
IEEE TRANSACTIONS ON COMPUTERS, VOL. 73, NO. 1, JANUARY 2024 73

Applying Delta Compression to Packed Datasets for
Efficient Data Reduction

Yucheng Zhang , Hong Jiang , Fellow, IEEE, Chunzhi Wang , Member, IEEE, Wei Huang ,
Meng Chen , Yongxuan Zhang , and Le Zhang

Abstract—Backup systems often adopt deduplication tech-
niques for data reduction. Real-world backup products often
group files into larger units (called packed files) before
deduplicating them. The grouping entails inserting metadata
immediately before the contents of each file in the packed file.
Some metadata change with every backup, producing substantial
similar (non-duplicate) chunks. Delta compression can remove
redundancy among those similar chunks but cannot be applied
to HDD-based backup storage because I/Os required for fetch-
ing base chunks result in severe throughput loss. For packed
datasets, some duplicate chunks, called persistent fragmented
chunks (PFCs), are rewritten every backup. We observe that
corresponding chunk pairs surrounding identical PFCs are non-
identical due to different metadata but similar to each other. In
this article, we propose PFC-delta to perform high-performance
delta compression for the aforementioned similar chunks on top
of deduplication. PFC-delta identifies and prefetches potential
base chunks stored along with PFCs by piggybacking on the
routine I/Os during deduplication, thus avoiding extra I/Os. We
also propose a hash-less delta encoding approach to reduce extra
computational overheads. Evaluation results with four real-world
datasets show that PFC-delta improves both compression ratio
and restore performance, while increasing the backup throughput
on all but one datasets.

Index Terms—Delta compression, chunk fragmentation,
backup system.

Manuscript received 12 February 2023; revised 18 August 2023; ac-
cepted 17 September 2023. Date of publication 26 September 2023;
date of current version 22 December 2023. This work was supported in
part by the National Natural Science Foundation of China under Grants
62262042 and 62271239, in part by the U.S. NSF CNS-2008835, in
part by the Jiangxi Provincial Natural Science Foundation under Grants
20224BAB202017 and 20224ABC03A01, in part by the Jiangxi Dou-
ble Thousand Plan under Grant JXSQ2023201022, in part by the Key
R&D plan of Hubei Province under Grant 2023BCB041, and in part by
the Open Project Program of Wuhan National Laboratory for Optoelec-
tronics under Grant 2021WNLOKF012. An early version of this paper
was presented at the Proceedings of IEEE International Conference on
Computer Design (ICCD), 2021 [DOI: 10.1109/ICCD53106.2021.00078].
Recommended for acceptance by A. Sivasubramaniam. (Corresponding
author: Wei Huang.)

Yucheng Zhang, Wei Huang, Meng Chen, and Le Zhang are with
the School of Mathematics and Computer Sciences, Nanchang Univer-
sity, Nanchang 330031, China (e-mail: zhangyc_hust@126.com; huangwei@
ncu.edu.cn; chenmeng@ncu.edu.cn; zhangle@ncu.edu.cn).

Hong Jiang is with the Department of Computer Science and Engineering,
The University of Texas at Arlington, Arlington, TX 76019 USA (e-mail:
hong.jiang@uta.edu).

Chunzhi Wang is with the School of Computer Science, Hubei University
of Technology, Wuhan 430068, China (e-mail: chunzhiwang@vip.163.com).

Yongxuan Zhang is with the School of Mathematics and Computer,
Yuzhang Normal University, Nanchang 330088, China (e-mail: zyx126com@
126.com).

Digital Object Identifier 10.1109/TC.2023.3318404

I. INTRODUCTION

DATA backup is an important approach to protect primary
data. A salient feature of backup workloads is high redun-

dancy among multiple backup streams [1], [2]. Thus, backup
systems often use data deduplication to remove redundant data
[3], [4]. Generally, data deduplication schemes divide each
input backup stream into multiple chunks and calculate a fin-
gerprint for each chunk. By indexing chunks’ fingerprints, both
duplicate and non-duplicate (unique) chunks can be identified.
Deduplication-based backup systems do not store duplicate
chunks for space-saving but refer them to their physical copies
via small-size references. Unique chunks are aggregated into
fixed-size (e.g., 4 MB) containers for storage [5], [6]. At the end
of a backup, a recipe file that records the fingerprint sequence
of the backup stream is stored for future data restoration.

When files in the backup system are requested, chunks are
accessed one by one to reassemble the original files [4], [7],
[8]. The read unit during this (data restoration) process is a
container. Since chunks of a backup stream are scattered across
containers, also known as fragmentation [9], [10], the restore
process requires a large number of disk accesses. For HDD-
based backup systems, the performance bottleneck during data
restoration is the disk I/Os for reading containers holding re-
quired chunks. To reduce disk I/Os during data restoration
and accelerate the restore speed, researchers propose rewriting
schemes that store (rewrite) some duplicates to reduce chunk
fragmentation [10], [11], [12], [13].

To increase the backup stream locality, backup products often
aggregate files to be backed up into larger units (called packed
files in this article) before copying them to backup systems [1],
[3], [14]. During the grouping process, each file to be backed
up will be inserted some metadata of it immediately before the
file contents, which is similar to the process of UNIX “tar”.
Since some metadata such as modification time change every
time the file being packed, chunks including those metadata will
be considered non-duplicate (unique) even though file contents
in them are unmodified. The impact of inserted metadata on
deduplication efficiency can be significant because they are
scattered in the packed file and thus can lead to a huge number
of unique chunks.

If there are many small files in an input backup stream, a
small number of duplicate chunks only containing unchanged
files’ contents may be surrounded by a large number of unique
chunks including the changing metadata. If so, these duplicate

0018-9340 © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on February 29,2024 at 21:56:46 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0001-7716-1214
https://orcid.org/0000-0002-1477-9751
https://orcid.org/0000-0002-6742-3644
https://orcid.org/0000-0002-0541-8612
https://orcid.org/0009-0009-3707-3784
https://orcid.org/0000-0003-3535-0695
https://orcid.org/0009-0007-7028-4319
https://doi.org/10.1109/ICCD53106.2021.00078
mailto:zhangyc_hust@126.com
huangwei@ncu.edu.cn
huangwei@ncu.edu.cn
mailto:chenmeng@ncu.edu.cn
mailto:zhangle@ncu.edu.cn
mailto:hong.jiang@uta.edu
mailto:chunzhiwang@vip.163.com
mailto:zyx126com@126.com
mailto:zyx126com@126.com

74 IEEE TRANSACTIONS ON COMPUTERS, VOL. 73, NO. 1, JANUARY 2024

Fig. 1. Assuming that each backup stream is a packed file containing 4
files and the contents (excluding the inserted metadata) of the 4 files in the 3
backup streams are unchanged. After being chunked, each backup stream is
divided into 5 chunks (4 chunks including metadata and 1 chunk containing
only file contents). All chunks are considered unique and stored in container I
after backup 1. During backup 2, C1 is considered fragmented and rewritten
since it references a container with low reuse (i.e., only a few chunks in this
container are referenced by the current backup). After being rewritten, C1 is
still stored in a container with low reuse and thus is rewritten again during
backup 3. C1 is a persistent fragmented chunk (PFC).

chunks may be repeated rewritten in every backup, for two
reasons. First, existing rewriting schemes are designed to
rewrite as few duplicate chunks as possible. Thus, duplicate
chunks in the containers with low reuse would be rewritten.
Since duplicate chunks only containing unchanged files’ con-
tents are stored together with a large number of unique chunks
surrounding them in the backup stream, they would be rewrit-
ten. Second, a rewritten chunk is often stored along with unique
chunks adjacent to it in the backup stream to preserve the
backup stream locality. Thus, those duplicate chunks would still
be stored together with a large number of unique chunks in-
cluding metadata after being rewritten. Duplicate chunks being
repeatedly rewritten are referred to as persistent fragmented
chunks (PFCs). Fig. 1 gives an example to show how this
problem arises.

For backup datasets containing many small files, we found
that most of the corresponding chunks including inserted meta-
data in different backup versions surrounding identical PFCs
are similar to each other. This is because they contain identical
file contents but different metadata. Taking chunks in Fig. 1 as
an example, A2, B2, D2, and E2, which surround a PFC (i.e.,
C1), are respectively similar to the chunks that contain metadata
and surround C1, i.e., A3, B3, D3, and E3. Redundant data
among such similar chunks cannot be eliminated by chunk-level
deduplication, but can be removed by a similarity-based data
reduction technique called delta compression.

Given a target chunk and a base chunk with similar content,
the delta compression approach encodes the target chunk rela-
tive to the base chunk to generate a delta file consisting of their
differences. The original target chunk can be reconstructed by

decoding the delta file and the base chunk. Currently, the HDD
is still often used as the storage device of backup systems due to
its price-per-capacity superiority. Thus, this article focuses on
HDD-based backup systems. Though delta compression can be
used as a complementary technique to chunk-level deduplica-
tion for additional space-saving, it cannot be applied to HDD-
based backup storage because extra disk accesses for reading
back chunks from the storage device to serve as the base chunks
result in severe backup throughput loss [15], [16].

Some backup products, such as DDFS [5], [15], access con-
tainers for prefetching metadata to speed up duplicate detec-
tion. During this process, if data chunks surrounding identical
PFCs are also prefetched, or piggybacked, to serve as base
chunks, we can perform delta compression for similar chunk
pairs that surround identical PFCs without requiring extra I/Os.
Except for I/O overheads, delta compression also introduces
additional computational overheads for similarity detection and
delta encoding. Traditional delta encoding approaches [17],
[18] are time-consuming. This is because duplicate strings
among the target and the base chunks may appear in different
positions within the corresponding chunks and delta compres-
sion tools need to calculate fingerprints byte-by-byte on chunks
and index these fingerprints to find alignments between the
two chunks. Our study in Section III-B suggests that, for most
of the similar chunks surrounding identical PFCs, their con-
tents are identical, except for metadata. That is, their duplicate
strings appear exactly in the same positions without any shift,
which provides an opportunity to simplify the delta encod-
ing process.

Motivated by above observations and analysis, we propose
a PFC-inspired delta compression scheme, called PFC-delta, to
perform high-performance delta compression for similar chunk
pairs surrounding identical PFCs on top of chunk-level dedu-
plication. PFC-delta builds on the deduplication strategy of
grouping chunks into containers for storage and prefetching
containers’ metadata during deduplication. To eliminate disk
I/Os for fetching base chunks, it identifies containers holding
PFCs and prefetches potential base chunks in them by piggy-
backing on the I/Os for prefetching metadata during dedupli-
cation. To reduce computational overheads required by delta
encoding, it adopts a hash-less delta encoding approach that
is devoid of time-consuming fingerprinting and indexing op-
erations as used in the traditional approaches for delta encod-
ing similar chunk pairs whose duplicate strings appear exactly
in the same positions. The contributions of this article are
three folds:

• We propose a base chunk prefetching approach called
PFC-inspired prefetching to eliminate extra disk I/Os for
fetching base chunks. PFC-inspired prefetching identifies
the containers holding PFCs and prefetches data chunks in
them as potential base chunks, along with metadata when
these containers are accessed for prefetching metadata dur-
ing the deduplication process.

• We propose a delta encoding approach called hash-less
delta encoding for similar chunk pairs whose duplicate
strings appear exactly in the same positions to reduce
computational overheads required by delta encoding.

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on February 29,2024 at 21:56:46 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: APPLYING DELTA COMPRESSION TO PACKED DATASETS FOR EFFICIENT DATA REDUCTION 75

Hash-less delta encoding replaces time-consuming
fingerprinting and indexing operations as used in the
traditional approaches with extremely fast byte-wise
comparisons.

• Evaluation results with four backup datasets suggest that
PFC-delta improves the compression ratio of the typ-
ical deduplication-based backup system by a factor of
1.3×–2.5× and accelerates the restore speed by 1.2×–
2.06×, while increasing the backup throughput on all but
one datasets.

The rest of the article is organized as follows. Section II
presents the necessary background and related work. Sec-
tion III presents the observations motivating our work. Sec-
tion IV presents the detailed design of our scheme. Section V
presents the experimental results and Section VI presents the
conclusion of the article.

II. BACKGROUND AND RELATED WORK

A. Backup and Restore Processes

Generally, deduplication-based backup systems store a chunk
when it first appears for storage and refer to any subsequent
chunks with duplicate contents of it identified by their secure
hash values (fingerprints) by references instead of storing their
data contents, thus saving space. A main challenge facing the
deduplication-based backup storage is to organize the finger-
print index for detecting duplicates. Zhu et al. [5] group consec-
utive chunks of a backup stream into containers to preserve the
chunk locality and use an on-disk full fingerprint index to trig-
ger the locality-based caching to reduce disk I/Os. Some other
researchers put the fingerprint index in memory and reduce its
memory usage via sampling [3], [4], [19].

Data restoration is the reverse process of backup, where
required chunks are retrieved one by one to reassemble the
original data stream [6]. To reduce disk I/Os during the restore
process, the I/O unit during this process is a container and the
system keeps a restore cache in memory. That is, to access a
chunk, the container holding this chunk is loaded into the re-
store cache, so that chunks that are stored in the same container
and will be accessed in the near future can be read together
without extra I/Os. For HDD-based backup systems, restore
speed is mainly decided by the number of read-in containers
during the restore process. Fewer read-in containers indicate
higher restore speed.

B. Fragmentation and Rewriting Schemes

Due to deduplication, chunks of a backup stream are phys-
ically scattered in the storage devices, which is known as
fragmentation [7], [9], [10], [11], [13]. Chunk fragmentation
severely hurts the restore performance since it increases the
number of read-in containers during data restoration, especially
with the increasing number of backups. To solve the problem,
rewriting schemes are proposed which store some duplicate
chunks to remove references to some previously-stored con-
tainers, thus decreasing the I/O number during data restoration.
Obviously, rewriting schemes trade deduplication ratio for re-
store performance. To minimize rewritten chunks as well as the

Fig. 2. The format of a packed file consisting of n files.

decrease of deduplication ratio, the duplicate chunks selected
for rewritten should be stored in the containers with low reuse
[12]. Zou et al. [7] eliminate chunk fragmentation by using out-
of-line reorganization operations after each backup.

We define the reuse ratio of a container as the fraction of du-
plicate chunks it holds. Chunks referring to previously written
chunks in the containers with low reuse ratios are considered
fragmented and will be rewritten, thus avoiding those containers
being read during data restoration. Rewriting schemes vary in
calculating container’s reuse ratio. Capping [11] and CBR [10]
organize chunks of a backup into multiple segments, each of
which consists of a sequence of chunks, and calculate con-
tainers’ reuse ratios within each segment. HAR [12] calculates
containers’ reuse ratios using all chunks of a backup and uses
them to identify fragmented chunks of the next backup.

Many optimizations to the aforementioned rewriting schemes
are proposed. Instead of using a fixed capping level for all
segments as in Capping, Cao et al. [20] propose a flexible con-
tainer referenced count scheme to set different capping levels
for different segments to increase the accuracy of fragmented-
chunk identifications. Wu et al. [21], [22] observe redundancy
among read-in containers resulting from rewriting schemes and
propose selecting the containers with more distinct chunks for
deduplication. Tan et al. [23], [24] group chunks into variable-
size data groups, instead of the fixed-size one as used in the
traditional backup storage, to identify fragmented chunks more
accurately. Liu et al. [25] use an additional SSD to increase the
number of chunks for Capping to calculate the reuse ratios of
containers, which helps improve the accuracy of fragmented-
chunk identifications.

C. Redundancy in Packed Datasets

Backup products often pack small files into larger units
(called packed files) before copying them to the storage system
[1], [14]. This strategy increases the stream locality which helps
improve caching efficiency for backup. The format of a packed
file is similar to that of a UNIX “tar” file, as shown in Fig. 2.
Each file in a packed file consists of one metadata block and
one or more data blocks. A file’s metadata including its path,
name, size, ownership, and modification time are placed in
the metadata block, while the file’s contents are stored in data
blocks. A file’s metadata block is placed together with its data
blocks, so that, when this file is required, both its metadata
and contents can be read together without requiring additional
“seeks”. Consequently, in a packed file, metadata blocks are
interspersed with data blocks. Since some metadata such as
modification time change every time the file is packed, chunks

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on February 29,2024 at 21:56:46 UTC from IEEE Xplore. Restrictions apply.

76 IEEE TRANSACTIONS ON COMPUTERS, VOL. 73, NO. 1, JANUARY 2024

Fig. 3. Percentage of PFCs in all rewritten chunks for the state-of-the-art
rewriting schemes (CBR, Capping, and HAR) for the WEB dataset.

including metadata blocks would be “unique” during deduplica-
tion even though the files’ contents they contain are unmodified,
leading to a decrease in deduplication efficiency.

If all files in a packed file are unmodified in multiple con-
secutive backup versions, duplicate chunks excluding metadata
blocks would be interspersed with unique chunks including
metadata blocks. If the packed files contain many small files,
the following phenomenon may appear: a small number of
duplicates would be repeatedly identified as fragmented chunks
and rewritten in every backup because they would always be
surrounded by a large number of unique chunks including meta-
data blocks when writing to the containers, even after being
rewritten, which results in the low reuse ratios of the containers
holding them. Such duplicate chunks, i.e., chunks being repeat-
edly rewritten, are referred to as persistent fragmented chunks
(PFCs) [26].

Rewriting schemes often set a rewrite limit (e.g., 5% of
chunks seen so far) to avoid too much rewrite. If the size of
fragmented chunks exceeds this rewrite limit, restore perfor-
mance would be decreased as some fragmented chunks will
not be rewritten. Otherwise, deduplication efficiency would be
decreased because PFCs would be rewritten in every backup
[26]. In some packed datasets, PFCs may account for the vast
majority (more than 90%) of rewritten chunks, the WEB dataset
(see Section V-A) is a case in point, as shown in Fig. 3. In
this case, PFCs can significantly impact either deduplication
efficiency or restore performance.

Numerous approaches are proposed to avoid the impact of
inserted metadata on the deduplication efficiency and restore
performance. Instead of putting metadata immediately before
data blocks, Lin et al. [27] colocate all metadata blocks at the
end of the packed file to make metadata blocks localized and
separated from data blocks. This approach changes file restora-
tion I/Os from sequential to random and complicates both write
and read processes. Zhang et al. [26], [28] group identified
PFCs to increase the reuse ratios of the containers holding them
and make them no longer fragmented. This approach improves
restore performance but fails to eliminate redundancy among
chunks with identical data blocks but different metadata blocks.

D. Delta Compression

Similarity Detection. Existing similarity detection appro-
aches compute several features for each chunk for matching
its similar chunk. The super-feature approach [29] computes a
hash function for all consecutive strings with fixed size (e.g.,

32 bytes) and selects the maximum (or minimum) hash as a fea-
ture. It extracts multiple features from each chunk and groups
them into several super-features. Two chunks having a single
super-feature in common are considered similar to each other.
Zhang et al. [30] accelerate the process of feature calculation
by exploiting the fine-grained locality among similar chunks.
Zou et al. [31] speed up the feature computation process of
the typical similarity detection approach by replacing the Rabin
hash with a fast Gear hash combined with two optimizations to
further reduce computational overheads.

Delta Compression. Delta compression can eliminate redun-
dancy among chunks with similar contents whose redundancy
eludes the detection of chunk-level deduplication [15], [16],
[32], [33]. A typical delta compression tool called Xdelta [17]
uses a byte-wise sliding window to identify repeated strings
between the target and base chunks for differences calculation,
which is very time-consuming. Xia et al. [34] propose a fast
delta-encoding approach called Edelta, which replaces some
of the time-consuming fingerprinting and indexing as used in
Xdelta with fast byte-wise comparison to speed up the through-
put of delta encoding.

Since delta compression is orthogonal and complementary
to chunk-level deduplication, it can be used to compress post-
deduplication chunks. Results from real-world product suggest
that delta compression further improves the compression ratio
of data deduplication by a factor of 1.4×–3.5× [16]. However,
delta compression is not suitable for HDD-based backup sys-
tems because I/O overheads for fetching base chunks from the
HDD severely decrease backup throughput [15], [16].

Zou et al. [8] propose to perform delta compression for
unique chunks whose base chunks can be detected from the
chunks of the last and the current backups. Their approach
assumes that, after each backup, all chunks and the base chunks
of delta-compressed chunks of the current backup can be reor-
ganized to a compact data layout without chunk fragmentation.
This approach, however, has a significant impact on the backup
system because the backup system must perform the service-
disruptive reorganizations frequently and finish them before the
corresponding users’ next backups. In this article, we focus
on adding post-deduplication delta compression seamlessly to
backup systems in a non-intrusive manner.

III. OBSERVATIONS AND MOTIVATIONS

A. PFC-Inspired Prefetching

Similar Chunks Surrounding Identical PFCs. We ob-
serve that, in a deduplication-based backup system, most of the
corresponding chunks in different backup versions surrounding
the same PFC are similar to each other (i.e., contain the same
data blocks but different metadata blocks). In other words, an
identified PFC in the current backup indicates multiple chunks
surrounding the same PFC in the previous backup streams that
are similar to the corresponding chunks in the current backup.
Each pair of those similar chunks have identical data blocks but
different metadata blocks. As a result, the corresponding chunks
in the previous backup streams can serve as the base chunks for
delta-compressing the chunks of the current backup.

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on February 29,2024 at 21:56:46 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: APPLYING DELTA COMPRESSION TO PACKED DATASETS FOR EFFICIENT DATA REDUCTION 77

Base Chunk Prefetching. In general, the basic I/O unit
for deduplication-based backup systems is a container which
consists of a data section and a metadata section. The former
contains chunks while the latter contains chunks’ fingerprints
and the offsets in the container. To accelerate duplicate detec-
tion, the system needs to access containers’ metadata sections
during the deduplication process. This provides an opportu-
nity to prefetch potential base chunks for delta compression
without requiring extra disk I/Os. Specifically, when containers
holding PFCs are accessed for prefetching metadata during
deduplication, chunks in these containers are also prefetched,
or piggybacked, to serve as potential base chunks.

Taking chunks in Fig. 1 as an example. Assuming that C1 is
identified as a PFC in backup 2. When ingesting backup 3, the
typical deduplication engine needs to prefetch the metadata in
the metadata section of container II during deduplication. Since
container II contains a PFC (i.e., C1) that also appears in the on-
going backup, data chunks in this container are prefetched along
with metadata. In this way, chunks A2, B2, D2, and E2 that
can serve as the base chunks for delta-compressing the unique
chunks A3, B3, D3, and E3 are prefetched without requiring
extra I/Os.

Some schemes perform delta compression for all similar
chunks in the system to minimize the redundant data [35],
[36], [37]. Some other schemes detect similar chunks with
strong locality for delta compression to reduce memory space
for indexing the super-features [15], [16]. Our scheme aims to
avoid extra I/Os introduced by delta compression by performing
delta compression only for similar chunk pairs surrounding
identical PFCs. Since some of the real-world backup datasets
such as source code releases include a large amount of similar
(non-duplicate) chunks introduced by changing metadata, per-
forming delta compression for such datasets may significantly
improve storage space efficiency.

B. Simplifying Delta Encoding Process

Existing delta encoding approaches use “COPY” and “IN-
SERT” instructions to encode the input chunk relative to the
base chunk [17], [18]. Duplicate strings shared by two similar
chunks may appear in different positions in the two chunks.
Before detecting common strings, delta encoding tools have to
find alignments between the input and base chunks. Then the
longest matches can be detected by expanding the contents of
the aligned position byte-by-byte in both directions. To find
the alignments, existing delta encoding approaches calculate
fingerprints byte-by-byte on chunks, similar to content-defined
chunking, and index fingerprints. However, calculating and in-
dexing fingerprints are computationally expensive.

For similar chunk pairs surrounding identical PFCs, if their
contents are identical except for the contents in the meta-
data blocks, their common strings appear exactly in the same
positions within the corresponding chunks without any shift.
This means that the time-consuming operations for calculating
and indexing fingerprints are not necessary for delta encoding
those similar chunks. For some packed datasets, similar chunk
pairs whose redundancy appears exactly in the same positions

Fig. 4. Percentage of similar chunk pairs whose redundancy appears exactly
in the same positions within the corresponding chunks without any shift.

account for a substantial proportion of all similar chunk pairs
surrounding identical PFCs, such as the LNX and CHR datasets
as shown in Fig. 4. Hence, a new delta encoding approach
without the aforementioned time-consuming operations can sig-
nificantly reduce computational overheads of delta encoding
and has the potential to accelerate the backup throughput.

IV. DESIGN AND IMPLEMENTATION

A. System Architecture

PFC-delta is designed to remove redundant data between
similar chunk pairs surrounding identical PFCs by performing
high-performance delta compression. It builds upon a typical
deduplication strategy of organizing consecutive unique chunks
into containers for storage and prefetching containers’ metadata
during deduplication. To reduce I/O overheads required for
fetching base chunks, PFC-delta identifies containers holding
PFCs and prefetch potential similar chunks in them by piggy-
backing on the I/Os for prefetching metadata during dedupli-
cation, as detailed in Section IV-B. To reduce computational
overheads required by delta encoding, we propose a hash-less
delta encoding approach that is devoid of time-consuming fin-
gerprinting and indexing operations as used in the traditional
approaches, as detailed in Section IV-C.

Fig. 5 shows the data reduction workflow of a deduplication
system with PFC-delta. A backup stream is firstly chunked and
fingerprinted, and then processed by a deduplication engine
to identify duplicates by indexing fingerprints. During dedu-
plication, potential base chunks and their super-features are
prefetched into the base chunk cache. The system then detects
similar chunks from the base chunk cache for unique chunks
and fragmented chunks and delta-encodes them if their similar
chunks are found in the base chunk cache.

After being deduplicated and delta-compressed, unremoved
chunks, deltas (delta-compressed chunks), and their metadata
are written to a container. In our design, a container includes
two sections: (1) a data section holding chunks as well as their
super-features and deltas (delta-compressed chunks) and (2) a
metadata section holding chunks’ and deltas’ fingerprints and
offsets in the container.

B. PFC-Inspired Prefetching

In this subsection, we first introduce how to identify PFCs
and then describe the strategy to prefetch potential base chunks
in the containers holding PFCs.

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on February 29,2024 at 21:56:46 UTC from IEEE Xplore. Restrictions apply.

78 IEEE TRANSACTIONS ON COMPUTERS, VOL. 73, NO. 1, JANUARY 2024

Fig. 5. The data reduction workflow of a deduplication system with PFC-delta. Newly added data structures and processes for supporting PFC-delta are
shown in blue. Cid in the figure represents the container id which can be used to locate the physical position of the corresponding container.

1) PFC Identification: PFCs are duplicate chunks that are
repeatedly identified as fragmented chunks. Existing rewriting
schemes vary in how fragmented chunks are identified, leading
to different patterns of PFCs being repeatedly identified as frag-
mented chunks. For CBR and Capping that identify fragmented
chunks using the information of duplicates of the on-going
backup, PFCs appear in every backup. Since HAR identifies
fragmented chunks using the information of duplicates of the
last backup, PFCs appear in every second backup.

A direct approach for identifying PFCs is to record and
compare fingerprints of all fragmented chunks identified in the
last and the current backups as used in [26]. However, this
approach consumes too much memory because there might be
a large number of fragmented chunks and each fingerprint takes
20 bytes. Recall that fragmented chunks are duplicate chunks in
containers with low reuse ratios, which means that a container
is the basic unit for identifying fragmented chunks. Hence, to
reduce memory consumption, instead of recording fingerprints
of fragmented chunks to identify PFCs, we record the ids of
the containers with low reuse ratios. A container id is an 8-byte
integer that can be used to locate the physical position of the
corresponding container.

More specifically, when a backup completes, a file that
records container ids of all identified fragmented chunks is
written to the disk. At the beginning of the next backup (or
the backup after next if the rewriting scheme is HAR), the
aforementioned file is loaded and the container ids recorded
in it are read to construct an in-memory lookup table, called
FC-CIDlast. When a fragmented chunk is declared, PFC-delta
checks whether its container id exists in FC-CIDlast. If so, this
fragmented chunk is a PFC.

2) Base Chunk Prefetching:
Duplicate Detection and Removal (Deduplication). PFC-

delta adopts the indexing (deduplication) scheme proposed by

Zhu et al. [5], which puts the fingerprint index on the disk
and uses a Bloom filter and a fingerprint cache to reduce disk
accesses for checking the fingerprint index. For a new chunk,
its fingerprint is first queried in the fingerprint cache. Upon a
miss, the Bloom filter is checked to determine whether the data
chunk is likely to exist in the system. If negative, the chunk is
not a duplicate since Bloom filter does not return false negatives.
Otherwise, the on-disk fingerprint index is checked. If the fin-
gerprint matches in the fingerprint index, the container holding
the physical copy of this chunk is accessed and the metadata in
the metadata section are inserted into the fingerprint cache.

Base Chunk Prefetching. A key idea behind PFC-delta is to
prefetch data chunks in the containers holding PFCs along with
metadata when those containers are accessed during deduplica-
tion. It is easy to identify PFCs and the containers holding them.
However, if we first identify PFCs in the current backup and
then prefetch chunks in the containers holding those identified
PFCs, only a few chunks would be prefetched to serve as the
potential base chunks because the process to prefetch metadata
precedes that to identify PFCs in the deduplication workflow.
In other words, PFCs and the containers holding PFCs should
be known before the process to prefetch metadata. To solve
the problem, we prefetch chunks in the containers holding the
PFCs that were identified in the last backup (or the last but one
backup if the rewriting scheme is HAR). With this strategy, we
can capture almost all potential similar chunk pairs surrounding
identical PFCs because PFCs identified in a backup stream
would also appear in the subsequent backup streams with a very
high probability.

More specifically, when a backup completes, a file that
records the ids of containers holding PFCs declared in this
backup is stored. At the beginning of the next backup (or
the backup after next if the rewriting scheme is HAR), the
aforementioned file is loaded and container ids recorded in it

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on February 29,2024 at 21:56:46 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: APPLYING DELTA COMPRESSION TO PACKED DATASETS FOR EFFICIENT DATA REDUCTION 79

Algorithm 1 Prefetching process of PFC-delta
Input: container ids of fragmented chunks in the last backup,

FC-CIDlast; ids of containers holding PFCs recorded in the
recent backup, PFC-CIDlast;

Output: container ids of emerging fragmented chunks, FC-
CIDemerging; ids of containers holding PFCs recorded in
the on-going backup, PFC-CIDemerging;

1: Initialize a set, FC-CIDemerging;
2: Initialize a set, PFC-CIDemerging;
3: while the backup does not complete do
4: Receive a chunk;
5: if the chunk is duplicate then
6: cid← id of container referenced by the chunk;
7: if cid exists in PFC-CIDlast then
8: Prefetch the whole container;
9: else

10: Prefetch metadata only;
11: if the chunk is fragmented then
12: if cid exists in FC-CIDlast then
13: Insert cid into PFC-CIDemerging;
14: else
15: Insert cid into FC-CIDemerging;
16: end if
17: end if
18: end if
19: end if
20: end while

are read to construct an in-memory lookup table, called PFC-
CIDlast. When the deduplication engine accesses containers
for prefetching metadata, it checks whether the id of the con-
tainer to be accessed exists in PFC-CIDlast. If true, chunks in
the container and their super-features are fetched along with
metadata and inserted into a base chunk cache to enable the
subsequent post-deduplication delta compression. Otherwise,
only the metadata in this container are fetched, the same as
the traditional deduplication process [5]. Note that containers
recorded in the aforementioned file generated by the last backup
might have been reclaimed before the current backup starts and
causes the PFC-inspired prefetching to be inefficient, which will
be discussed in Section IV-D.

Algorithm 1 provides a more detailed description of the
metadata and potential base chunk prefetching process of our
design. We assume that the rewriting scheme is Capping [11],
so a fragmented chunk is identified as a PFC if it is also a
fragmented chunk in the last backup. Note that prefetching base
chunks by piggybacking on the read operations for metadata
eliminates extra I/Os for reading base chunks, but introduces
extra transfer time for prefetching chunks. However, backup
throughput would not be decreased because delta compression
reduces disk I/Os for writing data.

Base Chunk Cache. Prefetched potential base chunks and
their super-features are inserted into the base chunk cache.
When eviction occurs, chunks and super-features from a con-
tainer are evicted from the cache based on a Least Recently
Used (LRU) policy. After deduplication, PFC-delta calculates

super-features for chunks unremoved by deduplication and
matching similar chunks from the base chunk cache. Matched
similar chunks are then directly fetched from the base chunk
cache to serve as base chunks for delta encoding.

C. Hash-Less Delta Encoding

Existing delta encoding tools have to calculate and index fin-
gerprints to find alignments between similar chunks. However,
for most of similar chunks surrounding identical PFCs, their
duplicate strings appear exactly in the same positions without
any shift, as detailed in Section III-B. Based on this obser-
vation, we propose a hash-less delta encoding approach for
similar chunks surrounding identical PFCs without requiring
time-consuming hashing and indexing operations. The hash-
less delta encoding approach uses a byte-wise comparison at the
beginning of the input and base chunks to detect the duplicate
strings until the comparison fails. In practice, we accelerate the
byte-wise comparing process by performing one 64-bit XOR
operation for each pair of 8-byte strings at a time. When an
XOR operation fails, a byte-wise comparison is used to obtain
the longest match. The process to detect the longest un-matched
strings is similar to that of the longest matched strings as de-
tailed above.

It is obvious that the hash-less delta encoding approach is
inefficient when the duplicate contents of the similar chunks
are shifted, i.e., appear in different positions. Thus, we need
to check whether the duplicate contents shared by two similar
chunks are shifted before applying delta compression. Con-
tents shifting often stems from the insertion or deletion opera-
tions. Since chunk boundaries are declared by content-defined
chunking, e.g., Rabin-based content-defined chunking scheme,
insertion and deletion operations often change chunk length.
If the chunk lengths of two similar chunks are different, some
duplicate contents between them have been shifted.

Even if the lengths of two similar chunks are the same, the
contents may still have been shifted. To further check this, we
sample several portions at the end of two chunks to see whether
the contents of these portions in the two chunks are the same.
The contents of a sampled portion of two similar chunks without
contents shifting may still be different because the portion may
be sampled from a metadata block. Thus, if the contents of one
of the sampled portions of two similar chunks are common,
duplicate strings in two chunks are considered appearing ex-
actly in the same positions. We thus use the proposed hash-less
delta encoding approach for delta encoding. Otherwise, we use
Edelta [34].

D. Memory Footprints and Garbage Collection

Memory Footprints. PFC-delta introduces five data struc-
tures to support PFC-inspired base chunks prefetching and
delta compression, namely, FC-CIDlast, PFC-CIDlast, FC-
CIDemerging, PFC-CIDemerging, and a base chunk cache. The
first four data structures record ids of containers with low reuse
ratios and containers holding PFCs. The memory space con-
sumed by them is negligible, for two reasons. First, the number
of containers with low reuse ratios and the number of containers

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on February 29,2024 at 21:56:46 UTC from IEEE Xplore. Restrictions apply.

80 IEEE TRANSACTIONS ON COMPUTERS, VOL. 73, NO. 1, JANUARY 2024

holding PFCs are limited. Second, a container id only takes
8 bytes.

Memory consumed by the base chunk cache will be evaluated
and analyzed in Section V.B.3. Note that PFC-delta is designed
to delta-compress similar chunk pairs surrounding the same
PFCs. For datasets without PFCs, the base chunk cache would
be empty and not require extra memory space.

Garbage Collection. Usually, each backup file would be
specified a retention period. When its retention period ex-
pires, a backup file is deleted. Garbage Collection (GC) then
sweeps (removes) invalid (unreferenced) chunks from the
system by migrating valid chunks into new containers [4], [7],
[12], [38], [39].

GC may cause the PFC-inspired prefetching to be inefficient
because the containers holding fragmented chunks and PFCs
declared in the last backup might have been reclaimed during
GC. To solve the problem, we update the files that record the ids
of containers holding fragmented chunks and PFCs generated
by the last backup for all users after each GC. It should be
noted that each backup stream has only two files to be updated.
Compared with GC which involves a large number of I/Os, extra
overheads for updating the files are negligible.

V. PERFORMANCE EVALUATION

A. Evaluation Setup

Experimental Platform. We build a PFC-delta prototype by
extending an open-source deduplication system called Destor
[40]. The prototype runs on a server machine with an Intel
Xeon W-2155 CPU at 3.3 GHz and 64-GB RAM. Destor is a
deduplication engine that only performs chunk-level deduplica-
tion, we modify its deduplication stage to enable PFC-inspired
prefetching and add two extra processes after the deduplica-
tion process, i.e., similarity detection and delta compression, to
support delta compression for similar chunk pairs surrounding
identical PFCs.

System Configurations. All tested systems in this section
are configured with the FastCDC [41] chunking scheme of
which the minimum, average, and maximum chunk lengths are
2KB, 8KB, and 64KB respectively for chunking and sha1 [42]
for fingerprinting. Three state-of-the-art rewriting schemes, i.e.,
CBR, Capping, and HAR, are used to identify fragmented
chunks in our evaluations. The three rewriting schemes are
configured with the default settings in their publications. We
adopt Odess [31] to detect similar chunks, which is configured
to compute 3 super-features for each chunk. The container size
is set to 4 MB. During data restoration, the cache is configured
as a 256-container-sized LRU cache, the same as [6].

Evaluated Datasets. Four real-world datasets containing
substantial small files are used to evaluate the efficacy of PFC-
delta. Each version of these datasets was packaged as a tar file.
Characteristics of the four datasets are detailed in Table I.

Performance Metrics. Three key metrics are used to mea-
sure the performance of our scheme. Compression Ratio, de-
fined as the size of the data stream before data reduction
divided by the size of the data stream after data reduction,

TABLE I
WORKLOAD CHARACTERISTICS OF THE FOUR DATASETS USED IN

THE PERFORMANCE EVALUATION

Name Size Workload descriptions

LNX 180 GB
300 versions of linux kernel [43] source
code.

WEB 330 GB
120 days’ snapshots of the website:news.
sina.com [44].

CHR 284 GB
100 versions of source codes of chromium
project.

HOME 1817 GB
72 versions of software engineers home
directories including source code, office
documents, etc.

Fig. 6. Compression ratios of the deduplication-based backup system with
PFC-delta with different rewriting schemes with and without rewrite limit
(5%) for the four datasets.

is used to measure the total data reduction from the com-
bination of data deduplication and delta compression. Note
that for systems only adopting chunk-level deduplication in
our evaluations for comparison, the compression ratio only
reflects the data reduction from data deduplication, exclud-
ing delta compression. Speed Factor [11], defined as 1 di-
vide by mean read-in containers per MB of restored data,
i.e., the size of data stream restored (MB)

number of read−in containers during restore , reflects the re-
store performance. A higher speed factor indicates higher re-
store speed. In our evaluations, each speed factor presented
is the average of the last 20 backups, which is the same as
[11] and [45].

Backup Throughput is measured by the throughput with
which the input backup stream is deduplicated and delta-
compressed. The backup throughput presented in our evalua-
tions is the average of the last 10 backups. For each experiment,
we record the average results of five runs.

B. A Performance Study of PFC-Delta

In this section, we study the sensitivity of PFC-delta to
rewrite limit, delta encoding approaches, and base chunk
cache size.

1) Rewrite Limit: Rewriting schemes often have a rewrite
limit (e.g., 5% of chunks), designed to avoid too many dupli-
cates being rewritten [10], [45]. However, a smaller rewrite limit
may lead to fewer identified PFCs which impact the efficiency
of PFC-delta. This subsection evaluates the sensitivity of PFC-
delta to rewrite limit. Dictated by its design principle, Capping
does not require an extra rewrite limit. Thus, only CBR and
HAR are evaluated in this subsection.

Figs. 6 and 7 suggest that rewriting schemes with a 5%
rewrite limit achieve 3.8%–16.5% higher compression ratio
and 6.4%–28.5% lower speed factors than that without the

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on February 29,2024 at 21:56:46 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: APPLYING DELTA COMPRESSION TO PACKED DATASETS FOR EFFICIENT DATA REDUCTION 81

Fig. 7. Speed factors of the deduplication-based backup system with PFC-
delta with different rewriting schemes with and without rewrite limit (5%) for
the four datasets.

Fig. 8. Throughput of two delta encoding strategies for different rewriting
schemes on the LNX and CHR datasets.

rewrite limit. In general, compression gains achieved by extra
delta compression from removing the rewrite limit are less than
that achieved by setting a rewrite limit which avoids excessive
rewrites. Since the decrease in compression ratio due to remov-
ing the rewrite limit is often smaller than the improvement on
the restore performance, in the remainder of the evaluation, we
remove the rewrite limit for CBR and HAR.

2) Hash-Less Delta Encoding: Recall that PFC-delta adopts
a delta encoding strategy called Hash-less + Edelta which
combines hash-less delta encoding and Edelta. In this strategy,
hash-less delta encoding is used for delta-encoding the similar
chunk pairs whose duplicate strings appear exactly in the same
positions without any shift, and Edelta is for the rest of similar
chunk pairs. In this subsection, we test two versions of PFC-
delta, with one adopting Hash-less + Edelta for delta encoding
and the other using Edelta only. Fig. 8 compares the throughput
of the two delta encoding strategies with different rewriting
schemes on the LNX and CHR datasets. The results presented
in Fig. 8 suggest that Hash-less + Edelta achieves much higher
throughput than Edelta, by about 3×. This is because most
similar chunk pairs are processed by hash-less delta encoding
which is extremely fast and comparable to the main mem-
ory bandwidth.

We also evaluated the compression ratios of the two versions
of PFC-delta and found that the system with Hash-less + Edelta

achieves 0.19%–2.3% higher compression ratio than the one
with Edelta (not shown because the improvements are limited).
This is because of the fine-grained redundancy in the metadata
blocks stemming from unmodified metadata. Edelta fails to
detect some of such redundancy as it finds alignments between
the two similar chunks by indexing coarse-grained sub-chunks,
which hash-less delta encoding can successfully detect.

3) Base Chunk Cache Size: There can be multiple contain-
ers holding the same PFCs in the system because PFCs can be
repeatedly rewritten. If multiple such containers are accessed
during deduplication and prefetched into the base chunk cache,
the total number of potential base chunks in the base chunk
cache would be decreased because the similar candidates in the
containers holding the same PFCs overlap. Thus, a larger base
chunk cache may lead to more detected base chunks and more
delta compression.

Fig. 9 depicts the compression ratios of PFC-delta with three
rewriting schemes (i.e., CBR, Capping, and HAR) as the base
chunk cache sizes varies for the four datasets. As shown in the
figure, the compression ratios grow with the base chunk cache
size and approach the maximum when the base chunk cache
size is 16-container, i.e., 64 MB. Since 64 MB is affordable for
a backup server, in the remainder of the evaluation, the base
chunk cache size is set to 16-container.

4) Recording Fingerprints vs. Recording Container Ids: As
described in Section IV.B.1, there are two methods to identify
PFCs: recording fingerprints of fragmented chunks identified in
each backup or recording ids of containers with low reuse ratios
in each backup. This subsection discusses the memory footprint
required by these two methods.

Typically, a fingerprint occupies 20 bytes, and a container id
occupies 8 bytes. Table II indicates that recording fingerprints
requires a memory footprint of up to 0.017% of the backup data
size. When the backup data size is large, 0.017% can still be a
significant value. Moreover, this is only the memory footprint
required for processing a single backup data stream. In reality,
the system may simultaneously handle hundreds of backup data
streams. Overall, recording fingerprints requires a significant
amount of memory.

On the other hand, if we record ids of the containers with low
reuse ratios for identifying PFCs, the required memory footprint
is only 0.00012% to 0.00017% of the backup data size, which is
1/113 to 1/70 of the memory required for recording fingerprints.
Clearly, recording ids of containers with low reuse ratios can
greatly reduce memory usage.

C. Comprehensive Evaluation of PFC-Delta

In this subsection, we comprehensively evaluate the per-
formance of our scheme in terms of three key metrics: com-
pression ratio, restore performance, and backup throughput.
Since our scheme builds upon the typical deduplication strategy
of organizing unique chunks into containers and prefetching
containers’ metadata during deduplication, a backup system
adopting this deduplication strategy is implemented and used
as the baseline for evaluating PFC-delta. To understand the
impact of GC on PFC-delta’s performance, we first evaluate

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on February 29,2024 at 21:56:46 UTC from IEEE Xplore. Restrictions apply.

82 IEEE TRANSACTIONS ON COMPUTERS, VOL. 73, NO. 1, JANUARY 2024

Fig. 9. Compression ratios of the deduplication-based backup system with PFC-delta and different rewriting schemes as base container cache size varies
for the four datasets.

TABLE II
COMPARISON OF MEMORY FOOTPRINT AS A PERCENTAGE OF

BACKUP DATA SIZE FOR TWO METHODS: RECORDING

FINGERPRINTS AND RECORDING CONTAINER IDS USING THE CBR
AND HAR REWRITING SCHEMES ON THE LNX AND CHR

DATASETS. THE PRESENTED PERCENTAGES REPRESENT THE

AVERAGE OF THE LAST 20 BACKUPS. CON-ID REPRESENTS

CONTAINER ID

Dataset
CBR HAR

Fingerprint Con-id Fingerprint Con-id
LNX 0.012% 0.00017% 0.017% 0.00015%
CHR 0.011% 0.00014% 0.0095% 0.00012%

its performance without GC, then rerun the test with GC. In
the test with GC, we retain only the latest 20 backups at
any moment.

Compression Ratio. Fig. 10 on compression ratio indi-
cates that, by performing delta compression for similar chunk
pairs surrounding identical PFCs, our scheme achieves an
additional 1.3×–2.5× compression beyond chunk-level dedu-
plication. PFC-delta in the figure represents the deduplication-
based backup system using PFC-delta for delta-compressing
similar chunk pairs surrounding identical PFCs. In addition,
GC slightly decreases compression ratio of PFC-delta by 0.1%–
0.9%. This is because we update the file recording the ids of
containers holding PFCs declared in the last backup after GC.
GC decreases compression ratio because it lowers reuse ratios
of containers referenced by the subsequent backups which leads
to more rewritten chunks and thus lower compression ratios.
The decreased compression ratio due to GC is marginal because
we perform delta compression for rewritten chunks and most of
rewritten chunks are delta-compressed.

Speed Factor. Fig. 11 on speed factor suggests that our
scheme improves the speed factor of Baseline by 1.2×–2.06×.
As stated in Section II-A, the speed factor is mainly decided
by the number of read-in containers during data restoration
and fewer read-in containers means a higher speed factor.
PFC-delta improves the speed factor of Baseline for two rea-
sons. First, base chunks prefetched by PFC-inspired prefetch-
ing do not require extra disk I/Os during restore because
they are stored along with duplicate chunks which will trig-
ger the prefetching operations in the first place during re-
store. Second, delta compression decreases the number of
stored containers during backup as well as that of read-in
containers during restore. Finally, GC has limited impact on
speed factor.

Backup Throughput. In order to confirm the significant
impact of additional I/Os introduced by delta compression
for reading back base chunks from storage on the backup
throughput, we implement a backup system, called Greedy, that
performs delta compression on top of deduplication for all non-
duplicate chunks whose base chunks exist. Moreover, to char-
acterize the benefits of our proposed hash-less delta encoding
approach, we also implement a version of PFC-delta that adopts
Edelta [34] as the delta encoding tool, called PFC-Edelta, for
backup throughput comparison. Although PFC-delta introduces
extra overheads, it can accelerate the backup throughput be-
cause it decreases the I/O overheads for writing data to the disk.

Fig. 12 on backup throughput suggests that, on the LNX,
CHR, and HOME datasets, PFC-delta accelerates the backup
throughput of Baseline by 1.09×–1.43×. This is because, when
the system processes these three datasets, writing data to the
disk is the performance bottleneck and our scheme alleviates
this bottleneck. On the WEB dataset, our scheme slightly de-
creases the backup throughput by 4.2%–5.1%. This is because
the positive impact on backup throughput due to decreasing
I/O overheads for writing data to the disk and the negative
impact on that due to extra computational overheads required
for similarity detection and delta encoding tend to cancel
each other.

Fig. 12 also suggests that PFC-delta achieves 5.1%–10.6%
higher backup throughput than PFC-Edelta. This is because
the hash-less delta encoding requires much less computational
overheads than Edelta. Even though the hash-less delta encod-
ing is extremely fast, the improvements on backup throughput
on some datasets (e.g., the WEB dataset) are insignificant be-
cause the performance bottleneck of the data reduction work-
flow has been shifted to other stages. In addition, Greedy
achieves much lower throughput than the other three systems,
which is consistent with the conclusions in [15], [16]. Finally,
GC slightly decreases the backup throughput because GC may
cause potential similar chunks in a container to be stored in two
containers and thus leads to more containers being prefetched
to supply potential base chunks.

In summary, by performing delta compression for chunks
with identical data blocks but different metadata blocks
surrounding identical PFCs without requiring extra I/Os,
PFC-delta improves the compression ratio of the typical
deduplication-based backup system by a factor of 1.3×–2.5×,
accelerates the restore speed by 1.2×–2.06×, and increases the
backup throughput on all but one datasets.

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on February 29,2024 at 21:56:46 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: APPLYING DELTA COMPRESSION TO PACKED DATASETS FOR EFFICIENT DATA REDUCTION 83

Fig. 10. Compression ratios of Baseline and PFC-delta without and with GC for different rewriting schemes for the four datasets. PFC-delta represents the
deduplication-based backup system adopting PFC-delta for delta-compressing similar chunk pairs surrounding identical PFCs.

Fig. 11. Speed factors of Baseline and PFC-delta without and with GC for different rewriting schemes for the four datasets.

Fig. 12. Backup throughput of Baseline, PFC-Edelta, PFC-delta without and with GC, and Greedy, with different rewriting schemes for the four datasets.

VI. CONCLUSION

Deduplication is often used in backup systems to improve
storage space efficiency. Real-world backup products often
group files to be protected into larger units (called packed files)
before copying them to backup systems. Each file in the packed
file will be inserted some metadata before its contents. Since
some metadata such as modification time change every time
files are packed, introducing substantial unique chunks with
unchanged files’ contents and changed metadata. Applying
delta compression for those similar chunks can further improve
storage space efficiency, but at the cost of decreased backup
throughput resulting from extra I/Os for fetching base chunks.
We observe that the corresponding chunk pairs surrounding
identical PFCs are non-identical due to changed metadata
but similar to each other. In this article, we propose a high-
performance delta compression scheme called PFC-delta to re-
move redundant data among the aforementioned similar chunks.

For some deduplication-based backup systems, such as
DDFS, containers would be accessed for prefetching metadata
during deduplication. PFC-delta builds upon this deduplication
strategy. It identifies and prefetches chunks stored along with
PFCs to serve as base chunks by piggybacking on the I/Os

during deduplication. This strategy avoids I/Os for fetching
base chunks. On the other hand, to reduce computational over-
heads for delta encoding, we propose a hash-less delta encoding
approach for similar chunk pairs surrounding identical PFCs
whose duplicate strings appear exactly in the same positions.
The new delta encoding approach is extremely fast because it
is devoid of time-consuming fingerprinting and indexing oper-
ations. Evaluation results with four real-world datasets demon-
strate the effectiveness of our scheme in terms of compression
ratio and restore performance and superior write throughput
over the typical deduplication-based backup system.

REFERENCES

[1] G. Wallace et al., “Characteristics of backup workloads in production
systems,” in Proc. 10th USENIX Conf. File Storage Technol. (FAST).
San Jose, CA, USA: USENIX Assoc., Feb. 14–17, 2012, pp. 1–14.

[2] G. Amvrosiadis and M. Bhadkamkar, “Identifying trends in enterprise
data protection systems,” in Proc. Conf. USENIX Annu. Tech. Conf.
Santa Clara, CA, USA: USENIX Assoc., Jul. 8–10, 2015, pp. 151–164.

[3] M. Lillibridge et al., “Sparse indexing: Large scale, inline deduplication
using sampling and locality,” in Proc. 7th USENIX Conf. File Storage
Technol. (FAST), vol. 9. San Jose, CA, USA: USENIX Assoc., Feb.
24–27, 2009, pp. 111–123.

[4] F. Guo and P. Efstathopoulos, “Building a high-performance dedupli-
cation system,” in Proc. USENIX Conf. USENIX Annu. Tech. Conf.
Portland, OR, USA: USENIX Assoc., Jun. 15–17, 2011, pp. 1–14.

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on February 29,2024 at 21:56:46 UTC from IEEE Xplore. Restrictions apply.

84 IEEE TRANSACTIONS ON COMPUTERS, VOL. 73, NO. 1, JANUARY 2024

[5] B. Zhu, K. Li, and R. H. Patterson, “Avoiding the disk bottleneck in the
data domain deduplication file system.” in Proc. 6th USENIX Conf. File
Storage Technol. (FAST). San Jose, CA, USA: USENIX Assoc., Feb.
26–29, 2008, pp. 269–282.

[6] M. Fu et al., “Design tradeoffs for data deduplication performance in
backup workloads,” in Proc. 13th USENIX Conf. File Storage Technol.
(FAST), vol. 9. Santa Clara, CA, USA: USENIX Assoc., Feb. 16–19,
2015, pp. 331–345.

[7] X. Zou, J. Yuan, P. Shilane, W. Xia, H. Zhang, and X. Wang, “The
dilemma between deduplication and locality: Can both be achieved?”
in Proc. 19th USENIX Conf. File Storage Technol. (FAST). Santa Clara,
CA, USA: USENIX Assoc., Feb. 23–25, 2021, pp. 171–185.

[8] X. Zou, W. Xia, P. Shilane, H. Zhang, and X. Wang, “Building
a high-performance fine-grained deduplication framework for backup
storage with high deduplication ratio,” in Proc. USENIX Annu. Tech.
Conf. (ATC). Carlsbad, CA, USA: USENIX Assoc., Jul. 11–13, 2022,
pp. 19–36.

[9] Y. Nam, G. Lu, N. Park, W. Xiao, and D. H. Du, “Chunk fragmentation
level: An effective indicator for read performance degradation in dedu-
plication storage,” in Proc. IEEE 13th Int. Conf. High Perform. Comput.
Commun. (HPCC). Banff, Canada: IEEE Comput. Soc. Press, Sep. 2–4,
2011, pp. 581–586.

[10] M. Kaczmarczyk, M. Barczynski, W. Kilian, and C. Dubnicki, “Reduc-
ing impact of data fragmentation caused by in-line deduplication,” in
Proc. 5th Annu. Int. Syst. Storage Conf. (SYSTOR). Haifa, Israe: ACM
Assoc., Jun. 4–6, 2012, pp. 1–12.

[11] M. Lillibridge, K. Eshghi, and D. Bhagwat, “Improving restore speed
for backup systems that use inline chunk-based deduplication,” in Proc.
11th USENIX Conf. File Storage Technol. (FAST). San Jose, CA, USA:
USENIX Assoc., Feb. 12–15, 2013, pp. 183–197.

[12] M. Fu et al., “Accelerating restore and garbage collection in
deduplication-based backup systems via exploiting historical informa-
tion,” in Proc. USENIX Conf. USENIX Annu. Tech. Conf . Philadelphia,
PA, USA: USENIX Assoc., Jun. 19–20, 2014, pp. 181–192.

[13] Z. Cao, H. Wen, F. Wu, and D. H. Du, “ALACC: Accelerating restore
performance of data deduplication systems using adaptive look-ahead
window assisted chunk caching,” in Proc. 16th USENIX Conf. File
Storage Technol. (FAST). Oakland, CA, USA: USENIX Assoc., Feb.
12–15, 2018, pp. 309–324.

[14] W. Dong, F. Douglis, K. Li, R. H. Patterson, S. Reddy, and P. Shilane,
“Tradeoffs in scalable data routing for deduplication clusters.” in Proc.
9th USENIX Conf. File Storage Technol. (FAST). San Jose, CA, USA:
USENIX Assoc., Feb. 15–17, 2011, pp. 229–241.

[15] P. Shilane et al., “WAN optimized replication of backup datasets using
stream-informed delta compression,” in Proc. 10th USENIX Conf. File
Storage Technol. (FAST). San Jose, CA, USA: USENIX Assoc., Feb.
14–17, 2012, pp. 1–14.

[16] P. Shilane, G. Wallace, M. Huang, and W. Hsu, “Delta compressed
and deduplicated storage using stream-informed locality,” in Proc.
4th USENIX Conf. Hot Topics Storage File Syst. Boston, MA, USA:
USENIX Assoc., Jun. 13–14, 2012, pp. 201–214.

[17] J. MacDonald, “File system support for delta compression,” Ph.D.
dissertation, Masters thesis, Department of Electrical Engineering and
Computer Science, University of California, Berkeley, Berkeley, CA,
USA, 2000.

[18] D. Trendafilov, N. Memon, and T. Suel, “Zdelta: An efficient delta
compression tool,” Dept. Comput. Inf. Sci., Polytechnic Univ., Tech.
Rep., TR-CIS-2002-02, 2002.

[19] W. Xia, H. Jiang, D. Feng, and Y. Hua, “Similarity and locality
based indexing for high performance data deduplication,” IEEE Trans.
Comput., vol. 64, no. 4, pp. 1162–1176, Apr. 2015.

[20] Z. Cao, S. Liu, F. Wu, G. Wang, B. Li, and D. H. Du, “Sliding look-
back window assisted data chunk rewriting for improving deduplication
restore performance,” in Proc. 17th USENIX Conf. File Storage Tech-
nol. (FAST). Boston, MA, USA: USENIX Assoc., Feb. 25–28, 2019,
pp. 129–142.

[21] J. Wu, Y. Hua, P. Zuo, and Y. Sun, “A cost-efficient rewriting scheme
to improve restore performance in deduplication systems,” in Proc. 33th
IEEE Symp. Mass Storage Syst. Technol. (MSST). Santa Clara, CA, USA:
IEEE Comput. Soc. Press, May 15–19, 2017, pp. 1–12.

[22] J. Wu, Y. Hua, P. Zuo, and Y. Sun, “Improving restore performance
in deduplication systems via a cost-efficient rewriting scheme,” IEEE
Trans. Parallel Distrib. Syst., vol. 30, no. 1, pp. 119–132, Jan. 2019.

[23] Y. Tan et al., “FGDEFRAG: A fine-grained defragmentation approach to
improve restore performance,” in Proc. 33th Symp. Mass Storage Syst.
Technol. (MSST). Santa Clara, CA, USA: IEEE Comput. Soc. Press,
May 15–19, 2017.

[24] Y. Tan, B. Wang, J. Wen, Z. Yan, H. Jiang, and W. Srisa-an, “Improving
restore performance in deduplication-based backup systems via a fine-
grained defragmentation approach,” IEEE Trans. Parallel Distrib. Syst.,
vol. 29, no. 10, pp. 2254–2267, Oct. 2018.

[25] J. Liu, Y. Chai, C. Yan, and X. Wang, “A delayed container organization
approach to improve restore speed for deduplication systems,” IEEE
Trans. Parallel Distrib. Syst., vol. 27, no. 9, pp. 2477–2491, Sep. 2016.

[26] Y. Zhang et al., “Improving restore performance of packed datasets in
deduplication systems via reducing persistent fragmented chunks,” IEEE
Trans. Parallel Distrib. Syst., vol. 31, no. 7, pp. 1651–1664, Jul. 2020.

[27] X. Lin et al., “Metadata considered harmful to deduplication,” in Proc.
7th UNISEX Workshop Hot Topics Storage File Syst. (HotStorage). Santa
Clara, CA, USA: USENIX Assoc., Jul. 6–7, 2015.

[28] C. Zuo, F. Wang, P. Huang, Y. Hu, D. Feng, and Y. Zhang, “PFCG:
Improving the restore performance of package datasets in deduplication
systems,” in Proc. IEEE 36th Int. Conf. Comput. Des. (ICCD). Piscat-
away, NJ, USA: IEEE, 2018, pp. 553–560.

[29] A. Z. Broder, “Identifying and filtering near-duplicate documents,” in
Combinatorial Pattern Matching. San Mateo, CA, USA: Springer, 2000,
pp. 1–10.

[30] Y. Zhang, W. Xia, D. Feng, H. Jiang, Y. Hua, and Q. Wang, “Finesse:
Fine-grained feature locality based fast resemblance detection for post-
deduplication delta compression,” in Proc. 17th USENIX Conf. File
Storage Technol. (FAST). Boston, MA, USA: USENIX Assoc., Feb. 25–
28, 2019, pp. 121–128.

[31] X. Zou et al., “ODESS: Speeding up resemblance detection for redun-
dancy elimination by fast content-defined sampling,” in Proc. 37th Int.
Conf. Data Eng. (ICDE). Piscataway, NJ, USA: IEEE, Apr. 19–22, 2021,
pp. 480–491.

[32] Y. Zhang et al., “Improving restore performance for in-line backup
system combining deduplication and delta compression,” IEEE Trans.
Parallel Distrib. Syst., vol. 31, no. 10, pp. 2302–2314, Oct. 2020.

[33] Y. Zhang, H. Jiang, D. Feng, N. Jiang, T. Qiu, and W. Huang,
“Loopdelta: Embedding locality-aware opportunistic delta compression
in inline deduplication for highly efficient data reduction,” in Proc. Conf.
USENIX Annu. Tech. Conf. (ATC). Boston, MA, USA: USENIX Assoc.,
Jul. 10–12, 2023, pp. 133–148.

[34] W. Xia et al., “Edelta: A word-enlarging based fast delta compression
approach,” in Proc. 7th USENIX Conf. Hot Topics Storage File Syst.
Santa Clara, CA, USA: USENIX Assoc., Jul. 6–7, 2015, pp. 7–7.

[35] D. G. Korn and K.-P. Vo, “Engineering a differencing and compression
data format.” in Proc. USENIX Annu. Tech. Conf., General Track, 2002,
pp. 219–228.

[36] Y. Cui, Z. Lai, X. Wang, N. Dai, and C. Miao, “QuickSync: Improving
synchronization efficiency for mobile cloud storage services,” in Proc.
Int. Conf. Mobile Comput. Netw. Paris, France: ACM Assoc., Sep. 7–11,
2015, pp. 592–603.

[37] Y. Hua, X. Liu, and D. Feng, “Neptune: Efficient remote communication
services for cloud backups,” in Proc. IEEE INFOCOM. Toronto, Canada:
IEEE, Apr. 27–May 2, 2014, pp. 844–852.

[38] M. Vrable, S. Savage, and G. M. Voelker, “Cumulus: Filesystem back-
up to the cloud,” in Proc. 7th USENIX Conf. File Storage Technol.
(FAST). Santa Clara, CA, USA: USENIX Assoc., Feb. 24–27, 2009,
pp. 225–238.

[39] F. Douglis, A. Duggal, P. Shilane, T. Wong, S. Yan, and F. Botelho,
“The logic of physical garbage collection in deduplicating storage,” in
Proc. 15th USENIX Conf. File Storage Technol. (FAST). Santa Clara,
CA, USA: USENIX Assoc., Feb. 12–15, 2017, pp. 29–44.

[40] M. Fu. “Destor: An experimental platform for chunk-level data dedupli-
cation.” GitHub. Accessed: Jun. 10, 2018. [Online]. Available: https://
github.com/fomy/destor

[41] W. Xia et al., “FastCDC: A fast and efficient content-defined chunking
approach for data deduplication,” in Proc. Conf. USENIX Annu. Tech.
Conf. (ATC). Denver, CO, USA: USENIX Assoc., Jun. 15–17, 2016,
pp. 101–114.

[42] S. Quinlan and S. Dorward, “Venti: A new approach to archival Storage,”
in Proc. USENIX Conf. File Storage Technol. (FAST). Monterey, CA,
USA: USENIX Assoc., Jan. 28–30, 2002, pp. 1–13.

[43] “Linux archives.” Kernel. Accessed: Aug. 6, 2020. [Online]. Available:
ftp://ftp.kernel.org/

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on February 29,2024 at 21:56:46 UTC from IEEE Xplore. Restrictions apply.

https://github.com/fomy/destor
https://github.com/fomy/destor
ftp://ftp.kernel.org/

ZHANG et al.: APPLYING DELTA COMPRESSION TO PACKED DATASETS FOR EFFICIENT DATA REDUCTION 85

[44] “Sina news.” Accessed: Jun. 29, 2016. [Online]. Available: http://news.
sina.com.cn/

[45] M. Fu et al., “Reducing fragmentation for in-line deduplication backup
storage via exploiting backup history and cache knowledge,” IEEE
Trans. Parallel Distrib. Syst., vol. 27, no. 3, pp. 855–868, Mar. 2016.

Yucheng Zhang received the Ph.D. degree in com-
puter science from the Huazhong University of
Science and Technology (HUST), Wuhan, China,
in 2017. He is currently an Assistant Professor
with the School of Mathematics and Computer
Sciences at Nanchang University, Nanchang, China.
His research interests include computer storage
systems, parallel I/O, and high-performance com-
puting. He has published several papers in major
journals and international conferences, includ-
ing IEEE TRANSACTIONS ON PARALLEL AND

DISTRIBUTED SYSTEMS, IEEE TRANSACTIONS ON COMPUTERS, USENIX ATC,
FAST, INFOCOM, and IPDPS.

Hong Jiang (Fellow, IEEE) is currently the Chair
and the Wendell H. Nedderman Endowed Pro-
fessor with Computer Science and Engineering
Department at the University of Texas at Arling-
ton. Prior to joining UTA, he served as a Program
Director with National Science Foundation from
January 2013 to August 2015 and he was with the
University of Nebraska-Lincoln since 1991, where
he was the Willa Cather Professor in computer
science and engineering. His present research inter-
ests include computer architecture, computer storage

systems and parallel I/O, high-performance computing, big data computing,
cloud computing, and performance evaluation. He has over 300 publica-
tions in major journals and international conferences in these areas, includ-
ing IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, IEEE
TRANSACTIONS ON COMPUTERS, PROCEEDINGS OF IEEE, ACM-Transactions
on Architecture and Code Optimization, ACM-Transactions on Storage, Jour-
nal of Parallel and Distributed Computing, ISCA, MICRO, USENIX ATC,
FAST, EUROSYS, SOCC, LISA, SIGMETRICS, ICDCS, IPDPS, MIDDLE-
WARE, OOPLAS, ECOOP, SC, ICS, HPDC, and INFOCOM, and his research
has been supported by NSF, DOD, and industry. He is a Member of ACM.

Chunzhi Wang (Member, IEEE) received the Ph.D.
degree in computer science from the Wuhan Uni-
versity of Technology. She is currently a Professor
with the School of Computer Science at the Hubei
University of Technology. Her current interests
include big data, peer-to-peer, clouding comput-
ing, and network security. She is a member of CCF
and ACM.

Wei Huang received the B.E. and M.E. degrees
from the Harbin Institute of Technology, Harbin,
China, and the Ph.D. degree from Nanyang Tech-
nological University, Singapore. He was a Post-
doctoral Research Fellow with the University of
California, San Diego, CA, USA, and the Agency
for Science Technology and Research, Singapore.
He is currently a Full Professor with the Department
of Computer Science and acts as the Dean of the
School of Mathematics and Computer Sciences,
Nanchang University, Nanchang, China. He has

authored or co-authored more than 100 academic journal or conference
papers, including the IEEE TRANSACTIONS ON MEDICAL IMAGING, IEEE
TRANSACTIONS ON MULTIMEDIA, MICCAI, and ACM Multimedia. His main
research interests include machine learning, pattern recognition, computer
vision, and multimedia.

Meng Chen received the M.E. degree from
Nanchang University, Nanchang, China. He is cur-
rently an Assistant Professor with the School of
Mathematics and Computer Sciences at Nanchang
University, Nanchang, China. His research interests
include computer storage systems and parallel I/O
and high-performance computing.

Yongxuan Zhang received the Ph.D. degree
in computer science and technology from the
Huazhong University of Science and Technology,
Wuhan, China, in 2020. He is currently an Instructor
with Mathematics and Computer School at Yuzhang
Normal University. His present research interests
include graph processing, high-performance com-
puting, and computer storage systems.

Le Zhang received the M.E. degree from Nanchang
University, Nanchang, China. He is currently an
Instructor with the School of Mathematics and
Computer Sciences at Nanchang University,
Nanchang, China. His research interests include
computer storage systems and data mining.

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on February 29,2024 at 21:56:46 UTC from IEEE Xplore. Restrictions apply.

http://news.sina.com.cn/
http://news.sina.com.cn/

<<
	/CompressObjects /Off
	/ParseDSCCommentsForDocInfo false
	/CreateJobTicket false
	/PDFX1aCheck false
	/ColorImageMinResolution 200
	/GrayImageResolution 300
	/DoThumbnails false
	/ColorConversionStrategy /sRGB
	/GrayImageFilter /DCTEncode
	/EmbedAllFonts true
	/CalRGBProfile (Adobe RGB \0501998\051)
	/MonoImageMinResolutionPolicy /OK
	/AllowPSXObjects false
	/LockDistillerParams true
	/ImageMemory 1048576
	/DownsampleMonoImages true
	/ColorSettingsFile (None)
	/PassThroughJPEGImages true
	/AutoRotatePages /None
	/Optimize false
	/ParseDSCComments false
	/MonoImageDepth -1
	/AntiAliasGrayImages false
	/GrayImageMinResolutionPolicy /OK
	/JPEG2000ColorImageDict <<
		/TileHeight 256
		/Quality 15
		/TileWidth 256
	>>
	/ConvertImagesToIndexed true
	/MaxSubsetPct 100
	/Binding /Left
	/PreserveDICMYKValues false
	/GrayImageMinDownsampleDepth 2
	/MonoImageMinResolution 400
	/sRGBProfile (sRGB IEC61966-2.1)
	/AntiAliasColorImages false
	/GrayImageDepth -1
	/PreserveFlatness false
	/OtherNamespaces [
		<<
			/IncludeSlug false
			/CropImagesToFrames true
			/IncludeNonPrinting false
			/OmitPlacedBitmaps false
			/AsReaderSpreads false
			/Namespace [
				(Adobe)
				(InDesign)
				(4.0)
]
			/FlattenerIgnoreSpreadOverrides false
			/OmitPlacedEPS false
			/OmitPlacedPDF false
			/SimulateOverprint /Legacy
			/IncludeGuidesGrids false
			/ErrorControl /WarnAndContinue
		>>
		<<
			/IgnoreHTMLPageBreaks false
			/IncludeHeaderFooter false
			/AllowTableBreaks true
			/UseHTMLTitleAsMetadata true
			/MetadataTitle /
			/ShrinkContent true
			/UseEmbeddedProfiles false
			/TreatColorsAs /MainMonitorColors
			/MetricUnit /inch
			/RemoveBackground false
			/HonorBaseURL true
			/ExpandPage false
			/AllowImageBreaks true
			/MetadataSubject /
			/MarginOffset [
				0.0
				0.0
				0.0
				0.0
]
			/Namespace [
				(Adobe)
				(GoLive)
				(8.0)
]
			/OpenZoomToHTMLFontSize false
			/PageOrientation /Portrait
			/MetadataAuthor /
			/MobileCompatible 0.0
			/MetadataKeywords /
			/MetricPageSize [
				0.0
				0.0
]
			/HonorRolloverEffect false
		>>
		<<
			/IncludeProfiles true
			/ConvertColors /NoConversion
			/FormElements true
			/MarksOffset 6.0
			/FlattenerPreset <<
				/PresetSelector /MediumResolution
			>>
			/DestinationProfileSelector /UseName
			/MultimediaHandling /UseObjectSettings
			/PreserveEditing true
			/PDFXOutputIntentProfileSelector /UseName
			/BleedOffset [
				0.0
				0.0
				0.0
				0.0
]
			/UntaggedRGBHandling /LeaveUntagged
			/GenerateStructure false
			/AddRegMarks false
			/IncludeHyperlinks false
			/IncludeBookmarks false
			/MarksWeight 0.25
			/PageMarksFile /RomanDefault
			/UntaggedCMYKHandling /LeaveUntagged
			/AddPageInfo false
			/AddBleedMarks false
			/IncludeLayers false
			/IncludeInteractive false
			/AddColorBars false
			/UseDocumentBleed false
			/AddCropMarks false
			/DestinationProfileName (U.S. Web Coated \050SWOP\051 v2)
			/Namespace [
				(Adobe)
				(CreativeSuite)
				(2.0)
]
			/Downsample16BitImages true
		>>
]
	/CompressPages true
	/GrayImageMinResolution 200
	/CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
	/PDFXBleedBoxToTrimBoxOffset [
		0.0
		0.0
		0.0
		0.0
]
	/AutoFilterGrayImages false
	/EncodeColorImages true
	/AlwaysEmbed [
]
	/EndPage -1
	/DownsampleColorImages true
	/ASCII85EncodePages false
	/PreserveEPSInfo false
	/PDFXTrimBoxToMediaBoxOffset [
		0.0
		0.0
		0.0
		0.0
]
	/CompatibilityLevel 1.7
	/MonoImageResolution 600
	/NeverEmbed [
]
	/CannotEmbedFontPolicy /Error
	/PreserveOPIComments false
	/AutoPositionEPSFiles false
	/JPEG2000GrayACSImageDict <<
		/TileHeight 256
		/Quality 15
		/TileWidth 256
	>>
	/PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
	/EmbedJobOptions true
	/JPEG2000ColorACSImageDict <<
		/TileHeight 256
		/Quality 15
		/TileWidth 256
	>>
	/MonoImageDownsampleType /Bicubic
	/DetectBlends true
	/EmitDSCWarnings false
	/ColorImageDownsampleType /Bicubic
	/EncodeGrayImages true
	/Namespace [
		(Adobe)
		(Common)
		(1.0)
]
	/AutoFilterColorImages false
	/DownsampleGrayImages true
	/GrayImageDict <<
		/QFactor 0.76
		/HSamples [
			2.0
			1.0
			1.0
			2.0
]
		/VSamples [
			2.0
			1.0
			1.0
			2.0
]
	>>
	/AntiAliasMonoImages false
	/GrayImageAutoFilterStrategy /JPEG
	/GrayACSImageDict <<
		/QFactor 0.76
		/HSamples [
			2.0
			1.0
			1.0
			2.0
]
		/VSamples [
			2.0
			1.0
			1.0
			2.0
]
	>>
	/ColorImageAutoFilterStrategy /JPEG
	/ColorImageMinResolutionPolicy /OK
	/ColorImageResolution 300
	/PDFXRegistryName (http://www.color.org)
	/MonoImageFilter /CCITTFaxEncode
	/CalGrayProfile (Dot Gain 15%)
	/ColorImageMinDownsampleDepth 1
	/PDFXTrapped /False
	/DetectCurves 0.0
	/ColorImageDepth -1
	/JPEG2000GrayImageDict <<
		/TileHeight 256
		/Quality 15
		/TileWidth 256
	>>
	/TransferFunctionInfo /Remove
	/ColorImageFilter /DCTEncode
	/PDFX3Check false
	/ParseICCProfilesInComments true
	/DSCReportingLevel 0
	/ColorACSImageDict <<
		/QFactor 0.76
		/HSamples [
			2.0
			1.0
			1.0
			2.0
]
		/VSamples [
			2.0
			1.0
			1.0
			2.0
]
	>>
	/PDFXOutputConditionIdentifier (CGATS TR 001)
	/PDFXCompliantPDFOnly false
	/AllowTransparency false
	/UsePrologue false
	/PreserveCopyPage true
	/StartPage 1
	/MonoImageDownsampleThreshold 1.5
	/GrayImageDownsampleThreshold 1.5
	/CheckCompliance [
		/None
]
	/CreateJDFFile false
	/PDFXSetBleedBoxToMediaBox true
	/EmbedOpenType false
	/OPM 1
	/PreserveOverprintSettings true
	/UCRandBGInfo /Preserve
	/ColorImageDownsampleThreshold 1.5
	/MonoImageDict <<
		/K -1
	>>
	/GrayImageDownsampleType /Bicubic
	/Description <<
		/ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 6.0 and later.)
		/GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003AD03B303B303C103B103C603B1002000410064006F006200650020005000440046002003BA03B103C403AC03BB03BB03B703BB03B1002003B303B903B1002003B103BE03B903CC03C003B903C303C403B7002003C003C103BF03B203BF03BB03AE002003BA03B103B9002003B503BA03C403CD03C003C903C303B7002003B503C003B103B303B303B503BB03BC03B103C403B903BA03CE03BD002003B503B303B303C103AC03C603C903BD002E0020002003A403B1002003AD03B303B303C103B103C603B10020005000440046002003C003BF03C5002003B803B1002003B403B703BC03B903BF03C503C103B303B703B803BF03CD03BD002003B103BD03BF03AF03B303BF03C503BD002003BC03B50020004100630072006F006200610074002003BA03B103B9002000410064006F00620065002000520065006100640065007200200036002E0030002003BA03B103B9002003BD03B503CC03C403B503C103B503C2002003B503BA03B403CC03C303B503B903C2002E>
		/FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200036002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
		/KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200036002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
		/HUN <FEFF0045007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002000fc007a006c00650074006900200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d00650067006a0065006c0065006e00ed007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200061006c006b0061006c006d00610073002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b006100740020006b00e90073007a00ed0074006800650074002e002000200041007a002000ed006700790020006c00e90074007200650068006f007a006f007400740020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200036002c0030002d0073002000e900730020006b00e9007301510062006200690020007600650072007a006900f3006900760061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
		/NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200036002e003000200065006c006c00650072002e>
		/DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200036002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
		/CZE <FEFF0054006f0074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd006300680020006b0065002000730070006f006c00650068006c0069007600e9006d0075002000700072006f0068006c00ed017e0065006e00ed002000610020007400690073006b00750020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e0074007900200050004400460020006c007a00650020006f007400650076015900ed007400200076002000610070006c0069006b0061006300ed006300680020004100630072006f006200610074002000610020004100630072006f006200610074002000520065006100640065007200200036002e0030002000610020006e006f0076011b006a016100ed00630068002e>
		/ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 6.0 e versioni successive.)
		/DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200036002e00300020006f00670020006e0079006500720065002e>
		/JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200036002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
		/SLV <FEFF005400650020006E006100730074006100760069007400760065002000750070006F0072006100620069007400650020007A00610020007500730074007600610072006A0061006E006A006500200064006F006B0075006D0065006E0074006F0076002000410064006F006200650020005000440046002C0020007000720069006D00650072006E006900680020007A00610020007A0061006E00650073006C006A006900760020006F0067006C0065006400200069006E0020007400690073006B0061006E006A006500200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E0074006F0076002E0020005500730074007600610072006A0065006E006500200064006F006B0075006D0065006E0074006500200050004400460020006A00650020006D006F0067006F010D00650020006F00640070007200650074006900200073002000700072006F006700720061006D006F006D00610020004100630072006F00620061007400200069006E002000410064006F00620065002000520065006100640065007200200036002E003000200074006500720020006E006F00760065006A01610069006D0069002E>
		/SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200036002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
		/CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
		/CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
		/ARA <FEFF0633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F006200650020005000440046002006450646062706330628062900200644063906310636002006480637062806270639062900200648062B06270626064200200627064406230639064506270644002E00200020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644062A064A0020062A0645002006250646063406270626064706270020062806270633062A062E062F062706450020004100630072006F00620061007400200648002000410064006F00620065002000520065006100640065007200200036002E00300020064806450627002006280639062F0647002E>
		/RUM <FEFF005500740069006C0069007A00610163006900200061006300650073007400650020007300650074010300720069002000700065006E007400720075002000610020006300720065006100200064006F00630075006D0065006E00740065002000410064006F006200650020005000440046002000610064006500630076006100740065002000700065006E007400720075002000760069007A00750061006C0069007A006100720065002000640065002000EE006E00630072006500640065007200650020015F0069002000700065006E00740072007500200069006D007000720069006D006100720065006100200064006F00630075006D0065006E00740065006C006F007200200064006500200061006600610063006500720069002E00200044006F00630075006D0065006E00740065006C00650020005000440046002000630072006500610074006500200070006F00740020006600690020006400650073006300680069007300650020006300750020004100630072006F0062006100740020015F0069002000410064006F00620065002000520065006100640065007200200036002E003000200073006100750020007600650072007300690075006E006900200075006C0074006500720069006F006100720065002E>
		/HRV <FEFF004F0076006500200070006F0073007400610076006B00650020006B006F00720069007300740069007400650020006B0061006B006F0020006200690073007400650020007300740076006F00720069006C0069002000410064006F00620065002000500044004600200064006F006B0075006D0065006E007400650020006B006F006A00690020007300750020007000720069006B006C00610064006E00690020007A006100200070006F0075007A00640061006E00200070007200650067006C006500640020006900200069007300700069007300200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E006100740061002E0020005300740076006F00720065006E0069002000500044004600200064006F006B0075006D0065006E007400690020006D006F006700750020007300650020006F00740076006F007200690074006900200075002000700072006F006700720061006D0069006D00610020004100630072006F00620061007400200069002000410064006F00620065002000520065006100640065007200200036002E0030002000690020006E006F00760069006A0069006D0020007600650072007A0069006A0061006D0061002E>
		/PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200036002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
		/NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 6.0 en hoger.)
		/TUR <FEFF0130015f006c006500200069006c00670069006c0069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900e70069006d006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069006e0065002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e0020004f006c0075015f0074007500720075006c0061006e002000500044004600200064006f007300790061006c0061007201310020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200036002e003000200076006500200073006f006e00720061006b00690020007300fc007200fc006d006c0065007200690079006c00650020006100e70131006c006100620069006c00690072002e>
		/POL <FEFF004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e>
		/HEB <FEFF05D405E905EA05DE05E905D5002005D105E705D105D905E205D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05EA05D005D905DE05D905DD002005DC05EA05E605D505D205D4002005D505DC05D405D305E405E105D4002005D005DE05D905E005D505EA002005E905DC002005DE05E105DE05DB05D905DD002005E205E105E705D905D905DD002E0020002005E005D905EA05DF002005DC05E405EA05D505D7002005E705D505D105E605D90020005000440046002005D1002D0020004100630072006F006200610074002005D505D1002D002000410064006F006200650020005200650061006400650072002005DE05D205E805E105D400200036002E0030002005D505DE05E205DC05D4002E>
		/SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200036002e00300020006f00630068002000730065006e006100720065002e>
		/RUS <FEFF04180441043F043E043B044C043704430439044204350020044D044204380020043F043004400430043C043504420440044B0020043F0440043800200441043E043704340430043D0438043800200434043E043A0443043C0435043D0442043E0432002000410064006F006200650020005000440046002C0020043F043E04340445043E0434044F04490438044500200434043B044F0020043D0430043404350436043D043E0433043E0020043F0440043E0441043C043E044204400430002004380020043F043504470430044204380020043104380437043D04350441002D0434043E043A0443043C0435043D0442043E0432002E00200421043E043704340430043D043D044B043500200434043E043A0443043C0435043D0442044B00200050004400460020043C043E0436043D043E0020043E0442043A0440044B0442044C002C002004380441043F043E043B044C04370443044F0020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E00300020043B04380431043E00200438044500200431043E043B043504350020043F043E04370434043D043804350020043204350440044104380438002E>
		/ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200036002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
	>>
	/CropMonoImages false
	/DefaultRenderingIntent /Default
	/PreserveHalftoneInfo true
	/ColorImageDict <<
		/QFactor 0.76
		/HSamples [
			2.0
			1.0
			1.0
			2.0
]
		/VSamples [
			2.0
			1.0
			1.0
			2.0
]
	>>
	/CropGrayImages false
	/PDFXOutputCondition ()
	/SubsetFonts false
	/EncodeMonoImages true
	/CropColorImages false
	/PDFXNoTrimBoxError true
>>
setdistillerparams
<<
	/PageSize [
		612.0
		792.0
]
	/HWResolution [
		600
		600
]
>>
setpagedevice

