memory, pages can not be updated in place [7].
In order to solve this issue, data is always updated out of
place by programming updated data in another block and
invalidating original version. Invalid pages can not be reused
until they are erased. With the increasing of invalid pages’
number and reduction of free pages’ number, garbage collec-
tion (GC) is triggered for reclaiming invalid pages [1], [13].
The process of GC can be described as follows: First, a victim
block is selected; Second, valid pages in the victim block are
read and wrote to free pages in other blocks; Third, the vic-
tim block is erased. During this process, valid page move-
ment is performed page by page, which is able to introduce
significant time cost of SSD system while the incoming host
requests are blocked and delayed [13].

To solve such a problem, a simple and effective approach,
termed greedy GC, has been proposed and widely used to
reduce the time cost of valid page movement [22], [30].
Greedy GC is designed to minimize the cost of valid page
movement by selecting block with minimum number of
valid pages. Thus, the total GC induced time cost can bemin-
imized so that fewer host requests are blocked and delayed,
increasing the performance of SSDs. In this work, greedy GC
also is considered as a typical GC algorithm while other GC
algorithms [31], [32], [33] also can be applied in proposed
approachwithout loss of generality.

3 PROBLEM STATEMENT

In this section, we study the challenges in exploiting the plane
level parallelism, which comes mainly from the restrictions of
themulti-plane command [9], [18]. For clarity, we focus onwrite
operations as they are much slower than read operations and
thus have larger impact on the overall performance.

We next conduct a study on the operations to an SSD
with each die consisting of two planes. Without losing gen-
erality, the non-GC operations that access the same die may
be categorized to the following four cases.

Case 1: The operations are issued to one plane only (Single
Write). Such write operations introduce unaligned
write points across different planes;

Case 2: Two different types of operations are issued to the
two planes of the same die. Due to the operation

type restriction, the operations are not allowed to
be processed in parallel;

Case 3: Two same type operations with unaligned in-
plane addresses are issued to two planes of the
die (Unaligned Writes). Due to the address restric-
tion, the operations cannot be processed in paral-
lel either;

Case 4: Two same type operations with aligned in-plane
addresses are issued to two planes (Parallel
Writes), which can be processed in parallel with
the support of multi-plane command.

Among these four cases, Case 2 can not be avoided due
to the circuit restriction of multi-plane command while mixed
types of operations being issued to different planes of the
same die. Then, the numbers of operations falling in Case 1,
Case 3 and Case 4 are collected and reported in Fig. 2. The
experiment setting details can be found in the experiment
section. We have two observations from the results: (i) plane
level parallelism is far from well utilized; (ii) a large per-
centage of write operations issued to the die are unaligned
write operations, which can be exploited for performance
improvement.

To solve the issue of unalignedwrite points across planes,
a naive solution is to write data at the aligned points greedily
[10]. However, if the currentwrite points are unaligned,writ-
ing data at the aligned points lead towasted space. For exam-
ple, we assume there are two planes per die, one block per
plane, and six pages per block, as shown in Fig. 3a. In Fig. 3a-
(1), the current write points are unaligned. Traditionally, if
two write operations, W1 and W2, are issued to the two
planes in the same die, they will be processed sequentially. If
they are written to the aligned pages, a free page in Plane 1
would be wasted, as shown in Fig. 3a-(2). In this work, we
strive to design a write construction scheme to align the write
points in each die.

Apart from host requests, internal SSD activities, e.g., GC,
also introduce non-negligible performance impact from the
unaligned write points across planes [13], [14]. Given a die
with multiple planes, if one plane activates GC, the other
planes cannot be accessed before this GC finishes. To solve
this problem, Shahidi et al. proposed to activate GCs in all
planes at a time so that GC induced time cost can be over-
lapped [9]. To avoid significant parallel GC induced write
amplification, ParaGC proposed to select a block containing
most invalid pages in a plane first. Then, if the number of
invalid pages in the paired block resided in the paired plane
is large too, these two blocks can be reclaimed by GCs simul-
taneously. Otherwise, only one block is processed by GC.
However, such a solution faces two issues: First, since the

Fig. 2. The percentages of write operations in three cases.

GAO ETAL.: BOOSTING THE PERFORMANCE OF SSDS VIA FULLY EXPLOITING THE PLANE LEVEL PARALLELISM 2187

number of valid pages in paired blocks are different, ParaGC
may lead to unaligned write points across different planes
after valid page movements. For example, in Fig. 3b, after
moving valid pages in each plane in Fig. 3b-(1), new write
points (WP in the figure) become unaligned, as shown in
Fig. 3b-(2). Second, if only one block is occupied by GC,
write points will be unaligned while this block is erased and
switched as a free block and its paired block still has not been
reclaimed. That is, to maintain aligned write points at all
time, we need to construct multi-plane oriented writes for
both of host requests andGC induced operations.

4 SPD: FROM PLANE TO DIE PARALLELISM

EXPLORATION

4.1 Overview

To maximize plane level parallelism, the access addresses of
writes on all planes in the same die should be aligned at all
time. In this work, we propose SPD, an SSD from plane to die
framework, to exploit the plane level parallelism for perfor-
mance improvement by smartly maintaining aligned write
points across multi-planes in each die at all time.

Basically, SPD takes the following strategies to achieve
the objective, as shown in Fig. 4. The basic SPD design adds
three new components — a die level write construction, a
die level GC and a combination scheme. The die level write
construction is designed to maintain aligned write points
for host writes. The die level GC is designed to maintain
aligned write points for GC induced page movements. Note
that for other activities, such as WL, they also can adopt the
same design principle of GC. For simplicity, only GC is
taken as an example in this paper due to its non-negligible
performance impact on SSDs. The combination scheme is
proposed to process write operations and GC related valid
page movements in parallel so that write operations from
host system can be processed with less waiting time.

For die level write construction, SPD exploits the SSD
buffer to choose N dirty pages and writes them back to one
die simultaneously. This helps to convert one die access to
N page writes at the aligned in-plane address. This is
referred to as Die-Write. Similarly, the read access to the
die is referred to as Die-Read. Note that Die-Read only
needs to read required number of pages, which does not
introduce any read amplification. For die level GC, it is acti-
vated at the multiple planes of the same die at the same
time. During the process of die level GC, all writes induced
from the valid page movements also is processed in the unit
of N page writes to maintain the aligned write points. After
moving all valid pages to new free pages, erase operations
are executed in parallel to reclaim victim blocks with same

in-plane address. This is referred to as Die-GC. N is set to
two in the following discussion while we evaluate different
N values in the experiments. Since GC process is time-con-
suming, host write operations blocked by Die-GC (called as
access conflict in this paper) are able to be significantly
delayed, causing write performance degradation. To mini-
mize Die-GC induced access conflict, we combine Die-

Write and Die-GC together for processing host write oper-
ations and GC induced valid page movements in parallel.
Therefore, host write operations can be processed with
lesser waiting time, bringing better write performance. We
will elaborate the details of these three components in fol-
lowing sections.

4.2 Die Level Write Construction

Given that multi-plane commandswould be disabled if the in-
plane addresses are mis-aligned, the basic idea of die level
write construction is to maintain aligned write points all the
time by write the same amount of data synchronously to all
planes in the same die. That is, (1) the amount of data issued
to a die should be a multiple of N pages, assuming there are
N planes in a die; and (2) the starting locations of data
should be aligned for all the planes in the same die. With
this scheme, whenever there are multiple write operations
issued to a die, they can be processed in parallel.

SPD exploits SSD buffer to assist die level write construc-
tion. An SSD buffer evicts a multiple of N dirty pages from
one die at a time such that these pages can be written using
Die-Write. For data allocation, we adopt a round-robin
plane allocation scheme within a die [11], which evenly dis-
tributes N dirty pages to different planes at each cycle. The
data allocation at higher levels can either be static or
dynamic, as discussed in Section 2.1. In the following discus-
sion, we assume static allocation at the channel, chip, and die
levels, which is simple and has been widely equipped in real
SSD devices.

4.2.1 Buffer Supported Die-Write

Fig. 5 illustrates how the SSD buffer assisted Die-Write

works. Fig. 5a shows how the SSD buffer is organized. It
maintains a die queue that keeps a list of dirty pages for each
die in the system. The pages in each list are linked together

Fig. 3. The problems of unaligned write operations.

Fig. 4. The Overview of the from plane to die framework.

2188 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 9, SEPTEMBER 2020

using LRU algorithm. The data evicted from the buffer are
written to their corresponding dies. To balance the number
of writes sent to different dies, SPD adopts round-robin to
choose the next die fromwhich its LRU pages are evicted.

For the example, in Fig. 5b, the SSD has four dies, each
die has two planes, and the current turn is Die 0. When the
SSD buffer is full and there is a host requirement for insert-
ing five dirty pages to the buffer, SPD chooses the victim
dies with at least two dirty pages (i.e., two is the number of
planes in a die) and evicts the dirty pages from each selected
die. In the example, it first chooses Die 0 and then skips Die
1 as the latter does not have enough dirty pages. It continu-
ously chooses Die 2 and Die 3 and then evicts two pages
from Die 0, 2, and 3, respectively.

From this example, the write points of all planes are effec-
tively aligned. The proposed scheme may evict one more
dirty page than the number of dirty pages from the host.
Since one Die-Write takes the same amount of time as one
page write, the scheme is able to speed up the storage access
if there exist several dirty pages evicted to the same die. But if
only one dirty page from the host, evicting one more dirty
page can align the write points without introducing addi-
tional time cost. In addition, since all Die-Writes opera-
tions can be scheduled in parallel by leveraging the parallel
architecture of SSDs, SPD avoids the access conflicts on the
same die [3], [18]. Due to that we always evict the pages at
LRUpositions, thewrite amplification also can beminimized.

Since the addresses of requested data are fixed, die level
read operations cannot be constructed the same way at that
for Die-Write. In this work, Die-Read only read the
requested data, i.e., if there exist read operations with
aligned access locations, they can be issued to the die in par-
allel; otherwise, only single page read gets processed next.
The goal of Die-Read is to maximize the number of multi-
plane command supported read operations without introduc-
ing read amplification.

4.2.2 Implementation and Analysis

To assist die level write constructions, SPD enhances the
SSD buffer management to expose more parallel processing
opportunities. Different from traditional buffer manage-
ment scheme, SPD needs to evict a multiple ofN dirty pages
from one die queue. In this work, the N pages of dirty data
at the head of LRU are selected for eviction. SPD does not
require an extra built-in buffer and thus does not introduce
extra space demand. However, SPD requires a minimal
of M �N � Size of Page-byte buffer for smooth buffer

management where M is the number of dies in an SSD, and
each die has N planes. For example, for a 512 GB SSD, with
32 dies, two planes in each die and 4 KB page size, the mini-
mal size of buffer should be 256 KB, which can be satisfied
by most existing SSD products.

In addition, to maintain such die queues, more space
overhead is introduced. First, total 32 queue heads are
required and each queue head points to the the LPN of a
page. Each LPN requires 4 bytes and the total space cost of
all queue heads is 128 bytes. Second, another pointer is set
to locate current active die queue, where pages are going to
be evicted in the next eviction innovation. Since there at
most are 32 die queues, this pointers needs 5 bits space cost.
Third, each die queue should set one counter to record the
number of pages linked in this queue. In worst case, all
pages in the buffer are linked in one die queue. That is, each
counter requires 17 bits and total space cost of counters is 68
bytes. In summary, less than 197 bytes are needed to main-
tain these die queues.

Another issue that SPD needs to consider is the power
interruption induced data loss, which is often mitigated by
integrating a super capacitor [34], [35], [36], [37], [38].

4.3 Die Level GC

AGC process includes three steps: victim block selection [1],
[14]; valid pagemovement; and victim block erase. The dom-
inate cost of a GC comes from valid page movement [13].
The design goal of Die-GC is to speed up the GC process
with minimal GC cost. For this purpose, SPD activates GC at
all planes in the same die at the same time with carefully
selected victim blocks. By adopting Die-Write instead of
sequential page writes, SPD improves reclaim effectiveness
by reducing the most timing cost. We elaborate the details as
follows.

4.3.1 GC Process

Fig. 6 shows an example for Die-GC. Within each die, N
stripped blocks fromN planes— one from each plane and all
the selected blocks share the same in-plane address, are
grouped together as aligned block, which is set as the mini-
mal granularity ofDie-GC. That is, different to the traditional
GC process, Die-GC should be modified while aligned block
is taken as the minimal granularity. Totally, there exist four
steps: First,we adopts the greedy based victim block selection
[1], [13], where the aligned block with maximal number of
invalid pages is selected. With this scheme, the time cost of
valid page movement will be minimized. Such scheme can
be realized without any modification. Since traditional GC

Fig. 5. Organization of write buffer and the die level write construction.

Fig. 6. The Process of Die-GC.

GAO ETAL.: BOOSTING THE PERFORMANCE OF SSDS VIA FULLY EXPLOITING THE PLANE LEVEL PARALLELISM 2189

process scans the states (valid/invalid/free) of all pages in a
block and finds a victim block which contains maximal num-
ber of invalid pages, proposed Die-GC is realized by sum-
ming the number of valid pages of blocks in each aligned
block. Based on the summed number, victim aligned block is
selected. Second, SPD uses Die-Read (in Section 4.2.1) to
read the valid pages to the SSD buffer, whereN page slots are
required to store valid pages from victim blocks. Third, after
reading N pages of valid data, SPD groups the N pages of
data to construct a Die-Write operation and thenwrites the
valid data back to the die. Finally, when all the valid pages
are written back, theN aligned blocks can be erased in paral-
lel. Given SPD reclaims N blocks from one GC invocation,
the GC gets triggered less frequently than that of the tradi-
tional one. However, since each GC erases and reclaims two
blocks after one invocation, the total number of erase opera-
tions during the whole lifetime of SSDs can be increased
while the frequency of triggering GC can not be significantly
reduced, causing lifetime degradation of SSDs. In the experi-
ment, the impact on lifetime is going to be evaluated and
presented.

For the example shown in Fig. 6, let us assume the two
aligned blocks 0 from two planes are selected as the victim
blocks. According to Die-GC, the valid pages in these two
blocks are read and written with Die-Read and Die-

Write, respectively.

Step1: Read page 0 from plane 0 and page 1 from plane 1
to the SSD buffer. Since they are not aligned, they
are read sequentially.

Step2: Group the two valid pages together to construct a
Die-Write operation and written them back to
the current aligned write point of both planes at
block j. The current write points are marked using
red arrows in the figure.

Step3: Then, read page 2 from plane 0 and plane 1 to the
SSD buffer. These two pages are read in parallel as
they have aligned addresses.

Step4: Repeat step (2) for the last two valid pages.
Step5: Then, erase the two victim blocks in parallel. From

the above discussion, Die-GC significantly reduces
GC cost because it maintains aligned write points
in the die such that many strip reads and writes
can operate in parallel.

An exception for the above scheme happens when the
total number of valid pages in the victim aligned blocks is
odd. In this case, the last Die-Write cannot be constructed
due to the lack of one more valid page, causing the write
points of different planes misaligned after GC while the last
Die-Write is carried out with only one valid page inside.
To address this issue, the last Die-Write operation is con-
structed by the remaining valid page in victim block and one
dirty page in thewrite buffer (as discussed in Section 4.2).

4.3.2 Implementation, Analysis, and Discussion

We next elaborate the implementation overhead of SPD. We
identify the construction of Die-Write as the most critical
component in SPD. Given that SPD transfers more data to
the write buffer in the controller, it demands larger data
storage. Considering the worst that all dies are activated
with the die level GC, each die needs at least N pages in the

write buffer. For a typical SSD setting as presented in
Section 4.2, the required buffer size for Die-GC is 256 KB
for a 512 GB two-plane SSD and 512 KB for a 512 GB four-
plane SSD at least. In summary, the storage requirement is
modest for modern SSDs.

4.4 Combining Die Level Writes and GC

Both of Die-Write and Die-GC can be used to improve
the write performance by fully exploiting the plane level
parallelism. However, if there is a die being occupied by
Die-GC, constructed Die-Writes towards this die will be
delayed and wait for the completion of Die-GC. As shown
in Fig. 7, there are four Die-Writes accessing current die,
where a Die-GC is being processed in two blocks. In this
case, these four Die-Writes have to be delayed until the
completion of Die-GC. The bottom of Fig. 7 shows the time
flow of Die-GC and Die-Writes. All these four Die-

Writes suffer from a long waiting time caused by Die-GC.
Such a GC induced conflict between Die-GC and Die-

Write is regarded as access conflict in this work. In order
to minimize the impact from access conflict between Die-

Write and Die-GC, the most straightforward method is to
process Die-Write with higher priority and postpone
Die-GC. However, such a method may make Die-GC

induced writes starve. Therefore, to avoid the starvation of
Die-GC induced writes, we propose a combination scheme,
which aims to reduce the waiting time of Die-Write with-
out destroying the aligned write points.

4.4.1 Combination Scheme

As shown in top part of Fig. 8, there are eight valid pages in
victim blocks (light blue boxes), and eight dirty page (gray
boxes) generated write operations, which can be processed
in parallel by constructing Die-GC and Die-Writes,
respectively. Totally there are three steps (Step 0 to Step 2),
which are processed in sequence order. For Die-Writes,
which arrive during the process of Die-GC, they have to be
delayed before the completion of Die-GC, causing write
performance degradation.

To minimize the waiting time of Die-Writes, Die-GC
is divided into two parts, including valid page movements
and erase operations, where valid page movements are
processed by constructing new Die-Writes. To solve this
problem, in the bottom of Fig. 8, valid pages in victim blocks
and dirty pages from buffer are combined to construct new
Die-Writes. In this case, we assume there are three and
five valid pages in two victim blocks, respectively. The
whole combination scheme can be divided into three steps
(Step 3 to Step 5 in Fig. 8). For Step 3, one victim block is
selected to execute valid page movements while the paired

Fig. 7. Access Conflict between Die-Writes and Die-GC.

2190 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 9, SEPTEMBER 2020

block is used to service write operations. Totally, three write
operations from the buffer can be written in parallel with
valid page movements of GC as three Die-Writes. Simi-
larly, in Step 4, valid page movements in another victim
block are realized while additional five dirty pages from the
buffer are being wrote to the paired block. Since write points
of all planes in the same die are aligned, the new Die-

Writes are constructed and processed in parallel via access-
ing aligned write points. Lastly, in Step 5, two erase opera-
tions are executed in parallel as a Die-GC that does not
contain valid page movements. For the time cost of this com-
bination scheme, although the total time cost is the same as
the original scheduling case (the top part in Fig. 8), the time
cost of write operations from host system can be reduced
while they are being processed in parallel with GC process.

4.4.2 Pseudocode Analysis

To explain more details, a combination scheme based algo-
rithm is presented in Algorithm 1. Initially, we assume there
are two planes in a die. Before evicting dirty pages to a corre-
sponding die, the following algorithm is used to check
whether these evicted dirty pages can be processed in parallel
with valid pagemovements inGCs. If there is a Die-GC being
processed in a die and some dirty pages are going to be
evicted from buffer (Line 1), the combination scheme is acti-
vated. Otherwise, proposed Die-GC and Die-Write are
processed as presented in above sections (Line 11-14). For the
combination scheme, the numbers of valid pages and evicted
pages should be larger than 0 (Line 2, 6) so that at least one
valid page in victim block can be read out and constructed as
a new Die-Writewith an evicted dirty page from the buffer
(Line 3, 7). After that, this new Die-Write containing valid
page and dirty page iswritten back to the alignedwrite points
(Line 4, 8). This process is repeatedly executed until all valid
pages have been moved out or there is no more dirty pages
being evicted from buffer. After that, Die-GC is resumed
(Line 10). If there still exist some valid pages in victim blocks,
paired valid pages are read out and written back in parallel
based on the design of Die-GC. Otherwise, two erase opera-
tions are processed in parallel, such as the Step 5 in Fig. 8.

4.4.3 Implementation and Analysis

To implement proposed combination scheme, the Die-GC

required buffer space is used to maintain one dirty page in
the buffer, and then another valid page from victim block is

transferred into this buffer space (two page space is
required while a die contains two planes), where two pages
can be constructed as a Die-Writes. Based on the imple-
mentation of Die-Write and Die-GC, proposed combina-
tion scheme can be realized without introducing additional
implementation overhead.

Algorithm 1.Optimizing Access Conflict between Die-GC
and Die-Writes

Input:
Assume that there are two victim blocks in a die, Blk 0 and
Blk 1;
Die GC: indicates a die is occupied by Die-GC;
Die Write: indicates a write operation distributed to a die with
Die-GC;
Blk1 VP and Blk2 VP : indicates the number of valid pages in
two blocks.
Output:
1: ifDie GC 6¼ NULL and Die Write 6¼ NULL then
2: while Blk0 VP 6¼ 0 and Die Write 6¼ NULL do
3: DieWrite GenerationðValid Page;Dirty PageÞ;
4: Processing New DieWrite;
5: end while
6: while Blk1 VP 6¼ 0 and Die Write 6¼ NULL do
7: DieWrite GenerationðValid Page;Dirty PageÞ;
8: Processing New DieWrite;
9: end while
10: Processing DieGC;
11: else ifDie GC 6¼ NULL then
12: Processing DieGC;
13: else ifDie Write 6¼ NULL then
14: Processing DieWrite;
15: end if

5 EXPERIMENT SETUP

5.1 Simulated SSD Devices

Due to that the proposed scheme needs firmware support of
SSDs, in this work, we use a popular trace driven simulator,
SSDsim [10], to evaluate the effectiveness of the proposed
framework. In order to simulate a state-of-the-art SSD,
SSDsim is significantly extended based on ONFI [8]. During
the evaluation, a 512 GB SSD is simulated, and page map-
ping and greedy based GC scheme are adopted [3], [10].
The threshold value for GC activation is set to 7 percent [9].
To triggering GC process, SSD is warmed up by filling SSD
with valid and invalid data ahead. The warming up process
contains two steps: first, each plane of the SSD is randomly
filled with data from 93 to 95 percent to trigger GC immedi-
ately, of which 80 percent are valid; second, the evaluated
workload is pre-processed in the SSD to validate read data
[13]. The over-provisioning ratio is set to 25 percent, which
complies with the setting in previous work [9]. For the data
allocation scheme, the most widely used Channel-Chip-Die-
Plane scheme is adopted. The experiment settings represent
an aged state-of-the-art SSD. Other details are presented in
Table 1.

During the evaluation, a DRAMbuffer is configured in the
SSD. We set the buffer size to be 1% of the footprint of the
evaluated workload [25], [40], which helps to prevent setting
a large buffer from generating biased results in evaluation.

Fig. 8. Combining Die-Writes and Die-GC for Minimizing the Impact from
Access Conflict (light blue box indicates GC related operations and gray
box indicates dirty page generated write operations).

GAO ETAL.: BOOSTING THE PERFORMANCE OF SSDS VIA FULLY EXPLOITING THE PLANE LEVEL PARALLELISM 2191

The default data organization of die lists in the buffer is
designed based on the scheme of the Element-Level Parallel-
ism Optimization (EPO) [41]. EPO evicts dirty pages from
buffer based on its die location so that the utilization of die
level parallelism can bemaximized. The data are organized in
LRU for each die list of the buffer.

5.2 Evaluated Workloads

The workloads studied in this work include a subset of MSR
Cambridge Workloads from servers [42]. These workloads
are widely used in previous works for studying SSD perfor-
mance [9], [14], [18], [43]. The characteristics of workloads
are presented in Table 2. Each workload is characterized by
three metrics: W=R Ratio, FP , R V , W V , R S and W S.
W=R Ratio represents the write and read operation ratios,
FP is the footprints of each workload, R V is the total
amount of read data, W V represents the total amount of
written data, R S represents the average size of read
requests, andW S is the average size of write requests.

5.3 Evaluated Schemes:

Seven schemes are implemented to show the effectiveness
of SPD.

Baseline-D. This scheme is implemented to represent the
traditional SSD design [10]. The buffer management of Base-
line-D adopts EPO to exploit die level parallelism through
adding dirty pages to different die lists based on their die
locations [41]. With this organization, dirty data evicted
from write buffer can be distributed to different dies so that
die level parallelism can be exploited;

Baseline-P. This scheme is similar to Baseline-D. The dif-
ference is that Baseline-P evicts dirty data based on their
plane locations to further exploit plane level parallelism. In
this case, dirty pages accessing different planes within the
same die are evicted at a time. Baseline-P evenly distributes
dirty pages to different planes to better exploit plane level
parallelism,which is similar to the previous studies [18], [44];

TwinBlk. This scheme is designed based on the work pro-
posed by Tavakkol et al. [11], which aims to alignwrite points
of all planes in a die via round-robin policy. In this case, sev-
eral host requests can be processed in parallel when write
points are aligned. During GC process, the adopted round-
robin policy is designed to align write points of active blocks
in victim blocks as well, aiming to move valid pages with the
support ofmulti-plane command;

SuperPage. This scheme is implemented based on [17],
[45], which groups pages into one super page that is set as
the smallest access granularity of flash memory. Such a
large-granularity accessing approach can fully exploit plane
level parallelism by writing pages to all planes in a die at
any time. Differing from our proposed work, if there exist

an update operation, the paired data in other planes should
be read out first if they are valid. Later, the read data and
updated data are constructed as one new super page, and
then are written to the die with the support of multi-plane
command.

ParaGC. This scheme is designed by Shahidi et al. [9],
which aims to align valid page movement during GC to
minimize the GC cost. Differing from TwinBlk, ParaGC
aligns write points of active blocks through sequentially
moving valid pages to one active block until write points of
all planes are aligned. After that, with cache assistance, all
valid pages can be written back to active blocks with the
support of multi-plane command;

SPD. This is the proposed framework, which includes
Die-Write and Die-GC.

SPD+. This is the proposed framework, which includes
Die-Write, Die-GC and the combination scheme.

6 EXPERIMENT RESULTS AND ANALYSIS

In this section, basic SPD is evaluated with two scenarios
based onwhether GC is triggered. For the first scenario with-
out triggering GC, it is evaluated to show the advantages of
the proposed Die-Write scheme. For the second scenario
with triggering GC, it is evaluated to show the effectiveness
of SPD, including Die-Write and Die-GC. In addition, the
Die-GC is also evaluated in term of its cost and lifetime
impact. Then, proposed SPD+ is evaluated and compared
with basic SPD scheme to identify its effectiveness. Since
SPD+ is designed to solve the access conflict between Die-

Write and Die-GC, there is only one scenario with trigger-
ing GC. Finally, the impact of different buffer sizes and
results on SSDwith 4 planes per die are presented.

6.1 Experiment Results Without GC

1) Write Latency Evaluation: Fig. 9 shows the results of write
latency for the six schemes. Note that, since ParaGC is
designed to optimize GC process, the results of ParaGC in
this part are same to that of Baseline-D. The results show that
SPD achieves write latency reduction for all evaluated work-
loads. For example, for HM_0, PRN_0, PROJ_3, SRC2_0 and
PRXY_0, the write latency is reduced bymore than 15 percent

TABLE 1
Parameters of the Simulated SSD [9], [39]

SSD
Configuration

512 GB;16 Channels; 8 Chips/Channel; 1 Die/Chip; 2
Planes/Die;2048 Blocks/Plane; 256 Pages/Block; 4 KB
Page;

Timing
Parameters

0.075 ms for page read; 1.5 ms for page write; 3.8 ms
for block erase; 25 ns for byte transfer.

TABLE 2
The Characteristics of Evaluated Workloads

Workloads W/R Ratiox FPx R_Vx W_Vx R_Sx W_Sx

HM_0 67.9% 1.35 6.9 15.2 11.2 11.6
PRN_0 93.7% 2.93 3.0 20.5 24.8 11.6
PRN_1 32.1% 5.16 31.4 10.9 24.2 11.4
RSR_0 90.7% 0.31 1.8 14.6 15.0 12.6
STG_0 76.9% 0.28 7.4 9.3 33.6 12.6
PROJ_0 82.9% 1.58 7.2 56.5 21.9 35.7
PROJ_3 4.89% 1.86 21.6 2.8 11.9 29.9
SRC2_0 88.6% 0.52 1.9 13.6 12.2 11.0
TS_0 82.6% 0.57 4.9 15.9 17.5 11.8
PRXY_0 97.06% 0.17 0.27 5.8 9.6 6.2
WDEV_0 79.9% 0.34 3.2 9.2 16.5 12.1

x W/R Ratio: Write and Read Requests Ratio.
FP: FootPrint (GB).
R_V/W_V: Read/Write Data Volume (GB).
R_S/W_S: Average Read/Write Request Size (KB).

2192 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 9, SEPTEMBER 2020

compared with Baseline-D. These results show that deploy-
ing Die-Write to maintain aligned write points for the mul-
tiple planes in a die is important in improving the access
performance. In Fig. 10, we collected the percentages of write
operations processed by multi-plane command. The results
show that the proposed Die-Write is able to maintain
aligned write points for all write operations. However, this is
not a promise for the other schemes.

To obtain more details, we compare SPD with other three
schemes, Baseline-P, TwinBlk and SuperPage. Two observa-
tions can be concluded from the results: First, compared
with these three schemes, SPD achieves the best write per-
formance. Baseline-P is proposed to distribute the same
type requests to all planes evenly. However, the address
restriction is not taken into consideration. As a result, Base-
line-P only achieves little write latency reduction, which is
only up to 1.4 percent. TwinBlk aims to align write points of
all planes in the same die as well. However, the write points
still may be unaligned due to the unaligned accesses on
planes of the same die. On average, TwinBlk achieves 7.8
percent write latency reduction compared with Baseline-D.
As shown in Fig. 10, the percentages of write operations
processed by multi-plane command for Baseline-P is similar
to that of Baseline-D. For TwinBlk, the percentage is largely
increased compared with Baseline-D. SuperPage also can
fully exploit plane level parallelism at any time by con-
structing super page on a die. However, such a super page
would introduce write amplification and cause write traffic.
Before constructing an update operation related super page,
read operations are required to read out all valid pages
resided in original super page. Therefore, compared with

Baseline-D, although SuperPage can achieve 10.4 percent
write latency reduction, SPD still outperforms SuperPage at
the performance improvement.

Second, for several workloads, TwiBlk only achieves simi-
lar performance improvement to that of Baseline-D, such as
RSR_0, STG_0, TS_0 and PRXY_0. This can be explained
from the results in Fig. 10, where the percentage of write
operations supported by multi-plane command is limited. The
reason is that TwinBlk cannot guarantee aligned write
points for all planes all the time.

For read latency, the average read latency improvement
comparedwith Baseline-D is presented in Table 3. The results
show that read latency is similar among the six schemes. The
key reasons are from two aspects: first, read requests of all
evaluated schemes are processed with highest priority [3],
[31], [46], [47]; second, Die-Read is designed to only read
requested pages, which are barely located in the same in-
plane addresses. In conclusion, the proposed Die-Read is
same to that of normal read operations without introducing
read amplification. Note that, in SuperPage, read operations
always are executed with the support ofmulti-plane command,
but only required data is transferred out for time cost saving.

2) Plane Utilization: Plane Utilization is defined to present
the average number of planes being occupied in parallel. In
order to obtain plane utilization, the number of planes being
accessed is counted when each buffer eviction process is
completed. Fig. 11 shows the plane utilization (Bars) and the
maximal number of planes being accessed in parallel (Dots
+Line) for the six schemes. The results have a matching pat-
tern with the write performance improvement in Fig. 9. SPD
can significantly increase the plane utilization through dou-
bling the number of parallel planes with satisfying the
restrictions of multi-plane command. On average, the plane
utilization is increased by 34.5 percent compared with Base-
line-D. For the maximal number of planes accessed in paral-
lel, all planes of the SSD can be accessed in parallel for most
workloads. Similarly, SuperPage also can achieve the maxi-
mal plane level parallelism, whose plane utilization is aver-
agely increased by 32.9 percent compared with Baseline-D.
However, for Baseline-D, Baseline-P and TwinBlk, there still

Fig. 9. Write latency reduction.

Fig. 10. Percentages of write operations processed by multi-plane
command.

TABLE 3
Read Latency Results Without GC

Baseline-D Baseline-P TwinBlk SuperPage ParaGC SPD

Reduction 0 0.049% 0.011% 0.304% 0% 0.096%

Fig. 11. The plane utilization and maximal number of planes being
accessed in parallel.

GAO ETAL.: BOOSTING THE PERFORMANCE OF SSDS VIA FULLY EXPLOITING THE PLANE LEVEL PARALLELISM 2193

exists a large gap compared with SPD. In conclusion, Die-
Write is not only able to increase plane utilization, but also
canmake a full use of all planes of the SSD.

3) Buffer Hit Ratio: Differently from previous work, Die-
Write may need to evict more data from the buffer to align
the write points. In this case, it may have impact to the hit
ratio of buffer. Fig. 12 presents the results of buffer hit ratios
for the six schemes. The results show that SPD has little
impact to the hit ratio of buffer. The average buffer hit ratio
is reduced by only 1.92 percent, which is negligible. The rea-
son for the slight reduction is that Die-Write is designed
with following principles: first, it always only need to evict
one more dirty page, which is critical in aligning write
points; second, the buffer is designed to only evict the cold
dirty data from the LRU position.

6.2 Experiment Results With GC

Fig. 13 shows the results of write latency with GC triggered.
The results show that SPD is able to significantly reduce the
write latency for all workloads. The write latency is reduced
by 48.61, 47.65, 42.05, 28.19, and 28.58 percent compared with
Baseline-D, Baseline-P, TwinBlk, SuperPage, and ParaGC, on
average. The significant improvement comes from three
aspects: First, SPD constructs aligned write access to reduce
write latency, which has been verified in Section 6.1. Second,
the GC cost is further reduced throughmoving all valid pages
with the support of Die-Write. Third, total GC count is
noticeably reduced by reclaiming two planes at once time,
andwrite amplification is avoided comparedwith SuperPage.

To understand more details, the total GC costs are
presented in Fig. 14. The results show that first, TwinBlk
generally has much higher cost than SuperPage and ParaGC.
On average, compared with Baseline-D, total GC costs of

SuperPage and ParaGC are reduced by 22.4 and 30.8 percent
while TwinBlk only reduces the total GC cost by 6.9 percent.
For SuperPage, it reclaims two blocks at once time to reduce
GC cost, but the total GC count can be increasedwhen update
operation would read other valid pages for constructing a
new super page, consuming free space more rapidly. More
details about GC cost is presented in Section 6.3. For ParaGC,
it activates GCs in paired planes only when the number of
free pages in the other plane is smaller than 7 percent. In this
case, it can avoid introducing high GC cost while moving
valid pages. In addition, ParaGC proposed to align write
points during the process of valid page movement so that
valid pages in the same position of paired planes can be read
and written in parallel. However, for TwinBlk, it activates
paired GCs without considering the number of valid pages in
the paired planes. In this case, more valid pages from paired
planes may be moved during GC process. In addition,
TwinBlk adopted round-robin policy. If current write points
are not aligned, valid pages having same position in different
planes still can not be read and written in parallel. Therefore,
for some workloads, the total GC cost of TwinBlk is larger
than Baseline-D. Second, even though SPD also activates GC
at the all planes at the same time, it is proposed to regard the
whole die as the smallest access unit and all the write opera-
tions during GC are processed via Die-Write. Moreover,
parallel access in SPD is constructed without introducing
write amplification, avoiding triggering more GCs. As a
result, the total GC cost is reduced by 36.4 percent, on average.
In conclusion, SPD achieves the best write performance com-
paredwith all other relatedworks.

For read latency, results of read latency improvement
with considering GC are presented in Table 4. Similarly, the
read latency is similar among each scheme. The reason also
comes from the highest priority of read request, which can
be processed without delay [31], [46]. The results show that
SPD has no impact to read access with significant write per-
formance improvement.

6.3 GC Evaluation

In this part, Die-GC is evaluated. First, the average GC cost
and the number of triggered GC in different schemes are

Fig. 12. The buffer hit ratios of evaluated schemes.

Fig. 13. The write latencies of evaluated schemes.

Fig. 14. Total GC cost of evaluated schemes.

TABLE 4
Read Latency Results With GC

Baseline-D Baseline-P TwinBlk SuperPage ParaGC SPD

Reduction 0 0.052% -0.042% 4.173% 1.144% 1.203%

2194 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 9, SEPTEMBER 2020

evaluated. Second, the number of erase operations induced
by GC is collected to show its impact on the lifetime of SSDs.

1) Average GC Cost: Average GC costs are collected in
Fig. 15. In the Figure, the average GC cost is broken into four
parts: read cost, write cost, transfer cost and erase cost. Read
cost is the cost in reading valid pages from the victim block;
write cost is the cost in writing the valid data to free pages;
transfer cost is the cost in transferring the valid data among
planes or between controller and chips; and erase cost is the
time cost in erasing the victim block. The results show that
the write cost takes the dominate part of the total cost [18].
This is because write latency of flash memory is several times
of read latency. In addition, there are always a large number
of valid page movement during GC. There are three observa-
tions from the results: First, SPD has the less GC cost com-
pared with TwinBlk and ParaGC. Clearly, the reduced GC
cost is from the Die-Write used in Die-GC, which is trig-
gered to write dirty pages back to the multiple planes in par-
allel. For TwinBlk, it also trigged GC in the paired planes.
However, TwinBlk adopted round-robin policy for write
operations among planes, which is not able to always align
the write points. In this case, many valid pages written back
may be processed sequentially. Second, the GC cost of SPD is
similar to that of Baseline-D and Baseline-P. As presented in
the technique part, Die-GC is designed to reclaim several
blocks in one GC. Several block reclaiming costs are similar
with single block reclaiming cost in Baseline-D and Baseline-
P due to that we carefully select victim blocks among planes
as a single unit and use Die-Write to speed up the process.
Third, SuperPage can achieve the minimal GC cost compared
with other schemes. The reason is that, SuperPage can aggres-
sively invalidate pages in a block, reducing the total number
of valid pages in a block. This is because each update opera-
tion can invalidate all paired pages formaintaining consistent
states (valid or invalid) of all pages in a super page.

2) GC Count: Fig. 16 shows the total number of triggered
GCs during runtime. We can find that Die-GC highly
reduces the number of GCs. Therefore, the frequency of trig-
gering GC is reduced. The results show that GC count is
reduced in the range of 32.9 to 50.1 percent, compared with
Baseline-D. As a result, the total GC cost during whole run-
time can be highly reduced as well so that the performance
of SSDs can be improved. For related works, the number of
triggered GCs in Baseline-P is similar to Baseline-D. Both
TwinBlk and ParaGC can reduce the number of triggered
GCs as well. This is because that TwinBlk and ParaGC erase
more blocks in each GC process as well. But for TwinBlk, it
selects victim blocks inefficiently so that its GC counts are
slightly higher in most cases. For a exception, PROJ_0, since
SPD may slightly increase write operations, the total trig-
gered GC count of SPD may be slightly increased. For
SuperPage, since it can cause significant write amplification,
total number of GCs is increased as well.

3) GC Induced Erases: Fig. 17 shows the number of erase
operations for the six schemes. Since TwinBlk, SuperPage,
ParaGC and Die-GC are designed to erase more blocks in
each GC process, the number of erase operations are larger
than that of Baseline for most workloads. The reason is that,
reclaiming blocks from different planes at once time may
trigger premature GCs [48], [49]. However, the results show
that the number of erase operations of Die-GC is much
smaller than TwinBlk, SuperPage and ParaGC. For example,
TwinBlk, in the worst case, introduces more than 102.2 per-
cent erase operations for PRXY_0, compared with Baseline-
D. ParaGC, introduces more than 65.8 percent erase opera-
tions compared with Baseline-D. Worst of all, SuperPage
triggers 177.7 percent erase operations compared with Base-
line-D. Compared with these three related works, SPD intro-
duces fewer erase operations in most cases. On average, the
number of erase operations is reduced by 13.43, 34.23 and

Fig. 15. Average GC cost breakdown of evaluated schemes.

Fig. 16. The total number of triggered GC. Fig. 17. The total number of erase operations.

GAO ETAL.: BOOSTING THE PERFORMANCE OF SSDS VIA FULLY EXPLOITING THE PLANE LEVEL PARALLELISM 2195

10.04 percent compared with TwinBlk, SuperPage and Par-
aGC. The reason comes from that Die-GC is triggered with
regarding the whole die as the smallest unit without intro-
ducing additional valid page movements. In addition, the
write amplification is also avoided to reduce total GC count.

6.4 Experiment Results of SPD+

In order to evaluate the effectiveness of proposed SPD+, the
impact of access conflict between Die-Write and Die-GC

is measured first, which is the potential of SPD+. In SPD
scheme, write requests in the constructed Die-Write are
identified as blocked write requests while there is a Die-GC

in the accessing die. To indicate the impact of access conflict,
the percentages of blocked write requests’ time cost are eval-
uated and presented in Fig. 18. On average, total time cost of
write requests blocked by GCs accounts for 18.2 percent. The
results presented in Fig. 18 show a matching pattern with
Fig. 13, where the write performance improvements of
PRN_0, PRN_1 and TS_0 are slight while the GC impacts on
PRN_0, PRN_1 and TS_0 presented in Fig. 18 is weak. Take
PRN_1 as an example. In Fig. 18, the total time cost of write
requests blocked by GC of PRN_1 only accounts for 5.1 per-
cent while the achieved write performance improvement of
SPD presented in Fig. 13 is 13.7 percent, which is theminimal
write performance improvement among all workloads.

By adopting the proposed combination scheme, which
constructs Die-Write by grouping evicted page from the
cache and valid page from victim block, the waiting time of
evicted page generated write requests can be significantly
reduced. The results of average write latency of SPD and
SPD+ are evaluated and presented in Fig. 19. On average,
SPD+ can further reduce the average write latency by 23.2

percent compared with basic SPD scheme. For these work-
loads little affected by access conflict (PRN_0, PRN_1 and
TS_0), the achieved write latency decreases also are slight,
accounting for 0.5, 0.2 and 5.1 percent, respectively. On the
contrary, for PROJ_3, of which the total time cost of write
requests is highly affected by GCs, the achieved write
latency decrease reaches 28.7 percent.

To elaborate the reason of achieved significantly write
performance improvement, the results of average time cost
of write requests blocked by GCs are evaluated and pre-
sented in Fig. 20, where the results of SPD+ are normalized
to SPD. For SPD+, while write requests can be processed in
parallel with valid page movements during GC process, the
waiting time of write requests can be reduced, causing the
average time cost drop. In this figure, one can see that the
average time cost of write requests blocked by GCs is
reduced by 27.1 percent. Similarly, for PRN_1, which is least
affected by GC induced access conflict, the reduced average
time cost of write requests blocked by GCs also is minimal,
only being reduced by 2.2 percent. On the other hand, for
PROJ_3, the achieved average time cost reduction of write
requests blocked by GCs is the maximal one, reaching 31.2
percent. In conclusion, the proposed combination scheme
can be applied to significantly reduce waiting time of write
requests blocked by GCs, making write performance to be
further improved.

For GC evaluation, the total GC time cost, average GC
time cost and GC count of SPD+ are similar to SPD, which
are increased by 0.012, -0.015 and 0.027 percent, respec-
tively. Since proposed SPD+ is designed to schedule write
requests for reducing waiting time, the GC process will not
be affected, and then the metrics of evaluated GC process
are similar to SPD.

For read latency, SPD+ still executes read requests with
highest priority, making the achieved read latency be simi-
lar to SPD. On average, the read latency of SPD+ is reduced
by 0.33 percent compared with SPD.

6.5 Sensitive Studies

1) Buffer Size Impact: In this part, the write intensive work-
load, RSR_0, is selected for buffer size sensitivity study.
Buffer size is different within different devices. Its impact on
SPD is presented. Fig. 21 shows the results of the normalized
write latencies of the six schemes by varying buffer size from
256 KB to 16 MB. During the evaluation, GC is not triggered
to only understand the impact from different buffer sizes.
Two observations can be concluded from the results. First,
with larger buffer size, the write latencies of all schemes can

Fig. 18. The impact of access conflict between Die-write and Die-GC.
The percentages of total time cost of write requests blocked by GCs are
evaluated.

Fig. 19. The write latencies of SPD and SPD+.

Fig. 20. Normalized time cost reduce of write requests blocked by GCs.

2196 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 9, SEPTEMBER 2020

be further reduced. This is because that more dirty pages can
be stored and higher hit ratio can be achieved. Second, com-
pared with other schemes, stable write latency reduction is
achieved by SPD with different buffer sizes. The proposed
framework is designed to align the write point of planes all
the time. It has benefit once there are multiple write opera-
tions issued to a die.

2) Four-Plane SSD Evaluation: In this part, SSD with four
planes per die is evaluated for SPD. For the four planes of a
die, each paired planes can be accessed in parallel with the
support of multi-plane command [1], [10]. The results of write
latencies for Baseline-D, Baseline-P, and SPD are presented
in Fig. 22, where GC is not triggered to evaluate the single
influence from more planes per die. First, Baseline-P has
similar write latency to that of Baseline-D. Four-plane SSD
requires that only paired plane 0&1 or 2&3 can be processed
in parallel. Only a few write operations can be processed
with the support of multi-plane command. Second, for SPD
with four-plane SSD, the write latency is further reduced.
This is because that all four planes are regarded as one unit
in Die-Write. Therefore, more dirty pages can evicted and
written back as Die-Write at the cost of one write opera-
tion when the number of planes in a die increases. On aver-
age, compared with Baseline-D, SPD achieves 43.9 percent
write latency reduction, on average.

3) Various Mapping Schemes based SSDs: In this part,
demand-based selective caching of page-level address map-
pings, termed DFTL [4], and hybrid mapping scheme are
implemented to show the effectiveness of proposed SPD.
Similar to the settings of above evaluations, GC is not trig-
gered in this evaluation. For DFTL based SPD, mapping
entries evicted from RAM buffer are organized as Die-Write
as well. Whenmapping entries are supposed to be read from
flash memory, Die-Read is generated to read required

mapping entries aswell. For hybridmapping, FAST is imple-
mented as an example [50]. In FAST based SPD, paired log
blocks resided in paired planes are reserved. That is, write
requests can be written into paired log blocks in the form of
Die-Write as well. While merge operation is required,
valid pages in selected paired log blocks and corresponding
data blocks are read out and written to new paired data
blocks by Die-Write.

Take RSR_0 as an example, Fig. 23 shows the write laten-
cies of pure page-levelmapping, DFTL and FAST based eval-
uated schemes. Herein, the write latencies of DFTL based
schemes are worse than that of pure page-level mapping
based schemes. For SPD, the write latency of DFTL based
SPD is increased by 22.47 percent compared with pure page-
level mapping based SPD. For FAST based schemes, since
there are additional merge operations caused by FAST map-
ping, the write latencies of FAST based schemes are highly
larger than that of other mappings based schemes respec-
tively. But for FAST based SPD, it still can achieve substantial
write performance improvement compared with other
schemes equipped with FAST. This is because that, not only
host write requests can be processed in parallel, but also
each merge operation can reclaim two log blocks at the time
cost of one merge operation. On average, compared with
Baseline-D equipped with FAST mapping, FAST based SPD
can reducewrite latency by 23.43 percent.

4) Hot/Cold Separation based GC: To further reduce GC
time cost, a widely adopted method is to distribute data to
different blocks according to their hotness. Inside SSD, valid
pages in victim block are cold enough, since only hot data
are evicted from buffer and only relatively hot data in flash
blocks tend to be invalidated. To further improve the effi-
ciency of GC process, cold and relatively hot valid pages in
victim blocks are written to different blocks according to
their hotness as well in the revision [51], [52]. To realize
SPD with considering hot/cold separation in GC process,
each plane maintains two active blocks, cold block and hot
block. To separate hot and cold data, the update count
within a fixed time interval is recorded, which is set to 120
minutes according to [53]. Within 120 minutes, most data in
evaluated workloads are updated. Except for valid pages
from GC, host data evicted from buffer are considered as
hot data and written into hot block as well.

The writ latencies of evaluated schemes with and without
hot/cold data separation are collected and presented in
Fig. 24. In this figure, two observations can be concluded.

Fig. 21. Write latency with different buffer sizes.

Fig. 22. Write latency with 4 planes per die.

Fig. 23. Write latencies of pure page-level mapping, DFTL and FAST
based evaluated schemes.

GAO ETAL.: BOOSTING THE PERFORMANCE OF SSDS VIA FULLY EXPLOITING THE PLANE LEVEL PARALLELISM 2197

First, after applying hot/cold data separation, proposed SPD
and SPD+ still can noticeably reduce write latency. On aver-
age, compared with Baseline-D, SPD+ can reduce write
latency by 57.64 percent. Second, hot/cold data separation
can significantly reduce write latency. Averagely, take Base-
line-D as an example, scheme appliedwith hot/cold data sep-
aration can reducewrite latency by 23.83 percent. The reasons
come from two aspects: first, GC efficiency is improved while
fewer valid pages aremoved duringGCprocess; second, total
GC count can be reducedwhile cold pages are barelymoved.

7 RELATED WORKS

In this section, related works on improving the plane level
parallelism and reducing GC impact on performance are
presented, respectively.

(1) Plane Level Parallelism Exploration: In order to improve
plane level parallelism, several previous works have been
proposed. Gao et al. [18] and Jung et al. [44] proposed to
increase the potential of using multi-plane command through
distributing requests belonging to different planes at one
time. Similarly, Abdurrab et al. [29] proposed DLOOP to
modify mapping policy to evenly distribute data across
planes based on a fixed location calculation. However, the
achieved performance is limited since they highly depend
on the access patterns of workloads to match the limitations
of multi-plane command. On the other hand, Tavakkol et al.
[11] and Hu et al. [10] proposed to align writing points of
planes. Tavakkol et al. [11] proposed to maintain the write
points to distribute writes among planes in round-robin
fashion. However, due to the above mentioned unaligned
access problem, plane level parallelism still can not be fully
exploited. Hu et al. [10] proposed a greedy multi-plane com-
mand. They proposed to allocate new writing points in the
same position. However, this will waste space. Caulfield and
Seong et al. [17] and [45] proposed a new design principle for
fully exploiting plane level parallelism, which groups all
pages residing in the same in-chip location as a large logical
page, termed super page. Such design can boost the perfor-
mance and bandwidth of SSDs at the penalty of lifetime.

Different from all these works, SPD is the first on propos-
ing to align the write points in an active way. Die-Write is
designed to align the write point all the time. In this case, all
write operations issued to multiple planes in a die can be
processed in parallel. Also, SPD can minimize the impact on
the lifetime of SSDs by grouping pages togethermore flexible.

(2) Garbage Collection Impact Minimization: Previous
works aiming at reducing GC impact on performance can
be classified into two groups: The first group proposed to
reduce the time cost of GC activity [13], [54]; For example,
Gao et al. [13] proposed to reduce the time cost of valid page
movement through migrating valid pages to idle chips.
Park et al. [54] proposed a new hotness identification
method for accurately capturing the recency and frequency
of data. The second group proposed to schedule requests or
GCs to reduce the impact on performance of SSDs [12], [14],
[55]. For example, Wu et al. [14] used cache to store requests
conflicted by GC. Jung et al. [55] proposed to advance or
delay GC through moving the time-consuming activity
from busy period to idle period. Choi et al. [12] proposed to
combine host I/O operations with valid pages migration.
However, the aforementioned GC optimization methods
still have not taken unaligned access problem of plane level
parallelism into consideration.

There are two works proposed to reduce GC impact
resulted from unaligned access problem. Shahidi et al. [9]
proposed ParaGC to select paired planes, where GC activi-
ties can be processed in parallel. However, if the paired
planes can not be found, unaligned access problem still
exist. Tavakkol et al. [11] proposed TwinBlk, which can min-
imize the unaligned access induced impact on GC. TwinBlk
is designed to trigger GCs on all planes of the same die
simultaneously so that symmetric victim blocks on planes
can be reclaimed in parallel. During this process, valid
pages are evenly moved to all planes in round robin policy
for aligning write points of all planes.

Different from these works, SPD uses Die-GC to speed
up the GC process and reduce the GC cost. Die-GC is
designed to select multiple blocks in the unit of die and
adopt Die-Write to speed up the GC process.

8 CONCLUSION

In this work, a from plane to die optimization framework is
proposed to exploit the plane level parallelism, which is the
last level parallelism of SSDs. Three components are
designed in the framework: die level write construction, die
level GC and combination scheme. Different from previous
work, this work is the first which is able to maintain the
aligned write points for the multiple planes for each die at
the time. There are two components designed to align the
write points of all planes in the same die all the time. In this
case, the last level parallelism, plane level parallelism, is fully
exploited to improve the performance of write requests and
internal activities. In addition, the combination scheme is
used to construct new die level write containing dirty page
evicted from cache and valid page in victim block. The com-
bination scheme can largely reduce the waiting time of write
requests blocked by GCs, bringing write latency decrease.
Experiment results show that SPD and SPD+ achieve signifi-
cant write performance improvement andmuch smaller life-
time impact comparedwith state-of-the-art works.

ACKNOWLEDGMENTS

This work is supported in part by NSFC 61772092 and
61872049, NSF 1910413,1617071,1725657 and 1718080, the

Fig. 24. Write latencies of evaluated schemes with and without hot/cold
separation.

2198 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 9, SEPTEMBER 2020

Research Grants Council of the Hong Kong Special Admin-
istrative Region, China (Project No. CityU 11219319), the
Frontier Interdisciplinary Research Funds for the Central
Universities (Project No. 2018CDQYJSJ0034). This work was
carried out while Congming Gao was visiting the University
of Pittsburgh on a CSC scholarship.

REFERENCES

[1] N. Agrawal, V. Prabhakaran, T.Wobber, J. D. Davis,M. S.Manasse,
and R. Panigrahy, “Design tradeoffs for SSD performance,” in Proc.
Annu. Tech. Conf., 2008, pp. 57–70.

[2] F. Chen, R. Lee, and X. Zhang, “Essential roles of exploiting inter-
nal parallelism of flash memory based solid state drives in high-
speed data processing,” in Proc. IEEE 17th Int. Symp. High Perform.
Comput. Archit., 2011, pp. 266–277.

[3] C. Gao, L. Shi, M. Zhao, C. J. Xue, K. Wu, and E. H.-M. Sha,
“Exploiting parallelism in I/O scheduling for access conflict mini-
mization in flash-based solid state drives,” in Proc. 30th Symp.
Mass Storage Syst. Technol., 2014, pp. 1–11.

[4] A. Gupta, Y. Kim, and B. Urgaonkar, “DFTL: A flash translation
layer employing demand-based selective caching of page-level
address mappings,” in Proc. 14th Int. Conf. Archit. Support
Program. Lang. Operating Syst., 2009, pp. 229–240.

[5] F. Chen, T. Luo, and X. Zhang, “CAFTL: A content-aware flash
translation layer enhancing the lifespan of flashmemory based solid
state drives,” in Proc. 9th USENIX Conf. File Stroage Technol., 2011,
pp. 77–90.

[6] M. Jung and M. T. Kandemir, “An evaluation of different page
allocation strategies on high-speed SSDs,” in Proc. 4th USENIX
Conf. Hot Topics Storage File Syst., 2012, pp. 9–13.

[7] R. Micheloni, A. Marelli, and S. Commodaro, “NAND overview:
From memory to systems,” Inside NAND Flash Memories. Berlin,
Germany: Springer, 2010.

[8] ONFI, “Open NAND flash interface specification 4.1. website,”
2017. [Online]. Available: http://www.onfi.org/ /media/onfi/
specs/onfi_4_1_gold.pdf?la=en

[9] N. Shahidi, M. Arjomand, M. Jung, M. T. Kandemir, C. R. Das, and
A. Sivasubramaniam, “Exploring the potentials of parallel garbage
collection in SSDs for enterprise storage systems,” in Proc. Int. Conf.
High Perform. Comput. Netw. Storage Anal., 2016, pp. 561–572.

[10] Y. Hu, H. Jiang, D. Feng, L. Tian, H. Luo, and S. Zhang,
“Performance impact and interplay of SSD parallelism through
advanced commands, allocation strategy and data granularity,”
in Proc. Int. Conf. Supercomputing, 2011, pp. 96–107.

[11] A. Tavakkol, P. Mehrvarzy, and H. S. -Azad,“TBM: Twin block
management policy to enhance the utilization of plane-level paral-
lelism in SSDs,” IEEE Comput. Archit. Lett., vol. 15, no. 2, pp.
121–124, Jul.-Dec. 2016.

[12] W. Choi, M. Jung, M. Kandemir, and C. Das, “Parallelizing gar-
bage collection with I/O to improve flash resource utilization,” in
Proc. 27th Int. Symp. High-Perform. Parallel Distrib. Comput., 2018,
pp. 243–254.

[13] C. Gao et al., “Exploiting chip idleness for minimizing garbage col-
lection induced chip access conflict on SSDs,” ACM Trans. Des.
Autom. Electron. Syst., vol. 23, pp. 1–29, 2017.

[14] S. Wu, B. Mao, Y. Lin, and H. Jiang, “Improving performance
for flash-based storage systems through GC-aware cache man-
agement,” IEEE Trans. Parallel Distrib. Syst., vol. 28, no. 10,
pp. 2852–2865, Oct. 2017.

[15] S. Wu, Y. Lin, B. Mao, and H. Jiang, “GCaR: Garbage collection
aware cache management with improved performance for flash-
based SSDs,” in Proc. Int. Conf. Supercomputing, 2016, pp. 1–12.

[16] M. Jung, W. Choi, S. Srikantaiah, J. Yoo, and M. T. Kandemir,
“HIOS: A host interface I/O scheduler for solid state disks,” ACM
SIGARCH Comput. Archit. News, vol. 42, pp. 289–300, 2014.

[17] A. M. Caulfield, L. M. Grupp, and S. Swanson, “Gordon: Using
flash memory to build fast, power-efficient clusters for data-inten-
sive applications,” ACM SIGARCH Comput. Archit. News, vol. 37,
pp. 217–228, 2009.

[18] C. Gao et al., “Exploiting parallelism for access conflict minimiza-
tion in flash-based solid state drives,” IEEE Trans. Comput.-Aided
Des. Integr. Circuits Syst., vol. 37, no. 1, pp. 168–181, Jan. 2018.

[19] S. Choudhuri and T. Givargis, “Performance improvement of block
based NAND flash translation layer,” in Proc. 5th IEEE/ACM Int.
Conf. Hardware/Softw. Codesign Syst. Synthesis, 2011, pp. 257–262.

[20] S.-W. Lee, D.-J. Park, T.-S. Chung, D.-H. Lee, S. Park, and
H.-J. Song, “A log buffer-based flash translation layer using
fully-associative sector translation,” ACM Trans. Embedded
Comput. Syst., vol. 6, pp. 18–44, 2007.

[21] T.-S. Chung, D.-J. Park, S. Park, D.-H. Lee, S.-W. Lee, and
H.-J. Song, “System software for flash memory: A survey,” in
Proc. Int. Conf. Embedded Ubiquitous Comput., 2006, pp. 394–404.

[22] E. Gal and S. Toledo, “Algorithms and data structures for flash
memories,” ACM Comput. Surv., vol. 37, pp. 138–163, 2005.

[23] Y. Pan, G. Dong, and T. Zhang, “Exploiting memory device wear-
out dynamics to improve NAND flash memory system perform-
ance,” inProc. 9thUSENIXConf. File Stroage Technol., 2011, pp. 18–31.

[24] Y.-J. Woo and J.-S. Kim, “Diversifying wear index for MLC
NAND flash memory to extend the lifetime of SSDs,” in Proc. Int.
Conf. Embedded Softw., 2013, Art. no. 6.

[25] H. Kim and S. Ahn, “BPLRU: A buffer management scheme for
improving random writes in flash storage,” in Proc. 6th USENIX
Conf. File Storage Technol., 2008, pp. 1–14.

[26] N. Megiddo and D. S. Modha, “ARC: A self-tuning, low overhead
replacement cache,” in Proc. 2nd USENIX Conf. File Storage Technol.,
2003, pp. 115–130.

[27] L. Shi, J. Li, C. J. Xue, C. Yang, and X. Zhou, “ExLRU: A unified
write buffer cache management for flash memory,” in Proc. 9th
ACM Int. Conf. Embedded Softw., 2011, pp. 339–348.

[28] P. Rosenfeld, E. Cooper-Balis, and B. Jacob, “DRAMSim2: A cycle
accurate memory system simulator,” IEEE Comput. Archit. Lett.,
vol. 10, no. 1, pp. 16–19, Jan.-Jun. 2011.

[29] A. R. Abdurrab, T. Xie, and W. Wang, “DLOOP: A flash transla-
tion layer exploiting plane-level parallelism,” in Proc. IEEE 27th
Int. Symp. Parallel Distrib. Process., 2013, pp. 908–918.

[30] P. Desnoyers, “Analytic models of SSD write performance,” ACM
Trans. Storage, vol. 10, 2014, Art. no. 8.

[31] J. Lee, Y. Kim, G. M. Shipman, S. Oral, F. Wang, and J. Kim,
“A semi-preemptive garbage collector for solid state drives,” in
Proc. IEEE Int. Symp. Perform. Anal. Syst. Softw., 2011, pp. 12–21.

[32] M.-L. Chiang, P. C. H. Lee, and R.-C. Chang, “Using data cluster-
ing to improve cleaning performance for flash memory,” in, Soft-
ware: Practice and Experience. Hoboken, NJ, USA: Wiley, 1999.

[33] C. Min, K. Kim, H. Cho, S.-W. Lee, and Y. I. Eom, “SFS: Random
write considered harmful in solid state drives,” in Proc. USENIX
Conf. File Storage Technol., 2012, pp. 1–16.

[34] M. Huang, Y. Wang, L. Qiao, D. Liu, and Z. Shao, “SmartBackup:
An efficient and reliable backup strategy for solid state drives
with backup capacitors,” in Proc. IEEE 17th Int. Conf. High Perform.
Comput. Commun., 2015, pp. 746–751.

[35] J. Guo, J. Yang, Y. Zhang, and Y. Chen, “Low cost power failure
protection for MLC NAND flash storage systems with PRAM/
DRAM hybrid buffer,” in Proc. Des. Autom. Test Eur. Conf. Exhibit.,
2013, pp. 859–864.

[36] W.H.Kang, S.W. Lee, B.Moon, Y. S. Kee, andM.Oh, “Durablewrite
cache in flashmemory SSD for relational and NoSQL databases,” in
Proc. ACM SIGMOD Int. Conf. Manage. Data, 2014, pp. 529–540.

[37] C. Gao, S. Liang, Y. Di, Q. Li, C. Xue, and H.M. E. Sha, “An effi-
cient cache management scheme for capacitor equipped solid
state drives,” in Proc. Great Lakes Symp. VLSI, 2018, pp. 463–466.

[38] Micron, 7100 M.2 NVMe PCIe SSD, 2016. [Online]. Available:
https://www.micron.com/ /media/documents/products/data-
sheet/ssd/7100_m2_pcie_ssd.pdf

[39] C. GaoL. Shi, C. J. Xue, C. Ji, J. Yang, and Y. Zhang, “Parallel all
the time: Plane level parallelism exploration for high performance
SSDs,” in Proc. 35th Symp. Mass Storage Syst. Technol., 2019,
pp. 172–184.

[40] S.-W. Lee, B. Moon, and C. Park, “Advances in flash memory SSD
technology for enterprise database applications,” in Proc. ACM
SIGMOD Int. Conf. Manage. Data, 2009, pp. 863–870.

[41] T. Xie and J. Koshia, “Boosting random write performance for
enterprise flash storage systems,” in Proc. IEEE 27th Symp. Mass
Storage Syst. Technol., 2011, pp. 1–10.

[42] D. Narayanan, E. Thereska, A. Donnelly, S. Elnikety, and
A. Rowstron, “Migrating server storage to SSDs: Analysis of trade-
offs,” inProc. 4th ACMEur. Conf. Comput. Syst., 2009, pp. 145–158.

[43] C. Gao et al., “Constructing large, durable and fast SSD system via
reprogramming 3D TLC flash memory,” in Proc. 52nd Annu. IEEE/
ACM Int. Symp. Microarchit., 2019, pp. 493–505.

[44] M. Jung, E. H. Wilson III, and M. Kandemir, “Physically
addressed queueing (PAQ): Improving parallelism in solid state
disks,” in Proc. 39th Annu. Int. Symp. Comput. Archit., 2012,
pp. 404–415.

GAO ETAL.: BOOSTING THE PERFORMANCE OF SSDS VIA FULLY EXPLOITING THE PLANE LEVEL PARALLELISM 2199

http://www.onfi.org/ /media/onfi/specs/onfi_4_1_gold.pdf?la=en
http://www.onfi.org/ /media/onfi/specs/onfi_4_1_gold.pdf?la=en
https://www.micron.com/ /media/documents/products/data-sheet/ssd/7100_m2_pcie_ssd.pdf
https://www.micron.com/ /media/documents/products/data-sheet/ssd/7100_m2_pcie_ssd.pdf

[45] Y. J. Seong et al., “Hydra: A block-mapped parallel flash memory
solid-state disk architecture,” IEEE Trans. Comput., vol. 59, no. 7,
pp. 905–921, Jul. 2010.

[46] T. Brokhman, “ROW scheduling algorithm in block layer.Website,”
2012. [Online]. Available: https://lwn.net/Articles/509829/

[47] J. Kim, Y. Oh, E. Kim, J. Choi, D. Lee, and S. H. Noh, “Disk sched-
ulers for solid state drivers,” in Proc. 7th ACM Int. Conf. Embedded
Softw., 2009, pp. 295–304.

[48] L.-P. Chang, T.-W. Kuo, and S.-W. Lo, “Real-time garbage collec-
tion for flash-memory storage systems of real-time embedded sys-
tems,” ACM Trans. Embedded Comput. Syst., vol. 3, pp. 837–863,
2004.

[49] L.-P. Chang and C.-Y. Wen, “Reducing asynchrony in channel
garbage-collection for improving internal parallelism of multi-
channel solid-state disks,” in ACM Trans. Embedded Comput. Syst.,
vol. 13, 2014, Art. no. 63.

[50] S.-W. Lee, W.-K. Choi, and D.-J. Park, “FAST: An efficient flash
translation layer for flash memory,” in Proc. Int. Conf. Embedded
Ubiquitous Comput., 2006, pp. 879–887.

[51] H.-J. Kim and S.-G. Lee, “A new flash memory management for
flash storage system,” in Proc. Int. Comput. Softw. Appl. Conf., 1999,
pp. 284–289.

[52] O. Kwon, J. Lee, and K. Koh, “EF-greedy: A novel garbage collec-
tion policy for flash memory based embedded systems,” in Proc.
Int. Conf. Comput. Sci., 2007, pp. 913–920.

[53] W. Choi, M. Arjomand, M. Jung, and M. Kandemir, “Exploiting
data longevity for enhancing the lifetime of flash-based storage
class memory,” Proc. ACM Meas. Anal. Comput. Syst., vol. 1, 2017,
Art. no. 21.

[54] D. Park and D. H. C. Du, “Hot data identification for flash-based
storage systems using multiple bloom filters,” in Proc. IEEE 27th
Symp. Mass Storage Syst. Technol., 2011, pp. 1–11.

[55] M. Jung, R. Prabhakar, and M. T. Kandemir, “Taking garbage col-
lection overheads off the critical path in SSDs,” in Proc. 13th Int.
Middleware Conf., 2012, pp. 164–186.

Congming Gao received the BS degree in com-
puter science and technology fromChongqing Uni-
versity, China, in 2014. He is working toward the
PhD degree in the College of Computer Science,
Chongqing University. currently, he is a visiting
scholar with the Department of Electrical and Com-
puter Engineering, University of Pittsburgh, Pitts-
burgh, PA. His research interests include flash
memory, non-volatile memory and architecture
optimizations.

Liang Shi received the BS degree in computer sci-
ence from the Xi’an University of Post & Telecom-
munication, Xi’an, Shanxi, China, in 2008, and the
PhD degree from the University of Science and
Technology of China, Hefei, China, in 2013. He is
currently a full-time professor with the School of
Computer Science and Technology, East China
Normal University. His research interests include
flash memory, embedded systems, and emerging
non-volatile memory technology.

Kai Liu received the PhD degree in computer
science from the City University of Hong Kong in
2011. FromDecember 2010 toMay 2011, hewas a
visiting scholar with the Department of Computer
Science, University of Virginia, USA. From 2011 to
2014, he was a postdoctoral fellow at Singapore
Nanyang Technological University, City University
of Hong Kong, and Hong Kong Baptist University.
He is currently a professorwith the College of Com-
puter Science, Chongqing University, China. His
research interests include Internet of Vehicles,
Mobile Computing and Pervasive Computing.

Chun Jason Xue received the BS degree
in computer science and engineering from the
University of Texas at Arlington, in May 1997, and
the MS and PhD degrees in computer science
from the University of Texas at Dallas, in 2002
and 2007, respectively. He is currently an associ-
ate professor with the Department of Computer
Science at the City University of Hong Kong. His
research interests include memory and parallel-
ism optimization for embedded systems, soft-
ware/hardware co-design, real time systems, and
computer security.

Jun Yang received the BS degree in computer
science from Nanjing University, China, in 1995,
the PhD degree in computer science from the
University of Arizona, in 2002. She is a professor
with the Electrical and Computer Engineering
Department, University Pittsburgh, Pittsburgh, PA.
She is the recipient of US NSF Career Award in
2008. She has won best paper awards from ICCD
2007 and ISLPED 2013. Her research interests
include GPU architecture, secure processor archi-
tecture, emerging non-volatile memory technolo-
gies, performance, and reliability of memories.

Youtao Zhang (Member, IEEE) received the PhD
degree in computer science from the University of
Arizona, Tucson, AZ, in 2002. He is currently an
associate professor of Computer Science, Uni-
versity of Pittsburgh, Pittsburgh, PA. His current
research interests include computer architecture,
program analysis, and optimization. He was the
recipient of the U.S. National Science Foundation
Career Award, in 2005. He is also the co-author of
several papers that received paper awards.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

2200 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 9, SEPTEMBER 2020

https://lwn.net/Articles/509829/

Towards Higher Performance and Robust
Compilation for CGRA Modulo Scheduling

Zhongyuan Zhao , Weiguang Sheng , Qin Wang, Wenzhi Yin, Pengfei Ye, Jinchao Li, and Zhigang Mao

Abstract—Coarse-Grained Reconfigurable Architectures (CGRA) is a promising solution for accelerating computation intensive tasks

due to its good trade-off in energy efficiency and flexibility. One of the challenging research topic is how to effectively deploy loops onto

CGRAs within acceptable compilation time. Modulo scheduling (MS) has shown to be efficient on deploying loops onto CGRAs.

Existing CGRA MS algorithms still suffer from the challenge of mapping loop with higher performance under acceptable compilation

time, especially mapping large and irregular loops onto CGRAs with limited computational and routing resources. This is mainly due to

the under utilization of the available buffer resources on CGRA, unawareness of critical mapping constraints and time consuming

method of solving temporal and spatial mapping. This article focus on improving the performance and compilation robustness of the

modulo scheduling mapping algorithm for CGRAs. We decomposes the CGRA MS problem into the temporal and spatial mapping

problem and reorganize the processes inside these two problems. For the temporal mapping problem, we provide a comprehensive

and systematic mapping flow that includes a powerful buffer allocation algorithm, and efficient interconnection & computational

constraints solving algorithms. For the spatial mapping problem, we develop a fast and stable spatial mapping algorithm with

backtracking and reordering mechanism. Our MS mapping algorithm is able to map loops onto CGRA with higher performance and

faster compilation time. Experiment results show that given the same compilation time budget, our mapping algorithm generates higher

compilation success rate. Among the successfully compiled loops, our approach can improve 5.4 to 14.2 percent performance and

takes x24 to x1099 less compilation time in average comparing with state-of-the-art CGRA mapping algorithms.

Index Terms—CGRA, modulo scheduling, temporal mapping, spatial mapping

Ç

1 INTRODUCTION

RECENT years, Coarse-Grained Reconfigurable Architec-
tures (CGRAs) has gained many attentions from both

academia and industry. Based on our knowledge, at least 40
CGRAs have been developed to adapt diverse applications in
the past decades of years. These CGRAs are either positioned
as accelerators or standalone processing units, and target on
improving the efficiency of running applications that cover
mobile computing [1], [2], [3], media processing [4], [5], [6],
[7], [8], image processing [9], [10], digital signal processing
(DSP) [11], [12], [13], [14], [15], [16], [17], [18], ultra-low power
processing [19], [20], [21], machine learning [22], [23], [24],
data or computational intensive domains [25], [26], [27], [28],
[29], [30], [31], [32], and even general purpose computing [33],
[34], [35], [36], [37], [38]. However, building the software eco-
system around CGRAs is challenging due to the diverse
CGRA hardware design flavors and application purposes.
Many compilers for CGRAs are hardware specific (works
such as [28], [39], [40], [41], [42], [43]).

Therefore, in terms of generality and programmability, a
generalized CGRA execution model is important for the

compilers to formulate a uniform compilation problem.
ADRES [44], CRC [27] and CGRA-ME [45] are representa-
tive works which provide generalized CGRA template of
modeling CGRA loop accelerators. These templates define
the basic components inside CGRA computing system,
which includes reconfigurable computing unit (RPU) that
consists of one or multiple arrays of processing elements
(PE), hierarchical on-chip buffers, and interconnect net-
works. The template model is not specific to single CGRA
design flavor and the components inside the CGRA tem-
plate can be parameterized. In this way, the compiler is able
to formulate a uniform problem of mapping the dataflow
graph (DFG) extracted from the application program onto
this generalized CGRA template, and the goal of the map-
ping problem depends on the CGRA execution schemes.

One of the popular execution scheme is to software pipe-
lining the innermost loops on CGRA by overlapping the exe-
cution of successive loop iterations [46]. Operations within
the same and different iterations are executed in parallel and
both instruction-level parallelism and loop-level parallelism
can be exploited. The interval between two consecutive itera-
tions of the loop is referred as Initiation Interval (II), which is
the most important metric to evaluate the performance of
mapping, the smaller the better. In general, compilers use
modulo scheduling [46] based mapping algorithm to deploy
loops onto CGRA and this mapping problem has been
proven to beNP-Complete [47], [48].

Earlier work [49] has formulated the CGRA module
scheduling (MS) problem as mapping the DFG onto an
abstracted modulo extended 3D-CGRA (CGRA is extended

� Z. Zhao, W. Sheng, Q. Wang, P. Ye, J. Li, and Z. Mao are with the
Department of Micro/Nano Electronics, Shanghai Jiao Tong University,
Shanghai 200240, China. E-mail: zyzhao.sjtu@gmail.com, {wgshenghit,
qinqinwang, teddyye, littledanni, maozhigang}@sjtu.edu.cn.

� W. Yin are with Nvidia, China. E-mail: wgshenghit@sjtu.edu.cn.

Manuscript received 8 Oct. 2019; revised 5 Apr. 2020; accepted 16 Apr. 2020.
Date of publication 21 Apr. 2020; date of current version 8 May 2020.
(Corresponding author: Weiguang Sheng.)
Recommended for acceptance by M. D. Santambrogio.
Digital Object Identifier no. 10.1109/TPDS.2020.2989149

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 9, SEPTEMBER 2020 2201

1045-9219� 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht_tps://www.ieee.org/publications/rights/index.html for more information.

https://orcid.org/0000-0002-6637-553X
https://orcid.org/0000-0002-6637-553X
https://orcid.org/0000-0002-6637-553X
https://orcid.org/0000-0002-6637-553X
https://orcid.org/0000-0002-6637-553X
https://orcid.org/0000-0002-7831-526X
https://orcid.org/0000-0002-7831-526X
https://orcid.org/0000-0002-7831-526X
https://orcid.org/0000-0002-7831-526X
https://orcid.org/0000-0002-7831-526X
mailto:zyzhao.sjtu@gmail.com
mailto:wgshenghit@sjtu.edu.cn
mailto:qinqinwang@sjtu.edu.cn
mailto:teddyye@sjtu.edu.cn
mailto:littledanni@sjtu.edu.cn
mailto:maozhigang@sjtu.edu.cn
mailto:wgshenghit@sjtu.edu.cn

II in the third dimension), a space-time graph that models
the computational resources and routing resources of CGRA,
and their goal is to minimize the II. The mapping prob-
lem consists multiple processes such as assigning time, PE
placement, PE routing and allocating buffers (registers).
Hamzeh [50] classified the patterns of organizing these pro-
cesses into the integrated policy or decomposed policy. With
the integratedmapping policy, the process of assigning time,
buffer allocating, and PE placement and routing are taken
place at once in a node-by-node fashion [50]. Whereas the
decomposed mapping policy handles these processes sepa-
rately, each process can be formulated to a problem which is
independent with otherswith awell-defined objective. Based
on the decomposing style of existing mappings [47], [51],
[52], [53], [54], [55], [56] and our mapping in this paper, we
conceptually name two basic decomposed processes as the
temporal mapping and spatial mapping for all the mappings
using the decomposedmapping policy.

Existing CGRA MS algorithms using different mapping
policies may suffer from different or same challenges:

1. Underutilizing the buffer resources in both policies:Most of
the works do not explicitly provide optimization algo-
rithm using all types of the available buffer resources
in CGRA. Some works use single buffer types, for
example, REGIMap [52] use local register buffer (LRB)
distributed in PEs, MA-Map [54] leverages on-chip
memory buffer (OMB). Even though RAMP [55] use
both LRB and OMB, it only use them separately. The
combinational utilization of PE, global register buffer
(GRB), LRB and OMB is important to keep the perfor-
mance competitive when there are insufficient buffer
resources onCGRA.

2. Good performance but long compilation time in algorithms
using integrated mapping policy: Even though classic
optimization heuristics such as simulated annealing
[57], particle swarm optimization [58] or linear inte-
ger programming (ILP) [59] are able to generate com-
petitive mapping performance within a reasonable
time budget. They still take relative long time to con-
verge comparing with other heuristics, especially for
large and irregular DFGs [52], [57], [60].

3. Fast but sacrifice performance in algorithms using inte-
grated mapping policy: Other heuristics such as EMS
[61], Resource-Aware [62] andGraphMinor [48] focus
on some specific aspects during mapping, but lacks
generality. This makes their approach faster but
lower mapping efficiency over some irregularities
that they do not cover.

4. Unawareness of the interconnection and computational
resources constraints in algorithms using decomposed
mapping policy: Decomposing the temporal and spa-
tial mapping has been shown to be effective [43],
[50]. However, if the temporal mapping cannot real-
ize the insufficiency of the interconnection and rout-
ing resources in CGRA which leads to the failure of
spatial mapping, the spatial mapping algorithm will
perform redundant and useless searching.

5. Time consuming spatial mapping algorithm in decomposed
mapping policy: Existing mappings such as EPIMap
[47], REGIMap [52], Conflict-free [53], Mem-Aware

[54] and RAMP [55] integrate buffer allocating and
PE placement and routing processes into spatial map-
ping (Fig. 2a). They formulate spatial mapping prob-
lem of finding maximum clique, which is also an NP-
Complete problem. They select a time consuming
way to perform spatial mapping, which incurs the
waste of time if problem 4 appears.

These motivations push us to think about a newmapping
methodology of solving the CGRA MS problem towards
higher performance and more robust compilation. The con-
tributions of this paper are summarized as follows:

1. We give a comprehensive analysis on existing CGRA
mapping algorithms, propose a mapping design phi-
losophy of decomposing the temporal mapping and
spatial mapping. We argue that the temporal map-
ping should be paid more attention than spatial
mapping for the purpose of higher performance and
robust compilation (Fig. 2b). Therefore, we develop a
systematic temporal mapping flow which compre-
hensively analyzes and reschedules the DFG to help
improving the successful rate of spatial mapping
and the performance of the generated code.

2. In the temporal mapping flow, we formulate a buffer
allocating problem by building the constraints and
rules for different buffer resources and assigning the
routing paths to these buffer resources according to
their corresponding constraints and rules in order to
maximize the released computational resources. We
solve the problem by proposing a buffer allocating
heuristic which is capable of using both same and
hybrid buffer resources to buffer value during their
lifetime. Thismakes our algorithmhave strong adapt-
ability over CGRAswith limited buffer resources.

3. Also in the temporal mapping flow, we propose the
interconnection and computational constraints solv-
ing heuristics to foresee the incapability of the spatial
mapping, and reschedule the operations in DFG to
guarantee the successful rate of the following spatial
mapping process.

4. We propose a fast and efficient spatial mapping heu-
ristic which combines backtracking and reordering
mechanism to guarantee the success rate of the spa-
tial mapping. In the forward process, we use the
greedy based algorithm to fast generate the optimal
mapping with minimal II. If it fails, the backtracking
and reordering algorithm will guarantee the success-
ful mapping.

Experiment results show that our mapping strategy guar-
antees the stability of the compile time, all the selected loop
kernels are able to be mapped within certain time budget.
Among the successfully mapped loops, our mapping impro-
ves the performance from 5.4 to 14.2 percent and compilation
time from x24 to x1099 faster in average comparing with
state-of-the-art competitive CGRAmapping algorithms.

2 ARCHITECTURE OVERVIEW OF CGRA

CGRA is a kind of spatial architecture which is able to
explicitly execute dataflow graphs. CGRA contains compu-
tational resources and routing resources. The computational

2202 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 9, SEPTEMBER 2020

resources are referred as processing elements (PEs). The
architecture of PE is shown in Fig. 1. The PE is able to
receive input data from neighbor PEs (including itself), local
register buffer (LRB), global register buffer (GRB) and on-
chip memory buffer (OMB). The function unit (FU) inside
PE performs fixed-point arithmetic and logic operations
and write the computation result to the output register,
LRB, GRB or OMB.

In CGRA, data is communicated through the routing
resources. The routing resources includes the interconnec-
tions between PEs which we refer as the interconnection
resources, and all the available on-chip buffer resources includ-
ing PE, LRB, GRB and OMB. The produced data can be
directly consumed through the interconnections between
PEs. However, there exists situation that the produced data
can not be consumed immediately due to the different
latency between input values. For example, in Fig. 4a, the
data produced by operation (or node) A is able to be con-
sumed immediately by operation B, but not by node E
and F. This forms a routing path from A to E and A to F. The
routing path inside the DFG is a path from producer to one
or multiple consumers where the producer can not be
immediately consumed by the consumers.

In real world, there are many large and irregular DFGs
that contain many routing paths. In this way, the compiler
must use additional routing resources to route the value
along the routing path. CGRA provides four buffer resour-
ces for routing, which are PE, LRB, GRB and OMB
(highlighted with grey color in Fig. 3).

1. PE: When we use PE to be the routing media, data is
buffered in its output register (OReg). However,
when the output register is used to buffer the data in
a certain time, the PE can not perform any other
operation during the same time. In this way, the
routing node inside the routing path will be assigned
to PEs and the compiler use PEs and interconnec-
tions between PEs to route value. Fig. 4b shows the
example of using PE to route data produced by node
A to node E and F.

2. Local Register Buffer (LRB):Unlike the previous buffer-
ing choice, when the value is buffered in LRB of a PE,
PE can perform the other operations. However, any
operation who consumes the data in LRB must be
mapped to the producer PE, which brings additional
mapping constraints onto the compiler, we called it
the LRB constraints. All the routing paths inside the
DFG must satisfy LRB constraints if they use LRB to
perform routing. The detail of the LRB constraints
will be illustrated in Section 4. Fig. 4c is an example of
using LRB to route value A. One of the LRB con-
straints is that operation A, E, F must be executed by
the same PE (same colormeans same PE).

3. Global Register Buffer (GRB): GRB can be accessed by
any PEs. Any operation who consumes the data in
GRB can be mapped to any PEs. However, as the
overhead of the GRB scales super-linearly with its
number of ports [49], the GRB resource is usually
limited. Thus, GRB must be carefully used for the
optimization purpose. Fig. 4d shows the example of
using GRB to route value.

4. On-chipMemory Buffer (OMB):At last, data can be buff-
ered into on-chip memory. The OMB can be accessed
by all PEs and has relativemore read/write ports than
GRB because of its multi-bank designing style. How-
ever, when the compiler choose to buffer the value
intoOMB, the additional store/load operationswill be
added (Fig. 4e), and both the accessing latency and
energy are larger than all the previous buffers.

One distinguished feature of our mapping over existing
mappings is the combinational usage of different buffer

Fig. 1. Typical system architecture of CGRA which contains context
memory, array of processing elements, on-chip memory buffer and
global register buffer. Inside PE, there is context control unit, function
unit, output register, and local register buffer.

Fig. 2. (a) Process distribution over temporal and spatial mapping of the
existing decomposing policy, (b) Process distribution over temporal and
spatial mapping of our mapping.

Fig. 3. The hierarchy of different buffer types which specified with solid
gray color.

ZHAO ETAL.: TOWARDS HIGHER PERFORMANCE AND ROBUSTCOMPILATION FOR CGRA MODULO SCHEDULING 2203

resources for single routing path. Fig. 4c to (i) plots the com-
binations of using different buffers for the shared routing
path from A to E and F (red edges specified in Fig. 4b). The
combinational usage of buffer resources makes our algo-
rithm able to keep the competitive performance when cer-
tain type of buffer resource is limited in some buffer-
hungry CGRAs for the purpose of power or area saving.

These examples shows that, the effective utilization of
different buffer resources releases PEs from routing data so
that these PEs are able to perform other valid computations.
We formulate this buffer allocating problem and provide a
heuristic to solve it in Section 4.2

3 CGRA COMPILATION TECHNIQUES

The compilation flow of CGRA starts with extracting the
loops from the application and transform the corresponding
code regions to the data flow graph (DFG) structure. The
DFG, DðV;EÞ, is consisted of set of nodes V and edges E,
where each node v 2 V represents a valid operation such as
arithmetic, logic or even memory access, and each edge
e 2 E represents the data dependency between the producer

and consumer. The CGRA modulo scheduling technique is
to find out a mapping relationship between DFG, DðV;EÞ
and time-space CGRA resources graph,RIIðVR;ERÞ.

Since 2002, there have beenmanyCGRAmodulo schedul-
ing heuristics. We summarize these heuristics and our map-
ping heuristic in Table 1 from five prospectives including
patterns of organizing the mapping processes, buffer resour-
ces that are explicitly leveraged for the optimization purpose
duringmapping, each mapping distinguished features, their
placement and routing method and the 3D-CGRA model
they select to use. We analysis these mappings according to
the aforementioned integrated and decomposed mapping
policy they use and analysis their characteristics as follows.

3.1 Mappings Using the Integrated Mapping Policy

There are pioneers who solve the CGRA MS mapping using
classic optimization heuristics such as simulated annealing,
particle swarm optimization and integer linear program-
ming solving. For example, DRESC [57] use simulated
annealing (SA) based mapping algorithm. PSOMap [58] use
particle swarm optimization which mimics social behavior
of the bird flocks. These works first formulate the problem

Fig. 4. Different routing methods for single routing path: (a) the original DFG, (b) only use PEs, the dash circle represent an routing operation in PE,
(c) only use LRB, the colored circles must be mapped onto the same PE, (d) only use GRB, (e) only use OMB, (f) use PE and LRB, (g) use PE and
GRB, (h) use LRB and GRB, (i) use OMB and LRB, (j) use LRBs of different PEs.

TABLE 1
Comparison Between Mappings (P&R: Placement and Routing; MRRG: Modulo Routing Resource Graph;

MRT: Modulo Reservation Table; TEC: Time Extended CGRA)

Mapping Pattern Leveraged buffers Distinguished features P&R method 3D-CGRA format

DRESC [60] Integrated PE+LRB Simulated annealing (SA) Cost Function MRRG

PSOMap [58] Integrated PE+LRB Particle swarm optimization Cost Function MRRG

AA-ILP [59] Integrated PE+LRB Integer Linear Programming (ILP) ILP Solver MRRG

MGE [63] Integrated PE+LRB Skewing the scheduling space Cost Function MRT

EMS [61] Integrated PE+LRB Edge-centric Cost Function MRT

RA [62] Integrated PE+LRB Backtracking Cost Function MRRG

GM [48] Integrated PE Graph-minor+Routing paths sharing Cost Function TEC

Bimodal [64] Integrated PE+LRB+CU Adaptive cost function Cost Function MRRG

SPR [51] Decomposed PE+LRB Simulated annealing (SA) Cost Function MRRG

EPIMap [47] Decomposed PE Epimorphism+Re-compute MaxClique Finding TEC

REGIMap [52] Decomposed PE+LRB LRB aware+Reordering MaxClique Finding TEC

MA [54] Decomposed PE+LRB+OMB OMB aware MaxClique Finding TEC

RAMP [55] Decomposed PE+LRB+OMB Re-schedule MaxClique Finding TEC

Ours Decomposed PE+LRB+GRB+OMB All buffers aware Cost Function TEC

2204 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 9, SEPTEMBER 2020

of mapping DFG onto the Modulo Routing Resource Graph
(MRRG), which is one of the representation form of 3D-
CGRA. Each operations in DFG are randomly assigned with
time and resource, and resource conflict are checked. The
resource conflict can be regarded as different operations
executed on the same PE and in the same cycle. Their com-
pilers iteratively do this until they either find a valid map-
ping and the performance can not be further improved
(converge), or the mappings reach the compilation time
budget and return sub-optimal solution.

DRESC and PSOMap integrate timing, placement and
routing during mapping, and the searching space for opera-
tions covers both time and space dimensions. All these map-
pings perform buffer allocating in the last priority, which
incurs large rescheduling overhead when the local register
buffer spills.

The mappings such as [59] and [65] use 0-1 integer linear
programming to solve the mapping problem between DFG
and MRRG. Their goal is to find out the set of values of all
the variables for the objective function. The ILP based map-
pings also suffers from relative long compilation time of
mapping large DFG onto CGRA with limited computational
and routing resources. This is because the time of finding
the optimal solution critically hinges upon the power of lin-
ear programming solver. The time complexity of the ILP
solver increases exponentially with the number of variables
and constraints. Thus, ILP based mapping is also challeng-
ing for large loops. For example, based on the data in [59],
there exists 2 kernels whose operation number in DFG is no
more than 30, but the compilation time is larger than 24
hours. Whereas in our test bench, the operation number in
DFG can reach 154 at most, using ILP may suffer from
extremely long compilation time.

EMS [61] foresees the importance of the routing depen-
dencies between operations. Instead of using the node-centric
approach which takes the PE placement as its first priority,
EMS takes an edge-centric approach which focus on the
routing problem as its primary objective. The EMS lacks the
backtracking or remappingmechanismwhen the mapping is
failed, it gains faster compilation speed at the cost of perfor-
mance. Bimodal [64] scheduler improve EMS by performing
back-tracking and using adaptive priority functions and cost
functions over different loops to make a better trade-off
between performance and compilation time.

Resource-aware [62] mapping use node-centric approach
to map each operation according to cost function. When
mapping fails, it uses the backtracking method to remap the
previous operations under the same II in order to prevent
the performance from reduction.

GraphMinor [48] formalizes the mapping problem into
finding a subgraph of MRRG whose minor graph is isomor-
phic to DFG. GraphMinor proposes a path sharing technique
to keep data in the shared PE during its life time from pro-
ducer to multiple consumers. This mechanism can signifi-
cantly result in better PE utilization. However, GraphMinor
lacks the optimization of using buffer resources in CGRA.

In summary, DRESC, PSOMap and AA-ILP are relative
generalized heuristics of solving CGRA mapping for any
DFG formats. Theoretically, given enough time, they are able
to converge to the optimal solution. However, this time is
unpredictable and heavily relies on the tunable parameters

within the algorithm. In terms of compilation time, they
have to adjust the tunable parameters to compromise on the
performance, for example, set time budget parameter. Other-
wise, the compilation time may become unacceptable, espe-
cially when compiling large and irregular loops.

Whereas heuristics such as EMS, Resource-Aware and
GraphMinor are dedicated optimization heuristics which
capture some specific problems during mapping process,
and provide one or multiple dedicated optimizations to
help fast search for the optimal solution. Their approach is
fast comparing with mappings using classic heuristics, but
sacrifice the performance and generality.

3.2 Mappings Using the Decomposed Mapping
Policy

SPR [51] decomposes mapping into time scheduling process
and placement & routing process. SPR permits the opera-
tions to be rescheduled beyond slack windows to meet data
movement latency, but its mechanism is nearly the same
with DRESC [57].

EPIMap [47] formulates the graph epimorphism problem
with the additional feature of re-computations. A systematic
approach is used to schedule (perform timing) each opera-
tion and transform the DFG into a modified graph that
satisfies several constraints. It converts the placement and
routing process to finding a maximum common subgraph
of a time-extended CGRA (TEC) graph which is isomor-
phic to the modified DFG. To find the subgraph, the mapper
build a compatible graph between the modified DFG and
TEC where each node represents a possible mapping pair
(between operation and PE in certain time slot), and each
edge reflects a possible valid mapping. Some edges will be
eliminated due to the mapping constraints. Finally, the com-
piler needs to find a maximum clique whose number of
nodes equals to the number of the operations in themodified
DFG. For values with long life time, EPIMap prefers to use
PE as the routing engine, which occupies the computational
resources. Whereas REGIMap [52] explicitly utilizes the LRB
to buffer the value. It also combines buffer allocating with
placement and routing, which is able to effectively avoid the
large remapping overhead due to register spilling. Memory-
aware [54] is an algorithm that explicitly use OMB during
mapping process. Instead of using OMB as the final option
that tackling the register spilling, memory-aware mapping
put OMB allocating into temporal mapping process. RAMP
[55] is an extension of the REGIMap, it provided a stronger
re-scheduling heuristic to tackle the mapping failure which
aims to prevent the compiler from large searching time.
RAMP provides a comprehensive choices to solve the rout-
ing problem. Right now, it is a very competitive mapping in
both performance and compilation time comparing with
other mappings. However, the robustness of the compilation
time is still questionable in EPIMap, REGIMap and RAMP,
as the compatible graph is a large graph with dense connec-
tivity, findingmaximum clique is also an NP-complete prob-
lem, the time complexity of the heuristic they use in their
paper is O(N8) [55]. The critical problem is that these map-
pings can not judge whether the maximum clique exist and
trapped into time consuming searching. Although RAMP
provides some strong heuristics of rescheduling, the fetal
problem still remains.

ZHAO ETAL.: TOWARDS HIGHER PERFORMANCE AND ROBUSTCOMPILATION FOR CGRA MODULO SCHEDULING 2205

In conclusion, for mappings which decompose the tem-
poral and spatial mapping process. The key is to build a reli-
able mechanism of organizing temporal and spatial
mapping phases. It should be able to foresee the impossibil-
ity of performing spatial mapping over DFG after temporal
mapping and the compiler is able to realize this impossibil-
ity without taking too much time.

Thus, our mapping use a totally different philosophy of
designing the temporal and spatial mapping. We think tem-
poral mapping should perform a efficient optimization and
more comprehensive analysis over DFG to guarantee the
success of spatial mapping. It should reach the following
goals:

� The temporal mapping should decide the schedule
time for each operation in DFG and provide the rout-
ing solution for all the routing paths inside DFG
according to the available routing resources inside
CGRA.

� All the buffer resources including PE, LRB, GRB and
OMB should be leveraged during temporal mapping
for the optimization purpose.

� A powerful routing constraint solving algorithm
should be used to check whether the interconnec-
tions in CGRA are enough to perform spatial map-
ping over DFG after temporal mapping.

� A powerful computational constraint solving algo-
rithm should be used to check whether the PEs in
CGRA are enough to support the parallelism gener-
ated in the temporal mapping phase and re-schedule
the time for some operations.

On the other hand, spatial mapping algorithm should be
fast and efficient instead of time consuming.

The details of the temporal mapping flow is introduced
in Section 4, and the spatial mapping algorithm is intro-
duced in Section 5

3.3 Other Related CGRA Compiling Techniques

There is also CGRAmappingwork [66] uses dynamic compi-
lation techniques to generate efficient code with lower com-
pilation time. RL-Map [67] leverages the deep reinforcement
learning model to build methods that learn to map DFGs
onto spatially programmed CGRAs directly from experien-
ces. This approach currently only covers the 2D spatial map-
ping. The mapping approach like conflict-free [53] combines
modulo scheduling and memory conflict optimization to
reduce the conflicts when multiple PEs access concurrently
access shared data memory. In this way, the synchronization
overhead inside CGRA can be efficiently reduced.

Despite the novelty of these works, their executionmodels
and optimization goals are not purely themodulo scheduling
problem, therefore, are different with the work in this paper.

4 TEMPORAL MAPPING FLOW

The temporal mapping flow gets the original DFG as the
input and outputs a modified DFG that is ready for spatial
mapping. In the modified DFG, all the nodes will have a cer-
tain schedule time and their data will also be assigned to
buffer into a specific buffer resource. If the data is buffered
into LRB, there will be additional LRB constraints. Fig. 5d
is one example of the modified DFG. It specifies the routing
solution, that is, data produced by operation A is buffered
in GRB and then consumed by E, F and G. The data pro-
duced by B is buffered in LRB and consumed by F. B and F
must be mapped onto the same PE.

Fig. 7 shows the organization of the temporal mapping
flow. There are six basic algorithms inside our temporal

Fig. 5. (a) The original DFG, (b) DFG after graph balancing, (c) DFG after routing paths sharing, there are two routing paths highlighted by red edges,
(d) the final modified DFG after our temporal mapping over CGRA with LRB=2, GRB=4, (e) final mapping after our spatial mapping.

Fig. 6. (a) 2x2 CGRA with LRB, GRB and OMB, we use two configura-
tions of CGRA, one is LRB=2, GRB=4, another one LRB=2, GRB=0, (b)
the modified DFG generated through our temporal mapping flow over
2X2 CGRA with LRB=2 and GRB=0 from the original DFG in Fig. 5(a),
(c) The final mapping generated from our spatial mapping algorithm. Fig. 7. Temporal mapping flow overview.

2206 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 9, SEPTEMBER 2020

mapping flow, which are time assignment, graph balancing,
routing paths sharing (RPS), buffer allocating, interconnec-
tion constraints solving (ICS) and computational constraints
solving (CCS). The flow iteratively goes through these algo-
rithms until it thinks the modified DFG is ready for spatial
mapping. We will briefly introduce the former three algo-
rithms which are mainly based on existing works [47], [48],
[68] and emphasis on introducing the latter three novel
algorithms. Before going deeper into each algorithm, we list
all the symbols that will appear in the following texts and
their descriptions in Table 2.

4.1 Time Assignment, Graph Balancing, and
Routing Path Sharing

Time assignment: The time assignment algorithm statically
calculates the schedule time for all the nodes in DFG. The
goal of the time assignment is to keep the life time of every
variable as short as possible while maintaining the data
dependency between operations. The insight of minimizing
the lifetime of value is to release the routing resources for
the other valid operations as much as possible. Therefore,
we use life time sensitive scheduling algorithm [68] to
decide the schedule time for each node. The details of the
scheduling algorithm can be referred in paper [68]

Graph Balancing. The concept of graph balancing is first
proposed in EPIMap [47]. Essentially, graph balancing is a
technique to guarantee every node gets all of their input
data at the same time. When there exists vi; vj 2 V and
ðvi; vjÞ 2 E, if tðviÞ � tðvjÞ > 1, where tðviÞ denotes the
schedule time of node vi, the DFG is not balanced. In this
way, a routing node should be inserted between vi and vj.
The number of the routing node added into the path is
equal to tðviÞ � tðvjÞ � 1. Routing node can be regarded as

virtually assign a PE to buffer the value for one cycle. The
PE keep the value until it is consumed by the successor
node. Figs. 5a and 5b reflects the graph balancing example.
The dash circles in Fig. 5b represent the routing nodes
which keep the result of operation A and B. Actually,
recall Section 2, all the routing nodes are added into the
routing paths.

Routing Paths Sharing (RPS). The RPS optimization is first
proposed in Graph Minor [48]. The motivation of RPS is to
save PEs for routing data. If there exists routing nodes sched-
uled at the same time and keep the same data, they can share
the same predecessor to be a shared routing node. Formally,
the RPS is to merge all the routing paths who share the same
producer into a single routing path. For example, in Fig. 5b,
there are three routing nodes keeping the same data of opera-
tion A in time T1, T2 and T3. Three routing paths from A to
E, F and G can share the same data during its lifetime by
combining their routing nodes in T1, T2 and T3 into a single
routing node A1, A2, A3 and forms a shared routing path
(Fig. 5c). In this way, the DFG after RPS saves six routing
nodes and edges. We use sl to represent the shared_level of
each routing node. The shared_level of the routing node
reflects howmany successors will consume the same data.

4.2 Buffer Allocating

The buffer allocating algorithm is an optimization leverag-
ing PE, GRB, LRB and OMB to buffer values during their
lifetime so that the PE is able to be saved for the other valid
computations.

4.2.1 Problem Formulation

Definition 4.1 (Routing path). Let RPs be the set of all the
routing paths in DFG,DmðVm;EmÞ, after routing paths sharing.
Let PiðV i

p ;E
i
pÞ be the routing path (0 � i < jRPsj) inside RPs,

where V i
p andE

i
p are the node and edge set inside the routing path

Pi. PiðV i
p ;E

i
pÞ is a acyclic weakly connected graph whose V i

g

must contains one unique producer u0
Pi
2 V i

p , Ji routing nodes

u1Pi ; u
2
Pi
; . . . ; u

Ji
Pi
(Ji � 1), andKi consumers v0Pi ; v

1
Pi
; . . . ; v

Ki�1
Pi

(Ki � 1). Let uj
Pi
2 V i

p (1 � j � Ji) be the routing node which
is j cycles latency relative to the producer (tðuj

Pi
Þ � tðu0

Pi
Þ ¼ j).

The routing paths in DFG after routing paths sharing have 4
features:

1. Every routing paths has its unique producer and
routing nodes.

2. The routing node may have multiple successors, but
have only one predecessor.

3. Except for the routing node u1
Pi
, all the successors of

the producer u0
Pi
do not belong to routing path.

4. The life time of routing path Pi, LT ðPiÞ ¼ Ji þ 1 ¼
max8vk

Pi
2V i

p
ðtðvkPiÞ � tðu0PiÞÞ, where 0 � k < Ki.

Essentially, assigning a routing path to GRB, LRB or OMB
is to assign the routing nodes along the path to these buffers.
Different buffer assignment over the routing path will lead
to different DFGmodification rules and constraints.

DFG modification rules of buffer allocating over Pi:

1. GRB assignment rule: eliminate all the routing nodes
in V i

p and all the incoming and outgoing edges of
these eliminated routing nodes.

TABLE 2
List of Symbols

Symbol Description

Npe Number of PEs in CGRA
Nl Size of local register buffer (LRB)
Ng Size of global register buffer (GRB)
DðV;EÞ The original DFG
DmðVm;EmÞ The Modified DFG during scheduling
RIIðVR;ERÞ The time-extended CGRA (TEC)
PreðvÞ/SucðvÞ Node set which are the predecessor/

successor of node v
IpreðSÞ If S ¼ fv1; . . . ; vng,

IpreðSÞ ¼ Preðv1Þ \ ::: \ PreðvnÞ
IsucðSÞ If S ¼ fv1; . . . ; vng,

IsucðSÞ ¼ Sucðv1Þ \ ::: \ SucðvnÞ
UpreðSÞ If S ¼ fv1; . . . ; vng,

UpreðSÞ ¼ Preðv1Þ [::: [PreðvnÞ
UsucðSÞ If S ¼ fv1; . . . ; vng,

UsucðSÞ ¼ Sucðv1Þ [::: [SucðvnÞ
TiðSÞ Node set scheduled at time i in node set S,

S � Vm

MjðSÞ Node set in set S scheduled at modulo time
j, S � Vm

RjðSÞ Set of all PEs in set S of time slot j in VR,
for example, fPEj

0; PE
j
1; . . . ; PE

j
Npe�1g

CðS; nÞ The set of combination of selecting n
elements from set S

ZHAO ETAL.: TOWARDS HIGHER PERFORMANCE AND ROBUSTCOMPILATION FOR CGRA MODULO SCHEDULING 2207

2. LRB assignment rule: same as (1), additionally, same
PE constraints that the producer u0

Pi
and all the Ki

consumers of Pi should bemapped onto the same PE.
3. OMB assignment rule: same as (1), additionally, add

store node u1
Pi
and edge eðu0

Pi
; u1

Pi
Þ, if there exists con-

sumer vkPi (0 � k < Ki), where tðvkPiÞ � tðu0
Pi
Þ > 2,

add load node uj�1
Pi

and edge eðuj�1Pi
; vkPiÞ.

In order to trigger the rules of assigning the routing path
to GRB, LRB and OMB, their corresponding constraints
must be satisfied.

GRB constraints:

1. The GRB must be available to buffer all the routing
paths that is assigned to GRB under II according:

Ni
req ¼

LT ðGiÞ
II

� �
þ 1 (1)

XjGRPsj�1

i¼0
Ni

req � Ng; (2)

where GRPs denotes the set of routing paths which
are assigned to GRB, GiðVg; EgÞ is the GRB routing
path i and Ni

req denotes the GRB requirement for
routing path Gi.

2. In order to get benefits from GRB assignment, there
should be at least one routing node eliminated
from Gi according to GRB assignment rule, that is,
LT ðGiÞ > 2.

LRB constraints:
We use LRPs to denote the set of routing paths assigned

to LRB. For each routing path LiðV i
l ; E

i
l Þ (0 � i < jLRPsj) in

LRPs, let Si
l � V i

l be the set of nodes which contains only
producer u0

Pi
and consumers v0Pi ; v

1
Pi
. . . ; vKi�1

Pi
. For each rout-

ing path Li, the LRB constraints is performing over its corre-
sponding Si

l .

1. The performance should not be worse after LRB
assignment, that is, jSi

l j � II.

2. All the nodes inside Si
l can be assigned to the same PE

without conflict, they should be distributed in differ-
ent modulo time, that is, 8 j 2 ½0; IIÞ, jMjðSi

l Þj � 1.
3. There are enough interconnection resources to sup-

port the routing between nodes outside V i
l and same

PE nodes in Si
l . Let Vq contains all such node v 2 Vm

and v =2 V i
l , 9u 2 Si, eðu; vÞ 2 Em but eðu; vÞ =2 Ei

l or
eðv; uÞ 2 Em but eðv; uÞ =2 Ei

p, Eq. (3) must be satisfied.

8 j 2 ½0; IIÞ; MjðVqÞ
�� �� � max

0�i<Npe

SuccðPEj
i Þ

�� ��; (3)

where jSuccðPEj
i Þj is the number of the interconnec-

tions of PEi.
4. LRB has enough space to buffer the value for Li

according to:

LT ðLiÞ
II

� �
þ 1 � Nl: (4)

5. Same as GRB constraint 2, LT ðLiÞ > 2.
OMB constraints:

We use ORPs to represent the set of routing paths
assigned to OMB. In order to benefit from OMB assignment,
the latency of any routing path OiðV i

o ; E
i
oÞ 2 ORPs (0 � i <

jOPRsj), LT ðOiÞ > 4.

Definition 4.2 (Sub-routing path). Routing path GiðV i
g ; E

i
gÞ

is the Sub-routing path of PjðV j
p ; E

j
pÞ iff: 1. u0

Gi
2 V j

p is the pro-

ducer of routing path Gi, for 8v 2 V j
p , if 1 < tðvÞ � tðu0Gi

Þ �
LT ðGiÞ, v 2 V i

g ; 2. if v 2 V j
p and tðvÞ � tðu0

Gi
Þ ¼ 1, v 2 V i

g iff

v is the routing node in Pj; 3. for 8u; v 2 V i
g , if eðu; vÞ 2 Ej

p,

eðu; vÞ 2 Ei
g. The relationship between Gi and Pj can be repre-

sented by Gi � Pj

Given the routing path set RPs, the buffer allocating pro-

blem is to decide the GRPs, LRPs and ORPs such that:

1. 8GiðV i
g ;E

i
gÞ 2 GRPs, 9Gi � Pj andGi; 8LiðV i

l ,E
i
l Þ 2 LRPs,

9Li � Pk; 8OiðV i
o ;E

i
oÞ 2 ORPs, 9Oi � Pm (0 � j; k;m <

jRPsj). 2. All the routing paths in GRPs satisfy GRB con-
straints, every routing path in LRPs satisfies the LRB con-
straints and every routing path in OPRs satisfies the OMB
constraints.DbðVb;EbÞ is the DFG generated bymodifyingDm

according to the corresponding rules for every routing path in
GRPs, LRPs and ORPs. The goal is to maximize the number
of eliminated routing nodes, jVm � Vbj.

Algorithm 1. Buffer Allocating

Input:DmðVm;EmÞ, II and BI
Output:DbðVb; EbÞ, SPT

1 FinishAllocation Failed;
2 GRPs; LRPs;ORPs ;;
3 while FinishAllocation ¼ Failed do
4 Db Dm;
5 RPs GenerateRoutingPathsðDbÞ;
6 for each Pi 2 RPs of Db; 0 � i < RPsj j do
7 if LRB constraints checkingðSi

p; II; BIÞ ¼ True then
8 LRPs LRPs [Pi;
9 RPs RemovePathðRPsÞ;
10 end
11 end
12 GRPs; LRPs;RPs AssignGRBðRPs;BI;GRPs; LRPsÞ;
13 for each Pi 2 RPs of Db; 0 � i < RPsj j do
14 LRPs;ORPs CombAssignðPi; II; BIÞ;
15 end
16 LRPs MergeLRBPathsðDbÞ;
17 if Vbj j=Npe

� �
> II then

18 II II þ 1;
19 continue;
20 else
21 Db GRBAssignRuleðGRPsÞ;
22 Db; SPT LRBAssignRuleðLRPsÞ;
23 Db OMBAssignRuleðORPsÞ;
24 FinishAllocation ¼ Success;
25 end
26 end

4.2.2 Buffer Allocating Overview

The buffer allocating heuristic is shown in Algorithm 1, the
input of the algorithm is the modified DFG Dm after routing
paths sharing, II, and buffer information BI such as Ng, Nl

2208 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 9, SEPTEMBER 2020

(meaning can be referred from Table 2). The output is the
modified DFGDb after buffer allocating and a same PE table
(SPT) structure which specifies the operations that must be
mapped to the same PE due to the LRB constraints. The SPT
is one of the input to the spatial mapping process which
will be illustrated in Section 5.

The algorithm first extracts all the routing pathsRPs from
DFG (line 5). Before assigning paths to GRB, the LRPs col-
lects all the LRB routing paths from RPs by performing
LRB constraints checking over each routing path in RPs, if
Pi satisfies the LRB constraints, it will be added into LRPs
and removed from RPs (line 6 to 11). The LRB constraints
checking method is according to LRB constraints in Sec-
tion 4.2.1, problem formulation. The GRPs then collects all
the GRB routing paths through AssignGRB function and
update RPs and LRPs (line 12). The LRPs again collects the
LRB routing paths from remaining paths in RPs. If any
Pi 2 RPs passes the LRB constraints checking (line 7), it will
be put into LRPs. Otherwise the algorithm finds the best
combinational buffer assignment scheme (line 14) and
update both LRPs and ORPs. All the routing paths in LRPs
must be merged or decomposed if some of them shares the
common node or nodes (line 16). If buffer allocating is not
able to release enough PEs so that the theoretical perfor-
mance can reach II, II will be increased by 1 and the allocat-
ing process is repeated until the performance reaches II (line
17 to 19). Otherwise the algorithm finally assign paths in
GRPs, LRPs and ORPs to GRB, LRB and OMB according
to their corresponding DFGmodification rules (line 21 to 24).

Algorithm 2. AssignGRB

Input: RPs;BI;GRPs; LRPs
Output: GRPs; LRPs

1 RPs SortRoutingPathsðRPsÞ;
2 GRPs InitializeGRPsðRPsÞ;
3 max sl getMaxSharedLevelðRPsÞ;
4 formax sl � shared level > 0 do
5 for each routing path PiðV i

p ; E
i
pÞ in ordered RPs do

6 for each uij in V i
p , j from 1 to Ji do

7 if ui
j:sl ¼ sharedshared levellevel then

8 Gi extendPathðGi; u
i
jÞ;

9 Li OCRP ðGi; PiÞ;
10 if GRB constraintsðGRPs; IIÞ ¼ False then
11 Gi removeðGi; u

i
jÞ;

12 RPs UpdateRPsðGRPsÞ;
13 return GRPs;RPs;
14 end
15 if LRB constraint checkingðSi

l Þ ¼ True then
16 LRPs LRPs [Li;
17 RPs RemovePathðPiÞ;
18 end
19 end
20 end
21 end
22 end
23 RPs updateRPsðGRPsÞ;
24 return GRPs;RPs;

4.2.3 GRB Assignment

Our GRB assignment approach is shown in Algorithm 2. All
the routing paths in RPs are sorted in decreasing order

according to the maximum shared_level of their routing node
(line 1). At first, GRPs is initialized by setting each path
GiðV i

g ; E
i
gÞ where V i

g ¼ fu0
Pi
; u1

Pi
g and Ei

g ¼ feðu0
Pi
; u1

Pi
Þg (line

2). We gradually extend the pathGi by inserting one routing
node in Pi to be the routing node in Gi according to the
decreasing order of their shared_level (line 8) and checks the
GRB constraints over GRPs until GRB do not have enough
space (line 10 to line 12). The algorithm will stop the exten-
sion of Gi when its overlapped complemented routing path
(OCRP) Li satisfies the LRB constraints.

Definition 4.3 (Overlapped complemented routing path).

Given routing path P 1
i ðV i

p1
; Ei

p1
Þ � PiðV i

p ;E
i
pÞ and u0

P1
i

¼ u0
Pi
,

P 2
i ðV i

p2
; Ei

p2
Þ is the overlapped complemented routing path of

P 1
i , if and only if P 2

i � Pi, Ei
p1
\ Ei

p2
¼ ;, Ei

p1
[Ei

p2
¼ Ei

p,

V i
p1
[V i

p2
¼ V i

p and V i
p1
\ V i

p2
¼ uj

Pi
where j ¼ LT ðP 1

i Þ.
The insight of this heuristic has two prospectives:

1. Assigning routing node with higher shared_level to
GRB in priority is because we want to assign the
highly shared routing paths to GRB. Usually these
paths are difficult to be efficiently assigned by LRB
and OMB such as Fig. 8a.

2. Using the fine-grained approach which assign one
routing node each time instead of one routing path is
because routing paths with same shared level should
have equal opportunity to utilize the GRB resource.

4.2.4 Combinational Buffers Assignment

Definition 4.4 (Flattened complemented routing path).
Given routing path P 1

i ðV i
p1
; Ei

p1
Þ � PiðV i

p ; E
i
pÞ and u0

P1
i

¼ u0
Pi
,

P 2
i ðV i

p2
; Ei

p2
Þ is the flattened complemented routing path (FCRP)

of P 1
i , if and only if P 2

i � Pi, V i
p1
[V i

p2
¼ V i

p , V
i
p1
\ V i

p2
¼ ;,

Ei
p1
\ Ei

p2
¼ ; and Ei

p1
[Ei

p2
¼ Ei

p � eðuj
Pi
; ujþ1

Pi
Þ, where

j ¼ LT ðP 1
i Þ.

The algorithm of the combinational buffers assignment is
shown in Algorithm 3. For each remaining routing path Pi

in RPs, we perform the exhausted searching of all the com-
binations of assigning Pi to LRB and OMB. The routing path
Pi is decomposed to two complemented routing paths P 1

i

and P 2
i . And we evaluate the total saving number of the

routing nodes under different combinational buffer assign-
ment schemes and select the one which can save maximum
number of the routing nodes (line 9). It should be noticed
that if routing path Pi is assigned to two LRBs from different
PEs, it is decomposed to two LRB routing paths P 1

i and P 3
i

(line 7), and P 3
i is the flattened complemented routing path

Fig. 8. (a) Example of highly shared routing path, value A is consumed
by four operations (b) three LRB paths that have common node C, (c) L1

and L3 are merged, L2 removes C from itself.

ZHAO ETAL.: TOWARDS HIGHER PERFORMANCE AND ROBUSTCOMPILATION FOR CGRA MODULO SCHEDULING 2209

of P 1
i . This is because if Pi can not be assigned using LRB

from single PE, at least two LRBs from different PEs should
be leveraged, which needs an routing node from one PE to
another. Recall example in Fig. 4j, there is additional routing
from A2 to A3.

Algorithm 3. CombAssign

Input: Pi; BI; II
Output: LRPs;ORPs

1 for each Pi 2 RPs of Db; 0 � i < RPsj j do
2 for LT ðP 1

i Þ ¼ 0 to LT ðPiÞ; P 1
i � Pi and uP

1
i ¼ uPi do

3 P 2
i OCRP ðP 1

i ; PiÞ;
4 P 3

i FCRP ðP 1
i ; PiÞ;

5 save½� calculateLRBðP 1
i Þ þ calculateOMBðP 2

i Þ;
6 save½� calculateOMBðP 1

i Þ þ calculateLRBðP 2
i Þ;

7 save½� calculateLRBðP 1
i Þ þ calculateLRBðP 3

i Þ;
8 end
9 LRPs;ORPs SelMaxSaveðsave½�Þ;
10 end
11 return LRPs;ORPs;

Algorithm 4. LRB Paths Merging and Decomposing

Input: LRPs;BI; II
Output: LRPs

1 CCs BuildConnectedComponentsðLRPsÞ;
2 for each CCi 2 CCs; 0 � i < jCCsj do
3 while LRB constraint checkingðSCCi

mergeÞ ¼ False do
4 CC0i MaxMergeðCCiÞ;
5 CCi; LRPs DecomposeðCC0i; CCiÞ;
6 end
7 end
8 return LRPs;

4.2.5 LRB Paths Merging and Decomposing

Recall the LRB constraints, for each LRB routing path
Li 2 LRPs (0 � i < jLRPsj), the LRB constraints are per-
formed over Si

l . We construct an undirected graph CðVc;EcÞ,
where each routing path Li is abstracted to a vertex vLi

2 Vc,
and for any two LRB routing paths Li; Lj (i 6¼ j), the undi-
rected edge eðvLi

; vLj
Þ 2 Ec if and only if Si

l \ Sj
l 6¼ ;. This

abstracted graphC contains a set ofmultipleweak connected
components CCs (line 1). For each weak connected compo-
nent CCiðV i

CC; E
i
CCÞ 2 CCs, (0 � i < jCCsj) the LRB con-

straints performs over the merged set SCCi
merge, where SCCi

merge is
the union set of all the Si

l corresponding to Li, such that
vLi
2 V i

CC .

For example in Fig. 8b, three LRB paths, L1, L2 and L3

share the common node C, the connected component is
shown in dash frame, and the LRB constraints should per-
form over Smerge ¼ S1 [S2 [S3. When Smerge can not pass
the LRB constraints, strategy should be used to decide
which paths can be merged to pass the LRB constraints and
which path should be decomposed with the other paths.
We refer these two steps as LRB paths merging and decom-
posing. The MaxMerge function performs the combina-
tional search for the maximum sub-connected component
CC0i from CCi so that: 1. All the routing paths within CC0i
can be merged so that the SCC0

merge satisfies the LRB con-
straints. 2. After CC0i is cut from CCi, the remaining graph

CC
00
i is also a connected component. The Decompose func-

tion implements the process of cutting CC0i from CCi. Every
routing path in CC

00
i removes the node, which is the com-

mon with the merged paths in CC0I , from its own path. We
iteratively performs merging and decomposing until all the
merged routing paths are able to pass the LRB constraints.
In Fig. 8c, after LRB path merging and decomposing, P1 and
P3 are merged and P2 is decomposed from these paths.

Algorithm 5. Interconnection_Constraints_Solving

Input:Dm, RII and II
Output:Dm

1 for L� 1 � i � 0 then
2 for 1 � n � Thredshold do
3 for every SðiÞ 2 CðTiðVmÞ; nÞ do
4 while IC checkingðSðiÞ; IIÞ ¼ Failed do
5 if n ¼ 1 then
6 if v 2 SðiÞ is OriginalNode then
7 Dm RescheduleNodeðDmÞ;
8 end
9 if v 2 SðiÞ is RoutingNode then
10 Dm SplitSRNodeðDmÞ;
11 end
12 else
13 if IpreðSðiÞÞ has routing node then
14 Dm SplitSRNodeðDmÞ;
15 end
16 if IpreðSðiÞÞ doesn’t have routing node then
17 Dm RescheduleNodeðDmÞ;
18 end
19 end
20 end
21 end
22 end
23 end
24 IInew Dmj j=Npe

� �
;

25 return IInew;Dm

4.3 Interconnection Constraints Solving (ICS)

The ICS checks whether there is enough interconnection
resources to support the spatial mapping from Dm to TEC
and then reschedule operations if necessary. Performing ICS
can effectively prevent compiler from trapping into time con-
suming spatial mapping process caused by unawareness of
the interconnection constraints.

Our ICS not only checks the interconnection constraints
of every single node, for example, the fanout constraints
evaluated in most existing mappings [47], [61]. It also checks
the interconnection constraints between multiple nodes sche-
duled at the same time. The algorithm of ICS is shown in
Algorithm 5. We start with checking the interconnection con-
straint for single node (n = 1), then for any two nodes (n = 2)
scheduled at the same time, then for three and so on. Due to
the interconnection limitation of the hardware model, the
threshold of n is no larger than 5 under mesh or torus topol-
ogy. For any combination of selecting n nodes from all the
nodes that are scheduled at time i (SðiÞ in line 3). The
IC checking function checks the interconnection constraints
over Si according to Eq. (5). The meaning of each symbol can
be referred from Table 2. The routing constraints can be illus-
trated in this way, 8 i;m ¼ ðimod IIÞ and n (1 � n � T ðiÞj j),

2210 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 9, SEPTEMBER 2020

8SðiÞ 2 CðT ðiÞ; nÞ must satisfies Eq. (5). Furthermore, when
II � 2, Eq. (6) must be satisfied. The meaning of the symbols
in the equation can be referred fromTable 2.

For any operation does not pass the interconnection con-
straints checking, we perform RescheduleNode on the origi-
nal node or SplitSRNode on the routing node. If there is
routing node added in the critical path, the schedule time of
all the node must be re-calculated and our compiler will go
back to the start of the temporal mapping flow and go
through these sub-algorithms again (Fig. 7).

There are two ways of rescheduling in ReschduleNode
function, one is re-compute [47], another one is creating a
routing operation. For example, in Fig. 9a, operation B has
four fanout nodes. Existing work such as EPIMap [47] is
able to perform ICS over single node. According to Fig. 9
the maximum number of PEs that have interconnection
with single common PE is 3. Whereas operation B has four
fan-outs, which means the interconnection resources in
CGRA is not enough to directly map this DFG and B is re-
computed.

Our work is able to find out the interconnection con-
strains between multiple nodes, in Fig. 9c A and B are
scheduled at the same modulo time, and they have three
common successors. Accordingly, in CGRA, there should
exist two PEs which have interconnection with three com-
mon PEs. However, the maximum number of PEs that con-
nects to any two common PEs is 2. The ICS will solve this
problem by re-computing B 3 times.

Re-computing is not always the correct option for ICS, if
a node has multiple inputs, re-computing will lead to dou-
ble scale of the input edges. We provide another way by cre-
ating routing node for this operation. An example is shown
in Fig. 9b, as operation D has three inputs, routing operation
D (dash circle) is created.

IpredðSðiÞÞ
�� �� � max

8SRðmÞ2CðRmðVRÞ;nÞ
IpredðSRðmÞÞ
�� ��

IsuccðSðiÞÞj j � max8SRðmÞ2CðRmðVRÞ;nÞ IsuccðSRðmÞÞj j
(5)

IpredðSðiÞÞ [IsuccðSðiÞÞ
�� �� � max

8SRðmÞ2CðRmðVRÞ;nÞ
IpredðSRðmÞÞ
�� ��:

(6)

It should be noticed that in LRB constraint checking
method, we also check the interconnection constraint for
LRB constraint, this is not included in the ICS phase.

4.4 Computational Constraints Solving (CCS)

Finally, the CCS algorithm checks whether there are eno-
ugh PEs to support the mapping of operations scheduled at
the same time. Under the modulo scheduling scheme, the
way of checking computational constraints should be
8j 2 ½0; IIÞ;MjðVmÞ � Npe. The number of operations that is
scheduled in a specific modulo time should not be larger
than the available computational resources. When there
exists modulo time j, where MjðVmÞ > Npe we select node
with higher schedule time mobility and re-assign their
schedule time from modulo time j to i, where i 6¼ j and
MiðVmÞ < Npe. If there is no node with schedule mobility
larger than one, additional routing node will be added to
the critical path. In this way, the schedule time of all the
operations should be analyzed again, our compiler will go
back to the start point of the temporal mapping flow and go
through these sub-algorithms again. For example, in the
middle DFG of Fig. 9a, there are five operations in M0 (A, C,
D, E, F), but there are only 4 PEs. The CCS add routing node
B so that E and F are scheduled one cycle later from modulo
time 0 to 1, and both the number of operations in M0 and
M1 are 4 (right most DFG in Fig. 9a).

5 SPATIAL MAPPING

5.1 Mapping Overview

The problem of spatial mapping can be formulated as find-
ing the subgraph of II extended TEC, RIIðVR;ERÞ, which is
isomorphic to DmðVm;EmÞ, so that each node v 2 Vm sched-
uled at time tðvÞmust be mapped on PEmðvÞ in VR.

Algorithm 6 shows the complete mapping process. The
input of the spatial mapping is the modified DFGDm gener-
ated through the temporal mapping flow, II, and same PE
table (SPT). The SPT is a table structure recording the set of

Fig. 9. (a) Re-compute operation B for single node ICS and create rout-
ing operation of value B in the critical path for CCS in example DFG
of [47], (b) Create routing operation of value D for ICS, (c) Re-compute
operation B for multiple nodes ICS, (d) 2x2 PE interconnection topology.

Fig. 10. (a) Status of TEC when mapping B; (b) status of TEC when
mapping A3; (c) status of nodes in order list and Failure Table (FT) when
mapping B; (d) status of nodes in order list and FT when mapping D; (e)
status of nodes in order list and FTwhen mapping A3. (f) status of SPT.

ZHAO ETAL.: TOWARDS HIGHER PERFORMANCE AND ROBUSTCOMPILATION FOR CGRA MODULO SCHEDULING 2211

operations that must be mapped to same PE according to
LRB constraints generated from temporal mapping. Fig. 10f
is an example of SPT generated from the modified DFG
in Fig. 6b. It shows operation A3 and G, B and B2 must be
mapped to same PE. If the operation do not have same PE
mapping constraint, its same PE set is empty in SPT.

Our mapping algorithm starts with calculating a minimal
II (line 1). Then, it iteratively performs the temporal map-
ping (line 7) and spatial mapping (line 12 to line 57) until
the mapping success. When the mapper is not able to map
all the nodes ofDm, it repeats the temporal and spatial map-
ping process with a compromised II (line 51 to 54).

5.2 The Spatial Mapping Algorithm

The spatial mapping algorithm places and routes each oper-
ation from DmðVm;EmÞ to RIIðVr; ErÞ according to the topol-
ogy node order list (line 10). When the algorithm is to find a
PE slot that is able to be mapped for a node, it first find out
all the PE slot candidates and sort them according to the pri-
ority (line 25). The principle of selecting the candidate is
that, if the mapping node is v in Vm, and for any node u in
the set of operations that have already been mapped to
PEðuÞ 2 Vr, the candidate PE slot of node v, PEðvÞ, must
have interconnection with PEðuÞ:

If e(u, vÞ 2 Em, then e(PEðuÞ, PEðvÞÞ 2 Er; if e(v, u) 2 Em,
then e(PEðvÞ, PEðuÞ) 2 Er.

From the candidates, we select the PE slots with the high-
est priority, create a mapping pair between this PE and
node v, and save all the candidates into the failure table
(line 27, 28). After the node v is successfully mapped, it then
check SPT to see wether there exist the other node that must
be mapped onto the same PE of node v according to LRB
constraint, and map them onto the same PE if SPT ½v� 6¼ ;
(line 29).

The priority function is based on Eq. (7), where Nr

denotes the number of PE nodes in TEC, RII , that the candi-
date PE node vr can reach through the interconnection
between vr and the unplaced PE nodes, and Nd is number
of the unplaced predecessors and successors of the mapping
node v. If Nr is smaller than Nd, then placing v on vr will
cause some of v’s unplaced predecessors or successors fail-
ing to place, due to the lack of interconnection resources. If
Nr is equal to or larger than Nd, then we choose slot vr
whose Nd

Nr
is the largest of all. The insight behind this selec-

tion is to leave resources as many as possible for the rest
unmapped nodes.

Priority of candidate PE ¼ 0 if Nr < Nd
Nd
Nr

if Nr � Nd

�
(7)

Backtracking. When mapping fails on a certain node v, our
algorithm is able to backtrack to the previous node u that
may influence the mapping of the failed node (line 31). It
erases the saved information in FT and mapping pair
(MP) of all the operations after u in Vorder and select another
PE candidates in FT for operation u (line 35 to 39). When
there is no node to backtrack, the mapping under Vorder

fails. To further improve the mapping successful rate, we
also develop the second insurance plan, which is to remap
the DFG according to another topology node order list
(line 48, 49).

Algorithm 6.Mapping Algorithm

Input: Original data flow graphD, and CGRA size.
Output: Mapping pairs MP

1 MII Calculate MIIðD;CGRASizeÞ;
2 II MII;
3 FT Initialize FailureTableðÞ;
4 MP Initialize MappingPairsðÞ;
5 Vorder ;;
6 repeat
7 Dm; II; SPT Temporal MappingðD; IIÞ;
8 RII Construct TECðCGRASize; IIÞ;
9 if Vorder ¼ ; then
10 Vorder OrderNodeðDmÞ;
11 end
12 while jMP j 6¼ jVmj do
13 pointer Vorder:beginðÞ;
14 while pointer 6¼ Vorder:endðÞ do
15 v pointer;
16 ifMP.already_mapped(v) = True then
17 pointer to next nodeðÞ;
18 continue;
19 end
20 if FT ½v� 6¼ ; then
21 MP Insert MP ðv; FT ½v�½0�Þ;
22 pointer pointer:forward to next nodeðÞ;
23 continue;
24 end
25 v:candidates OrderSlotsByPriorityðRII; vÞ;
26 if v:candidates 6¼ ; then
27 MP Insert MP ðv; v:candidates½0�Þ;
28 FT ½v� v:candidates;
29 MP Map nodes in SPT ðSPT ½v�Þ;
30 else
31 vbk Node To Backtrackðv; Vorder; FT Þ;
32 if vbk =NULL then
33 break;
34 else
35 FT Erase FT Behind Nodeðvbk; FT Þ;
36 FT Erase MP Behind Nodeðvbk;MP Þ;
37 FT ½vbk� FT ½vbk� � FT ½vbk�½0�;
38 pointer pointer:backward toðvbkÞ;
39 continue;
40 end
41 end
42 pointer pointer:forward to next nodeðVorderÞ;
43 end
44 if jMP j ¼ jVmj then
45 returnMP ;
46 else
47 if reorder time � Vorderj j then
48 Vorder Update Node OrderðDmÞ;
49 reorder time reorder timeþ 1;
50 else
51 II II þ 1;
52 Clear FailureTableðÞ;
53 Clear MappingPairsðÞ;
54 break;
55 end
56 end
57 end
58 until MPj j ¼ Vmj j or II > L

2212 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 9, SEPTEMBER 2020

Reordering. The order of mapping each node is an impor-
tant factor that influence the successful rate of spatial map-
ping. This is because the modified DFG may contain some
special nodes that is hard to be mapped. For example, the
node with high degree. These nodes have heavy require-
ment on the interconnection resources. Another special set
of nodes are those mapped onto the same PE, because these
nodes have special requirements on the modulo time of PE
slot. If we map these special nodes in the latter order, there
will be high possibility that the mapping fails at these
nodes. In this way, when backtracking also fails to generate
the valid mapping, we will generate a new topology order
which is different with previous orders and remap the DFG
under the same II. We generate the different topology
orders of nodes by performing BFS over different source
nodes inside DFGs. If all the node order is tried and there is
no valid mapping, we increase II by 1, clear the previous
mapping status and restart the temporal and spatial map-
ping process (line 51 to 54).

5.3 Spatial Mapping Example

We use an example of mapping the modified DFG in Fig. 6b
onto TEC with II=3, (Fig. 10a). In this TEC, we use PEm

i to
represent the PE slot of PEi in modulo time m. The node
order list is generated from the BFS topology order starts
from operation F , which is the same as GraphMinor [48].
In Figs. 10c, 10d, and 10e, in node order, red color denotes
the nodes that have already been mapped, green color is the
mapping node, and black color ones are the unmapped
nodes. The mapping fails at operation B which has the
same PE mapping constraint with B2, after B2 is mapped to
PE0

3 , B should be mapped onto the same PE, PE1
3 . However,

it is conflict with the already mapped operation F . Accord-
ing to the backtracking algorithm, it backtrack to operation
D, all the saved candidates of the operations after D in the
node order list are erased from the failure table. The status
of the failure table changes from Figs. 10c and 10d. The
operation D is remapped to another candidate PE0

3 and
then, operation B is successfully mapped onto PE2. The
final mapping result is shown in Fig. 6c.

In conclusion, we use a fast greedy based approach to
map each operation in forward order of the order list. If
mapping fails, we use backtracking and reordering to guar-
antee the mapping successful rate.

6 EVALUATION

6.1 Methodology

To evaluate the performance and compilation time of our
mapping algorithm, we implement a full stack compiler
framework based on LLVM [69] platform. The compiler
extracts the loops from the program of different applica-
tions and compiles them into the context of CGRA. A run-
time simulator is build to evaluate the efficiency of the
compiler. We select two state-of-the-art CGRA mapping
algorithms as the baseline, REGIMap [52] and RAMP [55].
These two mapping algorithms are two representative ones
which decomposes the temporal and spatial process, and
have been proven to be competitive in both performance
and compilation time over the other CGRA MS algorithms,
especially the representative simulated annealing based

algorithm DRESC [60]. Our compilation flow is able to
deploy the extended C language based loop kernel onto the
real energy-efficiency dynamic reconfigurable fabric [70]
which target on Berkeley 13 drawfs [71].

Compilation. Wemodify the Clang (front-end of LLVM) by
adding keywords to specify the loop kernels in the grogram.
Then, we split the loop kernel from the main program in
LLVM IR level and the DFG of the extracted loop is gener-
ated fromLLVM IR. Ourmapping algorithm is implemented
and integrated into LLVM backend as passes. We also port
the open-source code of REGIMap and RAMP (https://
github.com/cmlasu/ccf) into the same LLVM framework
with our mapping algorithm so that they are able to map the
same DFG and their performance and compilation time can
be compared fairly. Experiments are conducted on CGRAs
with 4x4 PEs and different GRB and LRB sizes. Since PEs are
connected in a 2D torus network, all PEs can route data to
and access data from neighboring PEs or themselves. The
first PE and last PE at each column or row are also neighbors.
All experiments are carried out on the same Intel Core i5
machinewith CPU frequency of 3.60 GHz.

Test Suite. We take 28 computational intensive loop ker-
nels from different benchmark suites and applications. Some
of loops are directly extracted from existing benchmark suite
such as EEMBC, MediaBench [72], MiBench [73], MachSuit
[74] and Polybench [75]. Others are modified from different
application domains, including digital signal processing
(DSP), graph searching (Graph), dynamic programming
(DP) and computer vision (CV). The size of their loop body
varies from 17 to 154 operations. In order to reflect the regu-
larity of the data flow graph, we calculate the number of
routing paths (RPs) and number of high degree nodes inside
DFG. The RPs shows the number of producer-consumer rela-
tionship whose lifetime is larger than 1. More RPs exists in
DFG means higher pressure for the compiler to manage the
buffer resources. The degree of each operation means the
input edge and output edge number of a node. Typically, the
high degree nodes are those who have three inputs (sel
instruction) or multiple outputs (larger than 1). More high
degree nodes inside DFG means higher for the compiler to
manage the interconnection resources. Table 3 shows the fea-
tures of all the loopswe select.

6.2 Performance

We evaluate the performance of mapping algorithms over
CGRA with different LRB sizes from 2 to 8, and GRB size is
4. For the compilation time, we set one week as the upper
bound. If the mapper cannot finish mapping within one
week, it will stop the mapping even though the mapper
may find the valid mapping without time limitation. The
reason of selecting 2, 4 and 8 as the LRB size is because for
most of the loop kernels we select, there is almost no differ-
ence in performance when LRB is increased from 4 to 8
when using our baseline mapping. GRB size is set to 4 is
because we mainly want to test the performance of our
mapping when GRB buffer resource is limited.

6.2.1 LRB Size Influence

Fig. 11 shows the performance of REGIMap, RAMP and
our mapping approach. The Y axis is the ratio between

ZHAO ETAL.: TOWARDS HIGHER PERFORMANCE AND ROBUSTCOMPILATION FOR CGRA MODULO SCHEDULING 2213

https://github.com/cmlasu/ccf
https://github.com/cmlasu/ccf

minimum II and actual II, which reflects the percentage of the
theoretical best performance. Kernels specified with red rect-
angle frame are those can not be compiled within one week
time budget.

REGIMap versus Our. We can observe from Table 4 that
when LRB=2, REGIMap gets 0.84 normalized performance
among the successfully compiled loops in average, whereas
our mapping (Our_complete) is able to reach 0.95 in average
when GRB=0, and 0.96 when GRB=4. When LRB grows
from 2 to 4 and 8, the average performance of REGIMap

increase from 0.84 to 0.89, and our approach increase to 0.97
and 0.98 respectively. When LRB grows from 2 to 4 and 8,
the average performance of REGIMap increase from 0.84 to
0.89. Out of 28 loop kernels, REGIMap is able to map 15 ker-
nels with optimal performance. 13 kernels can not be
mapped with optimal performance, and 3 of them can not
be mapped within the given compilation time budget. As
LRB size grows, the performance of 6 out of 10 kernels are
improved. This means LRB resource is important for these 6
loop kernels, but is not useful for the rest of 4 kernels

TABLE 3
Loop Kernel Features

Fig. 11. The performance comparison between different mapping algorithms over 4x4 CGRA with different LRB sizes.

2214 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 9, SEPTEMBER 2020

dijstra3, fil1, Maxsubstring and unstructured2. These kernels
contains irregular routing paths which can not be routed
using LRB. REGIMap choose PE as the routing media, this
is why the performance of these 4 kernels do not increase as
the LRB grows. Another reason is REGIMap does not use
GRB as the first routing choice but position it and OMB as
the final solution for LRB spilling. This is also one of the rea-
son why REGIMap fails the compilation for 3 kernels no
matter how large LRB is.

RAMP versus Our. We then observe from Table 4 that
when LRB=2, RAMP fails map four loop kernels. Among all
the successfully mapped loops, RAMP is 0.93 of optimal
performance whereas our mapping algorithm is 0.95 when
GRB = 0 and 0.99 when GRB = 4. When LRB size grows,
RAMP is able to get two more mapped loops karatsuba and
unstructured, but still not able to get the mapping for harris
and MD5. The average performance among all the mapped
kernels is also increase slightly. Comparing with REGIMap,
RAMP shows stronger mapping ability, if we compare
them with the successfully mapped kernels, RAMP is better
than REGIMap. This make sense because RAMP improves
REGIMap by providing more choices of re-scheduling
when map fails, and OMB is also be explicitly used during
the temporal mapping phase. However, RAMP only select
one strategy when it tries to assign buffer resources for
routing paths. It does not consider the hybrid use of these
routing choices, especially the rational utilization of the
valuable GRB resource.

6.2.2 GRB Size Influence

Fig. 13 shows the average performance and compilation
time of our mapping over 4x4 CGRA with same LRB size
(LRB=2) in each PE and different GRB size (GRB=0, 4, 8, 16).
From Fig. 13a we can observe the performance is improved
slightly when GRB size increases. This data shows the

strong adaptability of our mapping, because even when
there is no GRB in CGRA, the performance can still reach 94
percent of the theoretical best performance. However, the
shortage of GRB will lead to the increase of compilation
time. This is because more routing paths will be assigned to
LRB and OMB. Assigning routing paths to LRB brings same
PE mapping constraint. This mapping constraint may
increase the probability of failure in the forward mapping
process and force the spatial mapping to perform backtrack-
ing and even reordering in order to keep the performance
from decreasing.

6.3 Performance Degradation Analysis

Fig. 12 shows the performance degradation after temporal
and spatial mapping process. We can observe that perfor-
mance is mainly degrade during the temporal mapping pro-
cess but not spatial mapping process. Except for the loop
kernel karatsuba2, the spatial mapping process is able to
maintain the performance after temporal mapping. This
means as long as all the constraints are find out during our
temporal mapping process, our spatial mapping algorithm
is able to place and route the modified DFG without perfor-
mance degradation for most of the loop kernels. This data

TABLE 4
The Performance, Compilation Successful Rate and Compilation Time Comparison Between Our, REGIMap and RAMP

Fig. 12. The theoretical performance after temporal mapping and the final performance after spatial mapping relative to MII.

Fig. 13. (a) Performance of our mapping over 4X4 CGRA with LRB=2 at
each PE and GRB=0, 4, 8 and 16, (b) compilation time of our mapping
over 4x4 CGRA with LRB=2 and GRB=0, 4, 8, 16.

ZHAO ETAL.: TOWARDS HIGHER PERFORMANCE AND ROBUSTCOMPILATION FOR CGRA MODULO SCHEDULING 2215

also prove our strategy that paying more effort on the tem-
poral mapping phase and using fast spatial mapping algo-
rithm is effective.

6.4 Compilation Robustness Analysis

Even though our algorithm and two baseline algorithms are
all decomposing the temporal and spatial mapping process,
but the strategy we use is totally different with theirs. REGI-
Map and RAMP lacks the process of checking important
constraints before spatial mapping, and at the same time,
they select a very time consuming spatial mapping heuristic
(which is O((Vm 	NpeÞ8) according to their paper). On the
other side, we think the importance of these two process
process should be reversed. The temporal mapping process
should be performed more carefully. More precisely, it
should make a precise prediction on whether the temporal
mapped DFG and be successfully spatially mapped onto
CGRA and then make adjustment in time. And for spatial
mapping, we do not need to select time consuming heuristic
but fast and effective one instead.

Table 4 reflects the compilation successful rate under spe-
cific time budget over 4x4 CGRA with different LRB sizes.
Our mapping is able to generate all the mappings within
time budget. Whereas REGIMap gets 89.3 percent compila-
tion successful rate when LRB = 2, 4 and 8, RAMP gets 85.7
percent when LRB = 2, 92.9 percent when LRB = 4 and 8.

The reason of the failure are different among these kernels.
For example, REGIMap fails in fft, harris and unstructured, The

reason that REGIMap fails tomap is because the DFGof these
kernels contains irregular routing paths which is one-pro-
ducer to multiple consumers. These RPs do not satisfy the
LRB constraint. As REGIMap lacks the LRB constraint check-
ing process, it is able to generate the competable graph but
the spatial mapping process can not realize that it can not
find the maximum clique no matter how many compilation
time is given. RAMP has the same problem as REGIMap,
even though it has more choices of selecting the buffer
resource. However it only use OMB for long routing path
when LRB size is not able to buffer the value during its life
time. This makes RAMP still traps into infinite iteratively re-
scheduling and spatial mapping process for harris kernel.
Fortunately, RAMP is still able to map MD5, karatsuba2 and
unstructured2when RAMP is givenmore LRB ormore compi-
lation time budget (larger than oneweek).

6.5 Compilation Time Analysis

Fig. 14 plots the compilation time of loops over 4x4 CGRA
with different LRB size. Same as theway of evaluating perfor-
mance, when comparing the compilation time with every
baseline, we only evaluate the compilation time for those
loop kernels that are able to be successfully mapped within
given time budget (one week). Table 4 summarizes the aver-
age data of the compilation time. When LRB = 2, REGIMap
takes 3061 seconds and ourmapping takes 14 seconds among
25 successfully compiled loop kernels in average. Whereas
RAMP takes 5536 and our mapping takes 14 seconds among

Fig. 14. The compile time of different mapping algorithms over 4x4 CGRA with different LRB size.

2216 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 9, SEPTEMBER 2020

24 successfully compiled loops. Our mapping is x219 and
x595 times faster than REGIMap andRAMP respectively.

For each loop, when LRB size grows, the compilation
time will decrease. However, it makes sense that both of the
average compilation time of the successfully compiled loops
using RAMP when LRB=4 and 8 is shorter than that when
LRB=2. This is because when LRB=2 RMAP fails in two
more loop kernels and their compilation time is very large.

Another observation is our mapping approach is able to
map most of the kernels within 1 seconds. However, when
compiling large and irregular loops or the node number of
the modified DFG is very close to the PE resource in time
extended CGRA, our spatial mapping may take longer time
because we try different topology orders to get the best
mapping result.

7 CONCLUSION

In this paper, we provide a novel methodology of solving the
CGRAmodulo scheduling problem.We leverage the decom-
posed mapping policy and argue that temporal mapping
flow is far more important than we expect for mappings
using decomposed policy. We stress on developing the sys-
tematic temporal mapping flow which contains comprehen-
sive buffer allocating heuristic and interconnection and
computational resources constraint solving algorithms to
improve the mapping performance and guarantee the suc-
cess rate of the following spatial mapping. Together with the
lightweight, fast and efficient spatial mapping algorithm,
our approach is able to generate high mapping success rate
within certain compilation time budget. Furthermore, the
experiment results shows that our mapping is able to gener-
ate higher performance and lower compilation time.

ACKNOWLEDGMENTS

The authors would like to thank professor Tushar Krishna
from Georgia Institute of Technology for the constructive
comments on this article.

REFERENCES

[1] C. Kim, M. Chung, Y. Cho, M. Konijnenburg, S. Ryu, and J. Kim,
“ULP-SRP: Ultra low power samsung reconfigurable processor
for biomedical applications,” in Proc. Int. Conf. Field-Programmable
Technol., 2012, pp. 329–334.

[2] M. Karunaratne, A. K. Mohite, T. Mitra, and L. Peh, “HyCUBE: A
CGRA with reconfigurable single-cycle multi-hop interconnect,”
in Proc. 54th ACM/EDAC/IEEE Des. Autom. Conf., 2017, pp. 1–6.

[3] A. Alsolaim, J. Becker, M. Glesner, and J. Starzyk, “Architecture
and application of a dynamically reconfigurable hardware array
for future mobile communication systems,” in Proc. IEEE Symp.
Field-Programmable Custom Comput. Mach., 2000, pp. 205–214.

[4] S. C. Goldstein et al., “PipeRench: A coprocessor for streaming
multimedia acceleration,” in Proc. 26th Annu. Int. Symp. Comput.
Archit., 1999, pp. 28–39.

[5] A. Marshall, T. Stansfield, I. Kostarnov, J. Vuillemin, and
B. Hutchings, “A reconfigurable arithmetic array for multimedia
applications,” in Proc. ACM/SIGDA 7th Int. Symp. Field Programma-
ble Gate Arrays, 1999, pp. 135–143.

[6] H. Singh, M.-H. Lee, G. Lu, F. J. Kurdahi, N. Bagherzadeh, and
E. M. C. Filho, “MorphoSys: an integrated reconfigurable system
for data-parallel and computation-intensive applications,” IEEE
Trans. Comput., vol. 49, no. 5, pp. 465–481, May 2000.

[7] H. Park, Y. Park, and S. Mahlke, “Polymorphic pipeline array: A
flexible multicore accelerator with virtualized execution for
mobile multimedia applications,” in Proc. 42nd Annu. IEEE/ACM
Int. Symp. Microarchit., 2009, pp. 370–380.

[8] L. Liu et al., “An energy-efficient coarse-grained reconfigurable
processing unit for multiple-standard video decoding,” IEEE
Trans. Multimedia, vol. 17, no. 10, pp. 1706–1720, Oct. 2015.

[9] R. W. Hartenstein, A. G. Hirschbiel, M. Riedmuller, K. Schmidt,
and M. Weber, “A novel ASIC design approach based on a new
machine paradigm,” IEEE J. Solid-State Circuits, vol. 26, no. 7,
pp. 975–989, Jul. 1991.

[10] J. Cong, H. Huang, C. Ma, B. Xiao, and P. Zhou, “A fully pipelined
and dynamically composable architecture of CGRA,” in Proc.
IEEE 22nd Annu. Int. Symp. Field-Programmable Custom Comput.
Mach., 2014, pp. 9–16.

[11] D. C. Chen and J. M. Rabaey, “A reconfigurable multiprocessor IC
for rapid prototyping of algorithmic-specific high-speed DSP data
paths,” IEEE J. Solid-State Circuits, vol. 27, no. 12, pp. 1895–1904,
Dec. 1992.

[12] A. K. Yeung and J. M. Rabaey, “A reconfigurable data-driven mul-
tiprocessor architecture for rapid prototyping of high throughput
dsp algorithms,” in Proc. 26th Hawaii Int. Conf. Syst. Sci., 1993,
pp. 169–178.

[13] C. Ebeling, D. C. Cronquist, and P. Franklin, “Configurable
computing: The catalyst for high-performance architectures,” in
Proc. IEEE Int. Conf. Appl.-Specific Syst. Archit. Processors, 1997,
pp. 364–372.

[14] J. R. Hauser and J. Wawrzynek, “Garp: A MIPS processor with a
reconfigurable coprocessor,” in Proc. 5th Annu. IEEE Symp. Field-
Programmable Custom Comput. Mach., 1997, pp. 12–21.

[15] T. Miyamori and U. Olukotun, “A quantitative analysis of recon-
figurable coprocessors for multimedia applications,” in Proc. IEEE
Symp. FPGAs Custom Comput. Mach., 1998, pp. 2–11.

[16] H. Zhang et al., “A 1-V heterogeneous reconfigurable DSP IC for
wireless baseband digital signal processing,” IEEE J. Solid-State
Circuits, vol. 35, no. 11, pp. 1697–1704, Nov. 2000.

[17] J. Becker and M. Vorbach, “Architecture, memory and interface
technology integration of an industrial/ academic configurable
system-on-chip (CSoC),” in Proc. IEEE Comput. Soc. Annu. Symp.
VLSI, 2003, pp. 107–112.

[18] D. Rossi, F. Campi, S. Spolzino, S. Pucillo, and R. Guerrieri,
“A heterogeneous digital signal processor for dynamically recon-
figurable computing,” IEEE J. Solid-State Circuits, vol. 45, no. 8,
pp. 1615–1626, Aug. 2010.

[19] L. Duch, S. Basu, R. Braojos, G. Ansaloni, L. Pozzi, and D. Atienza,
“HEAL-WEAR: An ultra-low power heterogeneous system for
bio-signal analysis,” IEEE Trans. Circuits Syst. I: Regular Papers,
vol. 64, no. 9, pp. 2448–2461, Sep. 2017.

[20] J. Lee, Y. Shin, W. Lee, S. Ryu, and J. Kim, “Real-time ray tracing
on coarse-grained reconfigurable processor,” in Proc. Int. Conf.
Field-Programmable Technol., 2013, pp. 192–197.

[21] T. Toi, N. Nakamura, T. Fujii, T. Kitaoka, K. Togawa, K. Furuta,
and T. Awashima, “Optimizing time and space multiplexed com-
putation in a dynamically reconfigurable processor,” in Proc. Int.
Conf. Field-Programmable Technol., 2013, pp. 106–111.

[22] Y. Chen, J. Emer, and V. Sze, “Eyeriss: A spatial architecture for
energy-efficient dataflow for convolutional neural networks,” in Proc.
ACM/IEEE 43rd Annu. Int. Symp. Comput. Archit., 2016, pp. 367–379.

[23] M. Gao, J. Pu, X. Yang, M. Horowitz, and C. Kozyrakis, “Tetris:
Scalable and efficient neural network acceleration with 3d memo-
ry,” in Proc. 22nd Int. Conf. Archit. Support Program. Lang. Operating
Syst., 2017, pp. 751–764.

[24] H. Kwon, A. Samajdar, and T. Krishna, “Maeri: Enabling flexible
dataflow mapping over DNN accelerators via reconfigurable
interconnects,” in Proc. 23rd Int. Conf. Archit. Support Program.
Lang. Operating Syst., 2018, pp. 461–475.

[25] R. W. Hartenstein and R. Kress, “A datapath synthesis system for
the reconfigurable datapath architecture,” in Proc. ASP-DAC’95/
CHDL’95/VLSI’95 EDA Technofair, 1995, pp. 479–484.

[26] B. Mei, S. Vernalde, D. Verkest, H. De Man, and R. Lauwereins,
“ADRES: An architecture with tightly coupled vliw processor and
coarse-grained reconfigurable matrix,” in Field Programmable Logic
and Application. Berlin, Germany: Springer, 2003, pp. 61–70.

[27] T. Oppold, T. Schweizer, J. Oliveira Filho, S. Eisenhardt, and
W. Rosenstiel, “CRC–concepts and evaluation of processor-like
reconfigurable architectures,” IT-Inf. Technol., vol. 49, no. 3, pp.
157–164, 2007.

[28] Y. Park, H. Park, and S. Mahlke, “CGRA express: Accelerating
execution using dynamic operation fusion,” in Proc. Int. Conf.
Compilers Archit. Synthesis Embedded Syst., 2009, pp. 271–280.

ZHAO ETAL.: TOWARDS HIGHER PERFORMANCE AND ROBUSTCOMPILATION FOR CGRA MODULO SCHEDULING 2217

[29] G. Ansaloni, P. Bonzini, and L. Pozzi, “EGRA: A coarse grained
reconfigurable architectural template,” IEEE Trans. Very Large
Scale Integr. (VLSI) Syst., vol. 19, no. 6, pp. 1062–1074, Jun. 2011.

[30] D. Voitsechov and Y. Etsion, “Single-graphmultiple flows: Energy
efficient design alternative for GPGPUs,” in Proc. ACM/IEEE 41st
Int. Symp. Comput. Archit., 2014, pp. 205–216.

[31] Z. Zhao, W. Sheng, W. He, Z. Mao, and Z. Li, “A static-placement,
dynamic-issue framework for CGRA loop accelerator,” in Proc.
Des. Autom. Test Eur. Conf. Exhibit., 2017, pp. 1348–1353.

[32] T. Nowatzki, V. Gangadhar, N. Ardalani, and K. Sankaralingam,
“Stream-dataflow acceleration,” in Proc. 44th Annu. Int. Symp.
Comput. Archit., 2017, pp. 416–429.

[33] Mirsky and DeHon, “MATRIX: A reconfigurable computing
architecture with configurable instruction distribution and
deployable resources,” in Proc. IEEE Symp. FPGAs Custom Comput.
Mach., 1996, pp. 157–166.

[34] E. Waingold et al., “Baring it all to software: Raw machines,” Com-
puter, vol. 30, no. 9, pp. 86–93, 1997.

[35] S. Swanson, K. Michelson, A. Schwerin, and M. Oskin, “Waves-
calar,” in Proc. 36th Annu. IEEE/ACM Int. Symp. Microarchit., 2003,
pp. 291–302.

[36] K. Sankaralingam et al., “Exploiting ILP, TLP, and DLP with the
polymorphous trips architecture,” in Proc. 30th Annu. Int. Symp.
Comput. Archit., 2003, pp. 422–433.

[37] V. Govindaraju et al., “DySER: Unifying functionality and paral-
lelism specialization for energy-efficient computing,” IEEE Micro,
vol. 32, no. 5, pp. 38–51, Sep./Oct. 2012.

[38] J. D. Souza, L. Carro, M. B. Rutzig, and A. C. S. Beck, “A reconfig-
urable heterogeneous multicore with a homogeneous ISA,” in
Proc. Des. Autom. Test Europe Conf. Exhibit., 2016, pp. 1598–1603.

[39] C. Selvidge, A. Agarwal, M. Dahl, and J. Babb, “TIERS: Topology
independent pipelined routing and scheduling for virtualwire
amp compilation,” in Proc. 3rd Int. ACM Symp. Field-Programmable
Gate Arrays, 1995, pp. 25–31.

[40] D. C. Cronquist, P. Franklin, S. G. Berg, and C. Ebeling,
“Specifying and compiling applications for rapid,” in Proc. IEEE
Symp. FPGAs Custom Comput. Mach., 1998, pp. 116–125.

[41] M. Wan et al., “Design methodology of a low-energy reconfigura-
ble single-chip DSP system,” J. VLSI Signal Process. Syst., vol. 28,
no. 1–2, pp. 47–61, 2001.

[42] N. Bansal, S. Gupta, N. Dutt, A. Nicolau, and R. Gupta, “Network
topology exploration of mesh-based coarse-grain reconfigurable
architectures,” in Proc. Des. Autom. Test Europe Conf. Exhibit., 2004,
pp. 474–479.

[43] K. E. Coons, X. Chen, D. Burger, K. S.McKinley, and S. K. Kushwaha,
“A spatial path scheduling algorithm for edge architectures,” inProc.
Int. Conf. Architectural Support Program. Lang. Operating Syst., 2006,
pp. 129–140.

[44] F. Bouwens, M. Berekovic, A. Kanstein, and G. Gaydadjiev,
“Architectural exploration of the ADRES coarse-grained reconfig-
urable array,” in Reconfigurable Computing: Architectures, Tools and
Applications. Berlin, Germany: Springer, 2007, pp. 1–13.

[45] S. A. Chin et al., “CGRA-ME: A unified framework for CGRA
modelling and exploration,” in Proc. Int. Conf. Appl.-Specific Syst.
Archit.s Processors, 2017, pp. 184–189.

[46] B. R. Rau, “Iterative modulo scheduling: An algorithm for soft-
ware pipelining loops,” in Proc. 27th Annu. Int. Symp. Microarchit.,
1994, pp. 63–74.

[47] H. Mahdi, A. Shrivastava, and S. Vrudhula, “EPIMap: Using epi-
morphism to map applications on CGRAs,” in Proc. Des. Autom.
Conf., 2012, pp. 1280–1287.

[48] L. Chen and T. Mitra, “Graph minor approach for application
mapping on CGRAs,” Trans. Reconfigurable Technol. Syst., vol. 7,
no. 3, 2014, Art. no. 21.

[49] B. De Sutter, P. Coene, T. Vander Aa, and B. Mei, “Placement-and-
routing-based register allocation for coarse-grained reconfigura-
ble arrays,” in Proc. ACM SIGPLAN-SIGBED Conf. Lang. Compilers,
Tools Embedded Syst., 2008, pp. 151–160.

[50] M. Hamzeh, Compiler and Architecture Design for Coarse-Grained
Programmable Accelerators. Phoenix, AZ, USA: Arizona State Uni-
versity, 2015.

[51] S. Friedman, A. Carroll, B. Van Essen, B. Ylvisaker, C. Ebeling,
and S. Hauck, “SPR: An architecture-adaptive CGRA mapping
tool,” in Proc. ACM/SIGDA Int. Symp. Field Programmable Gate
Arrays, 2009, pp. 191–200.

[52] M. Hamzeh, A. Shrivastava, and S. Vrudhula, “REGIMap: Regis-
ter-aware application mapping on coarse-grained reconfigurable
architectures (CGRAs),” in Proc. ACM/EDAC/IEEE Des. Autom.
Conf., 2013, pp. 1–10.

[53] S. Yin et al., “Conflict-free loop mapping for coarse-grained recon-
figurable architecture with multi-bank memory,” IEEE Trans. Par-
allel Distrib. Syst., vol. 28, no. 9, pp. 2471–2485, 2017.

[54] S. Yin, X. Yao, D. Liu, L. Liu, and S. Wei, “Memory-aware loop
mapping on coarse-grained reconfigurable architectures,” IEEE
Trans. Very Large Scale Integr. (VLSI) Syst., vol. 24, no. 5, pp. 1895–
1908, May 2016.

[55] S. Dave, M. Balasubramanian, and A. Shrivastava, “RAMP:
Resource-aware mapping for CGRAs,” in Proc. 55th Annu. Des.
Autom. Conf., 2018, pp. 127:1–127:6.

[56] Z. Zhao, W. Sheng, N. Jing, W. He, and Z. Mao, “Resource-saving
compile flow for coarse-grained reconfigurable architectures,” in
Proc. Int. Conf. ReConFigurable Comput. FPGAs, 2015, pp. 1–8.

[57] B. Mei, S. Vernalde, D. Verkest, H. De Man, and R. Lauwereins,
“Exploiting loop-level parallelism on coarse-grained reconfigura-
ble architectures using modulo scheduling,” in Proc. Des. Autom.
Test Eur. Conf. Exhibit., 2003, pp. 296–301.

[58] R. Gnanaolivu, T. S. Norvell, and R. Venkatesan, “Mapping loops
onto coarse-grained reconfigurable architectures using particle
swarm optimization,” in Proc. Int. Conf. Soft Comput. Pattern Recog-
nit., 2010, pp. 145–151.

[59] S. A. Chin and J. H. Anderson, “An architecture-agnostic integer
linear programming approach to CGRA mapping,” in Proc. 55th
ACM/ESDA/IEEE Des. Autom. Conf., 2018, pp. 1–6.

[60] B. Mei, S. Vernalde, D. Verkest, H. D. Man, and R. Lauwereins,
“DRESC: A retargetable compiler for coarse-grained reconfigura-
ble architectures,” in Proc. IEEE Int. Conf. Field-Programmable Tech-
nol., 2002, pp. 166–173.

[61] H. Park, K. Fan, S. A. Mahlke, T. Oh, H. Kim, and H.-S. Kim,
“Edge-centric modulo scheduling for coarse-grained reconfigura-
ble architectures,” in Proc. 17th Int. Conf. Parallel Archit.s Compila-
tion Techn., 2008, pp. 166–176.

[62] G.Dimitroulakos, S. Georgiopoulos,M. D.Galanis, andC. E.Goutis,
“Resource aware mapping on coarse grained reconfigurable
arrays,”MicroprocessorsMicrosystems, vol. 33, no. 2, pp. 91–105, 2009.

[63] H. Park, K. Fan, M. Kudlur, and S. Mahlke, “Modulo graph
embedding: Mapping applications onto coarse-grained reconfig-
urable architectures,” in Proc. Int. Conf. Compilers Archit. Synthesis
Embedded Syst., 2006, pp. 136–146.

[64] P. Theocharis and B. D. Sutter, “A bimodal scheduler for coarse-
grained reconfigurable arrays,” ACM Trans. Archit. Code Optim.,
vol. 13, no. 2, Jun. 2016. [Online]. Available: https://doi.org/
10.1145/2893475

[65] T. Nowatzki, M. Sartin-Tarm, L. De Carli, K. Sankaralingam, C.
Estan, and B. Robatmili, “A general constraint-centric scheduling
framework for spatial architectures,” in Proc. 34th ACM SIGPLAN
Conf. Program. Lang. Des. Implementation, 2013, pp. 495–506.

[66] X. Man, L. Liu, J. Zhu, and S. Wei, “A general pattern-based
dynamic compilation framework for coarse-grained reconfigura-
ble architectures,” in Proc. 56th ACM/IEEE Des. Autom. Conf., 2019,
pp. 1–6.

[67] D. Liu et al., “Data-flow graph mapping optimization for CGRA
with deep reinforcement learning,” IEEE Trans. Comput.-Aided
Des. Integr. Circuits Syst., vol. 38, no. 12, pp. 2271–2283, Dec. 2019.

[68] J. Llosa, E. Ayguade, A. Gonzalez, M. Valero, and J. Eckhardt,
“Lifetime-sensitive modulo scheduling in a production environ-
ment,” IEEE Trans. Comput., vol. 50, no. 3, pp. 234–249, Mar. 2001.

[69] C. Lattner and V. Adve, “LLVM: A compilation framework for
lifelong program analysis & transformation,” in Proc. Int. Symp.
Code Gener. Optim., 2004, pp. 75–86.

[70] L. Liu, Z. Li, C. Yang, C. Deng, S. Yin, and S. Wei, “HReA: An
energy-efficient embedded dynamically reconfigurable fabric for
13-dwarfs processing,” IEEE Trans. Circuits Syst. II: Express Briefs,
vol. 65, no. 3, pp. 381–385, Mar. 2018.

[71] K. Asanovic et al., “The landscape of parallel computing research:
A view from berkeley,” EECS Dept., Univ. California, Berkeley,
Tech. Rep. UCB/EECS-2006–183, 2006.

[72] C. Lee, M. Potkonjak, and W. H. Mangione-Smith, “Mediabench:
A tool for evaluating and synthesizing multimedia and communi-
catons systems,” in Proc. 30th Annu. ACM/IEEE Int. Symp. Micro-
archit., 1997, pp. 330–335.

2218 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 9, SEPTEMBER 2020

https://doi.org/10.1145/2893475
https://doi.org/10.1145/2893475

[73] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge,
and R. B. Brown, “MiBench: A free, commercially representative
embedded benchmark suite,” in Proc. 4th Annu. IEEE Int. Work-
shop Workload Characterization, 2001, pp. 3–14.

[74] B. Reagen, R. Adolf, Y. S. Shao, G.-Y. Wei, and D. Brooks,
“MachSuite: Benchmarks for accelerator design and customized
architectures,” in Proc. IEEE Int. Symp. Workload Characterization,
2014, pp. 110–119.

[75] L.-N. Pouchet, “Polybench: The polyhedral benchmark suite,”
2012. [Online]. Available: http://www.cs.ucla.edu/pouchet/
software/polybench

Zhongyuan Zhao received the BS degree from
the School of Electronics and Information, Harbin
Institute of Technology, Harbin, China, in 2012.
Currently, he is currently working toward the
PhD degree with the Department of Nano/Micro
Electronics, Shanghai Jiao Tong University,
Shanghai, China. His research interests include
compiler and architecture optimization for recon-
figurable computing platform and deep learning
accelerators.

Weiguang Sheng received the bachelor’s, mas-
ter’s, and PhD degrees from the Harbin Institute
of Technology, Harbin, China, in 1999, 2004, and
2009, respectively. He is currently an research
assistant professor with the Department of Micro/
Nano Electronics, Shanghai Jiao Tong University.
His research interest includes Reconfigurable
Architectures and Compiling Techniques, Soft
Error Analysis and Optimization.

Qin Wang received the BS degree from the Uni-
versity of Electronics Science and Technology of
China, ChenDu, China, in 1997, and the PhD
degree from Shanghai Jiao Tong University, in
2004. She has been an associate professor with
the Department of Microelectronics and Nano-
science, Shanghai Jiao Tong University. Her
research interests include deep learning, in-
memory computing and 3D IC.

Wenzhi Yin received the MS degree from the
Institute of Microelectronics, Shanghai Jiao Tong
University, China, in 2019. His research in univer-
sity includes reconfigurable computing and com-
piler optimization for CGRAs. Currently he is
working on deep learning acceleration with GPU
in Nvidia.

Pengfei Ye received the BS degree from the
School of Information and Science Technology,
East China Normal University, Shanghai, China,
in 2017. Currently he is working toward the
MS degree with the Institute of Microelectronics,
Shanghai Jiao Tong University, Shanghai, China.
His research interests include reconfigurable
computing and optimization of compiler for recon-
figurable computing.

Jinchao Li received the BS degree from the
School of Electronic Science and Engineering,
University of Electronic Science and Technology
of China, Chengdu, China, in 2017. Currently, he
is working toward the MS degree with the Depart-
ment of Nano/Micro Electronics, Shanghai Jiao
Tong University, Shanghai, China. His research
interests include reconfigurable computing and
architecture optimization of reconfigurable com-
puting platform.

Zhigang Mao received the BS degree from
Tsinghua University, China, in 1986, and the PhD
degree from the University of Rennes 1, Rennes,
France, in 1992. From 1992 to 2006, he was with
the Microelectronics Center, Harbin Institute of
Technology, Harbin, China. In 2006, he joined the
Department of Micro–Nano Electronics, Shang-
hai Jiao Tong University, Shanghai, China, where
he is currently a professor. His current research
interests include DSP architecture design, video
processor design, and reconfigurable processor
architecture.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

ZHAO ETAL.: TOWARDS HIGHER PERFORMANCE AND ROBUSTCOMPILATION FOR CGRA MODULO SCHEDULING 2219

http://www.cs.ucla.edu/pouchet/software/polybench
http://www.cs.ucla.edu/pouchet/software/polybench

Lock-Free Parallelization for Variance-Reduced
Stochastic Gradient Descent on Streaming Data

Yaqiong Peng ,Member, IEEE, Zhiyu Hao , and Xiaochun Yun

Abstract—Stochastic Gradient Descent (SGD) is an iterative algorithm for fitting a model to the training dataset in machine learning

problems. With low computation cost, SGD is especially suited for learning from large datasets. However, the variance of SGD tends to

be high because it uses only a single data point to determine the update direction at each iteration of gradient descent, rather than all

available training data points. Recent research has proposed variance-reduced variants of SGD by incorporating a correction term to

approximate full-data gradients. However, it is difficult to parallelize such variants with high performance and accuracy, especially on

streaming data. As parallelization is a crucial requirement for large-scale applications, this article focuses on the parallel setting in a

multicore machine and presents LFS-STRSAGA, a lock-free approach to parallelizing variance-reduced SGD on streaming data.

LFS-STRSAGA embraces a lock-free data structure to process the arrival of streaming data in parallel, and asynchronously maintains

the essential information to approximate full-data gradients with low cost. Both our theoretical and empirical results show that

LFS-STRSAGA matches the accuracy of the state-of-the-art variance-reduced SGD on streaming data under sparsity assumption

(common in machine learning problems), and that LFS-STRSAGA reduces the model update time by over 98 percent.

Index Terms—Gradient descent methods, machine learning, parallel computing, multicore, streaming data

Ç

1 INTRODUCTION

1.1 Motivation

THE core of machine learning problems is to learn a math-
ematical model from training datasets, in order to make

predictions or decisions. The model is typically character-
ized by a decision variable, namely a vector of weights w
2 Rd. Let us consider a set of n training data points S. Fitting
a model to S is usually cast as an optimization problem of
minimizing the finite sum form: RSðwÞ ¼ 1

n

Pn
i¼1 fiðw),

where fiðw) is the loss of w on the ith data point in S.
RSðw) is often assumed to be convex. The goal of machine
learning problems is typically to find the decision variable
w� that minimizes RSðw). Gradient descent methods are
widely used to pursuew�.

There are two common gradient descent methods: Batch
Gradient Descent (BGD) and Stochastic Gradient Descent
(SGD) [1], [2]. BGD uses all training data points to compute
the full gradient at each iteration of gradient descent. In
BGD, the cost of a gradient computation increases with the
size of the training dataset. In contrast, SGD selects a single
data point randomly from the training dataset to compute
the gradient at each iteration of gradient descent, and thus
SGD is especially suited for a large dataset. While an itera-
tion of SGD is cheaper than that of BGD, its variance tends
to be high. Remarkable recent progress has been made to
propose Variance-Reduced Variants of SGD (VR SGD) by
incorporating a correction term to approximate a full-data

gradient generally in two ways. The first variance-reduced
method stores the last gradient computed at each data point
and uses their average at each iteration of gradient descent
[3], [4], [5]. Another method periodically computes a gradi-
ent based on a batch of data points [6], [7], [8], requiring
more computation than the first method.

Meanwhile, parallelization is a crucial requirement for
large-scale applications. In parallel setting, many asynchro-
nous variants of SGD are proposed on both a single multi-
core machine and distributed systems. Although the
variance-reduced improvements yield a more accurate
model in general, it is more challenging to parallelize such
variants with high performance and accuracy, especially on
streaming data arriving as an endless sequence of data
points, which is a common scenario in computer systems.
The first variance-reduced method mentioned above
requires using the average of historical gradients. In parallel
setting, it is difficult to maintain the average on streaming
data with low cost, because the size of training dataset
changes over time. Section 2.3 analyzes the problem in detail.
In addition, the second method is also not suitable for this
scenario, because maintaining a model on streaming data is
limited in processing time.

In this paper, we focus on the parallel setting in a multi-
core machine with shared memory, and explore how to par-
allelize VR SGD on streaming data with high performance
and accuracy. Although large datasets are generally sug-
gested to be processed on a cluster of machines, the size of
the data necessary for statistical analysis may be a few tera-
bytes or less after appropriate preprocessing in many prob-
lems [9]. Such problems can be processed on a single
multicore machine, rather than an expensive cluster. In addi-
tion, multicore systems have significant performance advan-
tages due to low latency and high throughput of shared
mainmemory [9].

� The authors are with the Institute of Information Engineering, Chinese
Academy of Sciences, Beijing 100093, China. E-mail: {pengyaqiong,
haozhiyu, yunxiaochun}@iie.ac.cn.

Manuscript received 6 Aug. 2019; revised 29 Feb. 2020; accepted 9 Apr. 2020.
Date of publication 15 Apr. 2020; date of current version 8 May 2020.
(Corresponding author: Zhiyu Hao.)
Recommended for acceptance by H. Huang.
Digital Object Identifier no. 10.1109/TPDS.2020.2987867

2220 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 9, SEPTEMBER 2020

1045-9219� 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht_tps://www.ieee.org/publications/rights/index.html for more information.

https://orcid.org/0000-0002-8482-3631
https://orcid.org/0000-0002-8482-3631
https://orcid.org/0000-0002-8482-3631
https://orcid.org/0000-0002-8482-3631
https://orcid.org/0000-0002-8482-3631
https://orcid.org/0000-0003-3946-5094
https://orcid.org/0000-0003-3946-5094
https://orcid.org/0000-0003-3946-5094
https://orcid.org/0000-0003-3946-5094
https://orcid.org/0000-0003-3946-5094
mailto:pengyaqiong@iie.ac.cn
mailto:haozhiyu@iie.ac.cn
mailto:yunxiaochun@iie.ac.cn

1.2 Key Ideas

Overcoming the challenges of parallelizing VR SGD on
streaming data with high performance and accuracy, we
present an algorithm named LFS-STRSAGA based on the
state-of-the-art serial streaming data version of VR SGD
named STRSAGA [10]. STRSAGA belongs to the first vari-
ance-reduced method mentioned in Section 1.1. It stores the
last gradient computed for each data point in a global vec-
tor. To parallelize STRSAGA, LFS-STRSAGA embraces a
lock-free concurrent data structure to process the arrival of
streaming data. In addition, LFS-STRSAGA replaces the
global vector of historical gradients with a local one for each
thread to asynchronously maintain, and the model update
rule based on the thread-local vector of historical gradients
is sparse. To pursue high performance, LFS-STRSAGA
updates the decision variable without using any locking
like HOGWILD! [9], which is the foundation for the most
parallel implementations of SGD and its variants. Our theo-
retical analysis shows that LFS-STRSAGA retains the linear
convergence rate of STRSAGA to reach statistical accuracy
in sparsity assumption. The sparsity assumption means that
most update steps only modify small and disjoint parts of
the decision variable. This phenomenon exists in most
machine learning problems.

Like STRSAGA, LFS-STRSAGA is the choice in the set-
tings where memory is not limited. Nowadays, the settings
given the abundance of memory are common in many prac-
tical situations [10]. As mentioned in Section 7, we will
explore how to restrict LFS-STRSAGA to use limited mem-
ory in the future work.

1.3 Experimental Evaluation

To show the competitiveness of LFS-STRSAGA in practice,
we compare it to the original version of STRSAGA [10] and
the natural streaming data version of HOGWILD! [9] (referred
to as S-HOGWILD! in this paper) in terms of model update
time and sub-optimality (defined in Section 4.2). We consider
the support of all the evaluated algorithms for two popular
machine learning problems, Logistic Regression and Matrix
Factorization, on real-world datasets under various arrival
distributions. The experimental results show that LFS-
STRSAGA matches the accuracy of STRSAGA, and that it
reduces the model update time by over 98 percent. In addi-
tion, LFS-STRSAGA ismore accurate than S-HOGWILD!.

1.4 Contributions

In summary, this paper makes the following contributions:

� The presentation of LFS-STRSAGA: a lock-free
approach to parallelizing VR SGD algorithm on
streaming data.

� A theoretical analysis showing that LFS-STRSAGA
matches the accuracy of STRSAGA in sparsity
assumption.

� An experimental evaluation demonstrating the com-
petitiveness of LFS-STRSAGA in practice.

1.5 Outline

The rest of the paper is organized as follows. Section 2 pro-
vides a foundation for LFS-STRSAGA. Section 3 presents
the details of LFS-STRSAGA, followed by a theoretical

analysis in Section 4. Section 5 provides a comprehensive
evaluation of LFS-STRSAGA, and Section 6 overviews the
most related work. Section 7 concludes the paper and dis-
cusses our future work.

2 PRELIMINARIES

In this section, we first discuss the basics with respect to
LFS-STRSAGA in more detail, and then look into the key
ideas of typical SGD algorithms and the variance-reduced
improvements. Finally, we discuss the challenges for paral-
lelizing VR SGD on streaming data.

2.1 Basics

Empirical Risk Minimizer. The core of machine learning prob-
lems is to learn a mathematical model, which is drawn from a
class of functionsF and parameterized by a vector of weights
w 2 Rd called decision variable. The expected risk of a func-
tion inF is defined asRðwÞ ¼ E fxðwÞ½ �, where fxðwÞ denotes
the loss ofw on input x and the expectation is taken over all x
drawn from some underlying probability distribution P
(unknown to the algorithm). For example, given a data point
ðx; yÞ, the corresponding loss in L2-regularized logistic regres-
sion problem is: fðx;yÞðwÞ ¼ logð1þ expð�ywTxÞÞ þ m

2 jjwjj22.
Let w� = arg minw2FRðwÞ denote the decision variable
minimizing RðwÞ. Then, Rðw�) denotes the minimum
expected risk over F . Given a sample S consisting of n train-
ing data points drawn from P, the empirical risk function
measuring the average loss of w over S is defined as:
RSðwÞ ¼ 1

n

P
x2S fxðw). The best we can do is to find the

Empirical Risk Minimizer (ERM), namely the weightsw�S = arg
minw2FRSðwÞ.

Statistical Efficiency. Suppose that an algorithm produces
an approximate solution wS over S. E RSðw�SÞ � Rðw�Þ

� �
is

called statistical error, where the expectation is over the ran-
domness of n-sample S. The statistical error is usually
bounded by HðnÞ ¼ cn�a, where c is a constant and 1=2 �
a � 1. E RSðwSÞ � RSðw�SÞ

� �
is called optimization error.

Let �ðnÞ be an upper bound on the optimization error, then
the total error is bounded by HðnÞ þ �ðnÞ. Given a computa-
tional budget, �ðnÞ is typically increasing with n, whereas
HðnÞ is always decreasing. To minimize the total error, the
literature on learning theory suggests reducing �ðnÞ to
asymptotically balance withHðnÞ [11].

Streaming Data Scenario. This paper considers the mainte-
nance of a model in the same streaming data scenario as
mentioned in [10]: Let Xi denote the training data points
(zero or more) arriving at time step i, and each data point is
drawn from some underlying probability distribution P
(unknown to the algorithm). Let Si denote the set of data
points arriving in time steps 1 to i (Si ¼ [ij¼1Xj). The optimal
solution over Si is denoted asw�i =w�Si = arg minw2FRS iðwÞ.
Our goal is to produce a solution wi, of which the empirical
risk approximates RS iðw�i Þ to the best. We focus on using
SGD-style algorithms to achieve this goal.

2.2 SGD and its Variance-Reduced Variants

SGD is an iterative algorithm widely used to optimize prob-
lems of the finite-sum form. Generally, SGD starts with a
known initial vector of weights w0, and updates the vector
repeatedly. In every iteration, SGD samples a data point

PENG ETAL.: LOCK-FREE PARALLELIZATION FOR VARIANCE-REDUCED STOCHASTIC GRADIENT DESCENTON STREAMING DATA 2221

uniformly from the training dataset, and computes the gra-
dient at this point based on the current state of decision var-
iable. Then, it uses the gradient to determine the update
direction of the decision variable. Given the value of w at
the end of iteration t (referred to as wt), the updates for iter-
ation tþ 1 in SGD are generally as follows:

1. Sample a data point i uniformly from S at random.
2. Compute the gradientrfiðwtÞ at data point i.
3. Updatew:wtþ1 wt � hrfiðwtÞ, where h is the step

size.
Because w is updated through a gradient computed at a

single data point in the standard SGD, the variance of the
update direction tends to be high. To ensure convergence,
decreasing step sizes are generally chosen for SGD, result-
ing in a slower sub-linear convergence rate than using con-
stant step sizes. The variance-reduced variants of SGD are
proposed to solve this problem. Here, we focus on the
update scheme of SAGA, which is a state-of-the-art vari-
ance-reduced method. SAGA starts with a known initial
vector of weights w0, and uses a table a to store historical
gradients. The length of a is equal to the number of training
data points. Each element aðpÞ in a is the last gradient com-
puted for each data point p (referred to as aðpÞ 2 Rd), initial-
ized to rfpðw0Þ. Given the value of w and each aðpÞ at the
end of iteration t, the updates for iteration tþ 1 in SAGA
are as follows:

1. Sample a data point i uniformly from S at random.
2. Compute the gradientrfiðwtÞ at data point i.
3. Updatew using rfiðwtÞ, aðiÞ and the historical gradi-

ent average: wtþ1 wt � hðrfiðwtÞ � aðiÞ þ 1
n

Pn
i¼1 aðiÞÞ,

where n is the number of training data points.
4. Update aðiÞ, and other historical gradients remain

unchanged: aðiÞ ¼ rfiðwtÞ
To control the computation cost, SAGA computes a gradi-

ent at a single data point like SGD. To approximate a full-
data gradient, SAGA stores the last gradient computed at
each data point and uses their average at each iteration of
gradient descent. In this way, SAGA yields a more accurate
model than SGD. Note that SAGA is an offline algorithm,
which assumes the entire dataset is available beforehand. To
the best of our knowledge, STRSAGA is the best performing
VR SGD algorithm for handling streaming data, which is
designed based on SAGA. As mentioned in Section 2.1, to
guarantee the model accuracy, it is suggested to reduce the
optimization error to asymptotically balancewith the statisti-
cal error. Intuitively, it means that it is better to concentrate
the computational budget on fewer data. Following this prin-
ciple, STRSAGA increases the size of the sample set in a con-
trolled manner. It does not add new data points into the
effective sample set until a sufficient number of SAGA steps
have been performed on the current sample set.

2.3 Challenges for Parallelizing Variance-Reduced
SGD on Streaming Data

As parallelization is a crucial requirement for large-scale
applications, this paper discusses the parallelization of
VR SGD algorithm on streaming data with high perfor-
mance and accuracy, and presents LFS-STRSAGA based on
STRSAGA. To implement LFS-STRSAGA, we face the fol-
lowing challenges.

Challenge 1. How to sample from dynamically changing data-
set in parallel?

In streaming data scenario, with the arrival of new data
points, the training dataset changes over time. In parallel set-
ting, concurrent threads may contend for changing the state
of training dataset at the same time. Following STRSAGA, we
add new training data points to the sample set in a controlled
manner, and sampling threads only pick data points from the
effective sample set for gradient computation. Similar to
changing the training dataset, concurrent threads may con-
tend for adding one training data point. In addition, changing
the state of training dataset must be notified to sampling
threads without preventing them from making progress.
Therefore, we need to carefully design the lock-free synchro-
nization scheme to coordinate threadswith changing the state
of training dataset and sample set in parallel.

Challenge 2. How to maintain the average of last gradients
computed at different data points with low cost?

Note that computing the average of historical gradients
from scratch at each update step incurs non-trivial computa-
tion cost. To solve this problem, STRSAGA updates the sum of
last gradients computed at different data points incrementally1

and computes the average. To adopt this method on stream-
ing data at an update step, our approach needs to get the size
of the dynamic sample set. In parallel setting, suppose that a
thread first reads the sum of historical gradients and then the
size of sample set, and that some new data points are added
into the sample set in the time interval between the two read
operations. In this case, the sum of historical gradients and
the size of sample set read by this thread does not correspond
to the same state of the effective sample set. In addition, dif-
ferent threadsmay contend for updating the historical gradi-
ent associated with a data point at the same time. Therefore,
in parallel setting, it is difficult tomaintain the average of his-
torical gradients with low cost in a lock-freemanner.

3 LFS-STRSAGA: A LOCK-FREE PARALLEL

VARIANT OF VARIANCE-REDUCED SGD ON

STREAMING DATA

In this section, we present the details of LFS-STRSAGA. We
begin with the high-level design of LFS-STRSAGA, followed
by presenting a lock-free data structure for storing the
streaming data. Next, we discuss how to process the arrival
of new training data points based on the lock-free data struc-
ture. Finally, we introduce the details of update scheme used
in LFS-STRSAGA.

3.1 High-Level Design of LFS-STRSAGA

Computation Model. Like most concurrent algorithms, LFS-
STRSAGA is designed for asynchronous shared memory
systems [12], where an application runs with n deterministic
threads. In LFS-STRSAGA, threads are split between dedi-
cated producers and consumers. Fig. 1 shows a diagram for
this computation model. As shown in the diagram, between
any two time steps i and iþ 1 (i > 0), producer and con-
sumer threads work in parallel. To be specific, producer

1. Assume STRSAGA computes a gradient g at a data point p at an
update step. The current sumof historical gradients is s, and the last gradi-
ent computed at p is g

0
. Then, STRSAGAupdates the sum to sþ g� g

0
.

2222 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 9, SEPTEMBER 2020

threads continuously process the storage of new data points
arriving in the time interval ½i; iþ 1Þ, and consumer threads
update the model over a set of data points observed till the
time step i. The time step 1 is the initial time for LFS-
STRSAGA, at which no data points have arrived. Because
LFS-STRSAGA is time efficient, consumer threads will com-
plete the model update steps over the data points observed
till the time step i before the next time step iþ 1.

Following STRSAGA, LFS-STRSAGA adds the new data
points into the effective sample set after performing a suffi-
cient number of update steps on the current sample set. As
mentioned in Section 2.3, we face two challenges to achieve
this goal in parallel. For challenge 1, we carefully design an
infinite array. Fig. 2 provides a diagram for the array.

As shown in Fig. 2, the infinite array is a 4-tuple (Dataset,
eT , eS, N). Dataset is used to store the observed data points.
eT , eS, and N are three indexes dividing the data points of
Dataset into three classes.

Dataset[0,...,min(eT; eS)) acts as the effective sample set in
LFS-STRSAGA. eT is only updated atomically by consumer
threads for adding data points into the effective sample set.
eS denotes the number of data points that have been depos-
ited into Dataset, which is only updated by producer
threads. eS marks the upper boundary for the effective sam-
ple set. In other words, consumer threads extend the effec-
tive sample set at most to Dataset½0; . . . ; eSÞ. The storage of a
new data point consists of two atomic operations performed
by a producer thread that first gets an index and then depos-
its the data point into the corresponding location ofDataset.
If eS is used to distribute the indexes of new data points, con-
sumer threads may sample a data point that only gets an
index but has not been deposited intoDataset. Therefore, we
set another global variable N for distributing the index of
every new data point processed by producer threads. Like eS,
N is only updated atomically by producer threads. At each
time step i (i > 0), a producer thread (referred to as main
producer) is responsible for updating eS to let consumer
threads see all the stored data points arriving till the time
step i. All the initial values of eT , eS, andN are 0.

Like the work on concurrent array-based data structures
[13], [14], the infinite array can be implemented by a singly-
linked list of equal-sized array segments. Section 3.2 will
discuss how to operate on the array without using any lock-
ing in parallel. In addition, we present a parallel sample
strategy based on this data structure. Section 3.3 will
describe the details.

For challenge 2, we present an asynchronous strategy for
approximating full-data gradients. Each thread maintains a
local vector of historical gradients to approximate full-data

gradients in LFS-STRSAGA, and uses the sparse version of
their average with low computation expenses at an update
step. Section 3.3 will describe the details.

Algorithm 1. Storing Training Data Points by Individual
Producer Threads

Global shared variables: Dataset½1; . . .�: infinite array for stor-
ing observed data points, which can be implemented by a
singly-linked list of equal-sized array segments ; eS: number
of data points that have been deposited into Dataset, ini-
tialized to 0; N : number of data points that have arrived
now, initialized to 0.

1: for i = 1, 2, 3, ... do
2: for every time receive a data point P arriving between

time step i and iþ 1 do
3: // store the observed data point
4: j FAA(&N , 1)
5: Datasets½j� P
6: end for
7: Wait for other producer threads
8: if i am the main producer then
9: // let consumer threads see the new data points
10: eS N
11: end if
12: Wait for other producer threads
13: end for

3.2 Storing New Training Data Points

Algorithm 1 presents how to store training data points by
individual producer threads. Once a new data point arrives,
LFS-STRSAGA distributes it to a thread for storing it into
the array named Dataset. As different threads may process
the storage of new data points at the same time, we need to
consider the problem that threads could overwrite each oth-
er’s progress by depositing different data points into the
same location of the array. LFS-STRSAGA uses the Fetch-
and-Add (FAA)2 atomic operation to solve this problem. A
thread first obtains the index of the location for storing the
data point by performing a FAA on the index N (line 4),
and then stores the data point in the associated location of
the array (line 5). The atomic feature of FAA ensures each
data point gets a unique index. Among the producer
threads, a thread acts as a main producer. At time step iþ 1
(i > 0), before all the producer threads continue to store the
training data points arriving between the time steps iþ 1
and iþ 2, the main producer updates eS to the current value
of N in order to let consumer threads see all the stored data

Fig. 1. Computation model.

Fig. 2. Infinite array for storing data points.

2. FAA(addr, v): assuming the content stored in addr are a, this opera-
tion returns a and stores aþ v at addr.

PENG ETAL.: LOCK-FREE PARALLELIZATION FOR VARIANCE-REDUCED STOCHASTIC GRADIENT DESCENTON STREAMING DATA 2223

points arriving till the time step iþ 1 (lines 8-11). Then, con-
sumer threads start to update the model over the stored
data points, and producer threads continue to process data
points arriving between the time steps iþ 1 and iþ 2.

Algorithm 2. Model Updated Over a Set of Training
Data Points Si That Arrived in Time Steps 1 to i by Indi-
vidual Consumer Threads, i > 0

Global shared variables: w: decision variable; Datasets½1; . . .�:
storing observed data points; eS: number of data points that
have been deposited into Dataset, initialized to 0; eT :
index of next data point added to the effective sample
set, initialized to 0; t: iteration count, initialized to 0 at
each time step.

Thread-local variables: a: a table for storing local historical
gradients, initialized to ;; next p: recording the index of the
next data point added by the current thread to the effective
sample set, initialized to -1; sum: the sum of all entries in a,
initialized to 0d and maintained incrementally (d is the
number of features in a gradient);

1: for (t FAA(&t, 1); t < r; t FAA(&t, 1)) do
2: effective sample size 0
3: if t is even then // try to extend the effective sample set

in the even iteration number
4: if next p 6¼ �1 and next p < eS then // add the data

point reserved in the previous even iteration
5: p next p, next p �1
6: effective sample size pþ 1
7: else
8: if eT < eS then // try to add a data point to the effec-

tive sample set
9: p FAA(& eT , 1)
10: if p < eS then // if successful, pick the added data

point
11: effective sample size pþ 1
12: else // otherwise, reserve the index returned with

FAA
13: next p p
14: end if
15: end if
16: end if
17: end if
18: if effective sample size ¼ 0 then // if t is odd or fail to

extend the effective sample set in the even iteration num-
ber, directly sample a data point from the effective sam-
ple set at random

19: effective sample size min(eT , eS)
20: sample p � Uniform[0, effective sample size)
21: end if
22: pick the data point Datasets½p� and compute its gradient

rfpðwÞ on the current state ofw
23: g rfpðwÞ
24: for v 2 eðpÞ do // update the decision variable
25: wv wv � hðgv � avðpÞ þ sumv

ev�effective sample sizeÞ
26: end for
27: sum sumþ g� aðpÞ // update the sum of local histor-

ical gradients
28: aðpÞ g // update the last gradient computed at the

data pointDatasets½p�
29: end for
30: // The current effective sample set is Ti.

3.3 Update Scheme

Algorithm 2 shows the details of updating the model over a
set of training data points Si that arrived in time steps 1 to i
by individual consumer threads. The algorithm mainly
repeats three procedures: 1) pick a data point for gradient
computation (lines 3-21); 2) update the decision variable by
using the picked data point and local historical gradients to
approximate the full-data gradients (lines 22-26); 3) update
the local historical gradients and their sum (lines 27-28).
Table 1 describes the symbols used in Algorithm 2.

Before presenting our sample strategy, let us first recall the
sample strategy adopted by the latest version of STRSAGA. At
each time step, STRSAGA starts to perform r iterations of gra-
dient descent. To control the expansion of the effective sample
set, STRSAGA first adds the new data points to a buffer. Then,
it chooses a newdata point from the buffer every two iterations,
and adds the data point to the effective sample set followed by
computing a gradient at this data point. In other iterations,
STRSAGAdirectly samples a data point from the effective sam-
ple set for gradient computation without expanding the effec-
tive sample set. In LFS-STRSAGA, Dataset½ eT; . . . ; eSÞ and
Dataset[0,...,min(eT; eS)) are equivalent to the buffer and effec-
tive sample set in STRSAGA, respectively.

Parallel Sample Strategy. LFS-STRSAGA distributes the r

iterations of gradient descent starting at each time step to
consumer threads dynamically, and coordinates these
threads to expand the effective sample set in a controlled
manner by performing FAA operations on eT every two
iterations (line 10). Note that consumer threads extend the
effective sample set at most to Dataset½0; . . . ; eSÞ. When eT is
updated to a value larger than eS, Dataset½0; . . . ; eSÞ denotes
the effective sample set. Therefore, before performing a
FAA in the even iterations, a consumer thread first judges
whether eT is currently less than eS (line 8). If yes, the thread
first performs a FAA on eT (line 9), and then judges whether
the value returned with FAA is less than eS (line 10). If yes, it
means that the value returned with FAA is equal to the
index of a data point that has been stored into the array
Datasets, and the thread selects the data point for gradient
computation afterwards. Otherwise, because eT is monotoni-
cally increased by FAA operations, LFS-STRSAGA may not
ensure a sufficient number of gradient computation is
performed on data points stored afterwards. To solve the

TABLE 1
Symbols Used in Algorithm 2

jaj number of gradients contained in a

eðpÞ indexes of the coordinates on which the values of the
data point indexed by p are non-zero

h step size

aðpÞ if the local thread has not ever computed any gradient
at the data point indexed by p, return 0; otherwise,
return the last gradient computed at the data point
indexed by p

xv value of the vector x (e.g.,w, g, and aðpÞ) on the
coordinate indexed by v

ev among the data points that have been picked by the
local thread to update the decision variable, fraction of
the data points that are non-zero on the vth coordinate

2224 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 9, SEPTEMBER 2020

problem, when the value returned with FAA is not less than
eS, the thread records the value in next p (line 13) as the can-
didate index considered in the next even iteration (lines 4-
6). Therefore, at the start of every even iteration, a consumer
thread first checks whether an index is reserved in next p
and the reserved index is less than eS (line 4). If yes
(next p 6¼ �1 and next p < eS), the thread directly selects
the reserved index as the target index, and resets next p to
-1 for the next reservation (line 5). If the current iteration
number is odd or the consumer thread fails to extend the
effective sample set in the even iteration number, the thread
directly samples a target index uniformly from [0, min(eT ,
eS)) (lines 19-20). Once the target index is determined, the
consumer thread computes a gradient at the indexed data
point on the current state ofw (lines 22).

Asynchronous Strategy for Approximating Full-Data Gradients.
Different from STRSAGA, each consumer thread maintains a
local vector of historical gradients to approximate full-data
gradients in LFS-STRSAGA, and incrementally updates the
sum of the local historical gradients. Because the local vector
of historical gradients is only updated by its owner thread,
LFS-STRSAGA avoids the inconsistent read problem men-
tioned in Section 2.3. Under this scheme, each consumer
thread can easily maintain the average of local historical gra-
dientswith low cost. Asmentioned in Section 2.2, SAGA-style
algorithms use the gradient computed at a random data point
and the average of historical gradients to updatew. To reduce
the computation expenses, we borrow an idea from ASAGA
[15]. When computing the average of the local historical gra-
dients, each thread only considers the coordinates on which
the values of the picked data point are non-zero in LFS-
STRSAGA (lines 24-26). Tomake the update unbiased, assum-
ing the picked data point is indexed by p, we multiply the
value of the sum of the local historical gradients on the vth
coordinate (v 2 eðpÞ) by a coefficient 1

ev
(line 25) for approxi-

mating the full sum. The definition of ev is given in Table 1.
Then, we get the average of local historical gradients on the
vth coordinate by the equation sumv

ev�effective sample size.
At the end of each iteration, we update a with the last

gradient computed at the data point indexed by p (line 28),
and the sum of local historical gradients incrementally (line
27). When all the consumer threads complete the dispatched
iterations of gradient descent, they wait for the update
phase at the next time step, and the current effective sample
set is referred to as Ti.

4 THEORETICAL ANALYSIS

In this section, we analyze the accuracy of LFS-STRSAGA in
terms of sub-optimality. According to the proof technique
in previous work [10], the accuracy of a streaming data VR
SGD algorithm depends on the convergence rate of its off-
line version. Therefore, we first present the offline version
of LFS-STRSAGA, and then analyze its convergence rate in
Section 4.1. Finally, we show that LFS-STRSAGA retains the
linear convergence rate of STRSAGA to reach statistical
accuracy in sparsity assumption in Section 4.2.

Following the assumptions in previous work [5], [9], [10],
[16], we assume that all fx are convex and their gradients
are L-Lipschitz continuous. In addition, RS is m-strongly
convex for the training dataset S.

4.1 Convergence Analysis for Offline Version of
LFS-STRSAGA

The proof technique of STRSAGA relies on the convergence
rate of SAGA, which can be seen as the offline version of
STRSAGA. The convergence rate of SAGA is 1-minð1n ; mLÞ.
Following this proof technique, we first define the offline
version of LFS-STRSAGA as follows:

Offline Version of LFS-STRSAGA. For the offline version of
LFS-STRSAGA, the entire training dataset S is available
beforehand. Thus, the effective sample set is fixed with size
n. The offline version of LFS-STRSAGA starts with a known
initial vector of weightsw0, and each processor core c uses a
table aðcÞ to store local historical gradients. The length of
each aðcÞ is equal to the number of training data points. Each
element aðc; iÞ in aðcÞ is initialized to 0. Following Recht et al.
[9], we define wt to be the state of w after t updates have
been performed. Intuitively, t refers to the global iteration
counts. As wt is generally updated with a stale gradient
based on the state ofw readmany clock cycles earlier, we use
wkðtÞ to denote the state of w when the update to wt was
read. Assuming the update step is run on the ctth core in the
global tth iteration, the updates for iteration tþ 1 in the off-
line version of LFS-STRSAGA are as follows:

1. Sample a point i uniformly from S at random.
2. Compute the gradientrfiðwkðtÞÞ at point i.
3. Updatew usingrfiðwkðtÞÞ, aðct; iÞ and the average of

local historical gradients: wtþ1 wt � hgðwkðtÞ; ct; iÞ,
where gðwkðtÞ; ct; iÞ rfiðwkðtÞÞ � aðct; iÞ þDiaðctÞ,
aðct; iÞ denotes the last gradient computed locally on
the ctth core at the data point indexed by i,
aðctÞ :¼ sum

n denotes the average of historical gra-
dients maintained on the ctth core, and Di is a diago-
nal matrix equal to 1

ev
on the vth diagonal and zeros

elsewhere (v 2 eðiÞ). The definitions of ev and eðiÞ are
given in Table 1.

4. Update aðct; iÞ, and other local historical gradients
remain unchanged: aðct; iÞ rfiðwkðtÞÞ

There are three differences between the offline version of
LFS-STRSAGA and SAGA: (1) the offline version of LFS-
STRSAGA uses the local historical gradients and their
sparse average at each iteration of gradient descent, rather
than the full average of historical gradients like SAGA; (2)
co-running threads in the offline version of LFS-STRSAGA
lead to that wt is generally updated with a stale gradient
based on the state of w read many clock cycles earlier; (3)
threads could overwrite each other’s progress of updating
the decision variable, which cannot occur in the serial
SAGA. In the following, we will prove that the offline ver-
sion of LFS-STRSAGA has the same convergence rate as
SAGA in the big data regime under sparsity assumption.

Unbiased Condition for an Update Scheme. The unbiased
condition is the heart of most convergence proofs for the
asynchronous parallel SGD and its variants. To prove that
the update schemes adopted in the offline version of LFS-
STRSAGA are unbiased, we need to show EgðwkðtÞ; ct; iÞ ¼
rfðwkðtÞÞ, where rfðwkðtÞÞ is a full-data gradient: rfðwkðtÞÞ ¼
1
n

Pn
k¼1rfkðwkðtÞÞ.

Lemma 1: EgðwkðtÞ, ct, i) = rfðwkðtÞ) is satisfied in LFS-
STRSAGA.

PENG ETAL.: LOCK-FREE PARALLELIZATION FOR VARIANCE-REDUCED STOCHASTIC GRADIENT DESCENTON STREAMING DATA 2225

Proof: Suppose the total number of cores is c. For LFS-
STRSAGA, we have: EDiaðctÞ = EfE½DiaðctÞjðe1; e2; . . . ;
edÞ�g = Ef½1n

Pn
k¼1 DkaðctÞ�jðe1; e2; . . . ; edÞg = 1

n

Pn
k¼1

P
v2eðkÞ

avðctÞ
Eev

xv =
Pd

v¼1
dvavðctÞxv

nEev
. Note that dv denotes the number

of training data points (in S) equal to non-zero on the vth
coordinate. xv 2 Rd is equal to 1 on the vth coordinate
and zeros elsewhere. According to the definition given in
Table 1, the values of e1; e2; . . . ; ed depend on the data
points picked for gradient computation in the previous
iterations. Because these data points are picked uniformly

from the sample set, we have: Eev ¼ dv
n (v ¼ 1; 2; . . . ; d).

Thus, EDiaðctÞ = aðctÞ. For any ct, Eaðct; iÞ ¼ 1
n

Pn
k¼1

aðct; kÞ ¼ aðctÞ. Then, EgðwkðtÞ; ct; iÞ = ErfiðwkðtÞÞ -

Eaðct; iÞ + EDiaðctÞ = ErfiðwkðtÞÞ = 1
n

Pn
k¼1rfkðwkðtÞÞ ¼

rfðwkðtÞÞ. This completes the proof. tu
Following Recht et al. [9], for any wt and wkðtÞ, we define

the bound of t� kðtÞ as t. In addition, we define D as:

D ¼ max1�v�djfi:v2eðiÞgj
n , i.e., the maximum frequency that any

feature appears in a training data point. With Lemma 1
holding, we reach the following lemma.

Lemma 2: (Combining Theorem 2 and Corollary 3 in [15])
Suppose t � OðnÞ and t � Oð 1ffiffiffi

D
p maxf1; n

k
gÞ. Let a�ðtÞ ¼

1
32ð1þt

ffiffiffi
D
p
Þ�ðk;D;tÞ , where �ðk;D; tÞ ¼

ffi
1þ 1

8kminf 1ffiffiffi
D
p ; tg

q
and

k ¼ L
m
. Then using the step size h ¼ a�ðtÞ

L , The offline ver-

sion of LFS-STRSAGA has the same convergence rate as

SAGA: E fðwkðtÞÞ � fðw�Þ� � � rtC0, where r ¼ 1�minf1n ; 1kg,
and C0 is a constant independent of t.

When a machine learning problem is very sparse, the
precondition of Lemma 2 is easily satisfied because D is a
very small value in this case. Therefore, the offline version
of LFS-STRSAGA has the same convergence rate as SAGA
in sparsity assumption, which is a common phenomenon in
machine learning problems.

4.2 Sub-Optimality of LFS-STRSAGA

Now, with sparsity assumption, we analyze the accuracy of
LFS-STRSAGA in terms of the expected sub-optimality.

Metric for Sub-Optimality. Following Jothimurugesan et al.
[10], we define the sub-optimality of an algorithm A over
the training dataset S as follows:

SUBOPTSðAÞ ¼ RSðwÞ � RSðw�SÞ; (1)

where w is the solution produced by A and w�S is the opti-
mal solution over S.

To prove the sub-optimality of LFS-STRSAGA, we use
the upper bound function U defined in [5]

Uðt; nÞ ¼ min
rnUðt� 1; nÞ
minm<n½Uðt;mÞ þ n�m

n HðmÞ�
�

: (2)

For a given function Uðx; yÞ, x denotes the total number
of iterations that have been performed, and y denotes the
effective sample size at the end of iteration x. When using
the U function to analyze the sub-optimality of LFS-
STRSAGA, rn is the convergence rate of the offline version
of LFS-STRSAGA for the effective sample set with size n.

Let Ti denote the effective sample set at the end of all
update steps started at time step i in LFS-STRSAGA, and let
tLi denote the size of Ti. We reach the following lemma.

Lemma 3: Suppose the condition number L
m
and the initial sub-

optimality of LFS-STRSAGA is bounded by a constant. At
the end of each time step i, the expected sub-optimality
of LFS-STRSAGA over Ti is: E SUBOPTTiðLFS�

�

STRSAGAÞ� � ð1þOð1ÞÞHðtLi Þ.
Proof: In LFS-STRSAGA, each thread adds a new data point

into the effective sample set every two iterations by a
FAA. Suppose the total number of iterations performed
by all the consumer threads is ti at the end of each time
step i. The atomic feature of FAA ensures that ti 	 2tLi .
According to Equation (2), we have E SUBOPTTi

� ðLFS �
STRSAGAÞ� � Uðti; tLi Þ � rti�2t

L
i Uð2tLi ; tLi Þ. According to

Lemma 2, 0 < r < 1. Therefore, we have E SUBOPTTi

�

ðLFS � STRSAGAÞ� � Uð2tLi ; tLi Þ. Similar to the proof of

Lemma 3 in [10], we have E SUBOPTTiðLFS � STRSAGAÞ� �

�HðtLi Þ þ C0
2 ðLmÞ2ð 1tL

i

Þ2 ¼ ð1þOð1ÞÞHðtLi Þ, where C0 denotes

the initial sub-optimality of LFS-STRSAGA. This com-
pletes the proof. tu
Lemma 3 bounds the expected sub-optimality of LFS-

STRSAGA over its effective sample set. However, our goal
is to bound the expected sub-optimality of LFS-STRSAGA
over Si, where Si denotes the data points have been
observed till the time step i. Let T

0
i denote the effective sam-

ple set at the end of all update steps started at time step i in
STRSAGA, and let tSi denote the size of T

0
i . Lemma 3 in [10]

shows that E½SUBOPT
T
0
i
ðSTRSAGAÞ� � ð1þOð1ÞÞHðtSi Þ.

Both LFS-STRSAGA and STRSAGA add a new data point
into the effective sample set every two iterations if the buffer
is not empty. Thus, when LFS-STRSAGAand STRSAGApro-
duce solutions over the same Si, tLi
 tSi . The proof used to
bound the expected sub-optimality of STRSAGA over Si also
applies to LFS-STRSAGA. Therefore, LFS-STRSAGA retains
the linear convergence rate of STRSAGA to reach the statisti-
cal accuracy over Si in sparsity assumption.

5 EXPERIMENTAL RESULTS

In this section, we evaluate the competitiveness of LFS-
STRSAGA in terms of model update time and sub-optimal-
ity, and compare it to the state-of-the-art SGD algorithms
and variance-reduced improvements. All the algorithms are
implemented in C++, and the experiments are run on a
machine consisting of four eight-core 2.0 GHz Intel Xeon E7-
4809 v3 processors. Each core supports two hyper-threads.

5.1 Experimental Methodology

We compare LFS-STRSAGA to the following algorithms:

� STRSAGA:A state-of-the-art serial VR SGD algorithm.
� S-HOGWILD!: A natural streaming data version of

HOGWILD!. To make the comparison fair, S-HOG-
WILD! also performs r gradient computations to
update the model at each time step i, and adopts the
same sample scheme as LFS-STRSAGA. Note that
our sample scheme is better than the original sample
scheme used in HOGWILD!.

2226 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 9, SEPTEMBER 2020

� LF-STRSAGA: An algorithm that can be seen as a
middle ground between LFS-STRSAGA and S-HOG-
WILD!. The only difference between LF-STRSAGA
and LFS-STRSAGA is that a thread uses the full aver-
age of local historical gradients in LF-STRSAGA at
an update step.

We take STRSAGA as the performance and accuracy
benchmarking because it is the original building blocks of
LFS-STRSAGA. S-HOGWILD! is selected as a competitor
because HOGWILD! is the foundation for the most parallel
implementations of SGD and its variants. To show the
impact of the sparse processing for the average of local his-
torical gradients, we implement LF-STRSAGA and compare
it to LFS-STRSAGA.

Benchmarks. We evaluate all the algorithms on two widely
usedmachine learningproblems: Logistic Regression andMatrix
Factorization. For a data point in the logistic regression prob-
lem, the L2-regularized logistic loss function is: fðx;yÞðwÞ ¼
logð1þ expð�ywTxÞÞ þ m

2 jjwjj22.We consider thematrix factor-
ization problem of finding two rank-10 matrices. For a data
point Mij in the matrix factorization problem, the regularized
loss function is: fði;jÞðwÞ ¼ ððLRT Þij �MijÞ2 þ m

2 ðjjLjj2F þ jjRjj2F Þ.
For the logistic regression problem, we use 2 real-world data-
sets (RCV1 [17] and URL [18]) to evaluate all the algorithms,
while using 1 real-world dataset (MovieLens1M [19]) for the
matrix factorization problem. Tables 2 and 3 describe the
details of the datasets and the step sizes used in experiments.
We obtain the optimal step size using grid search on single-
threaded SGD after a single pass of each dataset. In the follow-
ing, we refer to the logistic regression problem using RCV1
andURLdatasets as RCV1 andURLbenchmarks, respectively.
Similarly, the matrix factorization problem using Movie-
Lens1M dataset is referred to as MovieLens1M benchmark. In
all the benchmarks, threads are evenly divided into dedicated
producers and consumers. If a thread acts as a dedicated pro-
ducer, it only receives and stores new data points at different
time steps. Otherwise, the thread only updates themodel deci-
sion variables at different time steps.

Arrival Distributions. Note that the datasets given in
Tables 2 and 3 are static. Following Jothimurugesan et al.
[10], we convert these static training data points into
streams. For each dataset in our experiments, all the training
data points arrive over the course of 100 time steps, and the
number of data points arriving in each time step i is a ran-
dom variable xi. Our experiments are conducted under two
arrival distributions: skewed arrivals and Poisson arrivals. We

choose the skewed arrivals and Poisson arrivals because
they represent two commonly arrival patterns. The skewed
arrival models bursty arrivals, which combines a number of
time steps without arrivals of new data points and occa-
sional bursts of new data points, reflecting the worst case
for streaming data algorithms to deal with at limited proc-
essing rates. Meanwhile, a large number of arrival events
follow the Poisson distribution in real scenarios. In skewed
arrivals, xi ¼M with a probability �

M, and xi ¼ 0 with a
probability 1� �

M, where M > 0 is an integer. In Poisson
arrivals, xi follows a Poisson distribution. In both arrivals,
E½xi� ¼ �, where � ¼ Number of Training Data Points

Number of Time Steps .

5.2 Model Update Time

In this subsection, we present our experimental results for
the model update time of different algorithms over the
course of 100 time steps in all the benchmarks. For a given
benchmark, the model update time of each algorithm run-
ning with different number of consumer threads is normal-
ized to the model update time of STRSAGA. To avoid the
scalability problem of parallel SGD-style algorithms on
modern multicore machine with Non-Uniform Memory
Access (NUMA) architecture [20], we allocate all the con-
sumer threads to one processor and all the producer threads
to another processor. In all the benchmarks, the number of
consumer threads is up to 16, which is the maximum paral-
lelism of one processor on our testbed like [9], [21]. Fig. 3
shows the normalized model update time of different algo-
rithms for all the benchmarks under Poisson arrivals. The
lower update time indicates the better performance.

As shown in Fig. 3, with the number of consumer threads
increasing, the model update time of LF-STRSAGA is signif-
icantly reduced for all the benchmarks. Benefit from the
sparse processing on the average of historical gradients,
LFS-STRSAGA further reduces the model update time of
LF-STRSAGA by over 98 percent. This is because the tested
datasets are sparse and LFS-STRSAGA only considers
the average of historical gradients on a small fraction of the
coordinates when updating the decision variable, yielding
less computation expenses than LF-STRSAGA. The time
complexity of LFS-STRSAGA and LF-STRSAGA depends
on the machine learning problem and the characteristics of
datasets. In logistic regression problem, assuming d and
density are the number of features and the average sparse
density of a given dataset, the time complexity of updating
the decision variables w is O(density) in LFS-STRSAGA and

TABLE 2
Datasets for Logistic Regression and Step Sizes Used in Experiments

Dataset Number of Training Data Points Number of Features Density Steps Size h

RCV1 677399 47236 0.15% 0.5
URL 2396130 3231961 0.004% 0.005

TABLE 3
Dataset for Matrix Factorization and Step Sizes Used in Experiments

Dataset Users Movies Date Range Rating Scale Density Steps Size h

MovieLens1M 6040 3952 4/2000-2/2003 1-5, stars 4.47% 0.005

PENG ETAL.: LOCK-FREE PARALLELIZATION FOR VARIANCE-REDUCED STOCHASTIC GRADIENT DESCENTON STREAMING DATA 2227

OðdÞ in LF-STRSAGA. In matrix factorization problem,
assuming row, col, rank are the row, column, rank numbers
of a given data matrix, the time complexity of updating the
decision variables w is O(rank) in LFS-STRSAGA and
O(row*rank+col*rank) in LF-STRSAGA. The experimental
results under skewed arrivals have the similar figures.

5.3 Sub-Optimality

In this subsection, we evaluate the accuracy of different
algorithms in terms of their sub-optimality over the data
points that have been observed till each time step i. The
metric for sub-optimality is defined in Equation (1) (as
shown in Section 4.2). Lower sub-optimality indicates
higher accuracy.

Figs. 4 and 5 show the sub-optimality of different algo-
rithms for all the benchmarks under skewed arrivals and
Poisson arrivals, respectively. In both figures, the top row
indicates the case in which all the algorithms (except
STRSAGA) run with 1 consumer thread, and the bottom row
indicates the case in which they run with 16 consumer
threads. Because LF-STRSAGA with 1 consumer thread is
equivalent to STRSAGA,we only take STRSAGA as the accu-
racy benchmarking in the case that other algorithms runwith
16 consumer threads. We can observe that both LFS-
STRSAGA and LF-STRSAGA significantly outperform

S-HOGWILD! in most cases because they benefit from the
faster convergence rate by using variance-reduced method.
At some time steps, the sub-optimality spikes because many
new data points arrive now and the number of data points
that have yet to be processed bursts. Because the sparse proc-
essing on the average of historical gradients loses some infor-
mation from other coordinates, LFS-STRSAGA is slightly less
accurate than LF-STRSAGA in some cases. When the number
of consumer threads reaches to 16, the sub-optimality of LFS-
STRSAGA almost matches the sub-optimality of STRSAGA
for RCV1 and URL in most cases, but is relatively bigger for
movieLens1m. This is because the movielens1m dataset is
more dense than another two datasets. More dense the data-
set is, more update conflicts among threadswill occur.

Summary. LFS-STRSAGA almost matches the accuracy of
STRSAGA. Although LFS-STRSAGA is less accurate than
LF-STRSAGA, it has a big advantage in the model update
time. Because maintaining an accurate model on streaming
data is limited in processing time, LFS-STRSAGA is a better
alternative than LF-STRSAGA.

6 RELATED WORK

Our work is related to the research on gradient descent
methods and their parallel implementations. In this section,
we briefly discuss the most related work in turn.

Fig. 3. Normalized update time of different algorithms under Poisson arrivals for (a) RCV1, (b) URL, and (c) MovieLens1m.

Fig. 4. Sub-optimality under skewed arrivals withM ¼ 8�.

2228 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 9, SEPTEMBER 2020

6.1 Gradient Descent Methods

Gradient descent methods are widely used to pursue model
parameters in the training phase of machine learning prob-
lems [22], [23]. According to the amount of data points used
at each update step, gradient descent methods are generally
divided into two classes: Batching Gradient Descent (BGD)
and Stochastic Gradient Descent (SGD) [1]. BGD computes the
full-data gradient to determine the update direction at each
iteration of gradient descent. In contrast, SGD selects a
single data point randomly from the training dataset to
compute the gradient, requiring much less computation
than BGD but missing the information from other data
points. Thus, the variance of SGD can be high. To solve the
problem, variance-reduced variants of SGD are proposed
generally by incorporating a correction term that approxi-
mates a full-data gradient at each iteration of gradient
descent [3], [4], [6], [7], [8], [24].

Roux et al. propose SAG [3], a representative variance-
reduced method that stores the last gradient computed for
each data point and uses their average at each iteration of
gradient descent. Inspired from SAG, Defazio et al. propose
SAGA [4], which optimizes SAG by eliminating a bias in the
update step. Johnson et al. propose SVRG [6] that periodi-
cally computes a full-data gradient without the storage of
historical gradients. Obviously, SVRG requires more com-
putation than SAG and SAGA. To reduce the computation
cost, Kone�cn�y et al. propose Semi-Stochastic Gradient
Descent (S2GD) [7] based on SVRG. It uses a random-data-
gradient and a full-data gradient at each iteration occasion-
ally. Shah et al. propose another variant of SVRG, named
CHEAPSVRG [8], which computes the gradient on a subset
of training data points.

To improve the convergence rate of variance-reduced
methods, Daneshmand et al. suggest to gradually increase
the size of effective sample set [5]. They apply this idea to
SAGA and propose DYNASAGA [5]. As a result, DYNA-
SAGA achieves the statistical accuracy in OðnÞ iterations,
while all of the above methods require OðnlognÞ iterations.
Jothimurugesan et al. extend DYNASAGA to maintain

a model over streaming data, and propose STRSAGA [10].
STRSAGA significantly outperforms another state-of-the-art
streaming version of VR SGD named Streaming SVRG
(SSVRG) [25]. Because fitting an accurate model over stream-
ing data requires the optimization algorithm to be time-effi-
cient, we present LFS-STRSAGA,which can be seen as a lock-
free parallelization of STRSAGA. Compared to STRSAGA,
LFS-STRSAGA almost matches the accuracy of STRSAGA
under sparsity assumption, and LFS-STRSAGA reduces the
model update time by over an order ofmagnitude.

6.2 Parallelization of SGD and its Variants

Parallelization is a crucial requirement for large-scale appli-
cations. In parallel setting, many asynchronous variants of
SGD are proposed on both a single multicore machine and
distributed systems. The seminal text presented by Bertsekas
and Tsitsiklis [26] is the foundation for themost work on par-
allelizing SGD and its variants. The authors present ideas
that using the stale gradient computed across many com-
puters in a master-worker setting at each update step and
different processors only access particular components of
the decision variable. Inspired from these ideas, Niu et al.
propose a lock-free approach to parallelizing stochastic gra-
dient descent named HOGWILD! [9]. The update scheme of
HOGWILD! allows processors to directly modify the deci-
sion variable without using any locking at each iterations of
gradient descent. When most updates only modify small
and disjoint parts of the decision variable, HOGWILD!
achieves a nearly optimal rate of convergence. Nguyen et al.
further proves the convergence of HOGWILD! without the
bounded gradients assumption [27], and Alistarh et al.
proves the convergence of parallel SGD in asynchronous
sharedmemory [28]. The key idea ofHOGWILD! is extended
to the most work on lock-free parallelization of VR SGD
including the asynchronous variants of coordinate descent
[29], SVRG [21], and SAGA [15]. So far, all the parallel imple-
mentations of SGD-like methods focus on the offline algo-
rithms, in which the entire training dataset is assumed
available beforehand. In this paper, we focus on streaming

Fig. 5. Sub-optimality under Poisson arrivals with mean �.

PENG ETAL.: LOCK-FREE PARALLELIZATION FOR VARIANCE-REDUCED STOCHASTIC GRADIENT DESCENTON STREAMING DATA 2229

data arriving as an endless sequence of data points. In this
setting, because the size of training dataset changes over
time, it is more challenging to parallelize VR SGD with high
performance and accuracy. The main challenge of paralleliz-
ing VR SGD on streaming data is how to store new data
points and sample from dynamically changing dataset in
parallel. The research work on non-blocking data structures
[13], [14], [30] inspires the design of the data structures
adopted in LFS-STRSAGA.

7 CONCLUSION AND FUTURE WORK

In this paper, we present a lock-free approach to paralleliz-
ing the VR SGD algorithm on streaming data. Specifically,
we have focused on a modification of STRSAGA by present-
ing a lock-free data structure to process the arrival of
streaming data in parallel, and asynchronously maintain
the essential information to approximate the full-data gra-
dients with low cost. Both our theoretical and empirical
results show that LF-STRSAGA matches the accuracy of the
state-of-the-art VR SGD algorithm on streaming data in
sparse setting that is common to machine learning prob-
lems, and that it reduces the model update time by over an
order of magnitude.

This paper focuses on the design of LFS-STRSAGA for
the settings where memory is not limited. We will explore
how to restrict LFS-STRSAGA to use limited memory in our
future work. For example, we can set a maximum size for
the effective sample set. When the number of the data points
added to the effective sample set reaches to the maximum
size, some data points will be removed from the effective
sample set. One problem is how to choose the data points
for removal, and an alternative scheme is to remove most
sampled data points because a relatively sufficient number
of SAGA steps have been performed on these data points.
Another problem is how to remove any data point from the
effective sample set without using any locking. In addition,
we also consider to enhance the scalability of LFS-
STRSAGA on NUMA systems.

ACKNOWLEDGMENTS

This work was supported by National Natural Science
Foundation of China under Grant 61702499. The authors
would like to thank the anonymous reviewers for their use-
ful suggestions which helped to improve the quality of the
article.

REFERENCES

[1] H. Robbins and S. Monro, “A stochastic approximation method,”
Ann. Math. Statist., vol. 22, no. 3, pp. 400–407, 1951.

[2] L. Bottou and Y. L. Cun, “Large scale online learning,” in Proc. Int.
Conf. Neural Inf. Process. Syst., 2004, pp. 217–224.

[3] N. L. Roux, M. Schmidt, and F. Bach, “A stochastic gradient
method with an exponential convergence rate for finite training
sets,” in Proc. 25th Int. Conf. Neural Inf. Process. Syst., 2012,
pp. 2663–2671.

[4] A. Defazio, F. Bach, and S. Lacoste-Julien , “SAGA: A fast incre-
mental gradient method with support for non-strongly convex
composite objectives,” in Proc. 27th Int. Conf. Neural Inf. Process.
Syst., 2014, pp. 1646–1654.

[5] H. Daneshm, and A. Lucchi, and T. Hofmann, “Starting small:
Learning with adaptive sample sizes,” in Proc. 33rd Int. Conf. Int.
Conf. Mach. Learn., 2016, pp. 1463–1471.

[6] R. Johnson and T. Zhang, “Accelerating stochastic gradient
descent using predictive variance reduction,” in Proc. 26th Int.
Conf. Neural Inf. Process. Syst., 2013, pp. 315–323.

[7] J. Kone�cn�y and P. Richt�arik, “Semi-stochastic gradient descent
methods,” 2013, arXiv:1312.1666.

[8] V. Shah, M. Asteris, A. Kyrillidis, and S. Sanghavi, “Trading-off
variance and complexity in stochastic gradient descent,” 2016,
arXiv:1603.06861.

[9] B. Recht, C. Re, S. Wright, and F. Niu, “HOGWILD!: A lock-free
approach to parallelizing stochastic gradient descent,” in Proc. Int.
Conf. Neural Inf. Process. Syst., 2011, pp. 693–701.

[10] E. Jothimurugesan, A. Tahmasbi, P. Gibbons, and S. Tirthapura,
“Variance-reduced stochastic gradient descent on streaming data,”
in Proc. Int. Conf. Neural Inf. Process. Syst., 2018, pp. 9906–9915.

[11] L. Bottou and O. Bousquet, “The tradeoffs of large scale learning,”
in Proc. 20th Int. Conf. Neural Inf. Process. Syst., 2007, pp. 161–168.

[12] M. P. Herlihy and J. M. Wing, “Linearizability: A correctness con-
dition for concurrent objects,” ACM Trans. Program. Lang. Syst.,
vol. 12, no. 3, pp. 463–492, Jul. 1990.

[13] C. Yang and J. Mellor-Crummey , “A wait-free queue as fast as
fetch-and-add,” in Proc. 21st ACM SIGPLAN Symp. Princ. Practice
Parallel Program., 2016, pp. 16:1–16:13.

[14] Y. Peng and Z. Hao, “FA-Stack: A fast array-based stack with
wait-free progress guarantee,” IEEE Trans. Parallel Distrib. Syst.,
vol. 29, no. 4, pp. 843–857, Apr. 2018.

[15] R. Leblond, F. Pedregosa, and S. Lacoste-Julien , “ASAGA: Asyn-
chronous parallel SAGA,” in Proc. 20th Int. Conf. Artif. Intell. Stat-
ist., 2017, pp. 46–54.

[16] A. Nemirovski, A. Juditsky, G. Lan, and A. A Shapiro, “Robust
stochastic approximation approach to stochastic programming,”
Soc. Ind. Appl. Math., vol. 19, no. 4, pp. 1574–1609, 2009.

[17] D. D. Lewis, Y. Yang, T. G. Rose, and F. Li, “RCV1: A new bench-
mark collection for text categorization research,” J. Mach. Learn.
Res., vol. 5, pp. 361–397, Dec. 2004.

[18] J. Ma, L. K. Saul, S. Savage, and G. M. Voelker, “Identifying suspi-
cious URLs: An application of large-scale online learning,” in
Proc. 26th Annu. Int. Conf. Mach. Learn., 2009, pp. 681–688.

[19] F. M. Harper and J. A. Konstan, “The MovieLens datasets: History
and context,” ACM Trans. Interactive Intell. Syst., vol. 5, no. 4,
pp. 19:1–19:19, Dec. 2015.

[20] H. Zhang, C. Hsieh, and V. Akella, “HogWild++: A new mecha-
nism for decentralized asynchronous stochastic gradient descent,”
in Proc. 16th Int. Conf. Data Mining, 2016, pp. 629–638.

[21] S. J. Reddi, A. Hefny, S. Sra, B. Poczos, and A. J. Smola, “On vari-
ance reduction in stochastic gradient descent and its asynchro-
nous variants,” in Proc. Int. Conf. Neural Inf. Process. Syst., 2015,
pp. 2647–2655.

[22] J. Lee et al., “Wide neural networks of any depth evolve as linear
models under gradient descent,” in Proc. Int. Conf. Neural Inf.
Process. Syst., 2019, pp. 8572–8583.

[23] S. Goldt, M. Advani, A. M. Saxe, F. Krzakala, and L. Zdeborov�a,
“Dynamics of stochastic gradient descent for two-layer neural net-
works in the teacher-student setup,” in Proc. Int. Conf. Neural Inf.
Process. Syst., 2019, pp. 6981–6991.

[24] T. Hofmann, A. Lucchi, S. Lacoste-Julien , and B. McWilliams ,
“Variance reduced stochastic gradient descent with neighbors,” in
Proc. 28th Int. Conf. Neural Inf. Process. Syst., 2015, pp. 2305–2313.

[25] R. Frostig, G. Rong, S. M. Kakade, and A. Sidford, “Competing
with the empirical risk minimizer in a single pass,” in Proc. 28th
Annu. Conf. Learn. Theory, 2015, pp. 728–763.

[26] D. P. Bertsekas and J. N. Tsitsiklis, Parallel and Distributed Compu-
tation: Numerical Methods. Upper Saddle River, NJ, USA: Prentice-
Hall, 1989.

[27] L. Nguyen, P. H. Nguyen, M. van Dijk, P. Richtarik, K. Scheinberg,
and M. Takac, “SGD and HogWild! Convergence without the
bounded gradients assumption,” in Proc. 35th Int. Conf. Mach.
Learn., 2018, pp. 3750–3758.

[28] D. Alistarh, C. De Sa , and N. Konstantinov, “The convergence of
stochastic gradient descent in asynchronous shared memory,” in
Proc. ACM Symp. Princ. Distrib. Comput., 2018, pp. 169–178.

[29] J. Liu, S. J. Wright, C. R�e, V. Bittorf, and S. Sridhar, “An asynchro-
nous parallel stochastic coordinate descent algorithm,” in Proc.
31st Int. Conf. Int. Conf. Mach. Learn., 2014, pp. 469–477.

[30] A. Morrison and Y. Afek, “Fast concurrent queues for x86 process-
ors,” in Proc. 18th ACM SIGPLAN Symp. Princ. Practice Parallel Pro-
gram., 2013, pp. 103–112.

2230 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 9, SEPTEMBER 2020

Yaqiong Peng (Member, IEEE) received the PhD
degree from the Huazhong University of Science
and Technology (HUST), Wuhan, China, in 2016.
Currently, she is an assistant professor with the
Institute of Information Engineering, Chinese
Academy of Sciences. Her current research inter-
ests include parallel algorithms, operating sys-
tems, and virtualization. She has published ten
papers in journals and conferences including the
IEEE Transactions on Parallel and Distributed
Systems, the Future Generation Computing
Systems, CCGRID, IPCCC et al.

Zhiyu Hao received the PhD degree in computer
system architecture from the Harbin Institute of
Technology, Harbin, China, in 2007. He is cur-
rently a professor with the Institute of Information
Engineering, Chinese Academy of Sciences. His
research interests include network security, sys-
tem virtualization, and network emulation.

Xiaochun Yun received the PhD degree from
the Harbin Institute of Technology, Harbin, China,
in 1998. He is currently a full professor with the
Institute of Information Engineering, Chinese
Academy of Sciences, China. He also works with
the National Computer Network Emergency
Response Technical Team/Coordination Center
of China. His research interests include network
and information security. He has authored more
than 200 papers in refereed journals and confer-
ence proceedings.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

PENG ETAL.: LOCK-FREE PARALLELIZATION FOR VARIANCE-REDUCED STOCHASTIC GRADIENT DESCENTON STREAMING DATA 2231

	1983
	2001
	2017
	2032
	2050
	2067
	2081
	2097
	2112
	2125
	2139
	2155
	2170
	2185
	2201
	2220

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

