
IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 35, NO. 11, NOVEMBER 2024 1949

Beyond Belady to Attain a Seemingly Unattainable
Byte Miss Ratio for Content Delivery Networks

Peng Wang , Hong Jiang , Fellow, IEEE, Yu Liu , Member, IEEE, Zhelong Zhao , Ke Zhou , Member, IEEE,
and Zhihai Huang

Abstract—Reducing the byte miss ratio (BMR) in the Content
Delivery Network (CDN) caches can help providers save on the
cost of paying for traffic. When evicting objects or files of different
sizes in the caches of CDNs, it is no longer sufficient to pursue
an optimal object miss ratio (OMR) by approximating Belady
to ensure an optimal BMR. Our experimental observations sug-
gest that there are multiple request sequence windows. In these
windows, a replacement policy prioritizes the eviction of objects
with large sizes and ultimately evicts the object with the longest
reuse distance, lowering the BMR without increasing the OMR. To
accurately capture those windows, we monitor the changes in OMR
and BMR using a deep reinforcement learning (RL) model and
then implement a BMR-friendly replacement algorithm in these
windows. Based on this policy, we propose a Belady and Size Evic-
tion (LRU-BaSE) algorithm that reduces BMR while maintaining
OMR. To make LRU-BaSE efficient and practical, we address the
feedback delay problem of RL with a two-pronged approach. On
the one hand, we shorten the LRU-base decision region based on the
observation that the rear section of the cache queue contains most of
the eviction candidates. On the other hand, the request distribution
on CDNs makes it feasible to divide the learning region into multiple
sub-regions that are each learned with reduced time and increased
accuracy. In real CDN systems, LRU-BaSE outperforms LRU by
reducing “backing to OS” traffic and access latency by 30.05% and
17.07%, respectively, on average. In simulator tests, LRU-BaSE
outperforms state-of-the-art cache replacement policies. On aver-
age, LRU-BaSE’s BMR is 0.63% and 0.33% less than that of Belady
and Practical Flow-based Offline Optimal (PFOO), respectively. In
addition, compared to Learning Relaxed Belady (LRB), LRU-BaSE
can yield relatively stable performance when facing workload drift.

Index Terms—Byte miss ratio, content delivery network, rear
section, reinforcement learning, replacement algorithm.

Received 14 May 2023; revised 2 August 2024; accepted 27 August 2024.
Date of publication 30 August 2024; date of current version 9 September
2024. This work was supported in part by the Key Laboratory of Information
Storage System and Ministry of Education of China, in part by the National
Key Research and Development Program under Grant 2023YFB4502701, in
part by National Natural Science Foundation of China under Grant 62232007
and Grant 61821003, in part by National Natural Science Foundation of China
under Grant 61902135, and the in part by the Natural Science Foundation of
Hubei Province under Grant 2022CFB060. Recommended for acceptance by S.
Byna. (Corresponding author: Yu Liu.)

Peng Wang and Ke Zhou are with the Wuhan National Laboratory for Opto-
electronics, Huazhong University of Science and Technology, Wuhan 430074,
China (e-mail: wp_hust@hust.edu.cn; zhke@hust.edu.cn).

Hong Jiang is with the Computer Science and Engineering Department, Uni-
versity of Texas at Arlington, Arlington, TX 76019 USA (e-mail: hong.jiang@
uta.edu).

Yu Liu and Zhelong Zhao are with the School of Computer Science and
Technology, Huazhong University of Science and Technology, Wuhan 430074,
China (e-mail: liu_yu@hust.edu.cn; zhelongzhao@hust.edu.cn).

Zhihai Huang is with Tencent, Shenzhen 518000, China (e-mail: tommyhuang
@tencent.com).

Digital Object Identifier 10.1109/TPDS.2024.3452096

I. INTRODUCTION

THE object miss ratio (OMR) and the byte miss ratio (BMR)
are two key metrics in caching. The former measures

the quality of experience (QoE) while the latter directly influ-
ences the cost for cache service providers. In Content Delivery
Networks (CDNs) [1], [2], [3], [4], vendors typically pay for
data traffic proportionally to the amount of data transmitted.
As a result, they focus on reducing the BMR in caching. The
conventional approaches pursue a lower BMR by pursuing a
lower OMR through heuristic replacement algorithms since
data locality [5], [6], [7] can benefit both OMR and BMR
when objects in the cache are of similar size. However, since
objects in CDNs have various sizes, there is no guarantee
that the optimal BMR and optimal OMR will coincide. To
illustrate this, we provide a toy example. Consider an access
sequence shown in Fig. 1, where object-A is 1 MB and 4 MB in
size in Case 1 and Case 2, respectively, while the size of all other
objects is 1 MB in both cases. Using LRU [8], [9], Belady [10],
[11], and Belady-Size [12] on a 6 MB cache, we obtain the
eviction sequences, OMRs, and BMRs, where the LRU is a
classic heuristics cache replacement policy, the Belady is the
optimal cache replacement policy that evicts the objects with
the longest reuse distance, and the Belady-Size policy prioritizes
the eviction of the object with the biggest product of the reuse
distance and the object size. Comparing the BMR and OMR
results of Belady’s and Belady-Size’s with those of the ideal
case, we conclude that while Belady attains the minimum OMR,
it fails to guarantee the minimum BMR when object sizes are
different.

This phenomenon sparks our interest in minimizing BMR by
considering object size when using Belady. Note that previous
researchers attempted to reduce BMR by incorporating object
size into heuristic approaches [7], [13], [14], [15], [16], [17],
[18], [19], [20] where the replacement policies prioritize a pre-
defined size threshold, followed by the Belady approximation,
resulting in a trade-off between OMR and BMR. However, we
believe that there is room to reduce BMR while maintaining
OMR since we have observed that evicting objects within an
appropriate reuse distance range does not increase the OMR.
In other words, the OMR only increases if a replacement policy
cannot evict the object with the longest reuse distance before the
end of a request sequence window. During this request sequence
window, evicting objects that are large in size rather than in reuse
distance can achieve a win-win performance for both OMR and

1045-9219 © 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on November 28,2024 at 22:21:56 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-4972-1231
https://orcid.org/0000-0002-1477-9751
https://orcid.org/0000-0002-1964-9278
https://orcid.org/0009-0004-8322-3580
https://orcid.org/0000-0002-2161-8796
mailto:wp_hust@hust.edu.cn
mailto:zhke@hust.edu.cn
mailto:hong.jiang@uta.edu
mailto:hong.jiang@uta.edu
mailto:liu_yu@hust.edu.cn
mailto:zhelongzhao@hust.edu.cn
mailto:tommyhuang@tencent.com
mailto:tommyhuang@tencent.com

1950 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 35, NO. 11, NOVEMBER 2024

Fig. 1. Toy example—the phenomenon of Belady’s inability to guarantee the
minimum BMR when object sizes are different.

BMR (See Section III). Nevertheless, capturing this window by
traditional methods is difficult because it varies substantially by
different traces and different cache sizes.

To accurately capture this request sequence window, we em-
ploy reinforcement learning (RL) [21], [22], [23] and propose a
Belady and Size Eviction algorithm based on LRU (LRU-BaSE).
The RL’s Markov process can monitor the performance change
caused by adjacent replacement behaviors. The reward function
favors the behavior that maintains OMR while reducing BMR,
implicitly capturing the request sequence windows to achieve
a win-win performance for OMR and BMR. To tackle the
problem of feedback delay [24] in RL, we implement LRU-BaSE
using a two-pronged approach. First, we observe that the LRU
algorithm forces data with a relatively long reuse distance to be
concentrated in a rear section of the queue (See Section IV-A-1).
LRU-BaSE shortens the decision region from the entire queue
to this section, reducing its decision time. Second, we leverage
data locality to divide the learning time region into multiple
sub-regions based on tests. We then learn models for each
of these sub-regions (See Section IV-A-2). This narrows the
learning range for each model, lowering the training time with
accurate decisions. These tricks, combined with the lightweight
network, improve accuracy and efficiency.

Our evaluation of LRU-BaSE in real CDN systems shows that,
compared to the default cache algorithm (i.e., LRU), LRU-BaSE
can reduce “backing to OS” traffic by 30.05%. According to the
prices listed in [25], [26], it equates to an annual savings of
$795,000 in bandwidth costs. In addition, LRU-BaSE decreases
the average access latency and the tail latency at the 99.9th

percentile by 17.07% and 66.90%, respectively. Compared to the
state-of-the-art cache replacement algorithms on the simulator,
LRU-BaSE outperforms the competition in OMR and BMR
on public CDN traces. The BMR generated by LRU-BaSE is,
on average, 0.63% and 0.33% lower than the lower bound of
BMR (i.e., that of Belady and Practical Flow-based Offline Op-
timal (PFOO) [12], respectively). Finally, we mock a workload
drift [27] scene and demonstrate that LRU-BaSE is more robust
than Learning Relaxed Belady (LRB) [28] for obtaining superior
BMR.

II. BACKGROUND AND MOTIVATION

A. Lessons From Real Systems

QQPhoto is Tencent’s cloud service product, specifically
designed as an e-album solution within the context of CDNs. The

cache layer of QQPhoto is composed of the data center cache
(DC) and the outside cache (OC). OC is closer to clients, such
as local access, in terms of access latency, and helps improve
user experience quality. DC is located within the data center
to alleviate the traffic burden on its storage system. OC and
DC form a distributed cache to handle requests for photos of
different sizes, which is the typical structure of a CDN. In
practice, when a request fails to hit, it will be sent back to the data
center, forming the so-called “backing to OS (Original Server)”
traffic. The increasing of the traffic consumes costly data center
resources and results in performance degradation, such as WAN
bandwidth for OC, storage system I/O bandwidth for DC, and
increased latencies, etc. To deter it, the LRU algorithm is widely
deployed in the cache layer. As an effective approach, it evicts
the least recently accessed page based on the assumption that
pages used recently will likely be used again soon.

In August 2019, the daily download traffic for QQPhoto
services was 214.846 Gbps, and the daily “backing up to OS”
traffic was 73.166 Gbps. It implies a BMR of 34.06%. To further
reduce the “backing to OS” traffic, we tested S4LRU [8] which
is a cache replacement algorithm proven theoretically better
than LRU. S4LRU (or Segmented LRU) [8] enhances the basic
LRU by dividing cache pages into segments based on their
recency and promoting pages to higher segments upon repeated
access, thus balancing between recency and frequency for bet-
ter cache performance. However, the daily traffic increased to
88.197 Gbps instead. Meanwhile, we found that OMR decreased
from 32.81% to 31.77%. Changes in OMR and BMR are not
always consistent because the sum of the sizes of objects hit
is not always determined by the number of objects hit. This
counterintuitive phenomenon inspired us to pay attention to
the OMR-and-BMR relationship and how to reduce the “back-
ing to OS” traffic in CDNs by improving cache replacement
algorithms.

B. Belady is No Panacea for BMR

To explain the above counterintuitive phenomenon, we
demonstrate S4LRU’s improvement in OMR and BMR over
LRU through its accurate approximation of Belady. Belady, also
known as the Optimal Page Replacement Algorithm, replaces
the page that will not be used for the longest time in the
future, offering the lowest possible page fault rate. However,
it is impractical for real-world use due to its need for future
knowledge. As shown in Figs. 2 and 3, we present OMR, BMR,
and the distribution of reuse distances of victims at different
cache sizes, using the FIFO algorithm to display the order of
requests in the trace.

On the Tencent trace gathered from the workload described
in Section II-A, OMR and BMR at different cache sizes are
shown in Fig. 2(a). The longest reuse distance was divided into
10 sub-ranges, with each sub-range corresponding to a 10%
increment, e.g., [0.9, 1] for the sub-range of 90% to 100% of the
longest reuse distance. Fig. 3(a) to (c) display the distributions of
reuse distances of evicted objects, where the height of each bar
indicates the frequency of occurrence of evicted objects in the
corresponding sub-range. As shown in Fig. 2(a), S4LRU con-
sistently outperforms LRU in OMR and BMR at all cache sizes,

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on November 28,2024 at 22:21:56 UTC from IEEE Xplore. Restrictions apply.

WANG et al.: BEYOND BELADY TO ATTAIN A SEEMINGLY UNATTAINABLE BYTE MISS RATIO FOR CONTENT DELIVERY NETWORKS 1951

Fig. 2. BMR and OMR on Tencent and Wikipedia under different cache sizes
and cache algorithms.

except for 128 GB, where an anomaly occurs. Here, S4LRU’s
BMR is slightly higher than LRU’s BMR by 0.03%, while the
former maintains a 0.1% advantage over the latter in OMR.
Referring to these distributions, we discovered that S4LRU
consistently evicts more objects with the longest reuse distances
than LRU, despite the number of objects in [0.9, 1] being similar.
Further analysis of the statistics revealed that the reuse distances
of objects in [0.9, 1] are all the longest. Consequently, we believe
that, while S4LRU more accurately approximates the Belady
algorithm, it fails to produce an optimal BMR. To avoid bias
from the results on a single trace, we perform the same test on
the public trace, i.e., Wikipedia [28]. As shown in Fig. 2(b), the
relative performances of S4LRU and LRU on Wikipedia differ
from those on Tencent. LRU outperforms S4LRU in BMR at
all cache sizes, except for 32 GB. Although we can attribute
S4LRU’s inferiority to LRU to the underutilization of space
resources in S4LRU [8], [29], the algorithm that evicts the
most objects with the longest reuse distance is still S4LRU.
This yet again demonstrates that approximating Belady alone no
longer ensures an optimal BMR. A possible explanation for this
phenomenon is that the Belady algorithm tends to evict objects
with relatively large sizes since these objects tend to have greater
reuse distances [30]. Intuitively, this strategy is conducive to
absorbing more objects with relatively small sizes, albeit it is
not necessarily beneficial for BMR [7]. As a result, we believe
that approximating Belady can serve as a basis for achieving a
satisfying BMR, but for acquiring a superior BMR, one should
consider object sizes.

Regarding heuristic methods that use object size as a feature to
approximate Belady, some algorithms address the gap between
OMR and BMR by leveraging object size to reduce BMR [7],
[16], [17], [19], [20]. Abrams et al. [7] suggested that it is more
effective to retain many small objects rather than a few large
ones. They further discussed ”the number of bytes not sent”
for replacement policies in their subsequent works [13], [14].
The GreedyDual-Size [15] algorithm introduced the concept
of eviction cost, associating object sizes with BMR. Greedy-
Dual* [18] provided additional evidence that the gap between
BMR and OMR varies with different cache sizes. These efforts
demonstrate that the gap between OMR and BMR is not random
and is related to object size. Additionally, while Belady excels

at achieving the best OMR, it is no longer capable of providing
optimal BMR.

III. RATIONALE OF “BELADY WITH SIZE”

We believe that there is potential for further BMR reduction
based on Belady. Our analysis of existing heuristic-based cache
replacement policies, informed by both the Belady algorithm
and object size [13], [19], [31], suggests that they generally
follow a strategy of evicting the object with a relatively large
size to make room for caching more objects. They treat the OMR
and BMR as independent or adversarial objectives. The results in
Fig. 1 confirm that this strategy is not ideal for BMR. In addition,
learning-based replacement policies [24], [28], [32] learn by
labels crafted by reuse distances, albeit with features containing
object size. This largely results in only OMR being affected by
the object size. Ignoring BMR results in higher costs for web
service providers, whereas minimizing BMR by compromising
OMR leads to a lower quality of user experience [33], [34], [35].

Nevertheless, we believe that there is room for BMR to
decrease while maintaining OMR. Due to the continuity of
eviction behaviors, the object with the longest reuse distance
may not be replaced upon the current request but could be
replaced in the next or one of the next few requests, which
may not affect OMR. For example, in Case 2 shown in Fig. 1,
although the reuse distance of object-A is longer than that of
object-C, prioritizing the eviction of object-C does not increase
OMR. Based on this insight, we randomly evict one of the
top-N objects with the longest reuse distance when the request
miss occurs. The OMR curves on Tencent and Wikipedia at
different cache sizes are shown in Fig. 4, where the shadow
represents the upper and lower bound values under 500 repeti-
tions of the test. In addition to the trend of curves growing as N
increases, we observed some “flat” regions in the curves (e.g.,
N = 16 and N = 4 for Tencent and Wikipedia, respectively, at
a cache size of 32 GB). The existence of these regions confirms
our insight that evicting the longest-reuse-distance object upon
each request miss is not necessarily an absolute requirement for
optimizing OMR. As a result, we believe that BMR and OMR
have a chance to achieve a “win-win” outcome by judiciously
evicting an object that can lower BMR within a specific request
sequence window without increasing OMR, just as we evicted
object-C in Case 2 of Fig. 1. This approach may result in a
lower BMR than the result yielded by Belady. However, since
the “flat” region significantly changes with cache sizes or traces,
as shown in Fig. 4, it is difficult to capture this request sequence
window manually. Note that LRB [28] attempted to capture
this window by relaxing Belady’s range through an analysis of
limited data, but it is difficult for the pre-defined boundary to
accommodate possible workload drift [27]. We confirm this by
the experimental results in Section VII-F.

IV. METHODOLOGY

Dynamically identifying “flat” regions by monitoring request
behaviors is key to capturing the request sequence windows.
Intuitively, these windows should match the periodicity of the
request and be able to be detected by traditional heuristics. As

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on November 28,2024 at 22:21:56 UTC from IEEE Xplore. Restrictions apply.

1952 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 35, NO. 11, NOVEMBER 2024

Fig. 3. Reuse distance distribution of evicted objects under different cache sizes and distribution of object sizes on two traces. A to J respectively represent
intervals, i.e., sub-ranges [0, 0.1), [0.1, 0.2), [0.2, 0.3), [0.3, 0.4), [0.4, 0.5), [0.5, 0.6), [0.6, 0.7), [0.7, 0.8), [0.8, 0.9), and [0.9, 1].

Fig. 4. OMR by evicting any one of the top-N longest-reuse-distance objects.
This experiment is implemented under a warmed-up cache. The redline-marked
segments of the curves are the “flat” regions and also our desired request
sequence windows.

Fig. 5. Tencent—the number of user requests during the 24 hours, for the 30
days of the observed mouth. Wikipedia - the number of user requests during
the 24 hours, for the 15 days of the observed mouth. Each column corresponds
to a day, each row represents a particular hour of the day, and the color on a
given hour of a given day signifies the average request rate during that hour. The
darker the color, the lower the request rate.

shown in the left matrix of Fig. 5(a), we observe that the Tencent
trace has a stable daily periodicity in user request rate throughout
the given month. However, the existence of the window does
not depend on this periodicity. As shown in the right matrix of
Fig. 5(b), there is little evidence of this periodicity in Wikipedia.

With such different daily request behavior patterns, we have
to use a unified learning model to “perceive” the request dis-
tribution and identify “flat” regions. The learning model can
dynamically determine request sequence windows and actively
evict objects based on a joint consideration of Belady and object
sizes while reducing overhead and improving performance. Fur-
thermore, it aims to improve outcomes across varied workloads,
whether or not they exhibit periodicity.

A. Learning by the RL Model

As traditional classification models [36], [37] are insensitive
to temporal changes, they may not be sufficiently competent to
identify this window. To the best of our knowledge, Long Short-
Term Memory (LSTM) [38], Transformer [39], and Reinforce-
ment Learning (RL) models [21], [22] can achieve the purpose
of monitoring in the temporal domain. However, since it is an
NP-hard problem [12], we cannot establish criteria that relate to
BMR in a similar way to how the reuse distance relates to OMR,
resulting in a lack of labels to learn by LSTM and Transformer.
RL, on the other hand, can use BMR as a learning target directly.
For instance, LeCaR [21] and CACHEUS [40] decide to switch
between two replacement policies based on the change of OMR.
Nevertheless, RL models have a problem with feedback delay
and high training overhead. To solve this problem, in addition
to deploying the lightweight model structure, we narrow the
decision scope in the spatial space and learning range in the
temporal space via the distribution of longest-reuse-distance
objects.

1) Making Decision on the Rear Section: The LRU algo-
rithm promotes the object that is hit to the head of the queue
while leaving objects that have not been hit for a long time
and generally have long reuse distances to loiter at the rear
section of the queue. Note that our experimental analysis in

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on November 28,2024 at 22:21:56 UTC from IEEE Xplore. Restrictions apply.

WANG et al.: BEYOND BELADY TO ATTAIN A SEEMINGLY UNATTAINABLE BYTE MISS RATIO FOR CONTENT DELIVERY NETWORKS 1953

Fig. 6. Curve fitted from ECDF on Tencent and Wikipedia.

TABLE I
THE RESULTS OF EVICTING DATA RANDOMLY SELECTED IN THE REAR

SECTION (RS) AND IN THE ENTIRE QUEUE (EQ)

Section II-B reveals that this rear section is relatively narrow.
If we can accurately identify and estimate this rear section from
the queue, we can minimize the spatial domain input to the
RL model. This would narrow down the decision range while
lowering the OMR and the overhead. To verify this hypothesis,
we compute the cumulative distribution of the position of the
longest-reuse-distance objects under different cache sizes. We
define the eviction cumulative distribution function for candidate
objects (ECDF) as:

FX(x) = P (X ≤ x), (0 ≤ x ≤ 1)

where X = D(Od)/L(Q), Od denotes a candidate object, Q
represents the cache queue,D(Od) denotes the distance between
the location of Od and the end of Q, L(Q) = N represents the
size of Q (i.e., total number of objects Q can hold). According
to the ECDF values of FX(x) < 0.99999 over LRU at varying
cache sizes from 10 GB to 1024 GB, we fit the curve using the
logistic regression algorithm and show the curve in Fig. 6. The
results on both Tencent and Wikipedia show that as the cache
size grows, the conjectured rear section shrinks in proportion
to the entire queue. However, when the cache size exceeds
256 GB, the proportion remains stable at 1%.

To demonstrate that the objects in the rear section are more
deserving targets for eviction, we compare the performance of
the BMR and OMR yielded by evicting the objects randomly
selected in the entire queue (EQ) versus in the rear section (RS).
Table I shows that the decision on RS (i.e., 1% of EQ) yields
better BMR and OMR than that on EQ. We attribute these results
to the higher density of “right” objects in RS than that in EQ.

As a result, we can train and make decisions on the data
sampled in RS, trading off between efficiency and precision in
a time-sensitive environment. Moreover, recording and learning
data in RS greatly reduces the memory footprint compared to
doing that in EQ. Table II shows the training and decision time
on RS and EQ using the Deep Q-Learning (DQN) [41] model
at 128 GB and 256 GB cache sizes. As expected, the lower the

TABLE II
TRAINING TIME (TT) AND DECISION TIME (DT) ON THE REAR SECTION (RS)

AND THE ENTIRE QUEUE (EQ) AT 128 GB AND 256 GB

Fig. 7. Global and local sampling methods.

dimensionality of the input, the shorter the training and decision
time.

2) Sampling for Proper Learning Ranges: To further reduce
training time on the rear section, we focus on the sampling strat-
egy to eliminate unpromising training data. Note that sampling
can also address the issue of RL’s inability to capture uniform
strategies and make accurate decisions due to learning from large
training data sets that contain multiple behavior patterns. To
this end, we have designed global and local sampling methods.
As shown in Fig. 7, global sampling selects request data from
the entire trace at intervals to form sampled data, while local
sampling selects consecutive requests from sampled data to
form multiple training data sets. We require that the distribution
of sampled data approximates the requested distribution of the
original trace. In addition, each training data set must exhibit
behavioral or data locality, i.e., it must perform well using similar
strategies in a defined time region.

To verify the validity of our sampling methods, we selected
Day 3 from the Tencent trace as learning data, where Day 3
contains 1 billion requests. We sampled from these requests
to form training data sets and train the DQN model, and we
used the model to estimate the requests for Day 4 on the
128 GB cache. First, we determined the sampling rate of 1

100
according to the optimal BMR. Then, we used this sampling
rate to gather a sampled trace. To determine local sampling, we
sliced the training data into multiple non-overlapping data sets
with the same time span and trained the model for each data
set using the DQN model. We independently repeated the above
tests 1000 times and showed the average results in Fig. 8.

The shorter the time span, the shorter the average training
time, and the smaller the variance of BMR, as shown in Fig. 8.
Note that we cannot tolerate overlapping model training, i.e., the
model’s training duration is longer than the learning range’s time
span, due to limited computing resources used for updates (i.e.,
online training). Consequently, we retrain each model within the
learning range’s time span. As shown in Fig. 8, a 6-hour time
span is the optimal scheme. In addition, we tested the time spans
for the following 6 days and obtained similar results, but we did
not show them due to space limitations. To further determine the

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on November 28,2024 at 22:21:56 UTC from IEEE Xplore. Restrictions apply.

1954 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 35, NO. 11, NOVEMBER 2024

Fig. 8. Time span tests on Tencent and Wikipedia by the DQN model. TCT
and TT represent the training convergence time and training time using CPU,
respectively.

TABLE III
BMR AND OMR WITH DIFFERENT BEGINNING TIMES

proper time regions, we adjusted the beginning time of the time
span based on the periodicity and showed the results in terms of
BMR and OMR in Table III.

Based on these results, we confirmed that 2 a.m. is the best
beginning time for Tencent. Reviewing Fig. 5, it’s clear that the
number of requests per hour in each time region is close (small
chromatism) using this beginning time. Hence, we prefer to train
four models for each day, with each model’s training data repre-
senting requests in 6 hours and beginning at 2 a.m. In addition,
while the Wikipedia trace does not have a similar periodicity
as Tencent, we still arrive at a similar conclusion. As shown in
Fig. 8, the best performance occurs with a 4-hour or 6-hour time
span. Using these time spans, we display the performance at
different beginning times in Table III and conclude that the best
performance is achieved by beginning at 5 a.m. These results
are exciting because they confirm that the selection of time span
and start point is beneficial for using RL. Moreover, this choice
is feasible and general for all traces.

B. Representative Learning Data

The final issue for RL is to determine which periodic data is
most representative. In the above verification, we selected the
data from 24 hours ago as learning data (i.e., training data on Day
3 for Day 4) based on the data locality. However, after observing
the request distribution in Fig. 5, we found that data from a
week ago more precisely matches the target data. Therefore, we
compared the learning effects of using data from 24 hours ago
and a week ago on Tencent. We trained the data of Day 3 and
Day 9 using DQN to make decisions for the requests of Day
10, and we trained the data of Day 13 and Day 19 to make

TABLE IV
LEARNING RESULTS OVER DIFFERENT PERIODIC DATA

TABLE V
DESCRIPTION OF THE VARIABLES AND PARAMETERS USED IN SECTION V

decisions for the requests of Day 20, which differ significantly
from their counterparts on Day 10. As shown in Table IV, using
24-hour-old data as learning data yields better results in both
BMR and OMR. We believe that data locality plays a key role.
Meanwhile, as shown in Fig. 5(a), the results on Wikipedia also
show that using 24-hour-old data is the best choice. Furthermore,
using 24-hour-old data can reduce the space overhead required
to save 1-week-old data.

V. DESIGN OF LRU-BASE

Based on the observations and analysis presented in previous
sections, we propose an LRU-based Belady algorithm with size
eviction, called LRU-BaSE, using the RL model. When a request
hits its target object in the cache, the caching system promotes
the object using the LRU algorithm based on recency. If the
request is missed, the caching system uses the learned model’s
policy to complete the eviction and replacement processes. To
make it easier for the reader to understand, we have summarized
all the variables and parameters in this section in Table V.

A. Learning Features and Training Data

For the learning features, we select frequency, reuse dis-
tance, reuse time and object size [12], [42] from the content of
the past request information. Frequency counts the number of
times an event occurs. On the other hand, reuse distance and
reuse time measure the number of objects and the duration,
respectively, between two consecutive accesses to a particular
object. Note that reuse time is important for perceiving reuse
behavior over time. In addition, we include object size in the set
of learning features because photos can have different sizes.

In the implementation, we extract the training data from
log files using the reservoir sampling approach [43], [44] and
transform it into vectors. Specifically, we extract all unique IDs
and sample 1

100 of the IDs to form an ID set. Based on this ID set,

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on November 28,2024 at 22:21:56 UTC from IEEE Xplore. Restrictions apply.

WANG et al.: BEYOND BELADY TO ATTAIN A SEEMINGLY UNATTAINABLE BYTE MISS RATIO FOR CONTENT DELIVERY NETWORKS 1955

Fig. 9. The architecture of LRU-BaSE.

we sequentially extract the final training data. To fill the elements
of the training data vectors, we tally the number of times an
object in the queue is hit and label this number as frequency.
We calculate both reuse distance and reuse time, labeling them
according to request order and timestamp, respectively. Note
that we control the object size distribution of the training data
in this procedure to approach the object size distribution of the
original trace.

B. LRU-BaSE Architecture

We use DQN [41] as the backbone of the architecture be-
cause object ID is a discrete value. We attempted to compute
fine-grained probabilities for eviction using the A3C [45] or
DDPG [46] method, but this did not improve performance and
increased the parameter footprint. DQN uses neural networks
to learn the Q-score [47] produced by continuous decisions.
To ensure efficient decision-making, we configure a lightweight
network with only one hidden layer of 512 neurons. The action
space in LRU-BaSE is the rear section of the cache queue
described in Section IV-A-1, and an agent module is configured
to learn the model and make decisions on this rear section. The
architecture is shown in Fig. 9.

1) Modeling: The LRU-BaSE architecture incorporates
DQN to reflect six key elements, i.e., environment, state, reward,
policy, action, and agent, as illustrated in Fig. 9 and described
below.

Environment: Environment is the concrete caching system. It
is not only the entity of the cache queue but also generates the
state and the performance after each decision.

State: State, denoted by s, is represented by the feature vector
of the rear section in LRU-BaSE, which is an input to agent.

Reward: Reward is a scalar denoted as r. It is calculated by a
function that defines the expectation for performance changes.
Generally, if the current performance is better than the last
performance, the Reward will be positive, otherwise, it will be
negative (See Section V-B-2).

Policy: Policy is a function, i.e., a network with parameters,
that transforms a state into action. In LRU-BaSE, the policy is
learned by the network, state and reward.

Action: Action is a scalar denoted as a, which represents the
index of the victim object in the queue array. We denote the
action as at corresponding to the state st.

Agent: Agent is a black box consisting of policy. Like a brain,
it inputs the state to the network, adjusts the parameters by the
reward, and outputs the action to the environment. Note that

TABLE VI
THE CHANGES OF OMR AND BMR UNDER DIFFERENT HYPER-PARAMETERS

OF THE KEY-STEP REWARD FUNCTION

during online decision at runtime, the agent merely executes the
process of input and output.

2) Key-Step Reward Function: The reward function is crucial
in RL. We desire that the function can encourage the behav-
ior that maintains OMR and minimizes BMR. In addition, to
minimize the feedback delay, RL in the cache can only decide
one step. Thus, we design the key-step reward function focusing
on the local benefits rather than the global ones. Assume that
Bi and Oi represent BMR and OMR respectively at the i-th
step, ΔBi =

−Bi+Bi−1

Bi−1
, ΔOi =

−Oi+Oi−1

Oi−1
, ΔB0

i = −Bi+B0

B0
,

ΔO0
i = −Oi+O0

O0
, and ΔDi = ΔBi −ΔOi. The reward func-

tion is described below.

r = α
ΔB0

i

1−ΔBi
+ β

ΔO0
i

1−ΔOi
+ γΔDi, (1)

where α+ β + γ = 1. In theory, we require α = β > γ to give
priority to the consistent reduction of OMR and BMR, and then
to encourage a faster decline for BMR. When r < 0, DQN will
terminate the learning process and discard this transition. If r ≥
0 and ΔDi > 0 , DQN will terminate the learning process and
store this transition, which is our key step. Otherwise, DQN will
continue the learning process in the current episode.

With a cache size of 1024 GB, we test OMR and BMR at
different settings of α, β, and γ on Tencent and Wikipedia.
According to the results shown in Table VI, we determine that
α = β = 0.4 and γ = 0.2 is a desired setting.

3) Model Usage: Assume that the set of objects in the rear
section is O = {o1, . . ., ok, . . ., oN}, where ok denotes the k-th
object and the size of the rear section is equal to N.

Training: Assume that the cache queue is full and replacement
by LRU has occurred at least 1000 times. When a new object
is loaded into the cache and the object oN+1 is loaded into
the rear section, the environment selects {o1, o2, . . ., oN} to
participate in training. With features from Section V-A, state
st is input to the agent. The agent learns the policy by the
style of DQN, outputs action by the policy, and informs the
environment which object should be evicted. The environment
will generate a new state and reward after eviction. The state
and reward will be input into the agent to train a new policy. A
new action will be generated by the new policy and a new state
will be produced from the environment. This cycle will continue
until the termination requirement is satisfied. The training result
(i.e., policy) of each model will be saved as a 512-dimensional
floating-point vector.

Decision: With a trained policy, the current state gathered
from the rear section is input into the agent, and the agent

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on November 28,2024 at 22:21:56 UTC from IEEE Xplore. Restrictions apply.

1956 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 35, NO. 11, NOVEMBER 2024

Fig. 10. The flow diagram of LRU-BaSE. The timeline where “Time” is
located represents the time regions for training and executing the model, whereas
the timeline where “Learning range” is located represents the time regions of
the training data.

outputs an action. According to this action, the system selects
an object to evict from the cache queue. Specifically, the agent
only outputs the index corresponding to the action that acquires
the maximum score. The index is equal to 0 when the object is
at the end of the queue. Environment locates the object via the
index and evicts it. Since the traversing using a key is omitted,
the decision is efficient.

Update: To maintain the model’s reliability by data locality,
we must update the model by training the data from 1 d ago. To
maintain decision-making consistency, the training process must
be continuous, and in parallel with another model that is making
decisions. Since each model’s training time does not exceed
the time span, CPU resources outside of cache running and
decision-making are sufficient to maintain the update process.
When it comes to another time region, the corresponding policy
transfers to the current model. We describe the detailed process
in Section V-C.

C. Workflow

Based on the above design, we show the workflow of LRU-
BaSE in Fig. 10. The training process is depicted in parallel
to the decision process along the timeline. T-i represents the
LRU-BaSE model used for training the data generated in the
i− th time region (i.e., S a.m. to S + i×ΔT a.m.) while D-i
represents another LRU-BaSE model used for making decisions
on the i− th time region. The parameters (i.e., the policy) of D-i
on Today are inherited from the parameters of T-i on Yesterday. T-
1 begins training when entering the 2nd time region because the
requests in the 1st time region have already been completed and
collected. D-2 makes replacement decisions and produces the
index of eviction candidates at the same time. T-2 begins training
when entering the 3nd time region with the initial parameters of
T-1. Meanwhile, D-3 begins to exercise decision-making. In this
order, when the 1st time region of today arrives, D-1 makes de-
cisions after updating the policy to that of T-1, which was trained
one day ago. The update time is within 1s, and LRU takes over
the replacement during this time. Next, T-1 retrains its policy at
the 2nd time region. D-2 updates its policy from T-2 and then
makes decisions. The whole process will repeat. Note that there
is only one training model and one decision model. Training and
decision in different time regions require only corresponding
inputs and policies. As shown in Fig. 10, the training process

is separate from the decision-making process, with the latter
consuming nearly negligible computing resources. The training
process can be designed for offline use, thereby not impacting
the performance of the live network.

D. Parallel Decision

As shown in Fig. 10, the training and decision processes are
performed on a single CPU core continuously, resulting in a high
CPU resource demand. In a real system implementation support-
ing compatibility with multi-threaded data access and avoiding
consistency problems, we propose a parallel decision scheme for
LRU-BaSE, with a multi-threaded execution approach working
on multiple CPU cores for the replacement policy to ensure am-
ple computational resources and online efficiency. For example,
the OC layer of QQPhoto is deployed on a CPU with 56 cores
and works with multiple threads, where one thread is used for
data gathering and cleaning, another thread is used for model
training, and the rest of the threads are used for data access from
users.

We update the action to a vector that consists of the index
sequence of the objects recommended for eviction, sorted in de-
scending order based on their likelihood of eviction. Note that the
likelihood of eviction stems from the Q-scores of object ID in the
rear section. Generally, we will set the dimension of the vector
to be equal to the maximum number of threads. When a batch
of threads conducts eviction operations, LRU-BaSE will delin-
eate the top-T indexes from the vector for eviction, where T is
equal to the number of threads. By parallelizing eviction opera-
tions and avoiding multiple waits for DQN’s recommendations,
this scheme helps to ensure efficiency in real systems.

VI. DEPLOYMENT AND PERFORMANCE OF LRU-BASE ON

REAL SYSTEM TDC

A. Deployment

Tencent Disk Cache (TDC) is an SSD-based disk cache
system of Tencent. The system already has 3000+ physical ma-
chines online that provide large-capacity and high-performance
distributed key-value cache service to 2500+ businesses, in-
cluding QQPhoto. TDC consists primarily of two modules:
Cell Master and Cache Server. The Cell Master, as a resource
management module, is responsible for managing the routing
information of the whole system, periodically detecting the
running status of each server, and receiving the statistical in-
formation reported by each server. The Cache Server is the data
storage and processing engine, and its prototype is a storage
node based on MCP++, multi-ccd/multi-smcd process models,
raw disk, inode, and asynchronous disk I/O technologies(e.g.,
libaio/SPDK). It is used for storing and processing business
data, i.e., objects, where the deployed GPUs can achieve data
processing. On the top layer of the disk, a memory cache stores
the keys and indexes of objects in addition to the learning
optimization processes described in Section IV, where each
process works on exclusive memory space and the index in the
memory cache is in perfect sync with the objects on the disk. We
replace LRU with LRU-BaSE on the memory cache rather than

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on November 28,2024 at 22:21:56 UTC from IEEE Xplore. Restrictions apply.

WANG et al.: BEYOND BELADY TO ATTAIN A SEEMINGLY UNATTAINABLE BYTE MISS RATIO FOR CONTENT DELIVERY NETWORKS 1957

Fig. 11. Changes in performance and overhead of TDC after the online deployment of LRU-BaSE. LRU was replaced by LRU-BaSE at 24:00 on Day 7. The
purple and red dashed lines represent the average values of LRU’s results in 7 days and LRU-BaSE’s results in 7 days, respectively. (a) and (b) represent performance
measured from the overall system, while (c) and (d) represent overhead and performance measured from a physical machine randomly selected from the system.

on the disk, since it helps the endurance of SSDs by reducing
write operations due to frequent updates to the index. In addition,
due to the data periodicity characteristics shown in Fig. 5,
deploying LRU-Base to a specific application only requires
analysis for a fixed period. In addition to the parameters listed
in Table V, there are several key parameters in the real system
Time-Division Controller (TDC). First, the value range of the
Rear Section (RS) shown in Fig. 6 is 1‰ of the Entire Queue
(EQ) in the actual environment. Second, the starting time S
shown in Fig. 10 is 0 a.m. Third, the interval between the training
model (T-i) and the decision-making model (D-i), as shown in
Fig. 10, is 1 d. Lastly, ΔT equals 6 hours.

B. Performance

As shown in Fig. 11(a) and (b), we measured the performance
changes in “backing to OS” traffic and average user access
latency from the monitor system. After deploying LRU-BaSE,
the average “backing to OS” traffic dropped by 31.96 Gbps
(30.05%), and the average user access latency dropped by
28.75 ms (17.07%). Furthermore, the request tail latency was
reduced from 1.45s to 0.48s at the 99.9th percentile, or 66.90%.
We attribute this result to the judicious eviction of large files
by LRU-BaSE. There is a hot event emerging on Day 12 at
10 a.m. Although the “backing to OS” traffic spiked for a
moment, it quickly fell back with LRU-BaSE’s online learning
and decision-making. In addition, since Day 6, Day 7, Day 13,
and Day 14 are weekends, there were more requests for the same
data, resulting in system congestion and fluctuations in the user
access latency during these periods.

Without LRU-BaSE, an administrator might overprovision re-
sources. This involves expanding equipment capacity to manage
increased traffic and then removing the excess equipment when
traffic decreases. This approach could lead to increased labor
and equipment costs. Moreover, as the cache space of TDC is
about 3000TB, adding about 100TB of SSD can only achieve
a 1% reduction in OMR. As shown in Table VII, LRU-BaSE
can reduce OMR and BMR by 24.3% and 32.3%, respectively.
While LRU-BASE has better BMR and OMR than LRU, its
execution efficiency is lower. Therefore, it achieves nearly the
same throughput as LRU. Although LRU-BaSE will consume

TABLE VII
IMPORTANT METRICS FOR TDC(LRU) AND TDC(LRU-BASE)

more of TDC’s relatively plentiful CPU resources, it can save
$795,000 per year in bandwidth costs [25], [26].

C. Overhead

We evaluated the effectiveness of LRU-BaSE by measuring
its overhead during the same period as Section VI-B.

CPU Utilization: As shown in Fig. 11(c), the average CPU
utilization of all devices was 29.41% before the LRU-BaSE was
deployed and increased to 36.42% afterward, where the peek
CPU utilization observed was 38.77%. Since LRU-BaSE keeps
the CPU utilization within 50%, it does not affect the system
stability.

Throughput: As shown in Fig. 11(d), the change in average
throughput is from 35.41 Mbps to 34.62 Mbps.

Memory: LRU-BaSE uses an extra 751 MB RAM for storing
model-related metadata such as network structure parameters
and policy parameters. In addition, the extra memory is used to
store the learning data comprised of the timestamp (long long
int, 8 Bytes), object key (string, 16 Bytes), and size (long int, 4
Bytes). Given the 18 billion inodes in the system, the required
capacity is 48 MB. Based on this, we conclude that the total
additional memory overhead for LRU-BaSE is 799 MB or 5.94%
of the inherent consumption. This additional capacity can only
bring less than a 0.001% drop in OMR and BMR when used
directly as a memory replenishment cache for LRU.

VII. EVALUATION

A. Evaluation Methodology

Traces and Warmup Traces: Our evaluation uses CDN
traces from three CDNs, two of which, Wikipedia [28] and

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on November 28,2024 at 22:21:56 UTC from IEEE Xplore. Restrictions apply.

1958 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 35, NO. 11, NOVEMBER 2024

TABLE VIII
SUMMARY OF THE THREE TRACES THAT ARE USED THROUGHOUT THE

EVALUATION

CDN-Q [44], are open source, and the third, Tencent is cap-
tured from a real-world production system. Each experiment
below allows for a warmup period during which no metrics are
recorded. The end of the warmup period is defined by the time
when BMR is stable. We list the number of warmup requests for
different traces in Table VIII.

State-of-the-Art Algorithms: LRU-BaSE is founded on the
classic LRU algorithm. It considers the size of objects and
employs RL technology to select objects on the Rear Section
(RS) for elimination, achieving a win-win situation for BMR and
OMR. Therefore, we compare LRU-BaSE with 16 state-of-the-
art algorithms, including the classic, size-aware, and machine-
learning-based (ML-based) cache algorithms. Note that for the
ML-based cache algorithms, the deployment will be modified
according to the configuration in related papers combined with
the workload in this paper to ensure better results. Results of
Belady [10] and PFOO [12] are deemed as the lower bounds
of OMR and BMR, respectively. Although PFOO requires all
information about traces in advance and does not always achieve
optimal BMR, PFOO has been shown to achieve a lower BMR
than others.

Simulator and Testbed: We use the DQN model1 to implement
LRU-BaSE on the LRB simulator.2 The execution of LRU-BaSE
is divided into three parts. We first create a cache environment
with a process consisting of parameter initialization, attribute
replacement, and reward function feedback. Second, the DQN
model deploys the network structure, the learning function, and
the replacement interface. Finally, data processing (e.g., the rear
section and time regions) and training are implemented. The
simulator runs on a device with a 56-core 2.40 GHz CPU, 32
GB of RAM, and a 6 TB SSD. In addition, we use the simulator to
integrate the aforementioned state-of-the-art algorithms for fair
comparisons. In addition to the parameters listed in Table V,
several key parameters exist. First, the value range of the Rear
Section (RS), as shown in Fig. 6, is 1% of the Entire Queue
(EQ) in the actual environment. Additionally, the starting time
S shown in Fig. 10 is 0 a.m., and the interval between the training
model (T-i) and the decision-making model (D-i), also shown
in Fig. 10, is 1 d. Note that the data scale on the simulator is
much smaller than that in the actual environment. To facilitate
experimentation, the value of ΔT is set to 1 d.

1https://github.com/MorvanZhou/PyTorch-Tutorial/blob/master
2https://github.com/sunnyszy/lrb

Fig. 12. Comparisons of Belady, PFOO, and LRU-BaSE in BMR and OMR
at different cache sizes on three traces.

B. LRU-BaSE Versus Belady and PFOO

As shown in Fig. 12, the BMRs of LRU-BaSE are, by and
large, superior to the lower bound, i.e., the BMRs of Belady and
PFOO. When the cache size equals 64 GB, the improvement over
Belady and PFOO is 0.7% and 0.7%, respectively, on Tencent;
0.2% and 0.1%, respectively, on Wikipedia; and 1% and 0.2%,
respectively, on CDN-Q. When the cache size equals 128 GB,
the corresponding improvements are 0.8% and 0.8%, 0.2% and
0.06%, 1%, and 0.2%. When the cache size equals 256 GB, the
corresponding improvements are 1% and 1%, 0.3% and 0.04%,
1% and 0.2%. In addition, the average OMR of LRU-BaSE over
the three cache sizes is 0.53%, 0.48%, and 1.74% higher than
that of Belady on Tencent, Wikipedia, and CDN-Q, respectively;
is 0.54%, 0.16%, and 1.01% lower than that of PFOO, respec-
tively. We believe that the reason for LRU-BaSE’s superiority
is twofold. First, LRU-BaSE is extremely close to Belady in
reducing BMR by hitting more data. Second, LRU-BaSE selects
a BMR-friendly eviction policy while ensuring OMR. Since
both Belady and PFOO need all the information about the trace
in advance, LRU-BaSE is the first algorithm that dynamically
senses the trace to attain a seemingly unattainably low BMR,
beyond the lower bound of Belady.

C. LRU-BaSE Versus Classic Algorithms

The classical cache algorithms compared in this section in-
clude LRU, S4LRU [8], ARC [48], LRUK [49], LFUDA [50],
and S3FIFO [51]. As shown in Fig. 13, in BMR and OMR on two
open-source traces (i.e., Wikipedia and CDN-Q), LRU-BaSE
is superior to the other six classical algorithms. As shown
in Fig. 13, on Wikipedia, S3FIFO yields the optimal perfor-
mance in the six classical algorithms. When the cache space is
64 GB, the BMR and OMR of LRU-BaSE are reduced by 37.2%
and 14.2%, respectively, compared to S3FIFO. As shown in
Fig. 13, LFUDA is the best-performing classical algorithm on
CDN-Q. LRU-BaSE reduces 21.8% in BMR and 12.1% in OMR
compared to LFUDA at 64 GB of cache space. In addition,
although the benefits brought by LRU-BaSE gradually decrease
with the gradual increase in cache space, it is still superior to all

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on November 28,2024 at 22:21:56 UTC from IEEE Xplore. Restrictions apply.

https://github.com/MorvanZhou/PyTorch-Tutorial/blob/master
https://github.com/sunnyszy/lrb

WANG et al.: BEYOND BELADY TO ATTAIN A SEEMINGLY UNATTAINABLE BYTE MISS RATIO FOR CONTENT DELIVERY NETWORKS 1959

Fig. 13. Comparisons of LRU-BaSE and six classical cache algorithms in
terms of BMR and OMR at different cache sizes on three traces.

Fig. 14. Comparisons of LRU-BaSE and six classical cache algorithms in
terms of peak CPU utilization, peak memory, and transactions per second (TPS)
at different cache sizes on three traces.

classical algorithms. Note that TDC provides services for multi-
ple applications mentioned in Section VI-A, and the workloads
of different applications are mixed. Due to LRU’s inability to
adapt to varying workloads, it tends to underperform in mixed
workload scenarios. However, in this experiment, we’re dealing
with a simple workload, which is why LRU’s performance is
relatively satisfactory.

In our opinion, the reasons for this phenomenon are as fol-
lows. First, with the increase of cache space, it is normal for
the improvement of the algorithm to reduce gradually. For the
simulation test, the size of the working set is certain. The larger
the cache space, the more working set data can be cached while
the impact of the algorithm becomes less. Second, LFUDA
yields the best performance in classical algorithms on CDN-Q
because LFUDA is designed based on access frequency. The
distribution of requests in the CDN-Q trace is uneven where
the difference in the access frequency of different objects in the
CDN-Q trace spans 4-5 orders of magnitude. Therefore, LFUDA
is more suitable. Finally, the dominance of classical algorithms
varies on different data sets, which stems from the fact that
various algorithms have distinct sensitivities to the perception
of different features in a trace.

In addition, as shown in Fig. 14, in terms of CPU utilization,
the result of LRU-BaSE on the simulator is only 0.9% higher
than that of LRU. We attribute it to the Rear Section mentioned
in Section IV-A-1, which greatly reduces the decision space

Fig. 15. Comparisons of LRU-BaSE and six size-aware algorithms in terms
of BMR and OMR at different cache sizes on three traces.

of reinforcement learning, and the Key-Step Reward Function
in Section V-B-2 also greatly reduces the iterative process of
reinforcement learning. Although the peak memory is 1.4 GB
higher than that of LRU, compared to S3FIFO, the peak memory
of LRU-BaSE is 0.9 GB lower. LRU-BaSE’s lower memory us-
age benefits from using only the previous day’s data for training
and making decisions for the next day’s data, as mentioned in
Section V-C. Thus, only a small amount of training data needs
to be saved. Finally, as shown in Fig. 14, LRU-BaSE’s TPS is
only lower than that of LRU.

D. LRU-BaSE Versus Size-Aware Algorithms

The size-aware cache algorithms compared in this section in-
clude ThLRU [52], ThS4LRU [52], GDSF [53], GDWheel [54],
LHD [42], and AdaptSize [4]. As shown in Fig. 15, LRU-BaSE
outperforms other size-aware algorithms on two open-source
traces. On Wikipedia, when the cache space is 64 GB, among
the six size-aware algorithms, the best BMR is yielded by
ThS4LRU, while the worst BMR is yielded by GDWheel. Com-
pared to the BMR of ThS4LRU, LRU-BaSE’s BMR is reduced
by 50.7%, and compared to the BMR of GDWheel, LRU-BaSE’s
BMR is reduced by 68.0%. In the OMR, the result of LRU-BaSE
is further reduced by 3.3% based on the best-performing Adapt-
Size, and by 40.5% based on the worst-performing ThS4LRU. In
addition, on CDN-Q, when the cache space is 64 GB, among the
six size-aware algorithms, the best BMR belongs to ThS4LRU,
and the worst BMR belongs to LHD. Compared to the BMR
of ThS4LRU, LRU-BaSE’s BMR is reduced by 25.6%, and
compared to the BMR of LHD, LRU-BaSE’s BMR is reduced by
43.8%. In the OMR, the result of LRU-BaSE is further reduced
by 6.1% based on the best-performing GDSF, and by 16.2%
based on the worst-performing ThS4LRU. As shown in Fig. 15,
the current size-aware algorithm cannot obtain dominated BMR
and OMR at the same time. However, LRU-BaSE can realize
the win-win situation between BMR and OMR described in
Section III.

As shown in Fig. 16, the CPU utilization of LRU-BaSE
approximates that of AdaptSize and others. In terms of memory

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on November 28,2024 at 22:21:56 UTC from IEEE Xplore. Restrictions apply.

1960 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 35, NO. 11, NOVEMBER 2024

Fig. 16. Comparisons of LRU-BaSE and six size-aware algorithms in terms
of peak CPU utilization, peak memory, and transactions per second (TPS) at
different cache sizes on three traces.

Fig. 17. Comparisons of LRU-BaSE and six ML cache algorithms in terms of
BMR and OMR at different cache sizes on three traces.

consumption, LRU-BaSE is moderate among the compared
methods. The peak memory is 1.8 GB higher than that of ThLRU
and 1.5 GB lower than that of LHD. As shown in Fig. 16,
LRU-BaSE is second only to ThLRU in transaction throughput.

E. LRU-BaSE Versus ML Cache Algorithms

The cache algorithms based on machine learning include
LRB [28], CACHEUS [40] (the updated version of LeCaR [21]),
GL-Cache [55], and UCB [56]. As shown in Fig. 17, LRU-BaSE
outperforms the ML-based algorithms in both BMR and OMR.
On Wikipedia, when the cache space is 64 GB, among the six
ML algorithms, the best BMR is yielded by GL-Cache, while
the worst one is yielded by UCB. Compared to the BMR of GL-
Cache, LRU-BaSE’s BMR is reduced by 29.9%, and compared
to the BMR of UCB, LRU-BaSE’s BMR is reduced by 50.8%. In
the OMR, the result of LRU-BaSE is further reduced by 19.5%
based on the best-performing GL-Cache, and by 37.6% based on
the worst-performing UCB. In addition, on CDN-Q, compared
to the BMR of GL-Cache, LRU-BaSE’s BMR is reduced by
17.9%, and compared to the BMR of UCB, LRU-BaSE’s BMR
is reduced by 29.3%. In the OMR, the result of LRU-BaSE is fur-
ther reduced by 9.8% based on the best-performing GL-Cache,
and by 19.9% based on the worst-performing UCB.

In terms of peak CPU utilization, TPS, and peak memory con-
sumption, LRU-BaSE is the best. We attribute this improvement
to two optimizations of LRU-BaSE. First, the decision space is

Fig. 18. Comparisons of LRU-BaSE and six ML cache algorithms in terms
of peak CPU utilization, peak memory, and transactions per second (TPS) at
different cache sizes on three traces.

Fig. 19. Compare the robustness of LRB and LRU-BaSE facing workload
drift.

reduced by the rear section. Second, the cache requirements
for speed can be met by parallelizing the batch processing
in the implementation. In addition, since model training and
decision-making are performed on different threads in parallel,
LRU-BaSE calculates only once when making a decision. As
shown in Fig. 18, LRU-BaSE yields the shortest decision time.

F. Robustness of LRU-BaSE

In this section, we show the robustness of LRU-BaSE by
showing that our window-finding method is more resilient to
workload drift than the pre-defined boundary method in LRB.
We splice two traces (Tencent and Wikipedia from Table VIII)
with large variability to form a new trace. On this new trace, we
run LRB and LRU-BaSE and output the average BMR of each
one million requests. As shown in Fig. 19, data on the left of the
red dashed line represent BMRs on Tencent, and the workload
is changed to Wikipedia at the red dashed line, with the ensuing
BMRs shown on the right of the red dashed line. According to
the statistics, LRU-BaSE outperforms LRB by 3.9% on average
before the workload drift, while outperforming LRB by 5.5%
on average after the drift. Referring to their results, we believe
that LRB’s customized window for Tencent inhibits its perfor-
mance on Wikipedia, while LRU-BaSE can dynamically adapt to
changes in workloads. Furthermore, LRU-BaSE exhibits smaller
fluctuations at and right after the onset of the workload change.

VIII. RELATED WORK

The optimal cache replacement policy is to evict the objects
with the longest reuse distance if these requests and their orders
are known a priori, also known as Belady’s algorithm [10], [11].

Cache Replacement Algorithms Based on Belady: Heuris-
tics, often used in cache replacement strategies, estimate the

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on November 28,2024 at 22:21:56 UTC from IEEE Xplore. Restrictions apply.

WANG et al.: BEYOND BELADY TO ATTAIN A SEEMINGLY UNATTAINABLE BYTE MISS RATIO FOR CONTENT DELIVERY NETWORKS 1961

object with the greatest reuse distance by making assumptions
about specific properties. LRU and some of its variants, such
as 2Q [57], CFLRU [58], and LAMA [59], deal with requests
by recency. LFU and some schemes [16], [60], [61] rely on
frequency. Other common approaches [8], [48], [49], [53], [62],
[63], [64], [65], [66], [67], [68] fuse these assumptions with
multiple queues. The disadvantage of Heuristics is hindsight,
especially for CDN caching with large changes in requests.
Conversely, learning-based algorithms are adept at prediction
and can fit the object with the longest reuse distance. The
SVM-LRU [69] employed a support vector machine (SVM)
model. PopCaching [70] learns the popularity of the content
using the clustering model. Learning From OPT (LFO) [24]
learns whether an object should be cached by explicitly modeling
optimal caching decisions. LRB [28] uses Gradient Boosting
Machines (GBM) to approximate the Belady MIN algorithm
using the relaxed Belady boundary. These algorithms suffer from
low generality due to the limited generalization capability. In
addition, reinforcement learning (RL) models fit the decision-
making process of eviction with classic assumptions. LHR [32]
leverages online approximate optimal caching to inform future
content admission and eviction. UCB [56] learns access patterns.
LeCaR [21] and CACHEUS [40] explore the switch pattern
between various classic algorithms. In a real-world situation,
they usually incur high overhead. Other deep RL-based cache
algorithms [71], [72], [73] assume that no new objects are
accessed and all objects have the same size.

Cache Algorithms With Object Sizes: In addition to the cache
methods that use the object size as a feature to approximate
Belady, some web cache algorithms notice the gap between
OMR and BMR and try to use the object size for the BMR re-
duction. Abrams et al. [7], proposed that it is better to hold many
small documents than a few large documents. Then, they [13]
discussed ”the number of bytes not sent” for the replacement
policies. Then, the GreedyDual-Size [15] algorithm noted the
eviction cost, where object sizes are first associated with BMR.
The GreedyDual* [18] gives more pieces of evidence that BMR
and OMR have different gaps at different cache sizes. The
algorithms informed by object sizes are also discussed in [19].
W-TinyLFU [31] explores computationally efficient size-aware
cache admission policies. Despite the seemingly random gap
between OMR and BMR, these researchers are exclusively
interested in OMR reduction measures. This gap is amplified
in CDNs. Furthermore, Belady is no longer able to provide the
optimal BMR. This implies that Belady alone is not sufficient
for reducing BMR, and there is still room for reducing BMR
while preserving OMR.

IX. CONCLUSION AND DISCUSSION

We believe that approximating Belady alone no longer pro-
vides enough room for lowering BMR, as the approximation for
the reuse distance is close to the limit. Our work represents a
first step towards comprehending the relationship between OMR
and BMR and attempting to decrease BMR while maintaining
OMR. Our discovery of the ”flat” regions in the OMR (eviction-
window) function curves offers theoretical possibilities for

solutions with win-win BMR-OMR performance. Furthermore,
we improve the RL model based on the unique traits of CDN and
LRU to tackle the feedback delay problem. Nonetheless, this is
also a compromise solution due to the inability to find evident
features corresponding to BMR. In our future work, we plan to
analyze the most influential features of the choices that favor
BMR to inform decisions for simple learning models.

REFERENCES

[1] B. M. Maggs and R. K. Sitaraman, “Algorithmic nuggets in content deliv-
ery,” ACM SIGCOMM Comput. Commun. Rev., vol. 45, no. 3, pp. 52–66,
2015.

[2] M. K. Mukerjee, I. N. Bozkurt, B. Maggs, S. Seshan, and H. Zhang,
“The impact of brokers on the future of content delivery,” in Proc. ACM
Workshop Hot Top. Netw., 2016, pp. 127–133.

[3] B. Berg et al., “The cachelib caching engine: Design and experiences
at scale,” in Proc. USENIX Symp. Operating Syst. Des. Implementation,
2020, pp. 753–768.

[4] D. S. Berger, R. K. Sitaraman, and M. Harchol-Balter, “AdaptSize: Or-
chestrating the hot object memory cache in a content delivery network,” in
Proc. USENIX Symp. Netw. Syst. Des. Implementation, 2017, pp. 483–498.

[5] L. Peled, U. C. Weiser, and Y. Etsion, “A neural network prefetcher
for arbitrary memory access patterns,” ACM Trans. Archit. Code Optim.,
vol. 16, no. 4, pp. 37:1–37:27, 2020.

[6] L. Peled, S. Mannor, U. C. Weiser, and Y. Etsion, “Semantic locality
and context-based prefetching using reinforcement learning,” in Proc.
ACM/IEEE Annu. Int. Symp. Comput. Archit., 2015, pp. 285–297.

[7] M. Abrams, C. R. Standridge, G. Abdulla, S. M. Williams, and E. A. Fox,
“Caching proxies: Limitations and potentials,” World Wide Web, vol. 1,
no. 1, pp. 119–133, 1996.

[8] Q. Huang, K. Birman, R. Van Renesse, W. Lloyd, S. Kumar, and H. C. Li,
“An analysis of Facebook photo caching,” in Proc. ACM Symp. Operating
Syst. Princ., 2013, pp. 167–181.

[9] O. Eytan, D. Harnik, E. Ofer, R. Friedman, and R. Kat, “It’s time to revisit
LRU versus FIFO,” in Proc. USENIX Workshop Hot Top. Storage File
Syst., 2020, pp. 12–12.

[10] L. A. Belady, “A study of replacement algorithms for a virtual-storage
computer,” IBM Syst. J., vol. 5, no. 2, pp. 78–101, 1966.

[11] A. Jain and C. Lin, “Rethinking belady’s algorithm to accommodate
prefetching,” in Proc. ACM/IEEE 45th Annu. Int. Symp. Comput. Archit.,
2018, pp. 110–123.

[12] D. S. Berger, N. Beckmann, and M. Harchol-Balter, “Practical bounds on
optimal caching with variable object sizes,” ACM Meas. Anal. Comput.
Syst., vol. 2, no. 2, pp. 1–38, 2018.

[13] M. Abrams, C. R. Standridge, G. Abdulla, E. A. Fox, and S. Williams,
“Removal policies in network caches for world-wide web documents,” in
Proc. ACM SIGCOMM Comput. Commun. Rev., 1996, pp. 293–305.

[14] R. P. Wooster and M. Abrams, “Proxy caching that estimates page
load delays,” Elsevier Comput. Netw. ISDN Syst., vol. 29, no. 8–13,
pp. 977–986, 1997.

[15] P. Cao and S. Irani, “Cost-aware WWW proxy caching algorithms,”
in Proc. USENIX Symp. Internet Technol. Syst., vol. 12, no. 97, 1997,
pp. 193–206.

[16] C. Aggarwal, J. L. Wolf, and P. S. Yu, “Caching on the world wide web,”
IEEE Trans. Knowl. Data Eng., vol. 11, no. 1, pp. 94–107, Jan./Feb. 1999.

[17] L. Rizzo and L. Vicisano, “Replacement policies for a proxy cache,”
IEEE/ACM Trans. Netw., vol. 8, no. 2, pp. 158–170, Apr. 2000.

[18] S. Jin and A. Bestavros, “GreedyDual* web caching algorithm: Exploiting
the two sources of temporal locality in web request streams,” Elsevier
Comput. Commun., vol. 24, no. 2, pp. 174–183, 2001.

[19] H. Bahn, K. Koh, S. H. Noh, and S. Lyul, “Efficient replacement of nonuni-
form objects in web caches,” IEEE Comput., vol. 35, no. 6, pp. 65–73,
Jun. 2002.

[20] P. Li et al., “Beating OPT with statistical clairvoyance and variable size
caching,” in Proc. ACM Int. Conf. Architectural Support Program. Lang.
Operating Syst., 2019, pp. 243–256.

[21] G. Vietri et al., “Driving cache replacement with ML-based LeCaR,” in
Proc. USENIX Workshop Hot Top. Storage File Syst., 2018, pp. 3–3.

[22] V. Mnih et al., “Human-level control through deep reinforcement learning,”
Nature, vol. 518, no. 7540, pp. 529–533, 2015.

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on November 28,2024 at 22:21:56 UTC from IEEE Xplore. Restrictions apply.

1962 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 35, NO. 11, NOVEMBER 2024

[23] S. Sethumurugan, J. Yin, and J. Sartori, “Designing a cost-effective cache
replacement policy using machine learning,” in Proc. IEEE Int. Symp.
High-Perform. Comput. Archit., 2021, pp. 291–303.

[24] D. S. Berger, “Towards lightweight and robust machine learning for CDN
caching,” in Proc. ACM Workshop Hot Top. Netw., 2018, pp. 134–140.

[25] D. L.-K. Wong et al., “Baleen:{ML} admission & prefetching for flash
caches,” in Proc. USENIX Conf. File Storage Technol., 2024, pp. 347–371.

[26] S. Pan et al., “Facebook’s tectonic filesystem: Efficiency from exascale,”
in Proc. USENIX Conf. File Storage Technol., 2021, pp. 217–231.

[27] B. Cai et al., “HUNTER: An online cloud database hybrid tuning system
for personalized requirements,” in Proc. ACM Int. Conf. Manage. Data,
2022, pp. 646–659.

[28] Z. Song, D. S. Berger, K. Li, and W. Lloyd, “Learning relaxed belady for
content distribution network caching,” in Proc. USENIX Symp. Netw. Syst.
Des. Implementation, 2020, pp. 529–544.

[29] N. Gast and B. V. Houdt, “Transient and steady-state regime of a family
of list-based cache replacement algorithms,” in Proc. ACM SIGMETRICS
Int. Conf. Meas. Model. Comput. Syst., 2015, pp. 123–136.

[30] P. Wang, Y. Liu, Z. Zhao, K. Zhou, Z. Huang, and Y. Chen, “Adaptive
size-aware cache insertion policy for content delivery networks,” in Proc.
IEEE 40th Int. Conf. Comput. Des., 2022, pp. 195–202.

[31] G. Einziger, O. Eytan, R. Friedman, and B. Manes, “Lightweight robust
size aware cache management,” ACM Trans. Storage, vol. 18, pp. 1–23,
2021.

[32] G. Yan, J. Li, and D. Towsley, “Learning from optimal caching for content
delivery,” in Proc. ACM Int. Conf. Emerg. Netw. EXperiments Technol.,
2021, pp. 344–358.

[33] D. S. Berger, B. Berg, T. Zhu, S. Sen, and M. Harchol-Balter, “Robinhood:
Tail latency aware caching–dynamic reallocation from cache-rich to cache-
poor,” in Proc. USENIX Symp. Operating Syst. Des. Implementation, 2018,
pp. 195–212.

[34] T. Zhu, M. A. Kozuch, and M. Harchol-Balter, “Workloadcompactor:
Reducing datacenter cost while providing tail latency SLO guarantees,” in
Proc. ACM Symp. Cloud Comput., 2017, pp. 598–610.

[35] N. Atre, J. Sherry, W. Wang, and D. S. Berger, “Caching with delayed hits,”
in Proc. ACM SIGCOMM Comput. Commun. Rev., 2020, pp. 495–513.

[36] G. Ke et al., “LightGBM: A highly efficient gradient boosting decision
tree,” in Proc. Adv. Neural Inf. Process. Syst., 2017, pp. 3146–3154.

[37] J. H. Friedman, “Greedy function approximation: A gradient boosting
machine,” Ann. Statist., vol. 29, pp. 1189–1232, 2001.

[38] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
Comput., vol. 9, no. 8, pp. 1735–1780, 1997.

[39] A. Vaswani et al., “Attention is all you need,” in Proc. Int. Conf. Neural
Inf. Process. Syst., 2017, pp. 5998–6008.

[40] L. V. Rodriguez et al., “Learning cache replacement with cacheus,” in
Proc. USENIX Conf. File Storage Technol., 2021, pp. 341–354.

[41] V. Mnih et al., “Playing atari with deep reinforcement learning,”
2013, arXiv:1312.5602.

[42] N. Beckmann, H. Chen, and A. Cidon, “LHD: Improving cache hit rate
by maximizing hit density,” in Proc. USENIX Symp. Netw. Syst. Des.
Implementation, 2018, pp. 389–403.

[43] J. S. Vitter, “Random sampling with a reservoir,” ACM Trans. Math. Softw.,
vol. 11, no. 1, pp. 37–57, 1985.

[44] K. Zhou et al., “Demystifying cache policies for photo stores at scale:
A tencent case study,” in Proc. ACM Int. Conf. Supercomput., 2018,
pp. 284–294.

[45] V. Mnih et al., “Asynchronous methods for deep reinforcement learning,”
in Proc. ACM Int. Conf. Mach. Learn., 2016, pp. 1928–1937.

[46] T. P. Lillicrap et al., “Continuous control with deep reinforcement learn-
ing,” 2015, arXiv:1509.02971.

[47] L. P. Kaelbling, M. L. Littman, and A. W. Moore, “Reinforcement learning:
A survey,” J. Artif. Intell. Res., vol. 4, pp. 237–285, 1996.

[48] N. Megiddo and D. S. Modha, “ARC: A self-tuning, low overhead re-
placement cache,” in Proc. USENIX Conf. File Storage Technol., 2003,
pp. 115–130.

[49] E. J. O’neil, P. E. O’neil, and G. Weikum, “The LRU-K page replacement
algorithm for database disk buffering,” ACM SIGMOD Rec., vol. 22, no. 2,
pp. 297–306, 1993.

[50] M. Arlitt, L. Cherkasova, J. Dilley, R. Friedrich, and T. Jin, “Evaluating
content management techniques for web proxy caches,” ACM SIGMET-
RICS Perform. Eval. Rev., vol. 27, no. 4, pp. 3–11, 2000.

[51] J. Yang, Y. Zhang, Z. Qiu, Y. Yue, and R. Vinayak, “FIFO queues are all
you need for cache eviction,” in Proc. ACM Symp. Operating Syst. Princ.,
2023, pp. 130–149.

[52] G. Einziger, R. Friedman, and B. Manes, “TinyLFU: A highly efficient
cache admission policy,” ACM Trans. Storage, vol. 13, no. 4, pp. 1–31,
2017.

[53] L. Cherkasova and G. Ciardo, “Role of aging, frequency, and size in web
cache replacement policies,” in Proc. Int. Conf. High-Perform. Comput.
Netw., 2001, pp. 114–123.

[54] C. Li and A. L. Cox, “GD-Wheel: A cost-aware replacement policy
for key-value stores,” in Proc. ACM Eur. Conf. Comput. Syst., 2015,
pp. 1–15.

[55] J. Yang, Z. Mao, Y. Yue, and K. Rashmi, “GL-Cache: Group-level learning
for efficient and high-performance caching,” in Proc. USENIX Conf. File
Storage Technol., 2023, pp. 115–134.

[56] R. Costa and J. Pazos, “MLCache: A multi-armed bandit policy for an
operating system page cache,” University of British Columbia, Tech. Rep.,
2017.

[57] T. Johnson et al., “2Q: A low overhead high performance bu er management
replacement algorithm,” in Proc. ACM Int. Conf. Very Large Data Bases,
1994, pp. 439–450.

[58] S.-Y. Park, D. Jung, J.-U. Kang, J.-S. Kim, and J. Lee, “CFLRU: A
replacement algorithm for flash memory,” in Proc. ACM/IEEE Int. Conf.
Compilers, Archit. Synth. Embedded Syst., 2006, pp. 234–241.

[59] X. Hu et al., “LAMA: Optimized locality-aware memory allocation for
key-value cache,” in Proc. USENIX Annu. Tech. Conf., 2015, pp. 57–69.

[60] G. Karakostas and D. N. Serpanos, “Exploitation of different types of
locality for web caches,” in Proc. IEEE 7th Int. Symp. Comput. Commun.,
2002, pp. 207–212.

[61] D. Matani, K. Shah, and A. Mitra, “An O(1) algorithm for implementing
the LFU cache eviction scheme,” 2021, arXiv:2110.11602.

[62] D. Lee et al., “On the existence of a spectrum of policies that subsumes
the least recently used (LRU) and least frequently used (LFU) policies,”
in Proc. ACM SIGMETRICS Int. Conf. Meas. Model. Comput. Syst., 1999,
pp. 134–143.

[63] S. Jiang and X. Zhang, “LIRS: An efficient low inter-reference recency
set replacement policy to improve buffer cache performance,” ACM SIG-
METRICS Perform. Eval. Rev., vol. 30, no. 1, pp. 31–42, 2002.

[64] S. Bansal and D. S. Modha, “CAR: Clock with adaptive replacement,” in
Proc. USENIX Conf. File Storage Technol., 2004, pp. 187–200.

[65] S. Jiang, F. Chen, and X. Zhang, “CLOCK-Pro: An effective improvement
of the clock replacement,” in Proc. USENIX Annu. Tech. Conf., 2005,
pp. 323–336.

[66] S. Park and C. Park, “FRD: A filtering based buffer cache algorithm that
considers both frequency and reuse distance,” in Proc. IEEE Int. Conf.
Massive Storage Syst. Technol., 2017, pp. 1–12.

[67] C. Li, “DLIRS: Improving low inter-reference recency set cache replace-
ment policy with dynamics,” in Proc. ACM Int. Conf. Massive Storage
Syst. Technol., 2018, pp. 59–64.

[68] C. Zhong, X. Zhao, and S. Jiang, “LIRS2: An improved LIRS replacement
algorithm,” in Proc. ACM Int. Conf. Syst. Storage, 2021, pp. 1–12.

[69] W. Ali, S. M. Shamsuddin, and A. S. Ismail, “Intelligent web proxy caching
approaches based on machine learning techniques,” Elsevier Decis. Sup-
port Syst., vol. 53, no. 3, pp. 565–579, 2012.

[70] S. Li, J. Xu, M. Van Der Schaar, and W. Li, “Popularity-driven content
caching,” in Proc. 35th Annu. IEEE Int. Conf. Comput. Commun., 2016,
pp. 1–9.

[71] A. Sadeghi, G. Wang, and G. B. Giannakis, “Deep reinforcement learn-
ing for adaptive caching in hierarchical content delivery networks,”
IEEE Trans. Cogn. Commun. Netw., vol. 5, no. 4, pp. 1024–1033,
Dec. 2019.

[72] S. Alabed, “RLCache: Automated cache management using reinforcement
learning,” 2019, arXiv: 1909.13839.

[73] G. Yan and J. Li, “Rl-Bélády: A unified learning framework for content
caching,” in Proc. ACM Int. Conf. Multimedia, 2020, pp. 1009–1017.

Peng Wang received the PhD degree in computer
science from Wuhan National Laboratory for Op-
toelectronics, Huazhong University of Science and
Technology, Wuhan, China. He has published papers
in international journals and conferences, including
ICCD, ICPP, IJCAI, ACM TACO, IEEE Transactions
on Cloud Computing, etc.

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on November 28,2024 at 22:21:56 UTC from IEEE Xplore. Restrictions apply.

WANG et al.: BEYOND BELADY TO ATTAIN A SEEMINGLY UNATTAINABLE BYTE MISS RATIO FOR CONTENT DELIVERY NETWORKS 1963

Hong Jiang (Fellow, IEEE) received the PhD degree
in computer science from the Texas A&M University,
College Station, Texas, USA. He is currently chair
and Wendell H. Nedderman Endowed professor of
Computer Science and Engineering Department with
the University of Texas at Arlington. Prior to joining
UTA, he served as a program director with National
Science Foundation (2013–2015) and he was with the
University of Nebraska-Lincoln since 1991, where
he was Willa Cather professor of Computer Science
and Engineering. He has graduated 17 PhD students

who upon their graduation either landed academic tenure-track positions in
PhD-granting US institutions or were employed by major US IT corpora-
tions. He has also supervised 20 postdoctoral fellows and visiting scholars.
He is currently supervising/co-supervising more than 10 PhD students and
postdoc fellows. His current research interests include computer architecture,
computer storage systems, and parallel I/O, high-performance computing, Big
Data computing, cloud computing, performance evaluation. He is a topic and
associate editor of IEEE Transactions on Computers and recently served as an
associate editor of IEEE Transactions on Parallel and Distributed Systems. He
has more than 300 publications in major journals and international Conferences
in these areas, including IEEE Transactions on Parallel and Distributed Systems,
IEEE Transactions on Computers, Proceedings of IEEE, ACM Transactions on
Architecture and Code Optimization, ACM Transactions on Storage, USENIX
ATC, FAST, EUROSYS, ISCA, MICRO, SOCC, LISA, SIGMETRICS, ICDE,
DAC, DATE, ICDCS, IPDPS, MIDDLEWARE, OOPLAS, ECOOP, SC, ICS,
HPDC, INFOCOM, ICPP, etc., and his research has been supported by NSF and
industry. He is a member of ACM.

Yu Liu (Member, IEEE) received the PhD degree in
computer science from Huazhong University of Sci-
ence and Technology (HUST) in 2017. Then, he was
a postdoctoral researcher with HUST from 2018 to
2021. Currently, he is an associate researcher with the
School of Computer Science and Technology, HUST.
His current research focuses on building cognitive
storage systems with machine learning technologies
and large-scale multimedia search technologies. He
has published papers in international journals and
conferences, including ACM MM, IJCAI, SIGMOD,

DAC, IEEE Transactions on Image Processing, IEEE Transactions on Cyber-
netics, IEEE Transactions on Multimedia, CIKM, etc.

Zhelong Zhao received the BE degree in computer
science and technology from the Huazhong Univer-
sity of Science and Technology, Wuhan, China, in
2022, where he is currently working toward the mas-
ter’s degree.

Ke Zhou (Member, IEEE) is a professor with the
School of Computer Science and Technology, HUST.
His research interests include computer architecture,
cloud storage, parallel I/O, and storage security. He
has more than 50 publications in journals and interna-
tional conferences, including IEEE Transactions on
Parallel and Distributed Systems, A Page Endurance
Variance Aware, SIGMOD, FAST, USENIX ATC,
MSST, ACM MM, INFOCOM, SYSTOR, MAS-
COTS, ICC, etc. He is a member of the USENIX.

Zhihai Huang received the postgraduate degree from
the Nanjing University of Posts and Telecommuni-
cations, China. He is currently an expert engineer
with Tencent Corporation. Since joining Tencent, he
has specialized in optimizing the storage, delivery,
and processing of massive social media data. His
main research interests include media storage, image
processing, video transcoding, and real-time commu-
nications.

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on November 28,2024 at 22:21:56 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

