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Big data applications increasingly rely on the analysis of large graphs. In recent years, a number of 
out-of-core graph processing systems have been proposed to process graphs with billions of edges 
on just one commodity computer, by efficiently using the secondary storage (e.g., hard disk, SSD). 
Unfortunately, these graph processing systems continue to suffer from poor performance, despite of 
many solutions proposed to address the disk I/O bottleneck problem, a commonly recognized root 
cause. However, our experimental results show that another root cause of the poor performance is the 
subgraph construction phase of graph processing, which induces a large number of random memory 
accesses that substantially weaken cache access locality and thus greatly degrade the performance. In 
this paper, we propose an efficient out-of-core graph processing system, LOSC, to substantially reduce the 
overheads of subgraph construction. LOSC proposes a locality-optimized subgraph construction scheme 
that significantly improves the in-memory data access locality of the subgraph construction phase. 
Furthermore, LOSC adopts a compact edge storage format and a lightweight replication of vertices to 
reduce I/O traffic and improve computation efficiency. Extensive evaluation results show that LOSC 
is respectively 9.4× and 5.1× faster than GraphChi and GridGraph, two representative out-of-core 
systems. In addition, LOSC outperforms other state-of-art out-of-core graph processing systems including 
FlashGraph, GraphZ, G-Store and NXGraph. For example, LOSC can be up to 6.9× faster than FlashGraph.

© 2022 Elsevier Inc. All rights reserved.
1. Introduction

Graph is a powerful data structure to solve many real-world 
problems. There exist various modern big data applications relying 
on graph computing, including social networks, Internet of things, 
and neural networks.

However, with the real-world graphs growing in size and com-
plexity, processing these large and complex graphs in a scalable 
way has become increasingly more challenging. To tackle this chal-
lenge, a number of graph-specific processing frameworks have 
been proposed. With these graph processing frameworks, users can 
write an update function for a specific graph application without 
considering the underlying execution details. To obtain a better 
performance, many systems adopt a large cluster to deploy their 
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large graph processing jobs, such as Pregel [24], PowerGraph [13]
and GraphX [14]. These systems distribute a large graph into the 
compute nodes of a cluster by constructing node-resident sub-
graphs from the original graph, which enables them to utilize the 
aggregate memory of a cluster to achieve good scalability. Unfor-
tunately, they usually suffer from high hardware and communi-
cation/synchronization costs because of the significant amount of 
communication and coordination required among a large number 
of computing nodes when processing large graphs.

In recent years, many out-of-core graph processing systems 
such as GraphChi [18], X-Stream [26] and GridGraph [43], have 
been proposed to process large graphs on a single compute node, 
by efficiently using the secondary storage (e.g., hard disk, SSD). 
They overcome the challenges faced by distributed systems, such 
as load imbalance and significant communication overheads. Many 
recent works [18,43,5] have shown that these systems can achieve 
a competitive performance compared with distributed systems 
without massive hardware. When processing an input graph, the 
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Fig. 1. Breakdown time of several algorithms on Twitter for GraphChi. To exactly 
measure the execution time of different phases, we have modified GraphChi’s code 
to enable the sequential executions of the subgraph construction and disk I/O 
phases, since these two phases are overlapped in GraphChi’s source code.

out-of-core systems divide a large graph into many partitions and 
load and process one partition from disk at a time. Current out-of-
core graph processing systems mainly adopt two computing mod-
els, i.e., vertex-centric and edge-centric.

The vertex-centric computing model takes the vertex as the 
processing unit and each vertex can invoke a user-defined func-
tion to update its own value in parallel. As it is intuitive for users 
to express many graph algorithms, many graph processing systems 
[24,13,18] are implemented based on the vertex-centric model. 
The edge-centric computing model factors computation over edges 
instead of vertices and takes the edge as the processing unit. Com-
pared with the vertex-centric model, the edge-centric model can 
leverage high disk bandwidth with fully sequential accesses. How-
ever, as vertex-centric model is properly designed to distribute 
and parallelize large graph analytics [12], traditional iterative graph 
computation is naturally expressed in a vertex-centric manner. Fur-
thermore, for some algorithms such as community detection, it is 
difficult to implement them in an edge-centric model [5]. There-
fore, in this paper, we mainly focus on the vertex-centric out-of-
core graph processing systems for their better applicability and 
expressiveness.

Although out-of-core graph processing systems can be a cost-
effective solution to handle large-scale graphs, there are two main 
problems that severely impact the performance of out-of-core 
graph processing systems.

First, because the secondary storage delivers much less band-
width and much longer latency than DRAM, the disk I/O over-
heads become an inevitable performance bottleneck. Most of cur-
rent out-of-core graph processing systems are designed to reduce 
the disk I/O overheads, by proposing various techniques. For exam-
ple, GraphChi [18] exploits a novel method called parallel sliding 
windows (PSW) to reduce random disk accesses as much as pos-
sible. CLIP [3] adopts a reentry technique to make full use of the 
loaded blocks to avoid loading the corresponding graph portions in 
the future iterations and speedup the convergence of graph algo-
rithms.

Second, we have discovered another performance bottleneck of 
the out-of-core graph processing systems is the inefficient sub-
graph construction that causes frequent random memory accesses. 
Fig. 1 shows the runtime breakdown of several algorithms on 
Twitter graph executed by GraphChi. We observe the subgraph 
construction phase is responsible for at least 48% of the whole ex-
ecution time. In fact, when implemented in an out-of-core system 
to process a graph partition, the vertex-centric model requires all 
edges of the partition to be loaded from the disk and assigned to 
their source and destination vertices to construct an in-memory 
vertex-centric subgraph structure, before updating the vertices of 
the partition. This is the phase of subgraph construction. Since the 
vertex data structures are stored sequentially by the vertex ID in 
memory, the assignments of edges will incur many random mem-
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Table 1
Cache misses of different execution phases.

Execution Phase LLC Miss (Read) LLC Miss (Write)

Disk I/O 1.8% 1.5%
Subgraph Construction 14.1% 31.1%
Vertex Updating 2.3% 9.1%
Overall 4.3% 6.8%

ory accesses as the source or destination vertices of the edges 
usually have non-sequential vertex IDs. Random memory accesses 
greatly weaken cache access locality and thus degrade performance 
by increasing cache miss rate. Table 1 shows the cache misses of 
different execution phases when running BFS on Twitter. We can 
see that the last-level cache (LLC) misses rate of the subgraph 
construction phase is much higher than those of other execution 
phases, which explains both the random memory accesses and 
high execution time caused by the subgraph construction phase, 
considering the much higher miss penalty of LLC than other levels 
of cache.

In this paper, we present LOSC, an efficient out-of-core graph 
processing system that not only optimizes disk I/O performance 
but also significantly reduces the overheads of subgraph construc-
tion without sacrificing the underlying vertex-centric computing 
model. The main contributions of LOSC are summarized as follows.

• Locality-optimized subgraph construction scheme. LOSC pro-
poses a locality-optimized subgraph construction scheme that 
improves the locality of memory access to greatly reduce the 
overheads of constructing subgraphs. The locality-optimized 
subgraph construction scheme ensures that the vertices re-
quired for adding incoming and outgoing edges are stored 
sequentially in memory when constructing subgraphs, which 
significantly improves the memory access locality. Moreover, 
to further improve the performance of subgraph construction, 
the locality-optimized subgraph construction scheme fully uti-
lizes the parallelism of multi-threaded CPU when constructing 
subgraphs by assigning different worker threads to take charge 
of different vertices and their associated in-edges and out-
edges.

• Benefit-aware scheduling scheme. To reduce disk I/O over-
heads, LOSC adopts a benefit-aware scheduling scheme to 
improve I/O performance by skipping loading and process-
ing inactive edges in each iteration whenever such skipping 
can bring performance benefit. To achieve this, the benefit-
aware scheduling scheme incorporates the designs of vertices 
indices, bitmap operation and I/O-based benefit evaluation 
model. Compared with our previous work [34], the benefit-
aware scheduling scheme can reduce the amount of I/O traffic 
by up to 75%, which further reduces the subgraph construction 
overheads and improves system performance with negligible 
computing overheads.

• Compact edge storage format. LOSC implements a compact 
edge storage format by combining several graph compression 
methods, i.e., compression of undirected graph, delta compres-
sion and ID compression, to save storage size and reduce I/O 
traffic.

• Lightweight replication of interval vertices. LOSC adopts a 
lightweight replication of interval vertices (vertices within an 
interval) to improve computation efficiency by enabling full 
thread-level parallelism.

• Extensive experiments. We evaluate LOSC on several real-
world graphs with different algorithms. Extensive evaluation 
results show that LOSC outperforms GraphChi and GridGraph 
by 9.4× and 5.1× on average respectively due to its locality-
optimized subgraph construction and reduced disk I/Os.
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Note that this paper is based on our prior work presented at 
the 2019 IEEE/ACM International Symposium on Quality of Service 
(IWQoS’19) [34]. We briefly provide the new contents beyond the 
prior conference version as follows.

• A benefit-aware scheduling scheme that further reduces disk 
I/O overheads.

• Parallelized locality-optimized subgraph construction scheme 
that further improves the performance of subgraph construc-
tion.

• Added experiments that make the performance evaluation of 
LOSC more convincing and more adequate.

• Substantial new contents and some revised old contents that 
strengthen motivation, evaluation and clarity, and help the 
reader better understand how LOSC works.

The rest of the paper is organized as follows. Section 2 presents 
the background and motivation. Section 3 describes the detailed 
system design of LOSC. Section 4 presents extensive performance 
evaluations. We discuss the related works in Section 5 and con-
clude this paper in Section 6.

2. Background and motivation

In this section, we first present the computing models of exist-
ing graph processing systems. Then, we introduce the state-of-art 
out-of-core graph processing systems. Finally, we take GraphChi as 
an example to demonstrate the process and performance impact 
of subgraph construction. This helps motivate us to propose a new 
out-of-core system that significantly improves system performance 
by reducing the overheads of subgraph construction.

2.1. Computing models of graph processing systems

Existing out-of-core graph processing systems mainly adopt 
two computing models, i.e., vertex-centric and edge-centric. The 
vertex-centric computing model establishes a “think like a vertex” 
idea [24] that can express a wide range of applications, for ex-
ample, graph mining, data mining, machine learning and sparse 
linear algebra, as shown by many researchers [13,24,21,18,30]. This 
model consists of a sequence of iterations and a user-defined up-
date function executed for all vertices in parallel. In each iteration 
of computation, each vertex gathers data from its incoming edges; 
then it uses the gathered data to update its own value by invok-
ing the user-defined update function; finally, it propagates its new 
value along its outgoing edges to its neighbors.

Unlike the vertex-centric model, the edge-centric computing 
model [26,43] explicitly factors computation over edges instead 
of vertices and takes the edge as the processing unit. In this 
model, the system processes each edge by gathering an update 
from its source vertex and applying the update to its destination 
vertex. Therefore, the edge-centric model can stream edges from 
the storage and high disk bandwidth can be achieved with fully 
sequential accesses. However, as traditional iterative graph com-
putation is naturally expressed in a vertex-centric manner, users 
must re-implement many algorithms in edge-centric API [5,42]. 
Furthermore, for some algorithms such as community detection, 
it is difficult to implement them in an edge-centric model [5].

2.2. Out-of-core graph processing

GraphChi [18] is an extensively-used out-of-core graph process-
ing system that supports the vertex-centric computation model 
and is able to express many graph algorithms. It divides the ver-
tices into disjoint intervals and breaks the large edge list into 
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smaller shards containing edges with destinations in the corre-
sponding vertex intervals. For a given vertex interval, its incoming 
edges are stored in its associated shard called memoryshard, while 
its outgoing edges are distributed among other shards called slid-
ing shards. In addition, edges in a shard are sorted by their source 
vertices. GraphChi exploits a novel method of parallel sliding win-
dows (PSW) to process all intervals. For each interval, PSW loads 
the incoming edges of the interval from memoryshard and loads 
the outgoing edges from sliding shards. Updating messages with 
their destination vertices in the working interval will be applied 
instantly, while other updates will be written to the rest of the 
sliding shards on the disk.

Following GraphChi, a number of out-of-core graph processing 
systems are proposed. Through a disk-friendly graph data orga-
nization format and well-designed execution engine, out-of-core 
graph processing systems can process large graphs with a rea-
sonable performance while using much fewer hardware resources 
than a distributed system. However, there are two main problems 
that severely impact the performance of out-of-core graph process-
ing systems. One is the expensive disk I/O overheads. As we know, 
the secondary storage delivers much less bandwidth and much 
longer latency than DRAM. Reducing disk I/O overheads has be-
come the heart of the system designs for most current out-of-core 
graph processing systems. The other is the inefficient subgraph 
construction, which exists in the vertex-centric out-of-core graph 
processing systems. As shown in Fig. 1, the subgraph construction 
phase significantly degrades the overall performance. Other studies 
such as X-Stream [26] and GridGraph [43] utilize the edge-centric 
model where the computation is based on the edges and the sys-
tem needs not to construct a vertex-centric subgraph in memory 
before processing. However, as mentioned in 2.1, these systems ex-
hibit limited expressivity and programmability.

2.3. Subgraph construction in out-of-core graph processing

In fact, for vertex-centric graph processing systems (e.g.,
GraphChi), they usually create an in-memory data structure for 
each vertex during the processing, which usually includes vertex 
values, in-edges and out-edges (or messages) [18]. For out-of-core 
graph processing systems where all edges are stored on the disk, 
when implementing the vertex-centric computation on a graph 
partition, all edges of the partition should be first loaded into 
memory and then assigned to the memory structures of corre-
sponding vertices. This is the phase of subgraph construction. 
During this phase, each edge is added to the out-edge and in-
edge array of its source and destination vertex. Based on the 
in-memory vertex-centric subgraph, each vertex can perform the 
vertex-centric computation in parallel.

Fig. 2 illustrates an example of constructing subgraphs in 
GraphChi. As shown in Fig. 2(a), the vertices of the example graph 
are split into three intervals: 1-100, 101-200 and 201-300. Each 
interval is associated with a shard containing incoming edges of 
vertices in the interval. When constructing the subgraph of shard 
1, GraphChi first processes the edge (1, 2) and accesses the mem-
ory address of vertex 2, then it writes the edge to the incoming 
edge array of vertex 2. Afterwards, it accesses the memory ad-
dress of vertex 4 and writes the edge (1, 4) into the incoming 
edge array of vertex 4 until all edges in the shard are added. The 
non-sequential destination vertices of the edges cause many ran-
dom reads and writes in memory to add the incoming edges when 
constructing subgraphs as shown in Fig. 2(b). It is a known fact 
that random memory accesses tend to weaken cache locality and 
result in high cache miss rate, thus degrading memory access per-
formance.

Based on the above observations and analysis, the subgraph 
construction phase significantly impacts the performance of out-
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Fig. 2. The example of constructing subgraphs.

Fig. 3. The LOSC architecture.
of-core graph processing systems due to massive random reads 
and writes in memory. This motivates us to seek a design that 
minimizes random memory accesses to reduce the overheads of 
subgraph construction. In addition, the disk I/O overheads remain 
a severe performance bottleneck of out-of-core graph processing 
systems, I/O-related optimizations should also be considered to im-
prove the overall performance.

3. System design

A graph problem is usually encoded as a directed graph G =
(V , E), where V is the set of vertices and E is the set of edges. For 
a directed edge e = (u, v), we refer to e as v’s in-edge, and u’s out-
edge. Additionally, u is an in-neighbor of v, v is an out-neighbor of 
u. The computation of a graph G is usually organized in several it-
erations where V and E are read and updated. Updating messages 
are propagated from source vertices to destination vertices through 
the edges. The computation terminates after a given number of it-
erations or when it converges. Like previous works [5,41], we treat 
all vertices as mutable data and edges as read-only data.

In this section, we first present the system overview of LOSC. 
Then, we illustrate the design of locality-optimized subgraph con-
struction scheme, compact edge storage format, benefit-aware 
scheduling scheme and lightweight replication of interval vertices. 
Finally, we describe the main workflow of LOSC in detail with an 
example.

3.1. System overview

LOSC is an efficient out-of-core graph processing system sup-
porting vertex-centric computing model. Fig. 3 presents the system 
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architecture of LOSC. In order to reduce the overheads of subgraph 
construction, LOSC uses a novel locality-optimized subgraph con-
struction scheme that maximizes the sequential accesses to ver-
tices and edges during the subgraph construction phase. To further 
improve the system performance, LOSC also adopts a compact edge 
storage format to reduce I/O traffic and a lightweight replication 
of interval vertices to improve computation efficiency. In addition, 
a benefit-aware scheduling scheme is applied to skip loading and 
processing the inactive edges, which further improves the I/O per-
formance.

To support the efficient subgraph construction scheme, LOSC 
organizes the graph data with a dual-shard representation. Like 
GraphChi, LOSC splits the vertices V of graph G into P disjoint 
intervals and edges E into P shards with source or destination 
vertices in corresponding vertex intervals. Differently, it associates 
two edge shards for each interval, in-shard and out-shard. In-shard 
(n) contains all in-edges of the vertices in interval (n), sorted by 
the destination vertices. Out-shard (n) contains all out-edges of 
the vertices in interval (n), sorted by the source vertices. By this 
way, the system can ensure the sequential accesses to the source 
or destination vertices when processing the out-edges or in-edges. 
The number of intervals, P, is chosen to ensure that the in-shard 
and out-shard of each interval can fit in memory. We illustrate the 
contrast between the representation of GraphChi and LOSC of an 
example graph in Fig. 4. The example graph has six vertices, which 
have been divided into two equal intervals: 1-3 and 4-6. While 
GraphChi only stores the in-edges of an interval in the correspond-
ing shard, LOSC stores in-edges and out-edges of each interval in 
the corresponding in-shard and out-shard respectively.

Discussion. While the dual-shard representation that adopts 1-
D partitioning and maintains both in-edges and out-edges is simi-
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Fig. 4. Illustration of graph representation.
lar to the CSR/CSC format that many previous works [28,41,44,35]
use, we use this representation for a totally different purpose. 
Specifically, previous works use this representation to support dif-
ferent computing models and graph algorithms that need both in-
edges and out-edges. For example, Ligra [28] stores both in-edges 
and out-edges to enable the adaptive EDGEMAPSPARSE/EDGEMAP-
DENSE update models. FlashGraph [41] maintains both in-edges 
and out-edges with the CSR/CSC format to support different graph 
algorithms that require in-edges, out-edges or both in-edges and 
out-edges. On the other hand, for LOSC, it uses this graph repre-
sentation to solve the inefficient subgraph construction problems 
of out-of-core systems. Based on the representation, LOSC proposes 
a locality-optimized subgraph construction scheme that improves 
the locality of memory access to greatly reduce the overheads of 
constructing subgraphs, which is the key contribution of the paper.

3.2. Locality-optimized subgraph construction

As mentioned in Section 2.3, the subgraph construction phase 
significantly degrades the overall performance of out-of-core graph 
processing systems due to a large amount of random memory 
accesses. To solve this problem, LOSC implements a locality-
optimized subgraph construction scheme that significantly reduces 
the number of random memory accesses during the subgraph con-
struction phase.

Algorithm 1 presents the procedure of locality-optimized sub-
graph construction scheme. The procedure of subgraph construc-
tion is to add in-edges/out-edges to the in-edge array/out-edge 
array of each vertex. For each in-edge, LOSC first accesses the 
memory address of its destination vertex, and then adds the edge 
to the in-edge array of the vertex. Similarly, for each out-edge, 
LOSC accesses the memory address of its source vertex, and adds 
the edge to the out-edge array of the vertex. Based on the dual-
shard representation, the in-edges in the in-shards are sorted by 
the destination vertices and the out-edges in the out-shards are 
sorted by the source vertices. In this case, LOSC maximizes se-
quential memory access when adding the in-edges/out-edges to 
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Algorithm 1 Locality-optimized subgraph construction.
Input: Interval index number p
Output: Subgraph of vertices in interval p
1: /* Initialization */
2: a ← interval(p).start
3: b ← interval(p).end
4: G ← InitializeMemoryF or Subgraph(a, b)

5: /* Load in-edges in in-shard */
6: Inegdes ← in − shard(p).readf ully()

7: /* Parallel in-edges adding */
8: for each edge e in Inedges do
9: G.vertex[e.dest].addInEdge(e.source)

10: end for
11: /* Load out-edges in out-shard */
12: O utegdes ← out − shard(p).readf ully()

13: /* Parallel out-edges adding */
14: for each edge e in Outedges do
15: G.vertex[e.source].addO ut Edge(e.dest)
16: end for
17: return G

the destination/source vertices and data access locality is exploited 
as much as possible when constructing subgraphs.

Fig. 5 provides an example to compare the locality-optimized 
subgraph construction with GraphChi’s PSW subgraph construc-
tion. Both LOSC and GraphChi construct a subgraph for interval 
1 of the graph in Fig. 4(a). As we see in Fig. 5(a), for interval 1, 
the access order of vertices to construct subgraph is 1, 2, 3 and 
these vertices are stored sequentially in memory. When LOSC ex-
ecutes the construction program, it first accesses the address of 
vertex 1, then it adds edge (3, 1) to the in-edge array of vertex 1 
and adds edge (1, 2) and edge (1, 5) to the out-edge array in par-
allel. Afterwards, it successively accesses the memory addresses of 
vertex 2, vertex 3, and adds their in-edges and out-edges. How-
ever, for GraphChi, it requires many random memory accesses to 
add in-edges for vertices in interval 1 as shown in Fig. 5(b). When 
processing real-world graphs that have a large number of vertices 
and edges and complex structures, the inefficiency of GraphChi’s 
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Fig. 5. Comparison of constructing subgraphs.
PSW subgraph construction will become a severe problem for sys-
tem performance.

3.3. Exploiting parallelism in subgraph construction

In order to further improve the performance of subgraph con-
struction, LOSC fully utilizes the parallelism of multi-thread CPU 
when constructing subgraphs. Specifically, LOSC creates several 
worker threads that take charge of different vertices and their 
associated in-edges or out-edges. Once the in-shard or out-shard 
of a vertex interval is loaded into memory, these worker threads 
can fetch their own edges and add them to the in-edge arrays 
and out-edge arrays of the corresponding vertices in parallel. To 
this end, two edge index structures are created to indicate the in-
edges and out-edges for each vertex as introduced in Section 3.6, 
so that worker threads can easily locate their own edges in the 
in-shards and out-shards. Since the in-edges in an in-shard and 
the out-edges in an out-shard are sorted by the destination and 
source vertices respectively, there is no write conflicts between 
these worker threads and no thread locks or atomic operations 
are required to maintain consistency. This enables high degree of 
parallelism when an in-shard/out-shard is large enough. Note that 
memory accesses and writes are still sequential as long as each 
thread reads and writes its own data.

Moreover, LOSC overlaps subgraph construction with edge load-
ing as much as possible to make better use of parallelism. Specifi-
cally, the worker threads periodically check the loading progress of 
edges. As soon as the edges belong to a worker thread are loaded, 
the worker thread can immediately process these edges. For exam-
ple, when loading in-shard (1) from disk in Fig. 5(a), the worker 
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thread that takes charge of vertex 1 can add the edge (3, 1) into 
the in-edge array of vertex 1 once edge (3, 1) is loaded, while the 
I/O thread continues to load other edges from in-shard (1) simul-
taneously.

While for GraphChi, when parallelizing the subgraph construc-
tion, it will cause many write conflicts since in-edges in the 
memoryshard are sorted by the source vertices and the destina-
tion vertices are non-sequential. Due to a great reduction of ran-
dom memory accesses and effective utilization of parallelism, the 
locality-optimized subgraph construction scheme significantly im-
proves the system performance. We will quantitatively evaluate 
the efficiency of locality-optimized subgraph construction in Sec-
tion 4.3.

3.4. Compact edge storage format

Although our graph representation improves the performance 
of subgraph construction, it takes more storage space than the 
existing graph representations since it stores both in-edges and 
out-edges. To solve this problem, we implement a compact edge 
storage format by combining several graph compression methods, 
i.e., compression of undirected graph, delta compression and ID 
compression.

Compression of undirected graph. For undirected graphs, LOSC 
stores each edge twice, one for each of the two directions. Actually, 
for an undirected edge e = (u, v), e can be regarded as the in-edge 
and out-edge of u and v simultaneously. Therefore, for a vertex 
interval i, in-shard (i) and out-shard (i) are a duplicate of each 
other. To avoid this redundant storage, LOSC only maintains one 
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Table 2
Notations.

Notation Definition

A active vertex set in current iteration
M size of an edge structure value
N size of a vertex value
W size of an edge weight value
C average size of a compressed adjacency list
Trr random read bandwidth
Trw random write bandwidth
Tsr sequential read bandwidth
Tsw sequential write bandwidth

copy of edges for undirected graphs, i.e., only storing in-edges or 
out-edges of an interval.

Delta compression. In fact, each in-shard or out-shard consists 
of all adjacency lists of the vertices in an interval. The adjacency 
list of a vertex consecutively stores the vertex IDs of the vertex’s 
neighbors. We can compress the adjacency lists by utilizing the 
delta values of vertex IDs. This is motivated by the locality and 
similarity in web graphs [4] where most links contained in a page 
lead the user to some other pages within the same host. In this 
case, the neighbors of many vertices may have similar vertex IDs. 
Instead of storing all vertex IDs in an adjacency list, LOSC stores 
the vertex ID of the first neighbors and the delta values of the 
vertex IDs of remaining neighbors.

ID compression. Current systems always store the ID as an 
integer of four-byte or eight-byte length. However, this can be 
wasteful if the IDs are of small values. LOSC adopts a variable-
length integer [37] to encode each vertex ID. Thus, a minimum 
number of bytes are used to encode a given integer. Furthermore, 
the most significant bit of each compressed byte is used to indi-
cate different IDs and the remaining seven bits are used to store 
the value. For example, considering an adjacency list of vertex v1, 
adj(v1) = {v2, v3, v4}. Supposing that the IDs of v2, v3 and v4 are 
2, 5, and 300, the adjacency list of vertex v1 is stored as “00000010 
10000011 00000010 00100111”. The first byte is the id of 2, and 
the second byte is the delta value between 2 and 5 (removing 
the most significant bit). The third byte and the fourth byte have 
the same most significant bit, which means that they are used to 
encode the same ID. 00000100100111 (after removing the most 
significant bit of the third and fourth byte) is the delta value be-
tween 300 and 5.

By combining these compression techniques, the compact edge 
storage format can significantly reduce disk storage consumption, 
which further reduces I/O traffic and improves system perfor-
mance, as shown in the evaluation results in Section 4.4.

3.5. I/O cost analysis

The I/O cost can be calculated by the total size of data accessed 
divided by the random/sequential bandwidth of disk access. Let M, 
N, W, C respectively be the size of an edge structure value, the 
size of a vertex value record, the size of an edge weight value 
and the average size of the compressed adjacency list of a vertex. 
In addition, Trr , Trw , Tsr and Tsw respectively represent random 
read, random write, sequential read and sequential write band-
width (MB/s).

For easy reference, we list the notations in Table 2. For LOSC, 
during one pass of the whole graph, each edge is accessed twice 
from the disk, once in each direction. So the total I/O amount of 
edges is 2|V |C . Furthermore, the I/Os of edge weights are avoided 
and only vertex values are updated since we store mutable data 
in vertices. Therefore, the I/O cost of LOSC CL O SC can be stated 
constantly as:
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CL O SC = |V | × (2C + N)

Tsr
+ |V | × N

Tsw

Note that, in above I/O analysis, we do not consider the random 
accesses of vertices when the vertices are too large to be cached 
in memory, for the following reasons. First, the random accesses 
of vertices depend on different algorithms, graphs and iterations, 
which makes it very hard to quantify the I/O costs. Second, as 
shown by [3], the memory mapping method we used can signifi-
cantly mitigate the issue of random accesses of vertices. Moreover, 
since the size of vertices is usually much smaller than the size of 
edges, the memory capacity of modern machines can easily fit in 
the vertices of most graphs [3].

While for GraphChi, in the best case, both endpoints of each 
edge belong to the same vertex interval, it is read only once from 
disk, otherwise, it is read twice. If the update function modifies 
edges in both directions, the number of writes is exactly the same; 
if in only one direction, the number of writes is half as many. 
Therefore, the I/O cost of GraphChi CGC can be stated as:

|E| × (M + W ) + |V | × N

Tsr
+ |E| × W + |V | × N

Tsw
≤ CGC

≤ 2|E| × (M + W ) + |V | × N

Tsr
+ 2|E| × W + |V | × N

Tsw

Due to use of the compact edge storage format, the storage size 
of edges of LOSC is much smaller than that of GraphChi, which 
means |V | × C � |E| × M . Moreover, GraphChi has to write a large 
amount of intermediate data (edge weights) to disk for subsequent 
computation. Based on these analyses, we show that LOSC exhibits 
much higher I/O efficiency than GraphChi.

3.6. Benefit-aware scheduling scheme

Current out-of-core graph processing systems [18,26,43] are 
usually optimized for the sequential performance of disk drives 
and eliminate random I/Os by scanning the entire graph data in 
all iterations of graph algorithms. However, for many graph al-
gorithms (e.g., Breadth-first Search, Weak Connected Components, 
Single Source Shortest Path) that access only small portions of data 
during each iteration, this full I/O model can be wasteful. For ex-
ample, Breadth-first Search only visits vertices in a frontier in each 
iteration. On the other hand, the on-demand I/O model that is 
based on the active edges (the edges that have active sources ver-
tices and impact the subsequent computation) can avoid loading 
the useless data. Unfortunately, it incurs a large amount of small 
random disk accesses due to the randomness of the active vertices. 
As we know, random access to disk drives delivers much less band-
width than sequential access. Therefore, only accessing the useful 
data for out-of-core graph processing is an overkill when the num-
ber of active vertices is large. To address this dilemma and improve 
I/O performance, we adopt a benefit-aware scheduling scheme that 
skips loading and processing inactive edges in each iteration when-
ever such skipping can bring performance benefit.

The benefit-aware scheduling scheme adaptively schedules the 
edge loading based on the number of active edges. When the 
number of active edges is small, the system only traverses the ac-
tive edges to avoid the loading of useless data, which improves 
I/O efficiency. Specifically, LOSC only loads the out-edges of ac-
tive vertices and adopts a push-style processing to update their 
out-neighbors. Furthermore, LOSC enables atomic operations when 
updating vertices to ensure the consistency. When the number of 
active edges is large, the system simply loads all in-edges and out-
edges to eliminate random accesses, and uses pull-style processing 
like GraphChi. To achieve this dynamic scheduling, the benefit-
aware scheduling scheme incorporates the designs of vertices in-
dices, bitmap operation and I/O-based benefit evaluation model.
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Vertices indices. To enable the fast loading of the active edges, 
we maintain the indices to the edges for each vertex. Specifi-
cally, we associate two index structures, in-index and out-index. 
In-index (v) points to the position where the first in-edge of v
stores, and out-index (v) points to the position where the first out-
edge of v stores.

Bitmap operation. Selective scheduling of the active edges 
needs to scan all vertices to identify the active vertices. To achieve 
this, we associate two bitmaps, a state bitmap and an interval 
bitmap. The state bitmap whose storage size is |V |/8 bytes records 
whether a vertex is active or not and is divided into P intervals 
like the vertices. The interval bitmap records whether an interval 
contains at least one active vertex, which has a storage size of P/8
bytes.

In each iteration, LOSC first scans the interval bitmap to skip 
the intervals without any active vertices. This can significantly re-
duce the scanning time for the algorithms with very few active 
edges in each iteration. At the end of each iteration, LOSC up-
dates the interval bitmap based on the newly updated state bitmap 
for the next iteration. The bitmap operation is also used in other 
systems like G-Store [17] for selective scheduling. However, LOSC 
maintains two bitmaps, which can not only achieve a more fine-
grained scheduling but also significantly reduce the scanning time.

I/O-based benefit evaluation model. To evaluate whether only 
loading the active edges can bring performance benefit, the key is 
to compare the I/O costs between sequentially loading all edges 
and randomly loading the active edges. The former can be stated 
as CL O SC as analyzed in Section 3.5. For the latter, supposing that 
the active vertex set in current iteration is A, so the I/O amount 
of the active edges is equal to the size of all out-edges of vertices 
in A. Moreover, LOSC also loads the out-index of each active vertex 
so as to locate the active edges, in addition to the vertex values. 
Therefore, the I/O cost CL O SC ′ can be stated as:

CL O SC ′ =
∑

v∈A(out − index(v + 1) − out − index(v))

Trr

+ 2|V | × N

Tsr
+ |V | × N

Tsw

If CL O SC ′ ≤ CL O SC , the system selectively loads the active edges 
to avoid the loading of useless data. Otherwise, the system just 
loads all in-edges and out-edges to eliminate random disk ac-
cesses. The disk access bandwidth Trr , Trw , Tsr and Tsw can be 
measured by using several measurement tools such as fio [26] be-
fore we conduct the experiments. And other parameters can be 
directly collected and computed in the runtime. This provides an 
accurate performance prediction that enables efficient scheduling.

In summary, the benefit-aware scheduling scheme brings two 
advantages to LOSC. First, by intelligently skipping loading the in-
active edges, the system can significantly reduce the I/O traffic and 
improve I/O performance with negligible computing overheads. 
Second, the reduced I/O traffic can also lead to lower overheads 
of subgraph construction since less edges are loaded into memory 
to construct subgraphs. We will quantitatively evaluate the benefits 
and computing overheads of the benefit-aware scheduling scheme 
in Section 4.5.

3.7. Lightweight replication of interval vertices

As shown in Section 2.1, each vertex computes its new value 
in parallel in the vertex-centric computing model. However, if two 
vertices in the same vertex interval have a common edge, e.g., ver-
tex 1 and vertex 2 in Fig. 4(c), they cannot be updated in parallel 
as update sequences of these vertices have an influence on the 
computing result. For example, when vertex 2 is updated, it reads 
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the value of vertex 1. If vertex 1 is updated earlier, vertex 2 will ob-
tain the latest value of vertex 1. Otherwise, it will obtain the value 
of the last iteration. To solve this problem, GraphChi implements a 
deterministic parallelism in which vertices of the same interval are 
updated sequentially if they share a common edge. Although this 
method eliminates race conditions, it limits the utilization of CPU 
parallelism and reduces the computation efficiency.

To solve the above problem, LOSC adopts a lightweight replica-
tion of interval vertices to eliminate race conditions while enabling 
full CPU parallelism. Concretely, LOSC maintains two copies of the 
interval vertices, Latest-copy and Old-copy, when executing a ver-
tex interval. Latest-copy stores the latest values and is updated 
during the computation. Old-copy serves as the in-neighbors and is 
read by other vertices, storing the values of the last iteration. Con-
sequently, all vertices in an interval can access their read-only in-
neighbors and execute update function in parallel, and the update 
sequence of vertices will not affect the computing result. Since 
LOSC just replicates the vertices in an interval, it will not cause 
much memory pressure. After a vertex interval is processed, LOSC 
synchronizes the vertex values by replacing the Old-copy with the 
Latest-copy.

Note that, the lightweight replication of interval vertices is ap-
plied only when LOSC loads all edges and adopts the pull-style 
vertex updating. When LOSC selectively loads the active edges and 
adopts the push-style vertex updating, LOSC needs not to copy the 
interval vertices since it only involves write operations.

3.8. Workflow example

We now use an example to illustrate the main workflow of 
LOSC in detail. LOSC processes the input graph one vertex inter-
val at a time. The processing of an interval consists of four steps: 
1) load edges; 2) construct subgraph; 3) parallel update; 4) syn-
chronize vertex values. Fig. 6 shows an example of processing on 
interval 1 of the graph in Fig. 4(a) when all vertices are active and 
only vertex 2 is active.

Load edges. The loading phase of LOSC is very simple but 
I/O-efficient. As we see in Fig. 6(a), LOSC concurrently loads the 
in-edges from the in-shard and out-edges from the out-shard for 
interval 1 (shards in shaded color are loaded into memory), which 
maximizes the sequential disk accesses.

Construct subgraph. When the edges are loaded into memory, 
LOSC starts the locality-optimized subgraph construction for the 
interval as described in Section 3.2. LOSC sequentially accesses the 
memory addresses of vertices 1, vertex 2, vertex 3, and adds their 
in-edges and out-edges.

Parallel update. After the subgraph is constructed, LOSC exe-
cutes a user-defined update program for each vertex of the current 
interval in parallel. When a vertex is updated, it first reads the val-
ues of its in-neighbors and produces an aggregated value. Then, the 
user-defined update program takes this value as input and updates 
the value of the vertex. Algorithm 2 shows an example update pro-
gram that computes PageRank of an input graph. In addition, for 
the interval vertices, e.g., vertex 1, 2, 3 in Fig. 6(a), LOSC maintains 
two types of values (Latest-copy and Old-copy) to enable full CPU 
parallelism while ensures the consistency of computation.

Synchronize vertex values. When all vertices of an interval 
have been updated, LOSC directly updates the values of the Old-
copy of interval vertices (e.g., vertex 1, 2, 3) with the values of 
the Latest-copy. Unlike previous systems [18,26] that write the up-
dated edge attributes back to the disk for subsequent processing, 
synchronization of vertices significantly reduces disk I/Os and im-
proves the system performance.

In Fig. 6(b) where only vertex 2 is active, the benefit-aware 
scheduling scheme only loads the out-edges of vertex 2 into mem-
ory and pushes updates to its neighbors (vertex 3, 4, 5). In this 
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Fig. 6. An Example of the LOSC workflow.
Algorithm 2 Update function (v): PageRank.
1: Procedure PageRank
2: /* gather: read values from in-neighbors */
3: for each edge e of v.inedges() do
4: src ← e.source
5: sum ← sum + src.value/src.outdegree
6: end for
7: /* apply: update the value */
8: pagerank ← 0.15 + 0.85 × sum
9: v.value ← pagerank

10: End Procedure

case, LOSC can avoid loading the redundant edges of inactive ver-
tices that have no impact on the computation. This results in fewer 
disk I/Os and further reduces the overheads of subgraph construc-
tion and vertex updating.

4. Evaluation

In this section, we present experimental evaluation of our sys-
tem LOSC in comparison with state-of-the-art out-of-core graph 
processing systems.

4.1. Experiment setup

Platform and Datesets. The hardware platform used in our ex-
periments is an 8-core commodity machine equipped with 12 GB
main memory and 600 GB 7200 RPM HDD, running Red Hat 4.8.5. 
In addition, a 128 GB SATA2 SSD is installed for evaluating the 
scalability.

Datasets used for the evaluation are summarized in Table 3. 
LiveJournal, Twitter2010 and Friendster are social graphs, showing 
the relationship between users within each online social network. 
UK2007 and Ukunion are web graphs that consist of hyperlink 
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Table 3
Datasets used in evaluation.

Dataset Vertices Edges Type

LiveJournal 4.8 million 69 million Social Network
Twitter2010 42 million 1.5 billion Social Network
Friendster 66 million 1.8 billion Social Network
UK2007 106 million 3.7 billion Web Graph
UKunion 133 million 5.5 billion Web Graph
Kron30 1 billion 32 billion Synthetic Graph

relationships between web pages, with larger diameters than so-
cial graphs. Kron30 is generated with the Graph500 generator [2]. 
The in-memory graph LiveJournal is chosen to evaluate the perfor-
mance of in-memory processing and the scalability of LOSC. The 
other five graphs Twitter2010, Friendster, UK2007, UKunion and 
Kron30 are larger than memory by 2.1×, 2.6×, 5.2×, 7.9× and 
21.3× respectively.

We use several benchmarks algorithms in our evaluation to 
show the applicability of LOSC: PageRank (PR), Sparse Matrix Vec-
tor Multiply (SpMV), Breadth-first search (BFS), Weak Connected 
Components (WCC), and Single Source Shortest Path (SSSP). These 
algorithms exhibit different I/O access and computation charac-
teristics, which provides a comprehensive evaluation of LOSC. For 
PageRank, we run five iterations on each graph. For SpMV, we run 
one iteration to calculate the multiplication result. For BFS, WCC 
and SSSP, we run them until convergence.

Systems for Comparison. We mainly compare LOSC with two 
representative out-of-core systems that use the vertex-centric and 
edge-centric model respectively, GraphChi [18] and GridGraph [43]. 
We also compare LOSC against the first version of LOSC (we name 
it as LOSC-v1) [34] to evaluate the effects of the newly proposed 
optimizations. In addition, we add the comparisons with other 
state-of-art out-of-core graph processing systems including Flash-
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Table 4
Execution time (in seconds).

PageRank SpMV BFS WCC SSSP

LiveJournal
GraphChi 16.6 14.1 20.9 24.4 21.4
GridGraph 10.9 5.1 5.2 5.1 6.1
LOSC-v1 2.7 1.9 3.7 4.1 4.0
LOSC 2.8 1.9 3.9 4.3 4.1

Twitter2010
GraphChi 928.6 371.4 1624.3 913.7 1913.9
GridGraph 451.9 197.2 598.9 522.5 660.4
LOSC-v1 126.5 57.6 230.1 176.3 249.2
LOSC 107.8 49.2 108.6 103.3 149.4

Friendster
GraphChi 2562.8 568.8 2294.5 2612.3 1802.4
GridGraph 1009.4 371.4 578.6 526.8 708.6
LOSC-v1 230.2 70.8 473.4 481.3 376.2
LOSC 214.4 59.1 197.3 300.8 171.2

UK2007
GraphChi 2812.5 1160.7 7154.5 6862.8 7495.8
GridGraph 1242.2 511.2 6025.2 4783.8 7029.4
LOSC-v1 265.1 121.7 1172.2 864.7 1171.4
LOSC 233.7 111.1 459.7 411.2 616.5

Ukunion
GraphChi 3376.6 1620.8 24062.3 5665.8 56650.9
GridGraph 1829.3 810.5 18929.2 13265.1 25554.2
LOSC-v1 390.1 178.9 13022.5 3513.9 18171.4
LOSC 363.2 162.3 6593.7 2437.8 8653.1

Kron30
GraphChi 42770.5 24731.6 - - -
GridGraph 20935.8 11883.5 - 72781.2 -
LOSC-v1 6278.2 3510.8 55772.2 16173.6 66932.4
LOSC 3923.9 2065.2 37181.8 9513.9 41832.6

“-” indicates that the system failed to finish execution in 48 hours.

Graph [41], GraphZ [42], G-Store [17] and NXGraph [7] to further 
evaluate the performance of LOSC. Since LOSC’s compact storage 
format may fit whole graph data into memory for several datasets 
like Twitter2010, and makes it unfair to compare with other sys-
tems. We provide 8 GB memory budget, 8 execution threads for 
the executions of all algorithms for fair comparison. Under 8 GB
memory, only the LiveJournal graph can be fit into memory, while 
other graphs require access to disks.

4.2. Overall performance

We first report the execution time of the chosen algorithms on 
different graphs in Table 4. Here, we compare LOSC with GraphChi 
and GridGraph, two representative and widely-used out-of-core 
graph processing systems that use vertex-centric and edge-centric 
computing model respectively. In addition, we compare LOSC with 
LOSC-v1 to see how many performance improvements the newly 
proposed optimizations can bring. On average, LOSC outperforms 
GraphChi, GridGraph and LOSC-v1 by 9.4×, 5.1× and 1.5× respec-
tively.

The speedup over GraphChi mainly derives from the signifi-
cant reduction in time spent on subgraph construction and disk 
I/Os. PR and SpMV are based on standard matrix-vector multipli-
cation in which all vertices participate in the computation and the 
I/Os are sequential. So they are computation-intensive algorithms, 
which makes subgraph construction dominate the execution time. 
For these algorithms, on average LOSC speeds up graph processing 
by 10.1× and 10.6× respectively, compared with GraphChi. BFS, 
WCC and SSSP are traversal algorithms that produce many ran-
dom I/O accesses. Furthermore, they require less computation since 
only a portion of the whole vertex set participates in the compu-
tation. Therefore, they are I/O-intensive algorithms in which the 
disk I/O costs become the key factor on the system performance. 
Thanks to the significant reduction in disk I/Os due to the compact 
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Fig. 7. Runtime breakdown on Twitter2010.

edge storage format and benefit-aware scheduling scheme, LOSC 
outperforms GraphChi by 10.2×, 7.5× and 8.9× on these three al-
gorithms respectively.

For GridGraph, although it does not need to construct vertex-
centric subgraphs since the computation is based on streaming 
the edge lists, it still has a worse performance than LOSC. To fur-
ther explain the reasons, we also report the runtime breakdowns 
of PageRank and WCC on Twitter2010 for both LOSC and Grid-
Graph, as shown in Fig. 7. From the results, we can see that the 
better performance of LOSC mainly stems from its much lower 
disk I/O overheads. This attributes to LOSC’s compact edge storage 
format and benefit-aware scheduling scheme. Although GridGraph 
also supports selective scheduling to reduce the loading of inactive 
edges, it is very coarse-grained since it can only skip processing 
the edge blocks without any active edges. This means it loads and 
processes an edge-block even though there is only one active edge, 
which still produces many redundant data loading.

Moreover, for in-memory settings (LiveJournal), LOSC still out-
performs GraphChi and GridGraph. This is because LOSC can make 
better use of thread-level parallelism by using a lightweight repli-
cation of interval vertices, which leads to higher computational ef-
ficiency. However, when compared with the all-in-memory shared-
memory systems [28,38], out-of-core systems usually deliver a 
worse performance. For example, Ligra [28] only takes 0.3 s to 
run BFS on LiveJournal in our experiment platform. The perfor-
mance gap is attributed to the overheads incurred by disk I/O 
optimizations of out-of-core systems and the specific optimizations 
of parallel algorithms adopted by the shared-memory systems. This 
further reflects that out-of-core graph processing systems are more 
suitable for handling large-scale graphs beyond the memory. When 
a machine with large capacity of memory is available, it is more 
reasonable to use the shared-memory graph processing systems.

When compared with LOSC-v1, the use of the benefit-aware 
scheduling scheme and parallelized subgraph construction can im-
prove the performance by up to 2.4×. In addition, we can observe 
that these newly proposed optimizations bring few benefits when 
processing the small graph LiveJournal. This is because the Live-
Journal graph can fit in memory and the vertex updating time 
dominates the overall runtime.

We also evaluate the preprocessing time of different systems. 
The preprocessing time consists of loading raw data into mem-
ory, partitioning and compressing the graph. As shown in Fig. 8, 
LOSC takes more preprocessing time than the other systems, since 
it needs to build two copies of edges and implement the space-
efficient storage format. This may limit LOSC’s efficiency and make 
it not appropriate for problems with dynamic graph structures. 
However, the overhead of the extra preprocessing is more than off-
set by the significant performance improvement it brings in almost 
all cases except for the SpMV algorithm, according to results in Ta-
ble 4. For example, the preprocessing time of LOSC for Twitter2010 
is longer than that of GridGraph by 218.7 s, the algorithm execu-
tion time of LOSC is less than that of GridGraph by 344.1 s, 148 
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Fig. 8. Preprocessing time.

s, 490.3 s, 419.2 s and 511 s for PR, SPMV, BFS, WCC and SSSP 
respectively. This indicates the preprocessing time may outweigh 
the benefits of proposed optimizations when handling the graph 
algorithms with lightweight computation and I/O loads or few it-
erations like SpMV. In addition, the preprocessing phase of graphs 
is usually off-line. Therefore, the graphs can be reused for many 
times after preprocessing, and the preprocessing overheads can be 
significantly amortized.

4.3. Effect of locality-optimized subgraph construction

In this subsection, we compare LOSC with GraphChi that also 
needs subgraph construction in terms of subgraph construction 
overheads, cache miss rates as well as the effect of thread paral-
lelism. Specifically, we implement LOSC-PSW that constructs sub-
graphs by using the PSW method [18] of GraphChi. Note that 
LOSC-PSW also uses GraphChi’s graph partition and organization 
format. For more exact evaluation, we disable the benefit-aware 
scheduling scheme since it also influences the subgraph construc-
tion time. Fig. 9 shows the time cost of subgraph construction on 
Twitter2010 and UK2007. We find that LOSC exhibits high effi-
ciency of subgraph construction and achieves an average speedup 
of 28.6× and 2.9× compared with PSW and LOSC-v1. This is at-
tributed to a great reduction of random memory accesses and 
effective utilization of parallelism during the subgraph construc-
tion phase.

To further demonstrate how the locality-optimized subgraph 
construction scheme improves the performance of subgraph con-
struction, we first measure the number of memory reads/writes 
and cache misses during the subgraph construction phase using 
Cachegrind [1], a tool to simulate memory, the first-level and last-
level caches etc. Here, we just report the number of memory reads 
and writes, last-level cache read and write misses (LL misses). The 
focus on the last-level cache stems from the fact that it has the 
most influence on the time of subgraph construction, as it masks 
accesses to main memory and a last-level cache miss can cost as 
much as 200 cycles [1]. For the ease of measure, we run 1 iter-
ation of BFS on the small graph, LiveJournal, and summarize the 
results in Table 5. We observe that the LL miss rate of LOSC-PSW 
is much higher than LOSC. This means that the locality of mem-
ory access is exploited better and CPU is able to do more work 
on data residing in the cache for subgraph construction of LOSC. 
For LOSC-PSW, CPU has to frequently access memory to read data, 
which significantly increases the access latency.

Then we evaluate the effect the number of threads on subgraph 
construction. Fig. 10 shows the results of BFS on LiveJournal and 
UK2007. When the number of threads increases from 1 to 8, the 
performance of subgraph construction for LOSC-PSW and LOSC im-
proves by 1.2× and 3.3× on average respectively. This indicates 
that LOSC makes better use of parallelism, since there are no write 
conflicts between the threads that take charge of different vertices 
and edges as introduced in Section 3.3.
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Table 5
Memory access and cache miss.

System Read Write

LOSC-PSW mem. refs 416278519 212376955
LLC misses 32053445 49059076
LLC miss rate 7.7% 23.1%

LOSC mem. refs 410852346 205426173
LLC misses 1608991 6183666
LLC miss rate 0.4% 3.0%

4.4. Effect of compact edge storage format

We evaluate the effects of the compact edge storage format on 
storage space, I/O traffic and runtime of algorithms. To evaluate 
the storage space consumption, We compare LOSC with GraphChi, 
GridGraph, FlashGraph [41], Ligra+ [29] and G-Store [17]. These 
systems use different storage formats or compression techniques, 
which provides a comprehensive evaluation of the effectiveness 
of LOSC’s compact storage format. In addition, we compare LOSC 
with the baseline implementation without using the compact stor-
age format (LOSC-without). Fig. 11(a) compares the required disk 
space of these systems. We observe that the storage of LOSC is ef-
ficient even though it stores two copies of each edge. Specially, the 
storage usages of GraphChi and GridGraph that use CSR and edge 
list to store the graphs respectively are 1.4× and 3.1× higher than 
those of LOSC on average. Compared with LOSC-without, the com-
pact edge storage format can save storage usages by up to 76%.

FlashGraph also stores both the in-edges and out-edges in the 
CSR/CSC format, but without compression. Therefore, the storage 
sizes of FlashGraph are almost equal to those of LOSC-without. 
Ligra+ and G-Store implement a compact storage by using differ-
ent compression methods. Ligra+ also enables delta compression. 
In addition, it utilizes run-length encoded byte codes for vertex 
encoding. G-Store utilizes the symmetry present in graph data, 
which is similar to the compression of undirected graph in LOSC. 
Furthermore, it also enables compression of ID by removing the re-
dundancy of the most-significant-bits (MSBs) of IDs of source and 
destination vertices within a partition. Unlike these systems, LOSC 
compresses IDs by using the variable-length integer to encode ver-
tices IDs of different values, as well as storing the delta values of 
IDs. As shown in Fig. 11(a), the storage sizes of LOSC are respec-
tively 1.1× and 1.5× smaller than those of Ligra+ and G-Store on 
average.

Fig. 11(b) and Fig. 11(c) shows the benefits of the compact edge 
storage format on I/O traffic and runtime when running PageRank 
on different graphs. We can see that the compact edge storage for-
mat can significantly reduce the amount of I/O traffic, leading to 
better algorithm performance. Specifically, the total amount of I/O 
traffic and runtime can be reduced by 58% and 43% on average 
when using the compact edge storage format.

4.5. Effect of benefit-aware scheduling scheme

We first evaluate the benefits of the benefit-aware scheduling 
scheme. To this end, we compare LOSC with a baseline implemen-
tation that disables the benefit-aware scheduling scheme (LOSC-d), 
in terms of I/O traffic, subgraph construction overheads and over-
all performance of algorithms. The evaluation results are shown in 
Fig. 12, running BFS and WCC on different graphs. To intuitively 
show the comparisons of LOSC and LOSC-d, we report the normal-
ized results.

Benefits on I/O traffic. Fig. 12 (a) and (b) show the comparisons 
of I/O traffic. For BFS and WCC where the number of active edges is 
small in most iterations, the benefit-aware scheduling scheme can 
effectively avoid the loading of useless data, significantly reducing 
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Fig. 9. Time cost of subgraph construction.

Fig. 10. Effect of threads number on subgraph construction.

Fig. 11. Evaluating the benefits of compact edge storage format.
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Fig. 12. Evaluating the benefits of benefit-aware scheduling scheme.
the I/O traffic. Specifically, the total amount of I/O traffic can be 
reduced by 75% and 68% for BFS and WCC respectively.

Benefits on subgraph construction. Fig. 12 (c) and (d) compare 
LOSC and LOSC-d in term of subgraph construction overheads. The 
less I/O traffic enabled by the benefit-aware scheduling scheme 
further reduces the subgraph construction overheads, since less 
edges are loaded to memory to construct subgraphs. Specifically, 
the subgraph construction overheads can be reduced by 70% and 
66% for BFS and WCC respectively.

Benefits on overall performance. The combined effects of less 
I/O traffic and faster subgraph construction bring an improvement 
on overall performance, as shown in Fig. 12 (e) and (f). Specifically, 
the benefit-aware scheduling scheme can improve the overall per-
formance by 44% and 33% for BFS and WCC respectively.

Then we evaluate the overheads of the benefit-aware schedul-
ing scheme since it will perform the benefit evaluation in each it-
eration and produce extra computation overheads. Specifically, we 
compare the computation overheads (benefit evaluation) with the 
reduced I/O time enabled by the benefit-aware scheduling scheme. 
As shown in Fig. 13, we can see that the extra computation over-
heads are negligible. For example, the computation time for benefit 
evaluation of BFS is only 1.4 s on Twitter2010, while the corre-
sponding reduced I/O time is 58.1 s.
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4.6. Memory usage

Fig. 14 shows the maximum memory usage comparison of the 
three systems when running PageRank, BFS and WCC on Twit-
ter2010 and UK2007. We can see that GridGraph has the minimum 
memory consumption as it only maintains one copy of edges. For 
LOSC, due to no need to store edge values, it has less memory con-
sumption than that of GraphChi. In addition, LOSC has less mem-
ory consumption when running PageRank, since this algorithm 
only requires the in-edges to finish computation. Even though, we 
still plan to seek a more compact in-memory storage structure to 
mitigate the memory pressure in the future works.

4.7. Scalability

We evaluate the scalability of LOSC by observing the improve-
ment when more hardware resource is added. Fig. 15(a) shows the 
speedup of different systems when running PageRank on LiveJour-
nal using different numbers of threads. We observe that GridGraph 
and LOSC improves the performance as the number of threads 
increases. For GridGraph, it enables parallel processing by over-
lapping the vertex updating and edge streaming [43]. For LOSC, 
it makes full use of parallelism by using a lightweight replica-
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Fig. 13. Evaluating the overheads of benefit-aware scheduling scheme.

Fig. 14. Maximum memory usage.
tion of interval vertices as introduced in Section 3.7. On the other 
hand, GraphChi shows poor scalability as we increase the number 
of threads. The main blame is GraphChi’s deterministic parallelism 
that limits the utilization of multi-threads [18]. Fig. 15(b) shows 
the results when running BFS on UK2007. Since system perfor-
mance is limited by disk I/O, thread number has relatively less im-
pact on the performance. Among these systems, LOSC achieves the 
best scalability. Specifically, when the number of thread increases 
from 1 to 8, the performance of GraphChi, GridGraph and LOSC are 
improved by 8%, 12% and 39% respectively. This is because LOSC 
has the best I/O performance, so that the vertex updating time oc-
cupies a larger proportion in overall execution time compared to 
other two systems and thread parallelism contributes to more per-
formance improvement.

Fig. 15(c) shows the performance improvement of BFS on UK 
when using different I/O devices. Compared with disk perfor-
mance, GraphChi, GridGraph and LOSC achieve a speedup of 1.3×, 
1.8× and 1.7× respectively when using SSD. This indicates that 
LOSC and GridGraph can benefit more from the utilization of SSD, 
since the key performance bottleneck of them is the disk I/O costs. 
For GraphChi in which the subgraph construction is also a per-
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formance bottleneck, using fast I/O devices can only bring limited 
improvement.

Fig. 15(d) shows the performance variations of PageRank on 
Twitter graph under different memory budgets. With the memory 
increased from 2 GB to 12 GB, LOSC achieves a speedup of 6.2×, 
much higher than the speedups of GraphChi (1.3×) and GridGraph 
(1.2×). This is because LOSC can fit the whole graph data into 
memory under 12 GB memory, thanks to the compact storage for-
mat.

4.8. Comparison with other systems

In Fig. 16, we compare LOSC with other state-of-art out-of-
core graph processing systems including FlashGraph [41], GraphZ 
[42], G-Store [17] and NXGraph [7] to further evaluate the per-
formance of LOSC. FlashGraph utilizes SSD arrays to implement a 
semi-external memory graph engine. It supports selective access 
of the edges requested by the applications in a random manner. 
GraphZ reduces the I/O costs and improves performance by us-
ing the degree-ordered storage and dynamic messages. G-Store is a 
high-performance graph store engine which delivers high through-
put of graph data I/Os from SSDs, combined with judicious use of 
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Fig. 15. Evaluation of scalability.

Fig. 16. Execution time of different graph processing systems.
main memory and cache. It also enables compact storage by using 
techniques such as ID compression. NXgraph provides three novel 
update strategies under the Destination-Sorted Sub-Shard (DSSS) 
structure so as to further ensure locality of graph data access. 
Among them, FlashGraph and GraphZ are vertex-centric graph pro-
cessing systems and G-Store and NXGraph are edge-centric graph 
processing systems.

For GraphZ and NXGraph, LOSC achieves average speedups of 
2.3× and 2.7× respectively. Specifically, for each algorithm (PageR-
ank, BFS and WCC), LOSC achieves average speedups of 1.4×, 1.9×
and 3.8× respectively over GraphZ, and average speedups of 1.7×, 
3.1× and 3.4× respectively over NXGraph. In particular, LOSC has a 
higher speedup when running BFS and WCC. This is because there 
are very few active edges in most iterations of these algorithms. In 
this case, the efficiency of LOSC’s benefit-aware scheduling is sig-
nificant. While for PageRank, the benefit-aware scheduling scheme 
does not take effect. Furthermore, the compact edge storage format 
also contributes to LOSC’s better performance.

FlashGraph supports selective access by loading the active 
edges in a random manner, relying on expensive SSD arrays that 
deliver high I/O bandwidth. However, it incurs significant over-
heads when issuing frequent small random accesses to HDDs or 
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one SSD. While for LOSC, it skips processing inactive edges in each 
iteration whenever such skipping can bring performance benefit. 
This results in a higher speedup over FlashGraph when running 
BFS and WCC, as shown in Fig. 16. Specifically, LOSC outperforms 
FlashGraph by average speedups of 1.7×, 3.7× and 4.9× for each 
algorithm respectively.

For G-Store, it enables high-performance storage by utilizing the 
symmetry present in graph data and removing the redundancy 
of the most-significant-bits (MSBs) of IDs of source and desti-
nation vertices within a partition. Furthermore, G-Store adopts a 
clever proactive caching strategy to make better use of memory. 
Thanks to these optimizations, G-Store has a better performance 
than other three systems. However, LOSC still achieves an aver-
age speedup of 1.2× over G-Store. This is attributed to the fol-
lowing two reasons. First, LOSC enables more compact storage by 
combining several graph compression methods as shown in Sec-
tion 4.4, which can lead to less I/O traffic. Second, the benefit-
aware scheduling scheme avoids more unnecessary I/Os for LOSC. 
Although G-Store can also support selective fetching, it relies on 
SSD arrays to achieve this like FlashGraph. While the benefit-aware 
scheduling scheme has better adaptability and works well for both 
SSD and HDD.
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5. Related work

Many scalable graph processing systems have recently been 
proposed. In this section, we introduce three categories of exist-
ing graph processing systems: distributed systems, single-machine 
shared-memory systems and single-machine disk-based (out-of-
core) systems.

5.1. Distributed systems

Distributed systems usually distribute a large graph into the 
compute nodes of a cluster by constructing node-resident sub-
graphs from the original graph, which enables them to utilize 
the aggregate memory of a cluster to achieve good scalability. 
Pregel [24] supports vertex-centric computing model following 
Bulk-Synchronous Parallel message passing model [31]. It abstracts 
away the complexity of programming in a distributed-memory 
environment and runs users’ code in parallel on a cluster. How-
ever, this model usually suffers from expensive synchronization 
overheads. GraphLab [21] and PowerGraph [13] executes an asyn-
chronous model and uses shared memory for communication 
among vertices instead of passing messages. Gemini [44] applies 
multiple optimizations targeting computation performance to build 
scalability on top of efficiency. Chaos [27], BlitzG [6] and Turbo-
Graph++ [16] utilize secondary storage to scale distributed graph 
processing to out-of-core scenery. Giraph [8] and Shentu [19] ex-
ploit a powerful cluster with high performance interconnects to 
handle trillion-scale graphs. Gluon [9] introduces a new approach 
to building distributed memory graph analytics systems that ex-
ploit heterogeneity in processor types (CPU and GPU), partitioning 
policies, and programming models.

5.2. Single-machine shared-memory systems

Single-machine shared-memory systems typically use a high-
end server with hundreds or thousands gigabytes of DRAM to hold 
the whole graph [11]. Ligra [28] is a lightweight shared-memory 
framework and provides a programming interface optimized for 
graph traversal algorithms. Polymer [38] is a NUMA-aware graph 
analytics system, which is motivated by a detailed study of NUMA 
characteristics. Garaph [22] fully exploits the power of modern 
hardware and efficiently support GPU-accelerated graph process-
ing. Julienne [10] extends Ligra with an interface for maintaining a 
collection of buckets under vertex insertions and bucket deletions, 
to efficiently support bucketing-based graph algorithms. GraphIt 
[39] is a novel DSL for graph processing that generates fast im-
plementations for algorithms with different performance charac-
teristics running on graphs with varying sizes and structures.

5.3. Out-of-core systems

Out-of-core graph processing systems enable users to analyze, 
process and mine large graphs in a single PC by efficiently using 
disks. Current out-of-core graph processing systems mainly adopt 
two computing models, i.e., vertex-centric and edge-centric.

Vertex-centric systems. TurboGraph [15] inspired by GraphChi 
focuses on improving parallelism by overlapping the CPU and I/O 
processing with a novel concept called pin-and-slide, but it is 
applicable only to certain embarrassingly parallel algorithms [5]. 
VENUS [5] uses a vertex-centric streamlined computing model and 
proposes a new storage scheme that streams the graph data while 
performing computation. Nevertheless, it only loads the in-edges 
of vertices during computation, which disables selective schedul-
ing and is inappropriate for certain algorithms that also require 
out-edges of vertices. [33] provides a general optimization for 
out-of-core graph processing, which removes unnecessary I/O by 
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employing dynamic partitions whose layouts are dynamically ad-
justable. Although it can avoid the loading of useless data and 
eliminate random disk accesses, it has to write back the active 
edges. FlashGraph [41] supports selective access the edges re-
quested by the applications in a random manner. Graphene [20]
proposes clever I/O management and scheduling to ease the pro-
gramming and achieve high IO performance. However, they both 
rely on expensive SSD arrays that deliver high I/O bandwidth and 
only support semi-external processing, and will incur significant 
overheads when issuing frequent small random accesses to HDDs 
or one SSD. While for LOSC, it has better flexibility and works well 
for both SSD and HDD, since it skips processing inactive edges in 
each iteration whenever such skipping can bring performance ben-
efit. MultiLogVC [25] adopts a multi-log update mechanism and an 
extended compressed sparse row (CSR) format to reduce the load-
ing of inactive vertices and edges. GraphSD [36] simultaneously 
captures the state and dependency of graph data during computa-
tion, so as to significantly improve the disk I/O performance.

Edge-centric systems. X-Stream [26] advocates a novel edge-
centric scatter-gather computing model. In the scatter phase, it 
streams the entire edge list and produces updates. In the gather 
phase, it propagates these updates to vertices. Although it lever-
ages high disk bandwidth through sequential accessing, it writes 
a large amount of intermediate updates to disks and disables se-
lective scheduling, which incurs great I/O and computation over-
head. GridGraph [43] also uses an edge-centric computing model. 
Differently, it combines the scatter and gather phases into one 
“streaming-apply” phase and uses a 2-Level hierarchical parti-
tion to break graph into 1D-partitioned vertex chunks and 2D-
partitioned edge blocks. It supports selective scheduling by skip-
ping the edge blocks for which vertices in the corresponding 
chunks are not scheduled. NXgraph [7] proposes destination-sorted 
subshard structure to store a graph so as to further ensure locality 
of graph data access. Although these systems can skip the phase 
of subgraph construction. MOSAIC [23] fully exploits the hetero-
geneity of modern hardware such as NVMe devices and Xeon Phis, 
to scale up to one trillion edges using a single machine. However, 
this may limit its adaptability due to the relying on these high-end 
hardwares. CLIP [3] and Lumos [32] adopt an out-of-order execu-
tion model to make full use of the loaded blocks to avoid loading 
the corresponding graph portions in future iterations. Their cross-
iteration value propagation method can also be used in our work 
to further speedup the convergence of algorithms and reduce disk 
I/O.

5.4. Graph processing systems with compressed storage

Several systems adopt compressed storage format for efficient 
storage and better performance. WebGraph [4] presents several 
compression techniques to compress web and social network 
graphs, by exploiting the properties of real-world web graphs. 
However, it mainly focuses on compressing the web graphs and 
is not used to improve the performance of general graph algo-
rithms or graph processing systems [29]. Ligra+ [29] integrates 
compression techniques such delta compression into Ligra. In ad-
dition, it uses run-length encoded byte codes for vertex encoding. 
Unlike LOSC that compresses the graphs to save the disk space 
and further reduce I/O traffic, it uses the compression techniques 
to enable faster in-memory parallel graph processing using less 
memory footprints. G-Store [17] utilizes the symmetry present 
in graph data by storing only the upper triangle (half) of graph 
data for undirected graphs, which is similar to the compression of 
undirected graph in LOSC. It also enables compression of ID, but 
implementing differently by removing the redundancy of the most-
significant-bits (MSBs) of IDs of source and destination vertices 
within a partition. MOSAIC [23] implements the ID compression by 
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mapping a global vertex ID in the original graph to a local vertex 
ID inside a tile. However, it has to maintain a per-tile meta index 
structure for the mapping. CIC-PIM [40] proposes a lightweight 
encoding with chunked index compression, to reduce the mem-
ory footprint and the runtime of graph algorithms. It divides in-
dex structures into chunks of appropriate size and compress the 
chunks with a lightweight fixed-length byte-aligned encoding.

6. Conclusion

In this paper, we discover a new performance bottleneck of 
out-of-core graph processing system other than the disk I/O prob-
lem, which is the inefficient subgraph construction caused by a 
large number of random memory accesses. In order to reduce 
the significant overheads of subgraph construction, we present a 
new out-of-core graph processing system called LOSC that sup-
ports vertex-centric computing model. LOSC proposes a locality-
optimized subgraph construction scheme that improves the in-
memory data access locality of subgraph construction phase. LOSC 
also adopts a compact edge storage format and a lightweight repli-
cation of vertices to reduce I/O traffic and improve computation 
efficiency. Moreover, a benefit-aware scheduling scheme is applied 
to skip processing the inactive edges, which further improves the 
I/O performance. Our evaluation results show that LOSC can be 
much faster than two representative graph processing out-of-core 
systems GraphChi and GridGraph, and other state-of-the-art out-
of-core systems.
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