
6

Exploration and Exploitation for Buffer-Controlled

HDD-Writes for SSD-HDD Hybrid Storage Server

SHUCHENG WANG and ZIYI LU, Wuhan National Laboratory for Optoelectronics, HUST

QIANG CAO, Key Laboratory of Information Storage System of Ministry of Education, HUST

HONG JIANG, University of Texas at Arlington

JIE YAO, School of Computer Science and Technology, HUST

YUANYUAN DONG and PUYUAN YANG, Alibaba Group

CHANGSHENG XIE, Key Laboratory of Information Storage System of Ministry of Education, HUST

Hybrid storage servers combining solid-state drives (SSDs) and hard-drive disks (HDDs) provide cost-

effectiveness and μs-level responsiveness for applications. However, observations from cloud storage system

Pangu manifest that HDDs are often underutilized while SSDs are overused, especially under intensive writes.

It leads to fast wear-out and high tail latency to SSDs. On the other hand, our experimental study reveals that

a series of sequential and continuous writes to HDDs exhibit a periodic, staircase-shaped pattern of write

latency, i.e., low (e.g., 35 μs), middle (e.g., 55 μs), and high latency (e.g., 12 ms), resulting from buffered writes

within HDD’s controller. It inspires us to explore and exploit the potential μs-level IO delay of HDDs to absorb

excessive SSD writes without performance degradation.

We first build an HDD writing model for describing the staircase behavior and design a profiling process

to initialize and dynamically recalibrate the model parameters. Then, we propose a Buffer-Controlled Write

approach (BCW) to proactively control buffered writes so that low- and mid-latency periods are scheduled

with application data and high-latency periods are filled with padded data. Leveraging BCW, we design a

mixed IO scheduler (MIOS) to adaptively steer incoming data to SSDs and HDDs. A multi-HDD scheduling

is further designed to minimize HDD-write latency. We perform extensive evaluations under production

workloads and benchmarks. The results show that MIOS removes up to 93% amount of data written to SSDs,

reduces average and 99th -percentile latencies of the hybrid server by 65% and 85%, respectively.

CCS Concepts: • Software and its engineering→ Secondary storage; • Information systems→ Mag-

netic disks; Cloud based storage; Hierarchical storage management;

Additional Key Words and Phrases: Hybrid storage, IO scheduling, tail latency

This work is supported in part by National Key Research and Development Program of China (No. 2018YFA0701800), NSFC

(No. 61821003 and 61872156), the US NSF under grant numbers CCF-1704504 and CCF-1629625, and Alibaba Group through

Alibaba Innovative Research (AIR) Program.

Authors’ addresses: S. Wang and Z. Lu, Wuhan National Laboratory for Optoelectronics, HUST, 1037 Luoyu Road, Wuhan,

Hubei, 430074, China; emails: wsczq@hust.edu.cn, luziyi@hust.edu.cn; Q. Cao (corresponding author) and C. Xie, Key Lab-

oratory of Information Storage System of Ministry of Education, HUST, 1037 Luoyu Road, Wuhan, Hubei, 430074, China;

emails: caoqiang@hust.edu.cn, cs_xie@hust.edu.cn; H. Jiang, Department of Computer Science and Engineering, Univer-

sity of Texas at Arlington, 701 S. Nedderman Drive, Arlington, TX 76019; email: hong.jiang@uta.edu; J. Yao, School of

Computer Science and Technology, HUST, 1037 Luoyu Road, Wuhan, Hubei, 430074, China; email: jackyao@hust.edu.cn;

Y. Dong and P. Yang, Alibaba Group, Hangzhou, Zhejiang, 311121, China; emails: yuanyuan.dyy@alibaba-inc.com,

puyuan.ypy@alibaba-inc.com.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2022 Association for Computing Machinery.

1553-3077/2022/01-ART6 $15.00

https://doi.org/10.1145/3465410

ACM Transactions on Storage, Vol. 18, No. 1, Article 6. Publication date: January 2022.

mailto:permissions@acm.org
https://doi.org/10.1145/3465410

6:2 S. Wang et al.

ACM Reference format:

Shucheng Wang, Ziyi Lu, Qiang Cao, Hong Jiang, Jie Yao, Yuanyuan Dong, Puyuan Yang, and Changsheng Xie.

2022. Exploration and Exploitation for Buffer-Controlled HDD-Writes for SSD-HDD Hybrid Storage Server.

ACM Trans. Storage 18, 1, Article 6 (January 2022), 29 pages.

https://doi.org/10.1145/3465410

1 INTRODUCTION

Storage clouds have prevalently deployed hybrid storage servers integrating solid-state drives

(SSDs) and hard-drive disks (HDDs) in their underlying uniform storage infrastructure, such
as Microsoft Azure [9], Amazon [45], Facebook [42], Google [23], and Alibaba Pangu [10]. Such
hybrid storage servers employ an SSD-HDD tiered architecture to reap the benefits of both SSDs
and HDDs for their superior IO performance and large capacity, respectively, thus achieving high
cost-effectiveness. Incoming writes are quickly persisted in the SSD tier and acknowledged, and
then flushed to the HDD tier at a later time.

Our observations from real-world production workloads of hybrid storage servers in Alibaba
Pangu indicate that, SSDs are generally over-used while HDDs are less than 10% utilized on av-
erage, missing the opportunity to exploit HDDs’ performance and capacity potentials. Writes are
known to be unfriendly to SSDs for two reasons. First, SSDs have limited Program/Erase (P/E)

cycles [7, 43] that are directly related to the amount of writes. Second, SSDs suffer from unpre-
dictable, severe performance degradation resulting from garbage collections (GCs) [30, 62]. To
guarantee stable write performance of storage servers in write-heavy workloads, cloud providers
have to deploy more and/or larger SSDs, significantly increasing their total investment capital.

Our extensive experimental study on HDD write behaviors, conducted on various HDD products
and with results shown in Figure 1, suggests that a series of continuous and sequential small HDD
writes (e.g., 4 KB) exhibit low latency (e.g., 35 μs) for about 60 ms, and then a sharply elevated
high latency (e.g., 12 ms), which is followed by middle latency (e.g., 55 μs) for about 40 ms. The
three states of write behaviors, or write states in short, are referred to in this article as fast, mid,
and slow writes, respectively. The former two types of writes can provide μs-level responsiveness,
because incoming writes are considered complete and acknowledged (to the host) once their data
have been written into the built-in buffer in the controller. However, when the write buffer is full,
host writes have to be blocked until the buffered data are flushed into the disk, causing slow writes.
This finding inspires us to fully exploit performance potentials offered by buffered writes of HDD,
improving the performance while mitigating write-penalty on SSDs. Our goal is to enable hybrid
storage servers to achieve higher performance and reliability without introducing extra hardware.

However, the key challenge for adopting buffered writes in HDDs to take advantage of the fast
and mid writes is the difficulty in predicting precisely when these write states would occur. The
internal buffer and other components of HDDs are completely hidden from the host. Host can
only identify the current write state according to its own delay, but not future write states. To
address this issue, we build a prediction model for sequential and continuous write patterns that
predicts the next HDD write state. The insight is that the write states of continuous and sequential
HDD write requests are periodical. The prediction of next write state can be achieved with the
information of buffered-write period and current write state. To build the HDD prediction model,
we conduct a profiling process that should be executed when adding or replacing an HDD device
and takes low overhead that just consumes a few seconds. It is also conditionally or periodically
triggered to recalibrate the parameters of the prediction model in runtime with respect to the disk
aging and disk characteristics. We also assess the prediction accuracy of the write-state predictor
and results shows that the predictor correctly identifies at least 99.8% of the slow write state.

ACM Transactions on Storage, Vol. 18, No. 1, Article 6. Publication date: January 2022.

https://doi.org/10.1145/3465410

Exploration and Exploitation for Buffer-Controlled HDD-Writes 6:3

Fig. 1. Sequential writing in a 10 TB western digital HDD.

Then, we propose a Buffer-Controlled Write (BCW) approach. BCW can proactively and ef-
fectively control the buffer write behavior according to the predictor and runtime IO monitoring.
Besides, BCW also actively “skip” slow writes by filling padded data during HDD slow writes. We
further propose a mixed IO scheduler (MIOS) for SSD-HDD hybrid storage by leveraging the
BCW approach. MIOS adaptively redirects incoming writes to SSDs or HDDs depending on write
states, runtime queue length, and disk status. Under high IO intensity, MIOS can be triggered to
reduce IO pressure, the amount of data written, and write-penalty on SSDs while improving both
average and tail latency. In addition, MIOS supports multi-HDD scheduling, which selectively redi-
rects requests to HDD with the lowest predicted latency. Particularly, the multi-HDD scheduling
mechanism could ensure the fast write state is always available by actively syncing the HDD built-
in buffer in a round-robin way.

The main contributions of this article are as follows:

— Through extensive experimental studies on HDD write behaviors, we discover that there
exists a periodic staircase-shaped write latency pattern consisting of μs-level write latency
(fast and mid write states) followed by ms-level write latency (slow write state) upon contin-
uous and sequential writes, because of the buffered write feature in HDDs. To facilitate the
full exploitation of this write latency pattern, we build a predictor to pre-determine what
the next write state is.

— We propose a BCW approach, which proactively activates continuous and sequential write
patterns as well as effectively controls the IO behavior, according to the predictor and run-
time IO monitoring. BCW also employs data padding to actively avoid or skips slow writes
for the host. We further analyze the prediction accuracy and running stability of BCW.

— We design an SSD-HDD MIOS leveraging BCW to improve the overall performance of SSD-
HDD hybrid storage servers, while substantially reducing write traffic to SSDs. We further
present a multi-HDD scheduling of MIOS to fully exploit potential of multiple HDDs.

— We prototype and evaluate MIOS under a variety of production workloads. We also compare
them with different HDD write mechanisms and the state-of-art IO scheduling approaches.
The results demonstrate that MIOS reduces average and tail latency significantly due to
dramatic decrease in the amount of data written to SSDs.

ACM Transactions on Storage, Vol. 18, No. 1, Article 6. Publication date: January 2022.

6:4 S. Wang et al.

The rest of the article is organized as follows. Section 2 provides the necessary background for
the proposed BCW approach. Section 3 analyzes the behaviors of HDD buffered writes. Section 4
describes design and implementation of BCW and MIOS. We evaluate the effectiveness of MIOS
in Section 5. Finally, Section 6 describes related works and Section 7 concludes the article.

2 BACKGROUND AND MOTIVATION

2.1 Primary Storage

Nowadays, primary storage involves popular SSD and traditional HDD. SSDs have become a main-
stream storage media due to its superior performance and lower power consumption than HDDs
[2, 59]. However, the limited write endurance has become a critical design issue in SSD-based stor-
age systems [41]. Furthermore, SSDs suffer from performance-degrading GCs, which recycle the
invalid pages by moving valid parts to new blocks and then erasing old blocks [32, 44]. GCs with
ms-level delays can block incoming user requests, thus leading to long tail latency [20]. On the
other hand, both large IO blocks and high IO intensity can lead to sudden increment in SSD queue,
also resulting in high tail latency [30]. Therefore, recent studies [60] indicate that SSDs do not
always exhibit their ideal performance in practice.

HDDs have large capacity at low cost without the wear-out problem. However, HDDs have
relatively low performance compared to SSDs. A random HDD IO has 2∼3 orders of magnitude
higher latency than an SSD IO. This is primarily because of the ms-level mechanical seeking of
disk head.

2.2 SSD-HDD Hybrid Storage

To accommodate exponentially increasing storage requirement while achieving overall cost-
effectiveness, SSD-HDD hybrid storage has emerged to be an inevitable choice for cloud providers
[47, 56]. Most of them, such as Google [23], Amazon [45], Facebook [42], and Microsoft’s online
services [9], expect larger storage capacity and better performance but at lower cost. To meet this
demand, they increasingly embrace storage heterogeneity by deploying variable types and num-
bers of SSDs and HDDs. The former offers lower IO latency [16] as the primary tier, the latter
provides larger capacity at low cost as the secondary tier. The better performing SSD tier gener-
ally plays the role of a write buffer to quickly persist incoming write data, which are eventually
flushed to the slower but larger HDD tier. As a result, the SSD tier absorbs most of the write traffic
from foreground applications.

2.3 Write Behavior of Hybrid Storage

Write-intensive workloads widely exist in many production environments, such as enterprise ap-
plications, supercomputing, and clouds. Enterprise servers are expected to rapidly persist produc-
tion data in time, such as business databases. Burst buffer [4, 34] in supercomputing systems also
deploys high-performance SSDs to temporarily store instantaneous highly-intensive write data.
More commonly, many backend storage servers in cloud must accommodate write-dominated
workloads, as observed in Alibaba Pangu [38]. Pangu [10] is a distributed large-scale storage plat-
form and provides cost-effective and unified storage services for Alibaba Clouds [26, 37] and Ant
Financial. As such, Pangu needs to minimize the total cost of ownership while meeting strict QoS
requirements like tail latency [6, 18].

Table 1 gives the workload characteristics of production trace data from Pangu. We observe that
some storage nodes (servers) in Pangu rarely serve reads from the frontend and instead must han-
dle amounts of highly-intensive writes. For Alibaba Cloud, the upper-level latency-critical online
services generally build their own application-aware caches to ensure service responsiveness and

ACM Transactions on Storage, Vol. 18, No. 1, Article 6. Publication date: January 2022.

Exploration and Exploitation for Buffer-Controlled HDD-Writes 6:5

Table 1. The Workload Characteristics of Pangu Traces Recorded from One SSD and One HDD in Four
Different Nodes, A, B, C, and D, That Support Online Services

Node

Type

Duration

(min)

Writes

(GB)

Reads

(GB)

Avg. Req.

Size (KB)

Peak

KRPS

Avg.

KRPS

Avg. HDD

IO Uti.(%)

Avg. SSD

IO Uti.(%)

A 45 18.5 1.4 56.0 3.4 0.23 7.6 11.9

B 30 74.4 2 17.7 9.3 2.5 9.8 28.5

C 30 10.7 2.1 4.2 9.6 2.7 4.1 24.6

D 26 10.1 1.7 4.1 11.1 3 4.8 25

Fig. 2. Behaviors of production workloads on four representative hybrid storage nodes in Pangu in terms of
latency, queue length, request size and IO intensity.

reserve local fast-storage to cache hot data for user reads. Therefore, the backend storage nodes
are required to persist new and updated data from frontend nodes as soon as possible. To better
understand this write-dominated workload behavior, we analyze four typical workloads on Pangu
storage nodes A (Cloud Computing), B (Cloud Storage), and C and D (Structured Storage). We
count these workloads from one SSD and one HDD in each node because the workload behav-
ior of all storage devices is basically the same in one node. Observations are drawn as follows. A
comprehensive workload analysis of Pangu can be found in the previous study [38].

— Most requests are writes. Table 1 shows that more than 77% and up to 95% of requests are
writes in these nodes, and the amount of data written is 1–2 orders of magnitude larger than
that of data read from them. Actually, nearly 3 TB data are written to every SSD each day,
which is close to drive writes per day that strictly limits the amount of SSD data written
daily for reliability.

— The IO intensity distribution has bursty patterns. As shown in Figure 2(d) through
Figure 2(g), SSDs experience bursty intensive write workloads (e.g., 11K request per second
in workload D).

— The amount of data written to SSDs and HDDs differ dramatically. For instance, the average
SSD IO utilization is up to 28.5% in workload B while it is less than 10% in HDD. Even so,
most of the HDD utilization is used in dumping SSD data, rarely serving user requests.

— There exists long tail IO latency. As shown in Figure 2(a), SSDs with high IOPS suffer from
heavy-tail IO latency (e.g., the 99.9th percentile latency is 50 ms) due to the queue blocking

ACM Transactions on Storage, Vol. 18, No. 1, Article 6. Publication date: January 2022.

6:6 S. Wang et al.

Table 2. The Device Information about Five Representative HDD Products

Manufacturer Capacity Model
Recording

Technology

Sequential Write

Bandwidth (MB/s)

West Digital
10 TB WD100EFAX [15] PMR 200
8 TB WD8004FRYZ [14] PMR 180
4 TB WD40EZRZ [15] PMR 180

Seagate
8 TB ST8000DM0004 [53] PMR 180
4 TB ST4000DM004 [54] SMR 180

shown in Figure 2(b). This is caused in part by (1) large writes (e.g., 1 MB), and (2) frequent
SSD GCs induced by high write intensity.

— Small size IOs account for a large proportion. As shown in Figure 2(c), more than 75% of write
requests are smaller than 10 KB, and the average request size is nearly 4 KB in C and D.

2.4 Challenge

To relieve the SSD pressure from write-dominate workloads, a simple solution is to increase the
number of SSDs in the hybrid nodes. However, this is a costly solution as it increases the total cost
of ownership.

An alternative is to exploit the severely underutilized HDD IO capacity in hybrid storage nodes
when SSDs are overused. The state-of-art solution SWR [38] redirects large SSD writes to idle
HDDs. This approach can alleviate the SSD queue blocking issue to some extent. However, the
IO delays experienced by write requests redirected to HDDs are shown to be 3–12 times higher
than those written to SSDs. This is clearly undesirable, if not unacceptable, for most write requests
that demand μs-level latency. The key challenge is how to reduce HDD IO delay to the μs-level
that is close to SSDs, which is a seemingly impossible task at first glance. Fortunately, as we look
closer into the write behaviors of HDDs, this is indeed possible, which we will elaborate in the
next section.

3 HDD WRITE BEHAVIORS

To have a comprehensive understanding of HDD write behaviors, so as to assess the possibility of
achieving μs-level write latency on HDDs, we perform continuous and sequential writes, which is
the most friendly write pattern for HDDs.

3.1 Buffered Writes

We conduct a “profiling” process to observe detailed HDD behaviors. The profiling of the HDD
model executes a series of continuous and sequential writes with the same IO size to an HDD,
which roughly consumes 5–10 seconds. The profiling process must be executed when adding or
replacing an HDD device. Certainly, it can be conditionally or periodically triggered to recalibrate
the parameters of BCW model. We select five representative HDD products: West Digital 10 TB,
8 TB, and 4 TB, and Seagate 8 TB and 4 TB. Table 2 lists their device parameters. The recording
technology of 4 TB Seagate HDD is Shingled Magnetic Recording (SMR) and the other four
HDDs are Perpendicular Magnetic Recording (PMR). We draw three observations from the
profiling results shown in Figures 1 and 3.

— For each tested HDD, the series of continuous sequential write requests experience a
similar sequence of three-level write latency, i.e., low, mid, and high latencies, forming

ACM Transactions on Storage, Vol. 18, No. 1, Article 6. Publication date: January 2022.

Exploration and Exploitation for Buffer-Controlled HDD-Writes 6:7

Fig. 3. Sequential writing on four types of HDDs.

a staircase-shaped time series. For example, in the 10 TB HDD, the three levels of write
latency of 16 KB writes are about 66 μs, 135 μs, and 12 ms, respectively.

— The observed HDD write behavior is periodic. At the beginning (right after the buffer
becomes empty), low-latency writes last for a period (e.g., 60 ms in 10 TB), which is
followed by a spike (high-latency writes) and then mid-latency writes. If the write pattern
is continuous, high-latency writes and mid-latency writes will appear alternately.

— The number of low-latency continuous writes in a sequence relies on their I/O size. Smaller
write size leads to a larger number of writes. For example, the number of 16 KB and 64 KB
writes is about 1,200 and 240 on the 10 TB HDD, respectively.

The reasons behind these observed HDD write behaviors are as follows. Modern HDDs deploy
a built-in Dynamic Random Access Memory (DRAM) (e.g., 256 MB for the 10 TB and 8 TB
HDDs, and 64 MB for the two 4 TB HDDs). However, only a part of the DRAM (e.g., 16 MB for
10 TB WD and 8 TB Seagate HDD, 4 MB for 8 TB WD HDD and 4 TB Seagate HDD, 2 MB for
4 TB WD HDD) can be used to buffer incoming write IOs based on external observation. The
remaining capacity of the HDD built-in DRAM can be used as read-ahead cache, ECC buffer [11],
sector remapping buffer, or prefetching buffer [21, 52]. However, the exact buffering and flushing
mechanisms of built-in DRAM in HDD are completely hidden from the host and heavily depend
on the specific HDD models. Fortunately, we can measure the buffered write feature of an HDD
externally and experimentally based on the aforementioned experiments.

Upon successful buffering of a write, HDD immediately informs the host of request completion.
When the buffered data exceed a threshold, the HDD must force a flushing of the buffered data into
their locations in the disk media. During this period, incoming writes must be blocked until the
buffer is freed up again. It is worth noting that, after an idle period, the HDD buffer may become
empty implicitly as a course of flushing data to the disk. However, to explicitly empty the buffer,
we can actively invoke sync () to force flushing.

3.2 An HDD Buffered-Write Model

To formally characterize the HDD write behavior, we build an HDD buffered-write model. Figure 4
illustrates the schematic diagram of this model in the time dimension. The x-axis represents the

ACM Transactions on Storage, Vol. 18, No. 1, Article 6. Publication date: January 2022.

6:8 S. Wang et al.

Fig. 4. The HDD buffered-write model with two complete buffered write sequences.

Table 3. The List of Descriptions about All the Parameters in the HDD Buffered-Write Model

Parameters Description

Lf /m/s The IO delays of write requests in the F/M/S write states

Wf /m/s The cumulative amount of written data for the Fast/Mid/Slow Stages

Tf /m/s The time duration of the Fast/Mid/Slow Stages

si The IO size of write request i

time sequences of transitions among the three write levels, with each sequence being started by
“Sync” event.

A Buffered-Write Sequence consists of three aforementioned types of HDD buffered writes, i.e.,
Fast (low-latency), Mid (mid-latency), and Slow (high-latency) writes, which denotes as F , M , and
S , respectively. In the model, F , M , and S can be thought of as the states a write request can be in
(i.e., experiencing the fast, mid or slow write process). As described in Table 3, these IO delays are
denoted as Lf , Lm , and Ls , respectively. The F state means that an incoming write requestwi with
the size of si can be buffered completely in the built-in DRAM buffer of HDD. The M state means
that the write buffer is close to being full. The S state means that the write buffer is full and any
incoming write request is blocked.

A Buffered-Write Sequence lasts a Fast stage, followed by one or more Slow-and-Mid stage-pairs.
The sequence begins when there is sufficient buffer available for Fast stage (e.g., close to empty).
It ends when current series of continuous writes ends. The Fast, Mid, and Slow stage last for Tf ,
Tm , and Ts respectively, which are determined by the cumulative amount of written dataWf ,Wm ,
andWs in the respective states. Actually,Wf = Tf ∗ si/Lf and it is applied toWm .

We can profile the HDDs to identify such key parameters. For example, Figure 1 shows the
profiling results of 10 TB WD HDD with varying write request sizes. The value of Lf is 180 μs, Lm

is 280 μs and Ls is 12 ms. The value ofTf is 60 ms,Tm is 37 ms andTs is 12 ms.Wf is 16 MB andWm

is 8 MB.Ws depends on the IO size si . According to the HDD buffered-write model, the Fast and
Mid writes of HDD have 100-μs-level latency, which can approach the write latency of SSDs. This
motivates us to design a controllable buffer write strategy for HDDs to reduce writes on SSDs in
hybrid storage systems without sacrificing the overall performance.

4 DESIGN

To fully exploit HDD buffered writes, two critical challenges must be addressed. The first is how
to determine which write state that a write request will be Fast (F), Mid (M), or Slow (S), in order
to properly schedule the write request. The second is how to steer an incoming write request to
HDD without performance degradation.

For the first problem, we build a Write-state Predictor to pre-determine the next write state based
on current write state and buffer state. The ability to determine the subsequent write state of HDD

ACM Transactions on Storage, Vol. 18, No. 1, Article 6. Publication date: January 2022.

Exploration and Exploitation for Buffer-Controlled HDD-Writes 6:9

Fig. 5. The state predication diagram. Each write request can only be one of the three write states, F , M , and
S . Letter “A” means that the current data written in the F and M states are less than theWf andWm values,

respectively. Otherwise, the write buffer is “U.” The Sync operation takes the next write state back to F .

is critical to scheduling incoming write requests. Based on that, we propose BCW, a writing ap-
proach to proactively activate continuous and sequential write patterns that the predictor relies on,
as well as effectively control the IO behavior according to the predictor and runtime IO monitor-
ing. To avoid performance degradation caused by S writes, we propose a proactive padding-write
approach to “skip” the S state by executing slow writes with padded non-user data.

To overcome the second problem, we propose an SSD-HDD MIOS that adaptively controls queue
lengths of SSDs and HDDs in hybrid storage nodes, and determines where to steer a user write
request.

4.1 Write-State Predictor

The next write state could be predicted according to write buffer’s free space and the write state
of the current request. In the HDD buffered write model, each write request state should be one
of F , M , and S state. The HDD buffer state is considered by buffered-write model to be in either A
(available) orU (unavailable). The “A” state means current Accumulative Data Written (ADW)

in the F and M states are less thanWf andWm respectively. Otherwise, the write buffer is in the
“U ” state. Figure 5 shows how the next write state is determined based on the current buffer state
and write state in a State Predication Diagram, which is described as follows:

— F/A: The current write state is F and the buffer is available. Next write state is most likely
to be F .

— F/U : Although the current write state is F , the buffer is unavailable. Next write state is likely
to change to S .

— M/A: The current write state is M and the buffer is available. Next write state is most likely
to remain M .

— M/U : Although the current write state isM , the buffer is unavailable. Next write state should
be S .

— S : The current write state is S . Next write state will be M with a high probability.
— The Sync operation will force the next write state and buffer state back to be F/A in all cases.

Based on that, we design a Write-state Predictor described in Algorithm 1. It identifies what the
current write state is, F , M, or S by monitoring the IO request size and latency, and calculating the
free space in the write buffer. That is, the ADW in the current write state (F or M) is recorded and
compared withWf orWm for predicting the next write state.

4.2 Buffer-Controlled Writes

BCW is an HDD writing approach that ensures user writes using F or M write state and avoids
allocating Slow writes. The key idea of BCW is to make buffered write controllable. Based on the
Write-state predictor, we design BCW as described in Algorithm 2.

ACM Transactions on Storage, Vol. 18, No. 1, Article 6. Publication date: January 2022.

6:10 S. Wang et al.

ALGORITHM 1: The Algorithm of Write-state Predictor

Input: Current write request size: size ;

The last write state: state ; Current accumulative amount of data written: ADW ;

The amounts of data written in the F state and M state: WF and WM

Output: Write-state prediction for the next request (F , M or S)

1: function Predictor()

2: if state == F then

3: if (ADW + size) < Wf then : return F

4: else: return S

5: end if

6: else if state == M then

7: if (ADW + size) < Wm then : return M

8: else: return S

9: end if

10: else: return M

11: end if

ALGORITHM 2: The Algorithm of Buffer-Controlled Write

Input: The max loop of Buffered Write Sequence: Loopmax

Size of request Ri : sizei ; Current written amount: ADW ;

The state of last write: state ;

Active padded writes and their size: PS ,P F and sizeP S ,sizeP F

1: sync ()
2: while loop < Loopmax do

3: if request Ri in the HDD write queue then

4: write Ri to HDD, update ADW and state

5: else

6: if Pr edictor () == S then

7: f laдH DD = False // Stop receiving

8: while state == S do

9: write PS to HDD, update ADW and state

10: end while

11: f laдH DD = True // Start receiving

12: reset ADW ; loop++

13: end if

14: if Pr edictor () == M then

15: write P F to HDD; update ADW and state

16: end if

17: end if

18: end while

Upon activating BCW, a sync () operation is invoked to force synchronization to empty the buffer
actively. BCW dispatches sequential user writes to HDD if it is predicted to be in F or M state, oth-
erwise pads non-user data to HDD, until it reaches the max setting loop (or unlimited) of Buffered
Write Sequence. If there are user requests in the queue, BCW writes them serially. After a write is
completed, BCW adds its write size to ADW, and updates the write-state accordingly.

During light or idle workload periods with sparse requests, the HDD request queue will be empty
from time to time, making the write stream discontinuous. To ensure the stability and certainty of
buffered writes in a sequential and continuous pattern, BCW will proactively pad non-user data
to the HDD. There are two types of padded data, PF and PS . The former is used to fill the F and
M states with 4 KB non-user data; the latter is to fill the S state with larger block size, e.g., 64 KB

ACM Transactions on Storage, Vol. 18, No. 1, Article 6. Publication date: January 2022.

Exploration and Exploitation for Buffer-Controlled HDD-Writes 6:11

of non-user data. A small PF can minimize the waiting time of user requests. A large PS helps
trigger Slow write quickly. Note that BCW still executes the write-state predictor algorithm for
each padded write.

More specifically, BCW continuously calculates ADW in the current state (F or M). When ADW
is close toWf orWm , it means that the HDD buffered write is at the tail of the Fast or Mid stage.
The S write state may occur after several writes. At this point, BCW notifies the scheduler and
proactively triggers the Slow write with PS . To avoid long latency for user writes, at this period,
all incoming user requests have to be steered to other storage devices, such as SSDs. When an
S write is completed, the next write will be M according to the write-state predictor. Then BCW
resets the ADW and accepts user requests again.

We also find it unnecessary to proactively fill padded writes in the F stage before ADW exceeds
Wf . When ADW does not reachWf , the physical disk operation is not yet triggered and the buffer
can absorb user requests for this period. When ADW exceedsWf in a short time of period, it means
that the buffer will begin to flush the data to the disk and the next write state will be changed to
S . On the other hand, when ADW is less than Wf for a long time of period, the disk can flush
the buffered data automatically so that the next write state may be F . However, it does not affect
performance. We apply this observation to the scheduler design in the next section.

In most cases, the sequential and continuous write pattern induced by BCW is reasonably stable.
However, this pattern can be broken, e.g., HDD reads. Besides, the S write states may be triggered in
advance by user requests or PF writes. To regain the control of buffered writes, BCW continuously
executes PS until a S write state is detected. As a result, the write-state predictor will be recalibrated.
The cost of this strategy is the waste of IO and storage of BCW to perform PS writes to HDD. In
addition, we can also issue sync () to reset the buffered write state in BCW. Howerver, a sync () can
take several hundred milliseconds, during which the HDD cannot accept any writes. Fortunately,
in the experiment, we find that the BCW interrupted cases are rare.

BCW stores incoming data to HDD in a log-append manner. This differs from traditional logging
mechanism in existing file systems like ext4 [40], which allocates writes to the tail logical address
of the log, ensuring address continuity. However, it doesn’t ensure IO continuity and does not
determine the next write state. In contrast, BCW maintains both address and IO continuity, making
the buffer writing control effectively.

Accuracy and Stability. We assess the prediction accuracy of the write-state predictor and the
robustness of BCW. We define three synthetic workloads and describe them as follows. The total
data written volume for each workload is 100GB. We perform predictions for each request, and cal-
culate both the correctness and error rate of prediction on the F , M , and S write states respectively.

— Synthetic workload (1): Sequntial write. It generates sequential and continuous write IO
stream with random sizes from 4 KB to 128 KB. We invoke sync() after each 1GB data written.
This workload represents the normal state of BCW.

— Synthetic workload (2): Write dominated. It randomly invokes a small number (i.e., less than
1% of total requests counts) of read requests or sync operations to the HDD, which occasion-
ally interrupts BCW.

— Synthetic workload (3): Mixed read/write. Read requests account for 50% of the total work-
load, which causes frequent BCW interruptions and predictor resets. Note that BCW should
stop running in this case. However, we can still estimate the accuracy of write-state predictor
and the stability of BCW.

The results in Table 4 show that the predictor correctly identifies at least 97.1% of the F state,
97.9% of the M state, and 99.8% of the S state. The high probability for mis-predicting the F and M
write-states to S is because the prediction policy tends to prevent the S write-state, thus avoiding

ACM Transactions on Storage, Vol. 18, No. 1, Article 6. Publication date: January 2022.

6:12 S. Wang et al.

Table 4. The Correctness and Error Rate of the Prediction on F , M , and S Write States

Actual state F M S

Predicted state F M S F M S F M S

Workload 1 99.89% 0.00% 0.11% 0.10% 97.88% 2.02% 0.01% 0.12% 99.88%

Workload 2 97.19% 0.89% 1.92% 0.19% 97.91% 1.90% 0.03% 0.17% 99.79%

Workload 3 99.68% 0.00% 0.32% -% -% -% -% -% -%

We use the West Digital 10 TB HDD (model WD100EFAX shown in Table 2) as a typical example.

performance degradation. It is better than mis-predicting an actual S write-state to other state.
In the synthetic workload 2, the error prediction rate of F write-state is 1.8% higher than in the
workload 1, while that of M and S write-states is almost unchanged. This is because BCW could be
occasionally interrupted and then restart from the F stage. However, mis-predicting a F state does
not degrade the performance. In the workload 3, BCW is frequently interrupted by read requests
and cannot access M or S stages in a buffered write sequence. Besides, we carry out the same
synthetic test for other types of HDDs and the results are the same basically.

Moreover, BCW performs recalibration in runtime based on the runtime IO results with re-
spect to disk aging and variation on disk characteristics. BCW recalibrates at the end of each
complete HDD buffered write sequences. It records key parameters (i.e., Wf , Wm and Ws) in the
HDD Buffered-Write Model from both the actual disk IO feedback and the prediction results in
each sequence. When the difference of the parameter values between the prediction model and
the actual IO feedback exceeds a PF size (i.e., 4 KB), BCW will adjust these parameters in the pre-
diction model to the actual value. In addition, to smooth adjust parameters in recalibration, we
record the actual parameters from the last ten write sequences, and use their average value as a
new parameter value. Secondly, the recalibration will not be triggered if a buffered write sequence
is unexpectedly interrupted by a read request or a sync () operation.

Persistency and Reliability. The built-in buffer in almost all of the existing HDDs is volatile,
which could cause data loss in the face of unexpected power outages. Meanwhile, it is enabled
to buffer write data at the default factory settings. Therefore, in the ordinary case, all HDD-write
requests would write into the buffer first and then flush to the disc. However, it is hard for the
hosts to explicitly determine whether the data remain in the built-in buffer. Compared with that,
BCW monitors and controls the states of the built-in buffer in an active manner, which makes the
unreliability time window of the buffered data deterministic and measurable.

4.3 MIOS

BCW provides a proactive and controllable buffer writing approach for HDDs. In this section, we
further propose an MIOS for SSD-HDD hybrid storage to leverage BCW effectively. The scheduler
decides whether or not to steer user writes to an HDD queue according to the results of the write-
state predictor and current queue status.

Architecture. The architecture of MIOS is shown in Figure 6. Generally, a typical hybrid storage
node could contain multiple SSDs and HDDs in practice, and the number of HDDs is usually higher
than that of SSDs. In MIOS, all disks are divided into independent SSD-HDD pairs, each of which
contains an SSD and one or more HDDs, and is managed by an independent MIOS scheduler
instance. MIOS monitors all request queues of SSDs and HDDs at runtime, judiciously triggers the
BCW process, and determines whether a user write should be directed to a selected HDD or SSD.
MIOS creates a device file to each HDD in the configuration process, which stores BCW writes in
an append-only manner. Before MIOS scheduling, a profiling is performed to determine the key
parameters (Wf ,Wm , etc.) for the write-state predictor.

ACM Transactions on Storage, Vol. 18, No. 1, Article 6. Publication date: January 2022.

Exploration and Exploitation for Buffer-Controlled HDD-Writes 6:13

Fig. 6. Architecture of the MIOS. MIOS monitors all request queues of SSDs and HDDs in SSD-HDD pairs.
The user writes meeting the conditions are redirected to appropriate HDDs.

ALGORITHM 3: The Scheduling Strategy of MIOS

Input: SSD queue length at time t : l (t);
Queue length threshold: L; HDD available flag: f laдH DD ;

Schedule Strategy: MIOS_D or MIOS_E

1: if (f laдH DD == True) then

2: if l (t) > L && Pr edictor () == F or M then

3: Send to HDD queue

4: else if MIOS_E && Pr edictor () == F then

5: Send to HDD queue

6: else: Send to SSD queue

7: end if

8: else: Send to SSD queue

9: end if

Scheduling Strategy. In Algorithm 3, the SSD request queue length l (t) at time t is a key param-
eter in MIOS. When l (t) is larger than a predefined threshold L, the scheduler steers user writes
to an HDD with the prediction of it being F or M write state. The threshold L is pre-determined
according to the actual performance measurements on SSD. Specifically, we measure the write
latency under different SSD queue lengths. If the request with queue length l has latency larger
than the IO delay of HDD in the M state, we simply set the threshold L to the minimum l . The
rationale is that when the SSD queue length is larger than L, the SSD writes’ latencies will be at the
same level as their latencies on an HDD in the F or M write state with BCW. L can be determined
and adjusted experimentally according to workload behaviors and storage device configurations
at runtime. This strategy mitigates, though not avoids, the long-tail latency upon workload bursts
or heavy GCs on SSD [44, 57]. In these cases, the SSD request queue length can be 8–10 times
longer than its average. Therefore, redirected HDD writes not only relieve SSD pressure imposed
by bursty requests and heavy GCs, thus curbing the long-tail latency, but also lower the average
latency.

Additionally, when the queue length of SSD is less than L, triggering BCW is optional. Enabling
or Disabling BCW in this case is denoted as MIOS_E or MIOS_D, respectively. In other words,
MIOS_E strategy allows redirection with BCW when the queue length of SSD is lower than L.
MIOS_D strategy, by contrast, disables redirection when the SSD queue length is lower than L. We
will experimentally analyze the positive and negative effects of MIOS_D and MIOS_E in Section 5.

Finally, BCW requires the complete control over HDDs that cannot be interfered by other IO op-
erations. When an HDD is executing BCW and a read request arrives, MIOS immediately suspends

ACM Transactions on Storage, Vol. 18, No. 1, Article 6. Publication date: January 2022.

6:14 S. Wang et al.

ALGORITHM 4: The Multi-HDD Scheduling Algorithm of MIOS

Input: Request Ri ; Number of HDD N ;

The available flag of H DDi : f laдH DDi ;

1: if Ri == read then

2: stop BCW in H DDi

3: f laдH DDi = false

4: send to H DDi queue

5: else

6: if f laдH DD1−N
== false then

7: write back to SSD

8: end if

9: predict-state[] = Predictor(H DD1−N)

10: if predict-state[H DDi] has the fastest write state above other HDDs && (f laдH DDi) == True then

11: send to H DDi queue

12: end if

13: if predict-state[H DD1−N] != F then

14: enable full BCW

15: end if

16: if predict-state(H DDi) != F && predict-state(H DDt (t !=i)) == F then

17: sync(H DDi)

18: end if

19: end if

BCW and serves this read, and then try to redirect all writes to other idle disks with a multi-HDD
scheduling. We will explain this in the next section. For read-dominated workloads, BCW can also
be disabled to avoid interfering with reads.

Multi-HDD Scheduling. MIOS and BCW actually increase the IO burden of HDDs. First, MIOS
redirects a large number of SSD write requests to HDDs. Second, BCW has to write padded data
into HDDs. Single HDD has limited IO capacity, making the HDD difficult to be always IO-available
when performing SSD redirection. Meanwhile, BCW has to suspend to serve read requests in ad-
vance. All of these could make the HDDs bottleneck and affect the efficiency of MIOS scheduling.
In addition, it is hard for MIOS to redirect requests using only the best-performing F write states
to achieve better latency. This is because the F stage has limited capacity and could only be used
after sync (). When storage nodes suffer intensive writes, the F stage will be used up quickly. MIOS
has to invoke sync to obtain the F write state in a round-robin way for all idle HDDs. We find in
our experiments that the sync operation is costly, which could cause MIOS to lose the redirecting
opportunities even if SSDs are busy.

To improve the effectiveness of MIOS and to further exploit the low latency feature of HDD
buffered write, we propose a multi-HDD scheduling mechanism in MIOS and describe it as
Algorithm 4. MIOS is extended to monitor all HDDs in an SSD-HDD pair. It prioritizes HDD that
is idle (i.e., queue length is 0) and has the lowest predicted latency to maximize write performance.
Particularly, this mechanism is proposed to increase the utilization of the best-performing F write
states in HDD. First of all, the multi-HDD scheduling will preemptively free the HDD buffers to
ensure MIOS always has available F write states for scheduling. It will invoke the sync operation
on the HDD that totally depletes F stage, on condition that available F write states still exist in
other HDDs. Then, once the F write state is available for any HDD, MIOS will enable the full
BCW process to boost IO capacity under high write intensity. If all HDDs are busy, requests will
write back to SSD. Finally, if BCW is interrupted by a read request or other operation, MIOS could
write request to the other HDDs and restore the availability of BCW as soon as possible.

ACM Transactions on Storage, Vol. 18, No. 1, Article 6. Publication date: January 2022.

Exploration and Exploitation for Buffer-Controlled HDD-Writes 6:15

Implementation. BCW is a runtime write-scheduling mechanism running on SSD-HDD hy-
brid storage. BCW is orthogonal to local file system running on HDDs. MIOS can be implemented
in either file-level or volume-level to jointly manage SSDs and HDDs in a hybrid storage. In this
work, MIOS provides a simple yet flexible file-level request scheduling scheme atop of file systems.
HDD-logs of MIOS can directly map to specified areas within raw HDD without native file sys-
tem, or be configured as large log-files of the local file system (e.g., Ext4 and F2FS) running on
the HDD to leverage their mature file-to-storage mapping mechanism. To reduce overhead of the
underlying file system, MIOS employs direct IO mode to access the log by calling Linux kernel
functions such as open, close , read , and write . When enabling BCW, its involving HDDs should
be fully controlled and cannot serve any IO of other applications. To meet this demand, MIOS
carefully coordinates multiple SSDs and HDDs in a hybrid storage server. It merely writes user
data to the HDDs while storing the log-metadata to the SSDs to ensure that metadata IO does not
interrupt BCW. Besides, for MIOS based on file system, modifying a file could trigger its metadata
update and leads to uncontrolled file-system metadata IOs, which interrupts BCW. Therefore, we
pre-create and allocate the space of all log-files with a fixed size and cache its addresses. MIOS
only updates their file data in place, which cannot generate extra file-system metadata IOs.

MIOS manages the data-chunk location to an SSD-log file in each MIOS instance. We design
a request node as metadata structure that records and tracks each redirected chunk data in the
HDD-log. Each request node represents a request pointed to its relevant chunk. It contains five
fields: the chunk file name of a redirected write request (File ID), length of the request (Length),
location of the request that is persisted in the log file (Physical offset), position of the request in
the corresponding chunk file (Logical offset), and the request arrival time (Timestamp) to keep the
sequential order of requests. When the chunk data are redirected into the HDD-log, the relevant
request node as metadata is periodically written into the SSD-log. We aggregate multiple request
nodes to 512 B before flushing to match the sector size of SSD. In addition, if there are no IO writes
for more than 100 ms, the unaggregated request nodes will also be forcibly flushed. MIOS set a
single thread to serially write new request nodes to the SSD-log in the order of their Timestamp
field. Therefore, the data location manager will not suffer a lock contention issue even if there are
multiple threads updating a chunk file at the same time. Besides, all request nodes are also cached
in the memory to accelerate reads for locating the redirected chunks. After a crash, the recovery
procedure scans all SSD-logs to rewrite all redirected chunks to their own original locations. It only
uses intact request nodes with five fields and broken request nodes will be discarded. Therefore,
the data location manager will not be inconsistent after system restart.

We periodically perform HDD garbage collection (HDD-GC) to recycle the logs on HDD.
When an HDD is idle, all file-data stored in the log are re-written to their own original chunk files,
and then the log are completely recycled. HDD-GC also should be forcedly triggered when the
log size exceeds a predefined threshold (e.g., 16 GB). HDD-GC first sequentially and continuously
reads all data in the log to reduce seeks, and then extracts and merges the user data to update their
correspond files. These chunk file updates can be performed in batch [63]. Meanwhile, the multi-
HDD scheduling mechanism can distribute requests to other HDDs during the HDD-GC execution
to maintain the available BCW process. Additionally, HDDs have not write-induced wear-out prob-
lem unlike SSDs. Therefore, the temporary HDD-storage wastage caused by BCW is not a burden.

5 EVALUATION

5.1 Experiment Setup

We run experiments for performance evaluation on a server with two Intel Xeon E5-2696 v4 pro-
cessors (2.20 GHz, 22 CPUs) and 128 GB of DDR4 DRAM. To understand the impact of different

ACM Transactions on Storage, Vol. 18, No. 1, Article 6. Publication date: January 2022.

6:16 S. Wang et al.

Fig. 7. The average, 99th and 99.9th -percentile latency under four Pangu production workloads, comparing
Baseline with MIOS_D (a logscale is used for the y-axis).

Fig. 8. The CDF of SSD queue length.

storage configurations on the performance, we choose two models of SSDs, a 256 GB Intel 660p
SSD [13], a 256 GB Samsung 960EVO SSD [19], and a 480 GB Intel Optane 905P SSD [12]. Their
long-term stable write throughputs are 0.6 GB/s, 1.5 GB/s, and 2.1 GB/s, respectively. Three models
of HDDs are WD 10 TB, WD 4 TB, and Seagate 4 TB, as described in Table 2.

By profiling those HDDs as described in Figure 1, we could obtain the key parameters of BCW.
For example, the 10 TB WD HDD has a Wf of 16 MB and Wm of 8 MB. Using the process to pre-
determine the queue length threshold L explained in Section 4, we set L to 1 for workload of node
A, 3 for node B, and 2 for node C and D, where the workloads of nodes A, B, C, and D are described
in Table 1 of Section 2. As discussed earlier, MIOS has two schemes, MIOS_D and MIOS_E. When
the SSD queue length is less than L, the former conservatively disables request redirection; the
latter allows request redirection but only redirects user write requests to the F write state. The
Baseline for the evaluation is writing all user data into the SSDs. In addition, a complete BCW
sequence consists a series of one Fast stage and ten Mid/Slow stage-pairs (Figure 4). At last, the
number of HDDs N is set to 1 through 4 in an SSD-HDD pair. When N = 1, MIOS cannot perform
multiple HDD scheduling. In experiment, we deploy all HDDs as the same model (i.e., WD 4 TB).

5.2 MIOS Under Production Workloads

We first evaluate the effectiveness of MIOS_D under four Pangu production workloads on the WD
10 TB HDD.

Write Performance. Figure 7 shows that the average and tail latency (99th and 99.9th) of all
four workloads are significantly reduced by MIOS_D. Among four workloads, B gains the most
benefit. Its average, 99th and 99.9th-precentile latencies are reduced by 65%, 85%, and 95% respec-
tively. On the contrary, these three latencies in A are only reduced by about 2%, 3.5%, and 30%,

ACM Transactions on Storage, Vol. 18, No. 1, Article 6. Publication date: January 2022.

Exploration and Exploitation for Buffer-Controlled HDD-Writes 6:17

Fig. 9. The average request latency in six request-size groups that are classified by IO size with MIOS_D.

respectively, which is far less than the other workloads. The reason is that the redirection in
MIOS_D is only triggered when the queue length is high, but A has the least intensity and thus the
least queue blocking, which renders MIOS much less useful.

To better understand the root causes for the above experimental results, the cumulative distri-

bution functions (CDFs) of SSD queue lengths for four workloads are shown in Figure 8. MIOS_D

significantly shortens queue lengths compared to Baseline. B and A have the maximum (95%) and
minimum (15%) reduction in their queue lengths. Therefore, the overall queueing delay is reduced
significantly.

Request Size. To deeply understand impact of write size in MIOS and BCW, we break down
all redirected requests into six groups with different ranges of IO sizes, and measure the average
latency with MIOS_D in each group.

Figure 9 shows that, MIOS_D reduces the average write latency of size below 64 KB in all four
workloads, and workload B benefits the most. The average latencies of three groups of small-sized
requests (<4 KB; 4 KB–16 KB; 16 KB–64 KB) are reduced by 61%, 85%, and 59%, respectively. The
other three workloads also reduce their latencies differently. In Baseline, small and intensive re-
quests result in queue blocking more frequently (Figure 2) than in MIOS_D. Therefore, MIOS_D is
the most effective in reducing latency in such cases.

However, in groups of requests larger than 256 KB, the average latency is increased in all work-
loads except B. For workload D, the average latency is increased by 31.7% in the >1 MB group,
and 12.1% in the 256 KB–1 MB group. The average latency of the 256 KB–1 MB group in C is
also increased by 20.1%. The reason is twofold. First, large SSD writes under light load have better
performance than HDDs because SSDs have high internal-parallelism that favors large requests.
Second, large writes are relatively sparse and not easy to be completely blocked. For example, the
average latency of the >256 KB request-size groups in Baseline is very close to the raw SSD write
performance.

Queue Length Threshold L. To evaluate the effect of L selection, we compare the pre-defined
L value (Def) determined by the process described Section 4.2, with L + 1 (Inc). Note that the
pre-defining process for queue length threshold is designed to tradeoff between decreasing the
write latency and reducing the write traffic to SSD.

Figure 10(a) shows that Inc slightly reduces average, 99th and 99.9th-percentile latency com-
pared to Def. Among the four workloads, the maximum reduction in average latency is less than
10%. This is because the higher queue length is, the longer waiting delay a request experiences.
Therefore, Inc can acquire more latency gains by redirection than Def. However, the choice of
L value can greatly affect the amount of redirected data. In Figure 10(b), the number of redirected
requests is much smaller in Inc than in Def. The amount of redirected data for workloads A∼D is de-
creased by 94%, 64%, 52%, and 62%, respectively. These results are consistent with the implications
of Figure 8 that longer queue length in SSD triggers much fewer SSD overuse alerts, significantly
reducing chances for request redirecting to HDD.

ACM Transactions on Storage, Vol. 18, No. 1, Article 6. Publication date: January 2022.

6:18 S. Wang et al.

Fig. 10. MIOS_D with different queue length threshold L.

Table 5. The Amount of Redirected Writes Data and Requests with the MIOS_D and
the MIOS_E Strategies

Workload Type A B C D

Writing Method Baseline / MIOS_D / MIOS_E

SSD Writes

(GB)
14.7 / 13.9 / 1.2 61.2 / 57.1 / 48.1 7.2 / 6.1 / 2.1 7.5 / 6.3 / 2.1

HDD Writes

(GB)
- / 4.1 / 61.6 - / 18.4 / 56 - / 4.5 / 22.3 - / 4.4 / 25.6

SSD Requests

(millions)
0.43 / 0.36 / 0.04 4.4 / 3.7 / 1.3 4.8 / 3.7 / 1.6 4.7 / 3.8 / 1.3

MIOS_D vs. MIOS_E. We compare MIOS_D with MIOS_E in terms of the amount of data writ-
ten to SSD and HDD, and the number of redirected write requests. Results are shown in Table 5.
Workload A has the highest percentage of redirected data and requests with MIOS_E. It reduces
the SSD written data by up to 93.3% compared with Baseline, which is significantly higher than
MIOS_D. Since workload A has lower IO intensity, MIOS_E has more chances to redirect even when
the queue length is low. Note that we also count the padded data in BCW as the amount of data
written in HDD. In such a case the total amount of data written can vary a great deal. Workload
B has the lowest percentage of redirection with MIOS_E, which reduces SSD written data by 30%.
Nevertheless, the absolute amount of redirected data is very large because the SSD written data
in Baseline is larger than any of the other three workloads. Compared with MIOS_D, MIOS_E can
greatly decrease the amount of data written to SSD. Therefore, it is more beneficial to alleviate
SSD wear-out.

However, the negative effect of MIOS_E is the increase of average and tail latency. In Figure 11(a),
MIOS_E leads to generally higher average latency than MIOS_D by up to 40% under workload A.
Although for other three workloads, the average latency remains basically unchanged. This is
because much more writes (i.e., >90%) are redirected by MIOS_E than by MIOS_D in workload A,
and requests in HDD experience longer latency than that in SSD. Moreover, the 99.9th-percentile
latency of MIOS_E is increased by 70% in A, 55% in B, 31% in C, and 8% in D compared to MIOS_D.
The results can be explained by Figure 11(b). MIOS_E increases the average latency for nearly all
the IO size groups, especially for the groups with requests of size larger than 256KB.

Comparison with Other HDD Writing Mechanisms. We compare BCW with other HDD
writing mechanisms. The first one is BCW_OF that only uses the F write state by proactively issu-
ing sync () when the ADW reachesWf in a HDD. The second one is Logging [36, 48], which is an
ordinary way to improve the performance of HDD-writes by storing written data in an append-
only manner. The difference between Logging and BCW is that the former cannot predict or selec-
tively determine to use low-latency HDD buffered write states while the latter can. We measure

ACM Transactions on Storage, Vol. 18, No. 1, Article 6. Publication date: January 2022.

Exploration and Exploitation for Buffer-Controlled HDD-Writes 6:19

Fig. 11. MIOS_D vs. MIOS_E.

Fig. 12. Latency and SSD written data reduction with BCW_OF and Logging (normalized to BCW).

the average, 99th , 99.9th-percentile latency and the SSD written data reduction with BCW_OF and
Logging. We combine all these HDD write mechanisms with MIOS scheduler that uses the MIOS_E
strategy. We take MIOS_E with BCW as the baseline and present performance normalized to it.

Figure 12(a) shows that the 99.9th-percentile latency of BCW_OF is increased by 2.19× over BCW

in workload C. The 99th-percentile latency in the B, C, and D workloads also increases by 2.5×, 1.1×,
and 1.9×, respectively. It means that BCW_OF performs less efficiently on reducing tail latency
when the workload becomes heavier. This is because such mechanism redirects less requests when
SSD suffers queue blockage. Figure 12(b) shows that, the data volume of SSD redirection is reduced
by 71% in workload A and 26% in workload B. As mentioned in Section 4.2, sync () is a high cost
(e.g., tens of milliseconds) operation to flush the HDD buffer and HDDs cannot serve any requests
during this time window.

Furthermore, Logging can reduce 10% more SSD written data than BCW at the cost of explicit
write latency increase. The 99.9th-percentile latency in the B, C, and D workloads is 2.0×, 1.9×,
and 1.6× higher than BCW, reaching several milliseconds. This is because Logging cannot prevent
write requests to encounter the S write states during intensive workloads.

Comparison with Existing IO Scheduling Approaches. LBICA [1] and SWR [38] are the
state-of-the-art IO scheduling approaches in SSD-HDD hybrid storage. In the write-dominated
workload, LBICA redirects requests from the tail of the SSD queue to the HDDs only when SSD
has long queue length. Besides, SWR redirects large size write requests preferentially and allows
redirecting when the SSD queue length is low. We normalize the performance of LBICA and SWR

to MIOS_D and MIOS_E, respectively.
Figure 13(c) illustrates that LBICA increases the average and tail latency by up to 2.0× and 6.2×

over MIOS_D in workload B. LBICA calculates the redirect threshold L by comparing the average
latency of random HDD-writes with that of the SSD-writes in tail of the queue, leading to a high

ACM Transactions on Storage, Vol. 18, No. 1, Article 6. Publication date: January 2022.

6:20 S. Wang et al.

Fig. 13. Latency and SSD written data reduction with SWR and LBICA.

Fig. 14. Latency and SSD written data reduction with multiple-HDD scheduling (normalized to MIOS_E with
N = 1).

L value. It means that LBICA can only redirect requests when SSD suffers high queue length, which
is a rare condition. Figure 13(d) shows that the SSD data reduction of LBICA is decreased 70%–90%
than MIOS_D. Compared to LBICA, MIOS_D performs SSD-write redirection under a lower queue
length, because BCW could provide μs-level latency for HDD-writes.

Figure 13(a) shows that the average and tail latency of SWR is 1.2× –2.1× higher than MIOS_E.
There are two main reasons. First, SWR prefers to redirect requests with large IO size. However,
Figure 9 indicates that the performance degradation of redirecting large size request is more than
that of a small one, due to the high internal parallelism of SSDs. Second, SWR cannot take full ad-
vantage of the low-latency HDD write states and results in increased write latency. The advantage
of SWR scheduling scheme is that it could efficiently perform redirection under high IO inten-
sity. Figure 13(b) shows that the amount of SSD write reduction of SWR is 3.4× more than that of
MIOS_E in workload B.

Multi-HDD Scheduling. We measure the average, 99th and 99.9th-percentile latency of write
requests with N values from 1 through 4. When N = 1, the multi-HDD scheduling mechanism
cannot be performed. We take the MIOS_E with N = 1 as the baseline and present performance
and data redirection normalized to it, because multi-HDD scheduling is more adaptable to high-
intensity workloads.

Figure 14(a) shows that the multi-HDD scheduling provides a consistent improvement in
request latency over single-HDD. The average latency of N = 4 is 30% lower compared to the
baseline (i.e., N = 1) in workload A, and that is 17% higher in other three workloads. This is be-
cause the multi-HDD scheduling undertakes most redirection requests with the best-performing F
write state. Meanwhile, the normalized 99th-tail latency on N = 4 is decreased 50% than baseline
in workload B, 20% in workload A and C, and 10% in workload D. It redirects more requests
under high IO intensity, which further relieves SSD pressure. However, the 99.9th tail latency
is not significantly reduced, which even presents an increase of 3% and 23% in workload A and

ACM Transactions on Storage, Vol. 18, No. 1, Article 6. Publication date: January 2022.

Exploration and Exploitation for Buffer-Controlled HDD-Writes 6:21

Fig. 15. MIOS_D performance with three different models of HDDs under workload B.

Table 6. Amount of Data Written to and Number of Requests Processed in SSD with Different
Models of HDDs Under Workload B

Baseline WD-10TB WD-4TB SE-4TB

SSD written data (GB) 61.2 57.1 57.0 56.8

SSD write requests (thousands) 4453 3733 3729 3684

C, respectively. In the multi-HDD scheduling, MIOS redirects more requests to HDDs when the
number of HDDs increases. Particularly, the number of redirected writes with the 0.5% largest IO
size increase, which experience longer latency when written to HDD than that to SSD. It results
in the increase of 99.9th-percentile latency.

Figure 14(b) demonstrates that the multi-HDD scheduling further improves SSD data reduction.
In workload B with the most amount of written data, N = 4 could redirect 4× more data than
N = 1, while N = 2 or N = 3 is enough to redirect more than 92% of requests in other three
workloads. We also measure the performance of multi-HDD scheduling with the MIOS_D strategy.
We find that two HDDs are typically enough for redirection in all four workloads, and more disks
present little improvement. This is because MIOS_D just performs redirection on IO bursty.

Experiment with Other HDDs. We use the 4 TB WD, 4 TB Seagate, and the 10 TB WD HDD to
replay workload B, comparing MIOS_D (with the default L value) with the Baseline in terms of the
request latency and the amount of data written to SSD. Workload B is chosen for this experiment,
since it has the most SSD written data and the most severe SSD queue blockage, clearly reflecting
the effect of IO scheduling.

Figure 15 shows that different models of HDDs do not have a significant impact on the effect
of MIOS_D. First, the average and tail latencies for all the three HDDs are virtually identical, with
a maximum difference of less than 3%. In addition, in the six request-size groups, only the >1 MB
group exhibits a large difference among different HDD models. The average latency of the 10 TB
WD HDD is 14% lower than that of the other 4 TB HDDs. This is because of the native write
performance gap between them. It can be found from Table 6 that different models of HDDs do
not notably affect the amount of data redirected, with little difference of less than 5%.

Experiment with Other SSDs. Next, to further explore the effect of MIOS with different types
of SSDs, we first deploy a lower-performance 660p SSD. We replay the same workload A that
provides the lowest IO pressure, and employ the MIOS_D and MIOS_E strategies, respectively.
From the latency CDF shown in Figure 16(a), when using the lower-performing SSD, more than
7% of the requests are severely affected by long queuing delay and the maximum queue length
reaches up to 2,700. It surpasses the experiment result with the better-performing 960EVO (e.g.,
23 shown in Figure 8(b)). This is because when the IO intensity exceeds the ability of 660p SSD to
accommodate, the SSD queue length builds up quickly. As a result in Figure 16(b), the average and

ACM Transactions on Storage, Vol. 18, No. 1, Article 6. Publication date: January 2022.

6:22 S. Wang et al.

Fig. 16. Queue length CDF and latency under Pangu workload A, with the 660p SSD for three scheduling
strategies.

Fig. 17. Queue length CDF and latency under Pangu workload B with Optane SSD.

tail latencies in Baseline rise sharply compared with 960EVO SSD shown in previous Figure 7. The
average latency in Baseline is 90 ms and the 99th-percentile latency exceeds 5 second.

With such high pressure on the 660p, MIOS can help reduce some IO burden on SSD by redi-
recting queued requests to HDDs. As seen from Figure 16, MIOS_D decreases the queue block-
age with 45% queue length reduction to the maximum. At the same time, the average latency in
MIOS_E returns to μs-level (e.g., 521 μs), and the 99th and 99.9th-percentile latencies are reduced
to an acceptable range of 2.4 ms and 87 ms, respectively. Because MIOS_E redirects much more
SSD requests with low queue length, it prevents queue blockage in SSD, particularly for a lower-
performing one. By comparing this experiment on a lower-performing SSD with an earlier one
on a higher-performing SSD, we believe that when the SSD in hybrid storage cannot support the
intensity of a write-dominated workload, MIOS and BCW can provide an effective way to improve
the overall IO capacity by offloading part of the workload from SSD to HDD.

To further explore the effect of MIOS with the Intel Optane SSD, we replay the workload B
that provides the highest IO pressure and employ the MIOS_D strategies. We do not use MIOS_E
here because it is an aggressive strategy that redirects more requests to HDDs than MIOS_D. The
excessive latency performance gap between HDDs and Optane SSDs will result in unacceptable
performance degradation. Figure 17 shows that MIOS_D is still effective in the hybrid storage
when using Optane SSD as primary write buffer. The 99.9th-tail latency is reduced by up to 19%
and it also decreases the queue blockage with 60% queue length reduction to the maximum in
workload B. Although the Optane SSD has less GC overhead than NAND-based SSD, they have
similar ability to handle large size IOs (e.g., Optane SSD takes 230 μs while 960EVO takes 260 μs
for a 512 KB write IO in average). Therefore, the intensive write workload can also block queues
and increase tail latency in Optane SSD.

In addition, we compare BCW to a system that simply adds an extra SSD. We equally distribute
the workloads to two SSDs. The system can achieve the same or even better latency than MIOS_E,
but at a significantly increased hardware cost.

ACM Transactions on Storage, Vol. 18, No. 1, Article 6. Publication date: January 2022.

Exploration and Exploitation for Buffer-Controlled HDD-Writes 6:23

Fig. 18. The average and tail latency of read requests.

Read Performance. We measure the average, 99th and 99.9th-percentile latency of external
read requests (i.e., user reads) with MIOS_D, MIOS_E, SWR, and LBICA in all four workloads. We
present all approaches normalized to the Baseline where all user data are directly written into the
SSDs and then dutmped to HDDs.

The read performance of MIOS decreases slightly compared with that of the Baseline. Figure 18
indicates that the average read latency in MIOS_E is increased by 27%, 23%, 14%, and 28% in work-
load A, B, C, and D, respectively. The reasons are twofold. First, compared to Baseline, MIOS by-
passes more SSD-writes directly to HDDs in advance, indicating that the HDDs have to serve more
read operations. However, the majority of read requests in origin Pangu workloads are HDD-reads.
For example, the proportion of SSD-reads in the total number of requests are less than 1.5% in all
workloads. This is because Pangu periodically flushes data from SSD to HDD, and most of the data
are already stored in HDDs. Therefore, MIOS_E turns up to 31% SSD-reads to HDD-reads and af-
fects these average read latency slightly. Second, BCW uses the append manner to improve write
performance and actively pads non-user data to HDDs. It results in the file data being scattered
on HDD. However, we find that the overhead of BCW on HDD-reads is relatively small. This is
because most read requests in these Pangu workloads are discrete spatially and temporally, i.e., ran-
dom HDD-reads. In addition, the average size of the read requests is similar to that of writes, e.g.,
4-16 KB, so that BCW rarely divides a read request into multiple read IOs. Note that, as described
in Section 4.3, MIOS periodically writes logging data back to their interrelated chunk files, mean-
ing that the long-term read performance in MIOS is identical with that in Baseline. Moreover, the
increases of the 99th- and 99.9th-percentile latency are less pronounced with MIOS_D and MIOS_E.
Because a large part of the tail read latency is caused by queue blocking, which could get to hun-
dreds of milliseconds. We also observe that read latency increases more with MIOS than that with
SWR, since MIOS leads to more HDD-reads and has worse data locality in HDD. Besides, LBICA

has little effect on both average and tail read latency because it redirects far less SSD write requests
than other approaches.

We discuss the tradeoffs between improved write performance and degraded read perfor-
mance caused by MIOS and BCW. In short, MIOS_D reduces the average and tail latency of
write requests, which account for 84%-98% of the total requests, by 65% and 95%, respectively.
In contrast, those of read requests, which account for 2%–16% of the total requests, rises by 7%
and up to 10% respectively. For the MIOS_E strategy, the average and tail latency of write re-
quests is reduced by up to 60% and 85%, and those of read requests increase by 28% and 18%,
respectively. Therefore, we indicate MIOS approach gains more benefits for applications with
write-dominated IO patterns, in which a few reads with limited latency increase could be ac-
cepted. Users can determine the appropriate scheduling policy according to current IO patterns.
MIOS_E is more suitable for the burst and intensive-write environments, while MIOS_D can
be used for write-dominated workloads. In addition, MIOS can be disabled in read-dominated
situations.

ACM Transactions on Storage, Vol. 18, No. 1, Article 6. Publication date: January 2022.

6:24 S. Wang et al.

Table 7. The HDD Utilization with MIOS_E and MIOS_D in Single-HDD and with
MIOS_E in Multi-HDD

Workload
Type

Duration
(s)

Net Uti.
Baseline

Net Uti.
MIOS_D

Net Uti.
MIOS_E

Gross Uti.
MIOS_E

Avg. Net Uti.
(N = 4) MIOS_E

Avg. Gross Uti.
(N = 4) MIOS_E

A 2700 7.6% 7.9% 11.9% 27.9% 8.8% 8.8%
B 1800 9.8% 18.2% 26.8% 56.9% 20.0% 20.5%
C 1800 4.1% 10.7% 16.2% 35.8% 7.6% 7.6%
D 1560 4.8% 12.3% 17.3% 39.5% 8.4% 8.5%

5.3 Cost of BCW

We further analyze and evaluate the wasted storage-space of BCW due to the padded data for
keeping continuous HDD written pattern and skipping the S write state.

Amount of Padded Data. We first analyze the amount of padded data written to HDD. In
Table 5, we measure the data amount with MIOS_D and MIOS_E when a BCW sequence contains
one Fast stage and 10 Mid/Slow stage-pairs. The statistics in the table clearly indicates that
MIOS_E generates substantially more HDD write data than MIOS_D. When more requests are
redirected, the amount of padded data increases proportionally. For example, the padded data
with MIOS_E is 15× that with MIOS_D in workload A, 3× in workload B, 4× in workloads C and
D. Frequently triggering BCW increases the occurrences of padded data. Furthermore, when the
amount of redirected data increases, the Fast stage without padded data will be used up faster
and more Mid/Slow stage-pairs with padded data will be executed.

HDD Utilization. The original Pangu traces exhibit low HDD utilization, which is defined by
the percentage of time that an HDD is actually working on processing IO requests. More specifi-
cally, Tables 1 and 7 show that HDDs generally keep very low utilization (e.g., <10%) in all four
workloads. Using MIOS and BCW, the HDD utilization has been increased with different degrees.
The gross utilization is defined to be the percentage of the total execution time when HDD is work-
ing on IO requests (including sync () operation), which is the real usage of the disks. The highest
gross utilization is 56.9% under workload B. This means that the disk still has enough free time
for HDD-GC. To analyze the amount of time HDD is effectively working for user requests, we de-
fine net utilization as the percentage of the total execution time that the HDD spends exclusively
serving user requests, excluding the time spent on padding data in BCW. Thus, it is positively cor-
related to the amount of redirected data. The net utilization of HDD in MIOS_E is higher than that
in MIOS_D. Under workload B and MIOS_E, HDD has the highest net utilization improvement over
Baseline, by 2.7×, while the same is enhanced to 1.8× under MIOS_D. In addition, if MIOS enables
multi-HDD scheduling, the HDD utilization would drop significantly. First, multiple HDDs would
serve the data volume of SSD redirect requests. Second, multi-HDD scheduling does not require
BCW to pad data frequently, which results in less padded data and lower gross utilization.

5.4 Write Intensity

The efficiency of BCW heavily depends on the write intensity. To better understand this relation-
ship, we test the average and tail latency as a function of write intensity (in terms of IO trans-
mission interval) with three scheduling strategies as the Baseline (_B), MIOS_D (_D), and MIOS_E

(_E). We initialize the IO size to 32 KB, and continuously issue write requests using (Flexible I/O
tester) [5]. Since FIO cannot adjust IO intensity, we set the generated IOs with a fixed transmission
interval from 20 to 320 μs. We use 960EVO SSD and 10 TB WD HDD, and set the L value to 1.

Figure 19 shows that when the request interval is between 20 and 60 μs, the SSD writes are
severely blocked and the 99th-tail latency reaches as high as 5.2 second. In this case, both MIOS_D

ACM Transactions on Storage, Vol. 18, No. 1, Article 6. Publication date: January 2022.

Exploration and Exploitation for Buffer-Controlled HDD-Writes 6:25

Fig. 19. FIO benchmark to experiment with three strategies. The IO transmission interval is set to 20–320 μs .

and MIOS_E can significantly reduce the tail latency. And MIOS_E is slightly better than MIOS_D

because the former handles more burst writes. When the interval is 60–80 μs, Baseline still exhibits
very high latency in SSD. However, the latency has returned to an acceptable μs-level after MIOS
scheduling. When the interval exceeds 100 μs, the average and 99th-percentile latencies are stable,
because there is very little SSD queue blockage under such request intensity. In this case, MIOS_D

and Baseline have the lowest average latency and remain the same as request interval grows. How-
ever, the average and tail latency of MIOS_E is higher than others. This is because even if there is
no queue in SSD, MIOS_E will still redirect requests, and the performance gap between SSD and
HDD can lead to high latency.

6 RELATED WORKS

IO Scheduling. The IO scheduling methods in host systems have been adequately studied. The
Linux CFQ [49], Anticipatory, Deadline [8], and NCQ [64] provide fairness and high efficiency
scheduling on HDDs. Nowadays, with wide adoption of SSDs, more recent researches address IO
characteristics of the flash media as read/write performance asymmetry and internal parallelism.
FIOS [46] employs a fair IO timeslice management to attains fairness and high efficiency of SSD
disks. HIOS [27] gives GC-aware and QoS-aware scheduler in host. PIQ [22] and ParDispatcher
[55] minimize access conflicts between IO requests by exploring the rich internal parallelism of
SSDs. In contrast to these efforts, BCW models and exploits the feature of HDD built-in buffer, and
is proposed to provide μs-level low latency HDD writes.

Moreover, a large body of research offer fine-grained scheduling inside of SSD devices to reduce
interference between IO flows [51], write amplification [32], and GC overhead [20, 24, 28]. FLIN
[51] proposes a lightweight IO scheduler for modern multi-queue SSDs [50]. It provides fairness
among concurrent IO flows inside SSDs by distributing the GC overhead proportionally across
different IO flows. However, FLIN cannot eliminate GC or contention between different flows. GC
preemption [31, 60] postpones GC to avoid conflicts between GC and user requests. Moreover,
an SSD P/E suspension mechanism [33] suspends the on-going SSD P/E to service incoming user
IOs. However, these approaches could not completely remove or hide GC overhead under a long-
running intensive load in clouds.

Some high-end all flash array (AFA) consists of plenty of SSD disks and raw flash chips with
internal redundant SSD resources. There are some studies to address GC impact in AFAs by sched-
uling across SSD disks. SWAN [30] partitions SSDs into multiple zones to separately serve write re-
quests and perform GC. Similarly, GC-Steering [58] partitions dedicates SSDs, called staging disks,

ACM Transactions on Storage, Vol. 18, No. 1, Article 6. Publication date: January 2022.

6:26 S. Wang et al.

to absorb the host writes while the other SSDs are busy performing GC. These works focus on
homogeneous-device block-level scheduling. In contrast, MIOS schedules writes upon SSD-HDD
hybrid storage.

Hybrid Storage. In SSD-HDD hybrid storage, most works use SSDs as a read cache or/and write
buffer [3, 9, 25, 29, 35, 48, 66], and HDDs as the secondary or backup storage [36], due to the large
performance gap between SSDs and HDDs. However, the write-penalty and GC-penalty inherent
in SSDs could impact the actual performance in practical intensive scenarios. Moreover, emerging
NVM is supposed to replace SDDs as the primary write buffer in hybrid storage. Ziggurat [65]
designs a tiered file system across NVM, DRAM, and disks. It stores small or random writes to
NVM, and then coalesces many small writes into large and sequential writes to disks. Compared
with these works, MIOS optimizes the latency of intensive SSD writes and updates by conditionally
and directly redirects some writes to the secondary HDDs, bypassing the primary SSD buffer.

Prior works also employ HDDs as a write cache to reduce the amount of data written to SSDs
[48, 61]. LBICA [1] redirects write requests from the tail of SSD queue to HDDs, preventing the
SSDs from becoming bottleneck under IO bursty. SWR [38] prefers to redirect write requests with
large IO size or in the tail of SSD queue to HDDs. Griffin [48] employs the write back mode by
using HDDs as persistent write buffer for MLC-based SSDs. SeRW [17] uses HDDs to absorb SSD
writes at high workload to reduce read/write and read/GC competition in SSDs. Besides, SSD-
HDD mixed RAID [39] also has been studied to complement their disadvantages with advantages.
It designs a log-structured HDD buffer to temporarily absorb small and random write requests,
reducing wear-outs of SSDs. Compared with them, BCW further exploits HDD buffer to redirect
synchronous small writes while avoiding performance degradation.

7 CONCLUSION

Some hybrid storage servers serve write-dominate workloads, which lead to SSD overuse and long-
tail latency while HDDs are underutilized. However, our extensive experimental study reveals that
HDDs are capable of μs-level write IO latency with appropriate buffered writes. It motivates us to
use HDDs for offloading write requests from overused SSDs by request redirection. To this end,
we present a BCW approach to proactively control buffered writes by selecting fast writes for
user requests and padding non-user data for slow writes. Then, we propose an MIOS to automat-
ically steer incoming data to SSDs or HDDs based on runtime monitoring of request queues. The
multi-HDD scheduling mechanism further selects HDD with the lowest predicted latency, which
achieves better performance than MIOS with single-HDD. Driven by real-world production work-
loads and benchmarks, our extensive evaluation of MIOS and BCW demonstrates their efficacy.

ACKNOWLEDGMENTS

The authors would like to thank the anonymous referees for their valuable comments and helpful
suggestions.

REFERENCES

[1] Saba Ahmadian, Reza Salkhordeh, and Hossein Asadi. 2019. LBICA: A load balancer for I/O cache architectures. In

Proceedings of the 2019 Design, Automation & Test in Europe Conference & Exhibition. 1196–1201.

[2] David G. Andersen and Steven Swanson. 2010. Rethinking flash in the data center. IEEE Micro 30, 4 (2010), 52–54.

[3] Manos Athanassoulis, Shimin Chen, Anastasia Ailamaki, Phillip B. Gibbons, and Radu Stoica. 2011. MaSM: Efficient

online updates in data warehouses. In Proceedings of the ACM SIGMOD International Conference on Management of

Data. 865–876. DOI:https://doi.org/10.1145/1989323.1989414

[4] Guillaume Aupy, Olivier Beaumont, and Lionel Eyraud-Dubois. 2018. What size should your buffers to disks be? In

Proceedings of the 2018 IEEE International Parallel and Distributed Processing Symposium (IPDPS’18). IEEE, 660–669.

[5] AXBOE. FIO: Flexible I/O tester. Retrieved from https://github.com/axboe/fio.

ACM Transactions on Storage, Vol. 18, No. 1, Article 6. Publication date: January 2022.

https://doi.org/10.1145/1989323.1989414
https://github.com/axboe/fio

Exploration and Exploitation for Buffer-Controlled HDD-Writes 6:27

[6] Oana Balmau, Florin Dinu, Willy Zwaenepoel, Karan Gupta, Ravishankar Chandhiramoorthi, and Diego Didona.

2019. SILK: Preventing latency spikes in log-structured merge key-value stores. In Proceedings of the 2019 USENIX

Annual Technical Conference (USENIX ATC’19). USENIX Association, Renton, WA, 753–766. Retrieved from https://

www.usenix.org/conference/atc19/presentation/balmau.

[7] Simona Boboila and Peter Desnoyers. 2010. Write endurance in flash drives: Measurements and analysis. In Proceedings

of the 8th USENIX Conference on File and Storage Technologies. 115–128.

[8] Daniel P. Bovet and Marco Cesati. 2005. Understanding the Linux Kernel: From I/O Ports to Process Management. O’Reilly

Media, Inc.

[9] Brad Calder, Ju Wang, Aaron Ogus, Niranjan Nilakantan, Arild Skjolsvold, Sam McKelvie, Yikang Xu, Shashwat

Srivastav, Jiesheng Wu, Huseyin Simitci, Jaidev Haridas, Chakravarthy Uddaraju, Hemal Khatri, Andrew Edwards,

Vaman Bedekar, Shane Mainali, Rafay Abbasi, Arpit Agarwal, Mian Fahim ul Haq, Muhammad Ikram ul Haq, Deepali

Bhardwaj, Sowmya Dayanand, Anitha Adusumilli, Marvin McNett, Sriram Sankaran, Kavitha Manivannan, Leonidas

Rigas, 2011. Windows azure storage: A highly available cloud storage service with strong consistency. In Proceedings

of the 23rd ACM Symposium on Operating Systems Principles. ACM, 143–157.

[10] Alibaba Clouder. 2018. Pangu – the high performance distributed file system by Alibaba cloud. Retrieved from https://

www.alibabacloud.com/blog/pangu_the_high_performance_distributed_file_system_by_alibaba_cloud_594059.

[11] Intel Corporation. 2016. Enterprise-class versus desktop-class hard drives. Retrieved from https://www.intel.com/

content/dam/support/us/en/documents/server-products/Enterprise_vs_Desktop_HDDs_2.0.pdf.

[12] Intel Corporation. 2018. Product brief of intel optane solid state drive 905P. Retrieved from https://www.intel.com/

content/dam/www/public/us/en/documents/product-briefs/optane-ssd-905p-product-brief.pdf.

[13] Intel Corporation. 2019. Product brief of Intel 660p series. Retrieved from https://www.intel.com/content/dam/www/

public/us/en/documents/product-briefs/660p-series-brief.pdf.

[14] Western Digital Corporation. 2019. Product brief: WD gold enterprise class SATA HDD. Retrieved from https://

documents.westerndigital.com/content/dam/doc-library/en_us/assets/public/western-digital/product/internal-

drives/wd-gold/product-brief-wd-gold-2579-810192.pdf.

[15] Western Digital Corporation. 2019. WD red NAS hard drives data sheet. Retrieved from http://products.wdc.com/

library/SpecSheet/ENG/2879-800002.pdf.

[16] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakulapati, Avinash Lakshman, Alex Pilchin,

Swaminathan Sivasubramanian, Peter Vosshall, and Werner Vogels. 2007. Dynamo: Amazon’s highly available key-

value store. ACM SIGOPS Operating Systems Review 41, 6 (2007), 205–220.

[17] Fan Deng, Qiang Cao, Shucheng Wang, Shuyang Liu, Jie Yao, Yuanyuan Dong, and Puyuan Yang. 2020. SeRW: Adap-

tively separating read and write upon SSDs of hybrid storage server in clouds. In Proceedings of the 49th International

Conference on Parallel Processing. 76:1–76:11. DOI:https://doi.org/10.1145/3404397.3404437

[18] Diego Didona and Willy Zwaenepoel. 2019. Size-aware sharding for improving tail latencies in in-memory key-value

stores. In Proceedings of the 16th USENIX Conference on Networked Systems Design and Implementation. 79–94.

[19] Samsung Electronics. 2017. Samsung SSD 960 EVO M.2 data sheet. Retrieved from https://www.intel.com/content/

dam/www/public/us/en/documents/product-briefs/660p-series-brief.pdf.

[20] Nima Elyasi, Mohammad Arjomand, Anand Sivasubramaniam, Mahmut T. Kandemir, Chita R. Das, and Myoungsoo

Jung. 2017. Exploiting intra-request slack to improve SSD performance. ACM SIGARCH Computer Architecture News

45, 1 (2017), 375–388.

[21] FUJITSU. 2007. MBC2073RC MBC2036RC hard disk drives product manual. 60–62. Retrieved from https://www.fujitsu.

com/downloads/COMP/fel/support/disk/manuals/c141-e266-01en.pdf.

[22] Congming Gao, Liang Shi, Mengying Zhao, Chun Jason Xue, Kaijie Wu, and Edwin H.-M. Sha. 2014. Exploiting par-

allelism in I/O scheduling for access conflict minimization in flash-based solid state drives. In Proceedings of the 2014

30th Symposium on Mass Storage Systems and Technologies (MSST’14). IEEE, 1–11.

[23] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. 2003. The Google file system. ACM SIGOPS Operating Sys-

tems Review 37, 5 (2003), 29–43.

[24] Aayush Gupta, Youngjae Kim, and Bhuvan Urgaonkar. 2009. DFTL: A flash translation layer employing demand-based

selective caching of page-level address mappings.ACM SIGPLAN Notices 44, 3 (2009), 229–240. ACM.

[25] Qi Huang, Ken Birman, Robbert van Renesse, Wyatt Lloyd, Sanjeev Kumar, and Harry C. Li. 2013. An analysis of

Facebook photo caching. In Proceedings of the 24th ACM Symposium on Operating Systems Principles. ACM, 167–181.

[26] Congfeng Jiang, Guangjie Han, Jiangbin Lin, Gangyong Jia, Weisong Shi, and Jian Wan. 2019. Characteristics of co-

allocated online services and batch jobs in internet data centers: A case study from Alibaba cloud. IEEE Access 7, 1

(2019), 22495–22508.

[27] Myoungsoo Jung, Wonil Choi, Shekhar Srikantaiah, Joonhyuk Yoo, and Mahmut T. Kandemir. 2014. HIOS: A host

interface I/O scheduler for solid state disks. ACM SIGARCH Computer Architecture News 42, 3 (2014), 289–300.

[28] Jeong-Uk Kang, Jeeseok Hyun, Hyunjoo Maeng, and Sangyeun Cho. 2014. The multi-streamed solid-state drive. In

Proceedings of the 6th USENIX Workshop on Hot Topics in Storage and File Systems (HotStorage’14).

ACM Transactions on Storage, Vol. 18, No. 1, Article 6. Publication date: January 2022.

https://www.usenix.org/conference/atc19/presentation/balmau
https://www.alibabacloud.com/blog/pangu_the_high_performance_distributed_file_system_by_alibaba_cloud_594059
https://www.intel.com/content/dam/support/us/en/documents/server-products/Enterprise_vs_Desktop_HDDs_2.0.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/product-briefs/optane-ssd-905p-product-brief.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/product-briefs/660p-series-brief.pdf
https://documents.westerndigital.com/content/dam/doc-library/en_us/assets/public/western-digital/product/internal-drives/wd-gold/product-brief-wd-gold-2579-810192.pdf
http://products.wdc.com/library/SpecSheet/ENG/2879-800002.pdf
https://doi.org/10.1145/3404397.3404437
https://www.intel.com/content/dam/www/public/us/en/documents/product-briefs/660p-series-brief.pdf
https://www.fujitsu.com/downloads/COMP/fel/support/disk/manuals/c141-e266-01en.pdf

6:28 S. Wang et al.

[29] Taeho Kgil and Trevor Mudge. 2006. FlashCache: A NAND flash memory file cache for low power web servers. In

Proceedings of the 2006 International Conference on Compilers, Architecture and Synthesis for Embedded Systems. ACM,

103–112.

[30] Jaeho Kim, Kwanghyun Lim, Youngdon Jung, Sungjin Lee, Changwoo Min, and Sam H. Noh. 2019. Alleviating garbage

collection interference through spatial separation in all flash arrays. In Proceedings of the 2019 USENIX Annual Tech-

nical Conference. 799–812.

[31] Jaeho Kim, Kwanghyun Lim, Youngdon Jung, Sungjin Lee, Changwoo Min, and Sam H. Noh. 2019. Alleviating garbage

collection interference through spatial separation in all flash arrays. In Proceedings of the 2019 USENIX Annual Tech-

nical Conference. Dahlia Malkhi and Dan Tsafrir (Eds.). USENIX Association, 799–812.

[32] Jaeho Kim, Yongseok Oh, Eunsam Kim, Jongmoo Choi, Donghee Lee, and Sam H. Noh. 2009. Disk schedulers for solid

state drivers. In Proceedings of the 7th ACM International Conference on Embedded Software. ACM, 295–304.

[33] Shine Kim, Jonghyun Bae, Hakbeom Jang, Wenjing Jin, Jeonghun Gong, SeungYeon Lee, Tae Jun Ham, and Jae W. Lee.

2019. Practical erase suspension for modern low-latency SSDs. In Proceedings of the 2019 USENIX Annual Technical

Conference. Dahlia Malkhi and Dan Tsafrir (Eds.). USENIX Association, 813–820.

[34] Anthony Kougkas, Hariharan Devarajan, and Xian-He Sun. 2018. Hermes: A heterogeneous-aware multi-tiered dis-

tributed I/O buffering system. In Proceedings of the 27th International Symposium on High-Performance Parallel and

Distributed Computing. ACM, 219–230.

[35] Cheng Li, Philip Shilane, Fred Douglis, Hyong Shim, Stephen Smaldone, and Grant Wallace. 2014. c: A capacity-

optimized {SSD} cache for primary storage. In Proceedings of the 2014 USENIX Annual Technical Conference. 501–512.

[36] Huiba Li, Yiming Zhang, Dongsheng Li, Zhiming Zhang, Shengyun Liu, Peng Huang, Zheng Qin, Kai Chen, and

Yongqiang Xiong. 2019. Ursa: Hybrid block storage for cloud-scale virtual disks. In Proceedings of the 14th EuroSys

Conference 2019. ACM, 15.

[37] Qixiao Liu and Zhibin Yu. 2018. The elasticity and plasticity in semi-containerized co-locating cloud workload: A view

from Alibaba trace. In Proceedings of the ACM Symposium on Cloud Computing. ACM, 347–360.

[38] Shuyang Liu, Shucheng Wang, Qiang Cao, Ziyi Lu, Hong Jiang, Jie Yao, Yuanyuan Dong, and Puyuan Yang. 2019.

Analysis of and optimization for write-dominated hybrid storage nodes in cloud. In Proceedings of the ACM Symposium

on Cloud Computing. 403–415. DOI:https://doi.org/10.1145/3357223.3362705

[39] Bo Mao, Hong Jiang, Suzhen Wu, Lei Tian, Dan Feng, Jianxi Chen, and Lingfang Zeng. 2012. HPDA: A hybrid parity-

based disk array for enhanced performance and reliability. ACM Transactions on Storage 8, 1 (2012), 4.

[40] Avantika Mathur, Mingming Cao, Suparna Bhattacharya, Andreas Dilger, Alex Tomas, and Laurent Vivier. 2007. The

new ext4 filesystem: Current status and future plans. In Proceedings of the Linux Symposium. Vol. 2. 21–33.

[41] Changwoo Min, Kangnyeon Kim, Hyunjin Cho, Sang-Won Lee, and Young Ik Eom. 2012. SFS: Random write consid-

ered harmful in solid state drives. In Proceedings of the 10th USENIX conference on File and Storage Technologies. Vol. 12.

1–16.

[42] Subramanian Muralidhar, Wyatt Lloyd, Sabyasachi Roy, Cory Hill, Ernest Lin, Weiwen Liu, Satadru Pan, Shiva Shankar,

Viswanath Sivakumar, Linpeng Tang, Sanjeev Kumar 2014. f4: Facebook’s warm BLOB storage system. In Proceedings

of the 11th USENIX Symposium on Operating Systems Design and Implementation. 383–398.

[43] Muthukumar Murugan and David H. C. Du. 2011. Rejuvenator: A static wear leveling algorithm for NAND flash

memory with minimized overhead. In Proceedings of the 2011 IEEE 27th Symposium on Mass Storage Systems and

Technologies (MSST’11). IEEE, 1–12.

[44] J. Ou, J. Shu, Y. Lu, L. Yi, and W. Wang. 2014. EDM: An endurance-aware data migration scheme for load balancing in

SSD storage clusters. In Proceedings of the 2014 IEEE 28th International Parallel and Distributed Processing Symposium.

787–796. DOI: https://doi.org/10.1109/IPDPS.2014.86

[45] Mayur R Palankar, Adriana Iamnitchi, Matei Ripeanu, and Simson Garfinkel. 2008. Amazon S3 for science grids: A

viable solution? In Proceedings of the 2008 International Workshop on Data-aware Distributed Computing. ACM, 55–64.

[46] Stan Park and Kai Shen. 2012. FIOS: A fair, efficient flash I/O scheduler. In Proceedings of the 10th USENIX conference

on File and Storage Technologies. Vol. 12. 13–13.

[47] Raghu Ramakrishnan, Baskar Sridharan, John R. Douceur, Pavan Kasturi, Balaji Krishnamachari-Sampath, Karthick

Krishnamoorthy, Peng Li, Mitica Manu, Spiro Michaylov, Rogério Ramos, Neil Sharman, Zee Xu, Youssef Barakat,

Chris Douglas, Richard Draves, Shrikant S. Naidu, Shankar Shastry, Atul Sikaria, Simon Sun, Ramarathnam

Venkatesan, 2017. Azure data lake store: A hyperscale distributed file service for big data analytics. In Proceedings

of the 2017 ACM International Conference on Management of Data. ACM, 51–63.

[48] Gokul Soundararajan, Vijayan Prabhakaran, Mahesh Balakrishnan, and Ted Wobber. 2010. Extending SSD lifetimes

with disk-based write caches. In Proceedings of the 8th USENIX Conference on File and Storage Technologies. Vol. 10.

101–114.

[49] Jens Suse. 2004. Linux block IO–present and future. In Proceedings of the Ottawa Linux Symposium.

ACM Transactions on Storage, Vol. 18, No. 1, Article 6. Publication date: January 2022.

https://doi.org/10.1145/3357223.3362705
https://doi.org/10.1109/IPDPS.2014.86

Exploration and Exploitation for Buffer-Controlled HDD-Writes 6:29

[50] Arash Tavakkol, Juan Gómez-Luna, Mohammad Sadrosadati, Saugata Ghose, and Onur Mutlu. 2018. MQSim: A frame-

work for enabling realistic studies of modern multi-queue SSD devices. In Proceedings of the 16th USENIX Conference

on File and Storage Technologies. Nitin Agrawal and Raju Rangaswami (Eds.). USENIX Association, 49–66.

[51] Arash Tavakkol, Mohammad Sadrosadati, Saugata Ghose, Jeremie Kim, Yixin Luo, Yaohua Wang, Nika Mansouri

Ghiasi, Lois Orosa, Juan Gómez-Luna, and Onur Mutlu. 2018. FLIN: Enabling fairness and enhancing performance

in modern NVMe solid state drives. In Proceedings of the 2018 ACM/IEEE 45th Annual International Symposium on

Computer Architecture (ISCA’18). IEEE, 397–410.

[52] Seagate Technology. 2016. Enhanced caching advantage–TurboBoost and advanced write caching. Retrieved

from https://www.seagate.com/files/www-content/product-content/enterprise-performance-savvio-fam/enterprise-

performance-15k-hdd/_cross-product/_shared/doc/enchanced-cache-advantage-tp691.1-1610us.pdf.

[53] Seagate Technology. 2018. Barracuda Pro Compute SATA HDD Data Sheet. Retrieved from https://www.seagate.com/

www-content/datasheets/pdfs/barracuda-pro-14-tb-DS1901-9-1810US-en_US.pdf.

[54] Seagate Technology. 2019. Barracuda Compute SATA Product Manual. Retrieved from https://www.seagate.com/

www-content/product-content/desktop-hdd-fam/en-us/docs/100799391e.pdf.

[55] Hua Wang, Ping Huang, Shuang He, Ke Zhou, Chunhua Li, and Xubin He. 2013. A novel I/O scheduler for SSD with

improved performance and lifetime. In Proceedings of the 2013 IEEE 29th Symposium on Mass Storage Systems and

Technologies (MSST’55). IEEE, 1–5.

[56] Hui Wang and Peter Varman. 2014. Balancing fairness and efficiency in tiered storage systems with bottleneck-aware

allocation. In Proceedings of the 12th USENIX Conference on File and Storage Technologies. 229–242.

[57] Yeong-Jae Woo and Jin-Soo Kim. 2013. Diversifying wear index for MLC NAND flash memory to extend the lifetime

of SSDs. In Proceedings of the 11th ACM International Conference on Embedded Software. IEEE Press, 6.

[58] Suzhen Wu, Weidong Zhu, Guixin Liu, Hong Jiang, and Bo Mao. 2018. GC-aware request steering with improved

performance and reliability for SSD-based RAIDs. In Proceedings of the 2018 IEEE International Parallel and Distributed

Processing Symposium. IEEE Computer Society, 296–305. DOI:https://doi.org/10.1109/IPDPS.2018.00039

[59] Erci Xu, Mai Zheng, Feng Qin, Yikang Xu, and Jiesheng Wu. 2019. Lessons and actions: What we learned from 10K

SSD-related storage system failures. In Proceedings of the 2019 USENIX Annual Technical Conference. 961–976.

[60] Shiqin Yan, Huaicheng Li, Mingzhe Hao, Michael Hao Tong, Swaminathan Sundararaman, Andrew A Chien, and

Haryadi S. Gunawi. 2017. Tiny-tail flash: Near-perfect elimination of garbage collection tail latencies in NAND SSDs.

ACM Transactions on Storage 13, 3 (2017), 22.

[61] Puyuan Yang, Peiquan Jin, Shouhong Wan, and Lihua Yue. 2013. HB-storage: Optimizing SSDs with a HDD write

buffer. In Proceedings of the International Conference on Web-Age Information Management. 28–39. DOI:https://doi.org/

10.1007/978-3-642-39527-7_5

[62] Pan Yang, Ni Xue, Yuqi Zhang, Yangxu Zhou, Li Sun, Wenwen Chen, Zhonggang Chen, Wei Xia, Junke Li, and Kihyoun

Kwon. 2019. Reducing garbage collection overhead in SSD based on workload prediction. In Proceedings of the 11th

USENIX Workshop on Hot Topics in Storage and File Systems (HotStorage’19).

[63] Yang Yang, Qiang Cao, Hong Jiang, Li Yang, Jie Yao, Yuanyuan Dong, and Puyuan Yang. 2019. BFO: Batch-file opera-

tions on massive files for consistent performance improvement. In Proceedings of the 35th International Conference on

Massive Storage Systems and Technology (MSST’19).

[64] Young Jin Yu, Dong In Shin, Hyeonsang Eom, and Heon Young Yeom. 2010. NCQ vs. I/O scheduler: Preventing unex-

pected misbehaviors. ACM Transactions on Storage 6, 1 (2010), 2.

[65] Shengan Zheng, Morteza Hoseinzadeh, and Steven Swanson. 2019. Ziggurat: A tiered file system for non-volatile main

memories and disks. In Proceedings of the 17th USENIX Conference on File and Storage Technologies. 207–219.

[66] Ke Zhou, Si Sun, Hua Wang, Ping Huang, Xubin He, Rui Lan, Wenyan Li, Wenjie Liu, and Tianming Yang. 2018.

Demystifying cache policies for photo stores at scale: A Tencent case study. 284–294. DOI:https://doi.org/10.1145/

3205289.3205299

Received October 2020; revised March 2021; accepted May 2021

ACM Transactions on Storage, Vol. 18, No. 1, Article 6. Publication date: January 2022.

https://www.seagate.com/files/www-content/product-content/enterprise-performance-savvio-fam/enterprise-performance-15k-hdd/_cross-product/_shared/doc/enchanced-cache-advantage-tp691.1-1610us.pdf
https://www.seagate.com/www-content/datasheets/pdfs/barracuda-pro-14-tb-DS1901-9-1810US-en_US.pdf
https://www.seagate.com/www-content/product-content/desktop-hdd-fam/en-us/docs/100799391e.pdf
https://doi.org/10.1109/IPDPS.2018.00039
https://doi.org/10.1007/978-3-642-39527-7_5
https://doi.org/10.1145/3205289.3205299

