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Following a conventional design principle that pays more fast-CPU-cycles for fewer slow-I/Os, popular soft-
ware storage architecture Linux Multiple-Disk (MD) for parity-based RAID (e.g., RAID5 and RAID6) assigns
one or more centralized worker threads to efficiently process all user requests based on multi-stage asynchro-
nous control and global data structures, successfully exploiting characteristics of slow devices, e.g., Hard Disk
Drives (HDDs). However, we observe that, with high-performance NVMe-based Solid State Drives (SSDs),
even the recently added multi-worker processing mode in MD achieves only limited performance gain be-
cause of the severe lock contentions under intensive write workloads.

In this paper, we propose a novel stripe-threaded RAID architecture, StRAID, assigning a dedicated worker
thread for each stripe-write (one-for-one model) to sufficiently exploit high parallelism inherent among RAID
stripes, multi-core processors, and SSDs. For the notoriously performance-punishing partial-stripe writes that
induce extra read and write I/Os, StRAID presents a two-stage stripe write mechanism and a two-dimensional
multi-log SSD buffer. All writes first are opportunistically batched in memory, and then are written into the
primary RAID for aggregated full-stripe writes or conditionally redirected to the buffer for partial-stripe
writes. These buffered data are strategically reclaimed to the primary RAID. We evaluate a StRAID prototype
with a variety of benchmarks and real-world traces. StRAID is demonstrated to outperform MD by up to 5.8
times in write throughput.
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1 INTRODUCTION

The advent of ultra-fast storage devices such as NVMe-based Solid-State Drives (SSDs) and
Non-volatile Memory (NVM) with GB/s-level I/O bandwidth has dramatically narrowed the per-
formance gap between memory and storage. Redundant Array of Inexpensive Disks (RAID)

[56] can combine multiple such high-performance storage devices to further promote the overall
storage performance, reliability, and capacity simultaneously. Many empirical studies [10, 18, 35]
including distributed datacenter storage systems [49, 72] and enterprise storage systems [48] re-
port that SSD drivers exhibit reliability problems in that more than 20% of SSDs develop uncor-
rectable errors in a four-year period [58]. Therefore, parity-based RAIDs composed of ultra-fast
SSDs have become attractive storage systems for modern data-intensive applications in supercom-
puting [55], big data analytics [25, 64], machine learning [7], enterprise storage [48], and cloud
services [1, 32, 38, 45, 61].

HDD-based RAIDs have been extensively studied since 1988 [56]. In the literature, recent stud-
ies focus on SSD-based RAID and All-Flash-Array (AFA), with efforts to reduce SSD write-
penalty by mitigating parity update [8, 15, 68], reduce garbage-collection induced performance
jitter [21, 33, 42], and optimize AFA using declustering RAID approach to balance load within de-
vices and reduce tail-latency [28, 77]. Existing RAID I/O handling techniques generally adopt a
centralized stripe-processing architecture following a classic principle that trades more fast-CPU-
cycles (e.g., scheduling algorithms) for fewer slow-I/Os. Nonetheless, the question of whether such
RAID architecture can fully exploit the power of emerging fast storage remains unanswered.

We experimentally measure the actual performance of Multiple-Disk (MD) [46], the most
popular and mature software RAID integrated into the Linux kernel for over two decades. We con-
duct MD running on 6 NVMe-based SSDs with 64 user threads (i.e., issuing block requests) and 64
workers threads (i.e., handling RAID stripe-writes), with the experiment environment summarized
in Tables 1 and 2. The results are shown in Figure 1 (detailed in Section 3.1). With RAID0 (non-
parity RAID-level), MD obtains an expected performance that approaches the aggregate raw I/O
capacity of the underlying SSDs, i.e., 20GB/s and 14GB/s for read and write throughputs, respec-
tively. However, MD falls far short of the expectation in write performance in RAID5 and RAID6
(parity-based RAID-levels). Specifically, the write throughput of RAID5 is below 2.2GB/s under
partial-stripe writes and below 5.2GB/s under full-stripe writes, which are only about 1/7 and 1/3
of that of RAID0, respectively. Although parity-RAIDs introduce extra parity-compute overheads,
our measured XORing rate on a CPU core can reach up to 29GB/s [26], which is clearly not the
bottleneck.

Through profiling (detailed in Section 3.2), we experimentally uncover that the write inefficiency
of parity-based RAID comes from a centralized stripe-handling architecture in the legacy MD.
Specifically, a worker thread using shared data structures (e.g., stripe-list) handles write requests
by efficiently collaborating with user threads, XORing threads, and device I/O threads. For HDDs
and slow SSDs, this one(worker thread)-for-all(stripe) architecture utilizes fast CPU sufficiently
by postponing stripe-writes to absorb more requests for reducing actual I/Os. However, a single
worker thread is upper-bounded in its processing capability that fails to keep up with the fast stor-
age. The latest MD introduces a multi-worker mechanism, referred to as the N-for-all processing
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Fig. 1. The throughput of Linux software RAIDs on three-types of SSDs under varying number of user

threads.

model, but achieves a limited performance gain due to severe lock contention on the centralized
data structures, especially for handling partial-stripe writes.

In this paper, we propose a novel stripe-threaded architecture, called StRAID, for parity-
based RAIDs built on ultra-fast storage devices such as NVMe-based SSDs. To address the ar-
chitectural drawback of the existing software RAID (MD), StRAID employs a one(worker)-for-
one(stripe) model, thus significantly reducing the number of stripe-states and their lock-based
checks. Furthermore, StRAID adopts a fine-grained stripe-level lock, substantially mitigating con-
tentions on shared data structures. To tame the notoriously performance-degrading partial-stripe
writes, StRAID proposes a two-stage stripe submission mechanism and a two-dimensional SSD
write buffer distributed across the RAID member disks. StRAID first aggregates incoming stripe-
associated writes into full-stripe in memory within a limited time window, which opportunistically
filters requests with sequential or in-place update patterns. Afterward, the aggregated full-stripes
are flushed into the underlying primary RAID and the partial-stripe writes are written into the Log-
Buffer. The Log-Buffer employs a two-dimensional log data-layout and a parallel I/O processing
model to fully exploit SSDs’ parallelism. Finally, the buffered data are strategically written back to
the primary RAID. Fundamentally, StRAID effectively exploits stripe-based data parallelism while
mitigating intra-stripe conflicts between the dedicated stripe worker thread and other threads.
StRAID leverages the power of multicore CPUs that offer sufficient threads to fully unleash the
superior IOPS provided by fast SSDs.

The main contributions of this paper are as follows.

• We experimentally observe a serious write inefficiency problem in the current MD when
parity-based RAID is running on ultra-fast storage. We further reveal that the root cause is
the centralized one-for-all stripe-handling architecture.
• We propose a novel parity-RAID processing architecture, StRAID, guided by a stripe-

threaded one-for-one model and a two-stage stripe submission mechanism to unleash the
full performance potentials of modern hardware while improving partial-stripe writes on
parity-based RAIDs.
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• We present an SSD-based write buffer seamlessly embedded with the StRAID to absorb in-
famous partial-stripe writes of RAID. The write buffer employs multi-log data-layout and a
parallelized I/O processing model to reap the performance of multiple SSDs.
• We prototype and evaluate StRAID with a variety of benchmarks and real-world workloads.

StRAID consistently outperforms MD by up to 5.8 times in write throughput without affect-
ing the read performance while reducing CPU utilization.

The rest of the paper is organized as follows. Section 2 presents the background for RAID. Sec-
tion 3 analyzes the performance behaviors of Linux software RAID (MD) and motivates the StRAID
design. Section 4 describes StRAID’s design. We evaluate StRAID in Section 6 and describe related
works in Section 7. Section 8 concludes this paper.

2 BACKGROUND

2.1 RAID Systems

Redundant Array of Inexpensive Disks (RAID) [56] is a classic system-level approach that
combines multiple disks to improve performance, reliability and capacity simultaneously. Over the
past decades, RAID has been used ubiquitously to construct and manage efficient storage servers,
distributed storage [4, 54], and cloud storage [1, 38] from within and/or among storage devices.

The RAID architecture is categorized into various RAID levels based on the amount of redun-
dancy and how redundancy is incorporated, including non-parity RAIDs (e.g., striping-only RAID0
and mirroring-only RAID1) and parity RAIDs (e.g., RAID5 and RAID6 that can tolerate one and
two disk failures respectively). RAID can be implemented in either software or dedicated hardware
(e.g., I/O controllers or firmware) to offer the block-addressable volume. A common N-disk RAID
internally consists of multiple stripes, each of which comprises user data chunks and their corre-
sponding parity data chunks across N disks according to an algorithmic address-mapping method.
Normal reads without disk failure are directly decomposed to their constituent chunk I/Os served
by the underlying disks. Normal writes in non-parity RAIDs behave like normal reads without
accessing parity chunks.

Normal writes in parity-based RAIDs need extra parity generation, update, or construction op-
erations. For a full-stripe user write where all data chunks of a stripe are written, the RAID system
generates all new parity chunks at once, and then writes both data chunks and parity chunks into
their corresponding disks. For a partial-stripe write where only a subset of the data chunks of a
stripe are written, only after its constituent old data or parity chunks are read from the disks is the
stripe updated and then written into the disks again, thus inducing numerous extra I/Os [8, 28].
This read-modify-write nature of partial-stripe writes makes them notoriously costly. When disks
fail within the failure-tolerance range, the RAID transitions from its normal mode to a degraded
mode to perform read, write, or resync operations.

2.2 Linux Software RAID

The Linux software RAID module, referred to as Multiple-Disk (MD) [46], is the most commonly
used software RAID evolving with the Linux Kernel for over two decades. Currently, MD supports
various RAID levels and RAID compositions. Non-parity-based RAIDs in MD perform an algorith-
mic block-to-chunk address mapping. For parity-based RAIDs, normal reads are similar to those
in a non-parity-based RAID without parity operation. However, writes inevitably introduce sev-
eral additional parity-generation/modification operations. Figure 2 shows the architecture of MD
parity-based RAIDs and Figure 3 shows the workflow of their stripe-writes. The centralized data
structure (stripe-cache) comprises inactive and handling stripe-lists, which maintain the metadata
of the stripes (up to 256 by default). Each stripe has its own stripe_head containing stripe states
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Fig. 2. Architecture of Linux MD parity-based RAID.

and device states (Devs). Devs contains a set of block request structures (bios) pointing to their
buffered pages. Specifically, a stripe and its corresponding Devs have 28 and 27 states respectively
that are used to precisely identify the handling states of this stripe. When a stripe is processed and
cleared, its corresponding stripe_head will be transferred into the inactive_list.

MD handles stripe-writes using a state machine represented as a directed acyclic graph (DAG)

[16]. As shown in Figure 3, a normal user write process can be divided into 5 consecutive stages: 1)
inserting/aggregating bios to a stripe (INS); 2) reading data/parity chunks (RD); 3) comput-

ing parity (XOR); 4) writing data/parity (WT); and 5) clearing stripe (CLR). Specifically, in
the first stage ❶, user threads (UT ) invoke make_request() to attach bios to their corresponding
stripe_head structures. Afterwards, a daemon worker thread (WT ), i.e., RAID5d in MD by default,
handles all active stripe_heads in a circular manner with priority.

For a full-stripe write, MD skips the second stage. For a partial-stripe write, MD must intro-
duce write-induced reads ❷, resulting in I/O amplification. More specifically, there are two stripe-
updating schemes, read-modify-write (RMW) and read-construction-write (RCW) [28]. MD
calculates the required number of disk-read I/Os of both RCW and RMW, selects the I/O-minimum
approach, and launches the relevant disk-read I/Os. When a disk I/O thread (DT ) completes the
read, it sets a data-prepared flag to its bios. Afterwards, ❸ WT checks all the involved bios until
prepared, and then launches a parity-calculation executed by other XORing threads. When WT
verifies that the parity has been prepared, ❹ it invokes disk-write I/Os. ❺ WT finally validates the
completed state and clears the stripe_head. Therefore, the write process orchestrates WT, UT, and
DT threads via shared-state setting and checking.
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Fig. 3. Stripe-write workflow of parity-based MD RAID.

WT handles each stage of a stripe-write in four steps, as described in Figure 3: 1© getting a
stripe_head from a stripe_list; 2© analyzing the current state of this stripe and all its involved
bios, to determine whether this stripe is still in-flight; 3© handling the stripe by launching a given
operation (e.g., XOR) through executing DAG; and 4© updating the stripe state, inserting it back
into a stripe_list and selecting the next stripe. The worker thread handling a stripe exclusively
accesses shared data structures and stripe-states using multiple locks. For example, in step 4©, WT
exclusively modifies handle_list with a global device lock.

For HDD-based RAID, a disk I/O takes at least several milliseconds. Therefore, a WT in Linux
MD has sufficient CPU-cycles to drive all stripe-writes. With the emerging SSDs that have 2-3
orders of magnitude lower I/O latency than HDD, MD also introduces a multi-worker mechanism
[39, 40] that enables more numbers of functionally equivalent worker threads to process stripes
concurrently, referred to as the N-for-all processing model.

3 ANALYSIS AND MOTIVATION

3.1 Understanding the Write Performance

Experiment Setup We start with measuring the MD performance in the RAID0, RAID5 and
RAID6 levels running on three types of SSD devices, whose I/O characteristics are listed in Table 2.
The platform configuration is shown in Table 1. The XORing throughput on a single CPU-core
can reach up to 29GB/s. We deploy six SSD devices to construct parity-based RAIDs, that is, 5+1
RAID5 and 4+2 RAID6, respectively. The chunk size in all RAIDs is set to 64KB as default. We
pin each user thread (UT ) to a unique CPU-core and increase the number of UTs from 1 to 64.
Each UT issues random 64KB-sized writes over 30 seconds. For parity-RAIDs, we invoke up to 64
extra RAID worker threads (WT ), and enlarge the stripe cache capacity from the default of 256
stripe_heads to 16K stripe_heads.

Write Inefficiency with Parity-RAID Figure 1 reports the throughput performance of MD.
In all the cases, the write performance and scalability of the non-parity RAID0 far exceed those of
parity-based RAID5 and RAID6. RAID0 achieves a write performance of about 1.4GB/s and 11GB/s
peak throughput on 860Pro and 980Pro SSDs at 64 UTs, while RAID5 in the multi-worker mode
achieves a peak write performance of lower than 0.72GB/s and 5.3GB/s, respectively. On 980Pro,
the 64KB partial-stripe write throughputs of parity-RAIDs are below 2.1GB/s, which is only 1/7
of that of RAID0. Even for the 1MB full-stripe writes, the throughputs of RAID5 and RAID6 with
64 UTs are below 5.2GB/s and 5.3GB/s respectively, only about 38% of that of RAID0. It indicates
that parity-RAIDs fall short of leveraging the write I/O performance of modern SSDs and the
bottleneck on CPU processing is the main reason. We will show more details in the next section.
Besides, normal reads of MD in all RAID levels are generally similar and scale well with the number
of UTs.
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Table 1. Evaluation Platform Specifications

Components Configurations

Processor Duel Socket Intel Xeon Gold 6328, 56 Cores, 128MB LLC
Memory 256GB 2666MHz DDR4

Operating System Ubuntu 20.10 LTS with the Linux kernel version 5.13.0
MD controller mdadm v4.2 2021-12-30

Table 2. Characteristics of Three Representative SSD Products

Device

Types

Device

Modules
Capacity

Stable Write

Thr. (MB/s)

Stable Read

Thr. (MB/s)
Interfaces

SATA SSD Samsung 860 Pro 512GB 500 510 SATA
NVMe SSD Samsung 970 Pro 512GB 2200 3200 PCIe 3.0
NVMe SSD Samsung 980 Pro 1TB 2600 6900 PCIe 4.0

Fig. 4. Write throughput of MD RAID5 under the multi-worker mechanism.

We further analyze the write inefficiency of the multi-worker mechanism with RAID5 on six
980Pro SSDs. We invoke 64 UTs in either the single-worker (i.e., Single) mode or the multi-worker
mode with the number of WTs varying from 1 to 64 (i.e., +1W to +64W ). Figure 4 shows that the
parity-based RAID gains limited benefits from the multi-worker mode. For example, MD with 8
more WTs has a write throughput improvement of 2.4× and 3.6× over the single-worker mode un-
der 16 and 64 UTs, respectively. However, MD’s performance gain peaks at 16 WTs, beyond which
MD’s throughput starts to gradually decrease, e.g., with a 5% decline at 64 WTs. This indicates
that the multi-worker mode has a diminishing return in performance beyond a relatively small
number of WTs. Therefore, even in the case of 64 UTs and 64 WTs, parity-RAIDs still fall short of
fully leveraging the I/O bandwidth offered by the fast SSDs.

3.2 Identifying the Root Causes

We investigate the CPU usage distribution to identify the root causes of poor write scalability of
MD. We use RAID5 with fixed 64 UTs and vary the number of WTs from 1 to 64. We use perf [44]
to measure CPU cycles of key functions within a WT thread, detailed in Table 3. We randomly
select one WT for analysis since all WTs behave very similarly in our experiments. Figure 5 shows
that CPU cycles of disk I/O (RD/WT ) and XORing (XOR) decrease as the number of WTs increases,
accounting for 42% of the total CPU cycles in the single-worker mode, but only 9.7% at 64 WTs.
Meanwhile, the CPU cycles of stripe-write process (i.e., F/R List, Lock, Analyze and Others) increase
significantly as WTs increase.

First, the global device lock (Lock) consumes a mere 4.3% of CPU-cycles in the single-worker
mode but a dominant 54.6% in the 64-worker mode. As shown in Table 3, the device lock in Linux
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Table 3. Key Function Calls and Locks of Linux Parity-RAID

Operations Function as example Description

RD/WT generic_make_request()
Send bio to block device queues

( 2© in stages ❷ and ❹)
XOR async_xor() Compute parity data ( 2© in stage ❸)

F/R List release_stripe()
Insert the stripe_head to stripe_list
according to its states ( 1© and 4©)

Lock spin_lock_irq(device_lock)
Global MD device Lock,

mainly used for updating shared structs

Analyze analyze_stripe()
Analyze the states of a stripe

and its Devs before handling ( 2©)
Others - Other software overhead

Fig. 5. Breakdown of CPU cycles on key functions and locks of the worker threads in Linux MD.

MD is spin lock, which controls concurrent accesses from WTs, UTs, and DTs to all the stripe_lists
and metadata of RAID. In most cases, each WT exclusively accesses the handle_list, thus causing
severe lock contention among these threads. Recently, Linux Kernel contributors also found high
overhead of the device lock in the read path [52] and replaced them with a lockless memory barrier,
thus achieving 7× improvement in small-sized reads. However, the device lock in the write path
remains a serious source of contention.

Second, checking for stripe states (Analyze) consumes 22% and 13.2% CPU usage in the single-
worker and 64-worker modes, respectively. In Linux MD, most of the stripe states and device bio
states use a set of semaphores to orchestrate UTs, WTs, and DTs. In summary, through extensive
experiments, we observe that the architectural deficiency of the N-for-all centralized handling
model leads to severe lock contentions due to highly-concurrent accesses to global data structures
and the states of stripes.

4 DESIGN

Given the above identified root causes of write inefficiency of MD with parity-RAIDs running
on ultra-fast SSDs, we propose a stripe-threaded architecture of parity-RAID, StRAID for short.
StRAID assigns a dedicated worker thread for each stripe-write, which significantly reduces lock
contentions among multiple threads, and addresses the partial-stripe-write penalty with a two-
stage write submission and a two-dimensional multi-log SSD write buffer.

4.1 Architecture

Figure 6 illustrates the StRAID architecture for parity-RAID. StRAID horizontally separates the
space for SSD arrays into two components: a primary RAID array and a Log-Buffer. StRAID does

ACM Transactions on Storage, Vol. 20, No. 1, Article 6. Publication date: January 2024.
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Fig. 6. Architecture and process flow of StRAID.

not change the data layout of the legacy MD for the primary RAID, and persists RAID’s metadata
at the pre-defined location of each disk.

When a user thread (UT ) submits a block-write to StRAID, the I/O request (bio) will be sent to
a dedicated worker thread (WT ) that completely and exclusively handles its corresponding stripe.
StRAID uses a dynamic allocation strategy that prioritizes assigning bio to a WT that is in idle state
or has less unprocessed requests. When a bio updates multiple stripes, each stripe is sequentially
processed by its dedicated WT. Multiple WTs process their own stripes independently, exploiting
the intrinsic data parallelism among stripes. StRAID pre-allocates at least 128 WTs in the WT Pool
to alleviate frequent thread creation/destroy overhead in runtime. Note that all idle threads in the
WT Pool are in the sleep state and will not be allocated actual memory space to reduce CPU and
memory overhead.

A normal stripe-write process in StRAID can be divided into six consecutive stages of ❶ ini-
tializing stripe_heads and inserting bios (INS); ❷ performing I/O batching (BAT); ❸ reading par-
ity/data chunks (RD); ❹ computing parity (XOR); ❺ writing data/parity; and ❻ clearing stripe
states in SST (CLR). Moreover, ❼ user threads being batched must wait for completion (WAIT) and
❽ partial-stripe writes that have not been efficiently batched should be conditionally redirected
to the Log-Buffer. A notable workflow difference between StRAID in Figure 6 and the legacy MD
in Figure 3 is that the latter’s stages of 1© stripe acquisition, 2© analysis and 4© stripe release are

ACM Transactions on Storage, Vol. 20, No. 1, Article 6. Publication date: January 2024.
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Fig. 7. Stripe state table.

removed in the former. Compared to the legacy MD, StRAID removes the centralized stripe_head
lists and their corresponding concurrent operations. Furthermore, StRAID minimizes the number
of shared stripe-states and global-state checking among WTs, because a dedicated WT handles a
stripe-write exclusively. Finally, the parity computation and I/O execution processes of a stripe
write are pinned to the same CPU core, thus avoiding frequent context switches and CPU cache
pollution.

However, StRAID faces new challenges in effectively conducting thread collaboration and re-
ducing the partial-write penalty. StRAID still needs a minimal shared-data structure to orchestrate
UTs, WTs, and DTs in handling stripe-writes. To this end, StRAID proposes a Stripe State Table
(Section 4.2) with lockless access features. Further, the legacy MD uses the global stripe-cache and
active/passive delays to aggregate stripe-associated writes (SS-writes) that target the same stripe,
thus reducing partial-write-induced disk I/Os. However, in StRAID, a user write triggers a dedi-
cated WT to immediately and exclusively handle the corresponding stripe-write, which does not
address the costly partial-write penalty. To solve this problem, StRAID presents a two-stage stripe
submission mechanism (Section 4.3) to opportunistically aggregate SS-writes in memory by em-
ploying a batching queue per WT (Section 4.3.2). Then, StRAID writes aggregated full-stripes into
the primary RAID and conditionally redirects partial-stripe writes to the Log-Buffer (Section 4.4).
Finally, StRAID executes buffer reclamation by merging and flushing logging data to the primary
RAID in background.

4.2 Stripe State Table

StRAID designs a Stripe State Table (SST), as shown in Figure 7, to maintain a minimal set of
shared stripe-states. SST adopts a hash table to index up to 4,096 active stripe-entries, each of
which is handled by a dedicated worker thread. An SST-entry (48-bit) contains four fields: 32-bit
Stripe ID uniquely specifying a stripe; 1-bit Stripe Lock indicating whether this stripe is currently
being processed; 14-bit TID identifying the thread ID of the dedicated WT handling this stripe;
and 1-bit is_frozen recording the shared stripe-state that indicates whether the stripe is allowed
to batch. SST is a globally shared structure between WTs and DTs, where each entry is uniquely
associated with a physical stripe and can only be exclusively modified by a WT using CAS [57] at
any time. SST employs Cuckoo hashing [53] for achieving high table occupancy while preventing
hash collisions. The total memory footprint of SST is smaller than 40KB.

4.3 Two-stage Stripe Submission

4.3.1 Partial-stripe Write Overhead. A partial-stripe write causes write-induced reads and write
amplification. The write-induced-read ratio (WIRR) and write amplification (WA) of RAID5
are estimated by Equation (1) and Equation (2) respectively, whereWS ,CS and SS represent write-
size, chunk-size and stripe-size, respectively. WhenWS is smaller than CS in RAID5, a block-size
write induces 2× read I/Os and 2× write amplification (one data-block write and one parity-block
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Fig. 8. Workflow of two-stage stripe submission, an example with three concurrent worker threads (WT1-

WT3) targeting the same stripe.

write) with optimal RMW strategy. As WS increases, the amount of write-induced-read data de-
creases (0 for a full-stripe write).
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Existing optimizations for partial-stripe writes can be catergorized into four general approaches
as dynamic stripe size [6, 78], write-aggregation [46], write buffering [31, 68], and parity logging
[8, 9, 14, 73, 74]. RAIDZ [6] uses a dynamic stripe size mechanism to eliminate partial-stripe writes,
but needs the support of the ZFS file system.

The legacy Linux MD employs a global stripe-cache to absorb active user writes by postponing
stripe-writes actively or passively. This write-aggregation approach reduces actual disk I/Os but
increases the latency of the postponed requests, which may hurt the overall performance for low-
latency SSDs. Generally, it facilitates aggregation of sequential writes, but performs no benefit on
random RAID accesses. Moreover, the RAID write buffering approaches quickly persist incoming
writes to an auxiliary fast-disk (e.g., SSD or NVM) and then immediately acknowledge to the user.
These methods achieve better write performance and improve aggregation efficiency by absorbing
more SS-writes. However, it needs to rewrite the relevant data to original locations in the back-
ground, which leads to at least 2× write amplification. Simply buffering all write requests would
result in shorter lifetime and performance bottlenecks for the buffering device.

4.3.2 Stripe Aggregation. Without a global stripe-cache, StRAID designs a two-stage stripe sub-
mission mechanism to opportunistically absorb SS-writes in memory. It divides the stripe aggre-
gating process into two stages: a batching stage and a frozen stage. Specifically, Figure 8 (referred
by circled numbers) and Algorithm 1 (referred by line numbers) describe the two-stage submission
using an example where three concurrent I/O threads issue requests targeting the same stripe (S1).

A worker thread 1 (WT1) receives bios from its corresponding UT, and acquires a stripe lock to
begin stripe processing (Time ①, line 2) by CAS operation. WT1 first initializes the stripe states
in SST, then performs the in-memory batching by executing the function dynamical_delay(). It
needs a short initial delay (Dinit ial ) to quickly determine whether the current SS-write is worth
continuing to batch. After that, WT1 periodically extends the batching time-window by polling
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ALGORITHM 1: Two-stage stripe submission

function stripe_submission(bios )

1: while all bios are handled do

2: if get_stripe_lock(str ipe_id ) then

3: init_SST(str ipe_id )
4: Determine reconstruction method
5: if bio is partial-stripe write then

6: dynamical_delay()

7: set is_f rozen = true in SST and pull batching bios from queue
8: if enable_redirect(bios ) == 1 then // write to primary RAID
9: if Data is not enough for reconstruction then

10: Read from disks
11: Compute XOR and reconstruct stripe to RAID
12: else

13: Write bios to Log-Buffer

14: clear_SST(str ipe_id )
15: release_stripe_lock(str ipe_id )
16: else

17: if !is_frozen(str ipe_id ) then

18: insert bio to queue with TID
19: else

20: handled = f alse

21: continue
22: Waiting for all bios to complete

function dynamical_delay()

1: que_len = queue(T I D).length()
2: usleep(Dinit ial )
3: Dsum+ = Dinit ial

4: while que_len < queue(T I D).length() do

5: que_len = queue(T I D).length()
6: usleep(Dext end )
7: Dsum += Dext end

8: if Dsum ≥ Dmax then

9: break
10: return

function enable_redirect(bio)

1: Calculate W I RR and W A for current bio

2: if LogMapper.hash(str ipe_id ) == true then

3: return 0; // write to Log-Buffer

4: if bio is full-stripe write then

5: return 1; // write to primary RAID
6: else if W I RR ≥ CW I RR or W A ≥ CW A then

7: return 0;

the corresponding batching queue length. StRAID will continue to aggregate within a fixed time
(Dextend ) in each period until no more requests arrive or reaches the time limit threshold Dmax .
To strike a balance between aggregation efficiency and latency overhead, StRAID sets the default
value of Dinit ial , Dextended and Dmax to 1/3, 1/4 and 1 of the average IO latency of RAID member
SSDs.

Shortly after WT1’s arrival, a second worker thread (WT2) arrives and seeks SST, only to find
that the targeted stripe is locked but enables batching (Time ②, line 17 ). It inserts bios belonging to

ACM Transactions on Storage, Vol. 20, No. 1, Article 6. Publication date: January 2024.



Explorations and Exploitation for Parity-based RAIDs with Ultra-fast SSDs 6:13

this stripe to the batching queue of the handling thread WT1 (Time ③, line 18) and then suspends
itself. When WT1 completes its batching stage, it immediately transitions the stripe into the frozen
stage (Time ④, line 7 ) by using the CAS operation. At this point, the stripe is not allowed to accept
new bios. Hence, the newly arrived bios from worker thread 3 (WT3) (Time ⑤) are blocked and
have to wait for the stripe write’s completion.

WT1 coalesces all requests in its batching queue and processes them as a whole, then it strategi-
cally determines whether to redirect SS-writes to the Log-Buffer based on the aggregation results.
As shown in the function enable_redirect(), StRAID directly stores full-stripe writes to the primary
RAID array. For a partial-write after aggregation, StRAID compares theWIRR (Equation (1)) and
WA (Equation (2)) of this request to the threshold CW I RR and CW A. If an SS-write has low read
and write amplification, StRAID will re-executes parity read (if required) in accordance with the
aggregated stripe-write, and performs XORing and data/parity writes to reconstruct the stripe.
Otherwise, this request will be redirected to the Log-Buffer. The default value of CW I RR and CW A

is 1 and 1.5, which could be defined by the user. An additional case is that StRAID would redirect
a SS-write if its corresponding stripe has existed in the Log-Buffer. It ensures that all the data in
the Log-Buffer is up-to-date, and we will explain this in the next section. Finally, WT1 clears up
the stripe states of S1 in SST and releases the stripe lock. The corresponding waiting thread WT2

will also return successfully (Time ⑥, line 15). Next, WT3 successively acquires the Stripe Lock to
handle its requests on the stripe.

Note that StRAID aggregates requests in memory through the two-stage submission mechanism
and returns to the user only after the data is persisted, so it will not increase the risk of RAID
inconsistency when the system crashes.

4.4 Partial-write Buffering

To efficiently absorb partial-writes, StRAID employs an SSD-based Log-Buffer and a parallel I/O
processing model to fully exploit inter-SSDs parallelism. The latest work Mlog [65] presented an
SSD-based multi-log buffer for traditional parity-based RAIDs. We partially refer to MlogâĂŹs
two-dimensional multi-log data layout but design a new parallel I/O processing mechanism seam-
lessly embedded with the StRAID model. Compared to Mlog, StRAID utilizes the dedicated worker
threads to process SS-writes for primary RAID and Log-Buffer, eliminating additional thread sched-
uling overhead. Additionally, in contrast to Mlog buffering all write requests, StRAID first aggre-
gates writes in memory through the two-stage submission and then just stores the rest of partial-
stripe writes to the Log-Buffer, which reduces IO amplification caused by data transfer between
the Log-Buffer and primary RAID.

4.4.1 Log-Buffer Architecture. The Log-Buffer physically partitions the global buffer space into
multiple sublogs, each of which locates within a member SSD and stores partial-writes correspond-
ing to its disks. The capacity of a sublog is 2GB by default. To exploit the intrinsic data parallelism
among sublogs, StRAID sets a fine-grained write lock for a sublog to serialize its targeted requests.
StRAID deploys a pair of sublogs in each SSD and a set of independent sublogs located across dif-
ferent SSDs constitute a LogGroup. The pair of LogGroups (i.e., LogGroup 0 and LogGroup 1) are
considered as a ping-pong buffer, one of which is used to serve front-end requests while the other
is dynamically reclaimed in the background. Besides, StRAID uses a Log Mapper to maintain the
data mapping relationship between Log-Buffer and the primary RAID.

4.4.2 Request Allocation. Upon receiving a read request, StRAID queries the Log Mapper to
determine whether the Log-Buffer has stored the most recent data. Otherwise, read requests are
directly decomposed to their constituent chunk I/Os served by the primary RAID array. For a
redirected partial-write, StRAID will split the request into chunk-size aligned sub-writes, then
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Fig. 9. Architecture of Log Mapper.

submits them to the tail of the corresponding sublogs in the same SSD one by one until all requests
have been issued. This method utilizes inter-SSD parallelism to handle concurrent writes while
balancing capacity usage across various sublogs. Finally, StRAID updates the index information
for the buffered requests in the Log Mapper.

4.4.3 Log Mapper. Figure 9 illustrates the architecture of Log Mapper that speeds up queries
and reclamation on buffered data by efficiently recording and indexing the data mapping relation-
ship between the Log-Buffer and the primary RAID.

The Log Mapper allocates a fixed region for the ping-pong buffer to store all the correlated re-
quests metadata in memory. Each buffered request is associated with a dedicated request metadata
structure (i.e., RM). The RM-entry (256-bit) contains eight fields: 16-bit Timestamp recording re-
quest arrival time; 1-bit Ping-pong ID, 7-bit Sublog ID, and 32-bit Sublog offset together uniquely
specifying the location of a buffered request; 64-bit Request size and 64-bit Request offset identify-
ing the original write location on the primary RAID; two 32-bit address pointers for building double
linked list structure. The last unused 8-bits are used as reserved bits.

To efficiently support concurrent RM queries and updates, Log Mapper proposes a two-level in-
dexing structure. It contains a high concurrency hash table as the first-level index with O(1) lookup
cost. Each of the hash entry corresponds to a StripeIndex structure (i.e., SI ) that locates a physi-
cal stripe of the primary RAID. For updates or queries, a WT needs to first determine the stripe
number (i.e., Stripe ID) of the request and then uses it as the hash key to find the correlated SI struc-
ture. The StripeIndex contains a second-level index called RM_List that uses a double-linked list to
concatenate all RMs corresponding to this stripe in order of arrival time. Each StripeIndex uses a
read-write lock to serialize concurrent updates to its corresponding RM_List . Log Mapper updates
and queries at the request granularity, but deletes hash entries at the LogGroup granularity.

4.4.4 Buffer Reclamation. StRAID employs a dedicated flushing module to merge and flush
buffer data to the primary RAID eventually. As shown in Algorithm 2, the flushing module moni-
tors the LogGroup’s capacity. If the average capacity of its contained sublogs exceeds a threshold
C (i.e., 90% by default), the flushing module atomically updates the flag of active LogGroups to
redirect incoming requests to another idle LogGroup.

The maximum number of flushing threads is 4 by default to efficiently utilize the SSD parallelism.
During an I/O-intensive period, the flushing traffic will be limited to mitigate the performance
impact on the foreground user requests. If the Log-Buffer is full, StRAID will disable the write
buffering redirection until one of the ping-pong buffer is flushed out. Moreover, flushing buffered
writes without merging induces numerous partial stripe updates in the RAID. To solve this problem,
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ALGORITHM 2: Buffer reclamation and request merging

Input: The full LoдGroup with flushing threads FT1−N ;

1: Calculate Avдcap through querying the capacity of contained sublogs
2: if Avдcap > 0.90 then

3: Atomically change the active LogGroup
4: Determine the number of flushing threads
5: wakeup_thread(FT1−N )
6: SIs = LogMapper.GetallSH(Group)
7: for merging and flushing all stripes do

8: RMs = SI .Traverse(RM_List )
9: str ipe = merge_to_stripe(RMs )

10: read_sublog(str ipe )
11: write_RAID(str ipe )
12: delete RMs and SI in LogMapper

13: clear_data(Group)

StRAID tries to merge logging data into full-stripe writes. The flushing thread first accesses the
Log Mapper to fetch all StripeIndex of the corresponding LogGroup, then it iterates the RM_list to
read buffered data in sublogs and merges them into full-stripes in memory. After flushing a stripe
to RAID, the corresponding SIs and RM-entries are removed to prevent dirty read.

The data consistency between the Log-Buffer and primary RAID is another problem. Suppose
that at time T1, a small request for a particular stripe is redirected to the buffer, and at time T2, a
large request for the same stripe is submitted to the RAID. If Log-Buffer simply flushes the buffer
at time T3, it will break the rule of sequential consistency. StRAID employs a request scheduling
approach to ensure that the Log-Buffer always contains the most recent data in order to prevent
such scenarios. Before sending a stripe-write to the RAID, the dedicated WT will check the Log
Mapper to determine if the relevant stripe already exists in the buffer by hashing with the Stripe
ID, as illustrated in Algorithm 1, function enable_redirect(), line 2. If it exists, the SS-write will be
redirected to the Log-Buffer even for a full-stripe request.

5 IMPLEMENTATION

5.1 Recovery and Degraded Mode

Crash Consistency and Recovery After a system crash, part of the chunk writes belonging to a
stripe-write may be lost, making the stripe inconsistent between its data and parity. StRAID uses
a bitmap to record the current update-state of each chunk. Compared with Linux MD, StRAID’s
bitmap has basically the same data structure and layout, but can only be updated and flushed by
dedicated threads. For each chunk update, StRAID first sets the corresponding bitmap bits and
changes their involved memory-page as dirty, then flushes the page to the underlying SSDs via
the memory mapping mechanism. The bits will be cleared after their corresponding chunks are
written to the disk. StRAID groups bitmap updates of the aggregated write requests in a batch
to avoid frequent disk I/Os. In the experiment, it is found that flushing the bitmap only incurs a
very small overhead (less than 2%) when handling stripe writes. With unexpected power failures,
StRAID will fetch the bitmap from the disks and restore it to the consistent state after reboot.

Moreover, the Log-Buffer in StRAID addresses the consistent issues of buffer reclamation by
updating a reclamation completion flag in the Log Mapper and persisting it to NVM or SSD. StRAID
sets the flag when launching a reclamation and clears it after the reclamation is finished, then the
buffered data would be removed. After a crash, StRAID will scan and check the persistent Log
Mapper replica to recover system states. If a reclamation process had not been done before the
crash, StRAID would re-write all buffered data to the primary RAID to complete this reclamation.
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Resync and Degraded Mode StRAID supports degraded reads, degraded writes and resync
operations in the same way as the legacy MD because the underlying data layout is identical. For
stripe writes, StRAID identifies the degraded stripe and handles it after entering the frozen stage.
The resync operation reads all the data blocks from disks and compares their calculated parity
results with their on-disk parity data. It is triggered upon RAID initialization, persistent bitmap
failure or reconstruction from disk replacement. Besides, StRAID will flush all buffered data after
recovery if the primary RAID array is in a normal state. We evaluate the performance of StRAID
in degraded mode in Section 6.

5.2 Optimization for Persistent Memory

The Intel Optane DC Persistent Memory Model [76] is the first commercialized PM product. Com-
pared to traditional block storage devices such as SSDs and HDDs (Hard Disk Drives), PMs
have extremely low access latency and byte-addressable features. Traditional storage I/O stack
that were developed for SSDs are unable to fully take use of the PM’s fast persistency features.
In addition, the interleaving mode only manages multiple PMs in a RAID0-like manner [76] and
lacks providing data reliability.

StRAID proposes three techniques to optimize I/O access when it is built upon multiple PMs.
First, StRAID uses the memory I/O stack and interface to access PM spaces. To this end, it will
memory-map the PM space in advance and persist data with memcpy and ntstore operations
[76]. Second, StRAID will perform the pre-fault process when mmaping PM space, thus reduc-
ing the overhead of page-fault at runtime [30]. Third, previous studies [71, 76] indicate that PM
has bounded thread-level scalability with a peak write throughput at 4 threads for a single PM.
Therefore, StRAID schedules at most 4 WTs for accessing an underlying PM concurrently.

6 EVALUATION

6.1 Evaluation Setup

Platform We run all experiments on a server (detailed settings listed in Table 1) and three types
of SSD devices (described in Table 2). The CPU-core can reach 29GB/s XORing throughput and
the PCIe I/O bandwidth is 48GB/s [20], exceeding the aggregate sequential bandwidth of 6 NVMe-
based SSDs (2.6GB/s stable write throughput per SSD, 15.6GB/s in total). In our experiments, we
bind all the I/O threads and worker threads to the same CPU socket-0 to avoid remote accesses of
memory and PCIe, i.e., the NUMA issues.

RAID systems setup We evaluate StRAID (StRAID) and Linux MD (MD) of the RAID5 (5+1) and
RAID6 (4+2) levels built on 6 SSDs. The chunk size is set to 64KB by default. StRAID has enabled
the optional Log-Buffer that is composed of two 2GB sublogs on each of the RAID member SSDs
(24GB in total), while StRAIDd disabling the write buffer. Linux MD has a 16K-entry stripe-cache
and up to 64 worker threads. This is a setting that MD is shown by our experiments to achieve the
best throughput.

Workloads We implement a program to issue direct block I/O requests with sequential or
random access patterns as micro-benchmark. We run each experiment ten times and take the
average as the results. We further select six representative block traces summarized in Table 5
as trace-driven macro-benchmarks. We implement a trace player in C++ using POSIX sync to
generate direct block I/O requests to the underlying RAID systems.

6.2 Micro-benchmark

We measure the write throughput, average and tail latency, and amount of disk read/written data
on MD, StRAID and StRAIDd with RAID5 and RAID6 on 980Pro SSDs, respectively. We generate
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Fig. 10. Write scalability on three different RAID systems.

workloads with a different number of concurrent I/O-issuing threads (i.e., UTs) and three different
access patterns: write-only, read-only and mixed read-write, respectively. Three default I/O sizes
are: 4KB (default block-size of file systems, page cache, and block devices), 64KB (partial-stripe
write size), and 1MB (full-stripe write size).

Throughput Figure 10 reports the write throughput of StRAID, StRAIDd and MD in RAID5
and RAID6, respectively. The throughput of StRAID exceeds that of MD by up to 1.5× with 4KB-
sized writes and 2.1× with 64KB-sized writes on a single UT, respectively. This is because StRAID
effectively minimizes the cost of analyzing stripe-states. As the number of UTs increases to 64,
StRAID achieves up to 3.1GB/s ± 0.2GB/s and 9.1GB/s ± 0.7GB/s peak throughput with 4KB and
64KB writes respectively, representing 3.6× and 4.5× performance improvement over MD.

With 4KB-sized and 64KB-sized requests, the random write performance of StRAID is up to 2.9×
higher than that of StRAIDd, and even generally 15%-30% higher than sequential writes. This is
because the two-stage submission redirects random partial-writes to the Log-Buffer, thus largely
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Fig. 11. Read scalability of StRAID and MD.

reducing the cost of stripe reconstruction (i.e., XORing and write-induced-read) in the user I/O
path, as well as obtains better write scalability through unleashing the high inter-parallelism
of multiple modern SSDs. However, the cost of enabling Log-Buffer is additional SSD read and
write I/Os for each buffered requests. Besides, the sequential write throughput difference between
StRAID and StRAIDd is smaller than 6%, because StRAID has effectively batched these requests
through the in-memory aggregation.

For full-stripe writes (i.e., 1MB), StRAID achieves 4.6× and 5.2× higher write throughput in
random and sequential cases than MD with a single UT, respectively. As the number of UTs in-
creases to 8, StRAID’s throughput saturates the device bandwidth, with an almost fixed increase
of about 6GB/s over MD. With 64 UTs, the peak write throughput reaches 11.4GB/s ± 1.1GB/s and
10.4GB/s ± 1.0GB/s in StRAID under RAID5 and RAID6 respectively, which are 2.1× higher than
those of MD (5.2GB/s and 5.1GB/s). StRAID’s full-stripe writes nearly unleash the full power of the
SSD performance, while MD suffers from heavy contention on the global data structures. In addi-
tion, StRAID shows a 3%-5% performance decrease than StRAIDd with full-stripe writes, because
the WT has to check the Log Mapper for each SS-write to maintain data consistency.

Figure 11 shows the read throughput of StRAID and MD with varying-size reads. We mea-
sure the in-buffer read throughput (i.e., StRAID_IB and the out-of-buffer read throughput (i.e.,
StRAID_OB, respectively. The average read throughput difference between MD and StRAID_OB is
less than 6% in RAID5 and RAID6 respectively, demonstrating that StRAID does not affect read
performance. Moreover, the read throughput of StRAID_IB is 8%-13% lower than StRAID_OB at 64
threads, due to the overhead of searching Log Mapper and RM_Lists. StRAID will flush the buffered
data to the primary RAID, and the long-term read performance is the same as StRAID_OB.

Moreover, Figure 12 shows the write and read throughput of StRAID and MD with mixed work-
loads. For StRAID, we perform in-buffer writes (StRAID-IB-W) and out-of-buffer RAID writes
(StRAID-OB-W) while reading the main RAID array, respectively. The experiments shown in Fig-
ure 12(a) equally divided the total user threads into two groups that sent random 64KB read
and write requests respectively (i.e., 50%-read and 50%-write workload). Results demonstrate that
StRAID’s write performance is still 2.1×–2.8× higher than MD under mixed workloads. However,
with more than 16 user threads, the read performance under StRAID-IB-W and StRAID-OB-W de-
creases by 9% and 15% compared to MD, respectively. This is because the total bandwidth of SSD
devices is limited, and the higher write throughput of StRAID will compete for reads in the mixed
workload. Nevertheless, the total read and write throughput of StRAID is still 1.2×–1.4× higher
than that of MD.

Furthermore, Figure 12(b) shows the throughput of StRAID and MD under different ratios of
read/write mixed workload, with a fixed number of 16 user threads. When the read/write ratio
is 40/60, the write throughput of StRAID-IB and StRAID-OB is up to 6.1× and 3× higher than
that of MD, while the read throughput is reduced by a maximum of 19% and 12%, respectively. It
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Fig. 12. Throughput of StRAID and MD with read-write mixed workloads.

Fig. 13. Average and tail latency of RAID systems.

indicates that StRAID demonstrates lower interference between read and write requests because
it effectively improves CPU utilization under concurrent workloads. Additionally, the interference
between read and write requests is higher in write-mostly workloads due to the write-induced
read and write amplification caused by RAID partial-writes.

Latency and Breakdown of CPU-cycles Figure 13 shows the average and tail (99th-percentile)
latency under RAID5 in StRAID, StRAIDd (with Log-Buffer disabled) and MD, respectively. StRAID
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Fig. 14. Breakdowns of CPU cycles on StRAID and MD. Fig. 15. Total CPU utilizations.

significantly outperforms MD in both average and tail latencies performance under 64 UTs,
reducing latency by 75% with 4KB block-writes, 76% with 64KB partial-stripe writes, and by 69%
with full-stripe writes. StRAID reduces 22%-67% tail latencies from MD under 64 UTs. Besides, the
average and tail latency of StRAID is up to 1.5× and 2.2× better than StRAIDd for random writes
respectively, because the write buffering method provides an efficient I/O path for quickly storing
writes in the Log-Buffer.

To better understand the reasons behind StRAID’s superiority, Figure 14 shows the breakdown
of the CPU-cycles of key functions consumed by MD and StRAID with 64WTs and 64 UTs, respec-
tively. For partial-stripe writes, the combined CPU-cycles on XORing and disk I/Os account for
76% of the total CPU usage in StRAID, while that of MD is less than 20%. The average stripe-write
handling overhead of StRAID, i.e., 62μs , is about 19 times less than that of MD, i.e., 1180μs . Besides,
the lock overhead on StRAID and MD account for 5.1% and 46.1% of the total CPU usage, respec-
tively. StRAID efficiently mitigates lock contentions through the stripe-threaded architecture and
the lockless access features in SST.

For full-stripe writes, the lock, XORing and I/O-write of StRAID account for 1.3%, 22.5% and
62.6% of the total CPU usage, respectively, in contrast to their MD counterparts of 36.7%, 24.5% and
19.4%, suggesting that StRAID achieves to make better advantage of SSDs’ high write bandwidth.
In addition, the two-stage submission consumes only 8% and 2.1% of the stripe-write CPU-cycles
of partial-stripe and full-stripe writes, respectively.

CPU utilization We compare the CPU utilizations of StRAID and MD under random full-stripe
and partial-stripe write workloads respectively, with the same RAID5 settings in Figure 10. Results
in Figure 15 show that the total CPU utilization of MD is up to 6.3× higher than StRAID with 64 UTs.
Even when the number of UTs is less than 8, the CPU usage of MD is 2× higher than that of StRAID
on average. Combining with the throughput results shown in Figure 10, MD with 4495% CPU-core
utilization consumes only 1/3 of the SSDs bandwidth, in contrast to StRAID that consumes 86.9%
of the SSDs bandwidth with 1156% CPU-core utilization.

Moreover, 64KB-sized partial-stripe writes of MD (MD-64K) consume up to 80% more CPU than
full-stripe writes (MD-1M) with 64 UTs. MD’s inefficiency stems from its high consumption of CPU
cycles required to handle in-flight partial-stripe writes. On the contrary, StRAID-64K consumes
only 25% less CPU cycles than StRAID-1M because StRAID gains higher throughput for full-stripe
writes that consumes more CPU resources for computing XOR and issuing I/Os.

Amount of Disk Read/Written Data Figure 16 shows the amount of data written to and read
from disks by StRAID and StRAIDd in RAID5, normalized to that of MD, including disk accesses
on the Log-Buffer. For random writes, StRAIDd and MD have exactly the same amount of data
written and data read because stripe-write aggregation is rare for random writes. Besides, StRAID
buffers all random partial-writes in the Log-Buffer, which performs 6.1× more throughput at the
cost of 1.5× more data written to and read from SSDs than MD.
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Fig. 16. Amount of data written to and read from disks by StRAID, normalized to that of MD.

Table 4. The Aggregation Degree of the Two-Stage Submission

Mechanism in StRAID

User Threads 1 2 4 8 16 32 64
Aggregation Degree (%) 20 34.6 66.3 79.8 86.8 88.8 89.2

For sequential writes, the amount of disk written and read in StRAID varies significantly with
different numbers of UTs, which is caused by the various efficiency of StRAID’s in-memory stripe
aggregation. With a single UT, StRAIDd and MD have the same amount of disk read and write
because they can not batch stripe in memory. StRAID conducts 20% more written data than MD
because it redirects all writes to the Log-Buffer and then merges them into full-stripes. With the
number of UTs increasing, StRAID would batch more sequential writes through the in-memory
aggregation and conducts less buffered write. However, the amount of data written in StRAIDd is
up to 24% larger than MD. This is because the in-memory stripe aggregation has a much smaller
batching window, which is slightly less efficient than Linux MD’s active delays of sequential stripe
writes.

For data read, with 64 UTs as the worst case, StRAID and StRAIDd read 7× and 4× more data
than MD, respectively. It is because MD postpones and aggregates almost all stripe-associated
writes (SS-writes) into full-stripe writes, thus reducing the amount of write-induced-read data
(e.g., 1.6% of user-written data). In contrast, StRAID’s worker thread exhibits less efficient stripe
aggregation, resulting in a higher number of write-induced reads (about 6.5% of user-written data)
and an additional read for recycling each buffered request. Table 4 presents the aggregation degree
of StRAID, defined as the ratio of the average stripe write size to the full-stripe size after stripe
batching, of the two-stage submission mechanism under a sequential 64KB workload. When the
number of user threads is lower than 8, StRAID shows a lower aggregation efficiency due to limited
workload concurrency. However, as the number of threads increases beyond 16, the two-stage
submission mechanism achieves an 89.2% aggregation degree. Besides, since the high read IOPS of
fast SSDs can completely absorb the increased number of read I/Os, StRAID’s write performance
can still be 5.1× higher than MD.

Chunk Sizes We evaluate the effect of chunk size configuration on the performance of StRAID
and MD with 64KB-sized writes in RAID6. The chunk size is set to 8KB for the full-stripe-write case
(StRAID-F and MD-F), and 64KB for the partial-stripe-write case (StRAID-P and MD-P), respectively.
Figure 17 shows that both StRAID and MD benefit significantly from full-stripe write workloads.
The throughput of StRAID-F reaches 11.8GB/s with 64 UTs, about 1.9× higher than StRAID-P. Sim-
ilarly, the throughput of MD-F is up to 3.1× higher than MD-P. However, the peak throughput of
MD-F (8KB chunk size and 64KB write size) remains at 5.3GB/s, consistent with the results shown
in Figure 1(d) (with 64KB chunk size and 1MB I/O size). It indicates that the peak throughput of
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Fig. 17. StRAID and MD throughput with partial-stripe (*-P) and full-stripe writes (*-F) of different chunk

sizes.

Table 5. Characteristics of Block I/O Traces used in the Macro-benchmark Evaluations

Trace
Write Ops

(millions)

Data Written

(GB)

Avg.write

size (KB)

Read Ops

(millions)

Data Read

(GB)

Avg.read

size (KB)

Pangu-A 1.89 113.24 63.21 0.24 4.06 17.99
Pangu-B 2.44 81.32 35.08 0.30 18.61 65.24
prxy_0 12.14 53.80 4.65 0.38 3.05 8.33
prn_0 4.98 45.97 9.67 0.60 13.12 22.84

varmail 3.39 39.20 12.13 0.05 5.38 114.05
fileserver 1.19 99.45 87.56 0.47 42.37 95.49

StRAID is sensitive to the chunk size setting. An insight from this experiment is that it is beneficial
to set StRAID’s chunk size smaller, such as 8KB, to take full advantage of full-stripe writes.

6.3 Macro-benchmark

We use six representative block traces from Filebench [60], cloud-based application traces from
Alibaba-Pangu [47] and Microsoft [51] to evaluate StRAID’s performance. Table 5 summarizes the
characteristics of these workloads, most of which are read-write mixed or write-dominated. The
average request size of these workloads is generally small (i.e., 20-60KB). Therefore, we evaluate
StRAID and MD in the RAID5 level with the chunk size of 8KB, which is beneficial for StRAID to
take advantage of full-stripe writes as we demonstrated in previous Section 6.2. In the experiments,
we enable 32 WTs in MD and StRAID, and evaluate them in the RAID5 levels with a chunk size
of 8KB. We invoke 32 user threads to replay these traces continuously, mimicking high-intensity
workloads.

Figure 18 shows the throughput of StRAID and MD over time. StRAID achieves up to 2.8× higher
throughput than MD, and shortens the total running time by an average of 64% across six work-
loads. In the fileserver workload, StRAID achieves peak and average throughput of 10.3GB/s re-
spectively, in contrast to their MD counterparts of 5.0GB/s. The fileserver workload has the largest
average write size, so that StRAID benefits from full-stripe writes. For the cloud-based workloads,
StRAID’s average throughput is 3.1× and 3× higher than MD’s in Pangu-A and Pangu-B, respec-
tively. The prxy0 workload exhibits the lowest average throughputs among all workloads, 1.8GB/s
and 0.6GB/s for StRAID and MD, respectively. This is because the prxy0 trace has the smallest
average write size (i.e., 4.6KB) among all workloads, leading to a large amount of partial-stripe
writes for both StRAID and MD. Further, it is observed that StRAID is 20%-35% better than that
without Log-Buffer in prxy0, prn0 and varmail, because these workloads have more performance-
punishing partial-stripe writes.

Figure 19 shows the latency CDFs of StRAID and MD across all the workloads. StRAID shows
significantly better CDF profiles, with about 80% and 69% lower average latency than MD in
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Fig. 18. Throughput of StRAID and MD on trace-driven workloads.

Fig. 19. Latency CDF of StRAID and MD on trace-driven workloads.

workloads Pangu-A and Pangu-B, respectively. For the other four workloads, StRAID also has at
least 45% lower average latency than MD. The median latencies of StRAID in workloads Pangu-A,
Pangu-B and filebench are almost ten times lower than MD, while for workloads varmail, prn0,
and prxy0 StRAID’s is 78%, 74% and 75% lower than MD’s, respectively. In addition, the 80th-95th

percentile latency of StRAID is reduced by generally 42%-63% than StRAIDd in varmail, prxy0,
and prn0 workloads. The primary source of these long latency is the partial-stripe updates, which
could be efficiently handled by the write buffering mechanism.

The 99th-percentile tail latency in StRAID is 25% lower than that in MD among all workloads on
average. For example, StRAID’s tail latency is up to 31.1% and 31.9% lower in workloads Pangu-A
and prn0. StRAID’s advantage over MD in tail latency is lower than in average latency, because
the high tail latency of both StRAID and MD mainly comes from write latency spikes caused by
internal maintenance operations (e.g., garbage collection) within the SSD devices.
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Fig. 20. Performances of StRAID and MD on different SSDs and RAMs.

6.4 Sensitivity Study

Experiment with other devices. Next, we evaluate the sensitivity of StRAID and MD to different
types of storage devices. We first build StRAID and Linux MD on six Intel Optane PMs (in Ap-
pDirect Mode) [27] and lower-performance 970Pro SSDs, and compare these performances with
that in 980Pros. The raw read and write bandwidth per PM can reach 6.6GB/s and 2.3GB/s [76],
respectively. When running upon PMs, we will turn on the PM-oriented optimization techniques
as described in Section 5.2 (StRAID-PM). Further, we test the extreme RAID performance over six
ramdisks on 128GB DRAM. We invoke up to 64 UTs with 64KB write-size for partial-stripe write-
load and 1MB for full-stripe write-load.

Results in Figure 20 show that StRAID on 980Pro SSDs exhibits up to 20% higher throughput
than it on 970Pro SSDs. In contrast, the performance difference of Linux MD on these two different
types of SSDs is less than 5%. The throughput of StRAID on PMs is up to 3.8× and 2.5× higher
than MD with partial-stripe and full-stripe writes, respectively. We also find that StRAID on PMs
shows 50%-82% higher throughput than SSDs on average with small number of threads. This is
because PM has one order of magnitude lower read and write latency than SSDs, thus StRAID
could handle stripes more efficiently. However, the PM-aware StRAID shows a throughput drop
at higher than 8 UTs, because PM has a limited concurrency [76]. In addition, StRAID on RAMs
delivers up to 5.8× higher write throughput than MD. At 64 UTs, StRAID reaches up to 35.2GB/s
random write throughput and 32.7GB/s sequential write throughput, respectively, in contrast to
their MD counterparts of 5.8GB/s and 5.7GB/s. It shows that StRAID has the potential to effectively
exploit faster storage like the emerging PCIe 5.0 SSDs [17] in the near future.

To demonstrate the generality of StRAID, we further evaluated StRAID and MD over six low-
performance 860Pro SATA SSDs (*-860) with limited 4 worker threads. Table 2 shows that the
860Pros have a lower read and write bandwidth of about 500MB/s, which is one order of magnitude
lower than the 980Pros. In this experiment, we issue random 64KB write requests using 1 to 16
UTs. Figure 22 demonstrates that the throughput of StRAID peaks at 4 UTs because the stripe-
threaded architecture uses dedicated threads to handle each stripe-writes exclusively. In contrast,
MD’s performance peaks at 12 and 16 user threads with 860Pros and 980Pros respectively, with a
maximum throughput that is reduced by 10% and 40% compared to StRAID. These results indicate
that StRAID still outperforms MD even with limited CPU resources and lower-performance SSDs.

Two-stage Submission. We analyze the performance contributions of the two-stage stripe

submission (TSS) mechanism of StRAID in RAID5. We run the experiment with and without
the two-stage submission (StRAID and StRAID w/o TSS), and just disable the write buffering
(StRAIDd), respectively. The request size is set to 64KB for the partial-stripe-write case. We issue
requests with random access patterns. Figure 21 shows that StRAID with TSS achieves 2.7× im-
provement of average throughput than without TSS for sequential partial writes at 64 UTs. The
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Fig. 21. StRAID throughput with random (*-Rand) and sequential (*-Seq) writes when running with two-

stage stripe submission (w/ TSS), without write buffering (w/o buffer) and without TSS (w/o TSS).

Fig. 22. Throughput of StRAID and MD with limited worker threads.

two-stage submission allows request aggregation on writes belonging to a same stripe and han-
dles them in a batch. StRAID without TSS, by contrast, has to individually execute each writes on
a stripe. Besides, the performance contribution of two-stage submission on full-stripe write load
is less than 4%, because the requests targeting different stripes will not be aggregated.

Furthermore, we analyze the effects of batching time in TSS on the overall performance of
StRAID. The default parameter values (Dinit ial , Dextended , Dmax ) for StRAID built with 980Pro
SSDs are 7us, 5us, 20us and with 860Pro SSDs are 20us, 15us, 55us, respectively. We conduct exper-
iments to evaluate the effect of varying these parameters on StRAID’s performance. Specifically,
we use the default delay settings (1x) as a baseline and adjust all three parameters simultaneously,
increasing them up to 10x or decreasing them by 50% (0.5x). We employ 4 and 16 threads (i.e., 4UT
and 16UT) for random and sequential 64KB-sized writes and measure the performance of StRAID
(enable Log-Buffer) and StRAIDd (disable Log-Buffer), respectively.

Figure 23 shows that increasing the aggregation time beyond the default configuration signifi-
cantly reduces the overall write performance of StRAID. For example, with 980Pro SSDs, StRAID’s
sequential and random throughput decreases by 17% and 35% respectively with the 8x batching
delay, because the performance penalty on IO processing latency is much higher than the per-
formance gain from increased aggregation efficiency. A special case is that the sequential write
throughput of StRAIDd is increased by 7%-9% compared to the baseline under the 2x delay set-
ting. This is because the longer batching time window improves the aggregation efficiency of
SS-write. However, it also decreases the overall write performance of StRAID by up to 10% due to
the increased IO processing latency. In contrast, decreasing the aggregation time (0.5x) slightly
improves random write throughput by 3%-5%, but results in a 6% decrease in sequential writes due
to the lower batching efficiency.

Moreover, the performance impact of increased aggregation time for StRAID is 1.2×–2× more
than that for StRAIDd. This is because StRAID addresses the partial-write performance problem
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Fig. 23. Performance of StRAID with different batching delays in two-stage submission.

by combining the two-stage submission and the log-write buffer, the increased batching latency
counteracts the performance gain from write buffering. In conclusion, the default batching latency
settings strike a balance between optimizing aggregation efficiency and reducing IO processing
latency, to fully utilize the performance of ultra-fast SSDs.

Besides, the results also indicate that these default parameters perform well on lower-
performance 860Pro SSDs. StRAID exhibits a higher batching delay on 860Pro SSDs compared to
980Pro SSDs, resulting in improved aggregation efficiency. As a result, only increasing the batching
delay (e.g., by 2x) would not improve the overall write performance.

Partial-write Buffering. We analyze the runtime features of the write buffering mechanism on
the performance of StRAID. We evaluate StRAID, StRAIDd, and MD with continuous partial-stripe
writes and measure their runtime throughput respectively. In addition, we explore the impact of
Log-buffer size on RAID performance by changing the default buffer size (i.e., StRAID-24G, 2GB
for each sublog and 24GB in total) to a smaller size (i.e., StRAID-6G, 0.5GB for each sublog and
6GB in total).

Figure 24 shows that StRAID outperforms StRAIDd and MD by 1.9× and 6.1× respectively when
the Log-Buffer is empty. When the written data reaches 12GB (i.e., the capacity of a ping-pong
LogGroup in StRAID-24G), the frontend write performance is reduced by 15% in average because
the bandwidth is congested by background reclamation. When the written data reaches 30GB,
StRAID stops buffering because the capacity of Log-Buffer is full, and the performance drops to that
of StRAIDd. After buffer reclamation is completed (i.e., written data reaches 38GB), StRAID could
restart the write buffering. Moreover, the results show that the Log-buffer sizes have less impact
on the peak throughput of StRAID, with an average difference of less than 4%. This is because
StRAID could write multiple sublogs concurrently to fully exploit the high inter-parallelism of
SSDs. However, a small Log-buffer capacity can cause frequent buffer reclamation under intensive
workloads and lead to system performance fluctuations.
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Fig. 24. The runtime features of the write buffering mechanism in StRAID.

Fig. 25. Read and write performance on degraded StRAID and Linux MD.

In summary, the two-stage submission can effectively compensate for the performance degrada-
tion of traditional parity-based RAID. In addition, a user could increase the capacity of Log-buffer
for better handling bursty workloads.

6.5 Resync and Degraded Mode

We assess the performance of StRAID and Linux MD in the degraded mode under RAID5. One
random SSD in the RAID array is set as failed. Then, a varying number of UTs issue reads and
writes of 64KB and 1MB size, respectively. StRAID will disable the write buffer in such case. Results
in Figure 25 show that the read throughput of degraded StRAID and Linux MD is almost the same,
with an average difference of less than 5%. Meanwhile, the write performance of degraded StRAID
is 50-70% higher than that in Linux MD with multiple UTs. This is because the processing flow of
write operation in degraded mode is basically the same as that in the normal mode. In addition,
StRAID and MD apply the same resync approach.

7 RELATED WORKS

SSD-aware RAID SSD-based RAIDs have been extensively studied and can be roughly classified
into three groups: 1) taming tail-latency by alleviating GC impact [33, 69, 70, 75]; 2) enhancing data
reliability by optimizing parity distribution or conducting wear leveling across SSDs [3, 41, 66]; and
3) mitigating the overhead of parity writes [8, 14, 24, 29, 74]. StRAID focuses on the multi-threaded
processing architecture in RAID systems and can complement these works.

All-Flash-Array Systems RAID for AFA (all-flash-array) systems have been studied for
RAID data layout optimization [50, 77] and taming tail-latency by alleviating GC impact [33, 59].
FusionRAID [28] improves the latency performance of the RAID system for SSD pools by
leveraging the Latin-square-based deterministic addressing methods proposed in RAID+ [77],
while proposing an out-of-place write method for optimizing parity-updates. SWAN [33] tames
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tail-latency by alleviating SSD GC impact in an all-flash-array system. Complementary to them,
StRAID focuses on the stripe-write process on multi-core processors and fast SSDs without any
modification of the RAID data layout. Therefore, StRAID as a new stripe-handling engine can be
used in AFA systems to exploit modern hardware with high internal parallelism.

Parity Write Optimization The stripe aggregation method is widely studied to construct full-
stripe writes for reducing the write-induced reads or reducing the number of parity writes to SSDs.
The Linux MD performs stripe aggregation by postponing user writes to absorb more requests for
reducing actual I/Os. However, this approach increases the latency for handling requests, which
would hurt the overall performance for low-latency SSDs. Besides, it cannot speed up random
partial-writes. In contrast to the stripe-cache in Linux MD, the two-stage stripe submission mech-
anism in StRAID leverages a short batching delay to ensure the efficiency of each handling thread,
thus achieving better throughput without sacrificing I/O latency.

The RAID buffering mechanisms have been studied to absorb partial-stripe writes for reducing
the write-induced reads and mitigating parity updates to SSDs. Previous works [14, 15, 24, 63, 74]
use an extra NVRAM or SSD as a buffer to absorb incoming write data and/or parity information for
delaying parity updates. Existing RAID systems [19, 28, 68] first steer all writes to a logging zone
and then write back to the primary RAID in the background. LDM [68] steers small-sized writes
to a logging space and merges them in the background. Such an aggregation approach deprives
the opportunity to construct full-stripe writes in memory to bypass the buffer, thus doubling the
amount of data written to SSDs. Besides, a single buffering device could become the bottleneck
under intensive workloads.

Compared with these efforts, StRAID opportunistically aggregates SS-writes into full-stripes
with TSS, while conditionally buffering partial-writes to the Log-Buffer. It archives to maintain
the efficiency of stripe aggregation while minimizing the disk-I/O amplification and requirements
on extra storage. Besides, StRAID proposes the two-dimensional Log-Buffer architecture and the
parallel write I/O processing to fully exploit inter-parallelism of SSDs, preventing the buffering
devices from becoming a bottleneck.

Block IO Scheduling Prior studies on block IO scheduling are focused on optimizing multi-
queue management including prioritization [37], fairness queuing [22, 79], policy-based storage
provisioning and management [2, 62] and providing low scheduling latency [23]. StRAID is a RAID
stripe-write engine on top of and thus complementary to these block IO scheduling approaches.
Additionally, compared with other RAID systems that adopt FTL-level block I/O scheduling [34,
67, 80], StRAID considers SSDs as black boxes, making it highly portable and non-intrusive.

Multicore Optimization Previous studies have addressed the scalability issues in key-value
stores [11, 12], file systems [5, 13, 43], volume management [36] and block drivers [23] with mul-
ticore processors and high-performance devices (e.g., SSDs and NVMs). MAX [43] demonstrates
that lock contentions are the major reasons for poor scalability in file systems. These works ex-
ploit the potentials of parallelism on multicore processors and fast SSDs through localized key data
structures and fine-grained lock designs. The Linux kernel contributors optimize lock mechanisms
to improve read performance [52]. In this paper, StRAID focuses on optimizing the write path of
the MD parity-RAID architecture and addresses the software overhead in handling stripe writes.

8 CONCLUSION

We experimentally reveal that Linux MD with parity-based RAIDs cannot fully exploit the
potentials offered by high-performance SSDs due to the architectural drawback of centralized
stripe-writes. We propose a stripe-threaded parity-RAID (StRAID) to efficiently handle stripe-
writes in parallel. StRAID introduces a two-stage stripe submission mechanism for aggregating
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partial-stripe writes and a parity cache for hot parity-accesses. Through extensive trace-driven
evaluations, StRAID is shown to significantly and consistently outperform MD parity-based RAID
in write performance without sacrificing read performance.

ACKNOWLEDGMENTS

We would like to thank the anonymous reviewers for their valuable feedback and suggestions.

REFERENCES

[1] Hussam Abu-Libdeh, Lonnie Princehouse, and Hakim Weatherspoon. 2010. RACS: A case for cloud storage diversity.
In Proceedings of the 1st ACM Symposium on Cloud Computing, SoCC 2010, Indianapolis, Indiana, USA, June 10-11, 2010.
ACM, 229–240.

[2] Marcos K. Aguilera, Nadav Amit, Irina Calciu, Xavier Deguillard, Jayneel Gandhi, Stanko Novakovic, Arun Ra-
manathan, Pratap Subrahmanyam, Lalith Suresh, Kiran Tati, Rajesh Venkatasubramanian, and Michael Wei. 2018.
Remote regions: A simple abstraction for remote memory. In 2018 USENIX Annual Technical Conference, USENIX ATC

2018, Boston, MA, USA, July 11-13, 2018. USENIX Association, 775–787.
[3] Mahesh Balakrishnan, Asim Kadav, Vijayan Prabhakaran, and Dahlia Malkhi. 2010. Differential RAID: Rethinking

RAID for SSD reliability. In European Conference on Computer Systems, Proceedings of the 5th European Conference on

Computer Systems, EuroSys 2010, Paris, France, April 13-16, 2010. ACM, 15–26.
[4] Doug Beaver, Sanjeev Kumar, Harry C. Li, Jason Sobel, Peter Vajgel, et al. 2010. Finding a needle in haystack: Face-

book’s photo storage. In OSDI, Vol. 10. 1–8.
[5] Srivatsa S. Bhat, Rasha Eqbal, Austin T. Clements, M. Frans Kaashoek, and Nickolai Zeldovich. 2017. Scaling a file

system to many cores using an operation log. In Proceedings of the 26th Symposium on Operating Systems Principles,

Shanghai, China, October 28-31, 2017. ACM, 69–86.
[6] J. Bonwick and B. Moorei. ZFS: The last word in file systems. http://opensolaris.org/os/community/zfs/docs/zfslast.pdf
[7] John F. Canny, Huasha Zhao, Bobby Jaros, Ye Chen, and Jiangchang Mao. 2015. Machine learning at the limit. In 2015

IEEE International Conference on Big Data (IEEE BigData 2015), Santa Clara, CA, USA, October 29 - November 1, 2015.
IEEE Computer Society, 233–242.

[8] Helen H. W. Chan, Yongkun Li, Patrick P. C. Lee, and Yinlong Xu. 2018. Elastic parity logging for SSD RAID arrays:
Design, analysis, and implementation. IEEE Trans. Parallel Distributed Syst. 29, 10 (2018), 2241–2253.

[9] Helen H. W. Chan, Yongkun Li, Patrick P. C. Lee, and Yinlong Xu. 2018. Elastic parity logging for SSD RAID arrays:
Design, analysis, and implementation. IEEE Trans. Parallel Distributed Syst. 29, 10 (2018), 2241–2253.

[10] Feng Chen, Tian Luo, and Xiaodong Zhang. 2011. CAFTL: A content-aware flash translation layer enhancing the
lifespan of flash memory based solid state drives. In 9th USENIX Conference on File and Storage Technologies, San Jose,

CA, USA, February 15-17, 2011. USENIX, 77–90.
[11] Hao Chen, Chaoyi Ruan, Cheng Li, Xiaosong Ma, and Yinlong Xu. 2021. SpanDB: A fast, cost-effective LSM-tree based

KV store on hybrid storage. In 19th USENIX Conference on File and Storage Technologies, FAST 2021, February 23-25,

2021. USENIX Association, 17–32.
[12] Youmin Chen, Youyou Lu, Fan Yang, Qing Wang, Yang Wang, and Jiwu Shu. 2020. FlatStore: An efficient log-structured

key-value storage engine for persistent memory. In ASPLOS ’20: Architectural Support for Programming Languages and

Operating Systems, Lausanne, Switzerland, March 16-20, 2020. ACM, 1077–1091.
[13] Youmin Chen, Youyou Lu, Bohong Zhu, Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-Dusseau, and Jiwu Shu. 2021.

Scalable persistent memory file system with kernel-userspace collaboration. In 19th USENIX Conference on File and

Storage Technologies, FAST 2021, February 23-25, 2021. USENIX Association, 81–95.
[14] Ching-Che Chung and Hao-Hsiang Hsu. 2014. Partial parity cache and data cache management method to improve

the performance of an SSD-based RAID. IEEE Trans. Very Large Scale Integr. Syst. 22, 7 (2014), 1470–1480.
[15] John Colgrove, John D. Davis, John Hayes, Ethan L. Miller, Cary Sandvig, Russell Sears, Ari Tamches, Neil Vachhara-

jani, and Feng Wang. 2015. Purity: Building fast, highly-available enterprise flash storage from commodity compo-
nents. In Proceedings of the 2015 ACM SIGMOD International Conference on Management of Data, Melbourne, Victoria,

Australia, May 31 - June 4, 2015. ACM, 1683–1694.
[16] W. V. Courtright, G. Gibson, M. Holland, and J. Zelenka. 1996. A structured approach to redundant disk array imple-

mentation. In Proceedings of IEEE International Computer Performance and Dependability Symposium. 11–20.
[17] Samsung Electronics. 2021. Samsung develops high-performance PCIe 5.0 SSD for enterprise servers. https://www.

samsungsemiconstory.com/global/samsung-develops-high-performance-pcie-5-0-ssd-for-enterprise-servers/
[18] Nima Elyasi, Mohammad Arjomand, Anand Sivasubramaniam, Mahmut T. Kandemir, Chita R. Das, and Myoungsoo

Jung. 2017. Exploiting intra-request slack to improve SSD performance. In Proceedings of the Twenty-Second Interna-

ACM Transactions on Storage, Vol. 20, No. 1, Article 6. Publication date: January 2024.

http://opensolaris.org/os/community/zfs/docs/zfs last.pdf
https://www.samsungsemiconstory.com/global/samsung-develops-high-performance-pcie-5-0-ssd-for-enterprise-servers/


6:30 S. Wang et al.

tional Conference on Architectural Support for Programming Languages and Operating Systems, ASPLOS 2017, Xi’an,

China, April 8-12, 2017. ACM, 375–388.
[19] Bin Fan, Wittawat Tantisiriroj, Lin Xiao, and Garth Gibson. 2011. DiskReduce: Replication as a prelude to erasure

coding in data-intensive scalable computing. SC11 (2011).
[20] Dean Gonzales. 2015. PCI express 4.0 electrical previews. In PCI-SIG Developers Conference.
[21] Mingzhe Hao, Gokul Soundararajan, Deepak R. Kenchammana-Hosekote, Andrew A. Chien, and Haryadi S. Gunawi.

2016. The tail at store: A revelation from millions of hours of disk and SSD deployments. In 14th USENIX Conference

on File and Storage Technologies, FAST 2016, Santa Clara, CA, USA, February 22-25, 2016. USENIX Association, 263–276.
[22] Mohammad Hedayati, Kai Shen, Michael L. Scott, and Mike Marty. 2019. Multi-queue fair queuing. In 2019 USENIX

Annual Technical Conference, USENIX ATC 2019, Renton, WA, USA, July 10-12, 2019. USENIX Association, 301–314.
[23] Jaehyun Hwang, Midhul Vuppalapati, Simon Peter, and Rachit Agarwal. 2021. Rearchitecting Linux storage stack for

μs latency and high throughput. In 15th USENIX Symposium on Operating Systems Design and Implementation, OSDI

2021, July 14-16, 2021. USENIX Association, 113–128.
[24] Soojun Im and Dongkun Shin. 2011. Flash-aware RAID techniques for dependable and high-performance flash mem-

ory SSD. IEEE Trans. Computers 60, 1 (2011), 80–92.
[25] NETAPP INC. 2010. Data ONTAP 8. http://www.netapp.com/us/products/platform-os/data-ontap-8/
[26] Intel. 2020. ISA-L performance report. https://01.org/intel-storage-acceleration-library-open-source-version/

documentation/documentation
[27] Intel. 2021. Intel Optane DC persistent memory. https://www.intel.com/content/www/us/en/architecture-and-

technology
[28] Tianyang Jiang, Guangyan Zhang, Zican Huang, Xiaosong Ma, Junyu Wei, Zhiyue Li, and Weimin Zheng. 2021. Fu-

sionRAID: Achieving consistent low latency for commodity SSD arrays. In 19th USENIX Conference on File and Storage

Technologies, FAST 2021, February 23-25, 2021. USENIX Association, 355–370.
[29] Chao Jin, Dan Feng, Hong Jiang, and Lei Tian. 2011. RAID6L: A log-assisted RAID6 storage architecture with improved

write performance. In IEEE 27th Symposium on Mass Storage Systems and Technologies, MSST 2011, Denver, Colorado,

USA, May 23-27, 2011. IEEE Computer Society, 1–6.
[30] Rohan Kadekodi, Saurabh Kadekodi, Soujanya Ponnapalli, Harshad Shirwadkar, Gregory R. Ganger, Aasheesh Kolli,

and Vijay Chidambaram. 2021. WineFS: A hugepage-aware file system for persistent memory that ages gracefully. In
SOSP ’21: ACM SIGOPS 28th Symposium on Operating Systems Principles, Virtual Event / Koblenz, Germany, October

26-29, 2021. ACM, 804–818.
[31] The kernel development community. 2020. RAID 4/5/6 cache. https://www.kernel.org/doc/html/latest/driver-api/md/

raid5-cache.html
[32] Ram Kesavan, Jason Hennessey, Richard Jernigan, Peter Macko, Keith A. Smith, Daniel Tennant, and Bharadwaj V. R.

2019. FlexGroup volumes: A distributed WAFL file system. In 2019 USENIX Annual Technical Conference, USENIX ATC

2019, Renton, WA, USA, July 10-12, 2019. USENIX Association, 135–148.
[33] Jaeho Kim, Kwanghyun Lim, Youngdon Jung, Sungjin Lee, Changwoo Min, and Sam H. Noh. 2019. Alleviating garbage

collection interference through spatial separation in all flash arrays. In 2019 USENIX Annual Technical Conference,

USENIX ATC 2019, Renton, WA, USA, July 10-12, 2019. ACM, 799–812.
[34] Youngjae Kim, Junghee Lee, Sarp Oral, David A. Dillow, Feiyi Wang, and Galen M. Shipman. 2012. Coordinating

garbage collection for arrays of solid-state drives. IEEE Trans. Comput. 63, 4 (2012), 888–901.
[35] Gunjae Koo, Kiran Kumar Matam, Te I, H. V. Krishna Giri Narra, Jing Li, Hung-Wei Tseng, Steven Swanson, and

Murali Annavaram. 2017. Summarizer: Trading communication with computing near storage. In Proceedings of the

50th Annual IEEE/ACM International Symposium on Microarchitecture, MICRO 2017, Cambridge, MA, USA, October 14-

18, 2017. ACM, 219–231.
[36] Pradeep Kumar and H. Howie Huang. 2017. Falcon: Scaling IO performance in multi-SSD volumes. In 2017 USENIX

Annual Technical Conference, USENIX ATC 2017, Santa Clara, CA, USA, July 12-14, 2017. USENIX Association, 41–53.
[37] Kyber. 2017. multiqueue I/O scheduler. https://lwn.net/Articles/720071/
[38] Jing Li, Peng Li, Rebecca J. Stones, Gang Wang, Zhongwei Li, and Xiaoguang Liu. 2020. Reliability equations for cloud

storage systems with proactive fault tolerance. IEEE Trans. Dependable Secur. Comput. 17, 4 (2020), 782–794.
[39] Shaohua Li. 2013. raid5: Make stripe handling multi-threading. https://lwn.net/Articles/563142/
[40] Shaohua Li. 2013. raid5 offload stripe handle to workqueue. https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/

linux.git/commit/?id=851c30c9badfc6b294c98e887624bff53644ad21
[41] Yongkun Li, Patrick P. C. Lee, and John C. S. Lui. 2016. Analysis of reliability dynamics of SSD RAID. IEEE Trans.

Computers 65, 4 (2016), 1131–1144.
[42] Yongkun Li, Biaobiao Shen, Yubiao Pan, Yinlong Xu, Zhipeng Li, and John C. S. Lui. 2017. Workload-aware elastic

striping with hot data identification for SSD RAID arrays. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 36, 5
(2017), 815–828.

ACM Transactions on Storage, Vol. 20, No. 1, Article 6. Publication date: January 2024.

http://www.netapp.com/us/products/platform-os/data-ontap-8/
https://01.org/intel-storage-acceleration-library-open-source-version/documentation/documentation
https://www.intel.com/content/www/us/en/architecture-and-technology
https://www.kernel.org/doc/html/latest/driver-api/md/raid5-cache.html
https://lwn.net/Articles/720071/
https://lwn.net/Articles/563142/
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=851c30c9badfc6b294c98e887624bff53644ad21


Explorations and Exploitation for Parity-based RAIDs with Ultra-fast SSDs 6:31

[43] Xiaojian Liao, Youyou Lu, Erci Xu, and Jiwu Shu. 2021. Max: A multicore-accelerated file system for flash storage. In
2021 USENIX Annual Technical Conference, USENIX ATC 2021, July 14-16, 2021. 877–891.

[44] Linux. 2015. Linux perf. https://perf.wiki.kernel.org/
[45] Linux. 2020. HDFS-RAID. https://wiki.apache.org/confluence/display/HADOOP2
[46] Linux. 2020. Linux RAID. https://raid.wiki.kernel.org/index.php/Linux_Raid
[47] Shuyang Liu, Shucheng Wang, Qiang Cao, Ziyi Lu, Hong Jiang, Jie Yao, Yuanyuan Dong, and Puyuan Yang. 2019.

Analysis of and optimization for write-dominated hybrid storage nodes in cloud. In Proceedings of the ACM Symposium

on Cloud Computing, SoCC 2019, Santa Cruz, CA, USA, November 20-23, 2019. ACM, 403–415.
[48] Stathis Maneas, Kaveh Mahdaviani, Tim Emami, and Bianca Schroeder. 2020. A study of SSD reliability in large scale

enterprise storage deployments. In 18th USENIX Conference on File and Storage Technologies, FAST 2020, Santa Clara,

CA, USA, February 24-27, 2020. USENIX Association, 137–149.
[49] Justin Meza, Qiang Wu, Sanjeev Kumar, and Onur Mutlu. 2015. A large-scale study of flash memory failures in the

field. In Proceedings of the 2015 ACM SIGMETRICS International Conference on Measurement and Modeling of Computer

Systems, Portland, OR, USA, June 15-19, 2015. ACM, 177–190.
[50] Richard R. Muntz and John C. S. Lui. 1990. Performance analysis of disk arrays under failure. In 16th International Con-

ference on Very Large Data Bases, August 13-16, 1990, Brisbane, Queensland, Australia, Proceedings. Morgan Kaufmann,
162–173.

[51] Dushyanth Narayanan, Austin Donnelly, and Antony I. T. Rowstron. 2008. Write off-loading: Practical power man-
agement for enterprise storage. In 6th USENIX Conference on File and Storage Technologies, FAST 2008, February 26-29,

2008, San Jose, CA, USA. USENIX, 253–267.
[52] Gal Ofri. 2021. raid5 avoid device lock in read one chunk. https://github.com/torvalds/linux/commit/

97ae27252f4962d0fcc38ee1d9f913d817a2024e
[53] Rasmus Pagh and Flemming Friche Rodler. 2004. Cuckoo hashing. J. Algorithms 51, 2 (2004), 122–144.
[54] Satadru Pan, Theano Stavrinos, Yunqiao Zhang, Atul Sikaria, Pavel Zakharov, Abhinav Sharma, Shiva Shankar P., Mike

Shuey, Richard Wareing, Monika Gangapuram, Guanglei Cao, Christian Preseau, Pratap Singh, Kestutis Patiejunas,
J. R. Tipton, Ethan Katz-Bassett, and Wyatt Lloyd. 2021. Facebook’s tectonic filesystem: Efficiency from exascale. In
19th USENIX Conference on File and Storage Technologies, FAST 2021, February 23-25, 2021. USENIX Association, 217–
231.

[55] Tirthak Patel, Suren Byna, Glenn K. Lockwood, Nicholas J. Wright, Philip H. Carns, Robert B. Ross, and Devesh
Tiwari. 2020. Uncovering access, reuse, and sharing characteristics of I/O-intensive files on large-scale production
HPC systems. In 18th USENIX Conference on File and Storage Technologies, FAST 2020, Santa Clara, CA, USA, February

24-27, 2020. USENIX Association, 91–101.
[56] David A. Patterson, Garth A. Gibson, and Randy H. Katz. 1988. A case for redundant arrays of inexpensive disks

(RAID). In Proceedings of the 1988 ACM SIGMOD International Conference on Management of Data, Chicago, Illinois,

USA, June 1-3, 1988. 109–116.
[57] Sundeep Prakash, Yann Hang Lee, and Theodore Johnson. 1994. A nonblocking algorithm for shared queues using

compare-and-swap. IEEE Trans. Comput. 43, 5 (1994), 548–559.
[58] Bianca Schroeder, Raghav Lagisetty, and Arif Merchant. 2016. Flash reliability in production: The expected and the

unexpected. In 14th USENIX Conference on File and Storage Technologies, FAST 2016, Santa Clara, CA, USA, February

22-25, 2016. USENIX Association, 67–80.
[59] Dimitris Skourtis, Dimitris Achlioptas, Noah Watkins, Carlos Maltzahn, and Scott A. Brandt. 2014. Flash on rails:

Consistent flash performance through redundancy. In 2014 USENIX Annual Technical Conference, USENIX ATC ’14,

Philadelphia, PA, USA, June 19-20, 2014. USENIX Association, 463–474.
[60] Vasily Tarasov, Erez Zadok, and Spencer Shepler. 2016. Filebench: A flexible framework for file system benchmarking.

login Usenix Mag. 41, 1 (2016).
[61] Michael Hao Tong, Robert L. Grossman, and Haryadi S. Gunawi. 2021. Experiences in managing the performance and

reliability of a large-scale genomics cloud platform. In 2021 USENIX Annual Technical Conference, USENIX ATC 2021,

July 14-16, 2021. USENIX Association, 973–988.
[62] Midhul Vuppalapati, Justin Miron, Rachit Agarwal, Dan Truong, Ashish Motivala, and Thierry Cruanes. 2020. Build-

ing an elastic query engine on disaggregated storage. In 17th USENIX Symposium on Networked Systems Design and

Implementation, NSDI 2020, Santa Clara, CA, USA, February 25-27, 2020. USENIX Association, 449–462.
[63] Jiguang Wan, Wei Wu, Ling Zhan, Qing Yang, Xiaoyang Qu, and Changsheng Xie. 2017. DEFT-cache: A cost-effective

and highly reliable SSD cache for RAID storage. In 2017 IEEE International Parallel and Distributed Processing Sympo-

sium, IPDPS 2017, Orlando, FL, USA, May 29 - June 2, 2017. IEEE Computer Society, 102–111.
[64] Rui Wang, Yongkun Li, Hong Xie, Yinlong Xu, and John C. S. Lui. 2020. GraphWalker: An I/O-efficient and resource-

friendly graph analytic system for fast and scalable random walks. In 2020 USENIX Annual Technical Conference,

USENIX ATC 2020, July 15-17, 2020. USENIX Association, 559–571.

ACM Transactions on Storage, Vol. 20, No. 1, Article 6. Publication date: January 2024.

https://perf.wiki.kernel.org/
https://wiki.apache.org/confluence/display/HADOOP2
https://raid.wiki.kernel.org/index.php/Linux_Raid
https://github.com/torvalds/linux/commit/97ae27252f4962d0fcc38ee1d9f913d817a2024e


6:32 S. Wang et al.

[65] Shucheng Wang, Qiang Cao, Ziyi Lu, and Jie Yao. 2022. Mlog: Multi-log write buffer upon ultra-fast SSD RAID. In Pro-

ceedings of the 51st International Conference on Parallel Processing, ICPP 2022, Bordeaux, France, August 29 - September

08, 2022. ACM, 1–11.
[66] Wei Wang, Tao Xie, and Abhinav Sharma. 2016. SWANS: An interdisk wear-leveling strategy for RAID-0 structured

SSD arrays. ACM Trans. Storage 12, 3 (2016), 10:1–10:21.
[67] Suzhen Wu, Haijun Li, Bo Mao, Xiaoxi Chen, and Kuan-Ching Li. 2018. Overcome the GC-induced performance

variability in SSD-based RAIDs with request redirection. IEEE Transactions on Computer-Aided Design of Integrated

Circuits and Systems 38, 5 (2018), 822–833.
[68] Suzhen Wu, Bo Mao, Xiaolan Chen, and Hong Jiang. 2016. LDM: Log disk mirroring with improved performance and

reliability for SSD-based disk arrays. ACM Trans. Storage 12, 4 (2016), 22:1–22:21.
[69] Suzhen Wu, Weiwei Zhang, Bo Mao, and Hong Jiang. 2019. HotR: Alleviating read/write interference with hot read

data replication for flash storage. In Design, Automation & Test in Europe Conference & Exhibition, DATE 2019, Florence,

Italy, March 25-29, 2019. IEEE, 1367–1372.
[70] Suzhen Wu, Weidong Zhu, Gui xin Liu, Hong Jiang, and Bo Mao. 2018. GC-aware request steering with improved

performance and reliability for SSD-based RAIDs. In 2018 IEEE International Parallel and Distributed Processing Sym-

posium, IPDPS 2018, Vancouver, BC, Canada, May 21-25, 2018. IEEE Computer Society, 296–305.
[71] Lingfeng Xiang, Xingsheng Zhao, Jia Rao, Song Jiang, and Hong Jiang. 2022. Characterizing the performance of Intel

Optane persistent memory: A close look at its On-DIMM buffering. In EuroSys ’22: Seventeenth European Conference

on Computer Systems, Rennes, France, April 5 - 8, 2022. ACM, 488–505.
[72] Erci Xu, Mai Zheng, Feng Qin, Yikang Xu, and Jiesheng Wu. 2019. Lessons and actions: What we learned from 10k

SSD-related storage system failures. In 2019 USENIX Annual Technical Conference, USENIX ATC 2019, Renton, WA, USA,

July 10-12, 2019. USENIX Association, 961–976.
[73] Gaoxiang Xu, Dan Feng, Zhipeng Tan, Xinyan Zhang, Jie Xu, Xi Shu, and Yifeng Zhu. 2019. RFPL: A recovery friendly

parity logging scheme for reducing small write penalty of SSD RAID. In Proceedings of the 48th International Conference

on Parallel Processing, ICPP 2019, Kyoto, Japan, August 05-08, 2019. ACM, 23:1–23:10.
[74] Gaoxiang Xu, Zhipeng Tan, Dan Feng, Yifeng Zhu, Xinyan Zhang, and Jie Xu. 2018. Cap: Exploiting data correlations

to improve the performance and endurance of SSD RAID. In 36th IEEE International Conference on Computer Design,

ICCD 2018, Orlando, FL, USA, October 7-10, 2018. IEEE Computer Society, 59–66.
[75] Shiqin Yan, Huaicheng Li, Mingzhe Hao, Michael Hao Tong, Swaminathan Sundararaman, Andrew A. Chien, and

Haryadi S. Gunawi. 2017. Tiny-tail flash: Near-perfect elimination of garbage collection tail latencies in NAND SSDs.
In 15th USENIX Conference on File and Storage Technologies, FAST 2017, Santa Clara, CA, USA, February 27 - March 2,

2017. USENIX Association, 15–28.
[76] Jian Yang, Juno Kim, Morteza Hoseinzadeh, Joseph Izraelevitz, and Steven Swanson. 2020. An empirical guide to the

behavior and use of scalable persistent memory. In 18th USENIX Conference on File and Storage Technologies, FAST

2020, Santa Clara, CA, USA, February 24-27, 2020. USENIX Association, 169–182.
[77] Guangyan Zhang, Zican Huang, Xiaosong Ma, Songlin Yang, Zhufan Wang, and Weimin Zheng. 2018. RAID+: De-

terministic and balanced data distribution for large disk enclosures. In 16th USENIX Conference on File and Storage

Technologies, FAST 2018, Oakland, CA, USA, February 12-15, 2018. USENIX Association, 279–294.
[78] Yupu Zhang, Abhishek Rajimwale, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau. 2010. End-to-end data

integrity for file systems: A ZFS case study. In 8th USENIX Conference on File and Storage Technologies, San Jose, CA,

USA, February 23-26, 2010. USENIX, 29–42.
[79] Yong Zhao, Kun Suo, Xiaofeng Wu, Jia Rao, Song Wu, and Hai Jin. 2019. Preemptive multi-queue fair queuing. In

Proceedings of the 28th International Symposium on High-Performance Parallel and Distributed Computing, HPDC 2019,

Phoenix, AZ, USA, June 22-29, 2019. ACM, 147–158.
[80] You Zhou, Fei Wu, Weizhou Huang, and Changsheng Xie. 2021. LiveSSD: A low-interference RAID scheme for hard-

ware virtualized SSDs. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 40, 7 (2021), 1354–1366.

Received 1 January 2023; revised 4 July 2023; accepted 28 September 2023

ACM Transactions on Storage, Vol. 20, No. 1, Article 6. Publication date: January 2024.


