
Journal of Parallel and Distributed Computing 172 (2023) 51–68

Contents lists available at ScienceDirect

Journal of Parallel and Distributed Computing

journal homepage: www.elsevier.com/locate/jpdc

LOSC: A locality-optimized subgraph construction scheme for

out-of-core graph processing

Xianghao Xu a,b,∗, Fang Wang b, Hong Jiang c, Yongli Cheng d,e, Yu Hua b, Dan Feng b,
Yongxuan Zhang b

a School of Computer Science and Engineering, Nanjing University of Science and Technology, China
b Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, China
c Department of Computer Science Engineering, University of Texas at Arlington, USA
d College of Mathematics and Computer Science, FuZhou University, China
e Zhejiang lab, China

a r t i c l e i n f o a b s t r a c t

Article history:
Received 1 February 2021
Received in revised form 3 October 2022
Accepted 7 October 2022
Available online 14 October 2022

Keywords:
Graph processing
Out-of-core
Subgraph construction

Big data applications increasingly rely on the analysis of large graphs. In recent years, a number of
out-of-core graph processing systems have been proposed to process graphs with billions of edges
on just one commodity computer, by efficiently using the secondary storage (e.g., hard disk, SSD).
Unfortunately, these graph processing systems continue to suffer from poor performance, despite of
many solutions proposed to address the disk I/O bottleneck problem, a commonly recognized root
cause. However, our experimental results show that another root cause of the poor performance is the
subgraph construction phase of graph processing, which induces a large number of random memory
accesses that substantially weaken cache access locality and thus greatly degrade the performance. In
this paper, we propose an efficient out-of-core graph processing system, LOSC, to substantially reduce the
overheads of subgraph construction. LOSC proposes a locality-optimized subgraph construction scheme
that significantly improves the in-memory data access locality of the subgraph construction phase.
Furthermore, LOSC adopts a compact edge storage format and a lightweight replication of vertices to
reduce I/O traffic and improve computation efficiency. Extensive evaluation results show that LOSC
is respectively 9.4× and 5.1× faster than GraphChi and GridGraph, two representative out-of-core
systems. In addition, LOSC outperforms other state-of-art out-of-core graph processing systems including
FlashGraph, GraphZ, G-Store and NXGraph. For example, LOSC can be up to 6.9× faster than FlashGraph.

© 2022 Elsevier Inc. All rights reserved.
1. Introduction

Graph is a powerful data structure to solve many real-world
problems. There exist various modern big data applications relying
on graph computing, including social networks, Internet of things,
and neural networks.

However, with the real-world graphs growing in size and com-
plexity, processing these large and complex graphs in a scalable
way has become increasingly more challenging. To tackle this chal-
lenge, a number of graph-specific processing frameworks have
been proposed. With these graph processing frameworks, users can
write an update function for a specific graph application without
considering the underlying execution details. To obtain a better
performance, many systems adopt a large cluster to deploy their

* Corresponding author.
E-mail address: xianghao@njust.edu.cn (X. Xu).
https://doi.org/10.1016/j.jpdc.2022.10.005
0743-7315/© 2022 Elsevier Inc. All rights reserved.
large graph processing jobs, such as Pregel [24], PowerGraph [13]
and GraphX [14]. These systems distribute a large graph into the
compute nodes of a cluster by constructing node-resident sub-
graphs from the original graph, which enables them to utilize the
aggregate memory of a cluster to achieve good scalability. Unfor-
tunately, they usually suffer from high hardware and communi-
cation/synchronization costs because of the significant amount of
communication and coordination required among a large number
of computing nodes when processing large graphs.

In recent years, many out-of-core graph processing systems
such as GraphChi [18], X-Stream [26] and GridGraph [43], have
been proposed to process large graphs on a single compute node,
by efficiently using the secondary storage (e.g., hard disk, SSD).
They overcome the challenges faced by distributed systems, such
as load imbalance and significant communication overheads. Many
recent works [18,43,5] have shown that these systems can achieve
a competitive performance compared with distributed systems
without massive hardware. When processing an input graph, the

https://doi.org/10.1016/j.jpdc.2022.10.005
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jpdc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jpdc.2022.10.005&domain=pdf
mailto:xianghao@njust.edu.cn
https://doi.org/10.1016/j.jpdc.2022.10.005

X. Xu, F. Wang, H. Jiang et al. Journal of Parallel and Distributed Computing 172 (2023) 51–68
Fig. 1. Breakdown time of several algorithms on Twitter for GraphChi. To exactly
measure the execution time of different phases, we have modified GraphChi’s code
to enable the sequential executions of the subgraph construction and disk I/O
phases, since these two phases are overlapped in GraphChi’s source code.

out-of-core systems divide a large graph into many partitions and
load and process one partition from disk at a time. Current out-of-
core graph processing systems mainly adopt two computing mod-
els, i.e., vertex-centric and edge-centric.

The vertex-centric computing model takes the vertex as the
processing unit and each vertex can invoke a user-defined func-
tion to update its own value in parallel. As it is intuitive for users
to express many graph algorithms, many graph processing systems
[24,13,18] are implemented based on the vertex-centric model.
The edge-centric computing model factors computation over edges
instead of vertices and takes the edge as the processing unit. Com-
pared with the vertex-centric model, the edge-centric model can
leverage high disk bandwidth with fully sequential accesses. How-
ever, as vertex-centric model is properly designed to distribute
and parallelize large graph analytics [12], traditional iterative graph
computation is naturally expressed in a vertex-centric manner. Fur-
thermore, for some algorithms such as community detection, it is
difficult to implement them in an edge-centric model [5]. There-
fore, in this paper, we mainly focus on the vertex-centric out-of-
core graph processing systems for their better applicability and
expressiveness.

Although out-of-core graph processing systems can be a cost-
effective solution to handle large-scale graphs, there are two main
problems that severely impact the performance of out-of-core
graph processing systems.

First, because the secondary storage delivers much less band-
width and much longer latency than DRAM, the disk I/O over-
heads become an inevitable performance bottleneck. Most of cur-
rent out-of-core graph processing systems are designed to reduce
the disk I/O overheads, by proposing various techniques. For exam-
ple, GraphChi [18] exploits a novel method called parallel sliding
windows (PSW) to reduce random disk accesses as much as pos-
sible. CLIP [3] adopts a reentry technique to make full use of the
loaded blocks to avoid loading the corresponding graph portions in
the future iterations and speedup the convergence of graph algo-
rithms.

Second, we have discovered another performance bottleneck of
the out-of-core graph processing systems is the inefficient sub-
graph construction that causes frequent random memory accesses.
Fig. 1 shows the runtime breakdown of several algorithms on
Twitter graph executed by GraphChi. We observe the subgraph
construction phase is responsible for at least 48% of the whole ex-
ecution time. In fact, when implemented in an out-of-core system
to process a graph partition, the vertex-centric model requires all
edges of the partition to be loaded from the disk and assigned to
their source and destination vertices to construct an in-memory
vertex-centric subgraph structure, before updating the vertices of
the partition. This is the phase of subgraph construction. Since the
vertex data structures are stored sequentially by the vertex ID in
memory, the assignments of edges will incur many random mem-
52
Table 1
Cache misses of different execution phases.

Execution Phase LLC Miss (Read) LLC Miss (Write)

Disk I/O 1.8% 1.5%
Subgraph Construction 14.1% 31.1%
Vertex Updating 2.3% 9.1%
Overall 4.3% 6.8%

ory accesses as the source or destination vertices of the edges
usually have non-sequential vertex IDs. Random memory accesses
greatly weaken cache access locality and thus degrade performance
by increasing cache miss rate. Table 1 shows the cache misses of
different execution phases when running BFS on Twitter. We can
see that the last-level cache (LLC) misses rate of the subgraph
construction phase is much higher than those of other execution
phases, which explains both the random memory accesses and
high execution time caused by the subgraph construction phase,
considering the much higher miss penalty of LLC than other levels
of cache.

In this paper, we present LOSC, an efficient out-of-core graph
processing system that not only optimizes disk I/O performance
but also significantly reduces the overheads of subgraph construc-
tion without sacrificing the underlying vertex-centric computing
model. The main contributions of LOSC are summarized as follows.

• Locality-optimized subgraph construction scheme. LOSC pro-
poses a locality-optimized subgraph construction scheme that
improves the locality of memory access to greatly reduce the
overheads of constructing subgraphs. The locality-optimized
subgraph construction scheme ensures that the vertices re-
quired for adding incoming and outgoing edges are stored
sequentially in memory when constructing subgraphs, which
significantly improves the memory access locality. Moreover,
to further improve the performance of subgraph construction,
the locality-optimized subgraph construction scheme fully uti-
lizes the parallelism of multi-threaded CPU when constructing
subgraphs by assigning different worker threads to take charge
of different vertices and their associated in-edges and out-
edges.

• Benefit-aware scheduling scheme. To reduce disk I/O over-
heads, LOSC adopts a benefit-aware scheduling scheme to
improve I/O performance by skipping loading and process-
ing inactive edges in each iteration whenever such skipping
can bring performance benefit. To achieve this, the benefit-
aware scheduling scheme incorporates the designs of vertices
indices, bitmap operation and I/O-based benefit evaluation
model. Compared with our previous work [34], the benefit-
aware scheduling scheme can reduce the amount of I/O traffic
by up to 75%, which further reduces the subgraph construction
overheads and improves system performance with negligible
computing overheads.

• Compact edge storage format. LOSC implements a compact
edge storage format by combining several graph compression
methods, i.e., compression of undirected graph, delta compres-
sion and ID compression, to save storage size and reduce I/O
traffic.

• Lightweight replication of interval vertices. LOSC adopts a
lightweight replication of interval vertices (vertices within an
interval) to improve computation efficiency by enabling full
thread-level parallelism.

• Extensive experiments. We evaluate LOSC on several real-
world graphs with different algorithms. Extensive evaluation
results show that LOSC outperforms GraphChi and GridGraph
by 9.4× and 5.1× on average respectively due to its locality-
optimized subgraph construction and reduced disk I/Os.

X. Xu, F. Wang, H. Jiang et al. Journal of Parallel and Distributed Computing 172 (2023) 51–68
Note that this paper is based on our prior work presented at
the 2019 IEEE/ACM International Symposium on Quality of Service
(IWQoS’19) [34]. We briefly provide the new contents beyond the
prior conference version as follows.

• A benefit-aware scheduling scheme that further reduces disk
I/O overheads.

• Parallelized locality-optimized subgraph construction scheme
that further improves the performance of subgraph construc-
tion.

• Added experiments that make the performance evaluation of
LOSC more convincing and more adequate.

• Substantial new contents and some revised old contents that
strengthen motivation, evaluation and clarity, and help the
reader better understand how LOSC works.

The rest of the paper is organized as follows. Section 2 presents
the background and motivation. Section 3 describes the detailed
system design of LOSC. Section 4 presents extensive performance
evaluations. We discuss the related works in Section 5 and con-
clude this paper in Section 6.

2. Background and motivation

In this section, we first present the computing models of exist-
ing graph processing systems. Then, we introduce the state-of-art
out-of-core graph processing systems. Finally, we take GraphChi as
an example to demonstrate the process and performance impact
of subgraph construction. This helps motivate us to propose a new
out-of-core system that significantly improves system performance
by reducing the overheads of subgraph construction.

2.1. Computing models of graph processing systems

Existing out-of-core graph processing systems mainly adopt
two computing models, i.e., vertex-centric and edge-centric. The
vertex-centric computing model establishes a “think like a vertex”
idea [24] that can express a wide range of applications, for ex-
ample, graph mining, data mining, machine learning and sparse
linear algebra, as shown by many researchers [13,24,21,18,30]. This
model consists of a sequence of iterations and a user-defined up-
date function executed for all vertices in parallel. In each iteration
of computation, each vertex gathers data from its incoming edges;
then it uses the gathered data to update its own value by invok-
ing the user-defined update function; finally, it propagates its new
value along its outgoing edges to its neighbors.

Unlike the vertex-centric model, the edge-centric computing
model [26,43] explicitly factors computation over edges instead
of vertices and takes the edge as the processing unit. In this
model, the system processes each edge by gathering an update
from its source vertex and applying the update to its destination
vertex. Therefore, the edge-centric model can stream edges from
the storage and high disk bandwidth can be achieved with fully
sequential accesses. However, as traditional iterative graph com-
putation is naturally expressed in a vertex-centric manner, users
must re-implement many algorithms in edge-centric API [5,42].
Furthermore, for some algorithms such as community detection,
it is difficult to implement them in an edge-centric model [5].

2.2. Out-of-core graph processing

GraphChi [18] is an extensively-used out-of-core graph process-
ing system that supports the vertex-centric computation model
and is able to express many graph algorithms. It divides the ver-
tices into disjoint intervals and breaks the large edge list into
53
smaller shards containing edges with destinations in the corre-
sponding vertex intervals. For a given vertex interval, its incoming
edges are stored in its associated shard called memoryshard, while
its outgoing edges are distributed among other shards called slid-
ing shards. In addition, edges in a shard are sorted by their source
vertices. GraphChi exploits a novel method of parallel sliding win-
dows (PSW) to process all intervals. For each interval, PSW loads
the incoming edges of the interval from memoryshard and loads
the outgoing edges from sliding shards. Updating messages with
their destination vertices in the working interval will be applied
instantly, while other updates will be written to the rest of the
sliding shards on the disk.

Following GraphChi, a number of out-of-core graph processing
systems are proposed. Through a disk-friendly graph data orga-
nization format and well-designed execution engine, out-of-core
graph processing systems can process large graphs with a rea-
sonable performance while using much fewer hardware resources
than a distributed system. However, there are two main problems
that severely impact the performance of out-of-core graph process-
ing systems. One is the expensive disk I/O overheads. As we know,
the secondary storage delivers much less bandwidth and much
longer latency than DRAM. Reducing disk I/O overheads has be-
come the heart of the system designs for most current out-of-core
graph processing systems. The other is the inefficient subgraph
construction, which exists in the vertex-centric out-of-core graph
processing systems. As shown in Fig. 1, the subgraph construction
phase significantly degrades the overall performance. Other studies
such as X-Stream [26] and GridGraph [43] utilize the edge-centric
model where the computation is based on the edges and the sys-
tem needs not to construct a vertex-centric subgraph in memory
before processing. However, as mentioned in 2.1, these systems ex-
hibit limited expressivity and programmability.

2.3. Subgraph construction in out-of-core graph processing

In fact, for vertex-centric graph processing systems (e.g.,
GraphChi), they usually create an in-memory data structure for
each vertex during the processing, which usually includes vertex
values, in-edges and out-edges (or messages) [18]. For out-of-core
graph processing systems where all edges are stored on the disk,
when implementing the vertex-centric computation on a graph
partition, all edges of the partition should be first loaded into
memory and then assigned to the memory structures of corre-
sponding vertices. This is the phase of subgraph construction.
During this phase, each edge is added to the out-edge and in-
edge array of its source and destination vertex. Based on the
in-memory vertex-centric subgraph, each vertex can perform the
vertex-centric computation in parallel.

Fig. 2 illustrates an example of constructing subgraphs in
GraphChi. As shown in Fig. 2(a), the vertices of the example graph
are split into three intervals: 1-100, 101-200 and 201-300. Each
interval is associated with a shard containing incoming edges of
vertices in the interval. When constructing the subgraph of shard
1, GraphChi first processes the edge (1, 2) and accesses the mem-
ory address of vertex 2, then it writes the edge to the incoming
edge array of vertex 2. Afterwards, it accesses the memory ad-
dress of vertex 4 and writes the edge (1, 4) into the incoming
edge array of vertex 4 until all edges in the shard are added. The
non-sequential destination vertices of the edges cause many ran-
dom reads and writes in memory to add the incoming edges when
constructing subgraphs as shown in Fig. 2(b). It is a known fact
that random memory accesses tend to weaken cache locality and
result in high cache miss rate, thus degrading memory access per-
formance.

Based on the above observations and analysis, the subgraph
construction phase significantly impacts the performance of out-

X. Xu, F. Wang, H. Jiang et al. Journal of Parallel and Distributed Computing 172 (2023) 51–68

Fig. 2. The example of constructing subgraphs.

Fig. 3. The LOSC architecture.
of-core graph processing systems due to massive random reads
and writes in memory. This motivates us to seek a design that
minimizes random memory accesses to reduce the overheads of
subgraph construction. In addition, the disk I/O overheads remain
a severe performance bottleneck of out-of-core graph processing
systems, I/O-related optimizations should also be considered to im-
prove the overall performance.

3. System design

A graph problem is usually encoded as a directed graph G =
(V , E), where V is the set of vertices and E is the set of edges. For
a directed edge e = (u, v), we refer to e as v’s in-edge, and u’s out-
edge. Additionally, u is an in-neighbor of v, v is an out-neighbor of
u. The computation of a graph G is usually organized in several it-
erations where V and E are read and updated. Updating messages
are propagated from source vertices to destination vertices through
the edges. The computation terminates after a given number of it-
erations or when it converges. Like previous works [5,41], we treat
all vertices as mutable data and edges as read-only data.

In this section, we first present the system overview of LOSC.
Then, we illustrate the design of locality-optimized subgraph con-
struction scheme, compact edge storage format, benefit-aware
scheduling scheme and lightweight replication of interval vertices.
Finally, we describe the main workflow of LOSC in detail with an
example.

3.1. System overview

LOSC is an efficient out-of-core graph processing system sup-
porting vertex-centric computing model. Fig. 3 presents the system
54
architecture of LOSC. In order to reduce the overheads of subgraph
construction, LOSC uses a novel locality-optimized subgraph con-
struction scheme that maximizes the sequential accesses to ver-
tices and edges during the subgraph construction phase. To further
improve the system performance, LOSC also adopts a compact edge
storage format to reduce I/O traffic and a lightweight replication
of interval vertices to improve computation efficiency. In addition,
a benefit-aware scheduling scheme is applied to skip loading and
processing the inactive edges, which further improves the I/O per-
formance.

To support the efficient subgraph construction scheme, LOSC
organizes the graph data with a dual-shard representation. Like
GraphChi, LOSC splits the vertices V of graph G into P disjoint
intervals and edges E into P shards with source or destination
vertices in corresponding vertex intervals. Differently, it associates
two edge shards for each interval, in-shard and out-shard. In-shard
(n) contains all in-edges of the vertices in interval (n), sorted by
the destination vertices. Out-shard (n) contains all out-edges of
the vertices in interval (n), sorted by the source vertices. By this
way, the system can ensure the sequential accesses to the source
or destination vertices when processing the out-edges or in-edges.
The number of intervals, P, is chosen to ensure that the in-shard
and out-shard of each interval can fit in memory. We illustrate the
contrast between the representation of GraphChi and LOSC of an
example graph in Fig. 4. The example graph has six vertices, which
have been divided into two equal intervals: 1-3 and 4-6. While
GraphChi only stores the in-edges of an interval in the correspond-
ing shard, LOSC stores in-edges and out-edges of each interval in
the corresponding in-shard and out-shard respectively.

Discussion. While the dual-shard representation that adopts 1-
D partitioning and maintains both in-edges and out-edges is simi-

X. Xu, F. Wang, H. Jiang et al. Journal of Parallel and Distributed Computing 172 (2023) 51–68

Fig. 4. Illustration of graph representation.
lar to the CSR/CSC format that many previous works [28,41,44,35]
use, we use this representation for a totally different purpose.
Specifically, previous works use this representation to support dif-
ferent computing models and graph algorithms that need both in-
edges and out-edges. For example, Ligra [28] stores both in-edges
and out-edges to enable the adaptive EDGEMAPSPARSE/EDGEMAP-
DENSE update models. FlashGraph [41] maintains both in-edges
and out-edges with the CSR/CSC format to support different graph
algorithms that require in-edges, out-edges or both in-edges and
out-edges. On the other hand, for LOSC, it uses this graph repre-
sentation to solve the inefficient subgraph construction problems
of out-of-core systems. Based on the representation, LOSC proposes
a locality-optimized subgraph construction scheme that improves
the locality of memory access to greatly reduce the overheads of
constructing subgraphs, which is the key contribution of the paper.

3.2. Locality-optimized subgraph construction

As mentioned in Section 2.3, the subgraph construction phase
significantly degrades the overall performance of out-of-core graph
processing systems due to a large amount of random memory
accesses. To solve this problem, LOSC implements a locality-
optimized subgraph construction scheme that significantly reduces
the number of random memory accesses during the subgraph con-
struction phase.

Algorithm 1 presents the procedure of locality-optimized sub-
graph construction scheme. The procedure of subgraph construc-
tion is to add in-edges/out-edges to the in-edge array/out-edge
array of each vertex. For each in-edge, LOSC first accesses the
memory address of its destination vertex, and then adds the edge
to the in-edge array of the vertex. Similarly, for each out-edge,
LOSC accesses the memory address of its source vertex, and adds
the edge to the out-edge array of the vertex. Based on the dual-
shard representation, the in-edges in the in-shards are sorted by
the destination vertices and the out-edges in the out-shards are
sorted by the source vertices. In this case, LOSC maximizes se-
quential memory access when adding the in-edges/out-edges to
55
Algorithm 1 Locality-optimized subgraph construction.
Input: Interval index number p
Output: Subgraph of vertices in interval p
1: /* Initialization */
2: a ← interval(p).start
3: b ← interval(p).end
4: G ← InitializeMemoryF or Subgraph(a, b)

5: /* Load in-edges in in-shard */
6: Inegdes ← in − shard(p).readf ully()

7: /* Parallel in-edges adding */
8: for each edge e in Inedges do
9: G.vertex[e.dest].addInEdge(e.source)

10: end for
11: /* Load out-edges in out-shard */
12: O utegdes ← out − shard(p).readf ully()

13: /* Parallel out-edges adding */
14: for each edge e in Outedges do
15: G.vertex[e.source].addO ut Edge(e.dest)
16: end for
17: return G

the destination/source vertices and data access locality is exploited
as much as possible when constructing subgraphs.

Fig. 5 provides an example to compare the locality-optimized
subgraph construction with GraphChi’s PSW subgraph construc-
tion. Both LOSC and GraphChi construct a subgraph for interval
1 of the graph in Fig. 4(a). As we see in Fig. 5(a), for interval 1,
the access order of vertices to construct subgraph is 1, 2, 3 and
these vertices are stored sequentially in memory. When LOSC ex-
ecutes the construction program, it first accesses the address of
vertex 1, then it adds edge (3, 1) to the in-edge array of vertex 1
and adds edge (1, 2) and edge (1, 5) to the out-edge array in par-
allel. Afterwards, it successively accesses the memory addresses of
vertex 2, vertex 3, and adds their in-edges and out-edges. How-
ever, for GraphChi, it requires many random memory accesses to
add in-edges for vertices in interval 1 as shown in Fig. 5(b). When
processing real-world graphs that have a large number of vertices
and edges and complex structures, the inefficiency of GraphChi’s

X. Xu, F. Wang, H. Jiang et al. Journal of Parallel and Distributed Computing 172 (2023) 51–68

Fig. 5. Comparison of constructing subgraphs.
PSW subgraph construction will become a severe problem for sys-
tem performance.

3.3. Exploiting parallelism in subgraph construction

In order to further improve the performance of subgraph con-
struction, LOSC fully utilizes the parallelism of multi-thread CPU
when constructing subgraphs. Specifically, LOSC creates several
worker threads that take charge of different vertices and their
associated in-edges or out-edges. Once the in-shard or out-shard
of a vertex interval is loaded into memory, these worker threads
can fetch their own edges and add them to the in-edge arrays
and out-edge arrays of the corresponding vertices in parallel. To
this end, two edge index structures are created to indicate the in-
edges and out-edges for each vertex as introduced in Section 3.6,
so that worker threads can easily locate their own edges in the
in-shards and out-shards. Since the in-edges in an in-shard and
the out-edges in an out-shard are sorted by the destination and
source vertices respectively, there is no write conflicts between
these worker threads and no thread locks or atomic operations
are required to maintain consistency. This enables high degree of
parallelism when an in-shard/out-shard is large enough. Note that
memory accesses and writes are still sequential as long as each
thread reads and writes its own data.

Moreover, LOSC overlaps subgraph construction with edge load-
ing as much as possible to make better use of parallelism. Specifi-
cally, the worker threads periodically check the loading progress of
edges. As soon as the edges belong to a worker thread are loaded,
the worker thread can immediately process these edges. For exam-
ple, when loading in-shard (1) from disk in Fig. 5(a), the worker
56
thread that takes charge of vertex 1 can add the edge (3, 1) into
the in-edge array of vertex 1 once edge (3, 1) is loaded, while the
I/O thread continues to load other edges from in-shard (1) simul-
taneously.

While for GraphChi, when parallelizing the subgraph construc-
tion, it will cause many write conflicts since in-edges in the
memoryshard are sorted by the source vertices and the destina-
tion vertices are non-sequential. Due to a great reduction of ran-
dom memory accesses and effective utilization of parallelism, the
locality-optimized subgraph construction scheme significantly im-
proves the system performance. We will quantitatively evaluate
the efficiency of locality-optimized subgraph construction in Sec-
tion 4.3.

3.4. Compact edge storage format

Although our graph representation improves the performance
of subgraph construction, it takes more storage space than the
existing graph representations since it stores both in-edges and
out-edges. To solve this problem, we implement a compact edge
storage format by combining several graph compression methods,
i.e., compression of undirected graph, delta compression and ID
compression.

Compression of undirected graph. For undirected graphs, LOSC
stores each edge twice, one for each of the two directions. Actually,
for an undirected edge e = (u, v), e can be regarded as the in-edge
and out-edge of u and v simultaneously. Therefore, for a vertex
interval i, in-shard (i) and out-shard (i) are a duplicate of each
other. To avoid this redundant storage, LOSC only maintains one

X. Xu, F. Wang, H. Jiang et al. Journal of Parallel and Distributed Computing 172 (2023) 51–68
Table 2
Notations.

Notation Definition

A active vertex set in current iteration
M size of an edge structure value
N size of a vertex value
W size of an edge weight value
C average size of a compressed adjacency list
Trr random read bandwidth
Trw random write bandwidth
Tsr sequential read bandwidth
Tsw sequential write bandwidth

copy of edges for undirected graphs, i.e., only storing in-edges or
out-edges of an interval.

Delta compression. In fact, each in-shard or out-shard consists
of all adjacency lists of the vertices in an interval. The adjacency
list of a vertex consecutively stores the vertex IDs of the vertex’s
neighbors. We can compress the adjacency lists by utilizing the
delta values of vertex IDs. This is motivated by the locality and
similarity in web graphs [4] where most links contained in a page
lead the user to some other pages within the same host. In this
case, the neighbors of many vertices may have similar vertex IDs.
Instead of storing all vertex IDs in an adjacency list, LOSC stores
the vertex ID of the first neighbors and the delta values of the
vertex IDs of remaining neighbors.

ID compression. Current systems always store the ID as an
integer of four-byte or eight-byte length. However, this can be
wasteful if the IDs are of small values. LOSC adopts a variable-
length integer [37] to encode each vertex ID. Thus, a minimum
number of bytes are used to encode a given integer. Furthermore,
the most significant bit of each compressed byte is used to indi-
cate different IDs and the remaining seven bits are used to store
the value. For example, considering an adjacency list of vertex v1,
adj(v1) = {v2, v3, v4}. Supposing that the IDs of v2, v3 and v4 are
2, 5, and 300, the adjacency list of vertex v1 is stored as “00000010
10000011 00000010 00100111”. The first byte is the id of 2, and
the second byte is the delta value between 2 and 5 (removing
the most significant bit). The third byte and the fourth byte have
the same most significant bit, which means that they are used to
encode the same ID. 00000100100111 (after removing the most
significant bit of the third and fourth byte) is the delta value be-
tween 300 and 5.

By combining these compression techniques, the compact edge
storage format can significantly reduce disk storage consumption,
which further reduces I/O traffic and improves system perfor-
mance, as shown in the evaluation results in Section 4.4.

3.5. I/O cost analysis

The I/O cost can be calculated by the total size of data accessed
divided by the random/sequential bandwidth of disk access. Let M,
N, W, C respectively be the size of an edge structure value, the
size of a vertex value record, the size of an edge weight value
and the average size of the compressed adjacency list of a vertex.
In addition, Trr , Trw , Tsr and Tsw respectively represent random
read, random write, sequential read and sequential write band-
width (MB/s).

For easy reference, we list the notations in Table 2. For LOSC,
during one pass of the whole graph, each edge is accessed twice
from the disk, once in each direction. So the total I/O amount of
edges is 2|V |C . Furthermore, the I/Os of edge weights are avoided
and only vertex values are updated since we store mutable data
in vertices. Therefore, the I/O cost of LOSC CL O SC can be stated
constantly as:
57
CL O SC = |V | × (2C + N)

Tsr
+ |V | × N

Tsw

Note that, in above I/O analysis, we do not consider the random
accesses of vertices when the vertices are too large to be cached
in memory, for the following reasons. First, the random accesses
of vertices depend on different algorithms, graphs and iterations,
which makes it very hard to quantify the I/O costs. Second, as
shown by [3], the memory mapping method we used can signifi-
cantly mitigate the issue of random accesses of vertices. Moreover,
since the size of vertices is usually much smaller than the size of
edges, the memory capacity of modern machines can easily fit in
the vertices of most graphs [3].

While for GraphChi, in the best case, both endpoints of each
edge belong to the same vertex interval, it is read only once from
disk, otherwise, it is read twice. If the update function modifies
edges in both directions, the number of writes is exactly the same;
if in only one direction, the number of writes is half as many.
Therefore, the I/O cost of GraphChi CGC can be stated as:

|E| × (M + W) + |V | × N

Tsr
+ |E| × W + |V | × N

Tsw
≤ CGC

≤ 2|E| × (M + W) + |V | × N

Tsr
+ 2|E| × W + |V | × N

Tsw

Due to use of the compact edge storage format, the storage size
of edges of LOSC is much smaller than that of GraphChi, which
means |V | × C � |E| × M . Moreover, GraphChi has to write a large
amount of intermediate data (edge weights) to disk for subsequent
computation. Based on these analyses, we show that LOSC exhibits
much higher I/O efficiency than GraphChi.

3.6. Benefit-aware scheduling scheme

Current out-of-core graph processing systems [18,26,43] are
usually optimized for the sequential performance of disk drives
and eliminate random I/Os by scanning the entire graph data in
all iterations of graph algorithms. However, for many graph al-
gorithms (e.g., Breadth-first Search, Weak Connected Components,
Single Source Shortest Path) that access only small portions of data
during each iteration, this full I/O model can be wasteful. For ex-
ample, Breadth-first Search only visits vertices in a frontier in each
iteration. On the other hand, the on-demand I/O model that is
based on the active edges (the edges that have active sources ver-
tices and impact the subsequent computation) can avoid loading
the useless data. Unfortunately, it incurs a large amount of small
random disk accesses due to the randomness of the active vertices.
As we know, random access to disk drives delivers much less band-
width than sequential access. Therefore, only accessing the useful
data for out-of-core graph processing is an overkill when the num-
ber of active vertices is large. To address this dilemma and improve
I/O performance, we adopt a benefit-aware scheduling scheme that
skips loading and processing inactive edges in each iteration when-
ever such skipping can bring performance benefit.

The benefit-aware scheduling scheme adaptively schedules the
edge loading based on the number of active edges. When the
number of active edges is small, the system only traverses the ac-
tive edges to avoid the loading of useless data, which improves
I/O efficiency. Specifically, LOSC only loads the out-edges of ac-
tive vertices and adopts a push-style processing to update their
out-neighbors. Furthermore, LOSC enables atomic operations when
updating vertices to ensure the consistency. When the number of
active edges is large, the system simply loads all in-edges and out-
edges to eliminate random accesses, and uses pull-style processing
like GraphChi. To achieve this dynamic scheduling, the benefit-
aware scheduling scheme incorporates the designs of vertices in-
dices, bitmap operation and I/O-based benefit evaluation model.

X. Xu, F. Wang, H. Jiang et al. Journal of Parallel and Distributed Computing 172 (2023) 51–68
Vertices indices. To enable the fast loading of the active edges,
we maintain the indices to the edges for each vertex. Specifi-
cally, we associate two index structures, in-index and out-index.
In-index (v) points to the position where the first in-edge of v
stores, and out-index (v) points to the position where the first out-
edge of v stores.

Bitmap operation. Selective scheduling of the active edges
needs to scan all vertices to identify the active vertices. To achieve
this, we associate two bitmaps, a state bitmap and an interval
bitmap. The state bitmap whose storage size is |V |/8 bytes records
whether a vertex is active or not and is divided into P intervals
like the vertices. The interval bitmap records whether an interval
contains at least one active vertex, which has a storage size of P/8
bytes.

In each iteration, LOSC first scans the interval bitmap to skip
the intervals without any active vertices. This can significantly re-
duce the scanning time for the algorithms with very few active
edges in each iteration. At the end of each iteration, LOSC up-
dates the interval bitmap based on the newly updated state bitmap
for the next iteration. The bitmap operation is also used in other
systems like G-Store [17] for selective scheduling. However, LOSC
maintains two bitmaps, which can not only achieve a more fine-
grained scheduling but also significantly reduce the scanning time.

I/O-based benefit evaluation model. To evaluate whether only
loading the active edges can bring performance benefit, the key is
to compare the I/O costs between sequentially loading all edges
and randomly loading the active edges. The former can be stated
as CL O SC as analyzed in Section 3.5. For the latter, supposing that
the active vertex set in current iteration is A, so the I/O amount
of the active edges is equal to the size of all out-edges of vertices
in A. Moreover, LOSC also loads the out-index of each active vertex
so as to locate the active edges, in addition to the vertex values.
Therefore, the I/O cost CL O SC ′ can be stated as:

CL O SC ′ =
∑

v∈A(out − index(v + 1) − out − index(v))

Trr

+ 2|V | × N

Tsr
+ |V | × N

Tsw

If CL O SC ′ ≤ CL O SC , the system selectively loads the active edges
to avoid the loading of useless data. Otherwise, the system just
loads all in-edges and out-edges to eliminate random disk ac-
cesses. The disk access bandwidth Trr , Trw , Tsr and Tsw can be
measured by using several measurement tools such as fio [26] be-
fore we conduct the experiments. And other parameters can be
directly collected and computed in the runtime. This provides an
accurate performance prediction that enables efficient scheduling.

In summary, the benefit-aware scheduling scheme brings two
advantages to LOSC. First, by intelligently skipping loading the in-
active edges, the system can significantly reduce the I/O traffic and
improve I/O performance with negligible computing overheads.
Second, the reduced I/O traffic can also lead to lower overheads
of subgraph construction since less edges are loaded into memory
to construct subgraphs. We will quantitatively evaluate the benefits
and computing overheads of the benefit-aware scheduling scheme
in Section 4.5.

3.7. Lightweight replication of interval vertices

As shown in Section 2.1, each vertex computes its new value
in parallel in the vertex-centric computing model. However, if two
vertices in the same vertex interval have a common edge, e.g., ver-
tex 1 and vertex 2 in Fig. 4(c), they cannot be updated in parallel
as update sequences of these vertices have an influence on the
computing result. For example, when vertex 2 is updated, it reads
58
the value of vertex 1. If vertex 1 is updated earlier, vertex 2 will ob-
tain the latest value of vertex 1. Otherwise, it will obtain the value
of the last iteration. To solve this problem, GraphChi implements a
deterministic parallelism in which vertices of the same interval are
updated sequentially if they share a common edge. Although this
method eliminates race conditions, it limits the utilization of CPU
parallelism and reduces the computation efficiency.

To solve the above problem, LOSC adopts a lightweight replica-
tion of interval vertices to eliminate race conditions while enabling
full CPU parallelism. Concretely, LOSC maintains two copies of the
interval vertices, Latest-copy and Old-copy, when executing a ver-
tex interval. Latest-copy stores the latest values and is updated
during the computation. Old-copy serves as the in-neighbors and is
read by other vertices, storing the values of the last iteration. Con-
sequently, all vertices in an interval can access their read-only in-
neighbors and execute update function in parallel, and the update
sequence of vertices will not affect the computing result. Since
LOSC just replicates the vertices in an interval, it will not cause
much memory pressure. After a vertex interval is processed, LOSC
synchronizes the vertex values by replacing the Old-copy with the
Latest-copy.

Note that, the lightweight replication of interval vertices is ap-
plied only when LOSC loads all edges and adopts the pull-style
vertex updating. When LOSC selectively loads the active edges and
adopts the push-style vertex updating, LOSC needs not to copy the
interval vertices since it only involves write operations.

3.8. Workflow example

We now use an example to illustrate the main workflow of
LOSC in detail. LOSC processes the input graph one vertex inter-
val at a time. The processing of an interval consists of four steps:
1) load edges; 2) construct subgraph; 3) parallel update; 4) syn-
chronize vertex values. Fig. 6 shows an example of processing on
interval 1 of the graph in Fig. 4(a) when all vertices are active and
only vertex 2 is active.

Load edges. The loading phase of LOSC is very simple but
I/O-efficient. As we see in Fig. 6(a), LOSC concurrently loads the
in-edges from the in-shard and out-edges from the out-shard for
interval 1 (shards in shaded color are loaded into memory), which
maximizes the sequential disk accesses.

Construct subgraph. When the edges are loaded into memory,
LOSC starts the locality-optimized subgraph construction for the
interval as described in Section 3.2. LOSC sequentially accesses the
memory addresses of vertices 1, vertex 2, vertex 3, and adds their
in-edges and out-edges.

Parallel update. After the subgraph is constructed, LOSC exe-
cutes a user-defined update program for each vertex of the current
interval in parallel. When a vertex is updated, it first reads the val-
ues of its in-neighbors and produces an aggregated value. Then, the
user-defined update program takes this value as input and updates
the value of the vertex. Algorithm 2 shows an example update pro-
gram that computes PageRank of an input graph. In addition, for
the interval vertices, e.g., vertex 1, 2, 3 in Fig. 6(a), LOSC maintains
two types of values (Latest-copy and Old-copy) to enable full CPU
parallelism while ensures the consistency of computation.

Synchronize vertex values. When all vertices of an interval
have been updated, LOSC directly updates the values of the Old-
copy of interval vertices (e.g., vertex 1, 2, 3) with the values of
the Latest-copy. Unlike previous systems [18,26] that write the up-
dated edge attributes back to the disk for subsequent processing,
synchronization of vertices significantly reduces disk I/Os and im-
proves the system performance.

In Fig. 6(b) where only vertex 2 is active, the benefit-aware
scheduling scheme only loads the out-edges of vertex 2 into mem-
ory and pushes updates to its neighbors (vertex 3, 4, 5). In this

X. Xu, F. Wang, H. Jiang et al. Journal of Parallel and Distributed Computing 172 (2023) 51–68

Fig. 6. An Example of the LOSC workflow.
Algorithm 2 Update function (v): PageRank.
1: Procedure PageRank
2: /* gather: read values from in-neighbors */
3: for each edge e of v.inedges() do
4: src ← e.source
5: sum ← sum + src.value/src.outdegree
6: end for
7: /* apply: update the value */
8: pagerank ← 0.15 + 0.85 × sum
9: v.value ← pagerank

10: End Procedure

case, LOSC can avoid loading the redundant edges of inactive ver-
tices that have no impact on the computation. This results in fewer
disk I/Os and further reduces the overheads of subgraph construc-
tion and vertex updating.

4. Evaluation

In this section, we present experimental evaluation of our sys-
tem LOSC in comparison with state-of-the-art out-of-core graph
processing systems.

4.1. Experiment setup

Platform and Datesets. The hardware platform used in our ex-
periments is an 8-core commodity machine equipped with 12 GB
main memory and 600 GB 7200 RPM HDD, running Red Hat 4.8.5.
In addition, a 128 GB SATA2 SSD is installed for evaluating the
scalability.

Datasets used for the evaluation are summarized in Table 3.
LiveJournal, Twitter2010 and Friendster are social graphs, showing
the relationship between users within each online social network.
UK2007 and Ukunion are web graphs that consist of hyperlink
59
Table 3
Datasets used in evaluation.

Dataset Vertices Edges Type

LiveJournal 4.8 million 69 million Social Network
Twitter2010 42 million 1.5 billion Social Network
Friendster 66 million 1.8 billion Social Network
UK2007 106 million 3.7 billion Web Graph
UKunion 133 million 5.5 billion Web Graph
Kron30 1 billion 32 billion Synthetic Graph

relationships between web pages, with larger diameters than so-
cial graphs. Kron30 is generated with the Graph500 generator [2].
The in-memory graph LiveJournal is chosen to evaluate the perfor-
mance of in-memory processing and the scalability of LOSC. The
other five graphs Twitter2010, Friendster, UK2007, UKunion and
Kron30 are larger than memory by 2.1×, 2.6×, 5.2×, 7.9× and
21.3× respectively.

We use several benchmarks algorithms in our evaluation to
show the applicability of LOSC: PageRank (PR), Sparse Matrix Vec-
tor Multiply (SpMV), Breadth-first search (BFS), Weak Connected
Components (WCC), and Single Source Shortest Path (SSSP). These
algorithms exhibit different I/O access and computation charac-
teristics, which provides a comprehensive evaluation of LOSC. For
PageRank, we run five iterations on each graph. For SpMV, we run
one iteration to calculate the multiplication result. For BFS, WCC
and SSSP, we run them until convergence.

Systems for Comparison. We mainly compare LOSC with two
representative out-of-core systems that use the vertex-centric and
edge-centric model respectively, GraphChi [18] and GridGraph [43].
We also compare LOSC against the first version of LOSC (we name
it as LOSC-v1) [34] to evaluate the effects of the newly proposed
optimizations. In addition, we add the comparisons with other
state-of-art out-of-core graph processing systems including Flash-

X. Xu, F. Wang, H. Jiang et al. Journal of Parallel and Distributed Computing 172 (2023) 51–68
Table 4
Execution time (in seconds).

PageRank SpMV BFS WCC SSSP

LiveJournal
GraphChi 16.6 14.1 20.9 24.4 21.4
GridGraph 10.9 5.1 5.2 5.1 6.1
LOSC-v1 2.7 1.9 3.7 4.1 4.0
LOSC 2.8 1.9 3.9 4.3 4.1

Twitter2010
GraphChi 928.6 371.4 1624.3 913.7 1913.9
GridGraph 451.9 197.2 598.9 522.5 660.4
LOSC-v1 126.5 57.6 230.1 176.3 249.2
LOSC 107.8 49.2 108.6 103.3 149.4

Friendster
GraphChi 2562.8 568.8 2294.5 2612.3 1802.4
GridGraph 1009.4 371.4 578.6 526.8 708.6
LOSC-v1 230.2 70.8 473.4 481.3 376.2
LOSC 214.4 59.1 197.3 300.8 171.2

UK2007
GraphChi 2812.5 1160.7 7154.5 6862.8 7495.8
GridGraph 1242.2 511.2 6025.2 4783.8 7029.4
LOSC-v1 265.1 121.7 1172.2 864.7 1171.4
LOSC 233.7 111.1 459.7 411.2 616.5

Ukunion
GraphChi 3376.6 1620.8 24062.3 5665.8 56650.9
GridGraph 1829.3 810.5 18929.2 13265.1 25554.2
LOSC-v1 390.1 178.9 13022.5 3513.9 18171.4
LOSC 363.2 162.3 6593.7 2437.8 8653.1

Kron30
GraphChi 42770.5 24731.6 - - -
GridGraph 20935.8 11883.5 - 72781.2 -
LOSC-v1 6278.2 3510.8 55772.2 16173.6 66932.4
LOSC 3923.9 2065.2 37181.8 9513.9 41832.6

“-” indicates that the system failed to finish execution in 48 hours.

Graph [41], GraphZ [42], G-Store [17] and NXGraph [7] to further
evaluate the performance of LOSC. Since LOSC’s compact storage
format may fit whole graph data into memory for several datasets
like Twitter2010, and makes it unfair to compare with other sys-
tems. We provide 8 GB memory budget, 8 execution threads for
the executions of all algorithms for fair comparison. Under 8 GB
memory, only the LiveJournal graph can be fit into memory, while
other graphs require access to disks.

4.2. Overall performance

We first report the execution time of the chosen algorithms on
different graphs in Table 4. Here, we compare LOSC with GraphChi
and GridGraph, two representative and widely-used out-of-core
graph processing systems that use vertex-centric and edge-centric
computing model respectively. In addition, we compare LOSC with
LOSC-v1 to see how many performance improvements the newly
proposed optimizations can bring. On average, LOSC outperforms
GraphChi, GridGraph and LOSC-v1 by 9.4×, 5.1× and 1.5× respec-
tively.

The speedup over GraphChi mainly derives from the signifi-
cant reduction in time spent on subgraph construction and disk
I/Os. PR and SpMV are based on standard matrix-vector multipli-
cation in which all vertices participate in the computation and the
I/Os are sequential. So they are computation-intensive algorithms,
which makes subgraph construction dominate the execution time.
For these algorithms, on average LOSC speeds up graph processing
by 10.1× and 10.6× respectively, compared with GraphChi. BFS,
WCC and SSSP are traversal algorithms that produce many ran-
dom I/O accesses. Furthermore, they require less computation since
only a portion of the whole vertex set participates in the compu-
tation. Therefore, they are I/O-intensive algorithms in which the
disk I/O costs become the key factor on the system performance.
Thanks to the significant reduction in disk I/Os due to the compact
60
Fig. 7. Runtime breakdown on Twitter2010.

edge storage format and benefit-aware scheduling scheme, LOSC
outperforms GraphChi by 10.2×, 7.5× and 8.9× on these three al-
gorithms respectively.

For GridGraph, although it does not need to construct vertex-
centric subgraphs since the computation is based on streaming
the edge lists, it still has a worse performance than LOSC. To fur-
ther explain the reasons, we also report the runtime breakdowns
of PageRank and WCC on Twitter2010 for both LOSC and Grid-
Graph, as shown in Fig. 7. From the results, we can see that the
better performance of LOSC mainly stems from its much lower
disk I/O overheads. This attributes to LOSC’s compact edge storage
format and benefit-aware scheduling scheme. Although GridGraph
also supports selective scheduling to reduce the loading of inactive
edges, it is very coarse-grained since it can only skip processing
the edge blocks without any active edges. This means it loads and
processes an edge-block even though there is only one active edge,
which still produces many redundant data loading.

Moreover, for in-memory settings (LiveJournal), LOSC still out-
performs GraphChi and GridGraph. This is because LOSC can make
better use of thread-level parallelism by using a lightweight repli-
cation of interval vertices, which leads to higher computational ef-
ficiency. However, when compared with the all-in-memory shared-
memory systems [28,38], out-of-core systems usually deliver a
worse performance. For example, Ligra [28] only takes 0.3 s to
run BFS on LiveJournal in our experiment platform. The perfor-
mance gap is attributed to the overheads incurred by disk I/O
optimizations of out-of-core systems and the specific optimizations
of parallel algorithms adopted by the shared-memory systems. This
further reflects that out-of-core graph processing systems are more
suitable for handling large-scale graphs beyond the memory. When
a machine with large capacity of memory is available, it is more
reasonable to use the shared-memory graph processing systems.

When compared with LOSC-v1, the use of the benefit-aware
scheduling scheme and parallelized subgraph construction can im-
prove the performance by up to 2.4×. In addition, we can observe
that these newly proposed optimizations bring few benefits when
processing the small graph LiveJournal. This is because the Live-
Journal graph can fit in memory and the vertex updating time
dominates the overall runtime.

We also evaluate the preprocessing time of different systems.
The preprocessing time consists of loading raw data into mem-
ory, partitioning and compressing the graph. As shown in Fig. 8,
LOSC takes more preprocessing time than the other systems, since
it needs to build two copies of edges and implement the space-
efficient storage format. This may limit LOSC’s efficiency and make
it not appropriate for problems with dynamic graph structures.
However, the overhead of the extra preprocessing is more than off-
set by the significant performance improvement it brings in almost
all cases except for the SpMV algorithm, according to results in Ta-
ble 4. For example, the preprocessing time of LOSC for Twitter2010
is longer than that of GridGraph by 218.7 s, the algorithm execu-
tion time of LOSC is less than that of GridGraph by 344.1 s, 148

X. Xu, F. Wang, H. Jiang et al. Journal of Parallel and Distributed Computing 172 (2023) 51–68
Fig. 8. Preprocessing time.

s, 490.3 s, 419.2 s and 511 s for PR, SPMV, BFS, WCC and SSSP
respectively. This indicates the preprocessing time may outweigh
the benefits of proposed optimizations when handling the graph
algorithms with lightweight computation and I/O loads or few it-
erations like SpMV. In addition, the preprocessing phase of graphs
is usually off-line. Therefore, the graphs can be reused for many
times after preprocessing, and the preprocessing overheads can be
significantly amortized.

4.3. Effect of locality-optimized subgraph construction

In this subsection, we compare LOSC with GraphChi that also
needs subgraph construction in terms of subgraph construction
overheads, cache miss rates as well as the effect of thread paral-
lelism. Specifically, we implement LOSC-PSW that constructs sub-
graphs by using the PSW method [18] of GraphChi. Note that
LOSC-PSW also uses GraphChi’s graph partition and organization
format. For more exact evaluation, we disable the benefit-aware
scheduling scheme since it also influences the subgraph construc-
tion time. Fig. 9 shows the time cost of subgraph construction on
Twitter2010 and UK2007. We find that LOSC exhibits high effi-
ciency of subgraph construction and achieves an average speedup
of 28.6× and 2.9× compared with PSW and LOSC-v1. This is at-
tributed to a great reduction of random memory accesses and
effective utilization of parallelism during the subgraph construc-
tion phase.

To further demonstrate how the locality-optimized subgraph
construction scheme improves the performance of subgraph con-
struction, we first measure the number of memory reads/writes
and cache misses during the subgraph construction phase using
Cachegrind [1], a tool to simulate memory, the first-level and last-
level caches etc. Here, we just report the number of memory reads
and writes, last-level cache read and write misses (LL misses). The
focus on the last-level cache stems from the fact that it has the
most influence on the time of subgraph construction, as it masks
accesses to main memory and a last-level cache miss can cost as
much as 200 cycles [1]. For the ease of measure, we run 1 iter-
ation of BFS on the small graph, LiveJournal, and summarize the
results in Table 5. We observe that the LL miss rate of LOSC-PSW
is much higher than LOSC. This means that the locality of mem-
ory access is exploited better and CPU is able to do more work
on data residing in the cache for subgraph construction of LOSC.
For LOSC-PSW, CPU has to frequently access memory to read data,
which significantly increases the access latency.

Then we evaluate the effect the number of threads on subgraph
construction. Fig. 10 shows the results of BFS on LiveJournal and
UK2007. When the number of threads increases from 1 to 8, the
performance of subgraph construction for LOSC-PSW and LOSC im-
proves by 1.2× and 3.3× on average respectively. This indicates
that LOSC makes better use of parallelism, since there are no write
conflicts between the threads that take charge of different vertices
and edges as introduced in Section 3.3.
61
Table 5
Memory access and cache miss.

System Read Write

LOSC-PSW mem. refs 416278519 212376955
LLC misses 32053445 49059076
LLC miss rate 7.7% 23.1%

LOSC mem. refs 410852346 205426173
LLC misses 1608991 6183666
LLC miss rate 0.4% 3.0%

4.4. Effect of compact edge storage format

We evaluate the effects of the compact edge storage format on
storage space, I/O traffic and runtime of algorithms. To evaluate
the storage space consumption, We compare LOSC with GraphChi,
GridGraph, FlashGraph [41], Ligra+ [29] and G-Store [17]. These
systems use different storage formats or compression techniques,
which provides a comprehensive evaluation of the effectiveness
of LOSC’s compact storage format. In addition, we compare LOSC
with the baseline implementation without using the compact stor-
age format (LOSC-without). Fig. 11(a) compares the required disk
space of these systems. We observe that the storage of LOSC is ef-
ficient even though it stores two copies of each edge. Specially, the
storage usages of GraphChi and GridGraph that use CSR and edge
list to store the graphs respectively are 1.4× and 3.1× higher than
those of LOSC on average. Compared with LOSC-without, the com-
pact edge storage format can save storage usages by up to 76%.

FlashGraph also stores both the in-edges and out-edges in the
CSR/CSC format, but without compression. Therefore, the storage
sizes of FlashGraph are almost equal to those of LOSC-without.
Ligra+ and G-Store implement a compact storage by using differ-
ent compression methods. Ligra+ also enables delta compression.
In addition, it utilizes run-length encoded byte codes for vertex
encoding. G-Store utilizes the symmetry present in graph data,
which is similar to the compression of undirected graph in LOSC.
Furthermore, it also enables compression of ID by removing the re-
dundancy of the most-significant-bits (MSBs) of IDs of source and
destination vertices within a partition. Unlike these systems, LOSC
compresses IDs by using the variable-length integer to encode ver-
tices IDs of different values, as well as storing the delta values of
IDs. As shown in Fig. 11(a), the storage sizes of LOSC are respec-
tively 1.1× and 1.5× smaller than those of Ligra+ and G-Store on
average.

Fig. 11(b) and Fig. 11(c) shows the benefits of the compact edge
storage format on I/O traffic and runtime when running PageRank
on different graphs. We can see that the compact edge storage for-
mat can significantly reduce the amount of I/O traffic, leading to
better algorithm performance. Specifically, the total amount of I/O
traffic and runtime can be reduced by 58% and 43% on average
when using the compact edge storage format.

4.5. Effect of benefit-aware scheduling scheme

We first evaluate the benefits of the benefit-aware scheduling
scheme. To this end, we compare LOSC with a baseline implemen-
tation that disables the benefit-aware scheduling scheme (LOSC-d),
in terms of I/O traffic, subgraph construction overheads and over-
all performance of algorithms. The evaluation results are shown in
Fig. 12, running BFS and WCC on different graphs. To intuitively
show the comparisons of LOSC and LOSC-d, we report the normal-
ized results.

Benefits on I/O traffic. Fig. 12 (a) and (b) show the comparisons
of I/O traffic. For BFS and WCC where the number of active edges is
small in most iterations, the benefit-aware scheduling scheme can
effectively avoid the loading of useless data, significantly reducing

X. Xu, F. Wang, H. Jiang et al. Journal of Parallel and Distributed Computing 172 (2023) 51–68

Fig. 9. Time cost of subgraph construction.

Fig. 10. Effect of threads number on subgraph construction.

Fig. 11. Evaluating the benefits of compact edge storage format.
62

X. Xu, F. Wang, H. Jiang et al. Journal of Parallel and Distributed Computing 172 (2023) 51–68

Fig. 12. Evaluating the benefits of benefit-aware scheduling scheme.
the I/O traffic. Specifically, the total amount of I/O traffic can be
reduced by 75% and 68% for BFS and WCC respectively.

Benefits on subgraph construction. Fig. 12 (c) and (d) compare
LOSC and LOSC-d in term of subgraph construction overheads. The
less I/O traffic enabled by the benefit-aware scheduling scheme
further reduces the subgraph construction overheads, since less
edges are loaded to memory to construct subgraphs. Specifically,
the subgraph construction overheads can be reduced by 70% and
66% for BFS and WCC respectively.

Benefits on overall performance. The combined effects of less
I/O traffic and faster subgraph construction bring an improvement
on overall performance, as shown in Fig. 12 (e) and (f). Specifically,
the benefit-aware scheduling scheme can improve the overall per-
formance by 44% and 33% for BFS and WCC respectively.

Then we evaluate the overheads of the benefit-aware schedul-
ing scheme since it will perform the benefit evaluation in each it-
eration and produce extra computation overheads. Specifically, we
compare the computation overheads (benefit evaluation) with the
reduced I/O time enabled by the benefit-aware scheduling scheme.
As shown in Fig. 13, we can see that the extra computation over-
heads are negligible. For example, the computation time for benefit
evaluation of BFS is only 1.4 s on Twitter2010, while the corre-
sponding reduced I/O time is 58.1 s.
63
4.6. Memory usage

Fig. 14 shows the maximum memory usage comparison of the
three systems when running PageRank, BFS and WCC on Twit-
ter2010 and UK2007. We can see that GridGraph has the minimum
memory consumption as it only maintains one copy of edges. For
LOSC, due to no need to store edge values, it has less memory con-
sumption than that of GraphChi. In addition, LOSC has less mem-
ory consumption when running PageRank, since this algorithm
only requires the in-edges to finish computation. Even though, we
still plan to seek a more compact in-memory storage structure to
mitigate the memory pressure in the future works.

4.7. Scalability

We evaluate the scalability of LOSC by observing the improve-
ment when more hardware resource is added. Fig. 15(a) shows the
speedup of different systems when running PageRank on LiveJour-
nal using different numbers of threads. We observe that GridGraph
and LOSC improves the performance as the number of threads
increases. For GridGraph, it enables parallel processing by over-
lapping the vertex updating and edge streaming [43]. For LOSC,
it makes full use of parallelism by using a lightweight replica-

X. Xu, F. Wang, H. Jiang et al. Journal of Parallel and Distributed Computing 172 (2023) 51–68

Fig. 13. Evaluating the overheads of benefit-aware scheduling scheme.

Fig. 14. Maximum memory usage.
tion of interval vertices as introduced in Section 3.7. On the other
hand, GraphChi shows poor scalability as we increase the number
of threads. The main blame is GraphChi’s deterministic parallelism
that limits the utilization of multi-threads [18]. Fig. 15(b) shows
the results when running BFS on UK2007. Since system perfor-
mance is limited by disk I/O, thread number has relatively less im-
pact on the performance. Among these systems, LOSC achieves the
best scalability. Specifically, when the number of thread increases
from 1 to 8, the performance of GraphChi, GridGraph and LOSC are
improved by 8%, 12% and 39% respectively. This is because LOSC
has the best I/O performance, so that the vertex updating time oc-
cupies a larger proportion in overall execution time compared to
other two systems and thread parallelism contributes to more per-
formance improvement.

Fig. 15(c) shows the performance improvement of BFS on UK
when using different I/O devices. Compared with disk perfor-
mance, GraphChi, GridGraph and LOSC achieve a speedup of 1.3×,
1.8× and 1.7× respectively when using SSD. This indicates that
LOSC and GridGraph can benefit more from the utilization of SSD,
since the key performance bottleneck of them is the disk I/O costs.
For GraphChi in which the subgraph construction is also a per-
64
formance bottleneck, using fast I/O devices can only bring limited
improvement.

Fig. 15(d) shows the performance variations of PageRank on
Twitter graph under different memory budgets. With the memory
increased from 2 GB to 12 GB, LOSC achieves a speedup of 6.2×,
much higher than the speedups of GraphChi (1.3×) and GridGraph
(1.2×). This is because LOSC can fit the whole graph data into
memory under 12 GB memory, thanks to the compact storage for-
mat.

4.8. Comparison with other systems

In Fig. 16, we compare LOSC with other state-of-art out-of-
core graph processing systems including FlashGraph [41], GraphZ
[42], G-Store [17] and NXGraph [7] to further evaluate the per-
formance of LOSC. FlashGraph utilizes SSD arrays to implement a
semi-external memory graph engine. It supports selective access
of the edges requested by the applications in a random manner.
GraphZ reduces the I/O costs and improves performance by us-
ing the degree-ordered storage and dynamic messages. G-Store is a
high-performance graph store engine which delivers high through-
put of graph data I/Os from SSDs, combined with judicious use of

X. Xu, F. Wang, H. Jiang et al. Journal of Parallel and Distributed Computing 172 (2023) 51–68

Fig. 15. Evaluation of scalability.

Fig. 16. Execution time of different graph processing systems.
main memory and cache. It also enables compact storage by using
techniques such as ID compression. NXgraph provides three novel
update strategies under the Destination-Sorted Sub-Shard (DSSS)
structure so as to further ensure locality of graph data access.
Among them, FlashGraph and GraphZ are vertex-centric graph pro-
cessing systems and G-Store and NXGraph are edge-centric graph
processing systems.

For GraphZ and NXGraph, LOSC achieves average speedups of
2.3× and 2.7× respectively. Specifically, for each algorithm (PageR-
ank, BFS and WCC), LOSC achieves average speedups of 1.4×, 1.9×
and 3.8× respectively over GraphZ, and average speedups of 1.7×,
3.1× and 3.4× respectively over NXGraph. In particular, LOSC has a
higher speedup when running BFS and WCC. This is because there
are very few active edges in most iterations of these algorithms. In
this case, the efficiency of LOSC’s benefit-aware scheduling is sig-
nificant. While for PageRank, the benefit-aware scheduling scheme
does not take effect. Furthermore, the compact edge storage format
also contributes to LOSC’s better performance.

FlashGraph supports selective access by loading the active
edges in a random manner, relying on expensive SSD arrays that
deliver high I/O bandwidth. However, it incurs significant over-
heads when issuing frequent small random accesses to HDDs or
65
one SSD. While for LOSC, it skips processing inactive edges in each
iteration whenever such skipping can bring performance benefit.
This results in a higher speedup over FlashGraph when running
BFS and WCC, as shown in Fig. 16. Specifically, LOSC outperforms
FlashGraph by average speedups of 1.7×, 3.7× and 4.9× for each
algorithm respectively.

For G-Store, it enables high-performance storage by utilizing the
symmetry present in graph data and removing the redundancy
of the most-significant-bits (MSBs) of IDs of source and desti-
nation vertices within a partition. Furthermore, G-Store adopts a
clever proactive caching strategy to make better use of memory.
Thanks to these optimizations, G-Store has a better performance
than other three systems. However, LOSC still achieves an aver-
age speedup of 1.2× over G-Store. This is attributed to the fol-
lowing two reasons. First, LOSC enables more compact storage by
combining several graph compression methods as shown in Sec-
tion 4.4, which can lead to less I/O traffic. Second, the benefit-
aware scheduling scheme avoids more unnecessary I/Os for LOSC.
Although G-Store can also support selective fetching, it relies on
SSD arrays to achieve this like FlashGraph. While the benefit-aware
scheduling scheme has better adaptability and works well for both
SSD and HDD.

X. Xu, F. Wang, H. Jiang et al. Journal of Parallel and Distributed Computing 172 (2023) 51–68
5. Related work

Many scalable graph processing systems have recently been
proposed. In this section, we introduce three categories of exist-
ing graph processing systems: distributed systems, single-machine
shared-memory systems and single-machine disk-based (out-of-
core) systems.

5.1. Distributed systems

Distributed systems usually distribute a large graph into the
compute nodes of a cluster by constructing node-resident sub-
graphs from the original graph, which enables them to utilize
the aggregate memory of a cluster to achieve good scalability.
Pregel [24] supports vertex-centric computing model following
Bulk-Synchronous Parallel message passing model [31]. It abstracts
away the complexity of programming in a distributed-memory
environment and runs users’ code in parallel on a cluster. How-
ever, this model usually suffers from expensive synchronization
overheads. GraphLab [21] and PowerGraph [13] executes an asyn-
chronous model and uses shared memory for communication
among vertices instead of passing messages. Gemini [44] applies
multiple optimizations targeting computation performance to build
scalability on top of efficiency. Chaos [27], BlitzG [6] and Turbo-
Graph++ [16] utilize secondary storage to scale distributed graph
processing to out-of-core scenery. Giraph [8] and Shentu [19] ex-
ploit a powerful cluster with high performance interconnects to
handle trillion-scale graphs. Gluon [9] introduces a new approach
to building distributed memory graph analytics systems that ex-
ploit heterogeneity in processor types (CPU and GPU), partitioning
policies, and programming models.

5.2. Single-machine shared-memory systems

Single-machine shared-memory systems typically use a high-
end server with hundreds or thousands gigabytes of DRAM to hold
the whole graph [11]. Ligra [28] is a lightweight shared-memory
framework and provides a programming interface optimized for
graph traversal algorithms. Polymer [38] is a NUMA-aware graph
analytics system, which is motivated by a detailed study of NUMA
characteristics. Garaph [22] fully exploits the power of modern
hardware and efficiently support GPU-accelerated graph process-
ing. Julienne [10] extends Ligra with an interface for maintaining a
collection of buckets under vertex insertions and bucket deletions,
to efficiently support bucketing-based graph algorithms. GraphIt
[39] is a novel DSL for graph processing that generates fast im-
plementations for algorithms with different performance charac-
teristics running on graphs with varying sizes and structures.

5.3. Out-of-core systems

Out-of-core graph processing systems enable users to analyze,
process and mine large graphs in a single PC by efficiently using
disks. Current out-of-core graph processing systems mainly adopt
two computing models, i.e., vertex-centric and edge-centric.

Vertex-centric systems. TurboGraph [15] inspired by GraphChi
focuses on improving parallelism by overlapping the CPU and I/O
processing with a novel concept called pin-and-slide, but it is
applicable only to certain embarrassingly parallel algorithms [5].
VENUS [5] uses a vertex-centric streamlined computing model and
proposes a new storage scheme that streams the graph data while
performing computation. Nevertheless, it only loads the in-edges
of vertices during computation, which disables selective schedul-
ing and is inappropriate for certain algorithms that also require
out-edges of vertices. [33] provides a general optimization for
out-of-core graph processing, which removes unnecessary I/O by
66
employing dynamic partitions whose layouts are dynamically ad-
justable. Although it can avoid the loading of useless data and
eliminate random disk accesses, it has to write back the active
edges. FlashGraph [41] supports selective access the edges re-
quested by the applications in a random manner. Graphene [20]
proposes clever I/O management and scheduling to ease the pro-
gramming and achieve high IO performance. However, they both
rely on expensive SSD arrays that deliver high I/O bandwidth and
only support semi-external processing, and will incur significant
overheads when issuing frequent small random accesses to HDDs
or one SSD. While for LOSC, it has better flexibility and works well
for both SSD and HDD, since it skips processing inactive edges in
each iteration whenever such skipping can bring performance ben-
efit. MultiLogVC [25] adopts a multi-log update mechanism and an
extended compressed sparse row (CSR) format to reduce the load-
ing of inactive vertices and edges. GraphSD [36] simultaneously
captures the state and dependency of graph data during computa-
tion, so as to significantly improve the disk I/O performance.

Edge-centric systems. X-Stream [26] advocates a novel edge-
centric scatter-gather computing model. In the scatter phase, it
streams the entire edge list and produces updates. In the gather
phase, it propagates these updates to vertices. Although it lever-
ages high disk bandwidth through sequential accessing, it writes
a large amount of intermediate updates to disks and disables se-
lective scheduling, which incurs great I/O and computation over-
head. GridGraph [43] also uses an edge-centric computing model.
Differently, it combines the scatter and gather phases into one
“streaming-apply” phase and uses a 2-Level hierarchical parti-
tion to break graph into 1D-partitioned vertex chunks and 2D-
partitioned edge blocks. It supports selective scheduling by skip-
ping the edge blocks for which vertices in the corresponding
chunks are not scheduled. NXgraph [7] proposes destination-sorted
subshard structure to store a graph so as to further ensure locality
of graph data access. Although these systems can skip the phase
of subgraph construction. MOSAIC [23] fully exploits the hetero-
geneity of modern hardware such as NVMe devices and Xeon Phis,
to scale up to one trillion edges using a single machine. However,
this may limit its adaptability due to the relying on these high-end
hardwares. CLIP [3] and Lumos [32] adopt an out-of-order execu-
tion model to make full use of the loaded blocks to avoid loading
the corresponding graph portions in future iterations. Their cross-
iteration value propagation method can also be used in our work
to further speedup the convergence of algorithms and reduce disk
I/O.

5.4. Graph processing systems with compressed storage

Several systems adopt compressed storage format for efficient
storage and better performance. WebGraph [4] presents several
compression techniques to compress web and social network
graphs, by exploiting the properties of real-world web graphs.
However, it mainly focuses on compressing the web graphs and
is not used to improve the performance of general graph algo-
rithms or graph processing systems [29]. Ligra+ [29] integrates
compression techniques such delta compression into Ligra. In ad-
dition, it uses run-length encoded byte codes for vertex encoding.
Unlike LOSC that compresses the graphs to save the disk space
and further reduce I/O traffic, it uses the compression techniques
to enable faster in-memory parallel graph processing using less
memory footprints. G-Store [17] utilizes the symmetry present
in graph data by storing only the upper triangle (half) of graph
data for undirected graphs, which is similar to the compression of
undirected graph in LOSC. It also enables compression of ID, but
implementing differently by removing the redundancy of the most-
significant-bits (MSBs) of IDs of source and destination vertices
within a partition. MOSAIC [23] implements the ID compression by

X. Xu, F. Wang, H. Jiang et al. Journal of Parallel and Distributed Computing 172 (2023) 51–68
mapping a global vertex ID in the original graph to a local vertex
ID inside a tile. However, it has to maintain a per-tile meta index
structure for the mapping. CIC-PIM [40] proposes a lightweight
encoding with chunked index compression, to reduce the mem-
ory footprint and the runtime of graph algorithms. It divides in-
dex structures into chunks of appropriate size and compress the
chunks with a lightweight fixed-length byte-aligned encoding.

6. Conclusion

In this paper, we discover a new performance bottleneck of
out-of-core graph processing system other than the disk I/O prob-
lem, which is the inefficient subgraph construction caused by a
large number of random memory accesses. In order to reduce
the significant overheads of subgraph construction, we present a
new out-of-core graph processing system called LOSC that sup-
ports vertex-centric computing model. LOSC proposes a locality-
optimized subgraph construction scheme that improves the in-
memory data access locality of subgraph construction phase. LOSC
also adopts a compact edge storage format and a lightweight repli-
cation of vertices to reduce I/O traffic and improve computation
efficiency. Moreover, a benefit-aware scheduling scheme is applied
to skip processing the inactive edges, which further improves the
I/O performance. Our evaluation results show that LOSC can be
much faster than two representative graph processing out-of-core
systems GraphChi and GridGraph, and other state-of-the-art out-
of-core systems.

CRediT authorship contribution statement

Xianghao Xu: Conceptualization, Methodology, Software, Writ-
ing – original draft, Writing – review & editing. Fang Wang: Fund-
ing acquisition, Resources, Supervision. Hong Jiang: Validation,
Writing – review & editing. Yongli Cheng: Investigation, Software.
Yu Hua: Investigation, Validation. Dan Feng: Supervision. Yongx-
uan Zhang: Software.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

No data was used for the research described in the article.

Acknowledgment

This work was supported by NSFC No. 61772216, No. 61832020,
No. 61821003. This work is also supported by the Natural Science
Foundation of Fujian Province under Grant No. 2020J01493, Zhe-
jiang provincial Ten Thousand Talents Program (No. 2021R52007)
and Center-initiated Research Project of Zhejiang Lab (No.
2021DA0AM01).

References

[1] http://www.valgrind .org/, 2019.
[2] http://www.graph500 .org/, 2020.
[3] Z. Ai, M. Zhang, Y. Wu, X. Qian, K. Chen, W. Zheng, Squeezing out all the value

of loaded data: an out-of-core graph processing system with reduced disk I/O,
in: USENIX ATC’17, 2017, pp. 125–137.

[4] P. Boldi, S. Vigna, The webgraph framework I: compression techniques, in:
WWW’04, 2004, pp. 595–602.

[5] J. Cheng, Q. Liu, Z. Li, W. Fan, J.C. Lui, C. He, Venus: vertex-centric streamlined
graph computation on a single pc, in: ICDE’15, IEEE, 2015, pp. 1131–1142.
67
[6] Y. Cheng, H. Jiang, F. Wang, Y. Hua, D. Feng, W. Guo, Y. Wu, Using high-
bandwidth networks efficiently for fast graph computation, IEEE Trans. Parallel
Distrib. Syst. 30 (5) (2018) 1170–1183.

[7] Y. Chi, G. Dai, Y. Wang, G. Sun, G. Li, H. Yang, Nxgraph: an efficient graph
processing system on a single machine, in: ICDE’16, IEEE, 2016, pp. 409–420.

[8] A. Ching, S. Edunov, M. Kabiljo, D. Logothetis, S. Muthukrishnan, One trillion
edges: graph processing at Facebook-scale, Proc. VLDB Endow. 8 (12) (2015)
1804–1815.

[9] R. Dathathri, G. Gill, L. Hoang, H.-V. Dang, A. Brooks, N. Dryden, M. Snir, K.
Pingali, Gluon: a communication-optimizing substrate for distributed heteroge-
neous graph analytics, in: PLDI’18, ACM, 2018, pp. 752–768.

[10] L. Dhulipala, G. Blelloch, J. Shun, Julienne: a framework for parallel graph algo-
rithms using work-efficient bucketing, in: SPAA’17, ACM, 2017, pp. 293–304.

[11] L. Dhulipala, G.E. Blelloch, J. Shun, Theoretically efficient parallel graph algo-
rithms can be fast and scalable, in: SPAA’18, 2018, pp. 393–404.

[12] N. Elyasi, C. Choi, A. Sivasubramaniam, Large-scale graph processing on emerg-
ing storage devices, in: FAST’19, 2019, pp. 309–316.

[13] J.E. Gonzalez, Y. Low, H. Gu, D. Bickson, C. Guestrin, Powergraph: distributed
graph-parallel computation on natural graphs, in: OSDI’12, 2012, pp. 17–30.

[14] J.E. Gonzalez, R.S. Xin, A. Dave, D. Crankshaw, M.J. Franklin, I. Stoica, Graphx:
graph processing in a distributed dataflow framework, in: OSDI’14, 2014,
pp. 599–613.

[15] W.-S. Han, S. Lee, K. Park, J.-H. Lee, M.-S. Kim, J. Kim, H. Yu, Turbograph: a fast
parallel graph engine handling billion-scale graphs in a single pc, in: KDD’13,
2013, pp. 77–85.

[16] S. Ko, W.-S. Han, Turbograph++ a scalable and fast graph analytics system, in:
SIGMOD’18, 2018, pp. 395–410.

[17] P. Kumar, H.H. Huang, G-store: high-performance graph store for trillion-edge
processing, in: SC’16, IEEE, 2016, pp. 830–841.

[18] A. Kyrola, G. Blelloch, C. Guestrin, Graphchi: large-scale graph computation on
just a pc, in: OSDI’12, 2012, pp. 31–46.

[19] H. Lin, X. Zhu, B. Yu, X. Tang, W. Xue, W. Chen, L. Zhang, T. Hoefler, X. Ma, X.
Liu, et al., Shentu: processing multi-trillion edge graphs on millions of cores in
seconds, in: SC’18, IEEE, 2018, pp. 706–716.

[20] H. Liu, H.H. Huang, Graphene: fine-grained io management for graph comput-
ing, in: FAST’17, 2017, pp. 285–300.

[21] Y. Low, D. Bickson, J. Gonzalez, C. Guestrin, A. Kyrola, J.M. Hellerstein, Dis-
tributed graphlab: a framework for machine learning and data mining in the
cloud, in: PVLDB, 2012, pp. 716–727.

[22] L. Ma, Z. Yang, H. Chen, J. Xue, Y. Dai, Garaph: efficient GPU-accelerated graph
processing on a single machine with balanced replication, in: USENIX ATC’17,
2017, pp. 195–207.

[23] S. Maass, C. Min, S. Kashyap, W. Kang, M. Kumar, T. Kim, Mosaic: process-
ing a trillion-edge graph on a single machine, in: EuroSys’17, ACM, 2017,
pp. 527–543.

[24] G. Malewicz, M.H. Austern, A.J. Bik, J.C. Dehnert, I. Horn, N. Leiser, G. Cza-
jkowski, Pregel: a system for large-scale graph processing, in: SIGMOD’10, ACM,
2010, pp. 135–146.

[25] K.K. Matam, H. Hashemi, M. Annavaram, Multilogvc: efficient out-of-core graph
processing framework for flash storage, in: IPDPS’21, IEEE, 2021, pp. 245–255.

[26] A. Roy, I. Mihailovic, W. Zwaenepoel, X-stream: edge-centric graph processing
using streaming partitions, in: SOSP’13, ACM, 2013, pp. 472–488.

[27] A. Roy, L. Bindschaedler, J. Malicevic, W. Zwaenepoel, Chaos: scale-out graph
processing from secondary storage, in: SOSP’15, ACM, 2015, pp. 410–424.

[28] J. Shun, G.E. Blelloch, Ligra: a lightweight graph processing framework for
shared memory, in: PPoPP’13, 2013, pp. 135–146.

[29] J. Shun, L. Dhulipala, G.E. Blelloch, Smaller and faster: parallel processing of
compressed graphs with ligra+, in: DCC’15, IEEE, 2015, pp. 403–412.

[30] Y. Tian, A. Balmin, S.A. Corsten, S. Tatikonda, J. McPherson, From think like a
vertex to think like a graph, Proc. VLDB Endow. 7 (3) (2013) 193–204.

[31] L.G. Valiant, A bridging model for parallel computation, Commun. ACM 33 (8)
(1990) 103–111.

[32] K. Vora, Lumos: dependency-driven disk-based graph processing, in: ATC’19,
2019, pp. 429–442.

[33] K. Vora, G. Xu, R. Gupta, Load the edges you need: a generic I/O optimization
for disk-based graph processing, in: USENIX ATC’16, 2016, pp. 507–522.

[34] X. Xu, F. Wang, H. Jiang, Y. Cheng, Y. Hua, D. Feng, Y. Zhang, Losc: efficient
out-of-core graph processing with locality-optimized subgraph construction,
in: IWQoS’19, ACM, 2019, p. 34.

[35] X. Xu, F. Wang, H. Jiang, Y. Cheng, D. Feng, Y. Zhang, A hybrid update strategy
for I/O-efficient out-of-core graph processing, IEEE Trans. Parallel Distrib. Syst.
31 (8) (2020) 1767–1782.

[36] X. Xu, H. Jiang, F. Wang, Y. Cheng, P. Fang, Graphsd: a state and dependency
aware out-of-core graph processing system, in: ICPP’22, ACM, 2022.

[37] P. Yuan, P. Liu, B. Wu, H. Jin, W. Zhang, L. Liu, Triplebit: a fast and compact
system for large scale rdf data, in: PVLDB, 2013, pp. 517–528.

[38] K. Zhang, R. Chen, H. Chen, Numa-aware graph-structured analytics, ACM SIG-
PLAN Not. 50 (8) (2015) 183–193.

[39] Y. Zhang, M. Yang, R. Baghdadi, S. Kamil, J. Shun, S. Amarasinghe, Graphit: a
high-performance graph dsl, Proc. ACM Program. Lang. 2 (OOPSLA) (2018) 121.

http://www.valgrind.org/
http://www.graph500.org/
http://refhub.elsevier.com/S0743-7315(22)00215-5/bibB9402AEE90F365AC675AAEEE47E3AD27s1
http://refhub.elsevier.com/S0743-7315(22)00215-5/bibB9402AEE90F365AC675AAEEE47E3AD27s1
http://refhub.elsevier.com/S0743-7315(22)00215-5/bibB9402AEE90F365AC675AAEEE47E3AD27s1
http://refhub.elsevier.com/S0743-7315(22)00215-5/bib702700966533D21EBCC97F634A50D5BAs1
http://refhub.elsevier.com/S0743-7315(22)00215-5/bib702700966533D21EBCC97F634A50D5BAs1
http://refhub.elsevier.com/S0743-7315(22)00215-5/bib278426B8393197EFBAA53D94D5085BEFs1
http://refhub.elsevier.com/S0743-7315(22)00215-5/bib278426B8393197EFBAA53D94D5085BEFs1
http://refhub.elsevier.com/S0743-7315(22)00215-5/bibACC29289EC442FED73DAE83701E2EDD2s1
http://refhub.elsevier.com/S0743-7315(22)00215-5/bibACC29289EC442FED73DAE83701E2EDD2s1
http://refhub.elsevier.com/S0743-7315(22)00215-5/bibACC29289EC442FED73DAE83701E2EDD2s1
http://refhub.elsevier.com/S0743-7315(22)00215-5/bibBC5B4C1931AD97348D7774AC13BD5FAFs1
http://refhub.elsevier.com/S0743-7315(22)00215-5/bibBC5B4C1931AD97348D7774AC13BD5FAFs1
http://refhub.elsevier.com/S0743-7315(22)00215-5/bibBB3EBDDF0948EC2677AE63EAB960530As1
http://refhub.elsevier.com/S0743-7315(22)00215-5/bibBB3EBDDF0948EC2677AE63EAB960530As1
http://refhub.elsevier.com/S0743-7315(22)00215-5/bibBB3EBDDF0948EC2677AE63EAB960530As1
http://refhub.elsevier.com/S0743-7315(22)00215-5/bib1EAFC215CFB59959DD93B151681217B1s1
http://refhub.elsevier.com/S0743-7315(22)00215-5/bib1EAFC215CFB59959DD93B151681217B1s1
http://refhub.elsevier.com/S0743-7315(22)00215-5/bib1EAFC215CFB59959DD93B151681217B1s1
http://refhub.elsevier.com/S0743-7315(22)00215-5/bib2CF04D41F0501F9C49A63281F3C92D59s1
http://refhub.elsevier.com/S0743-7315(22)00215-5/bib2CF04D41F0501F9C49A63281F3C92D59s1
http://refhub.elsevier.com/S0743-7315(22)00215-5/bib08A723DD490B1ACE1B7395CEBCC637B2s1
http://refhub.elsevier.com/S0743-7315(22)00215-5/bib08A723DD490B1ACE1B7395CEBCC637B2s1
http://refhub.elsevier.com/S0743-7315(22)00215-5/bib0FB093AFF98D23FF75D666F2872E1AB7s1
http://refhub.elsevier.com/S0743-7315(22)00215-5/bib0FB093AFF98D23FF75D666F2872E1AB7s1
http://refhub.elsevier.com/S0743-7315(22)00215-5/bibD1F812E5568B3DB32B25A93DE0B5E82Cs1
http://refhub.elsevier.com/S0743-7315(22)00215-5/bibD1F812E5568B3DB32B25A93DE0B5E82Cs1
http://refhub.elsevier.com/S0743-7315(22)00215-5/bib4008E52B22DA5D27BDF9C9B72F5BC95Es1
http://refhub.elsevier.com/S0743-7315(22)00215-5/bib4008E52B22DA5D27BDF9C9B72F5BC95Es1
http://refhub.elsevier.com/S0743-7315(22)00215-5/bib4008E52B22DA5D27BDF9C9B72F5BC95Es1
http://refhub.elsevier.com/S0743-7315(22)00215-5/bibE48D4780FC7666D8615F2E0B5B0633D1s1
http://refhub.elsevier.com/S0743-7315(22)00215-5/bibE48D4780FC7666D8615F2E0B5B0633D1s1
http://refhub.elsevier.com/S0743-7315(22)00215-5/bibE48D4780FC7666D8615F2E0B5B0633D1s1
http://refhub.elsevier.com/S0743-7315(22)00215-5/bibDBB845E50082DB157F814A6A23BB35B2s1
http://refhub.elsevier.com/S0743-7315(22)00215-5/bibDBB845E50082DB157F814A6A23BB35B2s1
http://refhub.elsevier.com/S0743-7315(22)00215-5/bib2D54A78F6C6693E7A072A3B092307B8As1
http://refhub.elsevier.com/S0743-7315(22)00215-5/bib2D54A78F6C6693E7A072A3B092307B8As1
http://refhub.elsevier.com/S0743-7315(22)00215-5/bib285C0429F7DAC247D0BC7407C28DA4CEs1
http://refhub.elsevier.com/S0743-7315(22)00215-5/bib285C0429F7DAC247D0BC7407C28DA4CEs1
http://refhub.elsevier.com/S0743-7315(22)00215-5/bib4485A221EA6FB4E07DEA0198FAFB3DD6s1
http://refhub.elsevier.com/S0743-7315(22)00215-5/bib4485A221EA6FB4E07DEA0198FAFB3DD6s1
http://refhub.elsevier.com/S0743-7315(22)00215-5/bib4485A221EA6FB4E07DEA0198FAFB3DD6s1
http://refhub.elsevier.com/S0743-7315(22)00215-5/bib55831E67F0ACA72BDD84A0A95496DABCs1
http://refhub.elsevier.com/S0743-7315(22)00215-5/bib55831E67F0ACA72BDD84A0A95496DABCs1
http://refhub.elsevier.com/S0743-7315(22)00215-5/bib2F03FA6F7CC3BA3CC8F9372B63B5E9BCs1
http://refhub.elsevier.com/S0743-7315(22)00215-5/bib2F03FA6F7CC3BA3CC8F9372B63B5E9BCs1
http://refhub.elsevier.com/S0743-7315(22)00215-5/bib2F03FA6F7CC3BA3CC8F9372B63B5E9BCs1
http://refhub.elsevier.com/S0743-7315(22)00215-5/bibD726E6C08C13A7AB424E66296EF16415s1
http://refhub.elsevier.com/S0743-7315(22)00215-5/bibD726E6C08C13A7AB424E66296EF16415s1
http://refhub.elsevier.com/S0743-7315(22)00215-5/bibD726E6C08C13A7AB424E66296EF16415s1
http://refhub.elsevier.com/S0743-7315(22)00215-5/bibDF3DEF41673607125FB6E5B7E70F0D2As1
http://refhub.elsevier.com/S0743-7315(22)00215-5/bibDF3DEF41673607125FB6E5B7E70F0D2As1
http://refhub.elsevier.com/S0743-7315(22)00215-5/bibDF3DEF41673607125FB6E5B7E70F0D2As1
http://refhub.elsevier.com/S0743-7315(22)00215-5/bibEBD06A8C4C084F100B365EFB098CC853s1
http://refhub.elsevier.com/S0743-7315(22)00215-5/bibEBD06A8C4C084F100B365EFB098CC853s1
http://refhub.elsevier.com/S0743-7315(22)00215-5/bibEBD06A8C4C084F100B365EFB098CC853s1
http://refhub.elsevier.com/S0743-7315(22)00215-5/bib47020AA3FDB4035C145D591FC4D9D18Fs1
http://refhub.elsevier.com/S0743-7315(22)00215-5/bib47020AA3FDB4035C145D591FC4D9D18Fs1
http://refhub.elsevier.com/S0743-7315(22)00215-5/bibE28D46B7D3D2245CF3F2A7892B7D1B92s1
http://refhub.elsevier.com/S0743-7315(22)00215-5/bibE28D46B7D3D2245CF3F2A7892B7D1B92s1
http://refhub.elsevier.com/S0743-7315(22)00215-5/bib45DBDA41903E742664DC4917EB33C967s1
http://refhub.elsevier.com/S0743-7315(22)00215-5/bib45DBDA41903E742664DC4917EB33C967s1
http://refhub.elsevier.com/S0743-7315(22)00215-5/bib3695896BE41C6DA73C0F142117F4974Fs1
http://refhub.elsevier.com/S0743-7315(22)00215-5/bib3695896BE41C6DA73C0F142117F4974Fs1
http://refhub.elsevier.com/S0743-7315(22)00215-5/bibFAF929CEAB1AFE9F801C953F13477FB6s1
http://refhub.elsevier.com/S0743-7315(22)00215-5/bibFAF929CEAB1AFE9F801C953F13477FB6s1
http://refhub.elsevier.com/S0743-7315(22)00215-5/bib113E22B289EA6A3CC643E0FDBE47163Ds1
http://refhub.elsevier.com/S0743-7315(22)00215-5/bib113E22B289EA6A3CC643E0FDBE47163Ds1
http://refhub.elsevier.com/S0743-7315(22)00215-5/bib523935AAB6FC10465B09EE75C5635657s1
http://refhub.elsevier.com/S0743-7315(22)00215-5/bib523935AAB6FC10465B09EE75C5635657s1
http://refhub.elsevier.com/S0743-7315(22)00215-5/bib9E81798EE3E45ED011BE44744305D94Ds1
http://refhub.elsevier.com/S0743-7315(22)00215-5/bib9E81798EE3E45ED011BE44744305D94Ds1
http://refhub.elsevier.com/S0743-7315(22)00215-5/bib33AD68C049FFC9984AC3F6E495672E59s1
http://refhub.elsevier.com/S0743-7315(22)00215-5/bib33AD68C049FFC9984AC3F6E495672E59s1
http://refhub.elsevier.com/S0743-7315(22)00215-5/bib5D30A22ACDD7885DABC7BEEB7C14A6C4s1
http://refhub.elsevier.com/S0743-7315(22)00215-5/bib5D30A22ACDD7885DABC7BEEB7C14A6C4s1
http://refhub.elsevier.com/S0743-7315(22)00215-5/bib5D30A22ACDD7885DABC7BEEB7C14A6C4s1
http://refhub.elsevier.com/S0743-7315(22)00215-5/bib172B46B6B5576F57F717D1C0F60FD3B6s1
http://refhub.elsevier.com/S0743-7315(22)00215-5/bib172B46B6B5576F57F717D1C0F60FD3B6s1
http://refhub.elsevier.com/S0743-7315(22)00215-5/bib172B46B6B5576F57F717D1C0F60FD3B6s1
http://refhub.elsevier.com/S0743-7315(22)00215-5/bibC7142E88D4ECFBD3BEF3E02B08D74D82s1
http://refhub.elsevier.com/S0743-7315(22)00215-5/bibC7142E88D4ECFBD3BEF3E02B08D74D82s1
http://refhub.elsevier.com/S0743-7315(22)00215-5/bib5B31E255418AD92B9F89968D66664D2As1
http://refhub.elsevier.com/S0743-7315(22)00215-5/bib5B31E255418AD92B9F89968D66664D2As1
http://refhub.elsevier.com/S0743-7315(22)00215-5/bibD05044FEB4241BC0086D39699DC97148s1
http://refhub.elsevier.com/S0743-7315(22)00215-5/bibD05044FEB4241BC0086D39699DC97148s1
http://refhub.elsevier.com/S0743-7315(22)00215-5/bibB9C23A3927341EA6DABE6CB4640E26F1s1
http://refhub.elsevier.com/S0743-7315(22)00215-5/bibB9C23A3927341EA6DABE6CB4640E26F1s1

X. Xu, F. Wang, H. Jiang et al. Journal of Parallel and Distributed Computing 172 (2023) 51–68
[40] Y. Zhang, H. Jiang, F. Wang, Y. Hua, D. Feng, Y. Cheng, Y. Hu, R. Xiao, Cic-pim:
trading spare computing power for memory space in graph processing, J. Par-
allel Distrib. Comput. 147 (2021) 152–165.

[41] D. Zheng, D. Mhembere, R. Burns, J. Vogelstein, C.E. Priebe, A.S. Szalay, Flash-
graph: processing billion-node graphs on an array of commodity ssds, in:
FAST’15, 2015, pp. 45–58.

[42] Z. Zhou, H. Hoffmann, Graphz: improving the performance of large-scale graph
analytics on small-scale machines, in: ICDE’18, IEEE, 2018, pp. 1368–1371.

[43] X. Zhu, W. Han, W. Chen, Gridgraph: large-scale graph processing on a sin-
gle machine using 2-level hierarchical partitioning, in: USENIX ATC’15, 2015,
pp. 375–386.

[44] X. Zhu, W. Chen, W. Zheng, X. Ma, Gemini: a computation-centric distributed
graph processing system, in: OSDI’16, 2016, pp. 301–316.

Xianghao Xu received the PhD degree from
Huazhong University of Science and Technology,
Wuhan, China, 2021. He is currently an assistant pro-
fessor in School of Computer Science and Engineer-
ing, Nanjing University of Science and Technology,
Nanjing, China. His current research interests include
graph processing, computer architecture and big data
analytics. He has several publications in major in-
ternational conferences and journals, including IEEE

TPDS, ICPP, IWQoS.

Fang Wang received her BE degree and Master de-
gree in computer science in 1994, 1997, and Ph.D. de-
gree in computer architecture in 2001 from Huazhong
University of Science and Technology (HUST), China.
She is a professor of computer science and engineer-
ing at HUST. Her interests include distribute file sys-
tems, parallel I/O storage systems and graph process-
ing systems. She has more than 50 publications in
major journals and conferences, including FGCS, ACM

TACO, HiPC, ICDCS, HPDC, ICPP.

Hong Jiang received the BE degree from the
Huazhong University of Science and Technology,
Wuhan, China, and the PhD degree from the Texas
A&M University, College Station, in 1991. He is Wen-
dell H. Nedderman Endowed Professor & Chair of
Department of Computer Science and Engineering,
University of Texas at Arlington. His research interests
include computer architecture, computer storage sys-
tems and parallel/distributed computing. He has over

200 publications in major journals and international Conferences in these
areas, including IEEE-TPDS, IEEE-TC, ACMTOS, ACM TACO, JPDC, ISCA, MI-
CRO, FAST, USENIX ATC, USENIX LISA, SIGMETRICS, MIDDLEWARE, ICDCS,
IPDPS, OOPLAS, ECOOP, SC, ICS, HPDC, ICPP.
68
Yongli Cheng received the BE degree from the
Chang’an University, Xi’an, China, in 1998, the MS de-
gree from the FuZhou University, FuZhou, China, in
2010, and PhD degree from Huazhong University of
Science and Technology, Wuhan, China, 2017. He is
a teacher of College of Mathematics and Computer
Science at FuZhou University currently. His current
research interests include computer architecture and
graph computing. He has several publications in major

international conferences and journals, including HPDC, IWQoS, INFOCOM,
ICPP, FGCS, ToN and FCS.

Yu Hua received the BE and PhD degrees in com-
puter science from the Wuhan University, China, in
2001 and 2005, respectively. He is currently a profes-
sor at the Huazhong University of Science and Tech-
nology, China. His research interests include computer
architecture, cloud computing and network storage.
He has more than 80 papers to his credit in major
journals and international conferences including IEEE
TC, IEEE TPDS, USENIX ATC, USENIX FAST, INFOCOM,

SC, ICDCS, ICPP and MASCOTS. He has been on the organizing and pro-
gram committees of multiple international conferences, including INFO-
COM, ICDCS, ICPP, RTSS and IWQoS. He is a senior member of the IEEE, a
member of ACM.

Dan Feng received the BE, ME, and PhD degrees in
Computer Science and Technology in 1991, 1994, and
1997, respectively, from Huazhong University of Sci-
ence and Technology (HUST), China. She is a professor
and dean of the School of Computer Science and Tech-
nology, HUST. Her research interests include computer
architecture, massive storage systems, and parallel file
systems. She has more than 100 publications in ma-
jor journals and international conferences, including

IEEE-TC, IEEETPDS, ACM-TOS, JCST, FAST, USENIX ATC, ICDCS, HPDC, SC,
ICS, IPDPS, and ICPP. She serves on the program committees of multiple
international conferences, including SC 2011, 2013 and MSST 2012.

Yongxuan Zhang received the B.E. degree in com-
puter science and technology from the Nanchang
Hangkong University, China, in 2005. He is currently
a Ph.D. student majoring in computer science and
technology in Huazhong University of Science and
Technology, Wuhan, China. His current research inter-
ests include graph processing and parallel/distributed
processing.

http://refhub.elsevier.com/S0743-7315(22)00215-5/bibE055459DDAF742C5B42CBCC33D623E93s1
http://refhub.elsevier.com/S0743-7315(22)00215-5/bibE055459DDAF742C5B42CBCC33D623E93s1
http://refhub.elsevier.com/S0743-7315(22)00215-5/bibE055459DDAF742C5B42CBCC33D623E93s1
http://refhub.elsevier.com/S0743-7315(22)00215-5/bib76494DF2FD9672A22697EEC5BC1B0D4Bs1
http://refhub.elsevier.com/S0743-7315(22)00215-5/bib76494DF2FD9672A22697EEC5BC1B0D4Bs1
http://refhub.elsevier.com/S0743-7315(22)00215-5/bib76494DF2FD9672A22697EEC5BC1B0D4Bs1
http://refhub.elsevier.com/S0743-7315(22)00215-5/bib9E4EE78B62E813702CEDFE4230CAAC55s1
http://refhub.elsevier.com/S0743-7315(22)00215-5/bib9E4EE78B62E813702CEDFE4230CAAC55s1
http://refhub.elsevier.com/S0743-7315(22)00215-5/bib74E7F122EFECF137A894D4AA44C27562s1
http://refhub.elsevier.com/S0743-7315(22)00215-5/bib74E7F122EFECF137A894D4AA44C27562s1
http://refhub.elsevier.com/S0743-7315(22)00215-5/bib74E7F122EFECF137A894D4AA44C27562s1
http://refhub.elsevier.com/S0743-7315(22)00215-5/bibDA941B97538886D34A94C197B4E80C03s1
http://refhub.elsevier.com/S0743-7315(22)00215-5/bibDA941B97538886D34A94C197B4E80C03s1

	LOSC: A locality-optimized subgraph construction scheme for out-of-core graph processing
	1 Introduction
	2 Background and motivation
	2.1 Computing models of graph processing systems
	2.2 Out-of-core graph processing
	2.3 Subgraph construction in out-of-core graph processing

	3 System design
	3.1 System overview
	3.2 Locality-optimized subgraph construction
	3.3 Exploiting parallelism in subgraph construction
	3.4 Compact edge storage format
	3.5 I/O cost analysis
	3.6 Benefit-aware scheduling scheme
	3.7 Lightweight replication of interval vertices
	3.8 Workflow example

	4 Evaluation
	4.1 Experiment setup
	4.2 Overall performance
	4.3 Effect of locality-optimized subgraph construction
	4.4 Effect of compact edge storage format
	4.5 Effect of benefit-aware scheduling scheme
	4.6 Memory usage
	4.7 Scalability
	4.8 Comparison with other systems

	5 Related work
	5.1 Distributed systems
	5.2 Single-machine shared-memory systems
	5.3 Out-of-core systems
	5.4 Graph processing systems with compressed storage

	6 Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgment
	References

