
IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 35, NO. 12, DECEMBER 2024 2423

FastLoad: Speeding Up Data Loading of Both Sparse
Matrix and Vector for SpMV on GPUs

Jinyu Hu , Huizhang Luo , Member, IEEE, Hong Jiang , Fellow, IEEE, Guoqing Xiao , Member, IEEE,
and Kenli Li , Senior Member, IEEE

Abstract—Sparse Matrix-Vector Multiplication (SpMV) on
GPUs has gained significant attention because of SpMV’s impor-
tance in modern applications and the increasing computing power
of GPUs in the last decade. Previous studies have emphasized
the importance of data loading for the overall performance of
SpMV and demonstrated the efficacy of coalesced memory access
in enhancing data loading efficiency. However, existing approaches
fall far short of reaching the full potential of data loading on modern
GPUs. In this paper, we propose an efficient algorithm called Fast-
Load, that speeds up the loading of both sparse matrices and input
vectors of SpMV on modern GPUs. Leveraging coalesced memory
access, FastLoad achieves high loading efficiency and load balance
by sorting both the columns of the sparse matrix and elements of
the input vector based on the number of non-zero elements while
organizing non-zero elements in blocks to avoid thread divergence.
FastLoad takes the Compressed Sparse Column (CSC) format as
an implementation case to prove the concept and gain insights.
We conduct a comprehensive comparison of FastLoad with the
CSC-based SpMV, cuSPARSE, CSR5, and TileSpMV, using the
full SuiteSparse Matrix Collection as workload. The experimental
results on RTX 3090 Ti demonstrate that our method outper-
forms the others in most matrices, with geometric speedup means
over CSC-based, cuSPARSE, CSR5, and TileSpMV being 2.12×,
2.98×, 2.88×, and 1.22×, respectively.

Index Terms—Coalesced memory access, GPU, sparse matrix-
vector multiplication.

I. INTRODUCTION

THE Graphs Processing Unit (GPU) is a throughput-
oriented architecture applicable across diverse application

domains such as machine learning, high-performance comput-
ing (HPC), and computer graphics [1]. Its exceptional through-
put highlights the significance of efficient memory data load-
ing [2]. To achieve high throughput, GPUs are equipped with

Received 23 December 2023; revised 25 September 2024; accepted 28
September 2024. Date of publication 9 October 2024; date of current version
21 October 2024. This work was supported in part by the National Key R&D
Program of China under Grant 2023YFB3001705, in part by the National Natural
Science Foundation of China under Grant 62321003, Grant 62172157, and
Grant 62102141, and in part by the Programs of the Hunan Province under
Grant 2024JJ2026 and Grant 2023GK2002. Recommended for acceptance by
A. Sussman. (Corresponding author: Huizhang Luo.)

Jinyu Hu, Huizhang Luo, Guoqing Xiao, and Kenli Li are with the College
of Computer Science and Electronic Engineering, Hunan University, Chang-
sha 410082, China (e-mail: hujinyu@hnu.edu.cn; luohuizhang@hnu.edu.cn;
xiaoguoqing@hnu.edu.cn; lkl@hnu.edu.cn).

Hong Jiang is with the Computer Science and Engineering Depart-
ment, University of Texas at Arlington, Arlington, TX 76019 USA (e-mail:
hong.jiang@uta.edu).

Digital Object Identifier 10.1109/TPDS.2024.3477431

coalesced units that detect continuous memory access, which
reduces the number of memory requests [3]. However, when
accelerating irregular applications like sparse matrices, GPU
performance is notably inferior to regular applications [4]. Reg-
ular applications benefit from nearly equal computation among
threads, enabling continuous data loading. In contrast, irregular
applications suffer from imbalanced computation across threads
and encounter challenges in accessing data efficiently, leading
to suboptimal performance [5]. As a result, researchers have ex-
tensively explored methods to enhance the speedup of irregular
applications on GPUs in recent years.

Among the irregular applications, SpMV holds significant im-
portance in various domains, such as deep learning [6], sparse it-
erative solvers [7], and graph processing problems [8], etc., but it
often becomes a performance bottleneck. This bottleneck comes
from the inherent characteristics of sparse matrices, e.g., sparsity
and irregular distribution of non-zero elements. To address the
sparsity issue, various basic storage formats have been devised
to reduce storage requirements and enhance implementation
efficiency. These basic formats include Compress Sparse Row
(CSR), Compress Sparse Column (CSC), Coordinate (COO),
Diagonal (DIA), and Ell pack (ELL). However, these basic stor-
age formats alone are insufficient in dealing with the irregular
distribution of non-zero elements which causes load imbalance
and low data loading efficiency during SpMV operations. For
example, in the case of the CSR format, conventional parallel
strategies involving row splitting and non-zero splitting can
lead to load imbalance among threads and poor data loading
efficiency.

To address these challenges, numerous SpMV algorithms and
sparse matrix formats have been proposed. The Merge-based
SpMV method, proposed by Merrill et al. [9], CSR5 introduced
by Liu et al. [10], and TileSpMV presented by Niu et al. [11],
all demonstrate excellent load balance. VCSR, as proposed by
Karimi et al. [3], has shown that coalesced memory access of the
sparse matrix can enhance overall performance by improving
data loading efficiency. However, the aforementioned designs
share an inherent drawback: they cannot achieve coalesced
memory access for the input vector.

In this paper, we propose a novel approach called FastLoad
to improve the data loading efficiency by achieving coalesced
memory access for both the sparse matrix and input vector of
SpMV on GPUs. We use CSC as an implementation case of
FastLoad to prove the concept and gain insights. By sorting the
columns of the sparse matrix based on the number of non-zero

1045-9219 © 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on November 28,2024 at 22:26:34 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0009-0007-8422-2901
https://orcid.org/0000-0003-2392-0267
https://orcid.org/0000-0002-1477-9751
https://orcid.org/0000-0001-5008-4829
https://orcid.org/0000-0002-2635-7716
mailto:hujinyu@hnu.edu.cn
mailto:luohuizhang@hnu.edu.cn
mailto:xiaoguoqing@hnu.edu.cn
mailto:lkl@hnu.edu.cn
mailto:hong.jiang@uta.edu

2424 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 35, NO. 12, DECEMBER 2024

Fig. 1. The heat map of geometry means over different methods on different
groups.

elements in each column and the corresponding input vector
elements, FastLoad can keep coalesced memory access to both
the sparse matrix and the input vector. To keep the load balanced
among threads and warps, FastLoad splits the non-zero elements
into different blocks based on the number of elements in the
column.

Although the CSC format has the potential to achieve coa-
lesced memory access for FastLoad, it lacks sufficient efficiency
and optimization compared to other formats. In particular, when
computing the output elements of the output vector in its addition
operations, the CSC format performs poorly due to irregular ac-
cesses to intermediate multiplication results [12]. To overcome
this drawback, we utilize segment sum and prefix sum techniques
for each block, further enhancing the overall performance of the
FastLoad algorithm.

This work makes the following contribution:
� We show that existing SpMV algorithms have exhibited a

low efficiency in loading data due to insufficient use of the
coalesced memory access.

� We present a novel solution to address the data loading
problem of SpMV, called FastLoad, an efficient algorithm
implemented based on the CSC format. FastLoad achieves
coalesced memory access for both sparse matrices and
input vectors, as well as a well-balanced load for SpMV
operations through a two-step process: Step 1: Columns
of the sparse matrix and the corresponding input vector
elements are sorted based on the number of non-zero
elements of each column in the sparse matrix. Step 2: The
non-zero elements are split into blocks to prevent thread
divergence, which can keep the load well balanced.

� In our experiments, we conducted a comprehensive com-
parison between the FastLoad algorithm, CSC-based, cuS-
PARSE (v11.1), CSR5 [10], and TileSpMV [11]. Fig. 1
displays the geometric mean of execution times for the
different methods across 10 groups of matrices. In all 10
matrix groups, our proposed FastLoad kernel exhibited
higher performance than other state-of-the-art methods.
Overall, across the entire set of 2757 matrices, Fast-
Load achieved an average speedup of 2.12× over basic
CSC SpMV, 2.98× over cuSPARSE, 2.88× over CSR5,
and 1.22× over TileSpMV, respectively. These results

Algorithm 1: A Pseudocode of Parallel CSC SpMV.

demonstrate the significant performance improvements of-
fered by our approach in comparison to existing methods.

The rest of the paper is organized as followed: Section II
presents relevant background information and related work.
Section III presents the motivation for the FastLoad research.
Section IV presents the FastLoad algorithm with its process and
implementation details. Section V presents the results of the
performance evaluation. Section VI concludes this work and
discusses future work.

II. BACKGROUND AND RELATED WORK

A. Sparse Matrix-Vector Multiplication

SpMV concerns the multiplication of a sparse matrix and
a dense input vector. Sparse matrices of modern SpMV-based
problems exhibit two distinct characteristics. First, they contain
significantly fewer non-zero elements than the total number of
elements of the matrix, as determined by the number of rows
multiplied by the number of columns. Second, the distribution of
these non-zero elements within the matrix is stochastic, adding
to the complexity of the structure. Algorithm 1 provides a
pseudocode of CSC-based SpMV. In this algorithm, a column
of the sparse matrix is allocated to a warp (Line 1-5). The
corresponding value to the input vector of warp is fixed. The
thread accesses the value of the matrix through value array.

B. GPU and Coalesced Memory Accessing

GPUs are highly data-parallel many-core processors. A typi-
cal GPU architecture comprises multiple stream multiproces-
sors (SMs), and various memory hierarchy layers. Each SM
has multiple CUDA cores and shared memory(L1 cache). The
Memory hierarchy layers include L2 cache, texture memory,
and global memory. From a programming perspective, Nvidia
CUDA provides a programming model with three levels: thread,
thread block, and grid. The programmer can define the number
of threads in a thread block and the number of blocks in a grid. In
CUDA, a warp consists of 32 threads, and all the threads within
a warp must reside within the same SM. This characteristic
enables efficient parallel operations within a warp. When we
launch a kernel in GPU, the grid dimension and the block
dimension can be defined by the user. Consequently, each block
in a grid has a blockId. Each thread in a block has a threadId.
Each thread in a grid also has a unique id called globalId. Each
thread in a warp has a laneId.

Coalesced memory access is an optimization technique used
in parallel computing systems, especially in GPUs, to enhance

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on November 28,2024 at 22:26:34 UTC from IEEE Xplore. Restrictions apply.

HU et al.: FastLoad: SPEEDING UP DATA LOADING OF BOTH SPARSE MATRIX AND VECTOR FOR SpMV ON GPUs 2425

performance. In GPUs, data is processed in parallel by multiple
threads. When neighboring threads within a thread block or
a warp access consecutive memory locations, the GPU can
optimize memory transactions. By fetching larger data chunks
from memory with fewer memory transactions, performance is
improved. Take load/store data from GPU for example, when an
array of data is stored in GPU memory, where each thread in a
warp needs to load/store from/to a specific element in the array.
Due to the consecutive thread access to consecutive elements
in the array, the GPU can combine the memory requests into a
single memory transaction. By maximizing memory access co-
alesced, GPUs can effectively leverage parallelism and optimize
data transfer, resulting in improved overall performance.

C. Related Work

SpMV has been extensively studied across various platforms
over the past decades, including multicore, many-core, and GPU
architectures. Williams et al. investigated the application of
SpMV on multicore platforms, considering both homogeneous
(e.g., AMD dual-core, Intel quad-core) and heterogeneous plat-
forms (e.g., STI Cell, Sun Niagara2) [13]. Liu et al. [14] focused
on x86-based many-core processors and addressed challenges
related to sparsity, irregular memory accesses, and load imbal-
ance on Intel Xeon Phi Coprocessor. It aimed to understand the
impact of sparsity, memory accesses, and load balancing on the
overall performance of SpMV [14]. Bell et al. [15] explored
SpMV on GPUs without introducing new storage formats for
sparse matrices. They evaluated different basic formats, includ-
ing COO, CSR, CSC, ELL, DIA, and hybrid formats, to harness
the potential performance improvements offered by GPUs. The
results highlighted the significant potential of applying SpMV
on GPUs to enhance performance.

Extensive research on SpMV has led to increasingly finer-
grained implementations. The objective is to mitigate the impact
of matrix sparsity [9], memory access patterns [16], and load
imbalance on overall performance [10]. Consequently, signifi-
cant research efforts have been devoted to format design, which
plays a crucial role in addressing these challenges. Many of the
proposed format designs are variants or optimizations of certain
basic format. These advanced formats are tailored to specific
characteristics and requirements of sparse matrices and comput-
ing platforms. The aim is to optimize memory access patterns,
minimize storage requirements, and improve load balancing.
The focus on format design highlights the importance of con-
sidering the nuances of SpMV and its influence on performance.
By refining and customizing formats to suit the unique charac-
teristics of matrices and target platforms, researchers can further
enhance optimization and efficiency in SpMV computations.

Improvements to COO format: The COO format is a simple
storage format consisting of three arrays: row indices, column in-
dices, and values of the non-zero elements. Several researchers,
such as Dang [17], BRO-COO [18], ALIGNED-COO [19], and
BCCOO [20], have developed new formats based on COO. For
instance, Yan designed BCCOO-based SpMV algorithm called
yaSpMV, which divides the matrix into blocks and uses bit flags
to store indices, addressing bandwidth limitations. Additionally,

yaSpMV incorporates techniques like segmented sum to im-
prove performance.

Improvements based on CSR format: The CSR format
is widely used in sparse matrix operations, serving as the
foundation for numerous format designs. CSR-Adaptive [21],
PCSR [22], BCSR [23], and BIN-CSR [24] improved SpMV
performance by optimizing memory access, data reuse, and load
mapping to threads. Yesil et al. accelerated SpMV for Power-
Law graphs by leveraging locality [25]. Chu et al. improve the
performances of SpMV by three methods which are flat, line
enhancement, and adaptive selection. The optimization method
is based on the CSR format [26]. The introduction section has
presented the mainstream SpMVs based on the CSR format.

Improvements based on CSC format: Similar to the CSR, the
CSC format consists of three arrays which are colPtr, rowIdx,
and value. value and rowIdx store the value and corresponding
row index respectively. colPtr array records the number of
elements before the corresponding column. CSC format is also
one of the most popular sparse matrix storage formats.

From the platform perspective: the CSC format can be the
basic or part of the sparse algorithm based on distributed or
multi-GPU systems. For example: MSREP [27] designs a sparse
matrix representation framework that applies in multi-GPU
systems and uses CSC format as one of the implementations.
TCSC [28] designs a new distributed graph analytics system
based on Triply CSC.

From an application perspective, the CSC format is also
used in sparse matrix multiplication (SpGEMM), deep neural
networks, and graph algorithms like breadth-first search. Doubly
compressed sparse column (DCSC), designed by Aydin et al. is
used for accelerating SpGEMM [29]. Mohammad et al. apply
in-memory CSC data structure for the traversal and storage of
the neural network layer [30]. Li et al. combine the CSC format
and merge-based algorithm to accelerate sparse matrix sparse
vector multiplication (SpMSpV) [31]. Skyler et al. design value
compressed sparse column (VCSC) which takes advantage of the
redundancy of the sparse matrix [32]. CSCV, proposed by Ye et
al. can reduce the memory bandwidth used in SpMV and they
implement this CSCV algorithm for Computed Tomography
imaging [33].

Improvements based on ELL format: The ELL format consists
of two parts: column indices and values. The non-zero elements
retain the same row indices. ELL format is well-suited for vector
architectures. Ad-ELL [34], ELL-WARP [35], SELL-C [36],
BiELL [37], slice-ELL [38], BELLPACK [39], and SELL-P [40]
combine the ELL format with specific architectures to achieve
better load balance and improved performance.

Improvements based on DIA format: DIA is suitable for
matrices with non-zero elements restricted to the diagonal. DIA
consists of two arrays: one stores the non-zero elements, while
the other stores the offset of the diagonal from the longest
diagonal. There is some research like HDI [41] and DDD-
SPLIT [42] that use the DIA format to improve performance.
Gao et al. developed a new strategy called TaiChi to enhance the
performance of Binary SpMV [43]. Binary SpMV is primarily
used in weblink analysis, integer factorization, and compressed
sensing. TaiChi divides the matrix into a sparse part and a dense

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on November 28,2024 at 22:26:34 UTC from IEEE Xplore. Restrictions apply.

2426 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 35, NO. 12, DECEMBER 2024

Fig. 2. Summary of the related work: We select several algorithms based on different formats and compare them with FastLoad. The comparison is divided into
different parts which include pre-processing, data loading, mathematic operation, and data storage.

part. The dense part is primarily stored in the DIA format, while
the sparse part is stored in the CSR format. By fully utilizing the
characteristics of binary SpMV and combining it with the DIA
format, TaiChi demonstrates excellent performance.

Improvements based on hybrid formats: The distribution of
non-zero elements in a matrix is often irregular, making it
challenging to find a single format that suits every matrix. To
address this, the HYB format combines two different formats,
typically ELL and COO [44]. The denser part of the matrix
can be stored in the ELL format, while the sparser part is
stored in the COO format. Besides, ELL can also combine with
CSR [45], DIA [46], and CSR can combine with COO [47].
TileSpMV, developed by Niu, takes a different approach by using
six different formats to store the sparse matrix [11].

Adopting machine learning technologies for SpMV: In recent
years, with the advancement of machine learning, researchers
have realized its potential in selecting suitable formats for sparse
matrices. Sedaghati et al. utilize machine learning techniques
to determine the most appropriate representation for a matrix
across different platforms [48]. Du et al. developed AlphaSparse,
which can generate a format that suits the matrix, along with the
corresponding SpMV kernel [49].

III. MOTIVATION

In this section, we first analyze FastLoad against existing work
to gain a better understanding of what motivated the FastLoad
research. Then, we demonstrate the drawbacks of CSR-based
and CSC-based SpMV with a detailed example. Finally, we
design an experiment to mimic an ideal scenario to demonstrate
the potential of coalesced memory access, which motivates the
FastLoad algorithm.

A. Comprehensive Analysis of SpMV and its Representative
Implementations

SpMV can be divided into five main steps: Step 1: pre-
processing input matrix and vector for the SpMV. Step 2: loading
data of the sparse matrix and vector from global memory to
threads. Step 3: performing multiplication operation. Step 4:

performing addition operation. Step 5: storing the results back
from threads to global memory. In Fig. 2, we select the works
mentioned above in each storage format and indicate if a step
is implemented (along with a summary of the implementation).
It is noted that FastLoad improves on all 5 steps, where the
performance improvement mainly stems from 1) efficient data
loading of sparse matrix and input vector; 2) well balanced load;
and 3) optimized CSC format with segment sum and prefix sum.

B. A Motivational Example

We have also provided visualizations to illustrate Steps 2-4
via CSR-based and CSC-based SpMV in Fig. 3. The matrix A
is based on a real matrix called jgl009 from SuiteSparse Matrix
Collection [50]. It is found that CSR-based SpMV can reach
good coalesced memory access during the loading of data from
the sparse matrix. However, the data loading of the input vector
proves to be irregular and non-continuous, as evidenced by the
red arrows in the multiplication part of CSR-based SpMV. On
the other hand, in the multiplication part of CSC-based SpMV,
access to the input vector is better compared to the CSR format.
However, when it comes to loading the temporary results and
adding them to the corresponding result vector y, the process is
non-continuous. In the next section, we show that FastLoad can
address the above problems.

C. Two-Phase SpMV

To visualize the impact of data loading on the performance of
SpMV and the rooms for potential improvement of the existing
methods, we have designed an ideal experiment called “two-
phased SpMV,” where the data loading of multiplication and
storing of addition are both accomplished via coalesced memory
access. This is made possible by assuming the ideal possibility
of combining the advantages of CSC and CSR formats with
a coalesced memory access design. The CSC-based SpMV
performs efficiently in loading the data of the input vector for the
multiplication phase. On the other hand, the CSR-based SpMV
proves to be advantageous for adding the temporary results from
the same row in the addition phase.

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on November 28,2024 at 22:26:34 UTC from IEEE Xplore. Restrictions apply.

HU et al.: FastLoad: SPEEDING UP DATA LOADING OF BOTH SPARSE MATRIX AND VECTOR FOR SpMV ON GPUs 2427

Fig. 3. The brief flow chart of SpMV based on CSR and CSC format. The arrows in the multiplication and addition sections signify the data loading or storing
back of SpMV. The dotted arrows indicate the temporary data in the threads. The red arrows highlight the motivation of this work, where the non-continuous access
of the input vector in CSR-based multiplication cannot achieve coalesced memory access. In CSC-based SpMV, the red arrows indices that the access of the input
vector and storing temporary results also do not achieve coalesced memory access.

Fig. 4. The illustration for two-phase SpMV.

As illustrated in Fig. 4, the experiment is conducted in the
following manner. In the multiplication phase, we utilize the
CSC format for the sparse matrix. We first sort the columns of
the sparse matrix and the input vector according to the number
of non-zero elements of each column. Then, we show how the
elements are allocated to a warp. We assign elements of each
column to warps in this way: Starting with the first non-empty
column, a continuous 32 columns group as the length, and the
number of non-zero elements of the first non-empty column
is the height. In this way, the threads in a warp can access
the continuous locations of both the sparse matrix and input
vector. Moreover, blocking is adopted to splitting the non-zero
elements to keep load balance. Lastly, the temporary results of

the multiplication are stored in temporary arrays, using the CSC
format.

In the addition phase, we re-arrange the format of the multi-
plication phase. The conversion process involves transforming
the format from multiplication to CSR. Notably, the matrix
values now represent the results of multiplication, rather than the
original values of the matrix. Similar to the multiplication phase,
sorting on rows is executed such that the addition operations are
with coalesced memory access. Additionally, we utilize blocking
to compute the local sum within a block, thereby enhancing the
performance of the addition operations. It is important to note
that the two-phase SpMV is designed specifically to demonstrate
potential improvements in existing methods. Our focus is solely
on calculating the time taken for the multiplication and addition
phases, excluding the time spent on the format transformation
from the multiplication phase to the addition phase.

We conducted a comparison of the two-phase SpMV with the
other three methods: cuSPARSE, TileSpMV, and CSR5 using
over 200 matrices. As shown in Fig. 5 the two-phase SpMV
outperforms all other methods in terms of GFLOPS, which
highlight that there is still untapped potential for improvement.
This motivates us to propose our FastLoad.

IV. THE FASTLOAD ALGORITHM

A. The FastLoad SpMV

FastLoad is based on the “two-phase” SpMV, the difference is
that it uses optimization strategies based on the CSC format in the
whole process (including the multiplication phase and addition
phase). Unlike CSC-based SpMV, FastLoad accesses the input

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on November 28,2024 at 22:26:34 UTC from IEEE Xplore. Restrictions apply.

2428 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 35, NO. 12, DECEMBER 2024

Fig. 5. The result of two-phase SpMV.

vector by blkColIdx and blkLength arrays. Algorithm 2 presents
the pseudocode of the parallel FastLoad SpMV algorithm. The
matrix A is partitioned into multiple blocks (Section IV-B). A
block of matrix A is allocated to a warp (Line 1-10). Con-
sequently, a warp corresponds to an element in blkPtr. The
blkHeight denotes the number of loops that the block needs to
iterate (Line 2-9). In an iteration, the blkColIdx array contains
the starting column index of each block. The elements in blkPtr
add the corresponding elements in blkLength multiplied with
the corresponding iteration round is the corresponding index in
value and rowIdx (Line 4). The column index in blkColIdx adds
the laneId of the thread as the index of the value in sortedX
(Line 5). Consequently, the threads within a warp can achieve
coalesced memory access on both the sparse matrix and the input
vector. Following the multiplication step, the rowIdx indicates
the result to which the temporary results are added (Line 8).

Fig. 6 shows how FastLoad reaches the coalesced memory
access for loading the sparse matrix and input vector. It consists
of two steps. The first step involves sorting the columns of the
sparse matrix based on the number of non-zero elements in each
column (matrix A → sorted matrix A). In the second step, the
input sparse matrix is partitioned into multiple blocks. Each
block is with a fixed length of 32 and a variable height. This
choice aligns with the warp size of 32 threads in GPUs, ensuring
efficient utilization of computing resources and minimizing
thread divergence. The height of the blocks is determined by
the variation in non-zero elements across columns, which helps
in grouping together dense parts of the matrix within a block or
a sequence of blocks. The details are shown in Section IV-B.

Because FastLoad is optimized from CSC format, it will
cause the conflict of addition of the multiplication result. To
address this issue, we introduce two improvement methods of
FastLoad. FastLoad categorizes the blocks into different sce-
narios, enabling the use of different addition techniques, such
as segment sum and prefix sum, to calculate the final result.
By adopting the addition method based on the specific block
characteristics, FastLoad maximizes computational efficiency
and optimizes the final output vector generation. The details are
shown in Section IV-C.

B. The Storage Structure and Process Detail of FastLoad

The storage structure of FastLoad closely resembles the CSC
format and involves three auxiliary arrays, including blkCol-
idx,blkLength, and blkHeight. The blkColIdx array stores the
column index of the first element in each block, which helps
achieve continuous access to both the sparse matrix and input
vector. The blkLength array stores the length of each block. The
blkHeight array represents the height of each block and can be
seen as the number of loops that threads in a warp need to iterate.

Except for three auxiliary arrays, there are three main arrays
based on the CSC format, which are blkPtr, rowIdx, and value.
The value array and the rowIdx array record the matrix’s values
and the corresponding row indices respectively. The blkPtr array
maintains the index of the first element of each block in the value
array.

Let’s consider the example in Fig. 6 to illustrate the detail of
the process. We assume a warp consists of 4 threads. In block
0, the first non-empty column is column 0, which contains 2
elements. The value assigned to block 0 is the first 2 values of a
continuous 4-column which starts from column 0. Therefore, the
height of the first block is 2. The blkPtr, blkColIdx, blkHeight,
and blkLength arrays record 0, 0, 2, and 4 for block 0, respec-
tively. Similar to block 0, the first non-empty column of block 5
is column 2, and the number of elements in column 2 remains 1.
The value assigned to block 5 is the first 1 value of the remained
of a continuous 4-column which starts from column 2. Similarly,
the blkPtr, blkColIdx, blkHeight, and blkLength arrays record 34,
2, 1, and 4 for block 5, respectively. The arrangement of rowIdx
and value arrays follows a zigzag pattern.

C. Two Improvement Methods of FastLoad

As mentioned in Section IV-A, FastLoad is implemented
based on the CSC format. We use atomicadd to add the tempo-
rary result of multiplication to the corresponding result vector y.
However, as the size of the input matrix increases, the atomicadd
operation becomes less efficient.

To address this issue, we propose two improvement methods
based on a key observation, aiming to enhance the efficiency of
the addition operation. In Fig. 6, the rowIdx array shows that the
adjacent elements have the same row index, which means they
can add together inside the warp by using the shuffle operation.
Consequently, we cite a method called segment sum [51]. Seg-
ment sum is SIMD-friendly method [10]. It leverages the shuffle
operation to efficiently add elements from the same row within
a warp. Besides, another situation not shown in Fig. 6 is that it
is possible for all the values in a warp from the same row. In this
situation, we can use prefix sum.

By employing these methods, FastLoad optimizes the addi-
tion operation in a manner that minimizes the use of atomicadd
operations, resulting in improved overall performance

V. EXPERIMENTAL RESULTS

A. Experimental Setup

Our experimental platform is NVIDIA GeForce RTX 3090 Ti
with Ubuntu Linux v22.04 installed. The GPU driver version is

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on November 28,2024 at 22:26:34 UTC from IEEE Xplore. Restrictions apply.

HU et al.: FastLoad: SPEEDING UP DATA LOADING OF BOTH SPARSE MATRIX AND VECTOR FOR SpMV ON GPUs 2429

Fig. 6. An example of FastLoad: The original matrix is a real matrix called jgl009. The matrix is sorted based on the number of non-zero elements in each column.
The block length is set as the warp size (In this example, it is set as 4 due to space issue). In addition to the basic arrays, FastLoad includes three auxiliary arrays.
The threads within a warp can multiply the matrix elements with the corresponding vector elements. For instance, if element 4in block 0 needs to be multiplied
with the corresponding vector elements, the laneId of the corresponding thread can determine the index of the vector element by adding the corresponding value
in the blkColIdx array.

Algorithm 2: A Pseudocode of Parallel FastLoad SpMV.

525.105.17, and the CUDA runtime version is 11.1. We compare
our work with cuSPARSE v11.1 kernel cuSPARSE-SpMV [52],
TileSpMV [11], CSR5 [10] and CSC-based SpMV. cuSPARSE
SpMV kernel is designed by NVIDIA. TileSpMV is a method
that divides the sparse matrix into tiles and uses different storage
formats to store the tiles. CSR5 compresses the sparse matrix
into regular size. The CSC-based SpMV is the basic SpMV
algorithm on GPU. We use one warp to calculate one column
of the sparse matrix. We use all 2757 sparse matrices in the
SuiteSparse Matrix Collection as our test workload [50]. The

source code of this work is downloadable at https://github.com/
MinttHu/FastLoad.git.

Our experiment set is adapted to the GPU architecture (thread
block, warp, and thread). A thread block contains 2 warps in
order to avoid calculation overhead. One warp corresponds to
one block of the matrix. To attach a better load balance, we set
1 as the height of the block and set the length of the block as 32.
The detail of the distribution of tasks is in Section IV-A.

B. Performance Comparison Over Existing SpMVs

In Fig. 1, we select 10 groups of matrices in the dataset and test
the performance in each group. The result shows that FastLoad
exhibits a good performance over all 10 different matrix groups.

The performance results are presented in Fig. 7, showcasing
the speedup achieved over the different workloads. In the figure,
the dot positioned above the dividing line represents FastLoad
being faster than the existing SpMVs, while the dot below
the dividing line represents FastLoad being slower than the
existing SpMVs. In Fig. 7(a) and (c), the speedup over cuS-
PARSE and CSR5 becomes slower as the number of non-zero
elements in the matrix increases. This suggests that when the
matrix size becomes large, the impact of atomicadd operations
may affect overall performance. In Fig. 7(b) and (d), FastLoad
exhibits relatively stable speedup over CSC-based SpMV and
TileSpMV.

It is evident that our method demonstrates favorable per-
formance across most matrices. Specifically, it outperforms
CSC-based SpMV in 2342 matrices, cuSPARSE in 2326 ma-
trices, CSR5 in 2402 matrices, and TileSpMV in 1978 matrices.

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on November 28,2024 at 22:26:34 UTC from IEEE Xplore. Restrictions apply.

https://github.com/MinttHu/FastLoad.git
https://github.com/MinttHu/FastLoad.git

2430 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 35, NO. 12, DECEMBER 2024

Fig. 7. Speedup over the different workloads. FastLoad significantly outperforms the cuSPARSE, CSC-based, and CSR5 (slightly outperforms TileSpMV).

Fig. 8. Performance analysis of Fastload on different irregular matrices. We calculate the variation of each matrix and use it as the x-axis. The variation is
increased with the irregular of the matrix. It is found that FastLoad can handle different irregular matrices.

The speedup achieved over these benchmarks is 2.12×, 2.98×,
2.88×, and 1.22× , respectively.

C. Performance Analysis of Fastload on Different Irregular
Matrices

In Fig. 8, we analyze the speedup of FastLoad across various
existing SpMVs based on the variation of each matrix. The
variation of each matrix is calculated as the standard deviation

of row length divided by the average mean of row length [9]. It
is observed that the speedup is primarily achieved on matrices
with smaller variations. The speedup of FastLoad is obviously
better compared to CSC-based SpMV, cuSPARSE, and CSR5
with different irregular matrices.

FastLoad does not outperform significantly on TileSpMV
as other existing SpMVs. The main reason for this dis-
crepancy is that some matrices exhibit significant variations,
and FastLoad is not good at handling these specific cases

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on November 28,2024 at 22:26:34 UTC from IEEE Xplore. Restrictions apply.

HU et al.: FastLoad: SPEEDING UP DATA LOADING OF BOTH SPARSE MATRIX AND VECTOR FOR SpMV ON GPUs 2431

TABLE I
COMPARISON OF DIFFERENT HEIGHTS OF FASTLOAD AND ITS VARIANTS

effectively. In contrast, TileSpMV performs better in such
scenarios, as it can intelligently select the appropriate for-
mat for small blocks, allowing for improved performance.
Noted that FastLoad can be added to alternative formats for
TileSpMV.

D. Effectiveness of Different Block Height

In order to assess the impact of different block heights on the
efficiency of FastLoad. We introduced different limitations of
the block height and compared them against existing SpMVs.
Table I presents the results of the comparison. We evaluated
FastLoad with no height limit against FastLoad with different
height limits, and compare them with existing SpMVs. It is
evident that FastLoad without a height limit did not perform
optimally. The speedup over different SpMVs is not as good as
others.

The height limit servers to control the divergence between
warps, thereby imposing a restriction on maximum block height.
From the table, it is evident that when the height limit is set to 8
or lower, the performance in terms of faster ratio and speedup is
relatively good. However, when the height limit is increased to 16
or 32, the impact of warp divergence becomes more pronounced,
leading to a decrease in performance.

E. Effectiveness of the Two Improvement Methods

We conducted a total of eight different versions of Fast-
Load, including one without a height limit, six versions with
different height limits, and one version with optimization.
For a more detailed analysis, we selected four different types
of matrices. In Fig. 9, the label ‘optimized’ refers to Fast-
Load with the proposed improvement, while the accompany-
ing number indicates the specific height limit used. FastLoad
with the proposed improvement outperforms the other vari-
ants. Particularly, in Fig. 9(a), the performance improvement
is significant. There are two main reasons for this improve-
ment. First, the control of divergence between warps helps
enhance performance. Second, the additional steps introduced
in the improvement, such as segment sum and prefix sum,
effectively reduce the burden on atomicadd operations. These
results validate the effectiveness of the strategy employed in
FastLoad.

Fig. 9. Comparison of improvement over different block heights.

Fig. 10. Comparison of preprocessing cost of SpMV methods.

F. Preprocessing Overhead Analysis

We conducted measurements to assess the preprocessing
overhead involved in converting a basic CSR matrix to our
proprietary format. The preprocess of FastLoad and CSR5 is per-
formed on the GPU. The preprocess of TileSpMV uses MPI on
the CPU. Fig. 10 shows the preprocess time of CSR5, TileSpMV,
and our method. The preprocess time of our method is faster
than TileSpMV in most matrices and is close to CSR5 when the
number of nonzero is less than 104. Despite the preprocessing
time being longer than CSR5 when the matrix size is large, it
is acceptable when executing the SpMV kernel in an iterative
solver.

G. Peak Memory Consumption Analysis

We compare the peak memory consumption of FastLoad with
the other four methods using the four matrices in Fig. 9. As
shown in Fig. 11, the peak memory consumption of FastLoad is
higher than the other four methods, as it includes three auxiliary
arrays. With the matrix size increase, the size of auxiliary

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on November 28,2024 at 22:26:34 UTC from IEEE Xplore. Restrictions apply.

2432 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 35, NO. 12, DECEMBER 2024

Fig. 11. Comparison of peak memory consumption between FastLoad and the
other four methods.

arrays also increased. Consequently, the memory consumption
of FastLoad becomes larger.

VI. CONCLUSION AND FUTURE WORK

In this paper, we propose a novel SpMV algorithm called Fast-
Load. FastLoad improves the efficient data loading of the sparse
matrix and input vector by achieving coalesced memory access
and keeps well-balanced load distribution among threads and
warps. Furthermore, FastLoad uses two improvement methods
(segment sum and prefix sum) to reduce the use of atomicadd
operations and improve the efficiency of the addition part com-
pared to CSC-based SpMV.

For future improvements, to further evaluate FastLoad’s per-
formance, we propose combining it with a selective algorithm.
As an illustration, we could integrate FastLoad with TileSpMV
and compare the performance of TileSpMV with and without
FastLoad. This comparison will provide valuable insights into
FastLoad’s capabilities and potential enhancements.

ACKNOWLEDGMENT

The authors are grateful to the anonymous reviewers for their
valuable and helpful comments on improving the manuscript.

REFERENCES

[1] I. Gelado and M. Garland, “Throughput-oriented GPU memory alloca-
tion,” in Proc. 24th Symp. Princ. Pract. Parallel Program., New York,
NY, USA: ACM, 2019, pp. 27–37.

[2] Z. Yan, Y. Lin, L. Peng, and W. Zhang, “Harmonia: A high throughput B
tree for GPUs,” in Proc. 24th Symp. Princ. Pract. Parallel Program., New
York, NY, USA: ACM, 2019, pp. 133–144.

[3] E. Karimi, N. B. Agostini, S. Dong, and D. Kaeli, “VCSR: An efficient
GPU memory-aware sparse format,” IEEE Trans. Parallel Distrib. Syst.,
vol. 33, no. 12, pp. 3977–3989, Dec. 2022.

[4] S. Barrachina, M. Castillo, F. D. Igual, R. Mayo, and E. S. Quintana-Ortí,
“Solving dense linear systems on graphics processors,” in Proc. Eur. Conf.
Parallel Process., Springer, 2008, pp. 739–748.

[5] V. Volkov and J. W. Demmel, “Benchmarking gpus to tune dense linear
algebra,” in Proc. 2008 ACM/IEEE Conf. Supercomput., IEEE, 2008,
pp. 1–11.

[6] M. Wang et al., “Deep graph library: A graph-centric, highly-performant
package for graph neural networks,” 2019, arXiv:1909.01315.

[7] Y. Zhao, W. Zhou, X. Shen, and G. Yiu, “Overhead-conscious format
selection for spmv-based applications,” in Proc. 2018 IEEE Int. Parallel
Distrib. Process. Symp., IEEE, 2018, pp. 950–959.

[8] J. Kepner et al., “Mathematical foundations of the graphblas,” in Proc.
2016 IEEE High Perform. Extreme Comput. Conf., IEEE, 2016, pp. 1–9.

[9] D. Merrill and M. Garland, “Merge-based parallel sparse matrix-vector
multiplication,” in Proc. Int. Conf. High Perform. Comput., Netw., Storage
Anal., IEEE, 2016, pp. 678–689.

[10] W. Liu and B. Vinter, “CSR5: An efficient storage format for
cross-platform sparse matrix-vector multiplication,” in Proc. 29th
ACM Int. Conf. Supercomput., New York, NY, USA: ACM, 2015,
pp. 339–350.

[11] Y. Niu, Z. Lu, M. Dong, Z. Jin, W. Liu, and G. Tan, “TileSpMV: A
tiled algorithm for sparse matrix-vector multiplication on GPUs,” in
Proc. 2021 IEEE Int. Parallel Distrib. Process. Symp., IEEE, 2021,
pp. 68–78.

[12] S. Filippone, V. Cardellini, D. Barbieri, and A. Fanfarillo, “Sparse matrix-
vector multiplication on GPGPUs,” ACM Trans. Math. Softw., vol. 43,
no. 4, pp. 1–49, 2017.

[13] S. Williams, L. Oliker, R. Vuduc, J. Shalf, K. Yelick, and J. Demmel, “Op-
timization of sparse matrix-vector multiplication on emerging multicore
platforms,” in Proc. 2007 ACM/IEEE Conf. Supercomput., New York, NY,
USA: ACM, 2007, pp. 1–12.

[14] X. Liu, M. Smelyanskiy, E. Chow, and P. Dubey, “Efficient sparse matrix-
vector multiplication on x86-based many-core processors,” in Proc. 27th
Int. ACM Conf. Int. Conf. Supercomput., New York, NY, USA: ACM,
2013, pp. 273–282.

[15] N. Bell and M. Garland, “Implementing sparse matrix-vector multi-
plication on throughput-oriented processors,” in Proc. Conf. High Per-
form. Comput. Netw. Storage Anal., New York, NY, USA: ACM, 2009,
pp. 1–11.

[16] D. Fujiki, N. Chatterjee, D. Lee, and M. O’Connor, “Near-memory data
transformation for efficient sparse matrix multi-vector multiplication,” in
Proc. Int. Conf. High Perform. Comput., Netw., Storage Anal., New York,
NY, USA: ACM, 2019, pp. 1–17.

[17] H.-V. Dang and B. Schmidt, “Cuda-enabled sparse matrix–vector multi-
plication on GPUs using atomic operations,” Parallel Comput., vol. 39,
no. 11, pp. 737–750, 2013.

[18] W. T. Tang et al., “Accelerating sparse matrix-vector multiplication on
GPUs using bit-representation-optimized schemes,” in Proc. Int. Conf.
High Perform. Comput., Netw., Storage Anal., New York, NY, USA: ACM,
2013, pp. 1–12.

[19] M. Shah and V. Patel, “An efficient sparse matrix multiplication for skewed
matrix on GPU,” in Proc. 2012 IEEE 14th Int. Conf. High Perform.
Comput. Commun. IEEE 9th Int. Conf. Embedded Softw. Syst., IEEE, 2012,
pp. 1301–1306.

[20] S. Yan, C. Li, Y. Zhang, and H. Zhou, “yaSpMV: Yet another SpMV
framework on GPUs,” ACM Sigplan Notices, vol. 49, no. 8, pp. 107–118,
2014.

[21] J. L. Greathouse and M. Daga, “Efficient sparse matrix-vector mul-
tiplication on GPUs using the CSR storage format,” in Proc. Int.
Conf. High Perform. Comput., Netw., Storage Anal., IEEE, 2014,
pp. 769–780.

[22] M. M. Dehnavi, D. M. Fernández, and D. Giannacopoulos, “Finite-element
sparse matrix vector multiplication on graphic processing units,” IEEE
Trans. Magn., vol. 46, no. 8, pp. 2982–2985, Aug. 2010.

[23] W. Xu, H. Zhang, S. Jiao, D. Wang, F. Song, and Z. Liu, “Optimizing
sparse matrix vector multiplication using cache blocking method on fermi
GPU,” in Proc. 2012 13th ACIS Int. Conf. Softw. Eng., Artif. Intell., Netw.
Parallel/Distrib. Comput., IEEE, 2012, pp. 231–235.

[24] D. Weber, J. Bender, M. Schnoes, A. Stork, and D. Fellner, “Efficient GPU
data structures and methods to solve sparse linear systems in dynamics
applications,” in Computer Graphics Forum. New York, NY, USA: Wiley,
2013, pp. 16–26.

[25] S. Yesil, A. Heidarshenas, A. Morrison, and J. Torrellas, “Speeding up
SpMV for power-law graph analytics by enhancing locality & vectoriza-
tion,” in Proc. Int. Conf. High Perform. Comput., Netw., Storage Anal.,
IEEE, 2020, pp. 1–15.

[26] G. Chu et al., “Efficient algorithm design of optimizing SPMV on GPU,”
in Proc. 32nd Int. Symp. High- Perform. Parallel Distrib. Comput., 2023,
pp. 115–128.

[27] J. Chen et al., “MSREP: A fast yet light sparse matrix framework for
multi-GPU systems,” 2022, arXiv:2209.07552.

[28] M. H. Mofrad, R. Melhem, Y. Ahmad, and M. Hammoud, “Effi-
cient distributed graph analytics using triply compressed sparse for-
mat,” in Proc. 2019 IEEE Int. Conf. Cluster Comput., IEEE, 2019,
pp. 1–11.

[29] A. Buluc and J. R. Gilbert, “On the representation and multiplication of
hypersparse matrices,” in Proc. 2008 IEEE Int. Symp. Parallel Distrib.
Process., IEEE, 2008, pp. 1–11.

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on November 28,2024 at 22:26:34 UTC from IEEE Xplore. Restrictions apply.

HU et al.: FastLoad: SPEEDING UP DATA LOADING OF BOTH SPARSE MATRIX AND VECTOR FOR SpMV ON GPUs 2433

[30] M. H. Mofrad, R. Melhem, Y. Ahmad, and M. Hammoud, “Multithreaded
layer-wise training of sparse deep neural networks using compressed
sparse column,” in Proc. 2019 IEEE High Perform. Extreme Comput.
Conf., IEEE, 2019, pp. 1–6.

[31] H. Li, H. Yokoyama, and T. Araki, “Merge-based parallel sparse matrix-
sparse vector multiplication with a vector architecture,” in Proc. 2018 IEEE
20th Int. Conf. High Perform. Comput. Commun.; IEEE 16th Int. Conf.
Smart City; IEEE 4th Int. Conf. Data Sci. Syst. (HPCC/SmartCity/DSS),
IEEE, 2018, pp. 43–50.

[32] S. Ruiter, S. Wolfgang, M. Tunnell, T. Triche Jr., E. Carrier, and Z. DeBru-
ine, “Value-compressed sparse column (VCSC): Sparse matrix storage for
redundant data,” 2023, arXiv:2309.04355.

[33] W. Ye, C. Huang, J. Huang, J. Li, Y. Lu, and Y. Jiang, “An integral-
equation-oriented vectorized spmv algorithm and its application on CT
imaging reconstruction,” in Proc. 2022 IEEE Int. Parallel Distrib. Process.
Symp., IEEE, 2022, pp. 773–783.

[34] M. Maggioni and T. Berger-Wolf, “Optimization techniques for sparse
matrix–vector multiplication on GPUs,” J. Parallel Distrib. Comput.,
vol. 93, pp. 66–86, 2016.

[35] J. Wong, E. Kuhl, and E. Darve, “A new sparse matrix vector multiplication
graphics processing unit algorithm designed for finite element problems,”
Int. J. Numer. Methods Eng., vol. 102, no. 12, pp. 1784–1814, 2015.

[36] M. Kreutzer, G. Hager, G. Wellein, H. Fehske, and A. R. Bishop, “A
unified sparse matrix data format for efficient general sparse matrix-vector
multiplication on modern processors with wide simd units,” SIAM J. Sci.
Comput., vol. 36, no. 5, pp. C401–C423, 2014.

[37] J. Zhang et al., “Efficient sparse matrix–vector multiplication using cache
oblivious extension quadtree storage format,” Future Gener. Comput. Syst.,
vol. 54, pp. 490–500, 2016.

[38] A. Dziekonski, A. Lamecki, and M. Mrozowski, “A memory efficient and
fast sparse matrix vector product on a GPU,” Prog. Electromagn. Res.,
vol. 116, pp. 49–63, 2011.

[39] J. W. Choi, A. Singh, and R. W. Vuduc, “Model-driven autotuning of sparse
matrix-vector multiply on GPUs,” ACM Sigplan Notices, vol. 45, no. 5,
pp. 115–126, 2010.

[40] H. Anzt et al., “Load-balancing sparse matrix vector product kernels on
GPUs,” ACM Trans. Parallel Comput., vol. 7, no. 1, pp. 1–26, 2020.

[41] J. Godwin, J. Holewinski, and P. Sadayappan, “High-performance sparse
matrix-vector multiplication on GPUs for structured grid computations,” in
Proc. 5th Annu. Workshop Gen. Purpose Process. Graph. Process. Units,
New York, NY, USA: ACM, 2012, pp. 47–56.

[42] L. Yuan, Y. Zhang, X. Sun, and T. Wang, “Optimizing sparse matrix
vector multiplication using diagonal storage matrix format,” in Proc. 2010
IEEE 12th Int. Conf. High Perform. Comput. Commun., IEEE, 2010,
pp. 585–590.

[43] J. Gao, W. Ji, Z. Tan, Y. Wang, and F. Shi, “TaiChi: A hybrid compression
format for binary sparse matrix-vector multiplication on GPU,” IEEE
Trans. Parallel Distrib. Syst., vol. 33, no. 12, pp. 3732–3745, Dec. 2022.

[44] W. T. Tang, W. J. Tan, R. S. M. Goh, S. J. Turner, and W.-F. Wong, “A family
of bit-representation-optimized formats for fast sparse matrix-vector mul-
tiplication on the GPU,” IEEE Trans. Parallel Distrib. Syst., vol. 26, no. 9,
pp. 2373–2385, Sep. 2015.

[45] A. Maringanti, V. Athavale, and S. B. Patkar, “Acceleration of conjugate
gradient method for circuit simulation using cuda,” in Proc. 2009 Int. Conf.
High Perform. Comput., IEEE, 2009, pp. 438–444.

[46] M. Maggioni, T. Berger-Wolf, and J. Liang, “GPU-based steady-state
solution of the chemical master equation,” in Proc. 2013 IEEE Int.
Symp. Parallel Distrib. Process. Workshops Phd Forum., IEEE, 2013,
pp. 579–588.

[47] A. Monakov and A. Avetisyan, “Implementing blocked sparse matrix-
vector multiplication on nvidia GPUs,” in Proc. Int Workshop on Embedded
Comput. Syst., Springer, 2009, pp. 289–297.

[48] N. Sedaghati, T. Mu, L.-N. Pouchet, S. Parthasarathy, and P. Sadayappan,
“Automatic selection of sparse matrix representation on GPUs,” in Proc.
29th ACM Int. Conf. Supercomput., New York, NY, USA: ACM, 2015,
pp. 99–108.

[49] Z. Du, J. Li, Y. Wang, X. Li, G. Tan, and N. Sun, “Alphasparse: Generating
high performance SPMV codes directly from sparse matrices,” in Proc. Int.
Conf. High Perform. Comput. Netw., Storage Anal., IEEE, 2022, pp. 1–15.

[50] T. A. Davis and Y. Hu, “The university of florida sparse matrix collection,”
ACM Trans. Math. Softw., vol. 38, no. 1, pp. 1–25, 2011.

[51] Y. Dotsenko, N. K. Govindaraju, P.-P. Sloan, C. Boyd, and J. Manferdelli,
“Fast scan algorithms on graphics processors,” in Proc. 22nd Annu. Int.
Conf. Supercomput., New York, NY, USA: ACM, 2008, pp. 205–213.

[52] M. Naumov, L. Chien, P. Vandermersch, and U. Kapasi, “Cusparse library,”
in Proc. GPU Technol. Conf., 2010, pp. 1–310.

Jinyu Hu received the BS degree from Central South
University, China, in 2020, and the MS degree from
University College London, U.K., in 2021. He is
currently working toward the PhD degree with the
Hunan University, China. His research interests in-
clude high-performance computing, scientific data
management, and parallel and distributed processing.

Huizhang Luo (Member, IEEE) received the BS and
PhD degrees in computer science from Chongqing
University, China, in 2012 and 2017, respectively. He
is currently an associate professor in Hunan Univer-
sity. Before that, he was a postdoctoral researcher
with the Department of Electrical and Computer
Engineering at NJIT. His research interests include
memory systems, high-performance computing, and
non-volatile memory.

Hong Jiang (Fellow, IEEE) received the BSc degree
in computer engineering from the Huazhong Uni-
versity of Science and Technology, Wuhan, China,
the MASc degree in computer engineering from the
University of Toronto, Toronto, Canada, and the PhD
degree in computer science from the Texas A&M
University, College Station, Texas, USA. He is cur-
rently chair and Wendell H. Nedderman Endowed
professor of Computer Science and Engineering De-
partment with the University of Texas at Arlington.
Prior to joining UTA, he served as a program director

with National Science Foundation (2013–2015) and he was at University of
Nebraska-Lincoln since 1991, where he was Willa Cather professor of computer
science and engineering. He has graduated 17 PhD students and supervised
20 post-doctoral fellows and visiting scholars. He is currently supervising/co-
supervising more than 10 PhD students and post-doc fellows. His present
research interests include computer architecture, computer storage systems
and parallel I/O, high-performance computing, Big Data computing, cloud
computing, performance evaluation. He is an associate editor of the IEEE
Transactions on Computers and recently served as an associate editor of the
IEEE Transactions on Parallel and Distributed Systems. He has more than 300
publications in major journals and international Conferences in these areas,
including IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS,
IEEE TRANSACTIONS ON COMPUTERS, PROCEEDINGS OF IEEE, ACM-TACO,
ACM-ToS, USENIX ATC, FAST, EUROSYS, ISCA, MICRO, SOCC, LISA,
SIGMETRICS, ICDE, DATE, ICDCS, IPDPS, MIDDLEWARE, OOPLAS,
ECOOP, SC, ICS, HPDC, INFOCOM, ICPP, etc., and his research has been
supported by NSF and industry.

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on November 28,2024 at 22:26:34 UTC from IEEE Xplore. Restrictions apply.

2434 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 35, NO. 12, DECEMBER 2024

Guoqing Xiao (Member, IEEE) is currently an asso-
ciate professor in computer science and technology
with the Hunan University (HNU), China. Before
joining HNU, he worked as a postdoctoral fellow with
the Data Systems Group of the David R. Cheriton
School of Computer Science, University of Waterloo,
Canada. His current research interests mainly include
parallel and distributed processing, high-performance
computing and supercomputing, artificial intelligence
and Big Data computing. He have published more
than 30 papers in peer-reviewed international journals

and conferences. He is a member of the CCF.

Kenli Li (Senior Member, IEEE) received the PhD
degree in computer science from the Huazhong Uni-
versity of Science and Technology, China, in 2003. He
is currently a Cheung Kong professor of computer sci-
ence and technology with Hunan University, the dean
of the College of Computer Science and Electronic
Engineering, Hunan University. His major research
interests include parallel and distributed processing,
high-performance computing, and Big Data man-
agement. He has published more than 250 research
papers in international conferences and journals such

as IEEE TRANSACTIONS ON COMPUTERS, IEEE TRANSACTIONS ON PARALLEL

AND DISTRIBUTED SYSTEMS, IEEE TRANSACTIONS ON CLOUD COMPUTING,
ICPP, ICDCS, etc. He serves on the editorial board of the IEEE TRANSACTIONS

ON COMPUTERS. He is an outstanding member of the CCF.

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on November 28,2024 at 22:26:34 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

