
Explorations and Exploitation for Parity-based RAIDs with Ultra-fast

SSDs

SHUCHENG WANG, China Mobile (Suzhou) Software Technology Co., Ltd., China; Huazhong University of

Science and Technology, China

QIANG CAO∗, Huazhong University of Science and Technology, China

HONG JIANG, Department of Computer Science and Engineering, University of Texas at Arlington, US

ZIYI LU, Huazhong University of Science and Technology, China

JIE YAO, Huazhong University of Science and Technology, China

YUXING CHEN, Tencent Inc., China
ANQUN PAN, Tencent Inc., China

Following a conventional design principle that pays more fast-CPU-cycles for fewer slow-I/Os, popular software storage

architecture Linux Multiple-Disk (MD) for parity-based RAID (e.g., RAID5 and RAID6) assigns one or more centralized

worker threads to eiciently process all user requests based on multi-stage asynchronous control and global data structures,

successfully exploiting characteristics of slow devices, e.g., Hard Disk Drives (HDDs). However, we observe that, with

high-performance NVMe-based Solid State Drives (SSDs), even the recently added multi-worker processing mode in MD

achieves only limited performance gain because of the severe lock contentions under intensive write workloads.

In this paper, we propose a novel stripe-threaded RAID architecture, StRAID, assigning a dedicated worker thread for each

stripe-write (one-for-one model) to suiciently exploit high parallelism inherent among RAID stripes, multi-core processors,

and SSDs. For the notoriously performance-punishing partial-stripe writes that induce extra read and write I/Os, StRAID

presents a two-stage stripe write mechanism and a two-dimensional multi-log SSD bufer. All writes irst are opportunistically

batched in memory, and then are written into the primary RAID for aggregated full-stripe writes or conditionally redirected

to the bufer for partial-stripe writes. These bufered data are strategically reclaimed to the primary RAID. We evaluate a

StRAID prototype with a variety of benchmarks and real-world traces. StRAID is demonstrated to outperform MD by up to

5.8 times in write throughput.

CCS Concepts: · Information systems → Disk arrays; Storage management; · Software and its engineering →

Software architectures.

Additional Key Words and Phrases: RAID systems, multi-thread scheduling, solid-state drive

∗The corresponding author of this paper.

Authors’ addresses: Shucheng Wang, wsczq@hust.edu.cn, China Mobile (Suzhou) Software Technology Co., Ltd., China; and Huazhong

University of Science and Technology, China; Qiang Cao, caoqiang@hust.edu.cn, Huazhong University of Science and Technology, China;

Hong Jiang, hong.jiang@uta.edu, Department of Computer Science and Engineering, University of Texas at Arlington, US; Ziyi Lu, luziyi@

hust.edu.cn, Huazhong University of Science and Technology, China; Jie Yao, jackyao@hust.edu.cn, Huazhong University of Science and

Technology, China; Yuxing Chen, axingguchen@tencent.com, Tencent Inc., China; Anqun Pan, aaronpan@tencent.com, Tencent Inc., China.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that

copies are not made or distributed for proit or commercial advantage and that copies bear this notice and the full citation on the irst page.

Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy

otherwise, or republish, to post on servers or to redistribute to lists, requires prior speciic permission and/or a fee. Request permissions from

permissions@acm.org.

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.

1553-3077/2023/10-ART $15.00

https://doi.org/10.1145/3627992

ACM Trans. Storage

https://doi.org/10.1145/3627992
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3627992&domain=pdf&date_stamp=2023-10-16

2 • Shucheng Wang, Qiang Cao, Hong Jiang, Ziyi Lu, Jie Yao, Yuxing Chen, and Anqun Pan

1 INTRODUCTION

The advent of ultra-fast storage devices such as NVMe-based Solid-State Drives (SSDs) and Non-volatile Memory

(NVM) with GB/s-level I/O bandwidth has dramatically narrowed the performance gap between memory and

storage. Redundant Array of Inexpensive Disks (RAID) [56] can combine multiple such high-performance

storage devices to further promote the overall storage performance, reliability, and capacity simultaneously.

Many empirical studies [10, 18, 35] including distributed datacenter storage systems [49, 72] and enterprise

storage systems[48] report that SSD drivers exhibit reliability problems in that more than 20% of SSDs develop

uncorrectable errors in a four-year period [58]. Therefore, parity-based RAIDs composed of ultra-fast SSDs

have become attractive storage systems for modern data-intensive applications in supercomputing [55], big data

analytics [25, 64], machine learning[7], enterprise storage[48], and cloud services [1, 32, 38, 45, 61].

HDD-based RAIDs have been extensively studied since 1988 [56]. In the literature, recent studies focus on

SSD-based RAID and All-Flash-Array (AFA), with eforts to reduce SSD write-penalty by mitigating parity update

[8, 15, 68], reduce garbage-collection induced performance jitter [21, 33, 42], and optimize AFA using declustering

RAID approach to balance load within devices and reduce tail-latency [28, 77]. Existing RAID I/O handling

techniques generally adopt a centralized stripe-processing architecture following a classic principle that trades

more fast-CPU-cycles (e.g., scheduling algorithms) for fewer slow-I/Os. Nonetheless, the question of whether

such RAID architecture can fully exploit the power of emerging fast storage remains unanswered.

We experimentally measure the actual performance of Multiple-Disk (MD) [46], the most popular and mature

software RAID integrated into the Linux kernel for over two decades. We conduct MD running on 6 NVMe-based

SSDs with 64 user threads (i.e., issuing block requests) and 64 workers threads (i.e., handling RAID stripe-writes),

with the experiment environment summarized in Tables 1 and 2. The results are shown in Figure 1 (detailed

in Section 3.1). With RAID0 (non-parity RAID-level), MD obtains an expected performance that approaches

the aggregate raw I/O capacity of the underlying SSDs, i.e., 20GB/s and 14GB/s for read and write throughputs

respectively. However, MD falls far short of the expectation in write performance in RAID5 and RAID6 (parity-

based RAID-levels). Speciically, the write throughput of RAID5 is below 2.2GB/s under partial-stripe writes and

below 5.2GB/s under full-stripe writes, which are only about 1/7 and 1/3 of that of RAID0, respectively. Although

parity-RAIDs introduce extra parity-compute overheads, our measured XORing rate on a CPU core can reach up

to 29GB/s [26], which is clearly not the bottleneck.

Through proiling (detailed in Section 3.2), we experimentally uncover that the write ineiciency of parity-

based RAID comes from a centralized stripe-handling architecture in the legacy MD. Speciically, a worker

thread using shared data structures (e.g., stripe-list) handles write requests by eiciently collaborating with user

threads, XORing threads, and device I/O threads. For HDDs and slow SSDs, this one(worker thread)-for-all(stripe)

architecture utilizes fast CPU suiciently by postponing stripe-writes to absorb more requests for reducing actual

I/Os. However, a single worker thread is upper-bounded in its processing capability that fails to keep up with

the fast storage. The latest MD introduces a multi-worker mechanism, referred to as the N-for-all processing

model, but achieves a limited performance gain due to severe lock contention on the centralized data structures,

especially for handling partial-stripe writes.

In this paper, we propose a novel stripe-threaded architecture, called StRAID, for parity-based RAIDs built

on ultra-fast storage devices such as NVMe-based SSDs. To address the architectural drawback of the existing

software RAID (MD), StRAID employs a one(worker)-for-one(stripe) model, thus signiicantly reducing the

number of stripe-states and their lock-based checks. Furthermore, StRAID adopts a ine-grained stripe-level lock,

substantially mitigating contentions on shared data structures. To tame the notoriously performance-degrading

partial-stripe writes, StRAID proposes a two-stage stripe submission mechanism and a two-dimensional SSD

write bufer distributed across the RAID member disks. StRAID irst aggregates incoming stripe-associated writes

into full-stripe in memory within a limited time window, which opportunistically ilters requests with sequential

ACM Trans. Storage

Explorations and Exploitation for Parity-based RAIDs with Ultra-fast SSDs • 3

1 2 4 8 16 32 64
of user threads

0.0

0.5

1.0

1.5
Th

ro
ug

hp
ut

 (G
B/

s)

(a) 860Pro (64KB Write)

1 2 4 8 16 32 64
of user threads

0.0
2.5
5.0
7.5

10.0

Th
ro

ug
hp

ut
 (G

B/
s)

(b) 970Pro (64KB Write)

1 2 4 8 16 32 64
of user threads

0.0
2.5
5.0
7.5

10.0

Th
ro

ug
hp

ut
 (G

B/
s)

(c) 980Pro (64KB Write)

1 2 4 8 16 32 64
of user threads

0

5

10

15

Th
ro

ug
hp

ut
 (G

B/
s)

RAID-0
RAID-5
RAID-6

(d) 980Pro (1MB Write)

1 2 4 8 16 32 64
of user threads

0
5

10
15
20

Th
ro

ug
hp

ut
 (G

B/
s)

RAID0
RAID5
RAID6

(e) 980Pro (64KB Read)

Fig. 1. The throughput of Linux sotware RAIDs on three-types of SSDs under varying number of user threads.

or in-place update patterns. Afterward, the aggregated full-stripes are lushed into the underlying primary RAID

and the partial-stripe writes are written into the Log-Bufer. The Log-Bufer employs a two-dimensional log

data-layout and a parallel I/O processing model to fully exploit SSDs’ parallelism. Finally, the bufered data are

strategically written back to the primary RAID. Fundamentally, StRAID efectively exploits stripe-based data

parallelism while mitigating intra-stripe conlicts between the dedicated stripe worker thread and other threads.

StRAID leverages the power of multicore CPUs that ofer suicient threads to fully unleash the superior IOPS

provided by fast SSDs.

The main contributions of this paper are as follows.

• We experimentally observe a serious write ineiciency problem in the current MD when parity-based

RAID is running on ultra-fast storage. We further reveal that the root cause is the centralized one-for-all

stripe-handling architecture.

• We propose a novel parity-RAID processing architecture, StRAID, guided by a stripe-threaded one-for-one

model and a two-stage stripe submission mechanism to unleash the full performance potentials of modern

hardware while improving partial-stripe writes on parity-based RAIDs.

• We present an SSD-based write bufer seamlessly embedded with the StRAID to absorb infamous partial-

stripe writes of RAID. The write bufer employs multi-log data-layout and a parallelized I/O processing

model to reap the performance of multiple SSDs.

• We prototype and evaluate StRAID with a variety of benchmarks and real-world workloads. StRAID

consistently outperforms MD by up to 5.8 times in write throughput without afecting the read performance

while reducing CPU utilization.

The rest of the paper is organized as follows. Section 2 presents the background for RAID. Section 3 analyzes

the performance behaviors of Linux software RAID (MD) and motivates the StRAID design. Section 4 describes

StRAID’s design. We evaluate StRAID in Section 6 and describe related works in Section 7. Section 8 concludes

this paper.

ACM Trans. Storage

4 • Shucheng Wang, Qiang Cao, Hong Jiang, Ziyi Lu, Jie Yao, Yuxing Chen, and Anqun Pan

2 BACKGROUND

2.1 RAID Systems

Redundant Array of Inexpensive Disks (RAID) [56] is a classic system-level approach that combines multiple

disks to improve performance, reliability and capacity simultaneously. Over the past decades, RAID has been

used ubiquitously to construct and manage eicient storage servers, distributed storage [4, 54], and cloud storage

[1, 38] from within and/or among storage devices.

The RAID architecture is categorized into various RAID levels based on the amount of redundancy and

how redundancy is incorporated, including non-parity RAIDs (e.g., striping-only RAID0 and mirroring-only

RAID1) and parity RAIDs (e.g., RAID5 and RAID6 that can tolerate one and two disk failures respectively).

RAID can be implemented in either software or dedicated hardware (e.g., I/O controllers or irmware) to ofer

the block-addressable volume. A common N-disk RAID internally consists of multiple stripes, each of which

comprises user data chunks and their corresponding parity data chunks across N disks according to an algorithmic

address-mapping method. Normal reads without disk failure are directly decomposed to their constituent chunk

I/Os served by the underlying disks. Normal writes in non-parity RAIDs behave like normal reads without

accessing parity chunks.

Normal writes in parity-based RAIDs need extra parity generation, update, or construction operations. For a

full-stripe user write where all data chunks of a stripe are written, the RAID system generates all new parity

chunks at once, and then writes both data chunks and parity chunks into their corresponding disks. For a

partial-stripe write where only a subset of the data chunks of a stripe are written, only after its constituent

old data or parity chunks are read from the disks is the stripe updated and then written into the disks again,

thus inducing numerous extra I/Os [8, 28]. This read-modify-write nature of partial-stripe writes makes them

notoriously costly. When disks fail within the failure-tolerance range, the RAID transitions from its normal mode

to a degraded mode to perform read, write, or resync operations.

2.2 Linux Sotware RAID

The Linux software RAID module, referred to as Multiple-Disk (MD) [46], is the most commonly used software

RAID evolving with the Linux Kernel for over two decades. Currently, MD supports various RAID levels and

RAID compositions. Non-parity-based RAIDs in MD perform an algorithmic block-to-chunk address mapping.

For parity-based RAIDs, normal reads are similar to those in a non-parity-based RAID without parity operation.

However, writes inevitably introduce several additional parity-generation/modiication operations. Figure 2

shows the architecture of MD parity-based RAIDs and Figure 3 shows the worklow of their stripe-writes. The

centralized data structure (stripe-cache) comprises inactive and handling stripe-lists, which maintain the metadata

of the stripes (up to 256 by default). Each stripe has its own stripe_head containing stripe states and device states

(Devs). Devs contains a set of block request structures (bios) pointing to their bufered pages. Speciically, a stripe

and its corresponding Devs have 28 and 27 states respectively that are used to precisely identify the handling

states of this stripe. When a stripe is processed and cleared, its corresponding stripe_head will be transferred into

the inactive_list.

MD handles stripe-writes using a state machine represented as a directed acyclic graph (DAG) [16]. As shown

in Figure 3, a normal user write process can be divided into 5 consecutive stages: 1) inserting/aggregating bios to

a stripe (INS); 2) reading data/parity chunks (RD); 3) computing parity (XOR); 4) writing data/parity (WT); 5)

clearing stripe (CLR). Speciically, in the irst stage ❶, user threads (UT) invoke make_request() to attach bios to

their corresponding stripe_head structures. Afterwards, a daemon worker thread (WT), i.e., RAID5d in MD by

default, handles all active stripe_heads in a circular manner with priority.

ACM Trans. Storage

Explorations and Exploitation for Parity-based RAIDs with Ultra-fast SSDs • 5

WT

UT User Thread

RAID worker Thread

bio

UT UT UT

bio

SH
stripe_head with

state S

bio

Linux RAID-4/5/6

Module

WT WT

c

SH

kworker

Module

SH SH

S

bio

aync_XOR

Module

hashing

Block IO Request

DT DT DT DT

DT
Device I/O

Thread

handle_list

stripe_lists

inactive_list

SH
Uninitialized

stripe_head

Stripe
Cache

FS Layer

Block Layer

SSD 1

Disk

Group

SSD 4SSD 2 SSD 3

WT XOR RD

Fig. 2. Architecture of Linux MD parity-based RAID.

For a full-stripe write, MD skips the second stage. For a partial-stripe write, MD must introduce write-induced

reads ❷, resulting in I/O ampliication. More speciically, there are two stripe-updating schemes, read-modify-

write (RMW) and read-construction-write (RCW) [28]. MD calculates the required number of disk-read I/Os

of both RCW and RMW, selects the I/O-minimum approach, and launches the relevant disk-read I/Os. When

a disk I/O thread (DT) completes the read, it sets a data-prepared lag to its bios. Afterwards, ❸ WT checks

all the involved bios until prepared, and then launches a parity-calculation executed by other XORing threads.

When WT veriies that the parity has been prepared, ❹ it invokes disk-write I/Os. ❺ WT inally validates the

completed state and clears the stripe_head. Therefore, the write process orchestrates WT, UT, and DT threads via

shared-state setting and checking.

WT handles each stage of a stripe-write in four steps, as described in Figure 3: 1○ getting a stripe_head from a

stripe_list; 2○ analyzing the current state of this stripe and all its involved bios, to determine whether this stripe

is still in-light; 3○ handling the stripe by launching a given operation (e.g., XOR) through executing DAG; and
4○ updating the stripe state, inserting it back into a stripe_list and selecting the next stripe. The worker thread

handling a stripe exclusively accesses shared data structures and stripe-states using multiple locks. For example,

in step 4○, WT exclusively modiies handle_list with a global device lock.

ACM Trans. Storage

6 • Shucheng Wang, Qiang Cao, Hong Jiang, Ziyi Lu, Jie Yao, Yuxing Chen, and Anqun Pan

WT

User Thread

RAID worker

Thread

F A

OP R

① Fetch the stripe_head

from stripe_list

② Analyze the

state of stripe

④ Release and insert

the stripe_head into stripe_list

③ Operations for

handling stripes

F RUT INS F RRDA

WT

F RXORA

F RXORA

F RWTA

F RWTA

F RCLRA

F RCLRA

 Read stage

F RUT INS

 Insert stage XOR stage Write stage Clear stage

F RRDA

Stripe 1

Stripe 2

UT

Fig. 3. Stripe-write workflow of parity-based MD RAID.

For HDD-based RAID, a disk I/O takes at least several milliseconds. Therefore, a WT in Linux MD has suicient

CPU-cycles to drive all stripe-writes. With the emerging SSDs that have 2-3 orders of magnitude lower I/O latency

than HDD, MD also introduces a multi-worker mechanism [39, 40] that enables more numbers of functionally

equivalent worker threads to process stripes concurrently, referred to as the N-for-all processing model.

3 ANALYSIS AND MOTIVATION

3.1 Understanding the Write Performance

Experiment Setup We start with measuring the MD performance in the RAID0, RAID5 and RAID6 levels

running on three types of SSD devices, whose I/O characteristics are listed in Table 2. The platform coniguration

is shown in Table 1. The XORing throughput on a single CPU-core can reach up to 29GB/s. We deploy six SSD

devices to construct parity-based RAIDs, that is, 5+1 RAID5 and 4+2 RAID6 respectively. The chunk size in all

RAIDs is set to 64KB as default. We pin each user thread (UT) to a unique CPU-core and increase the number of

UTs from 1 to 64. Each UT issues random 64KB-sized writes over 30 seconds. For parity-RAIDs, we invoke up to

64 extra RAID worker threads (WT), and enlarge the stripe cache capacity from the default of 256 stripe_heads to

16K stripe_heads.

Write Ineiciency with Parity-RAID Figure 1 reports the throughput performance of MD. In all the cases,

the write performance and scalability of the non-parity RAID0 far exceed those of parity-based RAID5 and RAID6.

RAID0 achieves a write performance of about 1.4GB/s and 11GB/s peak throughput on 860Pro and 980Pro SSDs

at 64 UTs, while RAID5 in the multi-worker mode achieves a peak write performance of lower than 0.72GB/s and

5.3GB/s, respectively. On 980Pro, the 64KB partial-stripe write throughputs of parity-RAIDs are below 2.1GB/s,

which is only 1/7 of that of RAID0. Even for the 1MB full-stripe writes, the throughputs of RAID5 and RAID6

with 64 UTs are below 5.2GB/s and 5.3GB/s respectively, only about 38% of that of RAID0. It indicates that

parity-RAIDs fall short of leveraging the write I/O performance of modern SSDs and the bottleneck on CPU

processing is the main reason. We will show more details in the next section. Besides, normal reads of MD in all

RAID levels are generally similar and scale well with the number of UTs.

We further analyze the write ineiciency of the multi-worker mechanism with RAID5 on six 980Pro SSDs. We

invoke 64 UTs in either the single-worker (i.e., Single) mode or the multi-worker mode with the number of WTs

varying from 1 to 64 (i.e., +1W to +64W). Figure 4 shows that the parity-based RAID gains limited beneits from

the multi-worker mode. For example, MD with 8 more WTs has a write throughput improvement of 2.4x and

3.6x over the single-worker mode under 16 and 64 UTs, respectively. However, MD’s performance gain peaks at

16 WTs, beyond which MD’s throughput starts to gradually decrease, e.g., with a 5% decline at 64 WTs. This

ACM Trans. Storage

Explorations and Exploitation for Parity-based RAIDs with Ultra-fast SSDs • 7

Table 1. Evaluation Platform Specifications

Components Conigurations

Processor Duel Socket Intel Xeon Gold 6328, 56 Cores, 128MB LLC

Memory 256GB 2666MHz DDR4

Operating System Ubuntu 20.10 LTS with the Linux kernel version 5.13.0

MD controller mdadm v4.2 2021-12-30

Table 2. Characteristics of three representative SSD products.

Device

Types

Device

Modules
Capacity

Stable Write

Thr. (MB/s)

Stable Read

Thr. (MB/s)
Interfaces

SATA SSD Samsung 860 Pro 512GB 500 510 SATA

NVMe SSD Samsung 970 Pro 512GB 2200 3200 PCIe 3.0

NVMe SSD Samsung 980 Pro 1TB 2600 6900 PCIe 4.0

Single +1 +2 +4 +8 +16 +12 +64
of worker threads

0.25

0.50

0.75

1.00

1.25

Th
ro

ug
hp

ut
 (G

B/
s)

1 UT
2 UTs
4 UTs
8 UTs
16 UTs
32 UTs
64 UTs

Fig. 4. Write throughput of MD RAID5 under the multi-worker mechanism.

indicates that the multi-worker mode has a diminishing return in performance beyond a relatively small number

of WTs. Therefore, even in the case of 64 UTs and 64 WTs, parity-RAIDs still fall short of fully leveraging the I/O

bandwidth ofered by the fast SSDs.

3.2 Identifying the Root Causes

We investigate the CPU usage distribution to identify the root causes of poor write scalability of MD. We use

RAID5 with ixed 64 UTs and vary the number of WTs from 1 to 64. We use perf [44] to measure CPU cycles of

key functions within a WT thread, detailed in Table 3. We randomly select one WT for analysis since all WTs

behave very similarly in our experiments. Figure 5 shows that CPU cycles of disk I/O (RD/WT) and XORing

(XOR) decrease as the number of WTs increases, accounting for 42% of the total CPU cycles in the single-worker

mode, but only 9.7% at 64 WTs. Meanwhile, the CPU cycles of stripe-write process (i.e., F/R List, Lock, Analyze

and Others) increase signiicantly as WTs increase.

First, the global device lock (Lock) consumes a mere 4.3% of CPU-cycles in the single-worker mode but a

dominant 54.6% in the 64-worker mode. As shown in Table 3, the device lock in Linux MD is spin lock, which

controls concurrent accesses from WTs, UTs, and DTs to all the stripe_lists and metadata of RAID. In most cases,

each WT exclusively accesses the handle_list, thus causing severe lock contention among these threads. Recently,

Linux Kernel contributors also found high overhead of the device lock in the read path [52] and replaced them

ACM Trans. Storage

8 • Shucheng Wang, Qiang Cao, Hong Jiang, Ziyi Lu, Jie Yao, Yuxing Chen, and Anqun Pan

Table 3. Key function calls and locks of Linux parity-RAID.

Operations Function as example Description

RD/WT generic_make_request()
Send bio to block device queues

(2○ in stages ❷ and ❹)

XOR async_xor() Compute parity data (2○ in stage ❸)

F/R List release_stripe()
Insert the stripe_head to stripe_list

according to its states (1○ and 4○)

Lock spin_lock_irq(device_lock)
Global MD device Lock,

mainly used for updating shared structs

Analyze analyze_stripe()
Analyze the states of a stripe

and its Devs before handling (2○)

Others - Other software overhead

Single +1 +2 +4 +8 +16 +32 +64
of worker threads

0

20

40

60

80

100

Ra
tio

 (%
)

Others
Analyze
Lock
F/R List
XOR
RD/WT

Fig. 5. Breakdown of CPU cycles on key functions and locks of the worker threads in Linux MD.

with a lockless memory barrier, thus achieving 7x improvement in small-sized reads. However, the device lock in

the write path remains a serious source of contention.

Second, checking for stripe states (Analyze) consumes 22% and 13.2% CPU usage in the single-worker and

64-worker modes, respectively. In Linux MD, most of the stripe states and device bio states use a set of semaphores

to orchestrate UTs, WTs, and DTs. In summary, through extensive experiments, we observe that the architectural

deiciency of the N-for-all centralized handling model leads to severe lock contentions due to highly-concurrent

accesses to global data structures and the states of stripes.

4 DESIGN

Given the above identiied root causes of write ineiciency of MD with parity-RAIDs running on ultra-fast SSDs,

we propose a stripe-threaded architecture of parity-RAID, StRAID for short. StRAID assigns a dedicated worker

thread for each stripe-write, which signiicantly reduces lock contentions among multiple threads, and addresses

the partial-stripe-write penalty with a two-stage write submission and a two-dimensional multi-log SSD write

bufer.

4.1 Architecture

Figure 6 illustrates the StRAID architecture for parity-RAID. StRAID horizontally separates the space for SSD

arrays into two components: a primary RAID array and a Log-Bufer. StRAID does not change the data layout of

the legacy MD for the primary RAID, and persists RAID’s metadata at the pre-deined location of each disk.

ACM Trans. Storage

Explorations and Exploitation for Parity-based RAIDs with Ultra-fast SSDs • 9

UT User Thread

bio

SH Stripe head

Block I/O request

DT Device I/O Thread

Per Thread

Batching Queue
WT Worker Thread

bio

SH

8

UT

WT

bio

StRAID

SH

5

UT

WT

INSERT

CLEAR

bio

UT

WT

INSERT

w
ai

tin
g

BATCH

SSA

WT

Pool

INSERT

CLEAR

BATCH

XOR

WRITE

SSD 1

Disk

Group

SSD 4SSD 2 SSD 3

Primary RAID

Log-Buffer

DT DT DT DT

Reclamation

CLEAR

CPU 0 CPU 3 CPU 8......

READ

BUFFER

❽

Log

Mapper

WAIT

sublog

LogGroup0 (ping)

LogGroup1 (pong)

Fig. 6. Architecture and process flow of StRAID

When a user thread (UT) submits a block-write to StRAID, the I/O request (bio) will be sent to a dedicated

worker thread (WT) that completely and exclusively handles its corresponding stripe. StRAID uses a dynamic

allocation strategy that prioritizes assigning bio to a WT that is in idle state or has less unprocessed requests.

When a bio updates multiple stripes, each stripe is sequentially processed by its dedicated WT. Multiple WTs

process their own stripes independently, exploiting the intrinsic data parallelism among stripes. StRAID pre-

allocates at least 128 WTs in the WT Pool to alleviate frequent thread creation/destroy overhead in runtime. Note

that all idle threads in the WT Pool are in the sleep state and will not be allocated actual memory space to reduce

CPU and memory overhead.

A normal stripe-write process in StRAID can be divided into 6 consecutive stages of ❶ initializing stripe_heads

and inserting bios (INS); ❷ performing I/O batching (BAT); ❸ reading parity/data chunks (RD); ❹ computing

parity (XOR); ❺ writing data/parity and ❻ clearing stripe states in SST (CLR). Moreover, ❼ user threads being

batched must wait for completion (WAIT) and ❽ partial-stripe writes that have not been eiciently batched

ACM Trans. Storage

10 • Shucheng Wang, Qiang Cao, Hong Jiang, Ziyi Lu, Jie Yao, Yuxing Chen, and Anqun Pan

Stripe ID [0:31] Stripe Lock TID [32:46] is_frozen [47:47]

0x0004 Locked 3 F

-- Unlocked -- --

0x0200 Locked 8 T

......

-- Unlocked -- --

Cuckoo
Hashing

Stripe ID

0x0004
WT

Fig. 7. Stripe state table.

should be conditionally redirected to the Log-Bufer. A notable worklow diference between StRAID in Figure 6

and the legacy MD in Figure 3 is that the latter’s stages of 1○ stripe acquisition, 2○ analysis and 4○ stripe release

are removed in the former. Compared to the legacy MD, StRAID removes the centralized stripe_head lists and

their corresponding concurrent operations. Furthermore, StRAID minimizes the number of shared stripe-states

and global-state checking among WTs, because a dedicated WT handles a stripe-write exclusively. Finally, the

parity computation and I/O execution processes of a stripe write are pinned to the same CPU core, thus avoiding

frequent context switches and CPU cache pollution.

However, StRAID faces new challenges in efectively conducting thread collaboration and reducing the partial-

write penalty. StRAID still needs a minimal shared-data structure to orchestrate UTs, WTs, and DTs in handling

stripe-writes. To this end, StRAID proposes a Stripe State Table (ğ4.2) with lockless access features. Further,

the legacy MD uses the global stripe-cache and active/passive delays to aggregate stripe-associated writes (SS-

writes) that target the same stripe, thus reducing partial-write-induced disk I/Os. However, in StRAID, a user

write triggers a dedicated WT to immediately and exclusively handle the corresponding stripe-write, which

does not address the costly partial-write penalty. To solve this problem, StRAID presents a two-stage stripe

submission mechanism (ğ4.3) to opportunistically aggregate SS-writes in memory by employing a batching queue

per WT (ğ4.3.2). Then, StRAID writes aggregated full-stripes into the primary RAID and conditionally redirects

partial-stripe writes to the Log-Bufer (ğ4.4). Finally, StRAID executes bufer reclamation by merging and lushing

logging data to the primary RAID in background.

4.2 Stripe State Table

StRAID designs a Stripe State Table (SST), as shown in Figure 7, to maintain a minimal set of shared stripe-states.

SST adopts a hash table to index up to 4096 active stripe-entries, each of which is handled by a dedicated worker

thread. An SST-entry (48-bit) contains four ields: 32-bit Stripe ID uniquely specifying a stripe; 1-bit Stripe Lock

indicating whether this stripe is currently being processed; 14-bit TID identifying the thread ID of the dedicated

WT handling this stripe; and 1-bit is_frozen recording the shared stripe-state that indicates whether the stripe

is allowed to batch. SST is a globally shared structure between WTs and DTs, where each entry is uniquely

associated with a physical stripe and can only be exclusively modiied by a WT using CAS [57] at any time. SST

employs Cuckoo hashing [53] for achieving high table occupancy while preventing hash collisions. The total

memory footprint of SST is smaller than 40KB.

4.3 Two-stage Stripe Submission

4.3.1 Partial-stripe Write Overhead . A partial-stripe write causes write-induced reads and write ampliication.

The write-induced-read ratio (����) and write ampliication (��) of RAID5 are estimated by Eq.1 and Eq.2

respectively, where�� , �� and �� represent write-size, chunk-size and stripe-size, respectively. When�� is

smaller than�� in RAID5, a block-size write induces 2x read I/Os and 2x write ampliication (one data-block write

ACM Trans. Storage

Explorations and Exploitation for Parity-based RAIDs with Ultra-fast SSDs • 11

Freeze Stripe 1

Worker Thread 1 Time Line

Worker Thread 2 Time Line

Worker Thread 3 Time Line

Dynamical

Batching Delay
Write

① ② ③ ④⑤ ⑥

Waiting for WT1

to complete

Waiting for WT1 to complete

Lock S1

(False)

bio 1

arriving
Lock S1

(True)
Pull Batching

Queue
Read

bio 1

return

bio 2

arriving
Lock S1

(False)
S1 Frozen

(True)

Push bio to Batching

Queue(WT1)

bio 2

return

bio 3

arriving
S1 Frozen

(False)

Lock S1

(True)

XOR

Fig. 8. Workflow of two-stage stripe submission, an example with 3 concurrent worker threads (WT1-WT3) targeting the

same stripe.

and one parity-block write) with optimal RMW strategy. As�� increases, the amount of write-induced-read

data decreases (0 for a full-stripe write).

�����-�������-���� ����� =

2 �� ≤ �� (���)

1 + ��
�� �� ≤�� <

��

2
(���)

��
�� − 1

��

2
≤�� < �� (���)

0 �� = ��

(1)

����� ����� � ������� =

{
2 �� ≤ ��

1 + ��
�� �� > �� − ��

(2)

Existing optimizations for partial-stripe writes can be catergorized into four general approaches as dynamic

stripe size [6, 78], write-aggregation [46], write bufering [31, 68], and parity logging [8, 9, 14, 73, 74]. RAIDZ [6]

uses a dynamic stripe size mechanism to eliminate partial-stripe writes, but needs the support of the ZFS ile

system.

The legacy Linux MD employs a global stripe-cache to absorb active user writes by postponing stripe-writes

actively or passively. This write-aggregation approach reduces actual disk I/Os but increases the latency of

the postponed requests, which may hurt the overall performance for low-latency SSDs. Generally, it facilitates

aggregation of sequential writes, but performs no beneit on random RAID accesses. Moreover, the RAID write

bufering approaches quickly persist incoming writes to an auxiliary fast-disk (e.g., SSD or NVM) and then

immediately acknowledge to the user. These methods achieve better write performance and improve aggregation

eiciency by absorbing more SS-writes. However, it needs to rewrite the relevant data to original locations in the

background, which leads to at least 2x write ampliication. Simply bufering all write requests would result in

shorter lifetime and performance bottlenecks for the bufering device.

4.3.2 Stripe Aggregation. Without a global stripe-cache, StRAID designs a two-stage stripe submissionmechanism

to opportunistically absorb SS-writes in memory. It divides the stripe aggregating process into two stages: a

batching stage and a frozen stage. Speciically, Figure 8 (referred by circled numbers) and Algorithm 1 (referred

by line numbers) describe the two-stage submission using an example where three concurrent I/O threads issue

requests targeting the same stripe (S1).

A worker thread 1 (WT1) receives bios from its corresponding UT, and acquires a stripe lock to begin stripe

processing (Time ①, line 2) by CAS operation. WT1 irst initializes the stripe states in SST, then performs the

in-memory batching by executing the function dynamical_delay(). It needs a short initial delay (��������) to quickly

determine whether the current SS-write is worth continuing to batch. After that,WT1 periodically extends the

ACM Trans. Storage

12 • Shucheng Wang, Qiang Cao, Hong Jiang, Ziyi Lu, Jie Yao, Yuxing Chen, and Anqun Pan

Algorithm 1 Two-stage stripe submission

function stripe_submission(����)

1: while all ���� are handled do

2: if get_stripe_lock(������_��) then

3: init_SST(������_��)

4: Determine reconstruction method

5: if ��� is partial-stripe write then

6: dynamical_delay()

7: set ��_� ����� = ���� in SST and pull batching ���� from queue

8: if enable_redirect(����) == 1 then // write to primary RAID

9: if Data is not enough for reconstruction then

10: Read from disks

11: Compute XOR and reconstruct stripe to RAID

12: else

13: Write ���� to Log-Bufer

14: clear_SST(������_��)

15: release_stripe_lock(������_��)

16: else

17: if !is_frozen(������_��) then

18: insert ��� to queue with TID

19: else

20: handled = � ����

21: continue

22: Waiting for all bios to complete

function dynamical_delay()

1: que_len = queue(� ��).length()

2: usleep(��������)

3: ����+ = ��������

4: while que_len < queue(� ��).length() do

5: que_len = queue(� ��).length()

6: usleep(�������)

7: ���� += �������

8: if ���� ≥ ���� then

9: break

10: return

function enable_redirect(���)

1: Calculate���� and�� for current ���

2: if LogMapper.hash(������_��) == true then

3: return 0; // write to Log-Bufer

4: if ��� is full-stripe write then

5: return 1; // write to primary RAID

6: else if���� ≥ ����� or�� ≥ ��� then

7: return 0;

batching time-window by polling the corresponding batching queue length. StRAID will continue to aggregate

within a ixed time (�������) in each period until no more requests arrive or reaches the time limit threshold

���� . To strike a balance between aggregation eiciency and latency overhead, StRAID sets the default value of

�������� , ��������� and ���� to 1/3, 1/4 and 1 of the average IO latency of RAID member SSDs.

Shortly after WT1’s arrival, a second worker thread (WT2) arrives and seeks SST, only to ind that the targeted

stripe is locked but enables batching (Time ②, line 17). It inserts bios belonging to this stripe to the batching

ACM Trans. Storage

Explorations and Exploitation for Parity-based RAIDs with Ultra-fast SSDs • 13

queue of the handling thread WT1 (Time ③, line 18) and then suspends itself. When WT1 completes its batching

stage, it immediately transitions the stripe into the frozen stage (Time ④, line 7) by using the CAS operation.

At this point, the stripe is not allowed to accept new bios. Hence, the newly arrived bios from worker thread 3

(WT3) (Time ⑤) are blocked and have to wait for the stripe write’s completion.

WT1 coalesces all requests in its batching queue and processes them as a whole, then it strategically determines

whether to redirect SS-writes to the Log-Bufer based on the aggregation results. As shown in the function

enable_redirect(), StRAID directly stores full-stripe writes to the primary RAID array. For a partial-write after

aggregation, StRAID compares the���� (Equation 1) and�� (Equation 2) of this request to the threshold�����

and ���. If a SS-write has low read and write ampliication, StRAID will re-executes parity read (if required) in

accordance with the aggregated stripe-write, and performs XORing and data/parity writes to reconstruct the

stripe. Otherwise, this request will be redirected to the Log-Bufer. The default value of ����� and ��� is 1

and 1.5, which could be deined by the user. An additional case is that StRAID would redirect a SS-write if its

corresponding stripe has existed in the Log-Bufer. It ensures that all the data in the Log-Bufer is up-to-date,

and we will explain this in the next section. Finally, WT1 clears up the stripe states of S1 in SST and releases the

stripe lock. The corresponding waiting threadWT2 will also return successfully (Time ⑥, line 15). Next,WT3

successively acquires the Stripe Lock to handle its requests on the stripe.

Note that StRAID aggregates requests in memory through the two-stage submission mechanism and returns

to the user only after the data is persisted, so it will not increase the risk of RAID inconsistency when the system

crashes.

4.4 Partial-write Bufering

To eiciently absorb partial-writes, StRAID employs an SSD-based Log-Bufer and a parallel I/O processing model

to fully exploit inter-SSDs parallelism. The latest work Mlog [65] presented an SSD-based multi-log bufer for

traditional parity-based RAIDs. We partially refer to Mlog’s two-dimensional multi-log data layout but design

a new parallel I/O processing mechanism seamlessly embedded with the StRAID model. Compared to Mlog,

StRAID utilizes the dedicated worker threads to process SS-writes for primary RAID and Log-Bufer, eliminating

additional thread scheduling overhead. Additionally, in contrast to Mlog bufering all write requests, StRAID irst

aggregates writes in memory through the two-stage submission and then just stores the rest of partial-stripe

writes to the Log-Bufer, which reduces IO ampliication caused by data transfer between the Log-Bufer and

primary RAID.

4.4.1 Log-Bufer Architecture. The Log-Bufer physically partitions the global bufer space into multiple sublogs,

each of which locates within a member SSD and stores partial-writes corresponding to its disks. The capacity of

a sublog is 2GB by default. To exploit the intrinsic data parallelism among sublogs, StRAID sets a ine-grained

write lock for a sublog to serialize its targeted requests. StRAID deploys a pair of sublogs in each SSD and a set of

independent sublogs located across diferent SSDs constitute a LogGroup. The pair of LogGroups (i.e., LogGroup

0 and LogGroup 1) are considered as a ping-pong bufer, one of which is used to serve front-end requests while

the other is dynamically reclaimed in the background. Besides, StRAID uses a Log Mapper to maintain the data

mapping relationship between Log-Bufer and the primary RAID.

4.4.2 Request Allocation. Upon receiving a read request, StRAID queries the Log Mapper to determine whether

the Log-Bufer has stored the most recent data. Otherwise, read requests are directly decomposed to their

constituent chunk I/Os served by the primary RAID array. For a redirected partial-write, StRAID will split the

request into chunk-size aligned sub-writes, then submits them to the tail of the corresponding sublogs in the

same SSD one by one until all requests have been issued. This method utilizes inter-SSD parallelism to handle

ACM Trans. Storage

14 • Shucheng Wang, Qiang Cao, Hong Jiang, Ziyi Lu, Jie Yao, Yuxing Chen, and Anqun Pan

Hash with

Stripe ID

In-NVM Replica Log

Mapper

......

mmap

For LogGroup 0 (ping-buffer)

Worker Thread

Timestamp [0:15] Group ID [16:16]

1858230 0x0

Sublog.ID [17:23] Sublog.offs [24:55]

0x03 0x20000000

Req.size [56:119] Req.offset [120:183]

4096 0x40000000

Pre ptr
[184:215]

Next ptr
[216:247]

Reserved [248:255]

addr addr NULL

SI_NSI_1 SI_3

RM1

SI_8

RM2

For LogGroup 1 (pong-buffer)

0 1

Active LogGroup

Fig. 9. Architecture of Log Mapper

concurrent writes while balancing capacity usage across various sublogs. Finally, StRAID updates the index

information for the bufered requests in the Log Mapper.

4.4.3 Log Mapper. Figure 9 illustrates the architecture of Log Mapper that speeds up queries and reclamation on

bufered data by eiciently recording and indexing the data mapping relationship between the Log-Bufer and

the primary RAID.

The Log Mapper allocates a ixed region for the ping-pong bufer to store all the correlated requests metadata in

memory. Each bufered request is associated with a dedicated request metadata structure (i.e., RM). The RM-entry

(256-bit) contains eight ields: 16-bit Timestamp recording request arrival time; 1-bit Ping-pong ID, 7-bit Sublog ID,

and 32-bit Sublog ofset together uniquely specifying the location of a bufered request; 64-bit Request size and

64-bit Request ofset identifying the original write location on the primary RAID; two 32-bit address pointers for

building double linked list structure. The last unused 8-bits are used as reserved bits.

To eiciently support concurrent RM queries and updates, Log Mapper proposes a two-level indexing structure.

It contains a high concurrency hash table as the irst-level index with O(1) lookup cost. Each of the hash entry

corresponds to a StripeIndex structure (i.e., ��) that locates a physical stripe of the primary RAID. For updates

or queries, a WT needs to irst determine the stripe number (i.e., Stripe ID) of the request and then uses it as

the hash key to ind the correlated �� structure. The StripeIndex contains a second-level index called ��_����

that uses a double-linked list to concatenate all RMs corresponding to this stripe in order of arrival time. Each

StripeIndex uses a read-write lock to serialize concurrent updates to its corresponding ��_���� . Log Mapper

updates and queries at the request granularity, but deletes hash entries at the LogGroup granularity.

4.4.4 Bufer Reclamation. StRAID employs a dedicated lushing module to merge and lush bufer data to the

primary RAID eventually. As shown in Algorithm 2, the lushing module monitors the LogGroup’s capacity. If

the average capacity of its contained sublogs exceeds a threshold � (i.e., 90% by default), the lushing module

atomically updates the lag of active LogGroups to redirect incoming requests to another idle LogGroup.

The maximum number of lushing threads is 4 by default to eiciently utilize the SSD parallelism. During an

I/O-intensive period, the lushing traic will be limited to mitigate the performance impact on the foreground user

requests. If the Log-Bufer is full, StRAID will disable the write bufering redirection until one of the ping-pong

bufer is lushed out. Moreover, lushing bufered writes without merging induces numerous partial stripe updates

in the RAID. To solve this problem, StRAID tries to merge logging data into full-stripe writes. The lushing thread

ACM Trans. Storage

Explorations and Exploitation for Parity-based RAIDs with Ultra-fast SSDs • 15

Algorithm 2 Bufer reclamation and request merging

Input: The full �������� with lushing threads ��1−� ;

1: Calculate ������ through querying the capacity of contained sublogs

2: if ������ > 0.90 then

3: Atomically change the active LogGroup

4: Determine the number of lushing threads

5: wakeup_thread(��1−�)

6: ��� = LogMapper.GetallSH(�����)

7: for merging and lushing all stripes do

8: ��� = �� .Traverse(��_����)

9: ������ = merge_to_stripe(���)

10: read_sublog(������)

11: write_RAID(������)

12: delete ��� and �� in LogMapper

13: clear_data(�����)

irst accesses the Log Mapper to fetch all StripeIndex of the corresponding LogGroup, then it iterates the ��_����

to read bufered data in sublogs and merges them into full-stripes in memory. After lushing a stripe to RAID, the

corresponding ��� and ��-entries are removed to prevent dirty read.

The data consistency between the Log-Bufer and primary RAID is another problem. Suppose that at time T1,

a small request for a particular stripe is redirected to the bufer, and at time T2, a large request for the same stripe

is submitted to the RAID. If Log-Bufer simply lushes the bufer at time T3, it will break the rule of sequential

consistency. StRAID employs a request scheduling approach to ensure that the Log-Bufer always contains the

most recent data in order to prevent such scenarios. Before sending a stripe-write to the RAID, the dedicated WT

will check the Log Mapper to determine if the relevant stripe already exists in the bufer by hashing with the

Stripe ID, as illustrated in Algorithm 1, function enable_redirect(), line 2. If it exists, the SS-write will be redirected

to the Log-Bufer even for a full-stripe request.

5 IMPLEMENTATION

5.1 Recovery and Degraded Mode

Crash Consistency and Recovery After a system crash, part of the chunk writes belonging to a stripe-write

may be lost, making the stripe inconsistent between its data and parity. StRAID uses a bitmap to record the

current update-state of each chunk. Compared with Linux MD, StRAID’s bitmap has basically the same data

structure and layout, but can only be updated and lushed by dedicated threads. For each chunk update, StRAID

irst sets the corresponding bitmap bits and changes their involved memory-page as dirty, then lushes the page

to the underlying SSDs via the memory mapping mechanism. The bits will be cleared after their corresponding

chunks are written to the disk. StRAID groups bitmap updates of the aggregated write requests in a batch to

avoid frequent disk I/Os. In the experiment, it is found that lushing the bitmap only incurs a very small overhead

(less than 2%) when handling stripe writes. With unexpected power failures, StRAID will fetch the bitmap from

the disks and restore it to the consistent state after reboot.

Moreover, the Log-Bufer in StRAID addresses the consistent issues of bufer reclamation by updating a

reclamation completion lag in the Log Mapper and persisting it to NVM or SSD. StRAID sets the lag when

launching a reclamation and clears it after the reclamation is inished, then the bufered data would be removed.

After a crash, StRAID will scan and check the persistent Log Mapper replica to recover system states. If a

reclamation process had not been done before the crash, StRAID would re-write all bufered data to the primary

RAID to complete this reclamation.

ACM Trans. Storage

16 • Shucheng Wang, Qiang Cao, Hong Jiang, Ziyi Lu, Jie Yao, Yuxing Chen, and Anqun Pan

Resync and Degraded Mode StRAID supports degraded reads, degraded writes and resync operations in the

same way as the legacy MD because the underlying data layout is identical. For stripe writes, StRAID identiies

the degraded stripe and handles it after entering the frozen stage. The resync operation reads all the data blocks

from disks and compares their calculated parity results with their on-disk parity data. It is triggered upon RAID

initialization, persistent bitmap failure or reconstruction from disk replacement. Besides, StRAID will lush all

bufered data after recovery if the primary RAID array is in a normal state. We evaluate the performance of

StRAID in degraded mode in Section 6.

5.2 Optimization for Persistent Memory

The Intel Optane DC Persistent Memory Model [76] is the irst commercialized PM product. Compared to

traditional block storage devices such as SSDs and HDDs (Hard Disk Drives), PMs have extremely low access

latency and byte-addressable features. Traditional storage I/O stack that were developed for SSDs are unable to

fully take use of the PM’s fast persistency features. In addition, the interleaving mode only manages multiple

PMs in a RAID0-like manner [76] and lacks providing data reliability.

StRAID proposes three techniques to optimize I/O access when it is built upon multiple PMs. First, StRAID

uses the memory I/O stack and interface to access PM spaces. To this end, it will memory-map the PM space in

advance and persist data with memcpy and ntstore operations [76]. Second, StRAID will perform the pre-fault

process when mmaping PM space, thus reducing the overhead of page-fault at runtime [30]. Third, previous

studies [71, 76] indicate that PM has bounded thread-level scalability with a peak write throughput at 4 threads

for a single PM. Therefore, StRAID schedules at most 4 WTs for accessing an underlying PM concurrently.

6 EVALUATION

6.1 Evaluation Setup

Platform We run all experiments on a server (detailed settings listed in Table 1) and three types of SSD devices

(described in Table 2). The CPU-core can reach 29GB/s XORing throughput and the PCIe I/O bandwidth is 48GB/s

[20], exceeding the aggregate sequential bandwidth of 6 NVMe-based SSDs (2.6GB/s stable write throughput per

SSD, 15.6GB/s in total). In our experiments, we bind all the I/O threads and worker threads to the same CPU

socket-0 to avoid remote accesses of memory and PCIe, i.e., the NUMA issues.

RAID systems setup We evaluate StRAID (StRAID) and Linux MD (MD) of the RAID5 (5+1) and RAID6 (4+2)

levels built on 6 SSDs. The chunk size is set to 64KB by default. StRAID has enabled the optional Log-Bufer that

is composed of two 2GB sublogs on each of the RAID member SSDs (24GB in total), while StRAIDd disabling the

write bufer. Linux MD has a 16K-entry stripe-cache and up to 64 worker threads. This is a setting that MD is

shown by our experiments to achieve the best throughput.

Workloads We implement a program to issue direct block I/O requests with sequential or random access

patterns as micro-benchmark. We run each experiment ten times and take the average as the results. We further

select six representative block traces summarized in Table 5 as trace-driven macro-benchmarks. We implement a

trace player in C++ using POSIX sync to generate direct block I/O requests to the underlying RAID systems.

6.2 Micro-benchmark

We measure the write throughput, average and tail latency, and amount of disk read/written data on MD, StRAID

and StRAIDd with RAID5 and RAID6 on 980Pro SSDs, respectively. We generate workloads with a diferent

number of concurrent I/O-issuing threads (i.e., UTs) and three diferent access patterns: write-only, read-only

and mixed read-write respectively. Three default I/O sizes are: 4KB (default block-size of ile systems, page cache,

and block devices), 64KB (partial-stripe write size), and 1MB (full-stripe write size).

ACM Trans. Storage

Explorations and Exploitation for Parity-based RAIDs with Ultra-fast SSDs • 17

Throughput Figure 10 reports the write throughput of StRAID, StRAIDd and MD in RAID5 and RAID6,

respectively. The throughput of StRAID exceeds that of MD by up to 1.5x with 4KB-sized writes and 2.1x with

64KB-sized writes on a single UT, respectively. This is because StRAID efectively minimizes the cost of analyzing

stripe-states. As the number of UTs increases to 64, StRAID achieves up to 3.1GB/s±0.2GB/s and 9.1GB/s±0.7GB/s

peak throughput with 4KB and 64KB writes respectively, representing 3.6x and 4.5x performance improvement

over MD.

With 4KB-sized and 64KB-sized requests, the randomwrite performance of StRAID is up to 2.9x higher than that

of StRAIDd, and even generally 15%-30% higher than sequential writes. This is because the two-stage submission

redirects random partial-writes to the Log-Bufer, thus largely reducing the cost of stripe reconstruction (i.e.,

XORing and write-induced-read) in the user I/O path, as well as obtains better write scalability through unleashing

the high inter-parallelism of multiple modern SSDs. However, the cost of enabling Log-Bufer is additional SSD

read and write I/Os for each bufered requests. Besides, the sequential write throughput diference between

StRAID and StRAIDd is smaller than 6%, because StRAID has efectively batched these requests through the

in-memory aggregation.

For full-stripe writes (i.e., 1MB), StRAID achieves 4.6x and 5.2x higher write throughput in random and

sequential cases thanMDwith a single UT, respectively. As the number of UTs increases to 8, StRAID’s throughput

saturates the device bandwidth, with an almost ixed increase of about 6GB/s over MD.With 64 UTs, the peak write

throughput reaches 11.4GB/s±1.1GB/s and 10.4GB/s±1.0GB/s in StRAID under RAID5 and RAID6 respectively,

which are 2.1x higher than those of MD (5.2GB/s and 5.1GB/s). StRAID’s full-stripe writes nearly unleash the

full power of the SSD performance, while MD sufers from heavy contention on the global data structures. In

addition, StRAID shows a 3%-5% performance decrease than StRAIDd with full-stripe writes, because the WT has

to check the Log Mapper for each SS-write to maintain data consistency.

Figure 11 shows the read throughput of StRAID and MD with varying-size reads. We measure the in-bufer read

throughput (i.e., StRAID_IB and the out-of-bufer read throughput (i.e., StRAID_OB, respectively. The average read

throughput diference between MD and StRAID_OB is less than 6% in RAID5 and RAID6 respectively, demonstrating

that StRAID does not afect read performance. Moreover, the read throughput of StRAID_IB is 8%-13% lower

than StRAID_OB at 64 threads, due to the overhead of searching Log Mapper and RM_Lists. StRAID will lush the

bufered data to the primary RAID, and the long-term read performance is the same as StRAID_OB.

Moreover, Figure 12 shows the write and read throughput of StRAID andMDwithmixed workloads. For StRAID,

we perform in-bufer writes (StRAID-IB-W) and out-of-bufer RAID writes (StRAID-OB-W) while reading the

main RAID array, respectively. The experiments shown in Figure 12(a) equally divided the total user threads into

two groups that sent random 64KB read and write requests respectively (i.e., 50%-read and 50%-write workload).

Results demonstrate that StRAID’s write performance is still 2.1x-2.8x higher than MD under mixed workloads.

However, with more than 16 user threads, the read performance under StRAID-IB-W and StRAID-OB-W decreases

by 9% and 15% compared to MD, respectively. This is because the total bandwidth of SSD devices is limited, and

the higher write throughput of StRAID will compete for reads in the mixed workload. Nevertheless, the total

read and write throughput of StRAID is still 1.2x-1.4x higher than that of MD.

Furthermore, Figure 12(b) shows the throughput of StRAID and MD under diferent ratios of read/write mixed

workload, with a ixed number of 16 user threads. When the read/write ratio is 40/60, the write throughput of

StRAID-IB and StRAID-OB is up to 6.1x and 3x higher than that of MD, while the read throughput is reduced by

a maximum of 19% and 12% respectively. It indicates that StRAID demonstrates lower interference between read

and write requests because it efectively improves CPU utilization under concurrent workloads. Additionally, the

interference between read and write requests is higher in write-mostly workloads due to the write-induced read

and write ampliication caused by RAID partial-writes.

ACM Trans. Storage

18 • Shucheng Wang, Qiang Cao, Hong Jiang, Ziyi Lu, Jie Yao, Yuxing Chen, and Anqun Pan

1 2 4 8 16 32 64
of user threads

0

1

2

3

Th
ro

ug
hp

ut
 (G

B/
s)

StRAID-Seq
StRAID-Rand

StRAIDd-Seq
StRAIDd-Rand

MD-Seq
MD-Rand

(a) RAID5 4KB

1 2 4 8 16 32 64
of user threads

0

1

2

3

Th
ro

ug
hp

ut
 (G

B/
s)

StRAID-Seq
StRAID-Rand

StRAIDd-Seq
StRAIDd-Rand

MD-Seq
MD-Rand

(b) RAID6 4KB

1 2 4 8 16 32 64
of user threads

0.0

2.5

5.0

7.5

10.0

Th
ro

ug
hp

ut
 (G

B/
s)

(c) RAID5 64KB

1 2 4 8 16 32 64
of user threads

0.0

2.5

5.0

7.5

10.0
Th

ro
ug

hp
ut

 (G
B/

s)

(d) RAID6 64KB

1 2 4 8 16 32 64
of user threads

5

10

Th
ro

ug
hp

ut
 (G

B/
s)

(e) RAID5 1MB

1 2 4 8 16 32 64
of user threads

5

10

Th
ro

ug
hp

ut
 (G

B/
s)

(f) RAID6 1MB

Fig. 10. Write scalability on three diferent RAID systems.

Latency and Breakdown of CPU-cycles Figure 13 shows the average and tail (99�ℎ-percentile) latency under

RAID5 in StRAID, StRAIDd (with Log-Bufer disabled) and MD, respectively. StRAID signiicantly outperforms

MD in both average and tail latencies performance under 64 UTs, reducing latency by 75% with 4KB block-writes,

76% with 64KB partial-stripe writes, and by 69% with full-stripe writes. StRAID reduces 22%-67% tail latencies

from MD under 64 UTs. Besides, the average and tail latency of StRAID is up to 1.5x and 2.2x better than StRAIDd

ACM Trans. Storage

Explorations and Exploitation for Parity-based RAIDs with Ultra-fast SSDs • 19

1 2 4 8 16 32 64
of user threads

0

10

20

30

Th
ro

ug
hp

ut
 (G

B/
s)

(a) RAID5

1 2 4 8 16 32 64
of user threads

0

10

20

30

Th
ro

ug
hp

ut
 (G

B/
s) MD 4K

MD 64K
MD 1M
StRAID-OB 4K
StRAID-OB 64K
StRAID-OB 1M
StRAID-IB 4K
StRAID-IB 64K
StRAID-IB 1M

(b) RAID6

Fig. 11. Read scalability of StRAID and MD.

2 4 8 16 32 64
of user threads

0

1

2

3

4

Th
ro

ug
hp

ut
 (G

B/
s)

(a) 50R/50W Mixed

100/0 80/20 60/40 50/50 40/60 20/80 0/100
R/W Ratio

0

2

4

6

Th
ro

ug
hp

ut
 (G

B/
s) StRAID-IB-R

StRAID-OB-R
MD-R
StRAID-IB-W
StRAID-OB-W
MD-W

(b) Diferent R/W Mixes

Fig. 12. Throughput of StRAID and MD with read-write mixed workloads.

for random writes respectively, because the write bufering method provides an eicient I/O path for quickly

storing writes in the Log-Bufer.

To better understand the reasons behind StRAID’s superiority, Figure 14 shows the breakdown of the CPU-

cycles of key functions consumed by MD and StRAID with 64WTs and 64 UTs, respectively. For partial-stripe

writes, the combined CPU-cycles on XORing and disk I/Os account for 76% of the total CPU usage in StRAID,

while that of MD is less than 20%. The average stripe-write handling overhead of StRAID, i.e., 62�� , is about 19

times less than that of MD, i.e., 1180�� . Besides, the lock overhead on StRAID and MD account for 5.1% and 46.1%

of the total CPU usage, respectively. StRAID eiciently mitigates lock contentions through the stripe-threaded

architecture and the lockless access features in SST.

For full-stripe writes, the lock, XORing and I/O-write of StRAID account for 1.3%, 22.5% and 62.6% of the

total CPU usage, respectively, in contrast to their MD counterparts of 36.7%, 24.5% and 19.4%, suggesting that

StRAID achieves to make better advantage of SSDs’ high write bandwidth. In addition, the two-stage submission

consumes only 8% and 2.1% of the stripe-write CPU-cycles of partial-stripe and full-stripe writes, respectively.

CPU utilization We compare the CPU utilizations of StRAID and MD under random full-stripe and partial-

stripe write workloads respectively, with the same RAID5 settings in Figure 10. Results in Figure 15 show that

the total CPU utilization of MD is up to 6.3x higher than StRAID with 64 UTs. Even when the number of UTs is

less than 8, the CPU usage of MD is 2x higher than that of StRAID on average. Combining with the throughput

results shown in Figure 10, MD with 4495% CPU-core utilization consumes only 1/3 of the SSDs bandwidth, in

contrast to StRAID that consumes 86.9% of the SSDs bandwidth with 1156% CPU-core utilization.

Moreover, 64KB-sized partial-stripe writes of MD (MD-64K) consume up to 80% more CPU than full-stripe

writes (MD-1M) with 64 UTs. MD’s ineiciency stems from its high consumption of CPU cycles required to handle

in-light partial-stripe writes. On the contrary, StRAID-64K consumes only 25% less CPU cycles than StRAID-1M

ACM Trans. Storage

20 • Shucheng Wang, Qiang Cao, Hong Jiang, Ziyi Lu, Jie Yao, Yuxing Chen, and Anqun Pan

1 2 4 8 16 32 64
of user threads

0.0

0.2

0.4

La
te

nc
y

(m
s)

StRAID-Seq
StRAID-Rand

StRAIDd-Seq
StRAIDd-Rand

MD-Seq
MD-Rand

(a) Average Latency 4K

1 2 4 8 16 32 64
of I/O threads

0.0

0.5

1.0

1.5

La
te

nc
y

(m
s)

StRAID-Seq
StRAID-Rand

StRAIDd-Seq
StRAIDd-Rand

MD-Seq
MD-Rand

(b) Tail Latency 4KB

1 2 4 8 16 32 64
of user threads

0

1

2

La
te

nc
y

(m
s)

(c) Average Latency 64KB

1 2 4 8 16 32 64
of user threads

0

10

20

La
te

nc
y

(m
s)

(d) Tail Latency 64KB

1 2 4 8 16 32 64
of user threads

0

5

10

La
te

nc
y

(m
s)

(e) Average Latency 1MB

1 2 4 8 16 32 64
of user threads

0

20

40

La
te

nc
y

(m
s)

(f) Tail Latency 1MB

Fig. 13. Average and tail latency of RAID systems.

because StRAID gains higher throughput for full-stripe writes that consumes more CPU resources for computing

XOR and issuing I/Os.

Amount of Disk Read/Written Data Figure 16 shows the amount of data written to and read from disks

by StRAID and StRAIDd in RAID5, normalized to that of MD, including disk accesses on the Log-Bufer. For

random writes, StRAIDd and MD have exactly the same amount of data written and data read because stripe-write

aggregation is rare for random writes. Besides, StRAID bufers all random partial-writes in the Log-Bufer, which

performs 6.1x more throughput at the cost of 1.5x more data written to and read from SSDs than MD.

For sequential writes, the amount of disk written and read in StRAID varies signiicantly with diferent numbers

of UTs, which is caused by the various eiciency of StRAID’s in-memory stripe aggregation. With a single UT,

ACM Trans. Storage

Explorations and Exploitation for Parity-based RAIDs with Ultra-fast SSDs • 21

MD StRAID MD StRAID
 Partial-stripe writes Full-stripe writes

0

20

40

60

80

100

Ra
tio

 (%
)

Others
Analyze
Lock
Batching
XOR
Write
Read

Fig. 14. Breakdowns of CPU cycles on StRAID and MD

1 2 4 8 16 32 64
of user threads

0

1000

2000

3000

4000

To
ta

l C
PU

 (%
) StRAID-64K

MD-64K
StRAID-1M
MD-1M

Fig. 15. Total CPU utilizations

1 2 4 8 16 32 64
of user threads

0.5

1.0

1.5

2.0

No
rm

al
ize

d
W

rit
e

Am
ou

nt

StRAID RAND
StRAID SEQ

StRAIDd RAND
StRAIDd SEQ

(a) Written data

1 2 4 8 16 32 64
of user threads

0

2

4

6

8

No
rm

al
ize

d
Re

ad
 A

m
ou

nt

StRAID RAND
StRAID SEQ

StRAIDd RAND
StRAIDd SEQ

(b) Read data

Fig. 16. Amount of data writen to and read from disks by StRAID, normalized to that of MD.

Table 4. The aggregation degree of the two-stage submission mechanism in StRAID.

User Threads 1 2 4 8 16 32 64

Aggregation Degree (%) 20 34.6 66.3 79.8 86.8 88.8 89.2

StRAIDd and MD have the same amount of disk read and write because they can not batch stripe in memory.

StRAID conducts 20% more written data than MD because it redirects all writes to the Log-Bufer and then merges

them into full-stripes. With the number of UTs increasing, StRAID would batch more sequential writes through

the in-memory aggregation and conducts less bufered write. However, the amount of data written in StRAIDd

is up to 24% larger than MD. This is because the in-memory stripe aggregation has a much smaller batching

window, which is slightly less eicient than Linux MD’s active delays of sequential stripe writes.

For data read, with 64 UTs as the worst case, StRAID and StRAIDd read 7x and 4x more data than MD,

respectively. It is because MD postpones and aggregates almost all stripe-associated writes (SS-writes) into full-

stripe writes, thus reducing the amount of write-induced-read data (e.g., 1.6% of user-written data). In contrast,

StRAID’s worker thread exhibits less eicient stripe aggregation, resulting in a higher number of write-induced

reads (about 6.5% of user-written data) and an additional read for recycling each bufered request. Table 4 presents

the aggregation degree of StRAID, deined as the ratio of the average stripe write size to the full-stripe size after

stripe batching, of the two-stage submission mechanism under a sequential 64KB workload. When the number of

user threads is lower than 8, StRAID shows a lower aggregation eiciency due to limited workload concurrency.

However, as the number of threads increases beyond 16, the two-stage submission mechanism achieves an 89.2%

aggregation degree. Besides, since the high read IOPS of fast SSDs can completely absorb the increased number

of read I/Os, StRAID’s write performance can still be 5.1x higher than MD.

ACM Trans. Storage

22 • Shucheng Wang, Qiang Cao, Hong Jiang, Ziyi Lu, Jie Yao, Yuxing Chen, and Anqun Pan

1 2 4 8 16 32 64
of user threads

0.0

2.5

5.0

7.5

10.0

Th
ro

ug
hp

ut
 (G

B/
s)

MD-P
StRAID-P
MD-F
StRAID-F

Fig. 17. StRAID and MD throughput with partial-stripe (*-P) and full-stripe writes (*-F) of diferent chunk sizes.

Chunk Sizes We evaluate the efect of chunk size coniguration on the performance of StRAID and MD with

64KB-sized writes in RAID6. The chunk size is set to 8KB for the full-stripe-write case (StRAID-F and MD-F), and

64KB for the partial-stripe-write case (StRAID-P and MD-P), respectively. Figure 17 shows that both StRAID and

MD beneit signiicantly from full-stripe write workloads. The throughput of StRAID-F reaches 11.8GB/s with

64 UTs, about 1.9x higher than StRAID-P. Similarly, the throughput of MD-F is up to 3.1x higher than MD-P.

However, the peak throughput of MD-F (8KB chunk size and 64KB write size) remains at 5.3GB/s, consistent with

the results shown in Figure 1(d) (with 64KB chunk size and 1MB I/O size). It indicates that the peak throughput

of StRAID is sensitive to the chunk size setting. An insight from this experiment is that it is beneicial to set

StRAID’s chunk size smaller, such as 8KB, to take full advantage of full-stripe writes.

6.3 Macro-benchmark

We use six representative block traces from Filebench [60], cloud-based application traces from Alibaba-Pangu

[47] and Microsoft [51] to evaluate StRAID’s performance. Table 5 summarizes the characteristics of these

workloads, most of which are read-write mixed or write-dominated. The average request size of these workloads

is generally small (i.e., 20-60KB). Therefore, we evaluate StRAID and MD in the RAID5 level with the chunk size

of 8KB, which is beneicial for StRAID to take advantage of full-stripe writes as we demonstrated in previous

Section 6.2. In the experiments, we enable 32 WTs in MD and StRAID, and evaluate them in the RAID5 levels with

a chunk size of 8KB. We invoke 32 user threads to replay these traces continuously, mimicking high-intensity

workloads.

Figure 18 shows the throughput of StRAID and MD over time. StRAID achieves up to 2.8x higher throughput

than MD, and shortens the total running time by an average of 64% across 6 workloads. In the ileserver workload,

StRAID achieves peak and average throughput of 10.3GB/s respectively, in contrast to their MD counterparts

of 5.0GB/s. The ileserver workload has the largest average write size, so that StRAID beneits from full-stripe

writes. For the cloud-based workloads, StRAID’s average throughput is 3.1x and 3x higher than MD’s in Pangu-A

and Pangu-B, respectively. The prxy0 workload exhibits the lowest average throughputs among all workloads,

1.8GB/s and 0.6GB/s for StRAID and MD respectively. This is because the prxy0 trace has the smallest average

write size (i.e., 4.6KB) among all workloads, leading to a large amount of partial-stripe writes for both StRAID

and MD. Further, it is observed that StRAID is 20%-35% better than that without Log-Bufer in prxy0, prn0 and

varmail, because these workloads have more performance-punishing partial-stripe writes.

Figure 19 shows the latency CDFs of StRAID and MD across all the workloads. StRAID shows signiicantly

better CDF proiles, with about 80% and 69% lower average latency than MD in workloads Pangu-A and Pangu-B,

respectively. For the other four workloads, StRAID also has at least 45% lower average latency than MD. The

median latencies of StRAID in workloads Pangu-A, Pangu-B and ilebench are almost ten times lower than MD,

while for workloads varmail, prn0, and prxy0 StRAID’s is 78%, 74% and 75% lower than MD’s respectively. In

ACM Trans. Storage

Explorations and Exploitation for Parity-based RAIDs with Ultra-fast SSDs • 23

Table 5. Characteristics of block I/O traces used in the macro-benchmark evaluations

Trace
Write Ops

(millions)

Data Written

(GB)

Avg.write

size (KB)

Read Ops

(millions)

Data Read

(GB)

Avg.read

size (KB)

Pangu-A 1.89 113.24 63.21 0.24 4.06 17.99

Pangu-B 2.44 81.32 35.08 0.30 18.61 65.24

prxy_0 12.14 53.80 4.65 0.38 3.05 8.33

prn_0 4.98 45.97 9.67 0.60 13.12 22.84

varmail 3.39 39.20 12.13 0.05 5.38 114.05

ileserver 1.19 99.45 87.56 0.47 42.37 95.49

0 20 40 60
Time (seconds)

2

4

6

Th
ro

ug
hp

ut
 (G

B/
s)

(a) Pangu-A

0 20 40 60
Time (seconds)

2

4

6

Th
ro

ug
hp

ut
 (G

B/
s)

(b) Pangu-B

0 20 40 60 80
Time (seconds)

0

2

4

6

Th
ro

ug
hp

ut
 (G

B/
s) MD

StRAIDd
StRAID

(c) prn0

0 20 40 60 80
Time (seconds)

0

2

4

6

Th
ro

ug
hp

ut
 (G

B/
s)

(d) prxy0

0 20 40
Time (seconds)

2

4

6

Th
ro

ug
hp

ut
 (G

B/
s)

(e) varmail

0 10 20 30
Time (seconds)

0

5

10

Th
ro

ug
hp

ut
 (G

B/
s) MD

StRAIDd
StRAID

(f) ileserver

Fig. 18. Throughput of StRAID and MD on trace-driven workloads.

addition, the 80�ℎ-95�ℎ percentile latency of StRAID is reduced by generally 42%-63% than StRAIDd in varmail,

prxy0, and prn0 workloads. The primary source of these long latency is the partial-stripe updates, which could

be eiciently handled by the write bufering mechanism.

The 99�ℎ-percentile tail latency in StRAID is 25% lower than that in MD among all workloads on average. For

example, StRAID’s tail latency is up to 31.1% and 31.9% lower in workloads Pangu-A and prn0. StRAID’s advantage

over MD in tail latency is lower than in average latency, because the high tail latency of both StRAID and MD

mainly comes from write latency spikes caused by internal maintenance operations (e.g., garbage collection)

within the SSD devices.

6.4 Sensitivity Study

Experiment with other devices. Next, we evaluate the sensitivity of StRAID and MD to diferent types of

storage devices. We irst build StRAID and Linux MD on six Intel Optane PMs (in AppDirect Mode) [27] and

lower-performance 970Pro SSDs, and compare these performances with that in 980Pros. The raw read and write

bandwidth per PM can reach 6.6GB/s and 2.3GB/s [76], respectively. When running upon PMs, we will turn on the

PM-oriented optimization techniques as described in section 5.2 (StRAID-PM). Further, we test the extreme RAID

ACM Trans. Storage

24 • Shucheng Wang, Qiang Cao, Hong Jiang, Ziyi Lu, Jie Yao, Yuxing Chen, and Anqun Pan

0 1 2
Latency (ms)

0
20
40
60
80

100

CD
F

(%
)

(a) Pangu-A

0 1 2
Latency (ms)

0
20
40
60
80

100

CD
F

(%
)

(b) Pangu-B

0 1 2
Latency (ms)

0
20
40
60
80

100

CD
F

(%
)

MD
StRAIDd
StRAID

(c) prn0

0 1 2 3
Latency (ms)

0
20
40
60
80

100

CD
F

(%
)

(d) prxy0

0 1 2 3
Latency (ms)

0
20
40
60
80

100
CD

F
(%

)

(e) varmail

0 2 4 6
Latency (ms)

0
20
40
60
80

100

CD
F

(%
)

MD
StRAIDd
StRAID

(f) ileserver

Fig. 19. Latency CDF of StRAID and MD on trace-driven workloads.

1 2 4 8 16 32 64
of user threads

0

10

20

30

Th
ro

ug
hp

ut
 (G

B/
s)

(a) Partial-stripe writes

1 2 4 8 16 32 64
of user threads

0

10

20

30

40

Th
ro

ug
hp

ut
 (G

B/
s)

StRAID-970
StRAID-980
StRAID-RAM
StRAID-PM
MD-970
MD-980
MD-RAM
MD-PM

(b) Full-stripe writes

Fig. 20. Performances of StRAID and MD on diferent SSDs and RAMs.

performance over six ramdisks on 128GB DRAM. We invoke up to 64 UTs with 64KB write-size for partial-stripe

write-load and 1MB for full-stripe write-load.

Results in Figure 20 show that StRAID on 980Pro SSDs exhibits up to 20% higher throughput than it on 970Pro

SSDs. In contrast, the performance diference of Linux MD on these two diferent types of SSDs is less than 5%.

The throughput of StRAID on PMs is up to 3.8x and 2.5x higher than MD with partial-stripe and full-stripe writes,

respectively. We also ind that StRAID on PMs shows 50%-82% higher throughput than SSDs on average with

small number of threads. This is because PM has one order of magnitude lower read and write latency than SSDs,

thus StRAID could handle stripes more eiciently. However, the PM-aware StRAID shows a throughput drop

at higher than 8 UTs, because PM has a limited concurrency [76]. In addition, StRAID on RAMs delivers up to

5.8x higher write throughput than MD. At 64 UTs, StRAID reaches up to 35.2GB/s random write throughput and

32.7GB/s sequential write throughput, respectively, in contrast to their MD counterparts of 5.8GB/s and 5.7GB/s.

It shows that StRAID has the potential to efectively exploit faster storage like the emerging PCIe 5.0 SSDs [17]

in the near future.

ACM Trans. Storage

Explorations and Exploitation for Parity-based RAIDs with Ultra-fast SSDs • 25

1 2 4 8 16 32 64
of user threads

0

2

4

6

8

10

Th
ro

ug
hp

ut
 (G

B/
s) w/ TSS-Rand

w/ TSS-Seq
w/o buffer-Rand
w/o buffer-Seq
w/o TSS-Rand
w/o TSS-Seq

Fig. 21. StRAID throughput with random (*-Rand) and sequential (*-Seq) writes when running with two-stage stripe

submission (w/ TSS), without write bufering (w/o bufer) and without TSS (w/o TSS).

1 2 4 8 16
of user threads

0.00
0.25
0.50
0.75
1.00
1.25

Th
ro

ug
hp

ut
 (G

B/
s) StRAID-860

MD-860
StRAID-980
MD-980

Fig. 22. Throughput of StRAID and MD with limited worker threads.

To demonstrate the generality of StRAID, we further evaluated StRAID and MD over six low-performance

860Pro SATA SSDs (*-860) with limited 4 worker threads. Table 2 shows that the 860Pros have a lower read and

write bandwidth of about 500MB/s, which is one order of magnitude lower than the 980Pros. In this experiment,

we issue random 64KB write requests using 1 to 16 UTs. Figure 22 demonstrates that the throughput of StRAID

peaks at 4 UTs because the stripe-threaded architecture uses dedicated threads to handle each stripe-writes

exclusively. In contrast, MD’s performance peaks at 12 and 16 user threads with 860Pros and 980Pros respectively,

with a maximum throughput that is reduced by 10% and 40% compared to StRAID. These results indicate that

StRAID still outperforms MD even with limited CPU resources and lower-performance SSDs.

Two-stage Submission. We analyze the performance contributions of the two-stage stripe submission (TSS)

mechanism of StRAID in RAID5. We run the experiment with and without the two-stage submission (StRAID and

StRAID w/o TSS), and just disable the write bufering (StRAIDd), respectively. The request size is set to 64KB for

the partial-stripe-write case. We issue requests with random access patterns. Figure 21 shows that StRAID with

TSS achieves 2.7x improvement of average throughput than without TSS for sequential partial writes at 64 UTs.

The two-stage submission allows request aggregation on writes belonging to a same stripe and handles them

in a batch. StRAID without TSS, by contrast, has to individually execute each writes on a stripe. Besides, the

performance contribution of two-stage submission on full-stripe write load is less than 4%, because the requests

targeting diferent stripes will not be aggregated.

Furthermore, we analyze the efects of batching time in TSS on the overall performance of StRAID. The default

parameter values (�������� , ��������� , ����) for StRAID built with 980Pro SSDs are 7us, 5us, 20us and with 860Pro

SSDs are 20us, 15us, 55us respectively. We conduct experiments to evaluate the efect of varying these parameters

on StRAID’s performance. Speciically, we use the default delay settings (1x) as a baseline and adjust all three

ACM Trans. Storage

26 • Shucheng Wang, Qiang Cao, Hong Jiang, Ziyi Lu, Jie Yao, Yuxing Chen, and Anqun Pan

parameters simultaneously, increasing them up to 10x or decreasing them by 50% (0.5x). We employ 4 and

16 threads (i.e., 4UT and 16UT) for random and sequential 64KB-sized writes and measure the performance of

StRAID (enable Log-Bufer) and StRAIDd (disable Log-Bufer) respectively.

0.5x 1x 2x 4x 6x 8x 10x
Batching Delay

0.6

0.8

1.0

No
rm

al
ize

d
W

rit
e

Th
ro

ug
hp

ut

StRAIDd 4UT
StRAIDd 16UT

StRAID 4UT
StRAID 16UT

(a) Sequential Write (980Pro)

0.5x 1x 2x 4x 6x 8x 10x
Batching Delay

0.4

0.6

0.8

1.0

No
rm

al
ize

d
W

rit
e

Th
ro

ug
hp

ut

StRAIDd 4UT
StRAIDd 16UT

StRAID 4UT
StRAID 16UT

(b) Random Write (980Pro)

0.5x 1x 2x 4x 6x 8x 10x
Batching Delay

0.6

0.8

1.0

No
rm

al
ize

d
W

rit
e

Th
ro

ug
hp

ut

StRAIDd 4UT
StRAIDd 16UT

StRAID 4UT
StRAID 16UT

(c) Sequential Write (860Pro)

0.5x 1x 2x 4x 6x 8x 10x
Batching Delay

0.6

0.8

1.0

1.2

No
rm

al
ize

d
W

rit
e

Th
ro

ug
hp

ut
StRAIDd 4UT
StRAIDd 16UT

StRAID 4UT
StRAID 16UT

(d) Random Write (860Pro)

Fig. 23. Performance of StRAID with diferent batching delays in two-stage submission.

Figure 23 shows that increasing the aggregation time beyond the default coniguration signiicantly reduces

the overall write performance of StRAID. For example, with 980Pro SSDs, StRAID’s sequential and random

throughput decreases by 17% and 35% respectively with the 8x batching delay, because the performance penalty

on IO processing latency is much higher than the performance gain from increased aggregation eiciency. A

special case is that the sequential write throughput of StRAIDd is increased by 7%-9% compared to the baseline

under the 2x delay setting. This is because the longer batching time window improves the aggregation eiciency

of SS-write. However, it also decreases the overall write performance of StRAID by up to 10% due to the increased

IO processing latency. In contrast, decreasing the aggregation time (0.5x) slightly improves random write

throughput by 3%-5%, but results in a 6% decrease in sequential writes due to the lower batching eiciency.

Moreover, the performance impact of increased aggregation time for StRAID is 1.2x-2x more than that for

StRAIDd. This is because StRAID addresses the partial-write performance problem by combining the two-stage

submission and the log-write bufer, the increased batching latency counteracts the performance gain from write

bufering. In conclusion, the default batching latency settings strike a balance between optimizing aggregation

eiciency and reducing IO processing latency, to fully utilize the performance of ultra-fast SSDs.

Besides, the results also indicate that these default parameters perform well on lower-performance 860Pro

SSDs. StRAID exhibits a higher batching delay on 860Pro SSDs compared to 980Pro SSDs, resulting in improved

ACM Trans. Storage

Explorations and Exploitation for Parity-based RAIDs with Ultra-fast SSDs • 27

0 10 20 30 40 50
Written Data (GB)

0

2

4

6

Th
ro

ug
hp

ut
 (G

B/
s) MD

StRAIDd
StRAID-6G
StRAID-24G

Fig. 24. The runtime features of the write bufering mechanism in StRAID.

aggregation eiciency. As a result, only increasing the batching delay (e.g., by 2x) would not improve the overall

write performance.

Partial-write Bufering. We analyze the runtime features of the write bufering mechanism on the perfor-

mance of StRAID. We evaluate StRAID, StRAIDd, and MD with continuous partial-stripe writes and measure their

runtime throughput respectively. In addition, we explore the impact of Log-bufer size on RAID performance by

changing the default bufer size (i.e. StRAID-24G, 2GB for each sublog and 24GB in total) to a smaller size (i.e.

StRAID-6G, 0.5GB for each sublog and 6GB in total).

Figure 24 shows that StRAID outperforms StRAIDd and MD by 1.9x and 6.1x respectively when the Log-Bufer

is empty. When the written data reaches 12GB (i.e., the capacity of a ping-pong LogGroup in StRAID-24G), the

frontend write performance is reduced by 15% in average because the bandwidth is congested by background

reclamation. When the written data reaches 30GB, StRAID stops bufering because the capacity of Log-Bufer

is full, and the performance drops to that of StRAIDd. After bufer reclamation is completed (i.e., written data

reaches 38GB), StRAID could restart the write bufering. Moreover, the results show that the Log-bufer sizes

have less impact on the peak throughput of StRAID, with an average diference of less than 4%. This is because

StRAID could write multiple sublogs concurrently to fully exploit the high inter-parallelism of SSDs. However, a

small Log-bufer capacity can cause frequent bufer reclamation under intensive workloads and lead to system

performance luctuations.

In summary, the two-stage submission can efectively compensate for the performance degradation of traditional

parity-based RAID. In addition, a user could increase the capacity of Log-bufer for better handling bursty

workloads.

1 2 4 8 16 32 64
of user threads

0

2

4

6

Th
ro

ug
hp

ut
 (G

B/
s)

(a) Degraded read

1 2 4 8 16 32 64
of user threads

0

5

10

15

Th
ro

ug
hp

ut
 (G

B/
s) StRAID-64K

MD-64K
StRAID-1M
MD-1M

(b) Degraded write

Fig. 25. Read and write performance on degraded StRAID and Linux MD.

ACM Trans. Storage

28 • Shucheng Wang, Qiang Cao, Hong Jiang, Ziyi Lu, Jie Yao, Yuxing Chen, and Anqun Pan

6.5 Resync and Degraded Mode

We assess the performance of StRAID and Linux MD in the degraded mode under RAID5. One random SSD in

the RAID array is set as failed. Then, a varying number of UTs issue reads and writes of 64KB and 1MB size,

respectively. StRAID will disable the write bufer in such case. Results in Figure 25 show that the read throughput

of degraded StRAID and Linux MD is almost the same, with an average diference of less than 5%. Meanwhile,

the write performance of degraded StRAID is 50-70% higher than that in Linux MD with multiple UTs. This is

because the processing low of write operation in degraded mode is basically the same as that in the normal

mode. In addition, StRAID and MD apply the same resync approach.

7 RELATED WORKS

SSD-aware RAID SSD-based RAIDs have been extensively studied and can be roughly classiied into three

groups: 1) taming tail-latency by alleviating GC impact [33, 69, 70, 75]; 2) enhancing data reliability by optimizing

parity distribution or conducting wear leveling across SSDs [3, 41, 66]; and 3) mitigating the overhead of parity

writes [8, 14, 24, 29, 74]. StRAID focuses on the multi-threaded processing architecture in RAID systems and can

complement these works.

All-Flash-Array Systems RAID for AFA (all-lash-array) systems have been studied for RAID data layout opti-

mization [50, 77] and taming tail-latency by alleviating GC impact [33, 59]. FusionRAID [28] improves the latency

performance of the RAID system for SSD pools by leveraging the Latin-square-based deterministic addressing

methods proposed in RAID+ [77], while proposing an out-of-place write method for optimizing parity-updates.

SWAN [33] tames tail-latency by alleviating SSD GC impact in an all-lash-array system. Complementary to them,

StRAID focuses on the stripe-write process on multi-core processors and fast SSDs without any modiication of

the RAID data layout. Therefore, StRAID as a new stripe-handling engine can be used in AFA systems to exploit

modern hardware with high internal parallelism.

ParityWrite Optimization The stripe aggregation method is widely studied to construct full-stripe writes for

reducing the write-induced reads or reducing the number of parity writes to SSDs. The Linux MD performs stripe

aggregation by postponing user writes to absorb more requests for reducing actual I/Os. However, this approach

increases the latency for handling requests, which would hurt the overall performance for low-latency SSDs.

Besides, it can not speed up random partial-writes. In contrast to the stripe-cache in Linux MD, the two-stage

stripe submission mechanism in StRAID leverages a short batching delay to ensure the eiciency of each handling

thread, thus achieving better throughput without sacriicing I/O latency.

The RAID bufering mechanisms have been studied to absorb partial-stripe writes for reducing the write-

induced reads and mitigating parity updates to SSDs. Previous works [14, 15, 24, 63, 74] use an extra NVRAM or

SSD as a bufer to absorb incoming write data and/or parity information for delaying parity updates. Existing

RAID systems [19, 28, 68] irst steer all writes to a logging zone and then write back to the primary RAID in the

background. LDM [68] steers small-sized writes to a logging space and merges them in the background. Such an

aggregation approach deprives the opportunity to construct full-stripe writes in memory to bypass the bufer,

thus doubling the amount of data written to SSDs. Besides, a single bufering device could become the bottleneck

under intensive workloads.

Compared with these eforts, StRAID opportunistically aggregates SS-writes into full-stripes with TSS, while

conditionally bufering partial-writes to the Log-Bufer. It archives to maintain the eiciency of stripe aggregation

while minimizing the disk-I/O ampliication and requirements on extra storage. Besides, StRAID proposes the

two-dimensional Log-Bufer architecture and the parallel write I/O processing to fully exploit inter-parallelism of

SSDs, preventing the bufering devices from becoming a bottleneck.

Block IO Scheduling Prior studies on block IO scheduling are focused on optimizing multi-queue management

including prioritization [37], fairness queuing [22, 79], policy-based storage provisioning and management

ACM Trans. Storage

Explorations and Exploitation for Parity-based RAIDs with Ultra-fast SSDs • 29

[2, 62] and providing low scheduling latency [23]. StRAID is a RAID stripe-write engine on top of and thus

complementary to these block IO scheduling approaches. Additionally, compared with other RAID systems

that adopt FTL-level block I/O scheduling [34, 67, 80], StRAID considers SSDs as black boxes, making it highly

portable and non-intrusive.

Multicore Optimization Previous studies have addressed the scalability issues in key-value stores [11, 12],

ile systems [5, 13, 43], volume management [36] and block drivers [23] with multicore processors and high-

performance devices (e.g., SSDs and NVMs). MAX [43] demonstrates that lock contentions are the major reasons

for poor scalability in ile systems. These works exploit the potentials of parallelism on multicore processors and

fast SSDs through localized key data structures and ine-grained lock designs. The Linux kernel contributors

optimize lock mechanisms to improve read performance [52]. In this paper, StRAID focuses on optimizing the

write path of the MD parity-RAID architecture and addresses the software overhead in handling stripe writes.

8 CONCLUSION

We experimentally reveal that Linux MD with parity-based RAIDs cannot fully exploit the potentials ofered

by high-performance SSDs due to the architectural drawback of centralized stripe-writes. We propose a stripe-

threaded parity-RAID (StRAID) to eiciently handle stripe-writes in parallel. StRAID introduces a two-stage

stripe submission mechanism for aggregating partial-stripe writes and a parity cache for hot parity-accesses.

Through extensive trace-driven evaluations, StRAID is shown to signiicantly and consistently outperform MD

parity-based RAID in write performance without sacriicing read performance.

ACKNOWLEDGMENTS

We would like to thank the anonymous reviewers for their valuable feedback and suggestion. This work was

supported in part by National key research and development program of China No. 2018YFA0701800, NSFC

No.62172175, NSFC No.61821003, the US National Science Foundation Grant CNS-2008835, and the Key Research

and Development Project of Hubei No.2022BAA042.

REFERENCES

[1] Hussam Abu-Libdeh, Lonnie Princehouse, and Hakim Weatherspoon. 2010. RACS: a case for cloud storage diversity. In Proceedings of

the 1st ACM Symposium on Cloud Computing, SoCC 2010, Indianapolis, Indiana, USA, June 10-11, 2010. ACM, 229ś240.

[2] Marcos K. Aguilera, Nadav Amit, Irina Calciu, Xavier Deguillard, Jayneel Gandhi, Stanko Novakovic, Arun Ramanathan, Pratap

Subrahmanyam, Lalith Suresh, Kiran Tati, Rajesh Venkatasubramanian, and Michael Wei. 2018. Remote regions: a simple abstraction for

remote memory. In 2018 USENIX Annual Technical Conference, USENIX ATC 2018, Boston, MA, USA, July 11-13, 2018. USENIX Association,

775ś787.

[3] Mahesh Balakrishnan, Asim Kadav, Vijayan Prabhakaran, and Dahlia Malkhi. 2010. Diferential RAID: rethinking RAID for SSD reliability.

In European Conference on Computer Systems, Proceedings of the 5th European conference on Computer systems, EuroSys 2010, Paris, France,

April 13-16, 2010. ACM, 15ś26.

[4] Doug Beaver, Sanjeev Kumar, Harry C Li, Jason Sobel, Peter Vajgel, et al. 2010. Finding a Needle in Haystack: Facebook’s Photo Storage..

In OSDI, Vol. 10. 1ś8.

[5] Srivatsa S. Bhat, Rasha Eqbal, Austin T. Clements, M. Frans Kaashoek, and Nickolai Zeldovich. 2017. Scaling a ile system to many cores

using an operation log. In Proceedings of the 26th Symposium on Operating Systems Principles, Shanghai, China, October 28-31, 2017. ACM,

69ś86.

[6] J. Bonwick and B. Moorei. [n. d.]. ZFS: The Last Word in File Systems. http://opensolaris.org/os/community/zfs/docs/zfslast.pdf.

[7] John F. Canny, Huasha Zhao, Bobby Jaros, Ye Chen, and Jiangchang Mao. 2015. Machine learning at the limit. In 2015 IEEE International

Conference on Big Data (IEEE BigData 2015), Santa Clara, CA, USA, October 29 - November 1, 2015. IEEE Computer Society, 233ś242.

[8] Helen H. W. Chan, Yongkun Li, Patrick P. C. Lee, and Yinlong Xu. 2018. Elastic Parity Logging for SSD RAID Arrays: Design, Analysis,

and Implementation. IEEE Trans. Parallel Distributed Syst. 29, 10 (2018), 2241ś2253.

[9] Helen H. W. Chan, Yongkun Li, Patrick P. C. Lee, and Yinlong Xu. 2018. Elastic Parity Logging for SSD RAID Arrays: Design, Analysis,

and Implementation. IEEE Trans. Parallel Distributed Syst. 29, 10 (2018), 2241ś2253.

ACM Trans. Storage

http://opensolaris.org/os/community/zfs/docs/zfs last.pdf

30 • Shucheng Wang, Qiang Cao, Hong Jiang, Ziyi Lu, Jie Yao, Yuxing Chen, and Anqun Pan

[10] Feng Chen, Tian Luo, and Xiaodong Zhang. 2011. CAFTL: A Content-Aware Flash Translation Layer Enhancing the Lifespan of Flash

Memory based Solid State Drives. In 9th USENIX Conference on File and Storage Technologies, San Jose, CA, USA, February 15-17, 2011.

USENIX, 77ś90.

[11] Hao Chen, Chaoyi Ruan, Cheng Li, Xiaosong Ma, and Yinlong Xu. 2021. SpanDB: A Fast, Cost-Efective LSM-tree Based KV Store on

Hybrid Storage. In 19th USENIX Conference on File and Storage Technologies, FAST 2021, February 23-25, 2021. USENIX Association, 17ś32.

[12] Youmin Chen, Youyou Lu, Fan Yang, Qing Wang, Yang Wang, and Jiwu Shu. 2020. FlatStore: An Eicient Log-Structured Key-Value

Storage Engine for Persistent Memory. In ASPLOS ’20: Architectural Support for Programming Languages and Operating Systems, Lausanne,

Switzerland, March 16-20, 2020. ACM, 1077ś1091.

[13] Youmin Chen, Youyou Lu, Bohong Zhu, Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-Dusseau, and Jiwu Shu. 2021. Scalable Persistent

Memory File System with Kernel-Userspace Collaboration. In 19th USENIX Conference on File and Storage Technologies, FAST 2021,

February 23-25, 2021. USENIX Association, 81ś95.

[14] Ching-Che Chung and Hao-Hsiang Hsu. 2014. Partial Parity Cache and Data Cache Management Method to Improve the Performance

of an SSD-Based RAID. IEEE Trans. Very Large Scale Integr. Syst. 22, 7 (2014), 1470ś1480.

[15] John Colgrove, John D. Davis, John Hayes, Ethan L. Miller, Cary Sandvig, Russell Sears, Ari Tamches, Neil Vachharajani, and Feng Wang.

2015. Purity: Building Fast, Highly-Available Enterprise Flash Storage from Commodity Components. In Proceedings of the 2015 ACM

SIGMOD International Conference on Management of Data, Melbourne, Victoria, Australia, May 31 - June 4, 2015. ACM, 1683ś1694.

[16] W.V. Courtright, G. Gibson, M. Holland, and J. Zelenka. 1996. A structured approach to redundant disk array implementation. In

Proceedings of IEEE International Computer Performance and Dependability Symposium. 11ś20.

[17] Samsung Electronics. 2021. Samsung Develops High-Performance PCIe 5.0 SSD for Enterprise Servers. https://www.

samsungsemiconstory.com/global/samsung-develops-high-performance-pcie-5-0-ssd-for-enterprise-servers/.

[18] Nima Elyasi, Mohammad Arjomand, Anand Sivasubramaniam, Mahmut T. Kandemir, Chita R. Das, andMyoungsoo Jung. 2017. Exploiting

Intra-Request Slack to Improve SSD Performance. In Proceedings of the Twenty-Second International Conference on Architectural Support

for Programming Languages and Operating Systems, ASPLOS 2017, Xi’an, China, April 8-12, 2017. ACM, 375ś388.

[19] Bin Fan, Wittawat Tantisiriroj, Lin Xiao, and Garth Gibson. 2011. Diskreduce: Replication as a prelude to erasure coding in data-intensive

scalable computing. SC11 (2011).

[20] Dean Gonzales. 2015. PCI express 4.0 electrical previews. In PCI-SIG Developers Conference.

[21] Mingzhe Hao, Gokul Soundararajan, Deepak R. Kenchammana-Hosekote, Andrew A. Chien, and Haryadi S. Gunawi. 2016. The Tail at

Store: A Revelation from Millions of Hours of Disk and SSD Deployments. In 14th USENIX Conference on File and Storage Technologies,

FAST 2016, Santa Clara, CA, USA, February 22-25, 2016. USENIX Association, 263ś276.

[22] Mohammad Hedayati, Kai Shen, Michael L. Scott, and Mike Marty. 2019. Multi-Queue Fair Queuing. In 2019 USENIX Annual Technical

Conference, USENIX ATC 2019, Renton, WA, USA, July 10-12, 2019. USENIX Association, 301ś314.

[23] Jaehyun Hwang, Midhul Vuppalapati, Simon Peter, and Rachit Agarwal. 2021. Rearchitecting Linux Storage Stack for �s Latency and

High Throughput. In 15th USENIX Symposium on Operating Systems Design and Implementation, OSDI 2021, July 14-16, 2021. USENIX

Association, 113ś128.

[24] Soojun Im and Dongkun Shin. 2011. Flash-Aware RAID Techniques for Dependable and High-Performance Flash Memory SSD. IEEE

Trans. Computers 60, 1 (2011), 80ś92.

[25] NETAPP INC. 2010. Data ONTAP 8. http://www.netapp.com/us/products/platform-os/data-ontap-8/.

[26] Intel. 2020. ISA-L Performance Report. https://01.org/intel-storage-acceleration-library-open-source-version/documentation/

documentation.

[27] Intel. 2021. Intel Optane DC Persistent Memory. https://www.intel.com/content/www/us/en/architecture-and-technology.

[28] Tianyang Jiang, Guangyan Zhang, Zican Huang, Xiaosong Ma, Junyu Wei, Zhiyue Li, and Weimin Zheng. 2021. FusionRAID: Achieving

Consistent Low Latency for Commodity SSD Arrays. In 19th USENIX Conference on File and Storage Technologies, FAST 2021, February

23-25, 2021. USENIX Association, 355ś370.

[29] Chao Jin, Dan Feng, Hong Jiang, and Lei Tian. 2011. RAID6L: A log-assisted RAID6 storage architecture with improved write performance.

In IEEE 27th Symposium on Mass Storage Systems and Technologies, MSST 2011, Denver, Colorado, USA, May 23-27, 2011. IEEE Computer

Society, 1ś6.

[30] Rohan Kadekodi, Saurabh Kadekodi, Soujanya Ponnapalli, Harshad Shirwadkar, Gregory R. Ganger, Aasheesh Kolli, and Vijay Chi-

dambaram. 2021. WineFS: a hugepage-aware ile system for persistent memory that ages gracefully. In SOSP ’21: ACM SIGOPS 28th

Symposium on Operating Systems Principles, Virtual Event / Koblenz, Germany, October 26-29, 2021. ACM, 804ś818.

[31] The kernel development community. 2020. RAID 4/5/6 cache. https://www.kernel.org/doc/html/latest/driver-api/md/raid5-cache.html.

[32] Ram Kesavan, Jason Hennessey, Richard Jernigan, Peter Macko, Keith A. Smith, Daniel Tennant, and Bharadwaj V. R. 2019. FlexGroup

Volumes: A Distributed WAFL File System. In 2019 USENIX Annual Technical Conference, USENIX ATC 2019, Renton, WA, USA, July 10-12,

2019. USENIX Association, 135ś148.

[33] Jaeho Kim, Kwanghyun Lim, Youngdon Jung, Sungjin Lee, Changwoo Min, and Sam H. Noh. 2019. Alleviating Garbage Collection

Interference Through Spatial Separation in All Flash Arrays. In 2019 USENIX Annual Technical Conference, USENIX ATC 2019, Renton,

ACM Trans. Storage

https://www.samsungsemiconstory.com/global/samsung-develops-high-performance-pcie-5-0-ssd-for-enterprise-servers/
https://www.samsungsemiconstory.com/global/samsung-develops-high-performance-pcie-5-0-ssd-for-enterprise-servers/
http://www.netapp.com/us/products/platform-os/data-ontap-8/
https://01.org/intel-storage-acceleration-library-open-source-version/documentation/documentation
https://01.org/intel-storage-acceleration-library-open-source-version/documentation/documentation
https://www.intel.com/content/www/us/en/architecture-and-technology
https://www.kernel.org/doc/html/latest/driver-api/md/raid5-cache.html

Explorations and Exploitation for Parity-based RAIDs with Ultra-fast SSDs • 31

WA, USA, July 10-12, 2019. ACM, 799ś812.

[34] Youngjae Kim, Junghee Lee, Sarp Oral, David A Dillow, Feiyi Wang, and Galen M Shipman. 2012. Coordinating garbage collectionfor

arrays of solid-state drives. IEEE Trans. Comput. 63, 4 (2012), 888ś901.

[35] Gunjae Koo, Kiran Kumar Matam, Te I, H. V. Krishna Giri Narra, Jing Li, Hung-Wei Tseng, Steven Swanson, and Murali Annavaram.

2017. Summarizer: trading communication with computing near storage. In Proceedings of the 50th Annual IEEE/ACM International

Symposium on Microarchitecture, MICRO 2017, Cambridge, MA, USA, October 14-18, 2017. ACM, 219ś231.

[36] Pradeep Kumar and H. Howie Huang. 2017. Falcon: Scaling IO Performance in Multi-SSD Volumes. In 2017 USENIX Annual Technical

Conference, USENIX ATC 2017, Santa Clara, CA, USA, July 12-14, 2017. USENIX Association, 41ś53.

[37] Kyber. 2017. multiqueue I/O scheduler. https://lwn.net/Articles/720071/.

[38] Jing Li, Peng Li, Rebecca J. Stones, Gang Wang, Zhongwei Li, and Xiaoguang Liu. 2020. Reliability Equations for Cloud Storage Systems

with Proactive Fault Tolerance. IEEE Trans. Dependable Secur. Comput. 17, 4 (2020), 782ś794.

[39] Shaohua Li. 2013. raid5: make stripe handling multi-threading. https://lwn.net/Articles/563142/.

[40] Shaohua Li. 2013. raid5 oload stripe handle to workqueue. https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/

?id=851c30c9badfc6b294c98e887624bf53644ad21.

[41] Yongkun Li, Patrick P. C. Lee, and John C. S. Lui. 2016. Analysis of Reliability Dynamics of SSD RAID. IEEE Trans. Computers 65, 4

(2016), 1131ś1144.

[42] Yongkun Li, Biaobiao Shen, Yubiao Pan, Yinlong Xu, Zhipeng Li, and John C. S. Lui. 2017. Workload-Aware Elastic Striping With Hot

Data Identiication for SSD RAID Arrays. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 36, 5 (2017), 815ś828.

[43] Xiaojian Liao, Youyou Lu, Erci Xu, and Jiwu Shu. 2021. Max: A Multicore-Accelerated File System for Flash Storage. In 2021 USENIX

Annual Technical Conference, USENIX ATC 2021, July 14-16, 2021. 877ś891.

[44] Linux. 2015. Linux perf. https://perf.wiki.kernel.org/.

[45] Linux. 2020. HDFS-RAID. https://wiki.apache.org/conluence/display/HADOOP2.

[46] Linux. 2020. Linux RAID. https://raid.wiki.kernel.org/index.php/Linux_Raid.

[47] Shuyang Liu, Shucheng Wang, Qiang Cao, Ziyi Lu, Hong Jiang, Jie Yao, Yuanyuan Dong, and Puyuan Yang. 2019. Analysis of and

Optimization for Write-dominated Hybrid Storage Nodes in Cloud. In Proceedings of the ACM Symposium on Cloud Computing, SoCC

2019, Santa Cruz, CA, USA, November 20-23, 2019. ACM, 403ś415.

[48] Stathis Maneas, Kaveh Mahdaviani, Tim Emami, and Bianca Schroeder. 2020. A Study of SSD Reliability in Large Scale Enterprise

Storage Deployments. In 18th USENIX Conference on File and Storage Technologies, FAST 2020, Santa Clara, CA, USA, February 24-27, 2020.

USENIX Association, 137ś149.

[49] Justin Meza, Qiang Wu, Sanjeev Kumar, and Onur Mutlu. 2015. A Large-Scale Study of Flash Memory Failures in the Field. In Proceedings

of the 2015 ACM SIGMETRICS International Conference on Measurement and Modeling of Computer Systems, Portland, OR, USA, June 15-19,

2015. ACM, 177ś190.

[50] Richard R. Muntz and John C. S. Lui. 1990. Performance Analysis of Disk Arrays under Failure. In 16th International Conference on Very

Large Data Bases, August 13-16, 1990, Brisbane, Queensland, Australia, Proceedings. Morgan Kaufmann, 162ś173.

[51] Dushyanth Narayanan, Austin Donnelly, and Antony I. T. Rowstron. 2008. Write Of-Loading: Practical Power Management for

Enterprise Storage. In 6th USENIX Conference on File and Storage Technologies, FAST 2008, February 26-29, 2008, San Jose, CA, USA.

USENIX, 253ś267.

[52] Gal Ofri. 2021. raid5 avoid device lock in read one chunk. https://github.com/torvalds/linux/commit/

97ae27252f4962d0fcc38ee1d9f913d817a2024e.

[53] Rasmus Pagh and Flemming Friche Rodler. 2004. Cuckoo hashing. J. Algorithms 51, 2 (2004), 122ś144.

[54] Satadru Pan, Theano Stavrinos, Yunqiao Zhang, Atul Sikaria, Pavel Zakharov, Abhinav Sharma, Shiva Shankar P., Mike Shuey, Richard

Wareing, Monika Gangapuram, Guanglei Cao, Christian Preseau, Pratap Singh, Kestutis Patiejunas, J. R. Tipton, Ethan Katz-Bassett, and

Wyatt Lloyd. 2021. Facebook’s Tectonic Filesystem: Eiciency from Exascale. In 19th USENIX Conference on File and Storage Technologies,

FAST 2021, February 23-25, 2021. USENIX Association, 217ś231.

[55] Tirthak Patel, Suren Byna, Glenn K. Lockwood, Nicholas J. Wright, Philip H. Carns, Robert B. Ross, and Devesh Tiwari. 2020. Uncovering

Access, Reuse, and Sharing Characteristics of I/O-Intensive Files on Large-Scale Production HPC Systems. In 18th USENIX Conference on

File and Storage Technologies, FAST 2020, Santa Clara, CA, USA, February 24-27, 2020. USENIX Association, 91ś101.

[56] David A. Patterson, Garth A. Gibson, and Randy H. Katz. 1988. A Case for Redundant Arrays of Inexpensive Disks (RAID). In Proceedings

of the 1988 ACM SIGMOD International Conference on Management of Data, Chicago, Illinois, USA, June 1-3, 1988. 109ś116.

[57] Sundeep Prakash, Yann Hang Lee, and Theodore Johnson. 1994. A nonblocking algorithm for shared queues using compare-and-swap.

IEEE Trans. Comput. 43, 5 (1994), 548ś559.

[58] Bianca Schroeder, Raghav Lagisetty, and Arif Merchant. 2016. Flash Reliability in Production: The Expected and the Unexpected. In 14th

USENIX Conference on File and Storage Technologies, FAST 2016, Santa Clara, CA, USA, February 22-25, 2016. USENIX Association, 67ś80.

[59] Dimitris Skourtis, Dimitris Achlioptas, Noah Watkins, Carlos Maltzahn, and Scott A. Brandt. 2014. Flash on Rails: Consistent Flash

Performance through Redundancy. In 2014 USENIX Annual Technical Conference, USENIX ATC ’14, Philadelphia, PA, USA, June 19-20,

ACM Trans. Storage

https://lwn.net/Articles/720071/
https://lwn.net/Articles/563142/
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=851c30c9badfc6b294c98e887624bff53644ad21
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=851c30c9badfc6b294c98e887624bff53644ad21
https://perf.wiki.kernel.org/
https://wiki.apache.org/confluence/display/HADOOP2
https://raid.wiki.kernel.org/index.php/Linux_Raid
https://github.com/torvalds/linux/commit/97ae27252f4962d0fcc38ee1d9f913d817a2024e
https://github.com/torvalds/linux/commit/97ae27252f4962d0fcc38ee1d9f913d817a2024e

32 • Shucheng Wang, Qiang Cao, Hong Jiang, Ziyi Lu, Jie Yao, Yuxing Chen, and Anqun Pan

2014. USENIX Association, 463ś474.

[60] Vasily Tarasov, Erez Zadok, and Spencer Shepler. 2016. Filebench: A Flexible Framework for File System Benchmarking. login Usenix

Mag. 41, 1 (2016).

[61] Michael Hao Tong, Robert L. Grossman, and Haryadi S. Gunawi. 2021. Experiences in Managing the Performance and Reliability of

a Large-Scale Genomics Cloud Platform. In 2021 USENIX Annual Technical Conference, USENIX ATC 2021, July 14-16, 2021. USENIX

Association, 973ś988.

[62] Midhul Vuppalapati, Justin Miron, Rachit Agarwal, Dan Truong, Ashish Motivala, and Thierry Cruanes. 2020. Building An Elastic Query

Engine on Disaggregated Storage. In 17th USENIX Symposium on Networked Systems Design and Implementation, NSDI 2020, Santa Clara,

CA, USA, February 25-27, 2020. USENIX Association, 449ś462.

[63] Jiguang Wan, Wei Wu, Ling Zhan, Qing Yang, Xiaoyang Qu, and Changsheng Xie. 2017. DEFT-Cache: A Cost-Efective and Highly

Reliable SSD Cache for RAID Storage. In 2017 IEEE International Parallel and Distributed Processing Symposium, IPDPS 2017, Orlando, FL,

USA, May 29 - June 2, 2017. IEEE Computer Society, 102ś111.

[64] Rui Wang, Yongkun Li, Hong Xie, Yinlong Xu, and John C. S. Lui. 2020. GraphWalker: An I/O-Eicient and Resource-Friendly Graph

Analytic System for Fast and Scalable Random Walks. In 2020 USENIX Annual Technical Conference, USENIX ATC 2020, July 15-17, 2020.

USENIX Association, 559ś571.

[65] Shucheng Wang, Qiang Cao, Ziyi Lu, and Jie Yao. 2022. Mlog: Multi-log Write Bufer upon Ultra-fast SSD RAID. In Proceedings of the

51th International Conference on Parallel Processing, ICPP 2022, Bordeaux, France, August 29 - September 08, 2022. ACM, 1ś11.

[66] Wei Wang, Tao Xie, and Abhinav Sharma. 2016. SWANS: An Interdisk Wear-Leveling Strategy for RAID-0 Structured SSD Arrays. ACM

Trans. Storage 12, 3 (2016), 10:1ś10:21.

[67] Suzhen Wu, Haijun Li, Bo Mao, Xiaoxi Chen, and Kuan-Ching Li. 2018. Overcome the GC-induced performance variability in SSD-based

RAIDs with request redirection. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 38, 5 (2018), 822ś833.

[68] Suzhen Wu, Bo Mao, Xiaolan Chen, and Hong Jiang. 2016. LDM: Log Disk Mirroring with Improved Performance and Reliability for

SSD-Based Disk Arrays. ACM Trans. Storage 12, 4 (2016), 22:1ś22:21.

[69] Suzhen Wu, Weiwei Zhang, Bo Mao, and Hong Jiang. 2019. HotR: Alleviating Read/Write Interference with Hot Read Data Replication

for Flash Storage. In Design, Automation & Test in Europe Conference & Exhibition, DATE 2019, Florence, Italy, March 25-29, 2019. IEEE,

1367ś1372.

[70] Suzhen Wu, Weidong Zhu, Guixin Liu, Hong Jiang, and Bo Mao. 2018. GC-Aware Request Steering with Improved Performance and

Reliability for SSD-Based RAIDs. In 2018 IEEE International Parallel and Distributed Processing Symposium, IPDPS 2018, Vancouver, BC,

Canada, May 21-25, 2018. IEEE Computer Society, 296ś305.

[71] Lingfeng Xiang, Xingsheng Zhao, Jia Rao, Song Jiang, and Hong Jiang. 2022. Characterizing the performance of intel optane persistent

memory: a close look at its on-DIMM bufering. In EuroSys ’22: Seventeenth European Conference on Computer Systems, Rennes, France,

April 5 - 8, 2022. ACM, 488ś505.

[72] Erci Xu, Mai Zheng, Feng Qin, Yikang Xu, and Jiesheng Wu. 2019. Lessons and Actions: What We Learned from 10K SSD-Related

Storage System Failures. In 2019 USENIX Annual Technical Conference, USENIX ATC 2019, Renton, WA, USA, July 10-12, 2019. USENIX

Association, 961ś976.

[73] Gaoxiang Xu, Dan Feng, Zhipeng Tan, Xinyan Zhang, Jie Xu, Xi Shu, and Yifeng Zhu. 2019. RFPL: A Recovery Friendly Parity Logging

Scheme for Reducing Small Write Penalty of SSD RAID. In Proceedings of the 48th International Conference on Parallel Processing, ICPP

2019, Kyoto, Japan, August 05-08, 2019. ACM, 23:1ś23:10.

[74] Gaoxiang Xu, Zhipeng Tan, Dan Feng, Yifeng Zhu, Xinyan Zhang, and Jie Xu. 2018. Cap: Exploiting Data Correlations to Improve

the Performance and Endurance of SSD RAID. In 36th IEEE International Conference on Computer Design, ICCD 2018, Orlando, FL, USA,

October 7-10, 2018. IEEE Computer Society, 59ś66.

[75] Shiqin Yan, Huaicheng Li, Mingzhe Hao, Michael Hao Tong, Swaminathan Sundararaman, Andrew A. Chien, and Haryadi S. Gunawi.

2017. Tiny-Tail Flash: Near-Perfect Elimination of Garbage Collection Tail Latencies in NAND SSDs. In 15th USENIX Conference on File

and Storage Technologies, FAST 2017, Santa Clara, CA, USA, February 27 - March 2, 2017. USENIX Association, 15ś28.

[76] Jian Yang, Juno Kim, Morteza Hoseinzadeh, Joseph Izraelevitz, and Steven Swanson. 2020. An Empirical Guide to the Behavior and Use

of Scalable Persistent Memory. In 18th USENIX Conference on File and Storage Technologies, FAST 2020, Santa Clara, CA, USA, February

24-27, 2020. USENIX Association, 169ś182.

[77] Guangyan Zhang, Zican Huang, Xiaosong Ma, Songlin Yang, Zhufan Wang, and Weimin Zheng. 2018. RAID+: Deterministic and

Balanced Data Distribution for Large Disk Enclosures. In 16th USENIX Conference on File and Storage Technologies, FAST 2018, Oakland,

CA, USA, February 12-15, 2018. USENIX Association, 279ś294.

[78] Yupu Zhang, Abhishek Rajimwale, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau. 2010. End-to-end Data Integrity for File

Systems: A ZFS Case Study. In 8th USENIX Conference on File and Storage Technologies, San Jose, CA, USA, February 23-26, 2010. USENIX,

29ś42.

[79] Yong Zhao, Kun Suo, Xiaofeng Wu, Jia Rao, Song Wu, and Hai Jin. 2019. Preemptive Multi-Queue Fair Queuing. In Proceedings of the

28th International Symposium on High-Performance Parallel and Distributed Computing, HPDC 2019, Phoenix, AZ, USA, June 22-29, 2019.

ACM Trans. Storage

Explorations and Exploitation for Parity-based RAIDs with Ultra-fast SSDs • 33

ACM, 147ś158.

[80] You Zhou, Fei Wu, Weizhou Huang, and Changsheng Xie. 2021. LiveSSD: A Low-Interference RAID Scheme for Hardware Virtualized

SSDs. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 40, 7 (2021), 1354ś1366.

ACM Trans. Storage

	Abstract
	1 Introduction
	2 Background
	2.1 RAID Systems
	2.2 Linux Software RAID

	3 Analysis and Motivation
	3.1 Understanding the Write Performance
	3.2 Identifying the Root Causes

	4 Design
	4.1 Architecture
	4.2 Stripe State Table
	4.3 Two-stage Stripe Submission
	4.4 Partial-write Buffering

	5 Implementation
	5.1 Recovery and Degraded Mode
	5.2 Optimization for Persistent Memory

	6 Evaluation
	6.1 Evaluation Setup
	6.2 Micro-benchmark
	6.3 Macro-benchmark
	6.4 Sensitivity Study
	6.5 Resync and Degraded Mode

	7 Related Works
	8 Conclusion
	References

