
5112 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 41, NO. 11, NOVEMBER 2022

Understanding and Exploiting the Full Potential of
SSD Address Remapping

Qiulin Wu , You Zhou , Fei Wu , Member, IEEE, Hong Jiang , Fellow, IEEE, Jian Zhou,
and Changsheng Xie , Member, IEEE

Abstract—Duplicate writes are prevalent in storage systems,
originating from data duplication, journaling, and data reloca-
tions, etc. As flash-based solid state drives (SSDs) have been
widely deployed, duplicate writes can significantly degrade their
performance and lifetime. Prior studies have proposed innova-
tive approaches that exploit the address remapping utility inside
an SSD to eliminate duplicate writes. However, remap opera-
tions modify the logical-to-physical (L2P) address mapping table
while the physical-to-logical (P2L) mappings persisted on flash
memory remain unchanged. Such inconsistency between L2P and
P2L mappings may cause data corruption and has long been a
major obstacle to utilize SSD address remapping. In this arti-
cle, we propose a novel SSD design, called Remap-SSD-LH, that
realizes the full potential of SSD address remapping. It pro-
vides a remap primitive, which allows the host software and SSD
firmware to perform logical writes of duplicate data at almost
zero cost. To ensure mapping consistency as well as fast mapping
lookups, Remap-SSD-LH employs a local log scheme based on
hybrid storage. A local log is maintained for each flash garbage
collection unit to record relevant P2L mapping changes induced
by remap operations. The logs are stored in small nonvolatile
RAM (NVRAM), e.g., capacitor-protected DRAM, and can be
destaged to flash memory if NVRAM is full. We verify Remap-
SSD-LH on a software SSD emulator with three case studies:
1) intra-SSD deduplication; 2) SQLite journaling; and 3) F2FS
cleaning. The experimental results show that Remap-SSD-LH can
maximally and efficiently exploit address remapping to improve
SSD performance and lifetime.

Index Terms—Address remapping, data consistency, duplicate
writes, flash memory, flash translation layer (FTL), hard-
ware/software co-design, solid state drive (SSD).

Manuscript received 14 July 2021; revised 28 October 2021; accepted
6 January 2022. Date of publication 19 January 2022; date of current ver-
sion 24 October 2022. This work was supported in part by the NSFC under
Grant 61902137, Grant U2001203, Grant 61872413, and Grant 61821003;
in part by the Fundamental Research Funds for the Central Universities,
HUST under Grant 2021XXJS108; in part by the Key Area Research and
Development Program of Guangdong Province under Grant 2019B010107001;
in part by the 111 Project under Grant B07038; and in part by the
Key Laboratory of Information Storage System, Ministry of Education of
China. This article was recommended by Associate Editor C.-L. Yang.
(Corresponding author: You Zhou.)

Qiulin Wu, Fei Wu, Jian Zhou, and Changsheng Xie are with the Wuhan
National Laboratory for Optoelectronics, Huazhong University of Science
and Technology, Wuhan 430074, China (e-mail: qiulin_wu@hust.edu.cn;
wufei@hust.edu.cn; jianzhou@hust.edu.cn; cs_xie@hust.edu.cn).

You Zhou is with the School of Computer Science and Technology,
Huazhong University of Science and Technology, Wuhan 430074, China
(e-mail: zhouyou2@hust.edu.cn).

Hong Jiang is with the Department of Computer Science and Engineering,
University of Texas at Arlington, Arlington, TX 76019 USA (e-mail:
hong.jiang@uta.edu).

Digital Object Identifier 10.1109/TCAD.2022.3144617

I. INTRODUCTION

DUPLICATE writes are pervasive in real-world storage
systems. Not only data duplication is common [1]–[4]

but also a broad spectrum of system software and applications
introduces duplicate writes. For example, many databases and
file systems employ double-write journaling to guarantee write
atomicity [5]–[7]; data relocations are required for space clean-
ing in log-structured/copy-on-write systems [6], [8] and for file
defragmentation [9]; file copy and snapshotting operations are
common behaviors [10], [11].

On the other hand, NAND flash-based solid state drives
(SSDs) have been widely employed in various storage systems.
Due to the idiosyncrasies of flash memory, the SSD-internal
firmware, called flash translation layer (FTL), performs out-of-
place updates. Logical pages written from the host are always
mapped to new free flash pages, while obsolete flash pages are
invalidated. Thus, a logical-to-physical (L2P) mapping table is
maintained to translate logical page numbers (LPNs) to phys-
ical page numbers (PPNs) [12], [13]. For fast lookups, this
table is typically cached in SSD-internal DRAM. The FTL
also conducts garbage collection (GC) periodically to reclaim
invalid pages in the granularity of flash blocks, where valid
pages are relocated and then the blocks are erased. Note that
writes are harmful to both the performance and lifetime of
SSDs [14], [15]. This situation deteriorates, as flash technolo-
gies are scaling rapidly to increase the bit density but at the
cost of degraded write speed and endurance [16].

To eliminate duplicate writes on flash memory, innovative
approaches have been proposed to exploit the SSD address
remapping functionality [1], [6], [7], [9], [10], [17]–[20]. By
directly modifying the L2P mapping table, duplicate writes
of repeating data pages (including moving and copying data)
can be completed quickly without conducting physical writes.
Also, data transfers between the host and SSD can be avoided.
Although enabling such remapping requires minor modifica-
tions to the host software and SSD interface, the benefits
are quite worthwhile. The performance, lifetime, and space
utilization of an SSD can be improved significantly.

However, remap operations lead to a critical mapping incon-
sistency problem, which may cause data corruption. Whenever
a logical data page is written to a flash page, the FTL stores
house-keeping metadata including the relevant LPN either in
the out-of-band (OOB) area of the same flash page [12], [21]
or in another reserved flash page [22]. These persistent
physical-to-logical (P2L) mappings are indispensable for

1937-4151 c© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on December 12,2022 at 17:39:15 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0001-7000-489X
https://orcid.org/0000-0003-1067-4458
https://orcid.org/0000-0001-9746-4714
https://orcid.org/0000-0002-1477-9751
https://orcid.org/0000-0003-1271-0571

WU et al.: UNDERSTANDING AND EXPLOITING FULL POTENTIAL OF SSD ADDRESS REMAPPING 5113

completing data relocations during GC and for recovering
L2P mappings after sudden power failures (see Section II).
Remap operations change the L2P mappings, but the rel-
evant P2L mappings on flash memory cannot be updated
accordingly. Due to such mapping inconsistency, wrong L2P
mappings would be modified after data relocations during GC
or be restored during power-off recovery, compromising data
consistency.

This mapping inconsistency problem, although crucial, has
not been properly addressed in prior studies. The common
solution in [1], [6], [9], [18], and [20] is to persist new P2L
mappings generated by remap operations in a global log on
flash memory. Its main drawback is that the log size would
increase continuously over time, incurring prohibitively high
lookup overheads at last. Although limiting the log size could
confine the lookup overheads, it would also restrict the usage
of SSD address remapping. In addition, some other solutions
have been proposed but only fit in very limited application
scenarios of address remapping [7], [19]. These solutions and
their drawbacks are discussed thoroughly in Section III-C.

In this article, we propose a novel SSD design, called
Remap-SSD-LH, to maximally and efficiently exploit SSD
address remapping for reducing duplicate writes. It provides a
remap primitive, which allows the host software and FTL to
conduct logical writes of duplicate data at almost zero cost.
Notice that P2L mappings of a flash GC unit are always looked
up together. Remap-SSD-LH maintains a local log for each
flash GC unit on hybrid storage. The logs record P2L map-
ping changes induced by remap operations and are stored in
small nonvolatile RAM (NVRAM), e.g., capacitor-protected
DRAM. If NVRAM is full, log entries can be destaged to flash
memory. This local log scheme not only ensures persistent P2L
mappings are always consistent with the latest L2P mappings
but also enables fast lookups of P2L mappings during GC.
We verify Remap-SSD-LH on FEMU (a software SSD emu-
lator [23]) with three case studies: 1) intra-SSD deduplication;
2) SQLite journaling; and 3) F2FS cleaning. The experimental
results show that Remap-SSD-LH can realize the full poten-
tial of address remapping for improving SSD performance and
lifetime.

II. BACKGROUND

Mappings in Flash-Based SSDs: Modern SSDs generally
employ a page-level FTL, powered by embedded processors
and DRAM, for high performance [12], [24]. As a host logical
page can be dynamically mapped to any flash page, an L2P
mapping table is maintained for address translation. Assuming
the page size is 4 kB and each mapping entry takes 4B, the
table size is 0.1% of the device capacity. The table is persisted
on flash memory and cached in DRAM for fast lookups, which
locate on the critical path of I/O processing.

When a logical page is written to a flash page, the FTL
transparently persists the reverse P2L mapping (i.e., the LPN)
and write timestamp as house-keeping metadata on flash
memory for two reasons. First, data pages are periodically
migrated on flash memory for GC and wear leveling pur-
poses. P2L mappings need to be retrieved to locate and modify

the relevant L2P mappings after the migrations. Second, the
mapping consistency needs to be guaranteed. The latest L2P
mappings in DRAM may get lost after sudden power fail-
ures [13]. By scanning the persistent metadata, the FTL can
obtain all the PPN-LPN entries and write order of PPNs, from
which the latest L2P mappings can be restored.

Flash Management: SSDs are architected with a number
of channels connecting many flash dies, each of which is a
parallel unit for accesses [25]. It has been a common prac-
tice, especially for high-performance SSDs, to organize flash
storage in superblocks [15], [22], [24], [26]. A superblock con-
sists of flash blocks with the same offset across multiple dies.
Both space allocations for data writes and GC are performed
in the unit of a superblock. This has several advantages. First,
the intra-SSD parallelism can be maximized. Second, flash
management is simplified due to a large granularity. Third,
it facilitates die-level RAID, as parity can be easily added
in each superblock [15], [16], [27]. Finally, the FTL can
accelerate the recovery speed of L2P mappings by storing
house-keeping metadata of each superblock collectively in its
tail flash pages [22]. Then, only a small amount of tail flash
pages need to be scanned, rather than all the flash pages.

Nonvolatile RAM: NVRAM technologies (e.g., PCRAM)
are advancing and have received much attention [28].
Compared to flash memory, they offer lower latency and byte-
addressability but lower bit density and higher cost. NVRAM
complements flash memory well and has opened up new
opportunities to enhance SSDs for various purposes [19], [29].

III. MOTIVATION

We illustrate the ubiquity of duplicate writes with several
examples in Section III-A, and then detail where and how prior
studies leverage SSD address remapping for reducing duplicate
writes in Section III-B and their drawbacks in ensuring the
mapping consistency in Section III-C.

A. Duplicate Writes

Data Duplication: One major source of duplicate writes is
data duplication [2]–[4]. For instance, in the disk images of
some departmental working environments [1] and file system
images collected from smartphones [4], the data duplication
rate is 8%–86% and an average of 33%, respectively, while
duplicate writes account for 6%–28% and 22%–48% of total
writes; in the three production systems at FIU, the ratios of
duplicate writes range from 33% to 92% [18].

Journaling: To guarantee write atomicity, journaling
approaches have been widely used in databases (e.g., MySQL
and SQLite) and file systems (e.g., ext4 and XFS) [6], [7].
Either before-images (e.g., rollback journaling) or after-
images [e.g., write-ahead logging (WAL)] of updated pages
are written in a dedicated log, after which updates are applied
to original locations in place. Such journaling introduces dou-
ble writes of data, for example, causing a worst case slowdown
of about 73% in ext4 compared to no journaling [5].

Data Relocation: Copy-on-write and log-structuring mech-
anisms are popular means to provide write atomicity and
write sequentiality (e.g., in Couchbase and F2FS) [6], [8].

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on December 12,2022 at 17:39:15 UTC from IEEE Xplore. Restrictions apply.

5114 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 41, NO. 11, NOVEMBER 2022

TABLE I
PRIOR STUDIES EXPLOITING SSD ADDRESS REMAPPING

Fig. 1. Examples of SSD address remapping. Duplicate writes to LPNs L2
and L4 can be performed through remapping without flash writes. However,
L2P and P2L mappings become inconsistent, causing data corruption.

They conduct out-of-place updates, so periodical cleaning or
compaction operations are required to reclaim storage space
occupied by stale data. In addition, file fragmentation has
been a long-standing problem that degrades the performance of
file systems. Many file systems recommend periodical defrag-
mentation [9]. Both cleaning/compaction and defragmentation
cause data relocations and thus duplicate writes.

Data Copy and Snapshot: Data copy is a frequent behavior
of users and applications. Snapshotting, which provides point-
in-time states of data volumes, is an important feature and
a common routine in storage systems [30]. These operations
may introduce duplicate writes to create physical data copies.

B. Exploiting SSD Address Remapping

To eliminate duplicate writes, the SSD address remapping
functionality can be utilized. Assume LPN Ly is written with
a duplicate data page copied or moved from LPN Lx. The
FTL can realize the write by remapping Ly to the flash page
storing Lx, rather than by writing a new free flash page. Such
remap operations, as shown in Fig. 1, can be done quickly by
updating the relevant L2P mappings in SSD-internal DRAM.

Many prior studies have proposed to exploit SSD address
remapping in a spectrum of scenarios, as summarized in
Fig. 2 and Table I. A body of works applies data dedupli-
cation on/inside SSDs [1], [18], [31], [32]. The deduplication
engine identifies duplicate data pages written from the host
(through hashing fingerprints). Instead of writing them to flash
memory, they can be remapped to existing flash pages that

Fig. 2. Applications of SSD address remapping. They can be classified
according to characteristics of remapping. The UD type is not applicable
because the U type and D type contradict with each other.

store the same contents. Address remapping is also attractive
for reducing journaling overheads [6], [7], [10], [17], [20].
After data updates are written to the log, they can be applied
by remapping LPNs of original locations to the flash pages
storing the logged updates. Using remapping for snapshot-
ting [10] is straightforward, like copying data A in Fig. 1. Data
relocations for cleaning [19], compaction [6], and defragmen-
tation [9] can be accomplished similarly to moving data C in
Fig. 1.

However, address remapping causes a critical mapping
inconsistency problem. Remap operations modify the L2P
mappings, but the relevant P2L mappings on flash memory
cannot be updated accordingly (because flash memory does
not support in-place updates). Such inconsistency between
L2P and P2L mappings would finally cause data corruption,
since L2P mappings would be altered incorrectly during GC
or be rebuilt falsely during power-off recovery. For example,
in Fig. 1, after remapping LPN L2 (previously mapped to PPN
P2) to PPN P1 (already referenced by L1), the L2P and P2L
mappings of P1 become inconsistent ({L1, L2} → P1 versus
P1 → L1). Then, after a GC operation migrates the data page
on PPN P1 to P1′ and erases P1, L2 would still be mapped to
P1 wrongly. Consider another scenario where L2P mappings
need to be restored after a sudden power outage. An improper
L2P mapping, i.e., L2 → P2, would be recovered from the
P2L mapping, i.e., P2 → L2, persisted on flash memory.

Although several schemes have been proposed in existing
studies to cope with the mapping inconsistency, they suffer
from severe drawbacks. To facilitate in-depth analysis of the

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on December 12,2022 at 17:39:15 UTC from IEEE Xplore. Restrictions apply.

WU et al.: UNDERSTANDING AND EXPLOITING FULL POTENTIAL OF SSD ADDRESS REMAPPING 5115

drawbacks in Section III-C, we classify the applications of
remapping in two dimensions. Note that remap operations
change the L2P mapping regularity from conventional 1-to-
1 to M-to-1. In the first dimension, a remapping scenario is
considered as P-type, if the maximum M, namely, degree of
L2P association, is predefined. Otherwise, it is U-type. For
example, data relocation and journaling are P-type (M is equal
to 1 and 2, respectively), while deduplication and file copy are
U-type (M depends on content popularity and user behaviors,
respectively). In the second dimension, a remapping scenario
is D-type, if the LPNs and PPNs for future remapping are
deterministic at the time of the PPNs being written. Otherwise,
it is N-type. For instance, in WAL (D-type), when data pages
being updated are written to the log, the LPNs of their original
locations are already known.

Combining the two dimensions (P/U-type and D/N-type),
application scenarios of SSD address remapping are divided
into three types (PD, PN, and UN), as shown in Fig. 2.

C. Schemes for Mapping Consistency

To address the mapping inconsistency problem caused by
remapping, several schemes have been proposed, as listed in
Table I. Taking all types of remapping scenarios into consid-
eration, the common scheme adopted in [1], [6], [9], [18],
and [20], referred to as Remap-SSD-GF in Section V, is to
maintain a global log on flash memory for persisting the P2L
mappings changed by remapping. Its major drawback is that
it requires scanning the entire log to retrieve certain P2L
mappings during every GC operation and power-off recov-
ery. Especially, the log size increases continuously and could
grow very large as remap operations occur. Assume the SSD
capacity is 4 TB, page size is 4 kB, and each log entry for a
page remap operation takes at least 12B (e.g., 4B PPN + 4B
LPN + 4B timestamp). When 5% or 20% of data pages have
been remapped, the log size is as large as 600 MB or 2.4 GB,
respectively. Hence, the lookup overheads of P2L mappings
would increase over time and finally become exceedingly
high. It would not be an effective solution to store the global
log on high-speed NVRAM (denoted as Remap-SSD-GN in
Section V), since the scanning process would still be very
time consuming, e.g., from tens of milliseconds to seconds
when the log size is hundreds of megabytes.

To confine the lookup overheads, Janusd [9] sets a limit on
the log size and reclaims obsolete mapping entries periodi-
cally. However, remap operations have to be disabled when
the log reaches the size limit. Additionally, high reclamation
overheads are introduced, i.e., reading and rewriting the entire
log on flash memory.

PebbleSSD [19] proposes an NVRAM-enhanced scheme,
which replaces the fixed-size OOB area in flash pages
with byte-addressable NVRAM. Therefore, P2L mappings of
remapped data pages can be updated in place in the NVRAM
OOB, retaining consistent with the L2P mappings. However,
due to the limited OOB size, this scheme only fits in P-type
remapping scenarios, where the maximum degree of L2P asso-
ciation is limited and small. For UN-type remapping, where
the degree of L2P association may be high, large and high-cost

NVRAM OOB area would be required. Also, NVRAM space
utilization would be low for flash pages with low degrees of
L2P association.

By utilizing the property of PD-type remapping, WAL-
SSD [7] writes the predetermined LPN for future remapping to
the OOB area when the relevant flash page is written. Thus, the
L2P and P2L mappings of the flash page are consistent after
the predefined remap operation. This scheme is only applica-
ble for PD-type remapping scenarios, because the LPNs for
future remapping are totally uncertain in N-type scenarios.

In summary, existing SSD designs that exploit address
remapping restrict the application scenarios and/or usage
frequency of remapping severely, mainly due to the L2P
and P2L mapping inconsistency problem. Furthermore, sim-
ply enhancing the SSD with extra NVRAM is inadequate to
remove the restrictions. As a consequence, the potential of
SSD address remapping is largely underutilized.

IV. DESIGN

A. Overview of Remap-SSD-LH

In this section, we present a novel SSD design, called
Remap-SSD-LH. The goal is to maximize the utilization of
address remapping in all application scenarios and meanwhile,
maintain the L2P and P2L mapping consistency efficiently.

Remap-SSD-LH provides a remap primitive at the
firmware/FTL level, which embodies the address remapping
utility, as shown in Fig. 3. The primitive is exposed to the host
software as a vendor specific command, which is supported
inherently in current interface techniques (e.g., NVMe and
SATA). Through the primitive, applications and file systems
can copy or relocate data pages without performing flash
writes. Also, the FTL, if an intra-SSD deduplication engine
is employed, can eliminate writes of duplicate data.

The remap primitive is formatted as remap (tgtLPN,
srcLPN, length, remapFlag) (tgt/src: target/source).
It remaps a range of LPNs between tgtLPN and tgtLPN
+ length - 1 to the flash pages currently mapped to the
range of LPNs between srcLPN and srcLPN + length
- 1. The remapFlag parameter is a 1-bit flag indicating
whether the source LPNs should be deallocated/invalidated
or not after remapping. For data relocations, the correspond-
ing flash pages should no longer be mapped to source LPNs
(remapFlag = 1). Regarding data copies, the L2P map-
pings of source LPNs are retained (remapFlag = 0). With
the remapFlag, our proposed remap primitive has better
expressivity and performance than traditional remap-like prim-
itives (e.g., SHARE [6] and copyless copy (CC) [20]), which
enable only data copies. After invoking a traditional primi-
tive for data relocations, the host software needs to explicitly
deallocate the source LPNs by issuing TRIM commands.

During remap operations, both remapping and invalidation
of LPNs are realized by directly modifying the L2P mapping
table cached in SSD-internal DRAM. Recall that when a data
page is written to a flash page, the FTL stores the relevant
P2L mapping and write timestamp as house-keeping meta-
data on flash memory. To address the mapping inconsistency
and support fast lookups of P2L mappings (as discussed in

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on December 12,2022 at 17:39:15 UTC from IEEE Xplore. Restrictions apply.

5116 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 41, NO. 11, NOVEMBER 2022

Fig. 3. Overview of Remap-SSD-LH. A remap primitive is provided and can be invoked by host software (➌ and ➍) or the FTL (e.g., an intra-SSD
deduplication engine ➋). To guarantee the L2P and P2L mapping consistency, RMM entries are persisted in NVRAM segments and can be destaged to
reserved flash pages when NVRAM is full.

Section III), Remap-SSD-LH employs a local log scheme that
persists additional house-keeping metadata, called remapping
metadata (RMM). Whenever an LPN is remapped to a flash
page, an RMM entry including the changed P2L mapping is
generated. A remap command is considered to be completed
successfully only after the involved L2P mappings have been
modified in DRAM and the relevant RMM entries have been
persisted. Modifications of L2P mappings are not required
to be persisted because they can be recovered from house-
keeping metadata (see Section IV-E). Thus, remap operations
can be carried out quickly and persistent P2L mappings are
always consistent with the latest L2P mappings.

We introduce the details of the local log scheme and RMM
content in Sections IV-B and IV-C, respectively. Sections IV-D
and IV-E present how Remap-SSD-LH performs GC opera-
tions and power-off recovery, respectively.

B. Local Logging on Hybrid Storage

Naively appending RMM entries in a global log would
incur expensive log scans for querying P2L mappings (see
Section III-C). To address this challenge, Remap-SSD-LH
takes advantage of a key observation that retrievals of P2L
mappings are always performed in the granularity of a flash
GC unit. We assume Remap-SSD-LH adopts the popular
superblock-based flash management [24], [26]. The flash GC
unit is a superblock containing flash blocks with the same off-
set across all flash dies. In each GC operation, the FTL selects
a victim flash superblock, where valid data pages are read
out and written to a free flash superblock. Before the migra-
tions, valid P2L mappings of the victim superblock need to be
retrieved so that the involved L2P mappings can be updated
to point to new physical locations. After the migrations, the
victim superblock can be erased and become free.

Based on the observation, Remap-SSD-LH maintains a local
log to record RMM entries for each data superblock, i.e.,
a flash superblock storing host data. Whenever an LPN is
remapped to a flash page, the corresponding RMM entry is

appended in the local log of the superblock where the flash
page resides. The size of a local log varies according to the
number of LPNs remapped to the relevant superblock. Instead
of a large global log, only a small local log needs to be
scanned for lookups of P2L mappings during the GC of a
data superblock. The local logs are persisted first in small
byte-addressable NVRAM and can also be stored on flash
memory if NVRAM capacity is short. The NVRAM media
can be one of emerging NVRAM technologies like PCRAM
(if available in the SSD) or a portion of DRAM protected by
supercapacitors (which commonly exists in modern SSDs).

The NVRAM volume is divided into fixed-size segments,
which are exclusively allocated to a data superblock on
demand to store its RMM entries. A segment validity bitmap
(SV-bitmap) is maintained in DRAM or NVRAM to indicate
whether each segment is used or free. Each segment is par-
titioned into slots, which are written with RMM entries in a
log-structured manner. When any data page in a superblock
is remapped, the relevant RMM entry is appended in the
free NVRAM segment allocated to the superblock (e.g., ➌
in Fig. 3). If the superblock has no segments yet (e.g., ➍ in
Fig. 3) or the segment in use is full (e.g., ➋ in Fig. 3), a
new free segment is assigned first. We refer to the NVRAM
segments that belong to a data superblock as a segment group.

As remap operations are conducted, the RMM size increases
and free NVRAM segments are consumed. When NVRAM
is full, Remap-SSD-LH takes one of two measures to pro-
duce free NVRAM segments for future remap operations.
First, NVRAM GC operations can be performed to reclaim
NVRAM segment groups containing invalid RMM entries,
which will be discussed in Section IV-D. Second, RMM stor-
age can be extended beyond the NVRAM capacity with flash
memory through destage operations. Remap-SSD-LH triggers
NVRAM GC if the ratio of valid RMM entries is lower than
a high watermark (95% by default). Otherwise, the benefit
of NVRAM GC is very small and the NVRAM capacity is
considered to be short. In this case, Remap-SSD-LH chooses
the largest NVRAM segment group and destages RMM entries

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on December 12,2022 at 17:39:15 UTC from IEEE Xplore. Restrictions apply.

WU et al.: UNDERSTANDING AND EXPLOITING FULL POTENTIAL OF SSD ADDRESS REMAPPING 5117

Fig. 4. Indexing of RMM on flash memory. The RMM of a data superblock
can be stored in a group of flash pages indexed by a double-linked list.
(a) Indexed RMM pages of data superblock x. (b) Index updates after the
GC of RMM superblock y.

in the group to flash pages in dedicated superblocks, called
RMM pages/superblocks; then, the segments in the victim
group can be freed. An RMM page only accommodates the
RMM entries of a specific data superblock. As a flash page
is usually larger than an NVRAM segment, RMM pages may
be partially filled. We refer to the RMM pages that belong to
the same data superblock as an RMM page group.

The local log of a data superblock consists of an NVRAM
segment group and an RMM page group (a group may contain
zero segments/pages). To retrieve a local log, Remap-SSD-
LH employs a lightweight indexing method. First, NVRAM
segments or RMM pages in each group are linked together
in the order of their write time. Each NVRAM segment has a
head metadata entry that points to the next segment in the same
group (see Section IV-C). We refer to the indexing structure
of RMM pages as RP-index. It connects RMM pages in each
group using a double-linked list. Assume a number of, say
R, RMM superblocks are reserved. The RP-index contains R
subtables and each subtable is indexed by the PPNs in an
RMM superblock. A subtable entry, which represents an RMM
page, records the PPNs of the previous and next RMM pages
in the same group, as shown in Fig. 4(a). For the head RMM
page in a group, its previous pointer stores the ID of the data
superblock, which the group belongs to. Then, Remap-SSD-
LH tracks the head NVRAM segment and head RMM page
for each data superblock. Such superblock metadata and the
RP-index are kept in DRAM or NVRAM for fast accesses.
Their space overheads are discussed in Section IV-F.

Note that NVRAM segments are linked in single-linked lists
while the RP-index uses double-linked lists. This is because
when valid RMM pages are migrated to new locations during
the GC of an RMM superblock, pointers that target the pages
must be found and updated. Fig. 4 shows an example where an
RMM page is moved from P2 to P3. In contrast, single-linked
lists of NVRAM segments are reconstructed during NVRAM
GC, since the GC granularity is a segment group.

C. Remapping Metadata

The content of an RMM entry should be carefully designed
to serve three goals: 1) mapping consistency; 2) atomicity of
remap operations; and 3) space efficiency.

First, the changed P2L mapping and timestamp of an LPN
remapping should be recorded for the mapping consistency.
Recall that a remap operation is to remap a target LPN to
the PPN that is currently mapped to a source LPN; if it is
a relocation-based remapping (remapFlag=1), the source
LPN needs to be deallocated. The P2L mapping contains four
fields: a pair of target LPN and PPN, a remapping flag, and
an alterable field, i.e., a source LPN if the flag is set or null
value otherwise. Without the last two fields, deallocations of
source LPNs could not be recognized and then L2P mappings
of source LPNs may be revived undesirably after power-off
recovery. The timestamp can be virtual time. In the current
implementation, we use the number of host write/remap oper-
ations that have been performed in the SSD, i.e., write/remap
sequence number for short.

Second, atomicity of remap operations should be main-
tained, as their executions may be disrupted by sudden power
outages. We distinguish two atomicity levels: 1) remapping
atomicity and 2) command atomicity. The former refers to the
atomicity of remapping a single LPN, or more precisely, write
atomicity of an RMM entry on NVRAM. A partially updated
or written RMM entry would result in improper power-off
recovery of L2P and P2L mappings and thus data corruption.
A remap command includes one or multiple RMM entries
that may scatter in different NVRAM segments. Command
atomicity implies atomic remap commands. If the write of
any RMM entry in a remap command fails, all the mapping
changes caused by the command should be discarded.

Partial updates of RMM entries have been avoided by the
log structure of NVRAM segments. Remap-SSD-LH needs to
further detect incomplete writes of RMM entries on NVRAM
for remapping atomicity, and moreover, recognize whether all
the RMM entries of a remap command have been persisted
successfully for command atomicity. This can be achieved by
adding extra fields in each RMM entry.

Modern processors generally support 8-byte atomic writes
to NVRAM [33]. Remap-SSD-LH configures RMM entry size
to be a multiple of 8 bytes, say K ∗ 8 bytes. As K is larger
than one, Remap-SSD-LH adopts a simple torn-bit mechanism
implemented by Mnemosyne [34] to guarantee atomic writes
of RMM entries. In every 8 bytes, a single torn bit is preserved.
NVRAM segments are initialized to zeros when allocated for
use. Completely written entries will have all K torn bits set as
ones, while incomplete entries, which have at least one zero
torn bit, will be discarded during power-off recovery.

If command atomicity is desired, three more fields are
required in an RMM entry: the start LPN and length of the
remap command, and a command atomicity flag indicating
whether the remap command is required to be atomic. Each
remap command can be identified by its write/remap sequence
number. When RMM entries on NVRAM are scanned during
power-off recovery, a remap command is successfully executed
only if all the RMM entries in its LPN range are found to be
intact. Otherwise, the remap command is partially performed
and will be abandoned to guarantee command atomicity.

Current applications commonly require remapping atom-
icity. This resembles regular SSDs, where single-page write
atomicity is guaranteed and maybe only some of data pages
in a write command are persisted after a sudden power

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on December 12,2022 at 17:39:15 UTC from IEEE Xplore. Restrictions apply.

5118 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 41, NO. 11, NOVEMBER 2022

TABLE II
RMM ENTRY

outage. Atomic remap commands are similar to the advanced
atomic-write primitives proposed in [35] and [36] and NVMe
specification [37]. Although these atomic commands are not
widely used yet, they provide an option to reduce the complex-
ity and overheads for atomicity assurance in the host software.
In the current implementation, Remap-SSD-LH ensures only
remapping atomicity by default.

The third goal of designing RMM entries is to improve
the space efficiency, which can be realized by compacting the
fields. The target PPN is replaced by its physical page offset
in the resident flash superblock, as each NVRAM segment is
dedicated to a specific superblock. Also, the unused bits in
LPN fields can be utilized. Assuming the SSD capacity and
page size are 4 TB and 4 kB, respectively, a 4B LPN field can
spare two bits for holding the torn bit and/or remapping flag.
Table II shows an example layout of an RMM entry, whose
size is 16B. The entry size can be extended to 24B, if any
fields demand more bits or command atomicity is required.

Besides RMM entries, each NVRAM segment contains a
segment metadata entry in its head slot. This entry includes a
data superblock ID that the segment is associated with, the
current write/remap sequence number, a segment sequence
number among the segments allocated to the data superblock,
and a next segment ID that links the segments in a group.
In every RMM page, the data superblock ID that the page
belongs to is also stored, e.g., in the head slot or OOB area.
Hence, association relationships between data superblocks and
NVRAM segments or RMM pages can always be restored
from persistent metadata.

D. Garbage Collection

Both flash memory and NVRAM are written in a log-
structured fashion. Remap-SSD-LH logically divides flash
superblocks into a data superblock pool and an RMM
superblock pool. We refer to the number of RMM superblocks
as R, while the rest are data superblocks. An upper limit is
set for R, say Rmax. A flash superblock is dynamically allo-
cated to store RMM or host data on demand (wear leveling
can be conducted across all flash superblocks), while the num-
ber limit in each pool is guaranteed. When free space in one
superblock pool or NVRAM is running out, GC is performed
in data/RMM superblocks or NVRAM segments to reclaim
invalid data. Both superblock pools reserve at least one free
superblock for migrating valid data during GC.

Assume the sizes of an RMM entry, a superblock, and
NVRAM are Sentry, Ssb, and Snvram, respectively, and there
are Nrp unique logical pages that have been remapped (i.e.,
the size of valid RMM is Nrp ∗ Sentry). If NVRAM is large
enough for RMM storage (Snvram >= Nrp ∗ Sentry), Rmax is

equal to zero. Otherwise

Rmax = ⌈(
Nrp ∗ Sentry − Snvram

)
/ Ssb

⌉ + Omax. (1)

The rounding-up part refers to a minimum number of
superblocks for the storage of valid RMM and may change
over time along with the data duplication rate in the workload.
Omax indicates a maximum number of RMM superblocks that
can be overprovisioned for improving GC efficiency.

At runtime, an increasing number of RMM superblocks are
allocated on demand until the upper limit Rmax is reached.
RMM superblocks account for only a very small fraction
of flash storage due to the small size of an RMM entry.
For example, assume the logical/physical SSD capacity is
1 TB/1.25 TB, page size is 4 kB, Sentry = 16B, Snvram <

Ssb = 512 MB, and Omax = 4. When the data duplicate
ratio is 12.5%, 50%, or 100% (Nrp is equal to 128 GB/4 kB,
512 GB/4 kB, or 1 TB/4 kB), Rmax can be calculated as 1+4,
4 + 4, or 8 + 4, respectively. The overprovisioning ratio for
RMM storage is 400%, 100%, and 50%, respectively. In
contrast, the total number of flash superblocks is calculated
as 2560. In the current implementation, we statically set Omax
to provide an overprovisioning ratio of no smaller than 100%
when the data duplicate ratio is no higher than 50% (this condi-
tion holds true in general workloads). We could increase Omax
in extreme cases where the data duplicate ratio is unusually
high.

When free data superblocks run out, a victim data
superblock with the most invalid pages is chosen for GC.
A flash page may be referenced by multiple LPNs due to
address remapping. The FTL maintains a reference counting
table (RC-table) to track the number of references for each
flash page. A flash page is invalidated only when its reference
count is zero. Considering most flash pages have small refer-
ence counts (e.g., smaller than ten [1]), four-bit counters are
used by default. During the GC, valid data pages are moved
to free flash pages of a new data superblock. Meanwhile, new
RMM entries are generated by updating the valid RMM entries
(precisely, PPN fields) of migrated data pages and then written
to the local log of the new data superblock. An RMM entry
is identified as valid only when its P2L mapping is consis-
tent with the latest L2P mapping. Afterward, the victim data
superblock is erased to be free and its local log is invalidated.

The GC of RMM is conducted on both NVRAM segments
and RMM superblocks. Instead of recording the validity status
of every RMM entry, the FTL tracks the numbers of invalid
RMM entries in the NVRAM segment groups and in the RMM
page group for each data superblock. Specifically, a bitmap is
maintained for LPNs and each entry contains two bits, called
LR-bitmap. One bit indicates whether the current L2P mapping
of an LPN is established by a remap or write operation. For
a remapped LPN, the other bit records whether the relevant
RMM entry is stored in the NVRAM segment group or the
RMM page group. When an LPN previously remapped to a
PPN is remapped again or written to a new PPN, the stale
RMM entry becomes invalid and the number of invalid entries
of the corresponding group increases by one. In addition, the
FTL maintains the overall ratios of valid entries in NVRAM
and in all the RMM superblocks, respectively.

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on December 12,2022 at 17:39:15 UTC from IEEE Xplore. Restrictions apply.

WU et al.: UNDERSTANDING AND EXPLOITING FULL POTENTIAL OF SSD ADDRESS REMAPPING 5119

An NVRAM GC operation is triggered, when free NVRAM
segments are exhausted and the ratio of valid RMM entries
in NVRAM is below a high watermark (see Section IV-B). A
segment group with the largest number of invalid RMM entries
is chosen as the victim. Then, valid entries in the group are
moved to a new group of free segments, after which the victim
segment group is zeroed to be free.

An RMM superblock GC operation is carried out, when
Rmax RMM superblocks have been used up. The RMM
superblock with the most invalid entries is chosen to be
reclaimed. Invalid entries in victim RMM pages are discarded,
while valid entries are compacted to construct new RMM
pages and are written to a reserved free RMM superblock.
Afterward, the RP-index is updated accordingly for data
superblocks whose RMM pages have been reconstructed.

E. Power-Off Recovery

Power-off recovery aims to recover the FTL to a consistent
state with the latest mappings after sudden power outages.
The key is to ensure P2L mappings of data pages that have
been written on flash memory are persistent. Then, the L2P
mapping table can be rebuilt from the P2L mappings.

Remap-SSD-LH maintains head and tail metadata in each
flash superblock for fast power-off recovery, similar to con-
ventional SSDs [22]. When a flash superblock is allocated,
head metadata are written first before any data writes, includ-
ing at least the type, write timestamp, and erase count of the
superblock. The type indicates whether the superblock stores
host data pages or RMM metadata or other FTL metadata.
Write timestamps preserve the write order of superblocks.
Note that flash pages in a block must be written sequentially
and blocks in a superblock can be written in parallel. Remap-
SSD-LH chooses the first flash page of the Xth block in a
superblock to keep head metadata, where X is the modulus
of superblock ID and the number of blocks each superblock
contains. This enables concurrent reads to head metadata of
different superblocks. Tail metadata are retained in the last
several flash pages in each data superblock. They collectively
hold the P2L mappings and write/remap sequence numbers of
data pages that have been written in the superblock.

Power-off recovery of Remap-SSD-LH relies on the head
and tail metadata in flash superblocks and RMM in NVRAM
segments and RMM superblocks. The main recovery proce-
dure includes three steps. First, head metadata of all flash
superblocks are read to identify data superblocks and RMM
data superblocks. Second, tail metadata of data superblocks are
scanned in write time order, from which we can recover an
L2P mapping table indexing data pages that have been writ-
ten to flash memory. The power-off recovery of traditional
SSDs ends after this step. Third, Remap-SSD-LH examines
all NVRAM segments and RMM superblocks to obtain intact
RMM entries whose timestamps are more recent than the write
timestamps of relevant data pages. These entries record the
mapping changes caused by the latest remap operations. The
up-to-date L2P mapping table can be established by applying
the changes. Meanwhile, some other metadata, such as the
RC-table, LR-bitmap, and indexes of RMM on NVRAM and
flash memory, can be restored.

F. Discussion

Utilization of Address Remapping: In Remap-SSD-LH, the
usage of address remapping is only limited by the reference
counting capability (e.g., up to 15 for 4-bit counters). If the
counter of a flash page reaches its maximum, which rarely hap-
pens, remapping to this page is prohibited. In this case, the
SSD would not return a failure on the relevant remap com-
mand and require the host software to perform error handling.
Instead, Remap-SSD-LH internally transforms the prevented
remap operations to regular physical writes of duplicate data
pages, which is transparent to the host. Therefore, host soft-
ware can maximize the utilization of remapping without
concerning SSD-internal details.

It is important to notice that address remapping improves
the cost efficiency of data storage, even if NVRAM is
employed for RMM storage. Writes of every 1-GB duplicate
data through remapping only produce 4-MB RMM. Assume
PCRAM, whose bit cost is roughly five times that of flash
memory [28], is in use. The cost of storing RMM on PCRAM
is only about 2% of the cost of storing duplicate data on flash
memory. We also note that NVRAM lifetime is not a concern,
because NVRAM has more than three orders of magnitude
higher write endurance than flash memory (e.g., five orders
for PCRAM [28]). In all our experiments, the ratio between
the maximum number of write cycles on an NVRAM segment
and that on a flash superblock is much smaller than 1000.
Moreover, NVRAM GC overheads and thus, write cycles can
be largely reduced by migrating valid RMM entries from
NVRAM to flash memory.

In addition, address remapping increases the number of ref-
erences to and thus, read hotness of some flash pages. Such
flash pages become more vulnerable to read disturb errors.
This concern can be addressed by using existing read refresh
mechanisms [15], which migrate victim data to new flash
blocks, similar to data migrations during GC. As read disturb
errors rarely happen (e.g., after hundreds of thousands of repet-
itive read operations), implementing a read refresh mechanism
in Remap-SSD-LH would incur negligible overheads.

Metadata Overheads: Compared to traditional SSDs where
address remapping is not exploited, Remap-SSD-LH intro-
duces extra metadata and thus, increases DRAM or NVRAM
consumption. The SV-bitmap and RP-index are kept for local
logging (see Section IV-B), while the RC-table and LR-
bitmap are maintained for GC (see Section IV-D). Also, the
superblock metadata are extended, e.g., recording the loca-
tions of local logs and statistics of invalid RMM entries. The
SV-bitmap and additional superblock metadata incur negligi-
ble space overheads. The sizes of RC-table and LR-bitmap are
proportional to the physical and logical capacities of the SSD,
respectively. Assume the logical and physical capacities of the
SSD are 1 and 1.25 TB, respectively, and page size is 4 kB.
The RC-table (with 4-bit counters) size in Remap-SSD-LH is
160 MB, while that (with 1-bit counters) in conventional SSDs
is 40 MB. The LR-bitmap takes 64-MB space and may be
embedded into existing L2P mapping entries if the PPN field
has unused bits. The RP-index size depends on the number of
RMM superblocks. Suppose the superblock size is 512 MB
and there are six RMM superblocks. The RP-index, which

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on December 12,2022 at 17:39:15 UTC from IEEE Xplore. Restrictions apply.

5120 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 41, NO. 11, NOVEMBER 2022

tracks two 4-byte pointers for every RMM page, is as small
as 6 MB.

V. CASE STUDIES AND EVALUATION

A. Experimental Setups

To evaluate Remap-SSD-LH, we perform three case stud-
ies with various applications: 1) intra-SSD deduplication;
2) WAL in SQLite; and 3) cleaning in F2FS. Remap-SSD-LH
is compared with the following five schemes.

1) NoRemap-SSD, which is a conventional SSD and does
not exploit SSD address remapping.

2) Remap-SSD-GF, which represents a state-of-the-art SSD
enabling address remapping (i.e., the commonly adopted
scheme in existing studies listed in Table I) and
addresses the mapping consistency problem by persist-
ing a global log of RMM entries on parallel flash
dies.

3) Remap-SSD-GN, which enhances Remap-SSD-GF by
storing the global log on high-speed NVRAM.

4) Remap-SSD-LN, which maintains local logs for data
superblocks like Remap-SSD-LH but employs only
NVRAM to store the logs.

5) Remap-SSD-Opt, which is an optimal case assuming no
limitations on the usage of address remapping and O(1)
time in retrieving RMM entries.

To confine the lookup overhead of a global log, Remap-SSD-
GF and Remap-SSD-GN have to restrict the log size and thus,
the maximum usage of remapping. Remap-SSD-LN also can-
not maximize the usage of remapping due to the hardware
limit of NVRAM capacity. When the global log or NVRAM
has no more space for new RMM entries, remapping has
to be forbidden. In contrast, Remap-SSD-LH removes such
limitations by employing local logging (which provides fast
lookups of RMM) and extending RMM storage with flash
memory. The NVRAM segment size in Remap-SSD-LH and
Remap-SSD-LN is set as 1 kB by default.

The majority of experiments are conducted on FEMU, a
QEMU-based NVMe SSD emulator [23]. FEMU runs in a
machine with 3.80 GHz 16-core Intel i7-9800X CPU and
64-GB DRAM. The emulated SSD is configured with 32-GB
logical capacity plus 4-GB overprovisioning space (the capac-
ity is limited by DRAM size of the machine). A flash block
has 1024 pages whose size is 4 kB. A superblock contains
16 blocks, as the SSD consists of 16 parallel dies (each die
has one plane). The flash read, write, and erase latencies are
50 µs, 500 µs, and 5 ms, respectively. The NVRAM read and
write latencies are 50 and 500 ns per 64B, respectively. In
addition, we carry out some experiments of intra-SSD dedu-
plication on SSDsim, a popular SSD simulator [38], to evaluate
the schemes with a larger SSD and real-world traces. The sim-
ulated SSD has 256/288 GB logical/physical capacity and 32
dies, while the other configurations remain unchanged. Write-
dominant workloads are used for evaluation, since our work
aims to reduce duplicate writes.

B. Intra-SSD Deduplication

Intra-SSD deduplication is a case worthwhile for studying
for two reasons. First, data duplication incurs extensive

duplicate writes, demanding the exploitation of address
remapping. Second, deduplication generates complex UN-
type remapping behaviors, similar to those in copying or
snapshotting files. Such behaviors challenge the schemes for
maintaining mapping consistency, so their efficiency differ-
ences can be clearly presented. In all the schemes excluding
NoRemap-SSD, we implement a deduplication engine in the
FTL, similar to CAFTL [1]. The FTL maintains a hash-based
fingerprint store and computes the fingerprint of each logical
data page written from the host. We assume a hardware hash
unit is used and the computational overhead is 32 µs [18]. If a
fingerprint hits the store, the FTL invokes the remap primitive
to map the logical page to be written to the existing logical
page that has the same content. Otherwise, the fingerprint is
unique and added to the store and the logical page is written to
flash memory. Note that we can also deploy the deduplication
engine and then call the remap primitive at the host side. This
makes no differences for verifying the schemes.

We conduct two sets of experiments on FEMU-SSD run-
ning benchmark tools and on SSDsim running a real-world
trace. Benchmarks include the fileserver and oltp workloads
in filebench [39], and random-write workload (randw for short)
in fio [40]. These benchmarks do not include content locality
in their data sets. Thus, we use their I/O patterns and simu-
late contents of logical data pages using a zipf distribution,
which has been verified in characterizing the content popular-
ity [18]. The distribution is expressed by P(ti) = C/tai , where
C = 1/(

∑N
i=1 t−a

i), N is the number of unique contents in the
data set and a is the zipf parameter representing the skewness
in content popularity. We set a as 0.2 and the data duplica-
tion ratio as 10% (N is equal to 90% of the total number
of logical data pages). The real-workload trace, called mail,
is collected from production systems at FIU [18]. It contains
real fingerprints of data pages for deduplication.

Fig. 5 shows the performance and flash write amplifi-
cation (WA) of the five schemes when the maximum size
of the global log or NVRAM ranges from 2 to 120 MB.
The performance metric is bandwidth or operations per sec-
ond, which is measured by benchmark tools. The WA results
from valid data migrations during GC and is calculated as
the ratio between total flash page writes and host page
writes. The performance of Remap-SSD-GF, Remap-SSD-GN,
and Remap-SSD-LN continuously improves, as the maxi-
mum log/NVRAM size increases from 2 to 80 MB gradually.
Compared with NoRemap-SSD, these three schemes enhance
the performance by smaller than 50% under log/NVRAM sizes
within 10 MB while by 1.5 to 5.4 times when the log/NVRAM
size is 80 MB. This is because a larger log/NVRAM size can
afford more remap operations, which reduce duplicate writes.

When the log/NVRAM size continues to increase from
80 to 120 MB, the performance of Remap-SSD-GF and
Remap-SSD-GN no longer increases and may decrease,
while the performance of Remap-SSD-LN keeps the same
as that of Remap-SSD-LH and close to that of Remap-
SSD-Opt. Compared with Remap-SSD-GF and Remap-
SSD-GN, Remap-SSD-LN or Remap-SSD-LH improves the
performance by 45.6% and 28.7% on average, respectively,
when the log/NVRAM size is 80 MB. The performance
improvements increase to 53% and 31.4%, respectively, when

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on December 12,2022 at 17:39:15 UTC from IEEE Xplore. Restrictions apply.

WU et al.: UNDERSTANDING AND EXPLOITING FULL POTENTIAL OF SSD ADDRESS REMAPPING 5121

Fig. 5. Performance and flash WA under three traces and different sizes of the global log or NVRAM in the deduplication case. Performance (bandwidth
or throughput) numbers are normalized to those of NoRemap-SSD, which does not perform data deduplication. (a) Performance in fileserver workload.
(b) Performance in oltp workload. (c) Performance in randw workload. (d) WA in fileserver workload. (e) WA in oltp workload. (f) WA in randw workload.

Fig. 6. Normalized bandwidth in intra-SSD deduplication with mail trace.
Bandwidth is normalized to that of Remap-SSD-Opt. Different log/NVRAM
sizes ranging from 5 to 640 MB are evaluated (SSD capacity is 256 GB).
NoRemap-SSD is not shown due to large bandwidth gaps with others.

the log/NVRAM size is enlarged to 120 MB. These results
exhibit that the lookup overhead of a large global log becomes
significant (even NVRAM is used for logging). The equiva-
lence between Remap-SSD-LN and Remap-SSD-LH reveals
that 80-MB log/NVRAM space is large enough to hold
the RMM for maximizing the usage of remapping in the
workloads (no need for a flash extension).

The superior performance of Remap-SSD-LN owes to the
proposed local logging scheme, which enables fast lookups
of RMM despite large log space. Notice that Remap-SSD-LH
further enhances Remap-SSD-LN by extending RMM stor-
age with flash memory and thus, removing the limitation
of NVRAM capacity. As a result, Remap-SSD-LH always
achieves close-to-optimal performance. Especially, when the
log/NVRAM size is small, ranging from 2 to 10 MB,
Remap-SSD-LH improves the performance by 1.8 to 4.7
times, compared with Remap-SSD-GF, Remap-SSD-GN, and
Remap-SSD-LN. The utilization of remapping can also sig-
nificantly reduce the flash WA, since duplicate writes are
eliminated and the following GC operations are reduced. As
shown in Fig. 5, the WA of Remap-SSD-GF, Remap-SSD-
GN, and Remap-SSD-LN decreases as the log/NVRAM size

Fig. 7. Impacts of NVRAM segment size in Remap-SSD-LN under intra-
SSD deduplication (10% duplicate data). The NVRAM size is 40 MB.
(a) Normalized performance. (b) Flash WA.

increases. By comparison, the WA of Remap-SSD-LH keeps
close to that of Remap-SSD-Opt regardless of the NVRAM
size, as the usage of remapping can always be maximized.

In addition, Remap-SSD-LN has the same size of log
space as but slightly higher WA than Remap-SSD-GF and
Remap-SSD-GN, when the log/NVRAM size is small. The
reason is that Remap-SSD-LN allocates NVRAM segments
for separate local logs and may leave the segments under-
utilized. Thus, Remap-SSD-GF and Remap-SSD-GN, which
can fully utilize the space of a single global log, can under-
take more remap operations. When log space grows, the gaps
on space utilization and remapping usage narrow and become
negligible.

We also study the performance of Remap-SSD-LH with
a 256-GB SSD and a real-world trace, as shown in Fig. 6.
The log/NVRAM size varies from 5 to 640 MB. Before run-
ning the trace, we age the SSD by issuing random writes until
flash GC is triggered and by filling NVRAM with 70% valid
RMM entries with random LPNs. The results are consistent
with those shown in Fig. 5, where Remap-SSD-LH matches
Remap-SSD-Opt under a range of NVRAM sizes. When the
log/NVRAM size is no larger than 20 MB, Remap-SSD-LN
performs worse than Remap-SSD-GF and Remap-SSD-GN
due to lower log space utilization. As the log space increases
beyond 20 MB, the performance of Remap-SSD-GF and

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on December 12,2022 at 17:39:15 UTC from IEEE Xplore. Restrictions apply.

5122 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 41, NO. 11, NOVEMBER 2022

Fig. 8. SSD bandwidth under SQLite with fillrandom and fillseq workloads. The log/NVRAM sizes in Remap-SSD-GF, Remap-SSD-GN, and Remap-SSD-LN
are set as 80, 80, and 20 MB, respectively, while the NVRAM size in Remap-SSD-LH is configured as small as 2 MB. (a) SSD bandwidth in the fillrandom
workload. (b) SSD bandwidth in the fillseq workload.

Remap-SSD-GN degrades and Remap-SSD-LN outperforms
them because of low-overhead lookups of RMM.

Fig. 7 shows sensitivity studies on the NVRAM segment
size in Remap-SSD-LN. A larger segment size results in a triv-
ial performance degradations and a slight WA increase. This
is because NVRAM space utilization degrades (i.e., segments
contain unused slots) as the allocation unit is enlarged. We set
the segment size as 1 kB by default, despite marginally higher
segment metadata overheads.

From the above results, we can make two conclusions.
First, maintaining a global log of RMM causes significant
performance overheads, which are proportional to the log size.
Second, Remap-SSD-LH provides an efficient and scalable
scheme that can maximize the utilization of SSD address
remapping while ensuring the mapping consistency. When
the NVRAM size is small or the log space becomes large,
Remap-SSD-LH’s performance does not degrade and keeps
comparable with that of Remap-SSD-Opt.

C. Write-Ahead Logging in SQLite

WAL is a widely used approach for transactional atomic-
ity in databases and file systems [7]. All modifications on the
database file are written to a WAL file and then applied to
original locations during checkpoint operations. With Remap-
SSD-LH, checkpointing writes can be realized through the
remap primitive, i.e., remapping LPNs of original locations to
those in the WAL file. We use SQLite, a popular database [41],
to verify Remap-SSD-LH on reducing WAL overheads. One
issue is that data pages in the SQLite WAL file are not page
aligned because they are interleaved with frame headers [42].
To make data pages aligned, we simply store frame headers
collectively in reserved pages. The remap primitive is imple-
mented as a new NVMe command and is invoked by SQLite
through an extended ioctl system call.

We use the db_bench benchmark [43] to test SQLite (syn-
chronous = NORMAL). Two tests are conducted: one writes
1.6 million values in random key order (fillrandom) and the
other writes 1.5 million values in sequential key order (fillseq).
The value size is 16 kB. Fig. 8 shows the SSD bandwidth of
different schemes over time. Remap operations are counted
in measuring the bandwidth like read/write operations. The
log/NVRAM size configuration varies in different schemes,

Fig. 9. Numbers of flash page writes in SQLite (normalized to those of
NoRemap-SSD). The log/NVRAM size is set as 80 or 20 MB in Remap-SSD-
GF, Remap-SSD-GN, and Remap-SSD-LN, but 2 MB in Remap-SSD-LH.

e.g., 80 MB in Remap-SSD-GF and Remap-SSD-GN, 20 MB
in Remap-SSD-LN, and only 2 MB in Remap-SSD-LH.

In each test, NoRemap-SSD sustains two sharp performance
drops, e.g., at the time around 500 and 1000 s in Fig. 8(a).
The first drop is because the SSD has undergone a full disk
write and begins to conduct GC operations. At this time, GC
overheads are small, because the working set (i.e., the num-
ber of valid unique LPNs) size is moderate and the number
of invalid flash pages has accumulated to a high level. As the
working set grows and invalid flash pages are reclaimed over
time, the second performance drop occurs due to increased
GC overheads. Compared to NoRemap-SSD, Remap-SSD-LN
with 20-MB NVRAM has an additional performance drop
at the time around 200 s in Fig. 8(a). This is because the
NVRAM log space has been exhausted and remap opera-
tions are demoted to expensive flash writes of duplicate data.
In contrast, in Remap-SSD-GF and Remap-SSD-GN with
a large log/NVRAM size of 80 MB, and Remap-SSD-LH
with 2-MB NVRAM, address remapping is fully exploited
to enable single-write WAL. Hence, compared to NoRemap-
SSD, these three schemes achieve significantly higher SSD
bandwidth, postpone the first performance drop, and avoid the
second drop. Moreover, the number of flash page writes is
reduced by an average of 44.5%, as shown in Fig. 9. Among
the schemes, Remap-SSD-LH always outperforms Remap-
SSD-GF and Remap-SSD-GN, e.g., by 12.6% and 5.4%,
respectively, in the two workloads after GC has been triggered.

It is noticed that there is a performance inversion between
the schemes enabling address remapping and NoRemap-SSD
after the first performance drop at around 600 s in Fig. 8(b).

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on December 12,2022 at 17:39:15 UTC from IEEE Xplore. Restrictions apply.

WU et al.: UNDERSTANDING AND EXPLOITING FULL POTENTIAL OF SSD ADDRESS REMAPPING 5123

This is attributed to higher GC overheads in the schemes with
remapping. On the one hand, the schemes with remapping
have a larger working set size than NoRemap-SSD at that
time due to higher write bandwidth. On the other hand, despite
eliminating WAL overheads, remapping reduces the number of
invalid flash pages and thus, GC efficiency. In NoRemap-SSD,
the WAL file is overwritten repeatedly when it becomes full
and its contents have been applied to the database file. Such
overwrites lead to invalidation of flash pages that store obso-
lete WAL contents. In contrast, these flash pages remain valid
in the schemes with remapping, because they are remapped
to and referenced by relevant logical pages in the database
file. As the working set size grows and invalid flash pages
are reclaimed by GC over time in NoRemap-SSD, its GC
overheads increase and the performance inversion ends.

D. Cleaning in F2FS

Considering the detrimental effects of random writes on
SSDs, log-structured file systems naturally fit for SSDs and
have drawn close attention [8]. They provide write sequential-
ity by organizing data in logs. However, cleaning is required to
reclaim invalid data blocks. Similar to and independent from
intra-SSD GC, the log cleaning process includes migrating
valid data blocks and thus, introduces duplicate writes. We
modify F2FS, a state-of-the-art and popular log-structured file
system designed for flash devices [8], to utilize the remap
primitive for migrating valid data blocks at almost zero cost.

Two workloads are used for testing F2FS: 1) the fileserver
workload in filebench and 2) updating MongoDB with a zipfian
request distribution in YCSB [44]. Each test consists of three
successive phases: 1) running the workload to generate invalid
data blocks in F2FS; 2) manually triggering cleaning opera-
tions until all invalid data blocks in F2FS are reclaimed; and
3) running the workload for the second time for performance
evaluation. Fig. 10 shows the speedups of the schemes that uti-
lize SSD address remapping over NoRemap-SSD on the above
three phases. Remap-SSD-LH accelerates the cleaning pro-
cess by 39.9% and improves F2FS runtime performance (i.e.,
the second run) by 32.8%, on average. The cleaning process
includes many remap operations and thus, accumulates a large
number of RMM entries. Compared with Remap-SSD-GF and
Remap-SSD-GN, Remap-SSD-LH has similar performance to
them before the cleaning phase but an average of 14.9%
and 7.6% higher performance, respectively, after the clean-
ing phase (due to fast lookups of RMM). These results verify
the efficiency and scalability of Remap-SSD-LH in exploiting
SSD address remapping.

VI. RELATED WORK

Innovative SSD architectures have been an active field of
study in both academia and industry. Below, we discuss some
representative designs in two areas related to Remap-SSD-LH,
i.e., novel SSD interfaces and hybrid SSD architectures.

Novel SSD Interfaces: The conventional block interface
impedes hardware-software co-designs that can maximally
exploit the performance characteristics of flash storage. Hence,
several new SSD interfaces have been devised. A number

Fig. 10. Speedups in F2FS. Performance is normalized to that of NoRemap-
SSD. The log/NVRAM size is set as 80 or 20 MB in Remap-SSD-GF, Remap-
SSD-GN, and Remap-SSD-LN, but 2 MB in Remap-SSD-LH. (a) fileserver
in filebench. (b) YCSB on MongoDB.

of designs employ remap or similar primitives to reduce
duplicate writes by utilizing the SSD address remapping util-
ity [1], [6], [7], [9], [10], [17], [19], [20]. Compared to
these designs, Remap-SSD-LH avoids their limitations on the
usage of remapping (see Section III) by solving the mapping
inconsistency problem in an efficient manner.

Atomic-write interfaces have also been proposed by lever-
aging the copy-on-write nature of the FTL [35], [36], [45].
Through the interfaces, the burden of ensuring transactional
atomicity can be removed from the host software. To eliminate
redundant log layers across the storage stack and provide pred-
icable performance, the open-channel and zoned namespaces
(ZNSs) interfaces allow the host to directly manipulate data
layout on flash memory [46]–[48]. Recently, key-value (KV)
interfaces [49]–[51] and dual block- and byte-addressable
interfaces [52], [53] have been presented for SSDs. KV-SSDs
consolidate KV management with the FTL to provide high-
performance and scalable KV stores. Dual-interface SSDs
open a fast and fine-grained path to access SSDs. Besides,
Willow [54] proposed a user-programmable SSD that enables
flexible interactions between the host and SSD. These schemes
and Remap-SSD-LH share the same design philosophy of
breaking the block interface.

Hybrid SSD Architectures: To address the idiosyncrasies
of flash memory and take advantage of emerging NVRAM
technologies, hybrid SSD architectures have been studied.
NVRAM can be used in different ways for various purposes,
e.g., to store the L2P mapping table for fast and energy-
efficient address translation [29], to absorb small updates to
data on flash memory [55], to replace flash OOB for sup-
porting byte-addressable metadata [19], and to store intra-SSD
RAID parity for reducing parity updating overheads [27], [56].

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on December 12,2022 at 17:39:15 UTC from IEEE Xplore. Restrictions apply.

5124 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 41, NO. 11, NOVEMBER 2022

These efforts along with Remap-SSD-LH demonstrate the
large design space and potentials of hybrid SSD architectures.

In addition, our design on the co-management of NVRAM
and flash storage is partially inspired by the co-management
of reserved space and value storage in HashKV [57]. As a
KV store built on KV separation, HashKV divides value stor-
age into fix-sized partitions and allows a partition to grow on
demand by allocating segments in reserved space.

VII. CONCLUSION

Reducing flash writes has been a long-standing goal in
deploying SSDs. In this article, we presented Remap-SSD-LH,
which exports a remap interface and employs a local logging
scheme on hybrid storage for RMM. It allows the host and FTL
to maximally exploit SSD-internal address remapping utility
for eliminating duplicate writes. Meanwhile, Remap-SSD-LH
ensures the latest mappings can always be retrieved quickly
and recovered from house-keeping metadata persisted on flash
memory and NVRAM. Through three practical case studies,
we demonstrated Remap-SSD-LH delivers a safe, efficient,
and scalable solution that exploits SSD address remapping for
performance and lifetime improvements.

ACKNOWLEDGMENT

The authors would like to thank the anonymous reviewers
for their valuable feedback.

REFERENCES

[1] F. Chen, T. Luo, and X. Zhang, “CAFTL: A content-aware flash trans-
lation layer enhancing the lifespan of flash memory based solid state
drives,” in Proc. 9th USENIX Conf. File Stroage Technol. (FAST), 2011,
pp. 77–90.

[2] J. A. Paulo and J. Pereira, “A survey and classification of storage
deduplication systems,” ACM Comput. Surveys, vol. 47, no. 1, p. 11,
2014.

[3] W. Xia et al., “A comprehensive study of the past, present, and future
of data deduplication,” Proc. IEEE, vol. 104, no. 9, pp. 1681–1710,
Sep. 2016.

[4] Q. Yang, R. Jin, and M. Zhao, “SmartDedup: Optimizing deduplication
for resource-constrained devices,” in Proc. USENIX Annu. Tech. Conf.
(ATC), 2019, pp. 633–646.

[5] K. Shen, S. Park, and M. Zhu, “Journaling of journal is (almost)
free,” in Proc. 12th USENIX Conf. File Storage Technol. (FAST), 2014,
pp. 287–293.

[6] G. Oh, C. Seo, R. Mayuram, Y.-S. Kee, and S.-W. Lee, “Share interface
in flash storage for relational and NoSQL databases,” in Proc. Int. Conf.
Manage. Data (SIGMOD), 2016, pp. 343–354.

[7] K. Han, H. Kim, and D. Shin, “WAL-SSD: Address remapping-based
write-ahead-logging solid-state disks,” IEEE Trans. Comput., vol. 69,
no. 2, pp. 260–273, Feb. 2020.

[8] C. Lee, D. Sim, J. Hwang, and S. Cho, “F2FS: A new file system for
flash storage,” in Proc. USENIX Conf. File Storage Technol. (FAST),
2015, pp. 273–286.

[9] S. S. Hahn et al., “Improving file system performance of mobile storage
systems using a decoupled defragmenter,” in Proc. USENIX Annu. Tech.
Conf. (ATC), 2017, pp. 759–771.

[10] Z. Weiss, S. Subramanian, S. Sundararaman, N. Talagala, A. C. Arpaci-
Dusseau, and R. H. Arpaci-Dusseau, “ANViL: Advanced virtualization
for modern non-volatile memory devices,” in Proc. 13th USENIX Conf.
File Storage Technol. (FAST), 2015, pp. 111–118.

[11] Y. Zhan et al., “How to copy files,” in Proc. 18th USENIX Conf. File
Storage Technol. (FAST), 2020, pp. 75–89.

[12] A. Gupta, Y. Kim, and B. Urgaonkar, “DFTL: A flash translation layer
employing demand-based selective caching of page-level address map-
pings,” in Proc. Int. Conf. Archit. Support Program. Lang. Oper. Syst.
(ASPLOS), 2009, pp. 229–240.

[13] “How Micron SSDs Handle Unexpected Power Loss.” Micron. 2014.
[Online]. Available: https://www.micron.com/-/media/client/global/
documents/products/white-paper/ssd_power_loss_protection_white_
paper_lo.pdf

[14] C. Min, K. Kim, H. Cho, S.-W. Lee, and Y. I. Eom, “SFS: Random
write considered harmful in solid state drives,” in Proc. USENIX Conf.
File Storage Technol. (FAST), 2012, pp. 1–16.

[15] Y. Cai, S. Ghose, E. F. Haratsch, Y. Luo, and O. Mutlu, “Error char-
acterization, mitigation, and recovery in flash-memory-based solid-state
drives,” Proc. IEEE, vol. 105, no. 9, pp. 1666–1704, Sep. 2017.

[16] B. S. Kim, J. Choi, and S. L. Min, “Design tradeoffs for SSD reliabil-
ity,” in Proc. 17th USENIX Conf. File Storage Technol. (FAST), 2019,
pp. 281–294.

[17] H. J. Choi, S.-H. Lim, and K. H. Park, “JFTL: A flash translation layer
based on a journal remapping for flash memory,” ACM Trans. Storage,
vol. 4, no. 4, p. 14, 2009.

[18] A. Gupta, R. Pisolkar, B. Urgaonkar, and A. Sivasubramaniam,
“Leveraging value locality in optimizing NAND flash-based SSDs,” in
Proc. 9th USENIX Conf. File Stroage Technol. (FAST), 2011, pp. 1–13.

[19] Y. Jin, H.-W. Tseng, Y. Papakonstantinou, and S. Swanson, “Improving
ssd lifetime with byte-addressable metadata,” in Proc. Int. Symp.
Memory Syst. (MEMSYS), 2017, pp. 374–384.

[20] F. Ni, X. Wu, W. Li, L. Wang, and S. Jiang, “Leveraging SSD’s flexible
address mapping to accelerate data copy operations,” in Proc. IEEE 21st
Int. Conf. High Perform. Comput. Commun. IEEE 17th Int. Conf. Smart
City IEEE 5th Int. Conf. Data Sci. Syst. (HPCC/SmartCity/DSS), 2019,
pp. 1051–1059.

[21] D. Ma, J. Feng, and G. Li, “LazyFTL: A page-level flash translation
layer optimized for NAND flash memory,” in Proc. ACM SIGMOD Int.
Conf. Manage. Data, 2011, pp. 1–12.

[22] “Flash Translation Layer in the Storage Performance Development Kit
(SPDK).” 2020. [Online]. Available: https://spdk.io/doc/ftl.html

[23] H. Li, M. Hao, M. H. Tong, S. Sundararaman, M. Bjørling, and
H. S. Gunawi, “The CASE of FEMU: Cheap, accurate, scalable and
extensible flash emulator,” in Proc. 16th USENIX Conf. File Storage
Technol. (FAST), 2018, pp. 83–90.

[24] D. Gouk et al., “Amber*: Enabling precise full-system simulation with
detailed modeling of all ssd resources,” in Proc. 51st Annu. IEEE/ACM
Int. Symp. Microarchit. (MICRO), 2018, pp. 469–481.

[25] M. Jung and M. T. Kandemir, “Sprinkler: Maximizing resource utiliza-
tion in many-chip solid state disks,” in Proc. 20th IEEE Int. Symp. High
Perform. Comput. Archit., 2014, pp. 524–535.

[26] Y. Y. Tai, “High performance FTL for PCIe/NVMe SSDs,” in Proc.
Flash Memory Summit, 2016, pp. 1–20.

[27] Y. Zhou, F. Wu, W. Huang, and C. Xie, “LiveSSD: A low-interference
RAID scheme for hardware virtualized SSDs,” IEEE Trans. Comput.-
Aided Design Integr. Circuits Syst., vol. 40, no. 7, pp. 1354–1366,
Jul. 2021.

[28] M. Oros, “Analysts weigh in on persistent memory,” in Proc. Persistent
Memory Summit, 2018, pp. 1–28.

[29] Y. Hu et al., “Achieving page-mapping FTL performance at block-
mapping FTL cost by hiding address translation,” in Proc. IEEE Symp.
Mass Storage Syst. Technol. (MSST), 2010, pp. 1–12.

[30] S. Subramanian, S. Sundararaman, N. Talagala, A. C. Arpaci-Dusseau,
and R. H. Arpaci-Dusseau, “Snapshots in a flash with ioSnap,” in Proc.
9th ACM Eur. Conf. Comput. Syst. (EuroSys), 2014, pp. 1–14.

[31] J. Park, S. Lee, and J. Kim, “DAC: Dedup-assisted compression scheme
for improving lifetime of NAND storage systems,” in Proc. Design
Autom. Test Europe Conf. Exhibition (DATE), 2017, pp. 1249–1252.

[32] M.-C. Yen, S.-Y. Chang, and L.-P. Chang, “Lightweight, integrated data
deduplication for write stress reduction of mobile flash storage,” IEEE
Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 37, no. 11,
pp. 2590–2600, Nov. 2018.

[33] P. Zuo, Y. Hua, and J. Wu, “Write-optimized and high-performance hash-
ing index scheme for persistent memory,” in Proc. 13th USENIX Symp.
Oper. Syst. Design Implement. (OSDI), 2018, pp. 461–476.

[34] H. Volos, A. J. Tack, and M. M. Swift, “Mnemosyne: Lightweight per-
sistent memory,” in Proc. 16th Int. Conf. Archit. Support Program. Lang.
Oper. Syst. (ASPLOS), 2011, pp. 91–104.

[35] V. Prabhakaran, T. L. Rodeheffer, and L. Zhou, “Transactional flash,” in
Proc. 8th USENIX Conf. Oper. Syst. Design Implement. (OSDI), 2008,
pp. 147–160.

[36] X. Ouyang, D. Nellans, R. Wipfel, D. Flynn, and D. K. Panda, “Beyond
block I/O: Rethinking traditional storage primitives,” in Proc. 17th IEEE
Int. Symp. High Perform. Comput. Archit. (HPCA), 2011, pp. 301–311.

[37] “NVM Express Base Specification.” [Online]. Available:
https://nvmexpress.org/resources/specifications/ (accessed May 2021).

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on December 12,2022 at 17:39:15 UTC from IEEE Xplore. Restrictions apply.

WU et al.: UNDERSTANDING AND EXPLOITING FULL POTENTIAL OF SSD ADDRESS REMAPPING 5125

[38] Y. Hu, H. Jiang, D. Feng, L. Tian, H. Luo, and S. Zhang, “Performance
impact and interplay of SSD parallelism through advanced commands,
allocation strategy and data granularity,” in Proc. ACM Int. Conf.
Supercomput. (ICS), 2011, pp. 96–107.

[39] “Filebench Benchmark.” [Online]. Available: https://github.com/
filebench/filebench/wiki (accessed May 2021).

[40] “Fio Benchmark.” [Online]. Available: https://github.com/axboe/fio
(accessed May 2021).

[41] “SQLite Home Page,” [Online]. Available: https://www.sqlite.org/index.
html (accessed May 2021).

[42] W. Lee, K. Lee, H. Son, W.-H. Kim, B. Nam, and Y. Won, “WALDIO:
Eliminating the filesystem journaling in resolving the journaling of
journal anomaly,” in Proc. USENIX Annu. Tech. Conf. (ATC), 2015,
pp. 235–247.

[43] “Database Microbenchmarks,” [Online]. Available: http://www.lmdb.
tech/bench/microbench/ (accessed May 2021).

[44] “YCSB Benchmark.” [Online]. Available: https://github.com/
brianfrankcooper/YCSB (accessed May 2021).

[45] W.-H. Kang, S.-W. Lee, B. Moon, G.-H. Oh, and C. Min, “X-FTL:
Transactional FTL for SQLite databases,” in Proc. ACM SIGMOD Int.
Conf. Manage. Data (SIGMOD), 2013, pp. 97–108.

[46] J. Ouyang, S. Lin, S. Jiang, Z. Hou, Y. Wang, and Y. Wang, “SDF:
Software-defined flash for Web-scale Internet storage systems,” in Proc.
19th Int. Conf. Archit. Support Programm. Lang. Oper. Syst. (ASPLOS),
2014, pp. 471–484.

[47] S. Lee, M. Liu, S. Jun, S. Xu, J. Kim, and Arvind, “Application-managed
flash,” in Proc. 14th USENIX Conf. File Storage Technol. (FAST), 2016,
pp. 339–353.

[48] M. Bjørling, J. Gonzalez, and P. Bonnet, “LightNVM: The linux open-
channel SSD subsystem,” in Proc. 15th USENIX Conf. File Storage
Technol. (FAST), 2017, pp. 359–373.

[49] Y. Jin, H.-W. Tseng, Y. Papakonstantinou, and S. Swanson, “KAML:
A flexible, high-performance key-value SSD,” in Proc. IEEE Int. Symp.
High Perform. Comput. Archit. (HPCA), 2017, pp. 373–384.

[50] S.-M. Wu, K.-H. Lin, and L.-P. Chang, “KVSSD: Close integration
of LSM trees and flash translation layer for write-efficient KV store,”
in Proc. Design Autom. Test Europe Conf. Exhibition (DATE), 2018,
pp. 563–568.

[51] Y. Kang et al., “Towards building a high-performance, scale-in key-value
storage system,” in Proc. 12th ACM Int. Conf. Syst. Storage (SYSTOR),
2019, pp. 144–154.

[52] D.-H. Bae et al., “2B-SSD: The case for dual, byte- and block-
addressable solid-state drives,” in Proc. 45th Annu. Int. Symp. Comput.
Archit. (ISCA), 2018, pp. 425–438.

[53] A. Abulila et al., “FlatFlash: Exploiting the byte-accessibility of
SSDs within a unified memory-storage hierarchy,” in Proc. 24th Int.
Conf. Archit. Support Program. Lang. Oper. Syst. (ASPLOS), 2019,
pp. 971–985.

[54] S. Seshadri et al., “Willow: A user-programmable SSD,” in Proc. 11th
USENIX Symp. Oper. Syst. Design Implement. (OSDI), 2014, pp. 67–80.

[55] G. Sun et al., “A hybrid solid-state storage architecture for the
performance, energy consumption, and lifetime improvement,” in Proc.
16th Int. Symp. High-Perform. Comput. Archit. (HPCA), 2010, pp. 1–12.

[56] S. Im and D. Shin, “Flash-aware RAID techniques for dependable and
high-performance flash memory SSD,” IEEE Trans. Comput., vol. 60,
no. 1, pp. 80–92, Jan. 2011.

[57] H. H. W. Chan, Y. Li, P. P. C. Lee, and Y. Xu, “HashKV: Enabling
efficient updates in KV storage via hashing,” in Proc. USENIX Annu.
Tech. Conf. (ATC), 2018, pp. 1007–1019.

Qiulin Wu received the B.S. degree in computer
science and technology from the Wuhan University
of Technology, Wuhan, China, in 2017. He is
currently pursuing the Ph.D degree with the Wuhan
National Laboratory for Optoelectronics, Huazhong
University of Science and Technology, Wuhan.

His research interests include flash storage
systems and file systems.

You Zhou received the B.E. degree in computer
science and technology and the Ph.D. degree in com-
puter architecture from the Huazhong University of
Science and Technology (HUST), Wuhan, China, in
2011 and 2017, respectively.

From 2018 to 2020, he worked as a Postdoctoral
Researcher with the Wuhan National Laboratory for
Optoelectronics, HUST, where he is currently an
Associate Professor with the School of Computer
Science and Technology. His research interests
include nonvolatile memory, solid-state storage

architectures and systems, storage quality of service, and hardware-software
co-designs.

Fei Wu (Member, IEEE) received the B.E. and
M.E. degrees in electrical automation, control the-
ory and control engineering from Wuhan Industrial
University, Wuhan, China, in 1997 and 2000, respec-
tively, and the Ph.D. degree in computer science
from the Huazhong University of Science and
Technology (HUST), Wuhan, in 2005.

She is currently a Professor with the Wuhan
National Laboratory for Optoelectronics, HUST.
Her research interests include computer architecture,
nonvolatile memory, and intelligent storage.

Hong Jiang (Fellow, IEEE) received the B.Sc.
degree in computer engineering from the Huazhong
University of Science and Technology, Wuhan,
China, in 1982, the M.A.Sc. degree in computer
engineering from the University of Toronto, Toronto,
ON, Canada, in 1987, and the Ph.D. degree in com-
puter science from Texas A&M University, College
Station, TX, USA, in 1991.

He is currently the Chair and the Wendell
H. Nedderman Endowed Professor of Computer
Science and Engineering Department, University of

Texas at Arlington, Arlington, TX, USA. His present research interests
include computer architecture, computer storage systems and parallel I/O,
high-performance computing, big data computing, cloud computing, and
performance evaluation.

Jian Zhou received the first Ph.D. degree in com-
puter science from the Huazhong University of
Science and Technology (HUST), Wuhan, China,
in 2016, and the second Ph.D. degree in computer
engineering from the University of Central Florida,
Orlando, FL, USA, in 2018.

In 2021, he joined as an Associate Professor with
the Wuhan National Laboratory for Optoelectronics,
HUST. He worked as a Postdoctoral Fellow with the
University of Central Florida from 2018 to 2020.
His research interests include advanced computer

architecture, nonvolatile memory technologies, hardware security, solid-state
storage drive technologies, big data, and near data processing.

Changsheng Xie (Member, IEEE) received the B.E.
and M.E. degrees in computer science and technol-
ogy from the Huazhong University of Science and
Technology (HUST), Wuhan, China, in 1982 and
1988, respectively.

He is currently a Professor with the Wuhan
National Laboratory for Optoelectronics, HUST. He
is also the Directors of the Data Storage Systems
Laboratory of HUST and the Key Laboratory
of Ministry of Education of China. His research
interests include computer systems and networks,

and emerging storage technologies.

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on December 12,2022 at 17:39:15 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Helvetica-Condensed-Bold
 /Helvetica-LightOblique
 /HelveticaNeue-Bold
 /HelveticaNeue-BoldItalic
 /HelveticaNeue-Condensed
 /HelveticaNeue-CondensedObl
 /HelveticaNeue-Italic
 /HelveticaNeueLightcon-LightCond
 /HelveticaNeue-MediumCond
 /HelveticaNeue-MediumCondObl
 /HelveticaNeue-Roman
 /HelveticaNeue-ThinCond
 /Helvetica-Oblique
 /HelvetisADF-Bold
 /HelvetisADF-BoldItalic
 /HelvetisADFCd-Bold
 /HelvetisADFCd-BoldItalic
 /HelvetisADFCd-Italic
 /HelvetisADFCd-Regular
 /HelvetisADFEx-Bold
 /HelvetisADFEx-BoldItalic
 /HelvetisADFEx-Italic
 /HelvetisADFEx-Regular
 /HelvetisADF-Italic
 /HelvetisADF-Regular
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

