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Abstract—In this paper, we present COFFEE, cross-layer opti-
mization for fast and efficient executions of the Sinkhorn-Knopp
(SK) algorithm on HPC systems with clusters of compute nodes by
exploring some architectural features of the system. By analyzing
the performance of a typical implementation of the SK algorithm
on such a system, a huge performance gap is observed between
the row rescaling and column rescaling of the algorithm, where the
latter requires much more time than the former. We also found that
the costly MPI communication of the column rescaling seriously
hinders the exploitation of parallelism. By observing and leveraging
unique architectural characteristics across different system opti-
mizations, such as column rescaling redesign, data blocking, micro-
kernel design, enhanced intra-node and inter-node communication
in MPI, etc., COFFEE is able to explore cross-layer optimization
opportunities that enable fast and efficient execution of the SK
algorithm. Our experimental results show that COFFEE provides
up to 7.5X with an average of 2.0X performance improvement over
the typical implementation on a single node, and up to 2.9X with an
average of 1.6X performance improvement over the state-of-the-art
MPI Allreduce algorithms on Tianhe-1 supercomputer.

Index Terms—Data blocking, HPC system, MPI allreduce,
micro-kernel design, sinkhorn-knopp algorithm.

I. INTRODUCTION

S INCE the mid-2010 s, Sinkhorn’s theorem [1] has attracted
significant attention in different application domains, such

as mathematics, economics, and computer science. It is widely
used to find solutions for the optimal transport problem, since
the speed of its matrix scaling algorithm is several orders of
magnitude faster than that of traditional transport solvers [2].
Recently, Sinkhorn distance [3] based on Sinkhorn’s theorem
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is further proposed to evaluate the difference between data
distributions and permutations, as a proxy for the optimal trans-
port distance (a.k.a Wasserstein or Earth Mover’s Distance)
to improve its speed [4]. This has in turn gained increasing
traction in the Artificial Intelligence (AI) community. A key
to the application of Sinkhorn’s theorem is the Sinkhorn-Knopp
(SK) algorithm, a simple but very useful iterative method to
approach the double stochastic matrix of Sinkhorn’s theorem
by alternately rescaling all rows and all columns of the given
matrix [5]. The SK algorithm has been applied to a wide range of
theoretical and practical problems, including optimal transport
problem [2], [6], [7], [8], [9], Google’s PageRank [10], computer
vision [11], seismic tomography and reflection seismology [12],
latent permutations [13], word mover’s distance (WMD) [14],
and Cooperative Bayesian [15], etc.

However, most of the existing SK algorithm works focus on
using it to enhance machine learning algorithms, such as optimal
transport distance and WMD as mentioned above, or speeding
up the convergence, such as Anderson’s acceleration [16], [17].
Very few of them consider improving the algorithm from the
view of computer system architecture [18], particularly high-
performance computing (HPC) systems. HPC systems, on the
other hand, with their unique compute, memory and commu-
nication capabilities, pose new challenges and opportunities for
unlocking the applications’ full potential at scale [19]. Moreover,
as described in Section III, it is found that the proportion of
time occupied by the SK algorithm is more than half in all four
representative applications analyzed. So, it is critical to optimize
this part of the program.

This paper aims to speed up the SK algorithm with the
Message Passing Interface (MPI) communication support on
multi-core machines and multi-node clusters. To that end, we
propose COFFEE, cross-layer optimization for fast and efficient
executions of the SK algorithm on HPC systems by exploring
and exploiting both architectural and algorithmic characteristics.
We first analyze the performance of a typical implementation of
the SK algorithm on Tianhe-1 supercomputer. It is found that the
column rescaling takes much longer time than the row rescaling.
The reason is that the memory accesses by the column rescaling
are highly non-sequential, which leads to a high cache miss
rate. To solve this problem, COFFEE explores the optimization
opportunities of redesigning column rescaling and data blocking
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to reduce the cache miss rate. Further, we design micro-kernel
and reschedule the instructions to increase instruction-level
parallelism. We also apply Foster’s methodology to parallelize
programs of the SK algorithm. While applying it enables all the
processors to work perfectly for the row rescaling, it leads to poor
performance for the column rescaling. Because for the column
rescaling, we found that the parallel SK algorithm results in an
MPI Allreduce problem. It is discovered that the state-of-the-art
(SOTA) MPI Allreduce solutions cannot meet the requirement
of the SK algorithm. COFFEE solves this problem by exploring
optimization opportunities for the MPI environment, including
specially modifying intra-node MPI Reduce and optimizing MPI
Allreduce by overlapping inter-node communication, intra-node
communication and intra-node calculation.

It is known that some optimization ideas are already well-
known and widely used. For example, in matrix-related oper-
ations (e.g., general matrix multiplication (GEMM)) and other
operations that require enhanced data locality in the field of
HPC, blocking and mirco-kernel design are pretty standard op-
timizations [20], [21], [22]. We first apply it to our algorithm and
proved to be effective. However, we redesigned the algorithm
of column rescaling which is original and innovative according
to the characteristics of the SK algorithm. In the algorithm
optimization related to MPI Allreduce, the idea of layering is
very common. Many studies have used this idea, and we choose
SALaR (as described in Section II-B) as the benchmark for our
Allreduce optimization scheme [23]. However, we optimized the
Reduce algorithm which is original and innovative and used it
to replace the standard MPI_Reduce function in SALaR. At the
same time, according to the characteristics of the SK algorithm,
we originally found that the implementation of Allreduce can
overlap with other computing tasks of the SK algorithm, further
improving the performance.

The main contributions of this paper are listed as follows:
� We analyze the execution behaviors of the SK algorithm

on HPC clusters and observe two main performance chal-
lenges. The first is its column rescaling that exhibits highly
nonsequential memory access patterns, which lead to a very
high cache miss rate and thus substantially reduce overall
performance. The second is that the column rescaling
severely limits parallelism even when it is designed with
Foster’s methodology (Section III).

� We propose COFFEE,1 a novel approach that implements a
multi-level optimization design to optimize the processing
of the SK algorithm at scale in an HPC system (Sec-
tion IV). We improve the parallel efficiency by enhancing
MPI Allreduce with an effective leader-worker mechanism
to overlap inter-node communication, intra-node commu-
nication and intra-node calculation as much as possible
(Section V).

� We evaluate a prototype implementation of COFFEE on
Tianhe-1 supercomputer, which demonstrates its signif-
icant performance advantages over the SOTA solutions
(Section VI). Our experimental results show that COFFEE

1The source code is available at https://github.com/sunchengyu1111/
COFFEE.

brings up to 7.5X and 2.9X performance improvement for
a single node and multi-node environment, respectively.

II. BACKGROUND AND RELATED WORK

A. Sinkhorn-Knopp Algorithm

A matrix A = (Aij) is doubly stochastic if all of its elements
are non-negative and it marginally sums to 1, i.e.,

∑
i Aij =∑

j Aij = 1. Sinkhorn’s theorem states that every square matrix
with positive entries can be written in doubly stochastic form. To
approach such a form, Sinkhorn and Knopp presented the simple
but efficient SK algorithm, and analyzed its convergence [1], [5].
The main idea of the SK algorithm is to alternately rescale all
rows and all columns of A to sum to 1. Algorithm 1 presents
a typical implementation of the SK algorithm. The reasons
for choosing the SK algorithm rather than its convergence-
accelerated versions [24] are twofold. First, for the matrix multi-
plication, modern mainstream linear algebra libraries are based
on the most basic three-loops implementation without Strassen
or Coppersmith-Winograd algorithm [25], [26]. Similar to the
basic implementation of matrix multiplication, the original SK
algorithm lends itself more naturally and easily to be optimized
from the view of computer system architecture, as discussed
later. Second, while existing works on the SK algorithm mainly
focus on speeding up the convergence by reducing the number
of matrix scaling iterations, we aim to reduce the time of each
iteration. This means that our optimizations will be orthogonal
and complementary to existing works, allowing our solution to
work with and be implemented on top of the latter. Note that
we introduce the idea of marginal distribution to generalize
the SK algorithm, such that the sums of rows and columns
are not limited to 1. We use row marginal distribution (RMD)
and column marginal distribution (CMD) to represent the sum
of each row or column of the final matrix. The original SK
algorithm is a special case of our implementation, where all
the RMDi and CMDj are 1.

Applications of Sinkhorn’s theorem in machine learning usu-
ally deal with large-scale data sets with high processing require-
ments, which will no doubt benefit greatly from the computing
performance in the HPC environment. Therefore, there is an
urgent need to accelerate the SK algorithm in such an environ-
ment, with typical optimizations along the computation (e.g.,
CPU) and communication (e.g., MPI) dimensions, as reviewed
next.

Existing Work: Few of the prior works explicitly explore ar-
chitectural and system features for SK algorithm optimization. A
recent work [18] from the Intel parallel computing team uses the
OpenMP based shared memory programming model and targets
Intel’s emerging architecture PIUMA and XEON CPUs, while
our work in this paper targets supercomputer systems, a more
representative HPC scenario. In addition, the baseline (typical
implementation) we choose is a C language implementation,
which is a rewritten version of the SOTA Python implementation
in their work, in order to run at a large scale on supercomputer
with MPI environment. The baseline has optimizations such as
loop unrolling and data-level parallelism, and has performance
not inferior to the Python implementation.
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Algorithm 1: A Typical Implementation of SK Algorithm.α
(β) is a Rescaling Factor for the Row (Column) Rescaling.
M and N are the Numbers of Rows and Columns of the
Matrix, Respectively. RMD and CMD are the Sum of Each
Row or Column of the Final Matrix.

Require:AM×N , CMD1×N , RMD1×M , α = 0, β = 0
Ensure:AM×N after one iteration
1: //Row rescaling:
2: for i from 0 to M-1 do
3: for j from 0 to N-1 do
4: α+ = A[i][j];
5: end for
6: α = RMD[i]/α;
7: for j from 0 to N-1 do
8: A[i][j]∗ = α;
9: end for

10: end for
11: //Column rescaling:
12: for j from 0 to N-1 do
13: for i from 0 to M-1 do
14: β+ = A[i][j];
15: end for
16: β = CMD[j]/β;
17: for i from 0 to M-1 do
18: A[i][j]∗ = β;
19: end for
20: end for

B. Optimization of MPI Allreduce

When performing row/column rescaling across different pro-
cessors in a cluster environment, MPI communication among
all processors2 is required. The problem of calculating the sum
of a row/column is a standard MPI Allreduce problem. The
Allreduce operation is in fact one of the most widely used MPI
primitives [27], [28], [29]. In recent years, in machine learning
and other fields, the Ring algorithm [30], which divides the data
in the num nodes equally into num parts, has been increasingly
used and achieved good results. Through num− 1 steps, it
allows each node to get one part of the complete Allreduce
result. In the second stage, num− 1 steps are also performed,
and the final result retained by each node is passed to all nodes,
which can be approximated as an Allgather operation. When
implementing multi-node Allreduce, the existing MPI library
usually adopts a two-level design [23], [31]. It consists of three
parts, including intra-node Reduce, inter-node Allreduce and
intra-node Bcast. These three parts are equally important and
are indispensable. In particular, Bayatpour et al. [23] proposed
a MPI Allreduce design named SALaR. SALaR uses a two-level
Allreduce design, and by dividing the data into small chunks, the
inter-node Allreduce and intra-node Reduce operate in the form
of a pipelining to overlap the running time. It shows significant
performance improvement in deep learning frameworks.

2In this paper, we assume that one processor only runs one process.

Fig. 1. Difference between the row rescaling and column rescaling in serial
environment. The y-axis shows the average results of running the iterations
10,000 times.

III. MOTIVATION

We first introduce a typical parallel implementation of the SK
algorithm in MPI environment with Foster’s design methodol-
ogy as the basis of our cross-layer optimizations. A key point is
that how to divide the data and tasks, such that communications
are as few as possible, and computation tasks are as balanced
as possible. To that end, the matrix is divided into several
submatrices by rows. By this way, there is no communication
requirement during the row rescaling phase and all the com-
munications happen during the column rescaling phase, which
can be optimized together. So the execution of the algorithm
becomes four steps. First, each process independently does the
row rescaling of the submatrix, similar to Algorithm 1, Line
1-10. Second, each process calculates the sum of columns of
the submatrix. Third, each process gets the sum of the columns
of the matrix by calling the MPI_Allreduce function. Finally,
each process independently does the remaining steps of column
rescaling, that is, modifying the submatrix according to the col-
umn rescaling factors (the column rescaling factors are obtained
from the results of the third step).

We evaluate the performance of the typical implementations
of the SK algorithm on Tianhe-1 supercomputer [32] and report
several observations. Without loss of generality, the matrices are
assumed to be stored originally in the row-major format (See
Section VI for more details).

A. SK Algorithm Profiling

Computation: Fig. 1(a) shows the running time comparison
between the row rescaling and column rescaling for different
matrix sizes in serial environment. It is observed that as the
matrix size increases, the running time of a column rescaling
gradually diverges from that of a row rescaling. For example,
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Fig. 2. Parallel efficiency comparison between different number of processors
in Tianhe-1 supercomputer. We use a matrix of the same size (20,480 × 20,480),
and spread the matrix across different numbers of processors. The experimental
setup is 8 processors per node. Therefore, from 16 processors onwards, it will
run on multiple nodes.

when the matrix size is 16,000 × 16,000, the running time of
a column rescaling is 5,005.1 ms, which is 15.6X longer than
that of a row rescaling. To explain the reason for the difference,
we then use Valgrind [33] to analyze the cache miss rate of the
row rescaling and column rescaling and the results are shown in
Fig. 1(b). As we would expect, due to the nature of the column
rescaling, it is less likely to exploit cache locality, especially for
the L1 cache. For example, when the matrix size is 16,000 ×
16,000, the L1 cache miss rate of the column rescaling is 6.6%,
which is 5.5X larger than that of the row rescaling.

Communication: Fig. 2 shows the comparison of parallel
efficiency when using different numbers of processors to run
the row rescaling and column rescaling in the MPI environment.
Parallel efficiency is computed as T1/(P × T (P )), where T1

represents the time for optimal serial algorithm on one processor,
P is the number of processors, and T (P ) is the time for parallel
algorithm on P processors. We can observe that based on the
partitioning strategy by rows mentioned previously, the row
rescaling has high parallel efficiency. For example, the running
time of 512 processors for a row rescaling is basically the
same as that of a single processor. However, as the number
of processors increases, the parallel efficiency of the column
rescaling gradually decreases. For example, the parallel effi-
ciency is reduced to 40% as the number of processors increases to
512. The reason is that the row rescaling is communication free
and all the processors are load balanced. While for the column
rescaling, the Allreduce used to find the column sum performs
a lot of inter-node and intra-node communication, so that some
processors are in the process of waiting for data.

It is noted that the parallel efficiency from 16 processors to
64 processors has an upward trend, and after 64 processors, the
parallel efficiency begins to decline again. Because the variation
of parallel efficiency in a multi-node environment is related
to many factors. As the number of processors increases, the
size of the submatrix allocated to each processor decreases,
and so does the time for column rescaling. However, the rate
at which the running time decreases is not proportional to the
rate at which the matrix size decreases. As shown in Fig. 1(a),
when the matrix size is changed from 4,000 × 4,000 to 2,000
× 2,000, the scale is reduced by 4 times and the running time is
reduced by 8.9 (155.0 / 17.5) times. This has played a positive
role in improving parallel efficiency. At the same time, when the

Fig. 3. The proportion of time occupied by the SK algorithm among four
representative types of applications [2], [7], [8], [11], [15].

scale of nodes increases, the time overhead caused by inter-node
communication gradually dominates, resulting in a decline in
parallel efficiency.

SK Algorithm in End-to-end Applications: We further ex-
amine several representative SK algorithm based applications
and observe that the SK kernel consistently dominates each
application’s end-to-end execution time.3 As shown in Fig. 3,
the SK algorithm’s execution alone occupies 99.99%, 99.39%,
72.88% and 62.00%of the end-to-end runtime respectively, of all
four applications we ran. According to Amdahl’s law, optimizing
this dominant part of runtime can achieve the greatest effect in
improving the overall performance of the applications.

B. Motivation of COFFEE

Our Insights: Motivated by the observations and analysis
above, we found optimization opportunities in both computation
and communication of the SK algorithm running on the state of
the art HPC systems. However, to the best of our knowledge, we
are the first to propose optimization strategies from these two
factors affecting the running time of the SK algorithm.

For computation, COFFEE improves the column rescaling,
and uses data blocking to maximize cache locality. It also
leverages techniques such as instruction reordering to optimize
micro-kernel operations. Moreover, the observation on the com-
munication from the inherent characteristics of MPI motivates
us to find a better way to balance the communication overhead by
taking advantage of the different characteristics of communica-
tion bandwidth of inter-node and intra-node and trying to overlap
computing and communication to further improve performance.

IV. CPU-ORIENTED OPTIMIZATION

Both the row rescaling and column rescaling of the SK algo-
rithm have a complexity of O(n2). Its rescaling time increases
significantly as the matrix size increases. However, since the
processed matrix is stored in the row-major format, it is much
more difficult for a column rescaling than for a row rescaling
to use the cache mechanism to obtain performance benefit from
cache locality, as evidenced by experimental results presented
in Section III. To address this problem, we first redesign the
column rescaling method to reduce the cache miss rate by
improving spatial locality. Then, based on the above redesign, we
present how to design a data blocking strategy, how to design a

3We refer to the following repositories or libraries: [Online]. Available: https:
//github.com/PythonOT/POT, https://github.com/Jeston-de-Anda/SCBI_all,
https://michielstock.github.io/posts/2017/2017-11-5-OptimalTransport/,
https://github.com/paigautam/CVPR21_FastSinkhornFilters.
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Algorithm 2: Improving Spatial Locality of Column Rescal-
ing.

Require: sum1×N initialized as 0, temp1×N , CMD1×N ,
AM×N

Ensure: AM×N after column rescaling
1: for i from 0 to M-1 do
2: for j from 0 to N-1 do
3: sum[j]+ = A[i][j];
4: end for
5: end for
6: for j from 0 to N-1 do
7: temp[j] = CMD[j]/sum[j];
8: end for
9: for i from 0 to M-1 do

10: for j from 0 to N-1 do
11: A[i][j]∗ = temp[j];
12: end for
13: end for

micro-kernel and how to use pipelining technique to hide latency
based on the SK algorithm for extreme performance.4

A. Column Rescaling Redesign

As shown in Algorithm 1, it is found that the main reason
that the typical implementation of the column rescaling incurs
a high cache miss rate is that sequentially accessing A[i][j] and
A[i+ 1][j] will reference different cache lines. To address this
problem, we first reschedule the accessing order of the column
rescaling to improve the spatial locality.

As shown in Algorithm 2, we redesign the column rescaling
by separating it’s processing into the following two steps.

Step 1: Calculating the sum of columns concurrently (Lines 1–
5). Unlike the typical implementation that calculates the sum of
a column by adding all column elements at once, we reorganize
the procedure so that each time only one element is added for all
sums. After M iterations, we have the full sum of each column.
This brings together A[i][j] and A[i][j + 1], which are likely to
be referenced together in a cache line. In doing so, the spatial
locality of the program is improved.

Step 2: Modifying the matrix in row-wise order (Lines 6–
13). We use an intermediate variable array temp to store the
rescaling factors, which are used to support the row-wise or-
der matrix modification. Note that, the loops of the matrix
modification in typical implementation cause a miss on each
memory access because of the long stride given by index i in
the inner loop. We switch the order of the loops, the stride
is changed to 1, allowing the elements to be accessed in se-
quential order. By switching the order in which loops exe-
cute, misses can be significantly reduced by improving spatial
locality.

4These optimizations are well adopted for HPC computation-intensive tasks
such as general matrix multiplication (GEMM).

Fig. 4. Schematic of data blocking design.

B. Blocking Design

It is known that capacity misses of cache can occur for large
matrices since it may not be possible to store all the elements of a
matrix in the cache. We give the implementation of the blocking
design to divide the matrix into several submatrices that can fit
in the cache appropriately.

Fig. 4 shows the blocking algorithm, with the modifying part
of the column rescaling as an example. The algorithm works
similarly with other parts. Our design first divides the row
dimension into several partitions. That is, we set the parameter
mc in the outermost loop at Layer 1, expecting to partition
the matrix of mc row panels. Second, we set the parameter
nc at Layer 2, aiming to further partition a mc×N submatrix
into several mc× nc submatrices. Then, we preprocess the two
arrays of length nc required for column rescaling, namely, CMD
and sum. The specific method is to create a 1-D array temp of
lengthnc to store the rescaling factors needed for the current loop
of nc column panels. There are two advantages to this method.
First,CMD and sum are preprocessed to warm up the cache for
temp. Second, the temp array length is nc rather than N , which
is easier to be exploited by the L1 cache because it can be used in
the mc rows of nc column panels. Note that temp does not need
to be written back to main memory when column rescaling ends.
Thus, using the temp array does not introduce extra overhead.
In summary, blocking enables matrix A to benefit from spatial
locality and array temp to benefit from temporal locality.

Here we do not choose to carry out packing operation to the
mc× nc submatrix for two reasons. First, unlike the matrix mul-
tiplication that needs to reuse the packed data (submatrices of A
and B) many times, a row/column rescaling of the SK algorithm
only needs to read each data once. Second, the column rescaling
result needs to be written back to matrix A, which incurs signif-
icant overhead for packing. Therefore, the packing of the matrix
cannot improve performance. At last, in the innermost layers,
we set the parameters mr and nr, expecting to partition the
mc× nc submatrix intomr × nr micro-kernels. The process of
blocking and computing is shown within nested loops outlined
in Algorithm 3. Note that we exchange the two outermost loops,
such that the temp[0 : nc− 1] is only calculated once.

C. Micro-Kernel Design

We further implement a micro-kernel to optimize the algo-
rithm. As shown in Algorithm 3, the innermost loop (Lines
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Algorithm 3: Blocking Algorithm for Matrix Modification
of Column Rescaling.

1: for j = 0 → N − 1 step = nc do
2: temp[0 : nc− 1] = CMD[j : j + nc− 1]/sum[j :

j + nc− 1];
3: for i = 0 → M − 1 step = mc do
4: for ii = i → i+mc− 1 step = mr do
5: for jj = j → j + nc− 1 step = nr do
6: l = jj mod nc;
7: for k = ii → ii+mr − 1 step = 1 do
8: A[k, jj : jj + nr − 1]∗ = temp[l :

l + nr − 1];
9: end for

10: end for
11: end for
12: end for
13: end for

Fig. 5. 4× 4 processing micro-kernel and a better instruction schedule.

6-8) can be implemented as a mr × nr micro-kernel by un-
rolling the innermost loop to reduce loop overhead. We further
accelerate the micro-kernel with SIMD, e.g., vectorization in-
structions [34]. To illustrate this in an example, we use AVX2
instructions for the x86 architecture to implement a 4× 4micro-
kernel. The kernel is unrolled into four repeated operations
with AVX2 instructions. Each operation handles four double-
precision floating-point data, which is divided into three parts:
load (i.e., _mm256_load_pd), multiply (i.e., _mm256_mul_pd),
and store (i.e., _mm256_store_pd). There exists data depen-
dency among the three parts, i.e., read-after-write hazard be-
tween load and multiply, and read-after-write hazard between
multiply and store. We first solve data dependency by reordering
the micro-kernel at the C/C++ statement level. Then, we enhance
the implementation of the micro-kernel at the assembly level
through instruction reordering. As shown in Fig. 5, on the left is
the assembly code of C/C++ statement reordering, on the right
is the enhanced assembly code with instruction reordering. For
example, the load instruction consists of two steps including
movq and vmovupd (the part highlighted in red in Fig. 5). These
two instructions have data dependencies on the registers because
of both using rax and there is insufficient instruction distance

Fig. 6. Schematic of intra-node multi-processor Reduce optimization specially
designed for the column rescaling of the SK algorithm.

to hide memory latency because the movq instruction has a
latency of 3 [35]. So, we insert independent instructions between
them to hide memory latency and improve the throughput of the
instruction pipeline.

V. MPI-ORIENTED OPTIMIZATION

In this section, we will describe our MPI Reduce and Allre-
duce design for the SK algorithm optimization on HPC systems.
All the code of our design is implemented using MPI’s standard
primitives and can be used in any MPI-compliant library. In
this paper, we use MPICH for experiments. The proposed op-
timization technique is based on the collective algorithms with
hierarchical topology, with a focus on the bandwidth difference
between intra-node communication and inter-node communica-
tion based on the key observation made in Section III and Fig. 2.
We assign one processor within each node as the leader and the
others as workers, where the leader receives partial sums from
workers and then performs an inter-node Allreduce and finally
broadcasts the global sums to workers [31], [36]. In what fol-
lows, we first introduce the optimization for intra-node Reduce
algorithm, and then the optimization for inter-node Allreduce
algorithm, with our optimization of overlapping communication
and computation at last.

A. Optimization of Intra-Node Reduce

SOTA MPI Reduce implementations, such as Binary tree [37],
have low efficiency for the SK algorithm. The main reason is that
the overhead incurred on each processor is different, especially
when the sum is reduced in the root processor that is heavily
loaded while all the other processors are idle. To counter this
serious problem of unbalanced load, we redesign a Reduce
implementation for the SK algorithm that divides the local sum
array into several parts. After intra-node Reduce, each worker
keeps one part of the local final-sum and sends it to the leader in a
non-blocking manner. Our intra-node Reduce implementation is
based on the MPI standard primitives MPI_Send and MPI_Recv,
consistent with the implementation of Reduce in the MPICH
library. We did not use packing technology, because the data to
be passed is almost continuous, and the extra overhead caused
by packing outweighs the performance improvement brought by
using it. Like the mainstream MPI message passing mechanism,
we use additional buffers to receive data and save intermediate
results.
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Fig. 7. Enhanced hierarchical Ring Allreduce for inter-node communica-
tion [23], [31].

Fig. 6 shows the data movement of this multi-processor Re-
duce method with eight processors as an example. The Reduce is
done in three rounds (log8 = 3), where the quarter-final sums,
semi-final sums and final sums are generated, respectively. In
the first round, worker i exchanges data with worker i+ 1,
i = 0, 2, 4, 6. In particular, worker i sends the jth part to and
receives the (j − 1)th part from worker i+ 1, j = (i mod 2) +
1, (i mod 2) + 3, (i mod 2) + 5, (i mod 2) + 7. In the sec-
ond round, worker i exchanges data with worker i+ 2, i =
0, 1, 4, 5. In particular, worker i sends the jth part to and receives
the (j − 2)th part from worker i+ 2, j = (i mod 4) + 2, (i
mod 4) + 6. In the third round, worker i exchanges data with
worker i+ 4, i = 0, 1, 2, 3. In particular, worker i sends the
jth part to and receives the (j − 4)th part from worker i+ 4,
j = i+ 4. By this way, the loads of all the processors are well
balanced through all the three rounds.

B. Optimization of Inter-Node Allreduce

We implement Allreduce using the most popular Ring algo-
rithm to generate the global final sum for the column rescaling. A
disadvantage of Ring Allreduce is that it does not consider the
hierarchy of nodes. In general, the bandwidth between nodes
is much lower than that within nodes. Thus, hierarchical Ring
Allreduce [31] is recently proposed.

Fig. 7 shows our optimization based on the hierarchical Ring.
The main idea is to overlap time for intra-node Reduce and
inter-node Allreduce. We divide the local sum array into several
data chunks. As mentioned previously, there are three sequential
steps to allreduce a data chunk. First, the workers perform
intra-node Reduce on chunks of the local sum and send the
local final sums to the leader (The red arrows of Time 1 in
Fig. 7). Next, the leader performs inter-node Allreduce for the
global final sums (The red arrows of Time 2 in Fig. 7). At last,
a leader broadcasts the global final sums to its workers (The
red arrows of Time 3 in Fig. 7). It is found that the sequential
steps of different data chunks can be overlapped. For example,
Time 2 in Fig. 7 shows that inter-node Allreduce of the ith
data chunk (The red arrows) and intra-node Reduce of the
(i+ 1)th data chunk (The black arrows) can be processed at
the same time. Thus, we combine the idea of pipeline to the
hierarchical Ring when we implement the Allreduce for the SK
algorithm.

C. Optimization of Overlapping Communication and
Computation

In a distributed environment with many nodes, it is reported
that inter-node communication usually takes more time [38]. In
other words, the workers have to be stalled when the leaders
are doing Allreduce. We take advantage of this stall time for
workers to modify the matrix within nodes. In our optimized
Allreduce design of the SK algorithm, the computation of the
matrix modification is added to the pipeline. Based on this, the
workers can start to perform matrix modification once the global
final sums of the previous data chunks are received. By this
way, our design effectively combines inter-node communica-
tion, intra-node communication and intra-node calculation in
a pipelined phase, further reducing the overall overhead of all
processors.

It is noted that within this optimization, we need to make
adjustments to the allocation of the submatrix. We add a prepro-
cessing step before the third step of the parallel implementation
of the SK algorithm (as described in Section III) starts. We
distribute the submatrix of leader equally among all workers
by rows. The advantage of this is that the computation work of
modifying the submatrix of the leader will not slow down the
progress of the entire program. Correspondingly, this increases
the communication overhead and the computation overhead of
the workers. It is believed that this optimization is worthwhile,
and the experimental results (as shown in Section VI) also
confirm this.

Moreover, based on our MPI-oriented optimization, we make
some modifications to the typical parallel implementation of the
SK algorithm. That is, we combine the third step and the fourth
step into one function, so as to complete the communication task
of Allreduce and the calculation task of modifying the submatrix
at the same time.

VI. EXPERIMENTAL EVALUATION

We present our experimental setup and evaluations on the
CPU and MPI oriented optimizations in this section.

A. Experimental Setup

To assess the effectiveness of COFFEE, we compare two
versions of it, the CPU-oriented optimization (Section IV),
denoted as COFFEE-CPU, and the MPI-oriented optimization
(Section V), denoted as COFFEE-MPI, against two existing
implementations of the SK algorithm, one using the Ring Allre-
duce algorithm (MPICH-Ring) [30] and the other using SALaR
(MPICH-SALaR) [23] in the MPICH environment. Among
them, MPICH-Ring uses the Ring algorithm to perform the
third step of the typical parallel implementation of the SK
algorithm, while MPICH-SALaR uses the SALaR algorithm (as
described in Section V-B) to perform the third step of the typical
parallel implementation of the SK algorithm. COFFEE-MPI
adds two optimizations on the basis of SALaR, namely opti-
mization of intra-node Reduce in Section V-A and optimization
of overlapping communication and computation in Section V-C.
All three implementations (MPICH-Ring, MPICH-SALaR and
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TABLE I
HARDWARE EVALUATION PLATFORM. THE AMD AND ARM V8 ARE ONLY

USED FOR SINGLE NODE TESTING

Fig. 8. Performance of typical SK algorithm implementation on matrices of
different density under serial execution.

COFFEE-MPI) combine our CPU-oriented optimization. We
implement COFFEE with the open-source MPICH-3.4 library.
All the code was compiled with -O2 flag. Moreover, because
column rescaling redesign can largely reduce cache miss rate,
we also present it as COFFEE-C2R to clearly evaluate the
performance of COFFEE on column rescaling. For the param-
eters, we set mr = 4, nr = 4, which is also the default setting
of OpenBlas [39]. Then we set mc = 8, nc = 1000. For the
experimental environment, we evaluate COFFEE on single node
and multi-node clusters, respectively. Single node experimental
results are obtained using three representative platforms: AMD
Ryzen7 4800H on Lenovo R9000X, Intel Xeon Westmere EP
on Tianhe-1 supercomputer, and ARM V8 on Mac M1 pro.
Multi-node results are obtained using Intel Xeon Westmere
EP platform on Tianhe-1 supercomputer. Table I lists the main
configuration parameters of the above hardware platforms.

The workload characteristics of the SK algorithm are likely
application dependent, which we think can be largely reflected
in the density of the matrices representing these applications
that the SK algorithm operates on. Since COFFEE is designed
to optimize the time spent on each iteration of the SK algo-
rithm, we then evaluate the average time spent on each iteration
for typical SK algorithm with matrices of different densities,
namely, highly dense matrix (Non-zero elements account for
95%), moderately dense matrix (Non-zero elements account for
50%), sparse matrix (Non-zero elements account for 5%), each
matrix is generated by a random number generation function
in C language. As indicated in Fig. 8, the average running
time of an iteration is insensitive to the density of a matrix,
suggesting that our algorithm is likely applicable to any matrix
stored in the array format. Note that some AI applications using
the SK algorithm are based on sparse matrices and others are
based on dense matrices. A sparse matrix will be divided into
zero submatrices and non-zero submatrices. Then, the compute

kernels will skip computations of zero submatrices and only
focus on non-zero submatrices [40]. Non-zero submatrices are
usually stored in the array format in the main memory which
COFEEE can handle with them.5 Note that in this paper we
are not concerned with the engineering implementation of any
specific end-to-end applications, instead, we focus on the charac-
teristics of the SK algorithm itself so that our proposed solution is
suitable for all kinds of applications. Therefore, we only focus on
a representative application, Cooperative Bayesian [15], which
is a tool to analyze the consistency, rate of convergence and
stability of a cooperative Bayesian model in human-human and
human-machine cooperation learning. It is based on a randomly
generated dense matrix, so our experiments use the same setting.
Note that the number of iterations between different methods
in the following experiments is the same, so the running time
difference is only related to that of a single iteration.

B. CPU-Oriented Optimization

In this section, we evaluate the effectiveness of CPU-oriented
optimization of COFFEE on a single node.

1) SK Algorithm Performance on a Single Core: In this
experiment, we evaluate the average running time of column
rescaling on the three platforms individually to reflect the direct
effect of single node optimization. Fig. 9 shows the performance
comparison of COFFEE-CPU, COFFEE-C2R and the typical
SK algorithm implementation on a single core. We observe
that as the matrix size increases, the column rescaling time of
the typical SK algorithm tends to rise much higher than that
of COFFEE-C2R and COFFEE-CPU. With data blocking and
micro-kernel design, COFFEE-CPU has a further performance
improvement over COFFEE-C2R. For example, on the Intel plat-
form, when M = N = 16, 000, the performance of COFFEE-
CPU is 9.3X higher than that of the typical implementation, 2.1X
higher than COFFEE-C2R.

2) SK Algorithm Performance on Multiple Cores: In this
experiment, we show the effect of COFFEE-C2R and COFFEE-
CPU optimizations for the SK algorithm on a single node
with multiple cores on the three platforms using MPICH-Ring.
As shown in Fig. 10, the performance of COFFEE-C2R and
COFFEE-CPU with MPICH-Ring is always better than that of
the raw MPICH-Ring (In this subsection, raw MPICH-Ring
does not contain our CPU-oriented optimization) on all the
three platforms. As the matrix size increases, COFFEE-C2R
and COFFEE-CPU show more pronounced advantages. For
example, when M = N , P = 2, the performance improvement
of COFFEE-CPU over MPICH-Ring increases from about 1.5X
to 2.4X on the Intel platform. When the number of processors
increases, the size of the matrix assigned to each processor
becomes smaller, and the performance improvement is less obvi-
ous. Nevertheless, when M = N = 20, 000, P = 8, COFFEE-
CPU still outperforms MPICH-Ring by 1.27X on ARM V8. In
general, the performance of COFFEE-CPU is 1.14 to 7.5X, with
an average of 2.0X, higher than the raw MPICH-Ring in a single
node MPI environment.

5[Online]. Available: https://developer.nvidia.com/blog/accelerating-matrix-
multiplication-with-block-sparse-format-and-nvidia-tensor-cores/
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Fig. 9. Performance of column rescaling matrices under serial execution on three platforms.

Fig. 10. Performance of MPI multi-core parallel SK algorithm implementations on single node on three platforms. In this figure, MPICH-Ring does not contain
our CPU-oriented optimization.

Fig. 11. Cache miss rate for column rescaling. We are not able to demonstrate the ARM V8 results because macOS does not support an appropriate cache miss
analysis tool.

3) Cache Locality: In this experiment, we use Valgrind [33]
to compare column rescaling cache miss rate with and without
COFFEE-CPU optimization on two platforms. As shown in
Fig. 11, the column rescaling optimized by COFFEE-CPU has
improved greatly over the typical SK algorithm implementation
in L1 cache locality on all matrix sizes. For example, on the
Intel platform, when M = N = 16, 000, the L1 cache miss rate
drops from 6.6% to 1.0%. In general, COFFEE-CPU improves
the cache locality of column rescaling by adding COFFEE-C2R,
data blocking, and micro-kernel optimizations. Fig. 12. Breakdown of optimizations for column rescaling on three platforms.
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Fig. 13. Performance of SK algorithm implementations on Tianhe-1 supercomputer with a distributed environment (64 nodes with 9 processors per node,
bandwidth between nodes is limited to 1 Gb/s).

Fig. 14. Performance of SK algorithm implementations on Tianhe-1 supercomputer with a centralized environment (64 nodes with 9 processors per node, without
limiting the bandwidth between nodes).

4) Breakdown of COFFEE-CPU Optimizations: In this ex-
periment, we evaluate the performance impact of COFFEE-CPU
on the three platforms. Our experiments evaluate the speedup of
the three components of COFFEE-CPU for column rescaling
over the typical SK algorithm implementation. Experiments are
implemented in a single node serial execution environment. It
can be seen from Fig. 12 that the reduction in running time is
significant after using COFFEE-C2R, because it makes full use
of cache locality and reduces memory access latency. For exam-
ple, on the Intel platform, when M = N = 16, 000, after using
COFFEE-C2R, the running time is reduced from about 5,181 ms
of the typical implementation to 1,167 ms with a speedup of
4.4X. On this basis, the data blocking and micro-kernel design
further improve the performance. The speedup is improved to
6.2X with data blocking plus COFFEE-C2R and 9.8X with all
of them. We observe that the speedup of AMD is much higher
than Intel and ARM V8. This is related to the different cache
mechanisms of the processors. For Intel and ARM V8, L1 cache
retrieves data from the L2 cache, meaning that data stored in the
L1 cache is a part of L2 cache. For AMD, fills from the DRAM
layer go directly into the appropriate L1 cache [41]. The L1
cache of the Intel and ARM V8 processors has a higher chance
of retrieving data from the L2 cache, because once a cache line
is loaded from the main memory, the relevant cache lines will be
also prefetched to L2 cache. As shown in Fig. 11, it is verified
that AMD’s L2 cache miss rate of the typical implementation is
much higher, resulting in poor performance of the SK algorithm.

COFFEE can significantly reduce L1 and L2 cache miss rates
of the AMD platform, which leads to a higher speedup. To sum
up, the SK algorithm running on the AMD platform with GCC
compiler has achieved the greatest improvement through our
optimization. The performance of the typical implementation of
the SK algorithm is the best on the ARM platform with Clang
compiler among all other platforms, but our optimization still
achieves a speedup of 3.3X when M = N = 16, 000.

C. MPI-Oriented Optimization

We evaluate COFFEE-MPI’s performance of the SK algo-
rithm implementation in two environments on Tianhe-1 super-
computer, namely, a distributed environment, where the band-
width between nodes is limited to 1 Gb/s, and a centralized
environment, where there is no bandwidth limit between nodes.

1) Distributed Cluster Environment: Fig. 13 compares
COFFEE-MPI against the two SOTAs. COFFEE-MPI outper-
forms both SOTAs in all cases and its performance advantages
are more pronounced when the matrix is large. For example,
whenM = N = 230, 400, the performance of COFFEE-MPI is
2.0X higher than MPICH-Ring and 1.4X higher than MPICH-
SALaR. We found that COFFEE-MPI has better scalability
than both SOTAs. For example, when the matrix is expanded
from M = N = 23, 040 to M = N = 230, 400, the running
time of MPICH-Ring increases by 4.8X, MPICH-SALaR in-
creases by 5.8X, and COFFEE-MPI increases by 4.0X. The
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Fig. 15. Scalability of SK algorithm implementations on Tianhe-1 supercom-
puter. The solid lines refer to speedup, and the dotted lines refer to parallel
efficiency.

performance improvement is not as obvious as that in the single
node experiments. The reason is that as the number of nodes
increases, the size of the matrix assigned to each processor
becomes smaller leading to shorter calculation time, and the
time of Allreduce becomes dominant. We found that compared
to COFFEE-MPI, MPICH-Ring is more sensitive to change in
column length than row length. For example, with matrix size
M = 23, 040, N = 230, 400, MPICH-Ring takes 2.4X longer
time than M = 230, 400, N = 23, 040, in contrast to COFFEE-
MPI’s 1.4X. This is because the Allreduce time is only related
to the column length. In general, COFFEE-MPI provides a
performance improvement of up to 2.9X, with an average of
1.8X, over MPICH-Ring and MPICH-SALaR in a distributed
cluster environment.

2) Centralized Cluster Environment: As shown in Fig. 14,
COFFEE-MPI outperforms both SOTAs in all cases and the
running time gap is gradually increasing. For example, when
M = N = 230, 400, the performance of COFFEE-MPI is 1.4X
higher than MPICH-Ring and 1.4X higher than MPICH-SALaR.
We found that MPICH-Ring performs slightly better than
MPICH-SALaR. It shows that raw Ring Allreduce has relatively
better applicability for small and medium-sized data. In general,
COFFEE-MPI provides a performance improvement of up to
1.5X, with an average of 1.3X, over MPICH-Ring and MPICH-
SALaR in a centralized cluster environment.

3) Scalability and Parallel Efficiency: Fig. 15 shows the scal-
ability and the parallel efficiency of the multi-node implementa-
tion of the SK algorithm. Here we choose different numbers of
processors to process the same matrix of size 61,440 × 61,440.
As the number of processors increases, COFFEE exhibits the
best performance, the best scalability, and the best parallel effi-
ciency. The experimental results show that the acceleration can
reach up to 120X (23.4% parallel efficiency) in the distributed
cluster environment and 229X (43.0% parallel efficiency) in the
centralized cluster environment.

4) Breakdown of COFFEE-MPI Optimizations: In this ex-
periment, we evaluate the performance impact of COFFEE-MPI
on Tianhe-1 supercomputer. On the basis of MPICH-SALaR, we
experimentally evaluate two parts of MPI-oriented optimization.
As shown in Fig. 16, the two parts of the optimization are
referred to as Reduce optimization in Section V-A and over-
lap optimization in Section V-C, the experimental results are
normalized by MPICH-Ring implementation. It is found that
after using our Reduce optimization, the speedup increased by

Fig. 16. Breakdown of MPI-oriented optimizations on Tianhe-1 supercom-
puter.

an average of 5.0% in distributed environment and an average of
14.5% in centralized environment over MPICH-SALaR. On this
basis, our overlap optimization further improves performance
significantly. The speedup can reach up to 2.4X in distributed
environment and up to 1.4X in centralized environment over
MPICH-Ring with all of our MPI-oriented optimizations.

VII. CONCLUSION AND FUTURE WORK

The SK algorithm is showing increasing importance in ma-
chine learning and other fields. In this paper, we proposed
and implemented a cross-layer optimization design for both
computation and communication of the SK algorithm imple-
mentation, called COFFEE. Unlike most of the existing works
that focus on speeding up the convergence by reducing the
number of rescaling iterations, COFFEE focuses on speeding up
the convergence by shortening each rescaling iteration. We have
conducted an in-depth study of the issues affecting performance
in the implementation of the SK algorithm. It is found that the
column rescaling incurs a high cache miss rate and low parallel
efficiency. We use cross-layer optimizations such as column
rescaling redesign, data blocking and micro-kernel design to
speed up the column rescaling. We also optimize MPI Reduce
and Allreduce to enhance parallel efficiency based on the SK
algorithm characteristic. Finally, we verify the effectiveness of
COFFEE on Tianhe-1 supercomputer. In the future, we plan
to further explore and exploit the correlation between the row
rescaling and column rescaling. In addition, we plan to combine
GPUs to make full use of the heterogeneous parallel computing
architecture to further improve the performance of COFFEE.
Finally, we plan to study the performance of COFFEE on sparse
matrices of the SK algorithm in which data are not stored in the
array format.
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