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a b s t r a c t

Random-walk based sampling methods have been widely employed to characterize social networks.
However, existing random-walk based sampling methods cause inaccuracies in estimating the degree
structure and high sampling costs in estimating clique structures. In this paper, we propose a dual
random-walk based sampling method, called DRaWS by designing a dual residence of the random
walker, to estimate both the distributions of degree and clique size with low costs. The key idea behind
DRaWS is that it leverages the many-to-one formation between many nodes and one clique in a large
graph to shorten the sampling paths and thus reduce the sampling costs greatly while reflecting the
different sampling probabilities of the two types of node structures. Meanwhile, DRaWS employs the
one-to-many representativeness between one node and many nodes in a clique to improve the quality
of samples. Furthermore, two re-weighted estimators for DRaWS’s process are proposed to estimate
the two different node structures. Experimental evaluation driven by real graph datasets shows that
DRaWS drastically cuts down the sampling costs of the state-of-the-art methods while increasing the
accuracy when estimating both the degree and clique structural properties.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

In social networks that can be represented by large graphs,
degree is referred to as the number of neighbors of a user while
clique size is the number of maximum completely connected
users related to the user. Both degree and clique size are im-
portant structures in social networks. In this paper, the statistical
properties of degree in a large graph are called the degree struc-
ture and those of clique size are called the clique structure. The
former is used to describe the coarse-grained property of social
networks while the latter is to describe the fine-grained proper-
ties of relationship among the users and can be applied in the
applications of data mining, classifications and visualizations [1–
5]. Furthermore, the union of the two structures is important
to reflect the connectivity and can be applied in many appli-
cations [6]. For example, according to the propagation model
described in [7], the average degree is to reflect the number of
infected users just through one way (user) while the average
number of the maximum clique that a user participates in is to
reflect the number of infected users from multiple ways (users).
Thus, the union of the average degree and size of the maximum
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clique of the social network can reflect the average influence of
social networks more accurately than a single factor does.

However, given the sheer volumes of data in online social
networks, combined with the inaccessibility of the datasets in
their entireties under many circumstances, the distributions of
the degree and the clique size that are the basis for their average
values respectively, cannot be learned from the whole datasets of
social networks. Thus, random-walk sampling methods [8,9] are
conveniently employed to obtain a small part of users (samples)
to obtain their degrees and clique sizes given the impractical uses
of random sampling on nodes or edges and the serious biases of
the traversal-based sampling [10,11]. The existing random-walk
based sampled methods are referred to as RaWS in this paper.
These RaWS methods [11–13] share the key step of selecting the
next sampling node from the neighbors of the latest-sampled
one [9,14,15] or the previously sampled one. During the sampling
processes, they obtain the degree and clique structures from
the sampled nodes and then output the structural properties of
the whole graph by employing estimation algorithms [9]. From
these sampling processes, we can infer that the existing RaWS
methods mainly focus on designing the sampling processes based
on the degree structures of the sampling nodes while they do
not develop the already-obtained clique structures. Therefore, the
existing RaWS methods cannot differentiate the two structures
during sampling processes, resulting in inaccurate estimations.
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Fig. 1. An example comparing the length and number of paths of the random
walks between RaWS and DRaWS. Assume superstructures S1 = {V1, V2, V3, V4},
S2 = {V5, V6, V7}, S3 = {V8, V9} and S4 = {V10, V11, V12}, RaWS walks over at
least 4 nodes, among 6 possible paths, from V1 to V11 with 5 sampling steps
while DRaWS walks over 2 superstructures S2, S3 along a single path, with 3
sampling steps from S1 to S4 or 2 nodes V5 , V8 .

Furthermore, each of the existing RaWS methods can be de-
scribed as a Markov-chain based sampling process [16,17]. To
obtain accurate estimations about node structures, Markov-chain
based sampling methods are required to reach a stationary state.
Due to the large volumes of data in online social networks, the
number of sampling steps required for a typical RaWS [18–20]
method to reach a stationary state, defined as mixing time of a
corresponding Markov chain process, is extremely large.

In this paper, we propose a new random-walk based sampling
method, called a Dual Random-Walk based Sampling (DRaWS)
method to estimate a large graph. In DRaWS, the maximum clique
of a sampling node is used as a superstructure. The residence
of DRaWS’s random walker, which is referred to as the stepping
point through which the random walker traverses a large graph,
is designed as a dual form of a node and its corresponding
superstructure in any given sampling step. Specifically, when the
random walker is staying on a node, it changes its residence to
the superstructure after the latter is found for the node. Once on
the superstructure, the random walker chooses its next sampling
node from the neighboring nodes of the superstructure (defined
in Section 3). Then the new residence of the walker is the newly
chosen sampling node which will trigger a new round of changes
of residence as described above. DRaWS moves forward with
the changes of the residence of the random walker until the
sampling budget is met (i.e., a given number of samples required
to estimate node structures).

Because finding the degree and clique structures are the pre-
requisite for their estimations, DRaWS, as a new sampling strat-
egy, does not incur additional costs. Furthermore, DRaWS em-
ploys the superstructures to simplify the sampling paths and
then it can reduce sampling costs because the edges among the
nodes within any superstructure are ‘eliminated’ when traversing
among superstructures, leaving only edges between nodes of
neighboring superstructures, or bridges between superstructures.
As described in Fig. 1, without considering backtrackings, the
length of the paths of the random walker for a typical RaWS
method is at least 5 (i.e., V1 → V2 → V5 → V7 → V8 → V11)
while the number of possible paths for its walker is 6 (C1

3 × C1
2

where C1
3 is the number of the paths from V1 to V5 and C1

2 the
number of paths from V5 to V8) as shown in Fig. 1(a). Whereas,
from the perspective of superstructures, the paths from V1 to
V11 in a typical RaWS method are replaced by the paths from
S1 to S4 in DRaWS’s process whose length and number are 3
(S1 → S2 → S3 → S4) and 1 respectively, as shown in Fig. 1(b).

On the other hand, from the perspective of nodes, those paths in a
typical RaWS are replaced by a single path of length 3 (i.e., V1 →

V5 → V8 → V11) by leveraging the dual residence of the random
walker, as shown in Fig. 1(c).

With the design and evaluation of DRaWS, this paper makes
the following contributions.

1. We analyze the key factors affecting the mixing time of a
Markov-chain based sampling process and reveal the rea-
sons why the existing sampling methods have large sam-
pling costs and errors especially in estimating the clique
structures (Section 2). To address these problems, we pro-
pose a dual random-walk based sampling process, named
DRaWS, the first of its kind, with high accuracy and low
cost to estimate the degree and clique structures simulta-
neously. (Section 3).

2. The mixing time of DRaWS’ sampling process is decreased
substantially by reducing the length and the number of the
paths of the random walks and the probabilities of back-
tracking to the already sampled nodes while improving
the representativeness of the samples. This enables DRaWS
to drastically reduce its sampling costs while significantly
reducing sampling errors (Section 3).

3. To accurately estimate the degree and clique structures in
large graphs with samples obtained by DRaWS, we pro-
pose different re-weighted estimators by theoretical anal-
ysis on the dual random-walk based process of DRaWS,
combined with the Horvitz–Thompson estimator [21] and
the unordered estimator [22] (Section 4).

4. To evaluate the effectiveness of DRaWS, extensive exper-
iments driven by real-world graph datasets based on a
DRaWS prototype and the existing state-of-the-art random-
walk based methods are conducted. They show that DRaWS’
sampling costs, such as memory consumption, network
overhead, and computation time, are drastically reduced
while its sampling errors are consistently smaller than
those of the existing random-walk based sampling meth-
ods (Section 5).

The rest of the paper is organized as follows. Section 2 de-
scribes the necessary background and motivates the DRaWS re-
search. Section 3 introduces the DRaWS method while Section 4
proposes re-weighted estimators for DRaWS. Evaluation results
from experiments are presented and discussed in Section 5. Sec-
tion 6 summarizes the related works while Section 7 concludes
our work.

2. Background and motivation

In this section, we first introduce the mixing time of a Markov-
chain based process and then analyze the factors that affect the
mixing time and thus the sampling costs. Next, we analyze and
examine the processes of SRW (simple random walk) and MHRW
(Metropolis–Hasting random walk), which lay foundations for
most of the variations of existing RaWS methods, to identify their
shortcomings of long mixing time and repetitive samples. The
insights obtained from these analyses motivate us to propose the
DRaWS approach.

2.1. Mixing time and hitting time

Suppose M is an irreducible and aperiodic Markov chain pro-
cess. The state space of M is V and P = {p(µ, ν)}, µ, ν ∈ V ,
is the transition matrix of M . After t steps, the relative distance
(△(t, µ)) between µ′s current distribution and its stationary dis-
tribution (π (µ)) is described as:

△ (t, µ) = minν∈V {t, |
π (µ)− p(t)(µ, ν)

π (µ)
|}, (1)
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where p(t)(µ, ν) denotes µ′s distribution after t steps for the
Markov chain process. The mixing time is the minimum value of
△(t, µ) with respect to a parameter ϵ for all the items in the
state space. A typical RaWS process is equivalent to a Markov
chain process where the state space is the node set and the
transition matrix is formed by the probabilities of the random
walker traversing from one node to another in the node set.
However, it is impractical for a large state space (i.e., billions of
nodes in a large graph) to obtain the specific number of steps for
all the nodes to reach their respective stationary distributions.

Nevertheless, it is useful to reduce the mixing time of a
Markov chain process by means of reducing the hitting time
H(µ,ν), (µ, ν ∈ V ), which is defined as the mean number of
steps consumed by the random walker from µ to ν based on the
transition matrix P . As inferred in [23,24], in a connected graph,
less hitting time results in less mixing time.

Suppose that {p_1, . . . , p_k} are k paths from µ to ν and
Pr(path(µ, ν) = p_i), 1 ≤ i ≤ k is the probability of the random
walker reaching ν from µ along p_i. Pr(path(µ, ν) = p_i) is given
as follows.

Pr(path(µ, ν) = p_i) = p(µ, α1)× p(α1, α2)× · · · × p(αn, ν),

(2)

where α1, . . . , αn are constituent nodes of path p_i connecting
nodes µ and ν. Thus, the mean number of steps (labeled as
H(µ, ν)i) required by the random walker from µ to ν along the
i− th path p_i is given as below.

H(µ, ν)i =
1

Pr(path(µ, ν) = p_i)
. (3)

Therefore, the hitting time from µ to ν is given as below.

H(µ, ν) =
1
k

i=k∑
i=1

H(µ, ν)i. (4)

Based on Eqs. (2)–(4), there are at least the following three
factors affecting the hitting time H(µ, ν) and thus the mixing time
of a random-walk based sampling process.

• Length of the paths. Suppose that µ and ν are two nodes in
a large graph, a path from µ to ν is defined as shortL(µ, ν).
For simplicity, we only consider the length of a path from
µ to ν without self-loops. shortL(µ, ν) can be described as
follows.

shortL(µ, ν) = (µ, α1)+ (α1, α2)+ · · · + (αn, ν), (5)

where α1, . . . , αn ∈ V . The longer the path between µ and
ν (µ, ν ∈ V ), the more intermediate nodes are traversed by
the random-walker. More intermediate nodes mean more
multiplicative terms in Eq. (2) that are each less than or at
most equal to one, resulting in a smaller Pr(path(µ, ν) = p_i)
and thus a larger mean number of steps H(µ, ν)i (Eq. (3)).
• Number of the paths. Suppose there are two pairs: (µ, ν) and

(α, β), the number of paths from µ to ν is k while that from
α to β is k + 1, and H(µ, ν)i = H(α, β)i (i ≤ k). Thus, as
described in Eq. (4), the distance between the hitting time
from µ to ν and that from α to β is described as follows:

H(α, β)− H(µ, ν) =
1

k+ 1

i=k+1∑
i=1

H(α, β)i −
1
k

i=k∑
i=1

H(µ, ν)i

=
k× H(α, β)(i+1) − (

∑i=k
i=1 H(µ, ν)i)

k× (k+ 1)
(6)

Fig. 2. The process of SRW being trapped in the superstructure consisting of
nodes V4 , V5 , and V6 . Given the current sample node V2 , the probability of
entering into the superstructure from V2 is 1

2 ×
1
2 =

1
4 while the probability

of jumping out of it from V4 , once in it, is 1
3 ×

1
2 ×

1
2 =

1
12 without considering

other backtracking possibilities (i.e., V4 → V3 → V2 → V3 → V4). Then the
probability of the sampling process being trapped in the superstructure is about
0.23(≃ 1

4 ×
11
12 ).

If H(α, β)(i+1) is larger than the average value in the set
{H(µ, ν)i, 1 ≤ i ≤ k}, we have H(α, β) > H(µ, ν). According
to Eq. (5), the longer length means the larger hitting time.
Therefore, a larger number of long paths can further increase
the hitting time.
• The reversibility of the random walker. Backtracking, where

the random walker traverses to previously sampled nodes,
further lengthens the walker’s paths from µ to ν while
also increasing the number of the paths traversed. As de-
scribed in the studies in [25–27], a non-reversible Markov
chain sampling process shows shorter mixing time than a
reversible one.

2.2. SRW and MHRW

SRW and MHRW are two representative Markov-chain based
sampling processes widely used by many applications.

Simple Random Walk (SRW). SRW [9,14,28] first initializes
a sample node randomly, and then continues to select the next
sample randomly from the neighbors of the current sample node
until the sampling budget is met. The transition probability from
the current sample node µ to the next sample node ν is defined
as follows.

PSRW
(µ,ν) =

{
1

deg(µ) if ν is the neighbor of µ,
0 otherwise,

where deg(µ) is the degree of µ. When SRW is required to reach
the stationary distribution, the sampling probability of the node
µ converges to a fixed value, π SRW

µ =
deg(µ)
2∗|E| [29]. SRW’s process

can be seen as Markov-chain based. When evaluating the mixing
time of SRW, we observe the following two serious problems.

First, the existence of cliques or superstructures increases the
mixing time by increasing the length and the number of the
random walker’s paths from one node to another. Specifically,
as illustrated in Fig. 2, once the sampling procedure enters the
superstructure indicated by the black dashed circle, the prob-
ability of the SRW process backtracking to the nodes of that
superstructure is about 11

12 . Thus, the number of steps for the
process required to ‘jump out’ from such superstructures is large,
thereby increasing the mixing time.

Second, a great number of repetitive samples are produced
because of the sampling process backtracking to the sampled
nodes. In this paper, we measure repetitive samples by percentage
of repetitive samples (PRS), defined as PRS = 100 × (B−U)

B with
B and U being the total number of samples and the number
of unique samples among B respectively. Clearly, the higher the
PRS value, the less useful information can be derived from the
samples obtained with a given sampling budget. Fig. 3(a) shows
that the average PRS values obtained by a single-run simulation of
SRW are significant, between 24% and 36% over the four datasets
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Fig. 3. Percentages of repetitive node samples (PRS) generated averagely by a single-run simulation of the SRW and MHRW methods over the four datasets detailed
in Section 5 as a function of the sampling budget.

Fig. 4. Percentages of repetitive node samples (PRS) over the four datasets with NBRW and CNRW as a function of sampling budget. Despite of their ability to
keep track of a subset of sampled node, both methods still generate high percentages of repetitive samples because they do not change the sampling paths of SRW
fundamentally.

described in Section 5. The high PRS values imply that SRW walks
over the same small connected subgraphs repeatedly during its
sampling process.

Metropolis–Hasting random walk (MHRW). MHRW [16,17]
was proposed to address SRW’s problem of being biased to nodes
with high degrees based on the converged sampling probabil-
ity [30]. In MHRW, the sampling probability of the node µ con-
verging to the stationary distribution is π = 1

|V | [16], where V
is the node set of a graph. MHRW first selects an initial node
randomly, and then continues to select the next sample randomly
from the neighbors of either a previously sampled node or the
current sample one according to a transition probability that is
different from that of SRW, until the termination conditions are
met. The probability of sampling node ν given the previously
sampled node µ in MHRW is defined as follows.

PMHRW
(µ,ν) =

{
1

deg(µ) ·min(1, deg(µ)
deg(ν) ) if ν ̸= µ,

1−
∑

θ ̸=µ PMHRW
(µ,θ ) if ν = µ.

Compared with SRW, MHRW worsens SRW’s problems of long
mixing time and high percentage of repetitive samples. This is
because in MHRW nodes with low degrees will have higher
probability of being sampled than those in SRW [16], which
leads to higher probability of backtracking to superstructures and
already sampled nodes. As showed in Fig. 3(b), the percentage of
repetitive samples in MHRW ranges from 38% to 58% across the
different datasets.

Existing RaWS methods, such as non-backtracking random
walk (NBRW) [17] and circulated Neighbors randomwalk (CNRW)
[31], address the problem of long mixing time by making a
very small part of the nodes or paths irreversible but ignoring
the long paths among the nodes. NBRW avoids backtracking to
the previously sampled node while CNRW prevents backtracking
to any two consecutively sampled paths. However, they cannot
change the random walker’s paths fundamentally because there
are still many superstructures in the paths. Thus, the mixing
time is still large, resulting in huge sampling costs of acquiring
useful samples. Furthermore, NBRW and CNRW still produce

many repetitive samples. Figs. 4(a) and 4(b) show that neither
NBRW or CNRW can significantly cut down the repetitive samples
because of their limited sampling spaces during their respective
sampling processes. Note that CNRW’s PRS is similar to that of
SRW because many nodes are still sampled repeatedly by all
unblocked paths.

Motivation. In addition to the problems of long mixing time
and repetitive samples analyzed above, existing RaWS methods
do not differentiate the degree and clique structures during their
sampling processes, resulting in inaccurate estimations when
characterizing the two different node structures. For example, the
sampling probabilities of superstructures, which are necessary
measures used to estimate the clique structures, are different
from the sampling probabilities of the nodes. In fact, the prob-
ability of the former is larger than that of the latter given that a
superstructure can be found through other member nodes in the
superstructure (detailed in Section 3). Thus, the existing RaWS
methods are unable to estimate the degree and clique attributes
simultaneously and accurately. These problems motivate us to
propose a dual random-walk based sampling method, DRaWS,
which can cut down the mixing time and the repetitive samples
significantly while differentiating the sampling probabilities of
the two structures.

3. Design and analysis of DRaWS

In this section, we first introduce the definition of a hybrid
superstructure-based graph including nodes and superstructures
to facilitate the design of the DRaWS method. Then, we analyze
DRaWS in a more formal manner to explain why it can be re-
garded as a dual random-walk based model from the perspectives
of the node and superstructure respectively. Finally, DRaWS is
analyzed to reveal its advantages over the existing RaWS methods
in terms of the quality of the samples and the mixing time.

3.1. A hybrid superstructure-based graph

Superstructures, formed by the maximum cliques of the nodes,
can be used to simplify the representation of a large graph with-
out self-loops, G = (V , E), where V and E are the sets of nodes
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Fig. 5. (a) an example graph, (b) three superstructures formed by three corre-
sponding cliques, (c) a superstructure-based graph, (d) a hybrid graph consisting
of both nodes and superstructures when the random walker is residing in V1
(S2).

and edges respectively. For example, the original graph in Fig. 5(a)
is simplified into Fig. 5(c) by the three superstructures from the
corresponding cliques shown in Fig. 5(b). Thus, 7 nodes and 11
edges are simplified to 3 superstructures and 3 edges. Although a
superstructure-based graph can help simplify the original graph
greatly, it is time-consuming to construct a pure superstructure-
based graph before the specific sampling process. Then, a hybrid
superstructure-based graph based on the sampled nodes not all
the nodes in a large graph during DRaWS’s process is constructed
to reduce the costs. Furthermore, the existence of both the nodes
and the cliques in the hybrid superstructure-based graph is to
support the dual residence of the random walker as described in
Section 1.

In this paper, a large graph is simplified by its corresponding
hybrid superstructure-based counterpart in two steps during the
sampling process, identifying superstructures and neighboring
nodes of each superstructure.

Identifying the superstructures in a large graph. To simplify
a large graph while retaining its key structural properties for the
purpose of sampling, we are interested in superstructures that are
conducive to learning the clique structures. For each node being
sampled (i.e., current sample node), we identify its maximum
clique as a superstructure to simplify the graph.

Identifying the neighboring nodes of a superstructure. Once
a superstructure is constructed, the set of the unique neighbors
of the nodes in the superstructure are the neighboring nodes
of the superstructure. Notice that only one edge is preserved
between a superstructure and its neighboring node even if there
are more than one edge between the node and the nodes in the
superstructure. For the example of Fig. 5(a), suppose that the
random walker is residing in node V1. Since S2 is V ′1s maximum
clique and hence its superstructure, S ′2s unique neighboring nodes
are V2, V6 and V7. Thus, from the viewpoint of the currently
sample node V1, the origin graph in the form of Fig. 5(a) is
simplified into that in Fig. 5(d), a hybrid superstructure-based
graph, which in fact is equivalent to the pure superstructure-
based graph in Fig. 5(c) if V2 and V6 are sampled in the future and
thus S1 and S3 are constructed accordingly. Therefore, a hybrid
superstructure-based graph includes both nodes and superstruc-
tures and is conducive to estimating both the degree and clique
structures accurately and simultaneously.

Furthermore, in a hybrid superstructure-based graph, there is
a dual many-to-one relationship among nodes inside a super-
structure.

The first many-to-one relationship, referred to in this paper
as many-to-one formation, stems from the fact that the same
superstructure can be identified from at least one but often more
than one nodes since the same clique can be the maximum clique
of more than one node. As shown in Fig. 5, the superstructure
S2 formed by the four nodes V1, V3, V4 and V5 can be identified

Table 1
The definitions used in this paper.
G = (V , E) graph G

|V | Number of nodes in G
|E| Number of edges in G
nei(µ) Set of neighbors of the node µ

deg(µ) Degree of the node µ

subG(µ) µ’s neighbors and the edges among them
S(µ) Superstructure formed by µ′s subgraph
neiS(S(µ)) Set of neighbor superstructures of S(µ)
NeiNode(S(µ)) Set of neighbor nodes of S(µ)
UNeiNode(S(µ)) Sampling set of DRaWS
B Sampling budget

through any of the four nodes since all the four nodes share the
same maximum clique.

The second many-to-one relationship, referred to in this paper
as many-to-one representativeness, reflects the equal or similar
representativeness of the nodes within a superstructure as these
nodes are completely connected. In other words, while the super-
structure is identified via only one node (µ), other nodes in the
same superstructure (S(µ)) exhibit same or similar structures or
attributes as µ. Thus, other nodes in S(µ) can be adequately rep-
resented by node (µ), making the latter an efficient and accurate
representation of the former for the purpose of sampling.

3.2. Design

To avoid backtracking in DRaWS, the neighboring nodes of
each superstructure S(µ) are divided into two groups. The first
contains the unique neighboring nodes of the superstructures
that have not been sampled and is used as the sampling set,
denoted as UNeiNode(S(µ)), while the neighbors that have already
been sampled form the second group so as to avoid repetitive
samples. The key to the DRaWS process is thus to select the
next sample node randomly from the nodes in the first group.
As shown in Fig. 5(d), the next sample node is randomly selected
from its unvisited neighbors {V2, V6, V7}when the random walker
is residing in V1 (S2). The key notations and their definitions used
in this paper are given in Table 1.

To obtain the specific clique size when obtaining the sample
set, it is necessary to find the maximum clique of the node µ

being sampled (current residence of the random walker) during
a typical sampling process. In this paper, we use the algorithm
FindMaxClique proposed in [32] to find µ′s maximum clique be-
cause it can set the upper bound of the clique size dynamically
and has no restrictions on the types of the graphs. This is ex-
tremely valuable for limiting the processing time of finding the
maximum cliques of nodes especially for very large graphs. Al-
gorithm 1 shows DRaWS’s sampling process, where the function
‘randomSelect(UneiNode(S(µi)))’ is to select one node randomly
from UneiNode(S(µi)) and the function FindMaxClique detailed in
Line 3–8 in Algorithm 1 is used to find µ′is maximum clique. Ac-
cording to the study in [32], the time complexity of FindMaxClique
is less than O(deg(µi) × deg(µi)). Note that if there are many
completely connected subgraphs consisting of the same number
of nodes related to a certain node, the first discovered by the
function FindMaxClique is labeled as the its maximum clique in
practice. The other algorithms [33–35] of finding cliques can
be easily employed with minor modifications to obtain clique
structures during a sampling process.

Time complexity. Assume that the cost for acquiring one
neighbor of a node is O(1). During a typical RaWS sampling
process, the time complexity for obtaining the degree of a node
(i.e., µ) can be described as O(deg(µ)) while that for acquiring its
degree structure can be described as O(deg(µ)× deg(µ)). In each
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Algorithm 1: DRaWS
Input: Sampling budget B
Output: Samples : µ1, µ2, ..., µB;

1 µ0 ← Initialize a node randomly from the graph;
2 for i← 0 to B do
3 N ← the number of the nodes in nei(µi);
4 nei[N] ← the neighbors of µi;
5 conn[N][N] ← the edge set containing node connection

relationship of nei(µi), e.g., there is an edge between αi
and αj (αi, αj ∈ nei(µi)), conn[i][j] = 1;

6 Tlimits← 0.025 ;
7 /* Tlimits is set as the limit of the fraction of the current

steps of calculating and sorting the degrees of the nodes
to the total steps which are required to find the clique
S(µ)*/;

8 S(µi)← FindMaxClique(conn,N, Tlimits);
9 µi ← hasVisited;

10 µi+1 ← randomSelect(UneiNode(S(µi)));

Table 2
Time complexities of RaWS and DRaWS for estimating the degree and clique
structures respectively.

Degree structures Clique structures

RaWS
∑i=TR

i=1 O(deg(µi))
∑i=TR

i=1 O(deg(µi)× deg(µi))

DRaWS
∑i=TD

i=1 O(deg(µi)× deg(µi))
∑i=TD

i=1 O(deg(µi)× deg(µi))

sampling step, the cost for existing RaWS methods to prepare the
sample set for the next sample can be considered as O(deg(µ)),
also covering the cost of obtaining the degree structure. Whereas,
the cost for the DRaWS method to select the next sample is
covered by that of obtaining the clique structure of the currently
sampled node (i.e., µ) by Function FindMaxClique in Algorithm
1, which is at most deg(µ) × deg(µ). Table 2 describes the time
complexities of RaWS and DRaWS where TR is the total number
sampling steps for existing RaWS while TD is that for DRaWS.

As elaborated later in this section about the high quality of
samples and the significantly reduced hitting time from one node
to another in DRaWS, the sampling steps required by DRaWS
is much fewer than those by RaWS to estimate a large graph
accurately and hence TD ≪ TR. Consequently, when both the
degree and clique structures are required to be estimated, DRaWS
will incur much lower costs than RaWS. Even if DRaWS is only
required to estimate the degree structure of a large graph, it still
incurs no more costs than RaWS while increasing the accuracy.

3.3. Analysis

Formally speaking, DRaWS uses superstructures to construct
a higher-order and irreversible Markov Chain by remembering
the already sampled nodes. With DRaWS, although the sampled
superstructures can be backtracked by not-yet-sampled member
nodes, the sampled nodes will not be backtracked. This helps
explain why the order of the Markov chain process based on
DRaWS is no more than the sampling budget (B) from the angle of
superstructures. For example, for a given sampling budget B, the
process of DRaWS can be described as an m − th(m ≤ B) order
Markov model as follows,

P(Xn = sn|Xn−1 = sn−1, . . . , X1 = s1)
= P(Xn = sn|Xn−1 = sn−1, . . . , Xn−m = sn−m),

(7)

where i (1 ≤ i ≤ n) is the order of the samples, Xi is the state of
the Markov Chain and si denotes the sampled node along with the
formed superstructure. Based on the sampling process of DRaWS

described above, the transition probability of DRaWS’s Markov
chain process from one superstructure to a node in a hybrid graph
is given as follows, where the requirement for 1⃝ in Eq. (8) is
ν ∈ UNeiNode(S(µ)).

PDRaWS
(S(µ),ν) =

{
1

|UNeiNode(S(µ))| if 1⃝,
0 Otherwise.

(8)

When all the neighboring nodes of the superstructures have
been sampled, the sampling process will be re-initialized. Usually,
the probability of re-initialization decreases with the increase in
the graph size. In our experiments, the maximum probability of
reinitialization is 1% and the minimum probability is 0.1% with
different sampling budgets across the four tested datasets. Such
a small probability of re-initialization will arguably not impact
the effectiveness of DRaWS noticeably.

Although the stationary distribution of the higher-order
Markov chain exists as explained in [26], we do not discuss its
specific value because it is non-trivial to compute and it is not
used in DRaWS to re-weight samples for estimations in a large
graph. Whereas, we analyze DRaWS’s process based on the hy-
pothesis that DRaWS can backtrack to the sampled nodes (called
a reversible DRaWS) to weight the samples with a theoretical
analysis presented in Section 4. Since DRaWS walks from one
superstructure to one of its neighboring nodes, the unit of the
residence of DRaWS’s random walker can be considered as a dual
random-walk based model. We analyze the dual random-walk
based model from the perspective of the reversible Markov chain
as follows.

First, a Markov-chain based sampling process, which traverses
a large graph from one node to another node, is hidden in
DRaWS’s reversible process. The hidden reversible sampling pro-
cess stays on the node µ with the probability pn = 1

|S(µ)| , and
then transits to one of µ’s neighbors labeled as ν, except the
nodes in the superstructure of µ with the probability p′n =

1
deg(µ)+1−|S(µ)| . On the other hand, the hidden reversible sam-
pling process stays on the nodes in S(µ) other than µ with the
probability pnn = |S(µ)|−1

|S(µ)| and then transfers to another node
except µ′s neighbors in NeiNode(S(µ)) with the probability p′nn =

1
|NeiNode(S(µ))|−(deg(µ)+1−|S(µ)|) . Thus, the transition probability of the
hidden sampling process based on DRaWS’s reversible sampling
process, is given as follows.

Pnode
(µ,ν) =

⎧⎨⎩
pn × p′n if ν ∈ nei(µ),
pnn × p′nn if ν /∈ nei(µ)& ν ∈ NeiNode(S(µ)),
0 otherwise.

(9)

Second, DRaWS’s reversible process can be considered as
traversing a large graph from one superstructure to one of its
neighboring superstructures. The transition probability of such a
reversible Markov chain process from one superstructure to one
of its neighboring superstructures, labeled as P revesible

(S(µ),S(ν)), from S(µ)
to S(ν) is given as follows and the requirement for 1⃝ in Eq. (10)
is ν ∈ NeiNode(S(µ)).

P revesible
(S(µ),S(ν)) =

{
m(ν)

|NeiNode(S(µ))| if 1⃝,
0 otherwise,

(10)

where m(ν) is the number of the nodes in NeiNode(S(µ)) that
share the same superstructure of S(ν).

Given the many-to-one formation between the nodes and
its superstructure, the sampling probabilities of the nodes and
the superstructures are different. Eqs. (9) and (10) reflect the
two different transition probabilities, which can reflect the dif-
ferent sampling probabilities in both the degree and the clique
structures respectively. Based on the dual random-walk sampling
process of DRaWS, we design two estimators to estimate the
different node structures as described in Section 4.
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3.4. Improvements over RaWS methods

DRaWS improves the quality of samples by removing repeti-
tive samples and increasing the chances of obtaining representa-
tive samples. Based on the DRaWS’s sampling process, each node
in a large graph has a chance of being the basis for constructing at
least one superstructure that in turn has a chance to be sampled.
However, not all the nodes have the same, or any chance to be
sampled. For example, only the node through which a sampled
superstructure is constructed/identified will be sampled, while all
other nodes sharing the same superstructure will be hidden and
not directly sampled. However, the one-to-many representative-
ness relationship between the sampled node and the nodes in its
superstructure imply that the these hidden nodes in the clique
are adequately represented by the sampled node, thus effectively
increasing the number of nodes accurately represented by the
obtained samples in a large graph for a given sampling budget.

Besides for the high quality of samples it produces, DRaWS
employs three important strategies to reduce the mixing time of
the Markov-chain based sampling process. Since SRW is widely
used in many studies and lays foundations for many variations of
random-walk based methods, we take SRW as a representative
of RaWS methods to show DRaWS’ improvements over RaWS
methods.

First, DRaWS shortens the length of the paths of the random
walker by using the superstructures. As stated in Section 2, the
length of the paths along which the random walker traverses a
large graph affects the mixing time of the Markov-chain based
sampling process.

Let L(µ, ν)SRW be a path from node µ to node ν without
self-loops in SRW’s process.

L(µ, ν)SRW = (µ, α1)+ (α1, α2)+ · · · + (αn, ν), (11)

where α1 ∈ nei(µ), αn−1 ∈ nei(αn−2) and ν ∈ nei(αn) and n
is the total number of the intermediate nodes along L(µ, ν)SRW .
Based on the dual residence of the random walker described in
Section 1, the path from µ to ν in SRW expressed in Eq. (11) can
be simplified in DRaWS into one from one superstructure to an-
other superstructure, L(S(µ), S(ν))DRaWS , which can be described
as follows.
L(S(µ), S(ν))DRaWS

= (S(µ), S(β1))+ (S(β1), S(β2))+ · · · + (S(βm), S(ν)),
(12)

where S(β1) ∈ neiS(S(µ)), S(βm−1) ∈ neiS(S(βm)) and S(ν) ∈
neiS(S(βm)) and m is the total number of the intermediate super-
structures in L(S(µ), S(ν))DRaWS . The relationship between
L(µ, ν)SRW and L(S(µ), S(ν))DRaWS is discussed in the following two
cases.

(a.) Suppose α1 ∈ S(µ), then α2 ∈ nei(µ), α2 ∈ neiS(S(µ))
and α2 /∈ S(µ) which means that the path in DRaWS leverages
the bridge of superstructure of S(µ) to jump to the neighbor of µ
directly. Thus the part of the path labeled as (µ, α1)+ (α1, α2) in
SRW can be replaced by (S(µ), S(β1)) in DRaWS.

(µ, α1)+ (α1, α2) H⇒ (S(µ), S(β1)) (13)

(b.) Suppose α1 /∈ S(µ), then α1 ∈ nei(µ) and α1 ∈ neiS(S(µ))
which means that SRW does not choose the nodes in the su-
perstructure as the next residence of its random walker when
the latter resides on µ. However, only if all the other interme-
diate nodes in path L(µ, ν)SRW choose the next residence of the
random walker in the same way as µ does, will L(µ, ν)SRW =
L(S(µ), S(ν))DRaWS . Otherwise, L(µ, ν)SRW > L(S(µ), S(ν))DRaWS ac-
cording to Case (a). The probability that L(µ, ν)SRW =

L(S(µ), S(ν))DRaWS is given as,

Pr(L(µ, ν)SRW = L(S(µ), S(ν))DRaWS)

=
deg(µ)+ 1− |S(µ)|

deg(µ)
× · · · ×

deg(αn)+ 1− |S(µ)|
deg(αn)

Pr(L(µ, ν)SRW = L(S(µ), S(ν))DRaWS) approaches to zero with
the increase in the length of L(µ, ν)SRW . Thus, DRaWS has the
ability to reduce the length of the path traversed by the random
walker, in contrast to the existing RaWS methods.

Second, DRaWS reduces the number of the paths of the ran-
dom walker. Suppose that there are r1 nodes forming a su-
perstructure S(µ). Then, there are r1 types of different paths
corresponding to the superstructure for the random walker in
SRW, which can be replaced by one path with the help of the
superstructure in DRaWS. Suppose that SRW’s random walker
needs to traverse a large graph from node µ to node α in su-
perstructure S(β) through the nodes in S(µ), where S(β) and
S(µ) are neighboring superstructures, which implies multiple
possible paths. In DRaWS, however, the random walker traverses
from S(µ) to superstructure S(β) in exactly one path. According
to Eq. (3) in Section 2, the hitting time (HSRW

(µ,α)) from µ to α in
SRW is given as:

HSRW
(µ,α) =

1
r1

i=r∑
i=1

1
PSRW
(µ,µi)
× PSRW

(µi,α)

=
1
r1

i=r∑
i=1

(deg(µ)× deg(µi))

(14)

where µi ∈ S(µ). Similarly, the hitting time (HDRaWS
(µ,α) ) from S(µ)

to S(β) in DRaWS is given as,

HDRaWS
(S(µ),S(β)) =

1
P reversible
(S(µ),S(β))

= |NeiNode(S(µ))|. (15)

Therefore, we have:

HSRW
(µ,α) − HDRaWS

(S(µ),S(β)) > deg(µ)× |S(µ)|. (16)

Suppose that a path in DRaWS from S(µ) to S(ν) has k ‘bridge’
superstructures labeled as S(β1), . . . , S(βk). Then, this path can
replace r1 × · · · × rk paths from µ to ν in SRW. Therefore, we
have:

HSRW
(µ,ν) − HDRaWS

(S(µ),S(ν)) >

i=k∏
i=1

deg(βi)× |S(βi)|. (17)

Therefore, DRaWS is able to cut the hitting time from one node
(superstructure) to another node (superstructure) and thus the
mixing time by cutting the number of the paths of the random
walker.

Third, DRaWS reduces the likelihood of reversibility to further
reduce the mixing time by avoiding backtracking to the already
sampled nodes. The non-backtracking strategy reduces the length
of a path and the number of paths from one node to another
by avoiding self-loops and thus cuts down the mixing time of a
Markov-chain based sampling process.

4. Estimator

To quantitatively analyze the structural properties of a large
graph through samples obtained by a typical RaWS method, it
requires an estimator that takes the samples as the input and
outputs the estimations of the graph’s structural properties. Since
DRaWS has obviously different transition processes from the
existing RaWS methods, the estimators proposed by the RaWS
methods could not be directly used in the DRaWS’s process.

To propose a proper estimator corresponding to DRaWS, we
first introduce and analyze the most frequently used estimator,
referred to as the default estimator for RaWS, and discuss why
it is unsuitable for analyzing samples obtained by DRaWS. To
facilitate the analysis and development of appropriate, suitable
estimators for DRaWS, we then introduce two other important
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estimators, the Horvitz–Thompson estimator and an unordered
estimator, that are usually used to analyze samples obtained
with unequal sampling probabilities. Integrating these two esti-
mators with appropriate weights assigned to samples obtained by
DRaWS, we introduce re-weighted estimators for DRaWS.

The default estimator works as follows. If a property of the
sampled element is defined as pro(µ) with a value of k, then the
function 1(pro(u) = k) = 1 is established. Otherwise, 1(pro(u) =
k) = 0. The estimated distribution ω̃k of the property pro(µ) can
be calculated as follows.

ω̃k =
1
B

|B|∑
µ=1

1(pro(µ) = k). (18)

The default estimator treats all obtained samples equally with-
out considering the sampling biases in terms of unequal sam-
pling probabilities of most of random-walk based sampling pro-
cesses including RaWS and DRaWS. In DRaWS, for example, a
superstructure with more member nodes generally has a larger
sampling probability than one with fewer member nodes. The
unequal sampling probabilities make the default estimator inac-
curate in its estimation of the graph properties.

The unequal sampling probabilities can be analyzed from two
angles. The first is to consider the entire sampling process of
DRaWS as a higher-order Markov chain process as described
in Eq. (7). The second is to focus on a version of the sampling
process in which units already sampled will no longer participate
in the subsequent sampling process, a process we refer to as
sampling without replacement. The Horvitz–Thompson estimator
can be used to analyze samples from the higher-order Markov
chain [21] and the unordered estimator is used to analyze the
samples in sampling without replacement [22].

Horvitz–Thompson estimator, proposed by Daniel G. Horvitz
and Donovan J. Thompson [21], is an unbiased estimator highly
efficient for random-walk based graph sampling [36]. Suppose a
sample µ in a large graph is selected with the converged sampling
probability π (µ) and the range of the property pro(µ) is {α1,
. . . , αk}. Then, by using the Horvitz–Thompson estimator, the
distribution ω̃k of αk with the sampling budget B can be obtained
by acquiring the expectation E(ω̃k) as follows.

E(ω̃k) =
1
B

|B|∑
µ=1

1(pro(µ) = αk)
π (µ)

(19)

Furthermore, when the specific value of π (s) is complicated
to obtain, the Horvitz–Thompson estimator, which can be trans-
formed to another form [36], is used to weight the samples with
the transition probability p(s) of each sampling step instead of
π (s) as follows.

ω̃k =
1
W

|B|∑
µ=1

1(pro(µ) = αk) · p(µ), (20)

where W =
∑
|B|
µ=1 p(µ), s ∈ G.

Unordered estimator, proposed in [22], is designed to esti-
mate the properties of samples obtained by sampling processes
without re-placement by ignoring the arrival orders of samples
in its estimation. Suppose there are n items sampled without
replacement from a certain set with a total number of N items.
If the samples are seen as unordered, there are Cn

N types of
unordered samples labeled as xs{s = 1, . . . , Cn

N}. For any given
type of unordered samples, there are n! types of ordered samples.
Let gsi{s = 1, . . . , Cn

N , i = 1, . . . , n!} be the set of ordered samples.
Based on the sampled items, the ordered estimator θOk and the
unordered estimator θUk are used to estimate a certain property of

the sampling set (labeled as pro) by computing their expectations
E(θOk) and E(θUk) respectively as follows.

E(θOk) =
Cn
N∑

s=1

n!∑
i=1

1(pro(gsi) = k) · psi,

E(θUk) =
Cn
N∑

s=1

1(pro(xs) = k) · p(s)

(21)

where psi and p(s) are defined as the sampling probability of the
ordered samples and the unordered samples respectively and k
is one of the value of the sample’s property. In sampling with-
out replacement, the unordered samples are obtained, requiring
that all the related types of the ordered samples are obtained.
The relationship of the sampling probability psi and p(s) can be
described as follows.

p(s) =
n!∑
i=1

psi (22)

The following relationship holds and the proof can be found
in [22].

E(θOk) = E(θUk) (23)

When using the Horvitz–Thompson estimator, it is required
to compute the stable transition probability of a sample (µ) by
considering its arrival orders, which is complicated for DRaWS’s
process especially for a large graph. When using the unordered
estimator, it is required to learn the specific values of S(µ)′s
and µ′s sampling probabilities. However, it is time-consuming to
compute these specific values. For example, based on the descrip-
tion in [29], π (S(µ)) = |NeiNode(S(µ))|

m(µ)
∑

µ∈V |NeiNode(S(µ))| is S(µ)′s sampling
probability whose denominator is the sum of the numbers of the
neighboring nodes of all nodes in a large graph. The case for µ′s
sampling probability is the same as that for S(µ). Thus, neither
Horvitz–Thompson estimator nor unordered estimator can be
used to weight the samples directly obtained by DRaWS with low
complexity. Thus, we propose a new re-weight estimator based
on the ideas of these two estimators as follows.

Re-weighted estimator. Since DRaWS is designed to sample
without replacement, the sampling probability of a sample µ ob-
tained based on the higher-order Markov chain process converges
to a fixed value π (µ) by considering all of µ’s possible arrival
orders. Based on the analysis of the unordered estimator, π (µ)
can be replaced by the converged sampling probability p(µ) with-
out considering µ’s arrival orders. Then the Horvitz–Thompson
estimator can be employed as follows.

E(ω̃k) =
1
B

|B|∑
µ=1

1(pro(µ) = αk)
p(µ)

(24)

Then, we use Eq. (20) to convert the original Horvitz–Thompson
estimator by replacing the sampling probability p(µ) with µ′s
transition probability p(us), resulting in a new estimator referred
to in this paper as the re-weighted estimator

ω̃k =
1
W

|B|∑
µ=1

1(pro(µ) = αk) · p(us), (25)

where W =
∑
|B|
µ=1 p(us), µ ∈ G.

For DRaWS, both the degree and clique size are required to
be estimated. However, since the transition probabilities of the
two types of node structures are different, they require different
re-weighted estimators, as described below.
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4.1. Weights for the degree structure

When the properties of the degree structure are analyzed,
the samples are studied from the perspective of nodes. Thus,
the transition probability of the reversible DRaWS’s process from
one node to another is used to re-weight the sampled nodes.
The algorithm for estimating the properties of degree structures
through analyzing the samples obtained by DRaWS is similar to
Algorithm 2 by replacing the weights P revesible

(S(µ),S(ν)) of P
node
(µ,ν) which is

described in Eq. (9) in Section 3.

ω̃k =
1
SB

B∑
v=1

1(pro(µ) = k) · Pnode
(µ,ν), (26)

where SB =
∑B

µ=1 P
node
(µ,ν).

4.2. Weights for the clique structure

When the properties of the cliques are estimated, the samples
are studied from the perspective of superstructures, requiring the
transition probability of each sampled superstructure in DRaWS.
Therefore, the samples are weighted according to the transition
probability P revesible

(S(µ),S(ν)) (Eq. (10)) of the 1st order Markov chain.
Furthermore, the sampled superstructure (S(µ)) is obtained from
only one of its member nodes in S(µ) by obtaining its maximum
clique. Thus, the probability of one node in S(µ) being selected
to obtain the superstructure is 1

|S(µ)| . Based on Eq. (25), the re-
weighted estimator for high-order node attributes is described as
follows and detailed in Algorithm 2 analyze the properties of the
clique structures.

ω̃k =
1

SUM

B∑
µ=1

1(pro(S(µ) = k)×
1
|S(µ)|

) · P revesible
(S(µ),S(ν)), (27)

where SUM =
∑B

µ=1 P
revesible
(S(µ),S(ν)).

Algorithm 2: DRaWS’s estimator for clique structures
Input: Samples: µ1, µ2, ..., µB;
Output: The property of the high-order node structure proj;

1 if |S(µ)|== j then
2 ωj ← ωj +

1
|S(µ)| × P revesible

(S(µ),S(ν));

3 totalW ← totalW + 1
|S(µ)| × P revesible

(S(µ),S(ν));
4 proj ←

ωj
totalW ;

5. Evaluation

This section presents the evaluation of DRaWS through sim-
ulation experiments conducted on a computer with Intel Xeon
E5620 processors and 64bit Ubuntu Linux OS. For simplicity, a
single core is used to evaluate the costs of the sampling pro-
cesses, although our algorithms can be easily implemented in a
parallel and distributed environment. We choose four real-world
datasets, summarized in Table 3, that have been frequently used
in evaluating sampling algorithms in recently published studies.

Baseline methods. We select four existing RaWS methods
as the baseline. These include two fundamental methods based
on the 1st order Markov chain: Simple Random Walk (SRW)
and Metropolis–Hastings Random Walk (MHRW), and two other
state-of-the-art methods based on higher-order Markov chains:
non-back-tracking random walk (NBRW) and Circulated Neighbor
Random Walk (CNRW).

Sampling steps. The total number of sampling steps for a sam-
pling method is defined to be T×Bwhere T and B are respectively
the number of simulation runs and the sampling budget in a
single-run simulation. In this paper, we compare sampling steps

Table 3
Summary of Graph Datasets.
Graph |V | |E|

com-dblp [37] 317,080 1049,866
amazon0601 [38] 403,394 3387,388
com-Youtube [37] 1134,890 2987,624
wiki-Talk [39][40] 2394,385 5021,410

of DRaWS and the baseline methods in three different ways. First,
for a given number of sampling steps in a single-run simulation,
SRW, MHRW, NBRW and CNRW are simulated for 1000 runs
over the com-DBLP and amazon0601 datasets. Second, for the
com-Youtube and wiki-Talk datasets, the numbers of simulations
are 100 and 10 respectively. Third, due to the high efficiency of
DRaWS which is able to reduce the number of sampling steps
greatly as explained in Section 3.4, only 10 simulations of DRaWS
are implemented over the four datasets with a given sampling
budget in a single-run simulation.

Estimator. To keep the consistency of the original studies,
we use their respective estimators to weight the samples ob-
tained by the existing RaWS (including SRW [9], NBRW [17] and
CNRW [31]). The samples obtained by DRaWS are weighted ac-
cording to Section 4. Furthermore, MHRW, which is an unbiased
sampling method where the samples are obtained with equal
sampling probabilities (Section 2), employs the default estimator.

5.1. Estimation error and effectiveness

To quantitatively present the estimation errors of different
methods, we adopt the measure of normalized mean square error
(NMSE), defined below.

NMSE(ω̃k) =

√
E[(ω̃k − ωk)2]

ωk

where ωk and ω̃k are respectively the true and estimated dis-
tributions about the graph property labeled as k. Furthermore,
NMSE(ω̃k) ≤ 1 means that property k is effectively estimated as
the estimation error is sufficiently small and acceptable [10]. Oth-
erwise, it means that property k cannot be accurately estimated.
Assume that there are total N different values of a property
among which M values are effectively estimated. Then, the effec-
tiveness of estimating this property is M

N (with 100% being the
most effective estimation), which is an important measure for
estimation accuracy in addition to estimation errors.

Table 4 shows that DRaWS is consistently the most effective in
estimation, with the lowest average estimation errors among the
five methods evaluated over the four datasets when estimating
the degree and clique structures. Table 4 further confirms that
samples obtained by DRaWS are highly representative and can
reflect more than 90% original values in a large graph when used
to estimate the two node structures. The specific distributions of
the two structures over the four datasets are described in Fig. 6
in which most of the values about the two node structures are
estimated more accurately than the other four methods.

Furthermore, the five methods are evaluated in terms of the
average estimation errors of the distributions of the degree and
clique size on com-DBLP and amazon0601 as a function of the
sampling budget, shown in Fig. 7. DRaWS is shown to consistently
exhibit higher estimation accuracy than the four baseline RaWS
methods; whereas, MHRW stands out as a much worse performer
than all the other because it produces much more repetitive sam-
ples than others (Section 2). This also confirms that the default
estimator is not adequate for a random-walk based sampling
method because the transition probabilities of nodes in a large
graph fluctuate greatly in practice.
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Table 4
Estimation accuracy in terms of effectiveness and average estimation error (average NMSE) on the distributions of clique size and node degree, where Total_C is
the number of different sizes of the clique that the nodes participate in and Total_D is the number of different degrees in a large graph. The sampling budgets for
com-DBLP, amazon0610, com-Youtube and wiki-Talk are 3500, 4500, 6000 and 10000 respectively.
Methods Clique size Degree

com-DBLP
Total_C = 47

wiki-Talk
Total_C = 25

amazon0601
Total_D = 346

com-Youtube
Total_D = 978

SRW Effectiveness (%) 45 96 47 80
Average NMSE 1.31 0.61 1.05 0.74

MHRW Effectiveness (%) 13 8 5 1
Average NMSE 7.56 237.8 68.15 294.3

NBRW Effectiveness (%) 47 92 51 85
Average NMSE 1.23 0.67 0.99 0.69

CNRW Effectiveness (%) 42.55 96 47 73
Average NMSE 1.32 0.63 1.08 0.80

DRaWS Effectiveness (%) 100 100 92 95
Average NMSE 0.53 0.39 0.57 0.64

Fig. 6. The estimation errors of the distributions of the degree and clique size.

Fig. 7. The average estimation errors of the distributions of the degree and clique size as a function of the sampling budget.
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Fig. 8. The normalized memory costs of different methods as a function of the sampling budget where the memory costs are normalized to the minimum value of
DRaWS’s memory costs.

Fig. 9. The normalized network costs with the sampled data saved in memory where the network costs are normalized to the minimum value of DRaWS’s network
costs.

5.2. Sampling costs

To obtain both the degree and the clique structures, a typical
RaWS process in each sample step acquires a node set nei(µ)
containing potential samples to choose from in the next step
based on the previously sampled node µ and a set Connection(µ)
of edges connecting nodes in the node set. Note that, for the
baseline methods, the node set nei(µ) consists of the neighbors of
µ; whereas for DRaWS, the node set UneiNode(S(µ)) contains the
unvisited neighbors of the superstructure associated with µ. The
edge set Connection(µ), which is to reflect the relationship among
the µ′s neighbors, is used for both existing RaWS and DRaWS to
find the maximum clique of the currently sampled node. The two
types of sets are used to evaluate the costs in terms of memory
and network bandwidth.

Memory costs. For SRW, MHRW, NBRW and CNRW, the sam-
pling sets of each step can be saved in memory so that it is
unnecessary to occupy the network bandwidth to collect them
again when the sampled nodes are visited again. In doing so the
processing time for dealing with the repetitive samples can also
be saved. For DRaWS, it is necessary to record the sampled nodes
to avoid backtracking and the repetitively sampled node. Fig. 8
shows that DRaWS is able to significantly reduce the memory
usage across all the datasets, by a factor ranging from 13× to
561×, with an average of 186×. It is clear that the amount
of reduction in memory usage by DRaWS increases with the
graph size. NBRW occupies more memory than SRW, MHRW and

CNRW because it increases the chance of selecting the nodes with
high degree by avoiding backtracking to the previously sampled
nodes. The sampled nodes with a higher degree means that more
neighboring nodes should be saved in memory than those with a
lower degree.

Network costs. When the sampling methods are used to ob-
tain the distributions of clique size and degree of online networks,
the two sampling node sets described above along each sampling
step are acquired by the network. Therefore, the cumulative size
of the node sets along all sampling steps is used to measure
the network costs of obtaining the distribution of node degree
while that of edge sets along all sampling steps, which is usually
much larger than that of the node sets, is used to estimate the
network costs of obtaining the distribution of clique size. Since
the network costs are influenced by memory costs as stated
above, the former are evaluated, respectively, with or without
recording the history information in memory about the previ-
ously sampled nodes. Fig. 9 shows that DRaWS cuts down the
network costs by a factor from 16× to 48×, with an average of
34×, to obtain the distribution of clique size on com-DBLP and
from 43× to 70×, with an average 58×, to obtain that of node
degree on amazon0601 when the historical information is saved
in memory. Moreover, Fig. 10 shows that DRaWS reduces the
network costs from 58× to 136×, with an average of 87×, to
obtain the distribution of clique size on amazon0601 and from
36× to 51×, with an average 46×, to obtain that of node degree
on com-DBLP when the memory is not used by the comparative
methods to store the historical information.
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Fig. 10. The normalized network costs without the sampled data saved in memory where the network costs are normalized to the minimum value of DRaWS’s
network costs.

Fig. 11. Estimated errors of DRaWS with different simulation runs.

Time costs. As described in Section 3.4, DRaWS cuts down
the mixing time which means that DRaWS can estimate the
structures accurately at a small number of simulation runs (T ).
Fig. 11 shows that even if DRaWS cuts down the number of
simulation runs from T = 1000 to T = 10, it still estimates the
properties with no significant degradation of accuracies. Fig. 12
shows that DRaWS consumes the least time costs when these
methods are used to estimate both the degree and the clique
structures simultaneously. To evaluate the processing time of
estimate the clique size and degree respectively and clearly, we
evaluate the time costs of the five methods that are normalized to
the minimum value of DRaWS’s processing time. Fig. 13(b) shows
that DRaWS cuts down the processing time of the baseline sam-
pling methods in estimating the distributions by a factor of about
10× on average over com-Youtube. When these five methods
are used to estimate the distribution of node degree, Fig. 13(a)
shows that DRaWS spends less time than CNRW since the latter
needs to avoid backtracking to two consecutive sampling steps
(Section 2). However, Fig. 13(a) shows that DRaWS spends lightly
more time than other three base-line methods. This is because,
for each sampling step, DRaWS must find the superstructure of
the sampled node and then collect the neighboring nodes of
the sampled superstructure while other methods only collect
the neighbors of the most recently sampled node to form the
sampling set for the next step. However, such a tiny cost can be
more than compensated by the high-quality samples and accurate
estimations with DRaWS. Furthermore, Fig. 13 shows that the
times that DRaWS cuts down in estimating the clique structure
are much more than that in estimating the degree structure.
Therefore, when estimating the degree and clique structures si-
multaneously, DRaWS can cut down the time costs significantly
because of its reduced number of sampling steps.

6. Related work

Besides the graph sampling methods described in Section 2,
there are other random-walk based sampling methods. Fron-
tier sampling (FS) [10] is proposed to leverage the advantage

of multiple uniform walkers to increase the probability of se-
lecting the nodes in the disconnected subgraphs. Researchers
in [14] propose the generalized maximum-degree random walk
(GMD) to address the problem of SRW biasing to the nodes
with higher degrees. Rejection-controlled Metropolis–Hastings
(RCMH) is also proposed by [14] to address the problem of MHRW
that causes high ratio of repetitive samples by controlling the
probability of staying on the previously sampled nodes. Moreover,
researchers in [11] propose to skip some nodes without sampling
and researchers in [19] design different sampling probabilities
according to the connectivity of nodes. However, the existing
random-walk based methods cannot essentially change the key
steps in SRW and MHRW in which the walker traverses from
one node to one of its neighboring nodes and result in many
repetitive samples and these methods do not differentiate the
two structures. Besides, the existing random-walk based sam-
pling methods [41–43] require a large number of steps, resulting
in huge sampling costs especially in estimating the distributions
of clique size. Researchers in [44] considered that the samples
were produced with different rates to effectively evaluate the im-
balanced enterprise credit. However, DRaWS improves the quality
of samples greatly by producing representative samples to reflect
the influence of social network.

Furthermore, as a remedy to sampling biases, more effective
estimators are proposed to obtain the structural properties of
large graphs by existing sampling methods (i.e., FS [10] and
NBRW [17]). However, these existing estimators cannot be di-
rectly employed by other sampling methods, such as DRaWS,
whose sampling process is quite different from the existing
random-walk based methods. Therefore, we propose two re-
weighted estimators to better analyze the degree and the clique
structures.

7. Conclusions

This paper proposes a new dual random-walk based sampling
method called DRaWS to estimate large graphs fast and accu-
rately. It leverages many-to-one relationships between nodes and
superstructures reflected in the formation of the latter in a large
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Fig. 12. The time costs consumed by the five methods when estimating both the degree and clique size simultaneously.

Fig. 13. The normalized time costs consumed by the five methods when estimating the degree and clique size respectively.

graph to construct a dual Markov chain so that the sampling
process can more accurately reflect different transition probabil-
ities in the degree and clique structures simultaneously, while
using the many-to-one representativeness to produce high qual-
ity of samples. Moreover, new re-weighted estimators from the
perspective of superstructures and nodes are proposed by lever-
aging the knowledge of the Horvitz–Thompson estimator and
the unordered estimator to obtain the structural properties of
large graphs accurately. Extensive experiments driven by real-
world graph datasets show that DRaWS cuts down the sampling
costs dramatically while estimating graph characteristics more
accurately than the state-of-the-art sampling methods. In the
future, we will try to design different sampling methods, sim-
ilar to DRaWS, to estimate several other structures (i.e., motif
estimations [36,45,46]) accurately and simultaneously with low
costs.
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