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FastlLoad: Speeding Up Data Loading of Both Sparse
Matrix and Vector for SpMV on GPUs
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Abstract—Sparse Matrix-Vector Multiplication (SpMV) on
GPUs has gained significant attention because of SpMV’s impor-
tance in modern applications and the increasing computing power
of GPUs in the last decade. Previous studies have emphasized
the importance of data loading for the overall performance of
SpMY and demonstrated the efficacy of coalesced memory access
in enhancing data loading efficiency. However, existing approaches
fall far short of reaching the full potential of dataloading on modern
GPUs. In this paper, we propose an efficient algorithm called Fast-
Load, that speeds up the loading of both sparse matrices and input
vectors of SpMV on modern GPUs. Leveraging coalesced memory
access, FastLoad achieves high loading efficiency and load balance
by sorting both the columns of the sparse matrix and elements of
the input vector based on the number of non-zero elements while
organizing non-zero elements in blocks to avoid thread divergence.
FastLoad takes the Compressed Sparse Column (CSC) format as
an implementation case to prove the concept and gain insights.
We conduct a comprehensive comparison of FastLoad with the
CSC-based SpMYV, cuSPARSE, CSRS5, and TileSpMYV, using the
full SuiteSparse Matrix Collection as workload. The experimental
results on RTX 3090 Ti demonstrate that our method outper-
forms the others in most matrices, with geometric speedup means
over CSC-based, cuSPARSE, CSRS5, and TileSpMV being 2.12 X,
2.98x,2.88 %, and 1.22 X, respectively.

Index Terms—Coalesced memory access, GPU, sparse matrix-
vector multiplication.

1. INTRODUCTION

HE Graphs Processing Unit (GPU) is a throughput-
T oriented architecture applicable across diverse application
domains such as machine learning, high-performance comput-
ing (HPC), and computer graphics [1]. Its exceptional through-
put highlights the significance of efficient memory data load-
ing [2]. To achieve high throughput, GPUs are equipped with
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coalesced units that detect continuous memory access, which
reduces the number of memory requests [3]. However, when
accelerating irregular applications like sparse matrices, GPU
performance is notably inferior to regular applications [4]. Reg-
ular applications benefit from nearly equal computation among
threads, enabling continuous data loading. In contrast, irregular
applications suffer from imbalanced computation across threads
and encounter challenges in accessing data efficiently, leading
to suboptimal performance [5]. As a result, researchers have ex-
tensively explored methods to enhance the speedup of irregular
applications on GPUs in recent years.

Among the irregular applications, SpMV holds significant im-
portance in various domains, such as deep learning [6], sparse it-
erative solvers [7], and graph processing problems [8], etc., but it
often becomes a performance bottleneck. This bottleneck comes
from the inherent characteristics of sparse matrices, e.g., sparsity
and irregular distribution of non-zero elements. To address the
sparsity issue, various basic storage formats have been devised
to reduce storage requirements and enhance implementation
efficiency. These basic formats include Compress Sparse Row
(CSR), Compress Sparse Column (CSC), Coordinate (COO),
Diagonal (DIA), and Ell pack (ELL). However, these basic stor-
age formats alone are insufficient in dealing with the irregular
distribution of non-zero elements which causes load imbalance
and low data loading efficiency during SpMV operations. For
example, in the case of the CSR format, conventional parallel
strategies involving row splitting and non-zero splitting can
lead to load imbalance among threads and poor data loading
efficiency.

To address these challenges, numerous SpMV algorithms and
sparse matrix formats have been proposed. The Merge-based
SpMV method, proposed by Merrill et al. [9], CSRS introduced
by Liu et al. [10], and TileSpMV presented by Niu et al. [11],
all demonstrate excellent load balance. VCSR, as proposed by
Karimi et al. [3], has shown that coalesced memory access of the
sparse matrix can enhance overall performance by improving
data loading efficiency. However, the aforementioned designs
share an inherent drawback: they cannot achieve coalesced
memory access for the input vector.

In this paper, we propose a novel approach called FastLoad
to improve the data loading efficiency by achieving coalesced
memory access for both the sparse matrix and input vector of
SpMV on GPUs. We use CSC as an implementation case of
FastLoad to prove the concept and gain insights. By sorting the
columns of the sparse matrix based on the number of non-zero

1045-9219 © 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on November 28,2024 at 22:26:34 UTC from |IEEE Xplore. Restrictions apply.


https://orcid.org/0009-0007-8422-2901
https://orcid.org/0000-0003-2392-0267
https://orcid.org/0000-0002-1477-9751
https://orcid.org/0000-0001-5008-4829
https://orcid.org/0000-0002-2635-7716
mailto:hujinyu@hnu.edu.cn
mailto:luohuizhang@hnu.edu.cn
mailto:xiaoguoqing@hnu.edu.cn
mailto:lkl@hnu.edu.cn
mailto:hong.jiang@uta.edu

2424
(Mear“r’i‘)‘(pN':‘;"gir) FastLoad(s) cusparse(us) TileSpMV(us) CSR5(us) Basic CSC(us)
HB(292) 6.6311 9.0088 9.4296
Sandia(192) 6.9679 9.9633  24.8761
Meszaros(166) 11.8361 13.4281 25.8784
DIMACS10(151) 86.7853 118.1814 130.0859
Lpnetlib(138) 6.8547 9.0276 9.8286
JGD_Homology(128) 9.6768 11.7809 10.3381
VDOL(91) 7.8624 10.4464  28.2259
Bai(78) 6.3013 8.8241 7.4589
Pajek(76) 7.4146 9.2464 13.2644
Gset(67) 7.8285 9.7546 15.5135
Fig. 1. The heat map of geometry means over different methods on different

groups.

elements in each column and the corresponding input vector
elements, FastLoad can keep coalesced memory access to both
the sparse matrix and the input vector. To keep the load balanced
among threads and warps, FastLoad splits the non-zero elements
into different blocks based on the number of elements in the
column.

Although the CSC format has the potential to achieve coa-
lesced memory access for FastLoad, it lacks sufficient efficiency
and optimization compared to other formats. In particular, when
computing the output elements of the output vector in its addition
operations, the CSC format performs poorly due to irregular ac-
cesses to intermediate multiplication results [12]. To overcome
this drawback, we utilize segment sum and prefix sum techniques
for each block, further enhancing the overall performance of the
FastLoad algorithm.

This work makes the following contribution:

® We show that existing SpMV algorithms have exhibited a

low efficiency in loading data due to insufficient use of the
coalesced memory access.

® We present a novel solution to address the data loading

problem of SpMYV, called FastLoad, an efficient algorithm
implemented based on the CSC format. FastLoad achieves
coalesced memory access for both sparse matrices and
input vectors, as well as a well-balanced load for SpMV
operations through a two-step process: Step 1: Columns
of the sparse matrix and the corresponding input vector
elements are sorted based on the number of non-zero
elements of each column in the sparse matrix. Step 2: The
non-zero elements are split into blocks to prevent thread
divergence, which can keep the load well balanced.

® In our experiments, we conducted a comprehensive com-

parison between the FastLoad algorithm, CSC-based, cuS-
PARSE (v11.1), CSR5 [10], and TileSpMV [11]. Fig. 1
displays the geometric mean of execution times for the
different methods across 10 groups of matrices. In all 10
matrix groups, our proposed FastLoad kernel exhibited
higher performance than other state-of-the-art methods.
Overall, across the entire set of 2757 matrices, Fast-
Load achieved an average speedup of 2.12x over basic
CSC SpMYV, 2.98x over cuSPARSE, 2.88x over CSRS,
and 1.22x over TileSpMYV, respectively. These results
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Algorithm 1: A Pseudocode of Parallel CSC SpMV.

Input: col Ptr(]; rowIdx[]; valuel]; input X ||
Output: y|]
1 for i from 0 to sizeof (col Ptr]]) — 2 in parallel do
2 | for j < colPtr[i];j < colPtrli+ 1];j + + do

3 | ylrowldz[j]]+ = valuelj] x input X[i];
4 end
5 end

demonstrate the significant performance improvements of-
fered by our approach in comparison to existing methods.
The rest of the paper is organized as followed: Section II
presents relevant background information and related work.
Section III presents the motivation for the FastLoad research.
Section IV presents the FastLoad algorithm with its process and
implementation details. Section V presents the results of the
performance evaluation. Section VI concludes this work and
discusses future work.

II. BACKGROUND AND RELATED WORK
A. Sparse Matrix-Vector Multiplication

SpMV concerns the multiplication of a sparse matrix and
a dense input vector. Sparse matrices of modern SpMV-based
problems exhibit two distinct characteristics. First, they contain
significantly fewer non-zero elements than the total number of
elements of the matrix, as determined by the number of rows
multiplied by the number of columns. Second, the distribution of
these non-zero elements within the matrix is stochastic, adding
to the complexity of the structure. Algorithm 1 provides a
pseudocode of CSC-based SpMV. In this algorithm, a column
of the sparse matrix is allocated to a warp (Line 1-5). The
corresponding value to the input vector of warp is fixed. The
thread accesses the value of the matrix through value array.

B. GPU and Coalesced Memory Accessing

GPUs are highly data-parallel many-core processors. A typi-
cal GPU architecture comprises multiple stream multiproces-
sors (SMs), and various memory hierarchy layers. Each SM
has multiple CUDA cores and shared memory(L.1 cache). The
Memory hierarchy layers include L2 cache, texture memory,
and global memory. From a programming perspective, Nvidia
CUDA provides a programming model with three levels: thread,
thread block, and grid. The programmer can define the number
of threads in a thread block and the number of blocks in a grid. In
CUDA, a warp consists of 32 threads, and all the threads within
a warp must reside within the same SM. This characteristic
enables efficient parallel operations within a warp. When we
launch a kernel in GPU, the grid dimension and the block
dimension can be defined by the user. Consequently, each block
in a grid has a blockld. Each thread in a block has a threadld.
Each thread in a grid also has a unique id called globalld. Each
thread in a warp has a laneld.

Coalesced memory access is an optimization technique used
in parallel computing systems, especially in GPUs, to enhance
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performance. In GPUs, data is processed in parallel by multiple
threads. When neighboring threads within a thread block or
a warp access consecutive memory locations, the GPU can
optimize memory transactions. By fetching larger data chunks
from memory with fewer memory transactions, performance is
improved. Take load/store data from GPU for example, when an
array of data is stored in GPU memory, where each thread in a
warp needs to load/store from/to a specific element in the array.
Due to the consecutive thread access to consecutive elements
in the array, the GPU can combine the memory requests into a
single memory transaction. By maximizing memory access co-
alesced, GPUs can effectively leverage parallelism and optimize
data transfer, resulting in improved overall performance.

C. Related Work

SpMYV has been extensively studied across various platforms
over the past decades, including multicore, many-core, and GPU
architectures. Williams et al. investigated the application of
SpMV on multicore platforms, considering both homogeneous
(e.g., AMD dual-core, Intel quad-core) and heterogeneous plat-
forms (e.g., STI Cell, Sun Niagara2) [13]. Liu et al. [14] focused
on x86-based many-core processors and addressed challenges
related to sparsity, irregular memory accesses, and load imbal-
ance on Intel Xeon Phi Coprocessor. It aimed to understand the
impact of sparsity, memory accesses, and load balancing on the
overall performance of SpMV [14]. Bell et al. [15] explored
SpMV on GPUs without introducing new storage formats for
sparse matrices. They evaluated different basic formats, includ-
ing COO, CSR, CSC, ELL, DIA, and hybrid formats, to harness
the potential performance improvements offered by GPUs. The
results highlighted the significant potential of applying SpMV
on GPUs to enhance performance.

Extensive research on SpMV has led to increasingly finer-
grained implementations. The objective is to mitigate the impact
of matrix sparsity [9], memory access patterns [16], and load
imbalance on overall performance [10]. Consequently, signifi-
cant research efforts have been devoted to format design, which
plays a crucial role in addressing these challenges. Many of the
proposed format designs are variants or optimizations of certain
basic format. These advanced formats are tailored to specific
characteristics and requirements of sparse matrices and comput-
ing platforms. The aim is to optimize memory access patterns,
minimize storage requirements, and improve load balancing.
The focus on format design highlights the importance of con-
sidering the nuances of SpMV and its influence on performance.
By refining and customizing formats to suit the unique charac-
teristics of matrices and target platforms, researchers can further
enhance optimization and efficiency in SpM'V computations.

Improvements to COO format: The COO format is a simple
storage format consisting of three arrays: row indices, column in-
dices, and values of the non-zero elements. Several researchers,
such as Dang [17], BRO-COO [18], ALIGNED-COO [19], and
BCCOO [20], have developed new formats based on COQO. For
instance, Yan designed BCCOO-based SpMYV algorithm called
yaSpMYV, which divides the matrix into blocks and uses bit flags
to store indices, addressing bandwidth limitations. Additionally,
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yaSpMV incorporates techniques like segmented sum to im-
prove performance.

Improvements based on CSR format: The CSR format
is widely used in sparse matrix operations, serving as the
foundation for numerous format designs. CSR-Adaptive [21],
PCSR [22], BCSR [23], and BIN-CSR [24] improved SpMV
performance by optimizing memory access, data reuse, and load
mapping to threads. Yesil et al. accelerated SpMV for Power-
Law graphs by leveraging locality [25]. Chu et al. improve the
performances of SpMV by three methods which are flat, line
enhancement, and adaptive selection. The optimization method
is based on the CSR format [26]. The introduction section has
presented the mainstream SpMVs based on the CSR format.

Improvements based on CSC format: Similar to the CSR, the
CSC format consists of three arrays which are colPtr, rowldx,
and value. value and rowldx store the value and corresponding
row index respectively. colPtr array records the number of
elements before the corresponding column. CSC format is also
one of the most popular sparse matrix storage formats.

From the platform perspective: the CSC format can be the
basic or part of the sparse algorithm based on distributed or
multi-GPU systems. For example: MSREP [27] designs a sparse
matrix representation framework that applies in multi-GPU
systems and uses CSC format as one of the implementations.
TCSC [28] designs a new distributed graph analytics system
based on Triply CSC.

From an application perspective, the CSC format is also
used in sparse matrix multiplication (SpGEMM), deep neural
networks, and graph algorithms like breadth-first search. Doubly
compressed sparse column (DCSC), designed by Aydin et al. is
used for accelerating SpGEMM [29]. Mohammad et al. apply
in-memory CSC data structure for the traversal and storage of
the neural network layer [30]. Li et al. combine the CSC format
and merge-based algorithm to accelerate sparse matrix sparse
vector multiplication (SpMSpV) [31]. Skyler et al. design value
compressed sparse column (VCSC) which takes advantage of the
redundancy of the sparse matrix [32]. CSCV, proposed by Ye et
al. can reduce the memory bandwidth used in SpMV and they
implement this CSCV algorithm for Computed Tomography
imaging [33].

Improvements based on ELL format: The ELL format consists
of two parts: column indices and values. The non-zero elements
retain the same row indices. ELL format is well-suited for vector
architectures. Ad-ELL [34], ELL-WARP [35], SELL-C [36],
BiELL [37], slice-ELL [38], BELLPACK [39], and SELL-P [40]
combine the ELL format with specific architectures to achieve
better load balance and improved performance.

Improvements based on DIA format: DIA is suitable for
matrices with non-zero elements restricted to the diagonal. DIA
consists of two arrays: one stores the non-zero elements, while
the other stores the offset of the diagonal from the longest
diagonal. There is some research like HDI [41] and DDD-
SPLIT [42] that use the DIA format to improve performance.
Gao et al. developed a new strategy called TaiChi to enhance the
performance of Binary SpMV [43]. Binary SpMV is primarily
used in weblink analysis, integer factorization, and compressed
sensing. TaiChi divides the matrix into a sparse part and a dense
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Fig. 2.

Summary of the related work: We select several algorithms based on different formats and compare them with FastLoad. The comparison is divided into

different parts which include pre-processing, data loading, mathematic operation, and data storage.

part. The dense part is primarily stored in the DIA format, while
the sparse part is stored in the CSR format. By fully utilizing the
characteristics of binary SpMV and combining it with the DIA
format, TaiChi demonstrates excellent performance.

Improvements based on hybrid formats: The distribution of
non-zero elements in a matrix is often irregular, making it
challenging to find a single format that suits every matrix. To
address this, the HYB format combines two different formats,
typically ELL and COO [44]. The denser part of the matrix
can be stored in the ELL format, while the sparser part is
stored in the COO format. Besides, ELL can also combine with
CSR [45], DIA [46], and CSR can combine with COO [47].
TileSpMV, developed by Niu, takes a different approach by using
six different formats to store the sparse matrix [11].

Adopting machine learning technologies for SpMV: In recent
years, with the advancement of machine learning, researchers
have realized its potential in selecting suitable formats for sparse
matrices. Sedaghati et al. utilize machine learning techniques
to determine the most appropriate representation for a matrix
across different platforms [48]. Du et al. developed AlphaSparse,
which can generate a format that suits the matrix, along with the
corresponding SpMV kernel [49].

III. MOTIVATION

In this section, we first analyze FastLoad against existing work
to gain a better understanding of what motivated the FastLoad
research. Then, we demonstrate the drawbacks of CSR-based
and CSC-based SpMV with a detailed example. Finally, we
design an experiment to mimic an ideal scenario to demonstrate
the potential of coalesced memory access, which motivates the
FastLoad algorithm.

A. Comprehensive Analysis of SpMV and its Representative
Implementations

SpMV can be divided into five main steps: Step I: pre-
processing input matrix and vector for the SpMV. Step 2: loading
data of the sparse matrix and vector from global memory to
threads. Step 3: performing multiplication operation. Step 4:

performing addition operation. Step 5: storing the results back
from threads to global memory. In Fig. 2, we select the works
mentioned above in each storage format and indicate if a step
is implemented (along with a summary of the implementation).
It is noted that FastLoad improves on all 5 steps, where the
performance improvement mainly stems from 1) efficient data
loading of sparse matrix and input vector; 2) well balanced load;
and 3) optimized CSC format with segment sum and prefix sum.

B. A Motivational Example

We have also provided visualizations to illustrate Steps 2-4
via CSR-based and CSC-based SpMV in Fig. 3. The matrix A
is based on a real matrix called jgl009 from SuiteSparse Matrix
Collection [50]. It is found that CSR-based SpMV can reach
good coalesced memory access during the loading of data from
the sparse matrix. However, the data loading of the input vector
proves to be irregular and non-continuous, as evidenced by the
red arrows in the multiplication part of CSR-based SpMV. On
the other hand, in the multiplication part of CSC-based SpMYV,
access to the input vector is better compared to the CSR format.
However, when it comes to loading the temporary results and
adding them to the corresponding result vector y, the process is
non-continuous. In the next section, we show that FastLLoad can
address the above problems.

C. Two-Phase SpMV

To visualize the impact of data loading on the performance of
SpMYV and the rooms for potential improvement of the existing
methods, we have designed an ideal experiment called “two-
phased SpMV,” where the data loading of multiplication and
storing of addition are both accomplished via coalesced memory
access. This is made possible by assuming the ideal possibility
of combining the advantages of CSC and CSR formats with
a coalesced memory access design. The CSC-based SpMV
performs efficiently in loading the data of the input vector for the
multiplication phase. On the other hand, the CSR-based SpMV
proves to be advantageous for adding the temporary results from
the same row in the addition phase.
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The brief flow chart of SpMV based on CSR and CSC format. The arrows in the multiplication and addition sections signify the data loading or storing

back of SpMV. The dotted arrows indicate the temporary data in the threads. The red arrows highlight the motivation of this work, where the non-continuous access
of the input vector in CSR-based multiplication cannot achieve coalesced memory access. In CSC-based SpMYV, the red arrows indices that the access of the input
vector and storing temporary results also do not achieve coalesced memory access.
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Fig. 4. The illustration for two-phase SpMV.

As illustrated in Fig. 4, the experiment is conducted in the
following manner. In the multiplication phase, we utilize the
CSC format for the sparse matrix. We first sort the columns of
the sparse matrix and the input vector according to the number
of non-zero elements of each column. Then, we show how the
elements are allocated to a warp. We assign elements of each
column to warps in this way: Starting with the first non-empty
column, a continuous 32 columns group as the length, and the
number of non-zero elements of the first non-empty column
is the height. In this way, the threads in a warp can access
the continuous locations of both the sparse matrix and input
vector. Moreover, blocking is adopted to splitting the non-zero
elements to keep load balance. Lastly, the temporary results of

the multiplication are stored in temporary arrays, using the CSC
format.

In the addition phase, we re-arrange the format of the multi-
plication phase. The conversion process involves transforming
the format from multiplication to CSR. Notably, the matrix
values now represent the results of multiplication, rather than the
original values of the matrix. Similar to the multiplication phase,
sorting on rows is executed such that the addition operations are
with coalesced memory access. Additionally, we utilize blocking
to compute the local sum within a block, thereby enhancing the
performance of the addition operations. It is important to note
that the two-phase SpMV is designed specifically to demonstrate
potential improvements in existing methods. Our focus is solely
on calculating the time taken for the multiplication and addition
phases, excluding the time spent on the format transformation
from the multiplication phase to the addition phase.

We conducted a comparison of the two-phase SpMV with the
other three methods: cuSPARSE, TileSpMV, and CSRS using
over 200 matrices. As shown in Fig. 5 the two-phase SpMV
outperforms all other methods in terms of GFLOPS, which
highlight that there is still untapped potential for improvement.
This motivates us to propose our FastLoad.

IV. THE FASTLOAD ALGORITHM

A. The FastLoad SpMV

FastLoad is based on the “two-phase” SpMV, the difference is
thatit uses optimization strategies based on the CSC format in the
whole process (including the multiplication phase and addition
phase). Unlike CSC-based SpMYV, FastLoad accesses the input
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vector by blkColldx and blkLength arrays. Algorithm 2 presents
the pseudocode of the parallel FastLoad SpMV algorithm. The
matrix A is partitioned into multiple blocks (Section IV-B). A
block of matrix A is allocated to a warp (Line 1-10). Con-
sequently, a warp corresponds to an element in blkPtr. The
blkHeight denotes the number of loops that the block needs to
iterate (Line 2-9). In an iteration, the blkColldx array contains
the starting column index of each block. The elements in blkPtr
add the corresponding elements in blkLength multiplied with
the corresponding iteration round is the corresponding index in
value and rowldx (Line 4). The column index in blkColldx adds
the laneld of the thread as the index of the value in sortedX
(Line 5). Consequently, the threads within a warp can achieve
coalesced memory access on both the sparse matrix and the input
vector. Following the multiplication step, the rowldx indicates
the result to which the temporary results are added (Line 8).

Fig. 6 shows how FastLoad reaches the coalesced memory
access for loading the sparse matrix and input vector. It consists
of two steps. The first step involves sorting the columns of the
sparse matrix based on the number of non-zero elements in each
column (matrix A — sorted matrix A). In the second step, the
input sparse matrix is partitioned into multiple blocks. Each
block is with a fixed length of 32 and a variable height. This
choice aligns with the warp size of 32 threads in GPUs, ensuring
efficient utilization of computing resources and minimizing
thread divergence. The height of the blocks is determined by
the variation in non-zero elements across columns, which helps
in grouping together dense parts of the matrix within a block or
a sequence of blocks. The details are shown in Section IV-B.

Because FastLoad is optimized from CSC format, it will
cause the conflict of addition of the multiplication result. To
address this issue, we introduce two improvement methods of
FastLoad. FastlLoad categorizes the blocks into different sce-
narios, enabling the use of different addition techniques, such
as segment sum and prefix sum, to calculate the final result.
By adopting the addition method based on the specific block
characteristics, FastLoad maximizes computational efficiency
and optimizes the final output vector generation. The details are
shown in Section IV-C.
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B. The Storage Structure and Process Detail of FastLoad

The storage structure of FastLoad closely resembles the CSC
format and involves three auxiliary arrays, including blkCol-
idx,blkLength, and blkHeight. The blkColldx array stores the
column index of the first element in each block, which helps
achieve continuous access to both the sparse matrix and input
vector. The blkLength array stores the length of each block. The
blkHeight array represents the height of each block and can be
seen as the number of loops that threads in a warp need to iterate.

Except for three auxiliary arrays, there are three main arrays
based on the CSC format, which are blkPtr, rowldx, and value.
The value array and the rowldx array record the matrix’s values
and the corresponding row indices respectively. The blkPtr array
maintains the index of the first element of each block in the value
array.

Let’s consider the example in Fig. 6 to illustrate the detail of
the process. We assume a warp consists of 4 threads. In block
0, the first non-empty column is column 0, which contains 2
elements. The value assigned to block 0 is the first 2 values of a
continuous 4-column which starts from column 0. Therefore, the
height of the first block is 2. The bikPtr, blkColldx, blkHeight,
and blkLength arrays record 0, 0, 2, and 4 for block 0, respec-
tively. Similar to block 0, the first non-empty column of block 5
is column 2, and the number of elements in column 2 remains 1.
The value assigned to block 5 is the first 1 value of the remained
of a continuous 4-column which starts from column 2. Similarly,
the blkPtr, blkColldx, blkHeight, and blkLength arrays record 34,
2, 1, and 4 for block 5, respectively. The arrangement of rowldx
and value arrays follows a zigzag pattern.

C. Two Improvement Methods of FastLoad

As mentioned in Section IV-A, FastLoad is implemented
based on the CSC format. We use atfomicadd to add the tempo-
rary result of multiplication to the corresponding result vector y.
However, as the size of the input matrix increases, the atomicadd
operation becomes less efficient.

To address this issue, we propose two improvement methods
based on a key observation, aiming to enhance the efficiency of
the addition operation. In Fig. 6, the rowldx array shows that the
adjacent elements have the same row index, which means they
can add together inside the warp by using the shuffle operation.
Consequently, we cite a method called segment sum [51]. Seg-
ment sum is SIMD-friendly method [10]. It leverages the shuffle
operation to efficiently add elements from the same row within
a warp. Besides, another situation not shown in Fig. 6 is that it
is possible for all the values in a warp from the same row. In this
situation, we can use prefix sum.

By employing these methods, FastLoad optimizes the addi-
tion operation in a manner that minimizes the use of aromicadd
operations, resulting in improved overall performance

V. EXPERIMENTAL RESULTS

A. Experimental Setup

Our experimental platform is NVIDIA GeForce RTX 3090 Ti
with Ubuntu Linux v22.04 installed. The GPU driver version is
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m=9 n=9 nnz=50
blkPer(]= (0
blkLength[]= (4 4 1 4 4 4 3 4 1 2]
inputX = sortedX =
(1 2345867 8 9]
matrix A = sortedMatrix A =
5 1
345 6 7
8 9 5
2 3456
17 8 9 5 1
2 3456
7 8 9 5 1
2 3456 7 9 5
123 456 8 9

Fig. 6.

(8 279456 1 3)
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8 16 18 26 34 38 41 45 46 50) blkHeight[]= (2 2 2 2 2 1 1 1 1 2]

blkColidx[]= (0 4 8 1 5 2 6 4 8 7]

|block1!;
4 5|

value[] = block0|

An example of FastLoad: The original matrix is a real matrix called jg/009. The matrix is sorted based on the number of non-zero elements in each column.

The block length is set as the warp size (In this example, it is set as 4 due to space issue). In addition to the basic arrays, FastLoad includes three auxiliary arrays.
The threads within a warp can multiply the matrix elements with the corresponding vector elements. For instance, if element 4in block 0 needs to be multiplied
with the corresponding vector elements, the laneld of the corresponding thread can determine the index of the vector element by adding the corresponding value

in the blkColldx array.

Algorithm 2: A Pseudocode of Parallel FastL.oad SpMV.

Input: blk Ptr(]; blk Lengthl]; blk Height[|;
blkColIdx[]; valuel]; rowIdx[]; sorted X ];
Output: y|]
1 for i from 0 to sizeof (blkPtr[]) — 2 in parallel do

2 | forj < 0; j < blkHeight[i]; j + + do
3 if laneld < blkLength[i] then
4 pointer —
blkPtr(i] 4+ laneld + j x blkLengthl[i];
5 pointer X + laneld + blkcolIdz[i);
6 value = valuelpointer];
7 rowldx = rowldz[pointer];
8 atomicAdd(y[rowldzx], value x
sorted X [pointer X]);
9 end
10 end
11_end

525.105.17, and the CUDA runtime versionis 11.1. We compare
our work with cuSPARSE v11.1 kernel cuSPARSE-SpMYV [52],
TileSpMV [11], CSRS5 [10] and CSC-based SpMV. cuSPARSE
SpMYV kernel is designed by NVIDIA. TileSpMYV is a method
that divides the sparse matrix into tiles and uses different storage
formats to store the tiles. CSR5 compresses the sparse matrix
into regular size. The CSC-based SpMV is the basic SpMV
algorithm on GPU. We use one warp to calculate one column
of the sparse matrix. We use all 2757 sparse matrices in the
SuiteSparse Matrix Collection as our test workload [50]. The

source code of this work is downloadable at https://github.com/
MinttHu/FastLoad.git.

Our experiment set is adapted to the GPU architecture (thread
block, warp, and thread). A thread block contains 2 warps in
order to avoid calculation overhead. One warp corresponds to
one block of the matrix. To attach a better load balance, we set
1 as the height of the block and set the length of the block as 32.
The detail of the distribution of tasks is in Section IV-A.

B. Performance Comparison Over Existing SpMVs

InFig. 1, we select 10 groups of matrices in the dataset and test
the performance in each group. The result shows that FastLoad
exhibits a good performance over all 10 different matrix groups.

The performance results are presented in Fig. 7, showcasing
the speedup achieved over the different workloads. In the figure,
the dot positioned above the dividing line represents FastLoad
being faster than the existing SpMVs, while the dot below
the dividing line represents FastLoad being slower than the
existing SpMVs. In Fig. 7(a) and (c), the speedup over cuS-
PARSE and CSRS5 becomes slower as the number of non-zero
elements in the matrix increases. This suggests that when the
matrix size becomes large, the impact of afomicadd operations
may affect overall performance. In Fig. 7(b) and (d), FastLoad
exhibits relatively stable speedup over CSC-based SpMV and
TileSpMV.

It is evident that our method demonstrates favorable per-
formance across most matrices. Specifically, it outperforms
CSC-based SpMV in 2342 matrices, cuSPARSE in 2326 ma-
trices, CSRS in 2402 matrices, and TileSpMV in 1978 matrices.
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Fig. 7. Speedup over the different workloads. FastLoad significantly outperforms the cuSPARSE, CSC-based, and CSRS (slightly outperforms TileSpMV).
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Fig. 8. Performance analysis of Fastload on different irregular matrices. We calculate the variation of each matrix and use it as the x-axis. The variation is

increased with the irregular of the matrix. It is found that FastLoad can handle different irregular matrices.

The speedup achieved over these benchmarks is 2.12x, 2.98 x,
2.88x, and 1.22x , respectively.

of row length divided by the average mean of row length [9]. It
is observed that the speedup is primarily achieved on matrices
with smaller variations. The speedup of FastLoad is obviously

. . better compared to CSC-based SpMV, cuSPARSE, and CSR5
C. Performance Analysis of Fastload on Different Irregular

Matrices

In Fig. 8, we analyze the speedup of FastLoad across various
existing SpMVs based on the variation of each matrix. The
variation of each matrix is calculated as the standard deviation

with different irregular matrices.

FastLoad does not outperform significantly on TileSpMV
as other existing SpMVs. The main reason for this dis-
crepancy is that some matrices exhibit significant variations,
and FastLoad is not good at handling these specific cases
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TABLE I
COMPARISON OF DIFFERENT HEIGHTS OF FASTLOAD AND ITS VARIANTS

TileSpMV CSR5 cuSPARSE
Ratio | Speedup | Ratio | Speedup | Ratio | Speedup
non_control 81% 0.79 90% L79 89% 201
Block_height=1 81% 1.26 90% 284 89% 3.02
Block_height=2 | 81% 1.26 92% 283 90% 3.03
Block_height=4 81% 1.24 92% 279 90% 299
Block_height=8 | 80% 121 92% 2N 90% 294
Block_height=16 4% 1.16 92% 261 89% 281
Block_height=32 | 67% 1.05 90% 23% 85% 253

Variant

effectively. In contrast, TileSpMV performs better in such
scenarios, as it can intelligently select the appropriate for-
mat for small blocks, allowing for improved performance.
Noted that FastLoad can be added to alternative formats for
TileSpMV.

D. Effectiveness of Different Block Height

In order to assess the impact of different block heights on the
efficiency of FastLoad. We introduced different limitations of
the block height and compared them against existing SpMVs.
Table I presents the results of the comparison. We evaluated
FastLoad with no height limit against FastLoad with different
height limits, and compare them with existing SpMVs. It is
evident that FastLoad without a height limit did not perform
optimally. The speedup over different SpM Vs is not as good as
others.

The height limit servers to control the divergence between
warps, thereby imposing a restriction on maximum block height.
From the table, it is evident that when the height limit is set to 8
or lower, the performance in terms of faster ratio and speedup is
relatively good. However, when the height limitis increased to 16
or 32, the impact of warp divergence becomes more pronounced,
leading to a decrease in performance.

E. Effectiveness of the Two Improvement Methods

We conducted a total of eight different versions of Fast-
Load, including one without a height limit, six versions with
different height limits, and one version with optimization.
For a more detailed analysis, we selected four different types
of matrices. In Fig. 9, the label ‘optimized’ refers to Fast-
Load with the proposed improvement, while the accompany-
ing number indicates the specific height limit used. FastLoad
with the proposed improvement outperforms the other vari-
ants. Particularly, in Fig. 9(a), the performance improvement
is significant. There are two main reasons for this improve-
ment. First, the control of divergence between warps helps
enhance performance. Second, the additional steps introduced
in the improvement, such as segment sum and prefix sum,
effectively reduce the burden on atomicadd operations. These
results validate the effectiveness of the strategy employed in
FastLoad.
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F. Preprocessing Overhead Analysis

We conducted measurements to assess the preprocessing
overhead involved in converting a basic CSR matrix to our
proprietary format. The preprocess of FastLoad and CSRS5 is per-
formed on the GPU. The preprocess of TileSpMV uses MPI on
the CPU. Fig. 10 shows the preprocess time of CSRS5, TileSpMV,
and our method. The preprocess time of our method is faster
than TileSpMV in most matrices and is close to CSRS when the
number of nonzero is less than 10*. Despite the preprocessing
time being longer than CSRS when the matrix size is large, it
is acceptable when executing the SpMV kernel in an iterative
solver.

G. Peak Memory Consumption Analysis

We compare the peak memory consumption of FastL.oad with
the other four methods using the four matrices in Fig. 9. As
shown in Fig. 11, the peak memory consumption of FastLoad is
higher than the other four methods, as it includes three auxiliary
arrays. With the matrix size increase, the size of auxiliary
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arrays also increased. Consequently, the memory consumption
of FastLoad becomes larger.

VI. CONCLUSION AND FUTURE WORK

In this paper, we propose anovel SpMV algorithm called Fast-
Load. FastLoad improves the efficient data loading of the sparse
matrix and input vector by achieving coalesced memory access
and keeps well-balanced load distribution among threads and
warps. Furthermore, FastLoad uses two improvement methods
(segment sum and prefix sum) to reduce the use of atomicadd
operations and improve the efficiency of the addition part com-
pared to CSC-based SpMV.

For future improvements, to further evaluate FastLoad’s per-
formance, we propose combining it with a selective algorithm.
As an illustration, we could integrate FastLoad with TileSpMV
and compare the performance of TileSpMV with and without
FastLoad. This comparison will provide valuable insights into
FastLoad’s capabilities and potential enhancements.
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