
EaD: ECC-Assisted Deduplication With High

Performance and Low Memory Overhead for

Ultra-Low Latency Flash Storage
Suzhen Wu ,Member, IEEE, Chunfeng Du,Member, IEEE, Weidong Zhu,Member, IEEE,

Jindong Zhou, Hong Jiang , Fellow, IEEE, Bo Mao ,Member, IEEE, and Lingfang Zeng,Member, IEEE

Abstract—Data deduplication has become a commodity feature in flash storage products to effectively reduce redundant write data

and improve space efficiency. However, it also introduces computing and memory overhead to generate and store the cryptographic

hash (fingerprint) in face of the moderate data redundancy in primary storage. With the advent of 3D XPoint and Z-NAND technologies,

and the stronger cryptographic hash functions in use, such as SHA-256, both the computing and memory overheads are increasingly

serious performance bottlenecks for inline data deduplication in these ultra-low latency flash storage. To address these problems, we

propose an ECC-assisted Deduplication approach, called EaD, which exploits the ECC property and the asymmetric read-write

performance characteristics of modern flash storage. EaD first identifies data similarity by leveraging the device-generated ECC values

of data chunks as their fingerprints, significantly reducing the costly MD5/SHA-based cryptographic hash computing and alleviating the

memory space overhead. Based on the identification results, similar data chunks and their ECCs are read from the flash to perform a

byte-by-byte comparison in memory to definitively identify and remove redundant data chunks. Our experiments show that the EaD

approach significantly increases I/O performance by up to 4.2�, with an average of 2.5�, compared with the existing MD5/SHA- and

sampling-based deduplication approaches.

Index Terms—Ultra-low latency flash, ECC-assisted deduplication, I/O deduplication, high-performance

Ç

1 INTRODUCTION

DUE to the slow mechanical nature of hard disk drivers,
flash-based devices have been extensively deployed in

modern storage systems to satisfy the increasing demand for
storage performance. However, the performance and reliabil-
ity of flash-based devices is highly sensitive to the write traf-
fic [1]. Thus, techniques that can reduce the number of writes
to flash storage are desirable and have received a lot of

attention from both industry and academia [2], [3]. The most
popular and effective among these techniques is data dedupli-
cation, which has gained increasing traction due to its ability
to reduce the storage space requirement by eliminating dupli-
cate write data andminimizing the transmission of redundant
data in storage systems.

Previous studies [2], [3], [4] have indicated that the ability of
datadeduplication to reducewrite traffic can help significantly
improve the performance and reliability of the flash storage
systems. In fact, inline data deduplication has become a com-
modity feature in flash-based storage products from many
leading companies, such as HPE Nimble Storage [5] and Pure
Storage [6], for the purpose of enhancing the system perfor-
mance, reliability and space efficiency. However, despite of
data deduplication’s great benefits, it has two important draw-
backs, namely, high computational andmemory overheads on
the I/O critical path, which can adversely affect the perfor-
mance of such systems, and nonzero hash-collision probabil-
ity, which can cause unrecoverable data corruption.

(1) High Computational & Memory Overheads: The computa-
tional intensity of cryptographic hash functions and memory
consumption of fingerprints can lead to serious performance
degradation of deduplication-enabled flash-based primary
storage where the data redundancy ismoderate [7]. Generally
speaking, the deduplication process can be divided into four
stages: (1) data chunking that divides data streams/files into
roughly equal-sized chunks (often based on content), (2) hash
computing for chunk fingerprints that uniquely identify data
chunks, (3) index querying for fingerprint verification that
determines whether incoming chunks are duplicates to be

� Suzhen Wu is with the School of Informatics of Xiamen University, Xiamen,
Fujian 361005, China, and also with theWuhan National Laboratory for Opto-
electronics, Wuhan, Hubei 430079, China. E-mail: suzhen@xmu.edu.cn.

� Chunfeng Du, Weidong Zhu, Jindong Zhou, and Bo Mao are with the
School of Informatics of Xiamen University, Xiamen, Fujian 361005, China.
E-mail: dcf_wy@163.com, zwdong625@qq.com, 24320181153619@stu.
xmu.edu.cn, maobo@xmu.edu.cn.

� Hong Jiang is with the Computer Science and Engineering Department,
University of Texas at Arlington, Arlington, TX 76019 USA.
E-mail: hong.jiang@uta.edu.

� Lingfang Zeng is with the ZJ Lab-Enflame Joint Innovation Research Cen-
ter, Zhejiang Lab, Hangzhou 311121, China. E-mail: zenglf@zhejianglab.com.

Manuscript received 8 June 2021; revised 31 Jan. 2022; accepted 6 Feb. 2022.
Date of publication 18 Feb. 2022; date of current version 13 Dec. 2022.
This work was supported in part by the National Natural Science Foundation
of China under Grants 61872305, 61972325, and U1705261, in part by U.S.
NSF under Grant CCF-1704504 and CCF-1629625 in part by the Open Proj-
ect Program of Wuhan National Laboratory for Optoelectronics under Grant
2021WNLOKF011, in part by the Zhejiang provincial “Ten Thousand Talents
Program” under Grant 2021R52007 and Center-Initiated Research Project of
Zhejiang Lab under Grant 2021DA0AM01, and in part by CCF-Alibaba
Innovative Research Fund For Young Scholars.
(Corresponding author: Bo Mao.)
Recommended for acceptance by A. Karanth.
Digital Object Identifier no. 10.1109/TC.2022.3152665

208 IEEE TRANSACTIONS ON COMPUTERS, VOL. 72, NO. 1, JANUARY 2023

0018-9340 © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tps://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on March 01,2023 at 21:09:32 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-3589-9621
https://orcid.org/0000-0002-3589-9621
https://orcid.org/0000-0002-3589-9621
https://orcid.org/0000-0002-3589-9621
https://orcid.org/0000-0002-3589-9621
https://orcid.org/0000-0002-1477-9751
https://orcid.org/0000-0002-1477-9751
https://orcid.org/0000-0002-1477-9751
https://orcid.org/0000-0002-1477-9751
https://orcid.org/0000-0002-1477-9751
https://orcid.org/0000-0002-4819-4583
https://orcid.org/0000-0002-4819-4583
https://orcid.org/0000-0002-4819-4583
https://orcid.org/0000-0002-4819-4583
https://orcid.org/0000-0002-4819-4583
mailto:suzhen@xmu.edu.cn
mailto:dcf_wy@163.com
mailto:zwdong625@qq.com
mailto:24320181153619@stu.xmu.edu.cn
mailto:24320181153619@stu.xmu.edu.cn
mailto:maobo@xmu.edu.cn
mailto:hong.jiang@uta.edu
mailto:zenglf@zhejianglab.com

removed, and (4) index andmetadata updating. Among these
four stages, stages (1) with Content-Defined Chunking (CDC)
algorithms and (2) both consume significant CPU resources
while stages (3) and (4) occupy a great deal of memory space.
More specifically, the MD5/SHA-based hash algorithms [8]
all need to compute the hash value of chunk content, which
significantly lengthens the write latency in deduplication-
enabled storage systems, especially in the ultra-low latency
flash-based devices with the 3D XPoint [9], Z-NAND [10] and
NVMe technologies. The memory occupied by fingerprints
also implies less cache space to buffer user I/Os. Moreover,
the computational and memory overhead can be a critical
issue when the data deduplication is embedded within flash-
based SSDs [2], [3] and Smartphones [4] where the computing
andmemory resources are limited.

(2) Nonzero Hash-collision Probability: All hash functions
have potential collisions in which two different data chunks
share the same hash value, although the collision probability
depends on the specific hash function. Since most crypto-
graphic hash functions produce a fixed size output from an
arbitrarily long data chunks, there will always be collisions
due to the loss of precision inherent in representing a larger
data block with a smaller hash value. It is now well-known
that the MD5 and SHA-1 functions have been cracked [11],
[12]. For example, a recent collaborative study between the
CWI Institute in Amsterdam and Google announced the first
practical technique for generating a SHA-1 hash collision in
February 2017 [11]. Though using a more secure hash algo-
rithm like SHA-256 can reduce the probability of hash colli-
sion, it also increases the computing overhead and the
memory overhead significantly due to its lower crypto-
graphic hash speed and longer hash length than SHA-1.

To simultaneously address the above two problems in
traditional MD5/SHA-based deduplicating flash storage
systems, this paper proposes an ECC-assisted Deduplica-
tion approach, called EaD, which exploits the ECC property
and high read performance characteristics of modern flash-
based SSDs to establish a collision-free and high perfor-
mance deduplication system with low memory overhead.
The main idea behind EaD is its use of the device-generated
ECC information within each flash page as the hash value
of the chunk content to definitively filter out non-duplicate
data chunks to prevent the unnecessary and costly hash
computing and content comparison. This is possible
because there is no false negative detection of duplicates by
using ECC as a hash function. The unfiltered blocks are
then considered at least similar, if not duplicate (due to false
positives), to a stored data chunk since their ECC values
match those of stored data chunks. Based on the prelimi-
nary identification results, the similar data chunks are read
from the flash to perform a byte-by-byte comparison in
memory to definitively identify and remove redundant data
chunks. Our experiments results show that collision-free
EaD significantly outperforms the existing MD5/SHA- and
sampling-based deduplication approaches [2], [3] in terms
of I/O performance by up to 4.2�, with an average of 2.5�.

In particular, this papermakes the following contributions:

� To the best of our knowledge, EaD is the first dedupli-
cation study to leverage the ECC function already
widely embedded in the storage hierarchy to identify

the similar data chunks. This significantly reduces the
costly computing overhead of MD5/SHA-based cryp-
tographic hash functions within deduplication-based
systems.

� By using byte-by-byte comparison, EaD provides a
collision-free deduplication method to completely
eliminate the hash collision problem from the existing
MD5/SHA-based deduplication for flash storage.

� The experimental results show that EaD can signifi-
cantly reduce the processing and memory overhead
from the SHA- and sampling-based deduplication
approaches.

The rest of this paper is organized as follows. Background
and motivation are presented in Section 2. We describe the
design details of EaD in Section 3. The performance evaluation
is presented in Section 4 and the related work is presented in
Section 5.We conclude this paper in Section 6.

2 BACKGROUND AND MOTIVATION

In this section, we first analyze the performance characteris-
tics of the hash calculations and flash, and then motivate
our research by providing a primer on ECC within flash
and its comparison with the existing hash algorithms.

2.1 A New Performance Landscape

With the rapid development and application of new storage
technologies, such as Intel 3D XPoint [9], Samsung’s
Z-NAND [10] and NVMe, the performance of flash-based
devices has been significantly improved [13]. For example,
Intel has integrated the 3D XPoint memory into Intel Optane
series SSDs and Samsung has also released Z-NAND flash as
the core enabling technology for Samsung 983 ZET flagship
datacenter SSDs. Moreover, other manufactures are also in
progress of releasing ultra-low latency flash products, such as
Everspin’s nvNITROTechnology and Toshiba’s XL-Flash [13].

On the other hand, the cryptographic hash functions
used in deduplication-enabled storage systems for the pur-
pose of data chunking and fingerprinting, such as SHA-1
and SHA-256, have remained unchanged. This has brought
about a noticeable change in the performance landscape of
flash-based deduplication storage systems in that the per-
formance bottleneck is observed to shift from the I/O stack
to the compute layer due to the costly computing of crypto-
graphic hash functions.

Fig. 1 compares the latencies of reading and writing 4KB
data pages from and to Intel Optane 3D XPoint [9] and Sam-
sung Z-NAND flash devices [10], and latencies of perform-
ing various computing functions on a 4KB data page. It must
be noted that the SHA-based hash computing latencies
shown in the bar in the figure represent the lowest values
derived from the fastest hash implementations [14], consid-
ering that the ARM Cortex R5 processor is used with the
maximum clock frequency of 1.4 GHz [15]. The minimal
clock frequency is set to 300MHz. In real SSD products, the
SHA-based hash computing latency could be much
higher [2], [3], [16], [17]. For example, the latest releasedMar-
vell NVMe SSD Controllers (88SS1092 and 88SS1093) use tri-
ple ARM Cortex R5 up to 500MHz [16], which implies that
the SHA-1 latency of a 4KB page is 40us [18]. Samsung 840
series SSDs use the 3-core ARM Cortex R4 with 300 MHz in

WU ETAL.: EAD: ECC-ASSISTED DEDUPLICATION WITH HIGH PERFORMANCE AND LOWMEMORYOVERHEAD FOR ULTRA-LOW... 209

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on March 01,2023 at 21:09:32 UTC from IEEE Xplore. Restrictions apply.

the MDX controller and 400 MHz in the MEX controller [17],
which implies that the SHA-1 latency is more than 50us for a
4KB page.

The key takeaway from Fig. 1 is that the cryptographic
hash computing latency is actually higher than or compara-
ble to the write latency of the modern flash devices, which
indicates that the hash computing process can potentially
offset the benefit of write traffic reduction brought by data
deduplication to some extent. Even with the fastest secure
hashing algorithms, such as Blake2 [14], the hash computing
latency is still about half of the write latency. Moreover, for
non-redundant data chunks, the hash computing process
will significantly increase the write latency without any ben-
efit since it is on the critical I/O path. In deduplication-
enabled storage systems, all the incoming data chunks must
be calculated to generate their corresponding cryptographic
hash values as fingerprints. Thus, the cryptographic hash
computing latency becomes an integral part of the overall
write latency. When the hash computing throughput is
comparable to the write throughput, the deduplication-
induced performance overhead will become a serious per-
formance bottleneck.

In primary storage, the data redundancy is moderate [7],
which implies that the deduplication-induced crypto-
graphic hash computing latency is critically significant to
the overall system performance. This is because all the
unique data blocks, which don’t benefit from deduplication
but can dominate in low-redundancy data streams in pri-
mary storage, will add extra cryptographic hash computing
latency during inline data deduplication. Furthermore,
Fig. 1 indicates that the read latency is noticeably lower
than the write latency. It offers an opportunity for optimiz-
ing the write performance by leveraging the high read per-
formance characteristics for flash-based storage systems.

2.2 An ECC Primer

Due to the unique and inherently unreliable nature of flash
memory, some of the stored data in flash memory may dif-
fer in value from the original one due to individual bit
errors. Flash controllers usually utilize the Error Correcting
Code (ECC) to accomplish the required dependability and
reliability. When data is written to flash memory, an ECC of
the data is generated by the ECC engine and stored together
with the data, normally in the Out Of Band (OOB) region.
When the data is read back, the ECC of the data is

recomputed and compared against the one already stored
on flash for error detection and correction. In SLC (Single
Level Cell), MLC (Multi Level Cell) and TLC (Triple Level
Cell) flash devices, Bose, Chaudhuri and Hocquenghem
(BCH) codes are regularly used for multi-bit error correc-
tion [19]. Recently, Low Density Parity Check (LDPC) codes
are increasingly being used in TLC and QLC (Quad Level
Cell) flash devices [20].

It must be noted that different data chunks may generate
the same ECC, i.e., BCH value or LDPC value, a problem
often referred to as hash collision when ECCs are utilized as
hash functions. To assess the extent of hash collisions of
BCH-based ECC, we experimentally examine the amount of
identified by hash functions of SHA-1 and BCH-based ECC
respectively and compare their deduplication ratios, driven
by real datasets. The difference in deduplication ratios
between the two hash functions is a direct indication of their
difference in hash collision, i.e., BCH has a slightly higher
collision ratio than SHA-a by an extremely small amount.
Here we assume the BCH (4224, 4120, 8) with an 8-bit cor-
rection capability is used where 4120 bits data (512 bytes
valid data plus 24 bits OOB data) need 104 bits (13 bytes)
ECC [20]. That is, 104 bytes ECC is generated and stored for
a 4KB data page within flash device. In most SSDs, actually
much more powerful BCH ECC configurations are used,
even with the LDPC method. Thus the hash collision rate
with ECC could be much lower than the configuration we
choose.

Experimental results shown in Fig. 2 help us draw two
key observations. First, the deduplication ratios of BCH-
based ECC, when used as a hash function, are slightly
higher than those of SHA-1. Given that SHA-1 is sufficiently
secure with negligibly low hash collision probability, this
suggests that with BCH-based ECC there is a measurable
amount of different data chunks that generate the same
hash values and thus result in non-negligible false positive
duplicate detections (hence the higher deduplication ratios).
As a result, ECC cannot be directly used to replace the
SHA-based hash algorithms in deduplication storage sys-
tems because false positive duplicate detection can lead to
unrecoverable data corruption.

Second, the hash collision rate is very small as implied by
the very small difference between the deduplication ratios
in the two cases. In fact, for the four data sets we evaluated,
the difference in deduplication ratio between BCH-based
ECC and SHA-1 is less than 0.2%, suggesting a hash-colli-
sion rate of less than 0.2% relative to SHA-1. In other words,

Fig. 1. A comparison of latencies of reading and writing 4KB data pages
from Intel Optane 3D XPoint and Samsung Z-NAND flash devices, and
performing various computing functions.

Fig. 2. Comparisons of the deduplication ratios when using SHA-1 and
BCH-based ECC respectively as the hash function, driven by four real
datasets.

210 IEEE TRANSACTIONS ON COMPUTERS, VOL. 72, NO. 1, JANUARY 2023

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on March 01,2023 at 21:09:32 UTC from IEEE Xplore. Restrictions apply.

while ECC cannot be used as a hash function for duplicate
detection, it may be used for the detection of data similarity
in the data deduplication process provided that data integ-
rity is ensured in a rigorous manner.

2.3 Motivation

Data deduplication has been well studied and widely used
to reduce the write traffic and improve the space efficiency
in flash storage, including embedded systems [2], [3], [4]
and enterprise environments [5], [21]. The rapidly increas-
ing performance of flash-based storage due to emerging
technologies (see Section 2.1) is shifting the performance
bottleneck in deduplication from the storage layer to the
compute layer. The reduction in I/O access time is making
the performance overhead of hash computing, required for
data chunking and fingerprinting, an increasingly large
component of the read and write latency and, consequently,
a severe performance bottleneck in deduplication-enabled
flash storage. This performance bottleneck is especially
intrusive and counterproductive for non-redundant data
chunks that stand to offer neither write traffic nor space
reduction, particularly for ultra-low latency flash devices
that use the 3D XPoint, Z-NAND, and NVMe technologies.

In the meantime, the traditional MD5/SHA-1 based
cryptographic hash functions have nonzero probabilities of
hash-collision, which in theory can cause unique/non-
redundant data chunks to be falsely detected and removed
as redundant ones and thus lead to unrecoverable data
loss [8]. Although a more secure hash algorithm like SHA-
256 can reduce the probability of hash collision, it decreases
the performance of the storage system and increases the
memory overhead significantly. Thus, how to address per-
formance/memory overheads and the hash collision issues
associated with data deduplication is of a timely and poten-
tially high impact research challenge.

On the other hand, primary storage usually has moderate
data redundancy [7], which implies that the inline dedupli-
cation-induced cryptographic hash computing latency is
critically significant to the overall system performance
because all the unique data blocks will add extra crypto-
graphic hash computing latency. Moreover, from our pre-
liminary evaluations and analysis, we find that the existing
device-generated ECC values could be used for similar data
identification. Based on the observation and to address the
challenge, this paper proposes an ECC-assisted Deduplica-
tion (EaD) to construct a collision-free and high-perfor-
mance deduplication approach with low memory overhead
for modern high-performance flash-based devices. EaD
exploits the ECC property and leverages the asymmetric
read-write performance characteristics to improve the write
efficiency. By reducing the write traffic or latency, the read/
write interference is also alleviated which results in an
improved read performance of deduplication-enabled flash
storage.

3 EAD DESIGN

In this section, we first present an architectural overview of
our proposed EaD method, which is followed by a detailed
description of the data structures and the ECC-based redun-
dancy detection to identify similar data chunks. Then we

describe the workflow of the deduplication module and the
performance optimizationwith the design of a prefetch cache.

3.1 Overview of EaD

The design objectives of EaD are to improve both perfor-
mance and memory efficiency while providing collision-
free deduplication guarantee for deduplication-enabled
flash storage. EaD trades a tiny fraction of duplicate data
not being removed for vastly improved performance and
memory efficiency and, importantly, guarantees that write
data are safely and correctly stored in flash. Moreover, EaD
merely intercepts existing device-generated ECC values for
data-similarity identification on the write path and does not
affect the workflow of ECC on the read path and its recov-
ery capability.

Fig. 3 shows an overview of the system architecture of
EaD. EaD is located in and works with the Flash Translation
Layer (FTL) in flash-based devices. Different from the tradi-
tional deduplication workflow, EaD is new and unique in
that there are no SHA-based hash computing procedures
conducted on the data chunks. Instead, for each data chunk
EaD generates a fingerprint in the form of the Blake2 value
directly derived from the ECC information that is automati-
cally generated by the ECC engine of FTL. The size of the
data chunk is fixed and usually determined by the default
page size of the flash. Note that by combining the ECC val-
ues of a group of data pages to generate the Blake2 finger-
prints, the data chunk size is adjustable.

Fig. 3 shows that EaD consists of two main functional
modules: the ECC-based Redundancy Detection module
and Deduplication module. ECC-based Redundancy Detection
is responsible for detecting possible redundant data
chunks by checking with an ECC-based Bloom filter and
comparing the Blake2 fingerprints of ECC values associ-
ated with data chunks. Based on the results, the non-dedu-
plicate data chunks can be definitively filtered out because
there are no false negatives for ECC-based hash functions.
Deduplication is responsible for definitively verifying
whether a data chunk with a matched Blake2 fingerprint
from the ECC-based redundancy detection is redundant or
unique by fetching the data and ECC to perform a byte-by-
byte comparison. Based on the two modules and four data
structures, EaD can eliminate the most duplicate data
chunks with minimal computational and memory space
overhead.

Fig. 3. The system architectural overview of EaD.

WU ETAL.: EAD: ECC-ASSISTED DEDUPLICATION WITH HIGH PERFORMANCE AND LOWMEMORYOVERHEAD FOR ULTRA-LOW... 211

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on March 01,2023 at 21:09:32 UTC from IEEE Xplore. Restrictions apply.

3.2 Data Structures

Four main data structures are used in EaD to identify data
similarity and eliminate the redundant data chunks, namely,
ECC-based Bloom Filter (BF), Blake2 Index Table (BIT), Pri-
mary Mapping Table (PMT) and Secondary Mapping Table
(SMT), as shown in Fig. 4.

The BF is build and stored in main memory to check
whether the Blake2 value of a data chunk’s ECC exists in
the Blake2 Index Table. Initially, the ECC-based Bloom filter
is a bit array consisting of m bits that are set to “0”. Each ele-
ment e within the ECC Set E uses k hash functions h1, h2, ...,
hk and each hash function hi(e) returns an address value
pointing to one of the m bit positions of the bit array, 0 to
m-1. Subsequently, the addressed bit is set to “1”. Upon
inserting a new element (i.e., a new ECC value) into the
Bloom filter, if none of the bits addressed by the k returned
values of the k hash functions on the ECC value is “0”, the
ECC value is considered to have already existed in the
ECC-based Bloom filter that represents the membership of
Blake2 values of the ECC information in the Blake2 Index
Table. Otherwise, the ECC value is considered to be a new
one and the ECC-based Bloom filter will be updated accor-
dantly (by setting all addressed “0” bits by the k hash func-
tions to “1”).

The BIT is an in-memory hash structure to store the fin-
gerprints of ECC codes in EaD. Each entry is a key-value
pair, fingerprint, Address. The indexed fingerprint is gener-
ated by the Blake2 [14] algorithm on the corresponding ECC
value and its length can be configured, 10 bytes by default
in EaD. Blake2 is a faster cryptographic hash function than
MD5 and SHA-based hash functions and is at least as secure
as the latest standard SHA-3. It has been adopted by many
projects and can produce digests of any size between 1 and
64 bytes at a speed of 3.08 cycles per byte [14]. Due to the
much shorter length of ECC codes (tens to hundreds of
bytes) than that of data chunks (4KB or more), the Blake2
generation latency on ECC codes is much shorter than the
SHA-based hash generation latency. The 32-bit Address indi-
cates where the data can be read, either the PBA (Physical
Block Address) of a physical flash page or the VBA (Virtual
Block Address) of a Secondary Mapping Table (SMT) entry.

Moreover, EaD uses a two-level indirect mapping mecha-
nism consisting of PMT and SMT in deduplication-enabled

flash devices [2]. The PMT maps a LBA (Logical Block
Address) to either a PBA or a VBA in SMTwhich is differenti-
ated by the highest bit in the 32-bit page address. Each entry
in SMT is indexed by theVBA and has two variables, PBA, ref-
erence. The 32-bit PBA indicates the physical flash page and
the 32-bit reference records the exact reference count, i.e., the
number of different logical pages mapped to this physical
flash page. The relationship between entries in PMT and
entries in SMT is essentially N-to-1 mapping. By using a two-
level indirect mapping mechanism, the problem of reverse
update during garbage collection is simplified to only update
the corresponding entry in SMT [2]. By doing so, all the logical
pages linked to this physical flash page are updated automati-
cally without exhaustively searching for all the referencing
LBAs in PMT. Moreover, it makes EaD flexible because SSDs
with EaD can easily switch to a conventional FTL bymapping
LBAs to PBAs directly in PMT.

3.3 ECC-Based Redundancy Detection

The core mechanism that makes EaD different from the exist-
ing SHA-based or Sampling-based deduplication approaches
is the ECC-based redundancy detection. It further relies on
ECC-based Bloom filter and Blake2 Index Table to filter out
the unique data chunks. Fig. 4 shows the access conditions
among ECC-based Bloom filter, Blake2 Index Table, ECC and
data store in flash. If the ECC-based Bloom filter returns
“No”,meaning that the ECCvalue does not hit the ECC-based
Bloomfilter, then the ECCvalue is definitely not in the current
Bloom filter as there are no false negatives in Bloom filters [22].
It further indicates that the data chunk associated with the
ECC value is unique. For such unique data chunks, no extra
read requests will be issued in EaD. This access condition is
labeled (1) in Fig. 4. On the contrary, if the ECC-based bloom
filter returns “Yes”, a query into the Blake2 Index Table is per-
formed to check whether the Blake2 of ECC value is in the
Blake2 Index Table because there are possible false positives
in Bloomfilters.

Fig. 4 shows three access conditions in EaD, labeled (2),
(3) and (4). First, for (2), if the Blake2 Index Table returns
“No”, meaning that the Blake2 of ECC value does not hit
the Blake2 Index Table and thus the corresponding ECC is
unique. This further confirms that the data chunk is defi-
nitely unique since there are no false negatives in ECC.

Fig. 4. The data structures and access conditions within EaD.

212 IEEE TRANSACTIONS ON COMPUTERS, VOL. 72, NO. 1, JANUARY 2023

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on March 01,2023 at 21:09:32 UTC from IEEE Xplore. Restrictions apply.

Second, for (3) and (4), if the Blake2 Index Table returns
“Yes”, it indicates that the Blake2 of ECC indeed exists in
the Blake2 Index Table. However, it still cannot definitively
confirm that the data chunk is redundant because of ECC’s
non-zero hash collisions. In order to provide 100% certainty,
the Deduplication module will initiate a read process to
fetch data chunks and ECC values for byte-by-byte compar-
ison, as illustrated in Section 3.4.

The number of unnecessary read requests is extremely
low, as that shown in Fig. 4. The reasons are twofold. First,
for (2), due to the low probability of Bloom-filter’s false pos-
itives, the performance overhead induced by the unneces-
sary accesses is acceptable because they are performed in
memory. Moreover, the probability of Bloom-filter’s false
positives can be further reduced by some optimizations [23].
Second, for (3), due to the non-zero hash collision rate of
ECC as suggested by Fig. 2, these unnecessary accesses to
memory/flash are negligible. This is confirmed by our eval-
uation results (Section 4).

3.4 Deduplication Module

The Deduplication module is designed to confirm and elim-
inate the redundant data chunks. ECC-based checking
mechanism has nonzero collision probability, thus the prob-
ability of different data chunks having the same ECC value
is nonzero. To address this problem, EaD performs byte-by-
byte comparisons between the incoming write data chunks
and previously stored data chunks that have been filtered
by the ECC-based Redundancy Detection module, trigger-
ing read operations to fetch the previously stored data
chunks from flash. However, these read operations only
occur for ascertaining data redundancy for chunks already
identified by the ECC-based Redundancy Detection module
as being highly likely to be redundant ones. Moreover,
based on the performance characteristics of modern flash
devices with superior read performance and SHA-based
hash computing operations with very high compute over-
heads, trading off some extra read operations for write traf-
fic reduction and reliability enhancement is not only
feasible but arguably highly desirable.

Theworkflow of handling awrite request in EaD is shown
in Fig. 5. When a write data chunk arrives, its ECC value is
generated and checked in both the ECC-based Bloom filter

and the Blake2 Index Table. If it hits in the ECC-based Bloom
filter, then its Blake2 value will be generated and checked in
the Blake2 Index Table. Only the data chunk whose ECC’s
Blake2 value exists in the Blake2 Index Table is further proc-
essed by the Deduplication Engine module. In this case, EaD
fetches the previously stored data chunk and its ECC value
from the flash and performs a byte-by-byte comparison
between these ECC and data chunks in main memory. If
both the ECC and data chunks match, the incoming data
chunk is redundant and, other than only updating the corre-
sponding metadata, its data need not be stored. Otherwise,
the incoming data chunk is unique. For the data chunks with
matched ECC but unmatched content, EaD directly writes
them to the flash without updating the Blake2 Index Table
and the ECC-based Bloom filter.

EaD does not update the overlapped ECC values which
may decrease the deduplication ratio. However, our experi-
mental results show that the decreased deduplication ratio
is minimal. On the other hand, by only keeping a unique
Blake2-Address key-value pair in the Blake2 Index Table,
EaD significantly reduces the memory overhead of storing
the fingerprints, which is analogous to the fingerprint table
in the traditional deduplication-enabled storage systems.
Moreover, EaD also reduces the number of read requests
when these overlapped ECC values hit the Blake2 Index
Table. In summary, by sacrificing a very small deduplica-
tion ratio, EaD can achieve high deduplication performance
and low memory overhead. It is also validated by the
detailed experimental results in Section 4.

3.5 Prefetch Cache

To provide 100% duplicate detection accuracy by byte-by-
byte comparisons, EaD performs extra read operations for
fetching the previously stored data chunks. Although EaD
eliminates the overhead of hash computing on the critical
write I/O path, the increased read operations must be care-
fully considered to mitigate the negative impact on system
performance. The Prefetch Cache module is designed to
reduce the read overhead in EaD by exploiting the content
locality of workloads [24].

Fig. 6 illustrates the workflow of the Prefetch Cache mod-
ule. EaD reads a previously stored data chunk from the stor-
age device and compares it with the incoming data chunk to
check whether the latter is redundant. Because of the con-
tent locality of the data streams, the subsequent incoming
data chunks have higher probability of being redundant.
Upon a match of the content of the two comparing data
chunks, a new read request will be initiated to fetch the
adjacent data chunks from the storage device, potentially
during idle periods. By prefetching these data chunks, the
subsequent byte-by-byte comparisons can directly be

Fig. 5. An illustration of the process of handling a write request in EaD.

Fig. 6. The workflow of the prefetch cache optimization.

WU ETAL.: EAD: ECC-ASSISTED DEDUPLICATION WITH HIGH PERFORMANCE AND LOWMEMORYOVERHEAD FOR ULTRA-LOW... 213

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on March 01,2023 at 21:09:32 UTC from IEEE Xplore. Restrictions apply.

performed in memory without any further read operations
to the storage devices.

In our current implementation, EaD uses the asynchro-
nous prefetch method to exploit the content locality. When
an incoming data chunk is content matched with the fetched
data chunk x, EaD initiates a new read request to prefetch n
contiguous data chunks besides those already in the cache. In
each set of n prefetched data chunks, a trigger data chunk is
identified at a trigger distance of m from the end of the pre-
fetched set of data chunks. When m ¼ 0, the trigger data
chunk is set on the last data chunk of the prefetched set.
When a trigger data chunk is hit, a new asynchronous pre-
fetch process is initiated for the next set of n contiguous data
chunks. For example, data chunkwith LBA = x+4 is set as the
trigger data chunk in Fig. 6. When it is matched with the
incoming data chunk, a new asynchronous prefetch request
will be issued. Thus, asynchronous prefetch ensures that EaD
always stays ahead of sequential redundant data chunks and
never incurs a read miss after the initial miss for a sequential
redundant data stream. Our experimental results also show
how the prefetch length affects the system efficiency. For sim-
plicity, EaD utilizes LRU as the cache replacement algorithm
tomanage the prefetched data chunks.

4 PERFORMANCE EVALUATION

In this section, we first describe the evaluation setup and
methodology. Then we evaluate the EaD performance
through extensive dataset-driven real platform evaluations
and trace-driven simulator experiments.

4.1 Evaluation Setup and Methodology

The EaD prototype is implemented and evaluated on both a
real platform and an SSD simulator. In the real platform, we
have implemented an EaD prototype in the Linux operating
system by adding an extra ECC functionality in the host. We
also implemented EaD in the SSDSim [25] simulator where
the ECC engine is available at the FTL level. We compare the
performance of the EaD prototypewith that of the traditional
MD5/SHA-based deduplication approaches using different
hash algorithms, such asMD5, SHA-1 and SHA-256, and a 4-
byte/4KB sampling-based deduplication method proposed
in CA-FTL [2]. All the experiments were conducted on a Dell
PowerEdge T320 node with an Intel Xeon quad-core proces-
sor (2.20GHz) and 16GB memory. In this system, a Seagate
ST9750420AS 7200RPM 750GB is used to host the operating
system (Ubuntu server 14.04with Linux 4.2.0) and other soft-
ware. All the datasets are evaluated on an Intel 750 Series
400GB SSD [26], which is the first NVMe SSD released to the
market with a PCIe NVMe 3.0 x4 Interface. For fair compari-
son, all of the approaches in our experiment adopt the same

architecture for running the baseline experiments, such as
the Bloom filter and mapping table. The platform setup is
summarized in Table 1.

In this paper, we use four datasets generated from real
applications that represent different data redundancy charac-
teristics with a data chunk size of 4KB, as summarized in
Table 2. We also use the three FIU traces and one Hadoop
trace to evaluate different deduplication systems [2], [28] in
the simulator-based evaluation, as summarized in Table 3.
These traces only containMD5/SHA-1-based fingerprints [2],
[28], we use the first 4-bytes ofMD5/SHA-1-based fingerprint
as the sample in the sampling-based approach, and the ECC
value generated from the MD5/SHA-1-based fingerprint as
the ECC in the EaD approach. Since the design objectives of
EaD are to avoid the performance bottleneck of the crypto-
graphic hash computing and improve the deduplication effi-
ciency, we measure the write throughput and response time
to evaluate the efficacy of EaD.

4.2 Dataset-Driven Real-Platform Evaluations

System Throughput. We first conduct experiments to measure
the throughput of MD5/SHA-, sampling-based deduplica-
tionmethod and EaD, driven by the four datasets. Fig. 7 com-
pares EaD against the four traditional approaches in terms of
throughput, normalized to that of theMD5-based deduplica-
tion approach. First, EaD is shown to achieve the best system
throughput among all the approaches and is 2.3� better than
the MD5-based deduplication approach on average. For tra-
ditional MD5/SHA-based deduplication approaches, cryp-
tographic hash computing is applied to all incoming data
chunks to generate fingerprints, no matter they are redun-
dant or unique. While the sampling-based deduplication
approach avoids part of the cryptographic hash computing
for the non-redundant data chunks, the duplicate-detection
accuracy is low and cryptographic hash computing is still
needed for the redundant data chunks. In contrast, EaD
effectively utilizes the readily available, free ECC informa-
tion to filter out the unique data chunks, thus avoiding the
cryptographic hash computing overhead. Only the data
chunks with high probability of being redundant will incur
extra read operations, in lieu of hash computing. This has
additional benefits because the read throughput is much

TABLE 1
The Evaluation Platform

Component Description

CPU Intel Xeon E5-2407 2.20GHz
Memory 16GB DDR SDRAM
HDD Seagate ST9750420AS 7200RPM 750GB
SSD Intel 750 Series PCIe-based 400GB NVMe SSD
OS Ubuntu server 14.04 with Linux 4.2.0

TABLE 2
The Characteristics of the Four Datasets [27]

Used in the Real Platform

Applications Size (GB) Dedup. Ratio Comments

VMDK 332 49.1% VM disk image files
Kernel 190 92.6% Linux kernel source code
MobileSys 256 36.2% System files for Smartphones
Firefox 287 74.8% Firefox installation files

TABLE 3
The Characteristics of the Four Traces Used in the Simulator

Trace Read requests Write requests Dedup. Ratio

Homes 150156 10380822 33.3%
Web-vm 3116456 11177701 47.3%
Mail 1948414 20762862 91.0%
Hadoop 5596819 3844964 20.7%

214 IEEE TRANSACTIONS ON COMPUTERS, VOL. 72, NO. 1, JANUARY 2023

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on March 01,2023 at 21:09:32 UTC from IEEE Xplore. Restrictions apply.

higher than the cryptographic hash computing throughput
on modern flash-based storage devices, as shown in Fig. 1 in
Section 2.1. Therefore, EaD achieves significant improve-
ment on system throughput over the MD5/SHA-based and
sampling-based deduplication approaches.

Second, the results indicate that the specific hash comput-
ing algorithm used has a significant impact on system
throughput for traditional deduplication-enabled storage
systems. MD5- and SHA-1-based deduplication approaches
have similar system throughput while SHA-256-based dedu-
plication approach is outperformed byMD5-based approach
by an average of 67.1% on Intel 750 Series PCIe-based 400GB
SSD. The reason is that the I/O performance of modern
flash-based storage devices has been improved significantly,
relative to the improvement on CPU performance. This
results in the cryptographic hash computing throughput
dominating and adversely affecting the throughput of tradi-
tional MD5/SHA-based deduplication systems. SHA-256’s
computing throughput is the lowest among all the three
hash algorithms, and thus so is its system throughput. This
reinforces the importance of the hash-related computing
overhead in the design considerations of deduplication-
enabled flash storage systems.

Response Time. Fig. 8 shows comparisons in average
response time among traditional MD5/SHA-, sampling-
based deduplication approaches and EaD, driven by the four
datasets, indicating that EaD has the lowest average response
time among the five approaches. Our experimental results
show that EaD outperforms the MD5-, SHA-1-, SHA-256-,
and sampling-based deduplication approaches by 2.8�, 2.6�,
4.2� and 2.7�, respectively, with an average of 2.5�. The rea-
son is that EaD does not incur any cryptographic hash com-
puting latency on the critical write path. In an EaD-based
storage system, the average response time is determined by
the write latency when the data chunk is determined to be
unique (an unavoidable latency for any deduplication sys-
tem), or read latency when determining whether a highly
likely redundant data chunk is indeed redundant. Fortu-
nately, for modern flash-based storage devices, the read/
write latencies tend to become increasingly shorter than the
cryptographic hash computing latency. Meanwhile, some of
the read accesses to the flash storage for the byte-by-byte
comparisons in EaD can be eliminated by the Prefetch
Cache to further reduce EaD’s read latency. Compared
with the MD5- and SHA-1-based deduplication approaches,
the SHA-256-based deduplication approach has a much lon-
ger cryptographic hash computing latency. In our experi-
ments, the cryptographic hash computing latency of
SHA-256 is twice as long as that of MD5 and SHA-1, thus the

average response time of the SHA-256-based deduplication
approach is much higher than that of MD5- and SHA-1-
based deduplication approaches.

Fig. 8 indicates that EaD’s advantage over the traditional
deduplication approaches is the most pronounced under the
Kernel dataset. The reason is that the deduplication ratio of
the Kernel dataset is higher than those of the other three data-
sets, as shown in Table 2. The higher the deduplication ratio,
the more write requests can be replaced by read requests with
EaD, thus enabling EaD to achieve much shorter response
time.However, the sampling-based approachperformsworse
than the MD5-based approach, because there is the least
amount of non-redundant data for the former to filter out in
the Kernel dataset, which reduces the benefit of sampling. On
the other hand, since the cryptographic hash computing
latency dominates the response time in the traditional MD5/
SHA-based deduplication systems and fingerprints must be
generated for all the data chunks regardless of their redun-
dancy status, their average response time is not as sensitive as
EaD’s to the changes in deduplication ratios of the datasets.

An Analytical Model of Response Time. To help further
explain EaD’s superiority in response time more intuitively,
we use a simplified analytical model to analyze the average
response time. Let T,R andW represent the average response
time, flash storage read latency and write latency of a 4KB
data chunk respectively. And let H and Ratio denote the
cryptographic hash computing time and the deduplication
ratio respectively. We make a simplifying but reasonable
assumption that the average write response time is domi-
nated by the flash storage read (for EaD) and write (for base-
lines and EaD) latencies and hash compute latencies (for
baselines) that lie along the deduplication critical path.

The average response time of writing a 4KB data chunk
in traditional MD5/SHA-based deduplication system is:

Tbase ¼ W � ð1�RatioÞ þHbase:

The average response time of writing a 4KB data chunk
in EaD-based deduplication system is:

TEaD ¼ W � ð1�RatioÞ þR �Ratio

Fig. 9 shows a comparison of analytical response times
between traditional MD5/SHA-based deduplication appro-
aches and EaD as a function of the deduplication ratio. The
values of the variables, R,W andH, are derived from experi-
mentally measured data on an Intel 750 Series 400GB PCIe-
based SSD, as shown in Fig. 1 in Section 2.1. It must be noted
that the estimated results are based on the simplified, first-

Fig. 7. Throughput results of different approaches driven by the four
datasets, normalized to that of the MD5-based deduplication approach.

Fig. 8. Average response time results of different approaches driven by
the four datasets.

WU ETAL.: EAD: ECC-ASSISTED DEDUPLICATION WITH HIGH PERFORMANCE AND LOWMEMORYOVERHEAD FOR ULTRA-LOW... 215

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on March 01,2023 at 21:09:32 UTC from IEEE Xplore. Restrictions apply.

order analytical model that does not consider second-order
system overheads in the real platform. Fig. 9 indicates that
the response times decrease as the deduplication ratio
increases for all the approaches. The reason is that a larger
deduplication ratio means that more data are redundant,
thus reducing a larger amount of write traffic to the flash-
based storage devices. However, as we explained above, the
cryptographic hash computing latency dominates the
response time of the traditional MD5/SHA-based dedupli-
cation systems and is much longer than the write latency of
modern flash-based storage devices. Therefore, the average
response time of the traditional MD5/SHA-based dedupli-
cation systems is very high. It is also the reason why we pro-
pose EaD to eliminate the cryptographic hash computing
overhead in flash-based deduplication storage systems.

Tail Latency. In modern large-scale storage systems, such
as Google, Microsoft Bing, Facebook and Amazon, the long
tails of the service latency are of particular concerns for
quality of user experience, particularly for user-facing appli-
cations [29]. With the wide deployment of flash-based stor-
age devices in large-scale storage systems, the tail latency of
flash-based devices ought to be a very important consider-
ation for the design of storage systems [30], [31]. One of
EaD’s objectives is to avoid the cryptographic hash comput-
ing latency bottleneck in traditional MD5/SHA- and sam-
pling-based deduplication storage systems, which should
have a direct impact on the tail latency.

To estimate this impact of EaD, we evaluate and analyze
the response time distributions for the different deduplica-
tion approaches on an Intel 750 Series 400GB PCIe-based
SSD driven by the four datasets, as shown in Fig. 10. First,
the results illustrate that 99% of requests can be completed
with a much shorter latency by EaD than any of the other
four approaches, across all four datasets. As shown in
Fig. 10, for the EaD-based deduplication system, 99% of
requests are completed within 36us, 21us, 31us, and 27us
under the VMDK, Kernel, MobileSys, and Firefox datasets

respectively. However, for the MD5-/SHA-256-based dedu-
plication systems, their 99-percentile latencies are 53us/
71us, 38us/56us, 54us/73us, and 52us/71us under the
VMDK, Kernel, MobileSys, and Firefox datasets, respec-
tively. The reason is that in the MD5/SHA-based deduplica-
tion systems, the cryptographic hash computing latency
occupies a significant portion in the request response time.
While data deduplication can reduce the write traffic to the
flash-based storage systems and some systems are specifi-
cally designed for this purpose [2], [3], the unavoidable
hash computing overhead in traditional systems will signifi-
cantly degrade the system performance of modern
flash-based storage systems. Increasingly, however, one
must balance the benefit of reduced write traffic and the
increased cryptographic hash computing latency in face of
the steadily improving performance of modern flash-based
storage devices. Second, with the SHA-256-based dedupli-
cation system, even fewer, if any, requests can be completed
within 20us due to the long cryptographic hash computing
latency associated with the SHA-256 algorithm. Again, there
is a clear trade-off between the much lower probability of
hash collisions enabled by SHA-256 and its much longer
cryptographic hash computing latency that leads to long
tail latency.

Deduplication Ratio. As described in Section 3.4, the dedu-
plication engine of EaD only stores a single data chunk
among the different chunks that happen to have the same
ECC value (hash collisions) to reduce the memory overhead
and the number of read requests. This is a conscious design
choice we made in favor of deduplication performance at
the expense of possible small deduplication ratio reduc-
tions. In other words, in the unlikely event of ECC hash col-
lisions EaD will prevent some redundant data chunks from
being detected and eliminated. To quantify this design
choice’s negative impact on deduplication ratios, Fig. 11
shows a comparison in deduplication ratios among the
SHA-1, sampling, and EaD approaches and indicates that
the deduplication ratio of EaD is almost the same as that of
SHA-1, with a maximum reduction of 0.13% under the

Fig. 9. A comparison of analytical response times between traditional
MD5/SHA-based deduplication approaches and EaD as a function of
the deduplication ratio.

Fig. 10. Response time distributions for the different deduplication approaches on an Intel 750 Series 400GB PCIe-based SSD driven by the four
datasets, where the X-axis indicates the request response times while the Y-axis indicates the fraction of requests whose response times are lower
than the corresponding values on the X-axis.

Fig. 11. Deduplication ratios of different approaches.

216 IEEE TRANSACTIONS ON COMPUTERS, VOL. 72, NO. 1, JANUARY 2023

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on March 01,2023 at 21:09:32 UTC from IEEE Xplore. Restrictions apply.

MobileSys dataset. The reason is that the hash collision rate
of BCH-based ECC is no more than 0.2% higher than that of
SHA-1 as shown in Fig. 2 in Section 2. Moreover, EaD guar-
antees that the determined redundant data chunks are defin-
itively redundant by byte-by-byte comparisons. In other
words, EaD guarantees that there are no false positive detec-
tions of redundant data chunks and thus no unrecoverable
false data removals, something that none of the MD5/SHA-
based deduplication systems can guarantee in theory. How-
ever, the sampling-based approach noticeably decreases the
deduplication ratio due to its inaccurate detection of redun-
dancy [2]. In summary, EaD provides similar deduplication
ratios to those of traditional MD5/SHA-based deduplication
approaches, but has 0% false positive redundancy detection
andmuch higher system performance.

Percentages of Different Access Conditions. Fig. 4b shows
four access conditions in EaD to identify whether a data
chunk is redundant. Table 4 gives the percentages of each
case among the four access conditions. First, case 1 and case
4 dominate accesses that determine whether the incoming
page is unique (case 1) or redundant (case 4), accounting for
96.6% to 99.9% of all accesses. It indicates that using the
ECC information to identify data similarity is an effective
method. Second, it is the accesses in case 2 and case 3, which
confirm that the incoming page is not redundant, that are
affected by either the false positive rate of the Bloom filter
or the hash collision issues. These accesses (case 2 & case 3)
account for only 0.1% to 3.4% of all accesses, indicating that
the extra overhead is negligible.

Memory Overhead. Memory overhead for storing finger-
prints is unavoidable in deduplication systems. By default,
EaD uses the 8-byte BCH-based ECC code word that is
widely used in the flash-based storage devices and the Linux
operating system [32]. Compared with the traditional MD5/
SHA- and sampling-based deduplication approaches, EaD
introduces the extra memory overhead for the prefetch

cache. Fig. 12 shows a comparison in memory consumptions
among the different deduplication approaches under the
four datasets, indicating that EaD consumes significantly
less memory than the traditional MD5/SHA- and sampling-
based deduplication approaches. The reason is that EaD uses
the Blake2 of the BCH-based ECC code word as the index in
the mapping tables, it uses fewer bytes per entry than the
MD5/SHA- and sampling-based deduplication approaches.

4.3 Sensitivity Study

Reading previously written data from the flash-based stor-
age devices is the main performance overhead of EaD. The
Prefetch Cache is designed to address this performance
overhead. The number of data chunks prefetched each time,
also called prefetch distance, clearly affects the performance
overhead because whenever a prefetched data chunk is hit
in the cache, the read latency from flash storage is avoided
in EaD. To assess the impact of prefetch distance on perfor-
mance, we conduct experiments to evaluate the average
response time as a function of prefetch distance under the
four datasets, as shown in Fig. 13.

In the experiments, the triggered data chunk is set on the
last data chunk of the prefetch set. Fig. 13 clearly indicates
that the Prefetch Cache indeed improves the system perfor-
mance over the system without prefetch (i.e., prefetch dis-
tance = 0), which also implies that content locality exists in
the data streams [33]. Since different datasets have different
locality characteristics, the optimal prefetch distance varies
among the four datasets. For example, while for the Kernel
dataset, the optimal prefetch distance is 2; it is 5 for the other
three datasets. Since the Kernel dataset has many small files,
a small prefetch distance is sufficient to exploit its content
locality. Moreover, the longer the prefetch distance, the
higher the prefetching read overhead will be. In summary,
the prefetch cache, combined with the high read perfor-
mance of modern flash-based storage devices, helps signifi-
cantly mitigate the read overhead of EaD.

4.4 Trace-Driven Simulator Evaluations

The SSD organization of SSDsim simulator is configured by
default. For the performance parameters, we use the Z-
NAND latency to configure the SSDSim simulator, shown in
Table 5. For the Samsung Z-NAND technique, the read
latency of Z-NAND is 3us, which is nearly 20 times faster
than conventional NAND [10]. Our preliminary result shows
that hashing a 4KB page is 20 times slower than that of hash-
ing a 104B block. Considering that the Blake2 is faster than
SHA-1, this implies that the Blake2 latency is less than 1us for

TABLE 4
The Percentages of Each Case Among

the Four Access Conditions

Cases VMDK Kernel MobileSys Firefox

Case 1 47.29% 7.36% 60.82% 24.78%
Case 2 3.62% 0.002% 3.08% 0.40%
Case 3 0.08% 0.018% 0.06% 0
Case 4 49.01% 92.62% 36.04% 74.82%

Fig. 12. A comparison among the different deduplication approaches in
their memory consumptions under the four datasets.

Fig. 13. Average response time as a function of prefetch distance in EaD
under the four datasets.

WU ETAL.: EAD: ECC-ASSISTED DEDUPLICATION WITH HIGH PERFORMANCE AND LOWMEMORYOVERHEAD FOR ULTRA-LOW... 217

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on March 01,2023 at 21:09:32 UTC from IEEE Xplore. Restrictions apply.

a 104B BCH code (4224, 4120, 8). It must be noted that the
latency of SHA-based hashing is configured to be the lowest
based on Fig. 1, which implies that the following improve-
ments of EaD are the lower bound. With a larger SHA-based
hashing latency, the improvements achieved by EaD will be
muchmore significant.

Fig. 14a shows comparisons in terms of the average write
response time among traditional SHA-, sampling-based
deduplication approaches and EaD, driven by the four traces.
The results show that EaD has the lowest average write
response time among the four approaches and EaD outper-
forms the SHA-1-, SHA-256-, and sampling-based deduplica-
tion approaches by an average of 3.4�, 6.7�, 4527.7� and
4.1�, respectively. The reason is similar to that in the real plat-
form evaluations. By utilizing the existing device-generated
ECC values, EaD does not incur any cryptographic hash com-
puting latency on the critical write path. Because of the mod-
erate data redundancy, the saved cryptographic hash
computing latency for the unique data chunks is significant,
which directly improves its system performance over the
SHA-based deduplication approaches. The SHA-based dedu-
plication approaches will add the cryptographic hash com-
puting latency for all data chunks to be written, no matter
they are redundant or unique. Because of the moderate data
redundancy in primary storage, the deduplicaiton-induced
overhead is significant for the unique data chunks because of
the added extra cryptographic hash computing latency that
EaD aims to eliminate. On the other hand, we also see that
EaD achieves larger improvements than that in the real plat-
form evaluations because some overheads are not included in
the simulator by default. It’s also the reason that we choose
both the real platform and the simulator evaluations in our
study.

Fig. 14b shows comparisons in terms of the average read
response time. Because read requests have higher priority
to be serviced in the SSDSim simulator, all the schemes

have similar read latency. However, due to the limitation of
request queue length of SSDs, the read latency of EaD can
be much lower than SHA-1-, SHA-256-, and sampling-based
deduplication approaches for the IO intensive traces.

Fig. 15 shows a comparison in deduplication ratios among
the SHA-1/256-, sampling-, and EaD-based approaches and
indicates that the deduplication ratio of EaD is the same as that
of SHA-1 under the four traces. The reason is that EaD can
identify all the similar data chunks with the ECC-based simi-
larity detection approach.Moreover, by byte-by-byte compari-
sons, EaD guarantees that the surmised redundant data
chunks are definitively redundant. It implies that there are no
false positive detections of redundant data chunks and thus no
unrecoverable false data removals. By contrast, MD5/SHA-
based deduplication systems cannot provide such a guarantee
in theory. In summary, EaD not only significantly improves
the deduplication efficiency, but also can completely eliminate
the hash collision problem from the existingMD5/SHA-based
deduplication for flash-based storage.

5 RELATED WORK

In face of the explosive growth of digital data, data dedupli-
cation has gained increasing attention and popularity in
large-scale storage systems from both academia and indus-
try [8], [41]. The state-of-the-art approaches to accelerating
the compute-intensive data deduplication processes are
broadly either software-based optimizations that exploit the
parallelism of the deduplication workflow [36], [42], [43] or
hardware-assisted optimizations that leverage the data-par-
allel processing capabilities of the GPU technology [37],
[38], [39].

Generally speaking, the traditional data deduplication pro-
cess can be divided into four stages: data chunking that can be
either Fixed-Size Chunking (FSC) or Content-Defined Chunk-
ing (CDC), hash computing, index querying, and index and

TABLE 5
The Experimental Platform

Parameters Value Parameters Latency (us)

Page Size 4KB Page Read 3
Pages per Block 64 Page Wrte 100
Blocks per Plane 4096 SHA-1 hashing (4KB) 14.3
Planes per Die 2 Blake2 hashing (4KB) 9.8
Dies per Chip 2 Blake2 hashing (104B) 1
Chips per Channel 2 XOR 1
Channel number 18 Hardware BCH [34] 1

Fig. 14. Response times of SHA, sampling-, and EaD-based deduplication schemes driven by the FIU and Hadoop traces.

Fig. 15. A comparison among the SHA, Sampling-, and EaD-based
approaches in deduplication ratios.

218 IEEE TRANSACTIONS ON COMPUTERS, VOL. 72, NO. 1, JANUARY 2023

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on March 01,2023 at 21:09:32 UTC from IEEE Xplore. Restrictions apply.

metadata updating. Liu et al. [42] propose THCAS, a dedi-
cated five-stage storage pipeline design that overlaps the
CPU-bound (i.e., chunking and fingerprinting), I/O-bound
(i.e., index and store) and network communication tasks in
deduplication-enabled storage systems. Inspired by THCAS,
P-Dedupe [36] further parallelizes the sub-tasks of chunking
and fingerprinting, thus achieving higher throughput by
effectively exploiting the idle resources of modern computer
systems with multi-core or many-core processors. Guo et al.
[35] propose an event-driven andmulti-threaded client-server
interaction model to pipeline FSC-based deduplication sys-
tems. Ma et al. [43] propose an adaptive pipelining model to
determine the optimal order of the sub-tasks in the pipeline
based on different hardware platforms and data types.

The CDC-based deduplication approaches can improve the
deduplication ratio but require extra processing resources.
GPU has been demonstrated to have stronger processing
power than CPU for many compute-intensive applications,
especially for the hash and cryptographic computations in
high-performance storage systems. Therefore, GPU-based
hardware accelerators for the hash computation of the dedu-
plication-enabled storage systems have been proposed. Store-
GPU [37] and Shredder [38] accelerate the popular compute-
intensive primitives (i.e., chunking and fingerprinting) in
deduplication-enabled storage systems by exploiting the mas-
sively parallel processing power of GPUs. Similarly,
GHOST [39] offloads the deduplication tasks of chunking, fin-
gerprinting and indexing to GPGPU to remove the computing
bottleneck in high-performance primary storage systems. In
summary, software-based solutions can be easily implemented
in deduplication-enabled storage systems by pipelining the
deduplication tasks or parallelizing the tasks of chunking and
fingerprinting, while hardware-based solutions can provide
higher throughput but require additional hardware costs.

Primary storage systems in the cloud have moderate data
redundancy,where the deduplication technique can also bring
significant cost saving for primary storage systems [7], [44]. For
example, the CAFTL [2] and CA-SSD [3] schemes utilize the
deduplication technique in the internal flash-based SSD to
reduce the write traffic to the SSD device. However, due to the
limited computing resources within flash-based SSDs, CAFTL
and CA-SSD have to design a set of acceleration techniques to
reduce the runtime overhead and minimize the performance
impact. Kim et al. [40] propose SHA-1 hardware logic with
sampling-based filtering to alleviate the SHA-1 processing
overhead and SES [45] only addresses scrambler-induced con-
flict problemwhich is orthogonal to the EaD approach. Table 6
summarizes studies most closely related to EaD. Different

from the traditional MD5/SHA-based deduplication
approaches, EaD does not need data chunking and hash com-
puting, but leverages the existing device-generated ECC val-
ues to identify the similar data chunks and optimizes the write
performance by leveraging the high read performance charac-
teristics for ultra-low latency flash storage.

6 CONCLUSION

Data deduplication is a popular technology for space effi-
ciency and reliability in flash-based storage systems by
reducing write traffic and space capacity requirements.
However, it also introduces noticeable processing overhead
on the critical I/O path, which significantly degrades the
system performance for modern ultra-low latency flash
devices. To address the problem, we propose an ECC-
assisted Deduplication approach (called EaD) that avoids
cryptographic hash computing altogether by leveraging the
existing on-device ECC function in the memory hierarchy
to identify the similar data chunks based on their ECC val-
ues. EaD reads the identified similar data chunks from flash
storage and performs byte-by-byte comparison of the data
content to detect and eliminate the redundant data chunks
with complete certainty. Experiments conducted on our
lightweight EaD prototype implementation on a real plat-
form show that EaD significantly outperforms the existing
MD5/SHA- and sampling-based approaches in terms of I/
O performance by up to 4.2�, with an average of 2.5�.

REFERENCES

[1] B. Schroeder, R. Lagisetty, and A. Merchant, “Flash reliability in
production: The expected and the unexpected,” in Proc. 14th USE-
NIX Conf. File Storage Technol., 2016, pp. 67–80.

[2] F. Chen, T. Luo, and X. Zhang, “CAFTL: A content-aware flash
translation layer enhancing the lifespan of flash memory based
solid state drives,” in Proc. 9th USENIX Conf. File Storage Technol.,
2011, pp. 77–90.

[3] A. Gupta, R. Pisolkar, B. Urgaonkar, and A. Sivasubramaniam,
“Leveraging value locality in optimizing NAND flash-based
SSDs,” in Proc. 9th USENIX Conf. File Storage Technol., 2011,
pp. 91–103.

[4] B. Mao, S. Wu, H. Jiang, X. Chen, and W. Yang, “Content-aware
trace collection and I/O deduplication for smartphones,” in Proc.
33rd Int. Conf. Massive Storage Syst. Technol., 2017, pp. 1–7.

[5] “With nimble, less is more,” 2018. [Online]. Available: https://
www.nimblestorage.com/its-all-about-data-reduction/

[6] J. Colgrove et al., “Purity: Building fast, highly-available enter-
prise flash storage from commodity components,” in Proc. ACM
SIGMOD Int. Conf. Manage. Data, 2015, pp. 1683–1694.

[7] K. Srinivasan, T. Bisson, G. Goodson, and K. Voruganti, “iDedup:
Latency-aware, inline data deduplication for primary storage,” in
Proc. 10th USENIX Conf. File Storage Technol., 2012, pp. 1–14.

TABLE 6
A High-Level Comparison Between EaD and Prior Art Most Closely Related to EaD

WU ETAL.: EAD: ECC-ASSISTED DEDUPLICATION WITH HIGH PERFORMANCE AND LOWMEMORYOVERHEAD FOR ULTRA-LOW... 219

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on March 01,2023 at 21:09:32 UTC from IEEE Xplore. Restrictions apply.

https://www.nimblestorage.com/its-all-about-data-reduction/
https://www.nimblestorage.com/its-all-about-data-reduction/

[8] W. Xia et al., “A comprehensive study of the past, present, and future
of data deduplication,” Proc. IEEE, vol. 104, no. 9, pp. 1681–1710, Sep.
2016.

[9] Intel Optane SSD 800P Series, 2018. [Online]. Available: https://
www.intel.com/content/www/us/en/products/docs/memory-
storage/solid-state-drives/consumer-ssds/800p-series-brief.html

[10] W. Cheong et al., “A flash memory controller for 15us ultra-low-
latency SSD using high-speed 3D NAND flash with 3us read
time,” in Proc. Int. Solid-State Circuits Conf., 2018, pp. 338–340.

[11] Google Security Blog on first SHA1 collision, 2017. [Online].
Available: https://shattered.io/

[12] MD5 Collision, 2006. [Online]. Available: http://www.mscs.dal.
ca/selinger/md5collision/

[13] J. Zhang et al., “FlashShare: Punching through server storage stack
from kernel to firmware for ultra-low latency SSDs,” in Proc. 13th
USENIX Symp. Oper. Syst. Des. Implementation, 2018, pp. 477–492.

[14] BLAKE2–fast secure hashing, 2020. [Online]. Available: https://
blake2.net/blake2.pdf

[15] The ARM Cortex R5 processor, 2016. [Online]. Available: https://
developer.arm.com/ip-products/processors/cortex-r/cortex-r5

[16] High performance PCIe SSD Controllers, 2020. [Online]. Avail-
able: https://www.marvell.com/storage/ssd/88ss1092–93/

[17] NewElements to Samsung SSDs: TheMEXController, TurboWrite
and NVMe, 2013. [Online]. Available: https://www.anandtech.
com/show/7152/new-elements-to-samsung-ssds-the-mex-
controller-turbo-write-and-nvme

[18] Crypto++ Benchmarks, 2019. [Online]. Available: https://www.
cryptopp.com/benchmarks.html

[19] V. Regulapati, “Error correction codes in NAND flash memory,”
Master’s thesis, Master Sci. Eng., Univ. Texas at Austin, Austin,
TX, USA, Dec. 2015.

[20] Y. Luo, “Architectural techniques for improving NAND flash
memory reliability,” Ph.D. dissertation, Doctor Philosophy, Car-
negie Mellon Univ., Pittsburgh, PA, USA, Aug. 2018.

[21] C. Li, P. Shilane, F. Douglis, H. Shim, S. Smaldone, and G. Wal-
lace, “Nitro: A capacity-optimized SSD cache for primary
storage,” in Proc. USENIX Annu. Tech. Conf., 2014, pp. 501–512.

[22] B. Bloom,“Space/time trade-offs in hash coding with allowable
errors,” Commun. ACM, vol. 13, no. 7, pp. 422–426, 1970.

[23] F. Deng and D. Rafiei, “Approximately detecting duplicates for
streaming data using stable bloom filters,” in Proc. ACM SIGMOD
Int. Conf. Manage. Data, 2006, pp. 25–36.

[24] F. Ni and S. Jiang, “RapidCDC: Leveraging duplicate locality to
accelerate chunking in CDC-based deduplication systems,” in
Proc. ACM Symp. Cloud Comput., 2019, pp. 220–232.

[25] Y. Hu, H. Jiang, D. Feng, L. Tian, H. Luo, and S. Zhang,
“Performance impact and interplay of SSD parallelism through
advanced commands, allocation strategy and data granularity,”
in Proc. Int. Conf. Supercomputing, 2011, pp. 96–107.

[26] Intel X25-M Mainstream SATA SSD, 2015. [Online]. Available:
https://www.intel.com/content/www/us/en/support/products/
79678/memory-and-storage/enthusiast-ssds/intel-ssd-750-series.
html

[27] S. Wu, J. Zhou, W. Zhu, H. Jiang, Z. Huang, Z. Shen, and B. Mao,
“EAD: A collision-free and high performance ECC assisted dedu-
plication scheme for flash storage,” in Proc. 38th IEEE Int. Conf.
Comput. Des., 2020, pp. 155–162.

[28] FIU IODedup traces, 2011. [Online]. Available: http://iotta.snia.
org/traces/391

[29] J. Dean and L. Barroso,“The tail at scale,” Commun. ACM, vol. 56,
no. 2, pp. 74–80, 2013.

[30] M. Hao, G. Soundararajan, D. Kenchammana-Hosekote, A. Chien,
and H. Gunawi, “The tail at store: A revelation from millions of
hours of disk and SSD deployments,” in Proc. 14th USENIX Conf.
File Storage Technol., 2016, pp. 263–276.

[31] S. Yan, H. Li, M. Hao, H. Tong, S. Sundararaman, A. Chien, and
H. Gunawi, “Tiny-tail flash: Near-perfect elimination of garbage
collection tail latencies in NAND SSDs,” in Proc. 15th USENIX
Conf. File Storage Technol., 2017, pp. 15–28.

[32] Shared BCH ECC library, 2011. [Online]. Available: https://lwn.
net/Articles/426856/

[33] W. Xia, H. Jiang, D. Feng, and Y. Hua, “SiLo: A similarity-locality
based near-exact deduplication schemewith lowRAMoverhead and
high throughput,” inProc. USENIXAnnu. Tech. Conf., 2011, pp. 26–28.

[34] Y. Lee, H. Yoo, I. Yoo, and I.-C. Park, “High-throughput and low-com-
plexity BCH decoding architecture for solid-state drives,” IEEE Trans.
Very Large Scale Integration Syst., vol. 22, no. 5, pp. 1183–1187,May 2014.

[35] F. Guo and P. Efstathopoulos, “Building a high-performance
deduplication system,” in Proc. USENIX Annu. Tech. Conf., 2011,
pp. 1–14.

[36] W. Xia, H. Jiang, D. Feng, L. Tian, M. Fu, and Z. Wang,
“Exploiting parallelism in data deduplication system,” in Proc. 7th
IEEE Int. Conf. Netw. Archit. Storage, 2012, pp. 338–347.

[37] S. Al-Kiswany, A. Gharaibeh, E. Santos-Neto, G. Yuan, and
M. Ripeanu, “StoreGPU: Exploiting graphics processing units to
accelerate distributed storage systems,” in Proc. ACM Int. Symp.
High-Perform. Parallel Distrib. Comput., 2008, pp. 165–174.

[38] P. Bhatotia, R. Rodrigues, and A. Verma, “Shredder: GPU-acceler-
ated incremental storage and computation,” in Proc. 10th USENIX
Conf. File Storage Technol., 2012, Art. no. 14.

[39] C. Kim, K. Park, and K. Park, “GHOST: GPGPU-offloaded high
performance storage I/O deduplication for primary storage
system,” in Proc. Int. Workshop Program. Models Appl. Multicores
Manycores, 2012, pp. 17–26.

[40] J. Kim et al., “Deduplication in SSDs: Model and quantitative ana-
lysis,” in Proc. 28th Int. Conf. Massive Storage Syst. Technol.,
2012, pp. 1–12.

[41] P. Shilane, R. Chitloor, and U. Jonnala, “99 deduplication prob-
lems,” in Proc. 8th USENIX Workshop Hot Top. Storage File Syst.,
2016, pp. 86–90.

[42] C. Liu, Y. Xue, D. Ju, and D. Wang, “A novel optimization method
to improve de-duplication storage system performance,” in Proc.
15th Int. Conf. Parallel Distrib. Syst., 2009, pp. 228–235.

[43] J. Ma, B. Zhao, G. Wang, and J. Liu, “Adaptive pipeline for
deduplication,” in Proc. 28th IEEE Conf. Massive Storage Syst. Tech-
nol., 2012, pp. 1–6.

[44] A. El-Shimi, R. Kalach, A. Kumar, A. Oltean, J. Li, and
S. Sengupta, “Primary data deduplication - large scale study
and system design,” in Proc. USENIX Annu. Tech. Conf., 2012,
Art. no. 26.

[45] Z. Yan, H. Jiang, S. Jiang, Y. Tan, and H. Luo, “SES-Dedup: A case
for low-cost ECC-based SSD deduplication,” in Proc. 35th Symp.
Mass Storage Syst. Technol., 2019, pp. 292–298.

Suzhen Wu (Member, IEEE) received the BE and
PhD degrees in computer science and technology
and computer architecture from the Huazhong Uni-
versity of Science and Technology, Wuhan, China,
in 2005 and 2010, respectively. Since August 2014,
she has been an associate professor withComputer
Science Department, Xiamen University. She has
more than 50 publications in journal and interna-
tional conferences, including IEEE Transactions on
Computers, IEEE-TCAD, IEEE-TPDS, ACM-TOS,
USENIX FAST, USENIX LISA, ICS, ICDCS, ICCD,

MSST, DATE, SRDS, and IPDPS. Her research interests include computer
architecture and storage system. She is amember of ACM.

Chunfeng Du (Member, IEEE) is currently work-
ing toward the PhD degree with Computer Sci-
ence Department, Xiamen University. He has two
papers accepted or published in IEEE-TC and
IPDPS 2021 on deduplication-enabled flash stor-
age. His research interests include flash and
NVM storage systems.

Weidong Zhu (Member, IEEE) received the BE
degree in computer science and technology from
the Huazhong University of Science and Technol-
ogy, and the master’s degree from Computer Sci-
ence Department, Xiamen University. His papers
have been published in IEEE-TCAD, IPDPS, and
ICCD. His research interests include flash-based
storage systems, SSD-based disk arrays, Key-
Value store, and data deduplication.

220 IEEE TRANSACTIONS ON COMPUTERS, VOL. 72, NO. 1, JANUARY 2023

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on March 01,2023 at 21:09:32 UTC from IEEE Xplore. Restrictions apply.

https://www.intel.com/content/www/us/en/products/docs/memory-storage/solid-state-drives/consumer-ssds/800p-series-brief.html
https://www.intel.com/content/www/us/en/products/docs/memory-storage/solid-state-drives/consumer-ssds/800p-series-brief.html
https://www.intel.com/content/www/us/en/products/docs/memory-storage/solid-state-drives/consumer-ssds/800p-series-brief.html
https://shattered.io/
http://www.mscs.dal.ca/selinger/md5collision/
http://www.mscs.dal.ca/selinger/md5collision/
https://blake2.net/blake2.pdf
https://blake2.net/blake2.pdf
https://developer.arm.com/ip-products/processors/cortex-r/cortex-r5
https://developer.arm.com/ip-products/processors/cortex-r/cortex-r5
https://www.marvell.com/storage/ssd/88ss1092--93/
https://www.anandtech.com/show/7152/new-elements-to-samsung-ssds-the-mex-controller-turbo-write-and-nvme
https://www.anandtech.com/show/7152/new-elements-to-samsung-ssds-the-mex-controller-turbo-write-and-nvme
https://www.anandtech.com/show/7152/new-elements-to-samsung-ssds-the-mex-controller-turbo-write-and-nvme
https://www.cryptopp.com/benchmarks.html
https://www.cryptopp.com/benchmarks.html
https://www.intel.com/content/www/us/en/support/products/79678/memory-and-storage/enthusiast-ssds/intel-ssd-750-series.html
https://www.intel.com/content/www/us/en/support/products/79678/memory-and-storage/enthusiast-ssds/intel-ssd-750-series.html
https://www.intel.com/content/www/us/en/support/products/79678/memory-and-storage/enthusiast-ssds/intel-ssd-750-series.html
http://iotta.snia.org/traces/391
http://iotta.snia.org/traces/391
https://lwn.net/Articles/426856/
https://lwn.net/Articles/426856/

Jindong Zhou received the BE degree in software
engineering from Xiamen University, Fujian, China,
where he is currently working toward the master’s
degree in software engineering. His papers have
been published in IEEE-TPDS, IEEE-TCAD,
MSST, ICCD, and SRDS. His research interests
include flash storage systems and data deduplica-
tion.

HongJiang (Fellow, IEEE) is currently the chair and
Wendell H. Nedderman endowed professor with the
Computer Science and Engineering Department,
University of Texas at Arlington (UTA). Prior to join-
ing UTA, he was the program director with National
Science Foundation from January 2013 to August
2015 and he was with the University of Nebraska-
Lincoln in 1991, where he was the willa cather pro-
fessor of computer science and engineering. He
has more than 300 publications in main journals
and international conferences in these areas,

including IEEE-TPDS, IEEE-TC, Proceedings of IEEE, ACM-TACO, ACM-
TOS, JPDC, ISCA, MICRO, USENIX ATC, FAST, EUROSYS, SOCC, LISA,
SIGMETRICS, ICDCS, IPDPS, MIDDLEWARE, OOPLAS, ECOOP, SC,
ICS, HPDC, INFOCOM, and ICPP. His current research interests include
computer architecture, computer storage systems and parallel I/O, high-per-
formance computing, big data computing, cloud computing, and perfor-
mance evaluation. His research has been supported by NSF, DOD, and
industry. He is amember of ACM.

BoMao (Member, IEEE) received the BE degree in
computer science and technology from Northeast
University, Shenyang, China, in 2005, and the PhD
degree in computer architecture from theHuazhong
University of Science and Technology, Wuhan,
China, in 2010. He is currently an associate profes-
sor with Software School, Xiamen University. He
has more than 50 publications in international jour-
nals and conferences, including IEEE-TC, IEEE-
TCAD, IEEE-TPDS, ACM-TOS, USENIX FAST,
USENIX LISA, ICS, ICDCS, ICCD, DATE, MSST,

SRDS, and IPDPS. His research interests include storage system, cloud
computing, and Big Data. He is amember of ACMandUSENIX.

Lingfang Zeng (Member, IEEE) received the BS
degree in computer application from the Huazhong
University of Science and Technology (HUST),
Wuhan, China, in 2000, the MS degree in computer
application from the China University of Geosci-
ence, China, in 2003, and the PhD degree in com-
puter architecture from HUST in 2006. He was a
research fellow with the Department of Electrical
and Computer Engineering, National University of
Singapore, Singapore, during 2007–2008 and dur-
ing 2010–2013, and a visiting professor with

Johannes Gutenberg University Mainz, Germany during 2016–2018. He is
currently a PI with Zhejiang Lab. He has authored or coauthored more than
60 papers inmajor journals and conferences.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

WU ETAL.: EAD: ECC-ASSISTED DEDUPLICATION WITH HIGH PERFORMANCE AND LOWMEMORYOVERHEAD FOR ULTRA-LOW... 221

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on March 01,2023 at 21:09:32 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

