
IEEE TRANSACTIONS ON COMPUTERS, VOL. 74, NO. 3, MARCH 2025 929

NStore: A High-Performance NUMA-Aware
Key-Value Store for Hybrid Memory

Zhonghua Wang , Kai Lu , Jiguang Wan , Hong Jiang , Fellow, IEEE, Zeyang Zhao ,
Peng Xu , Biliang Lai , Guokuan Li , and Changsheng Xie , Member, IEEE

Abstract—Emerging persistent memory (PM) promises near-
DRAM performance, larger capacity, and data persistence,
attracting researchers to design PM-based key-value stores.
However, existing PM-based key-value stores lack awareness of
the Non-Uniform Memory Access (NUMA) architecture on PM,
where accessing PM on remote NUMA sockets is considerably
slower than accessing local PM. This NUMA-unawareness results
in sub-optimal performance when scaling on NUMA. Although
DRAM caching alleviates this issue, existing cache policies ignore
the performance disparity between remote and local PM accesses,
keeping remote PM access as a performance bottleneck when
scaling PM stores on NUMA. Furthermore, creating hot data
views in each socket’s PM fails to eliminate remote PM writes
and, worse, induces additional local PM writes. This paper
presents NStore, a high-performance NUMA-aware key-value
store for the PM-DRAM hybrid memory. NStore introduces a
NUMA-aware cache replacement strategy, called Remote Access
First (RAF) cache in DRAM, to minimize remote PM accesses. In
addition, NStore deploys Nlog, a write-optimized log-structured
persistent storage, purposed to eliminate remote PM writes.
NStore further mitigates the NUMA impacts through localized
scan operations, efficient garbage collection, and multi-thread
recovery for Nlog. Evaluations show that NStore outperforms
state-of-the-art PM-based key-value stores, achieving up to 13.9×
and 11.2× higher write and read throughput, respectively.

Index Terms—Key-value store, persistent index, persistent
memory, log structure, NUMA-aware index.
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I. INTRODUCTION

PERSISTENT memory (PM) technologies, such as Phase
Change Memory (PCM) [1] and Spin-Transfer Torque

RAM (STT-RAM) [2], offer large capacity, low latency, low
power consumption, byte-addressability, and non-volatility [3],
which have drawn significant attention from both academia and
industry. Recently, lots of researchers have tried to deploy key-
value stores on PM (called PM-based key-value stores or PM
KV stores) [4], [5], [6], [7], [8], [9], [10], [11], [12], [13],
[14]. However, existing PM KV stores, whether using log struc-
tures, B+-trees or learned indexes, rarely consider the impact
of non-uniform memory access (NUMA) architectures. How
to alleviate or eliminate the NUMA effect is still an unsolved
problem [15].

It is well known that the NUMA architecture is designed
to enhance computing scalability [16], particularly in terms
of supporting a higher number of CPU cores and threads. In
a NUMA architecture, CPU cores and memory DIMMs are
grouped into nodes (called NUMA nodes or sockets). These
sockets are interconnected by high-speed inter-node links, such
as Intel Ultra Path Interconnect. Compared to a single socket
with limited DIMM slots and cores, NUMA architectures pro-
vide enormous cores as well as massive bandwidth and capacity
of PM. However, the performance of a CPU core accessing
PM in other sockets (remote PM access) is much worse than
accessing the PM in the same socket (local PM access). Our
evaluations (Section II-A1) show that the peak bandwidth of
remote PM writes and reads is only 51% and 80% of that of
local PM writes and reads, respectively. Worse, remote PM
writes and reads experience bandwidth meltdowns when the
thread count is high. Besides, the average latency of remote PM
writes and reads is 1.6× and 1.5× higher than that of local PM
writes and reads, respectively.

This asymmetric PM access performance between NUMA
socket local and remote CPU cores poses a challenge for PM
KV stores to efficiently store and retrieve data in PMs belonging
to different NUMA sockets. Specifically, we observe that the
performance of existing PM KV stores scale sub-optimally
with the number of CPU threads in NUMA architectures.
Taking Viper [4], a hash-based log-structure PM-DRAM KV
store, APEX [11], a state-of-the-art hybrid PM-DRAM learned
index, and FAST+FAIR [10], a typical PM-only B+-tree, as
examples, our test results (Section II-A2) show that the trend
in their throughput changes significantly after introducing more
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CPU threads from remote NUMA sockets. All three approaches
perform well within a single socket. However, as we scale them
by adding threads from socket 2, the growth rate of put through-
put drops significantly, and the get throughput also experiences
a decrease. These observations indicate that minimizing remote
PM accesses is crucial to the design of PM KV stores for
NUMA architectures.

After comprehensively surveying existing PM KV stores and
NUMA optimization efforts, we observe that existing PM KV
stores are sub-optimal for NUMA (Section VI). The state-of-
the-art NUMA-aware approach for PM KV stores (e.g. Nap
[17]) reduces remote PM reads and writes by caching hot data
set to DRAM and creates the views of hot data set in PM
per socket, respectively. However, these strategies have obvious
limitations: First, the existing cache replacement policy focuses
only on the access frequency and ignores the impact of NUMA
on PM accesses. Thus, the proportion of remote PM accesses
is still very high. The test results in Fig. 3(a) show that the
number of remote PM reads accounted for more than 25% and
30% of all read requests at Zipfian 0.99 and 0.9, respectively.
Second, creating a local view for hot data in each socket’s PM
can only reduce remote PM writes for update/delete operations
of hot data. Moreover, the creation of per-socket views during
each hot data switch incurs massive extra local PM writes and
consumes a lot of local PM bandwidth. Our experimental results
in Fig. 3(b) show that there are not only a considerable number
of remote PM writes but also a large number of extra local PM
writes.

In this paper, we propose NStore, a high-performance
NUMA-aware Key-Value Store for hybrid PM-DRAM mem-
ory. The key idea behind NStore is to improve both read
and write performance by avoiding remote PM access as
much as possible in the NUMA architectures. For this end,
NStore presents two optimized designs: a novel NUMA-aware
cache replacement strategy, called Remote Access First (RAF),
to minimize remote PM reads, and a write-optimized log-
structured persistent storage (called Nlog) that eliminates re-
mote PM writes under various workloads without incurring
extra local PM writes.

First, RAF cache grants higher cache priority to remote ac-
cesses because remote PM accesses are more expensive than
local PM accesses. The goal of RAF cache is to reduce the cache
misses directed to the remote PM, thereby maximizing the per-
formance improvement of the cache on NUMA-based persistent
indexes. Second, unlike traditional memory log structures that
are either DRAM-based (e.g., Nibble [18] cannot guarantee data
consistency) or are not NUMA-friendly (e.g., FASTER [19] has
a lot of remote writes in the critical path), Nlog is designed
for NUMA with PMs. Nlog independently creates local Nlog
files in each socket. All the writes can be appended to the latest
local Nlog files with a single local PM write. In addition, we
propose three strategies to improve the performance of Nlog,
including lightweight and efficient garbage collection with
data consistency, localized scan operations, and multi-threaded
recovery.

We evaluate NStore on a real PM device and compare it to
the seven available state-of-the-art PM systems under various
workloads. The test results demonstrate that NStore achieves

2.2×-13.9× higher write throughput and 1.4×-11.2× higher
read throughput than existing persistent indexes. In addition,
compared to Nap, the update and get throughput of NStore is
15× and 20× higher. Finally, NStore delivers better scalability
with an increasing number of sockets compared to existing PM
KV stores. It also provides acceptable scan performance and
fast recovery. In summary, the main contributions of this work
are as follows.

• We conduct a series of experiments to show the impact of
the NUMA architecture on PM and existing PM KV stores
and analyze the limitations of the state-of-the-art NUMA-
aware approaches.

• We propose NStore, an efficient persistent KV store for
NUMA architectures. By a novel NUMA-aware cache
replacement strategy (RAF) and a write-optimized log-
structured persistent storage (Nlog), NStore achieves ex-
cellent read and write performance. To the best of our
knowledge, RAF is the first cache replacement strategy
designed for a NUMA-aware PM index.

• We evaluate NStore with state-of-the-art PM KV stores on
Optane DCPMM. The evaluation results show that NStore
achieves write throughput that is 2.2×-13.9× higher in
NUMA architectures. It also achieves a 1.4×-11.2× higher
read throughput. The source code is available at https://
github.com/PDS-Lab/NStore.

II. BACKGROUND AND MOTIVATION

A. NUMA Effect on PM and Existing PM KV Stores

Persistent Memory (PM), or Non-volatile memory (NVM),
not only offers persistence, byte-addressability, low power con-
sumption, and a much lower price than DRAM, but also
provides sub-microsecond access latency through a directly
connected memory bus and load/store instructions [3]. With the
release of the first PM product Optane DIMMs, a large number
of researchers are vigorously exploring its possibilities on key-
value store or mainstream index structures [4], [5], [6], [7],
[8], [9], [10], [11], [12], [14]. Although Intel Optane DCPMM,
was discontinued last year [20], PM technologies continue to
progress [21]. We use Optane to evaluate the efficacy of our
work because it is the only commercially available PM product
today, but this work is not specific to Optane. Our solution is
suitable for most PM devices, which are byte-addressable and
have slightly lower read/write performance than DRAM.

The NUMA architecture is widely used in high-performance
computing and large-scale server [16], providing enormous
bandwidth, capacity, and computing power compared to a sin-
gle CPU. All the computing and storage resources in NUMA
architectures are grouped in different sockets (i.e., NUMA
nodes). These sockets communicate internally via Integrated
Memory Controller (IMC) bus and are interconnected by high-
speed inter-node links, such as Intel Ultra Path Interconnect
(UPI). While the NUMA architecture seems ideal as a platform
for PM KV stores to enhance their data volume and perfor-
mance, the existing PM KV stores fail to run efficiently in
NUMA architectures for two reasons. First, the NUMA effect
(i.e., remote access performance is lower than local access)
on PM is severe (Section II-A1). Second, the existing PM
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Fig. 1. Effect of NUMA on Optane DIMMs. For each run, we perform
sequential accesses to a 2 GB PM space, which is the same trend under
random access (not shown). local access: threads access DIMMs that are
local to them; remote access: threads access DIMMs from another socket;
We use clflush and sfence instructions for PM writes.

KV stores are designed in the oblivion of NUMA effects
(Section II-A2).

1) NUMA Effects on PM: We test the local/remote band-
width and latency of Optane DIMMs in a NUMA architec-
ture (four 128 GB modules and two 16-core CPUs evenly
distributed across two sockets) to explore the performance im-
pact of NUMA on PM. All threads were physical to prevent
interference from hyper-threading.

Fig. 1(a) and 1(b) show the bandwidth of PM writes and reads
(access size 32B), respectively. The peak bandwidth of remote
writes is 0.37 GB/s, only 51% of that of local writes (0.73 GB/s).
Even worse, the remote write bandwidth collapses when the
number of threads exceeds 5. For the PM reads, the gap between
local bandwidth (6.38 GB/s) and remote bandwidth (5.09 GB/s)
is relatively smaller, but there is still a gap of 20%. Similar
results are manifested in latency: remote accesses have signifi-
cantly higher latency than local accesses. In our test, when the
access size (i.e., IO size) is 32 B, the latency of remote writes
is 496.83 ns, 1.6× higher than that of local writes (310.52 ns);
and the latency of remote reads is 180.65 ns, 1.5× higher than
that of local reads (113.4 ns).

We attribute the low performance of remote PM accesses
to two reasons. The first and main reason is that inter-socket
accesses require updating the coherence information, which
introduces additional PM writes and thus causes bandwidth
crashes for remote access at high thread counts [22], [23]. The
second reason is that UPI has a higher latency than IMC bus
[24]. Thus, taking NUMA effects into large-scale PM designs
is important for seeking better performance.

2) NUMA Effects on PM KV Stores: We analyze the effect
of NUMA on PM KV stores by taking Viper [4], APEX [11],
and FAST+FAIR [10] as examples. Viper is a PM-DRAM KV
store that places a hash table in DRAM and a log-structured
storage in PM. APEX is a state-of-the-art hybrid PM-DRAM
learned index that persists all nodes in PM and places the infor-
mation, such as fingerprints of keys, in DRAM. FAST+FAIR is
a typical PM-only B+-tree optimized for low crash consistency
overhead and high concurrency performance.

Fig. 2(a) and 2(b) show the put throughput and get throughput
of Viper, APEX, and FAST+FAIR as the number of sockets
increases, respectively (details of experiment configurations in

Fig. 2. Effect of NUMA on PM KV stores, using APEX, FAST+FAIR,
and Viper as examples. For each run in (a), we put 200M (million) KVs in
stores; and for each run in (b), we first put 200M KVs, then perform 10M
get operations. Threads 1-16 from socket 1, and 17-32 from socket 2.

Section V). They scale well within a single socket. However,
the growth rate of put throughput drops significantly, and the
get throughput decreases when socket 2 is added. Furthermore,
increasing the number of threads from 17 to 32 results in a
significant decrease in get throughput for Viper and APEX. The
main reason is that the NUMA architecture brings a lot of cross-
socket PM accesses, while the existing PM KV stores are only
optimized for single sockets without considering the NUMA
problem.

Based on the above experiments and analysis, allocating
more CPU threads for existing PM KV stores does not lead to
the expected higher index throughputs due to the NUMA effect
(i.e., a lot of low-performance remote PM accesses). Therefore,
the key to designing a high-performance NUMA-aware PM KV
store is eliminating remote PM accesses as much as possible.

B. Limitations of Existing NUMA-Aware Approach for PM
KV Stores

To address the NUMA effect on PM KV stores, Wang et al.
propose Nap [17], a state-of-the-art general-purpose NUMA-
aware approach that can be applied to PM KV stores. Nap
migrates the latest top-k hot data from PM KV stores into the
DRAM cache and per-socket PM views; and writes the old hot
data back to the PM KV stores. By caching hot data into the
DRAM cache, Nap avoids PM reads to hot data. In addition,
by buffering the latest hot data to the PM views of each socket,
Nap avoids remote PM writes to hot data. However, Nap has
obvious limitations from both a read optimization and a write
optimization perspective.

From a read optimization perspective, Nap’s cache replace-
ment algorithm does not consider the NUMA effect. The cache
replacement algorithm of Nap treats the number of accesses
to a key-value pair (KV) as its access frequency and then
selects the top-k KVs as hot data in order of access frequency,
assuming that the overhead of each access is the same. How-
ever, in NUMA architectures, the bandwidth and latency of
remote accesses are far worse than those of local accesses
(Section II-A1), so the penalty of a miss for remote access is
more expensive than that for local access. Fig. 3(a) shows the
number of local and remote PM reads in Nap under skewed
get workloads with Zipfian of 0.99 and 0.9. The number of
local PM reads and remote PM reads is always equal, which
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Fig. 3. Number of local and remote PM accesses in Nap, with FAST+FAIR
as the raw PM index of Nap (called Nap-FF, see Section V). For each run, we
first put 16M KVs, then performs 64M update/get operations from workloads,
and finally count the number of local and remote update/get KVs in PM.

indicates that Nap ignores the asymmetry between local and
remote accesses. Furthermore, even when the Zipfian reaches
0.99, there are still 16.3M remote PM reads, accounting for 25%
of the total number of operations (64M). High-latency remote
access lowers overall read performance.

From a write optimization perspective, Nap not only does
not eliminate remote PM writes, but also introduces additional
local PM writes. First, Nap reduces remote PM writes to hot
data by buffering hot data in the local PM view. Therefore, it
is only effective for update and delete operations on hot data in
skewed workloads, and has little benefit in other cases. Fig. 3(b)
shows the number of local and remote PM writes in Nap under
skewed update workloads with Zipfian 0.99 and 0.9. There
are still many remote PM writes in Nap, and the number of
remote PM writes increases as the skewness decreases. When
the Zipfian is 0.99, the number of remote PM writes is 16.9M
(million), and when the Zipfian is 0.9, the number of remote
writes increases to 20.25M. Second, Nap creates the hot data
views in per-socket PMs using local threads during each hot
data switch, which causes a lot of additional local PM writes.
In Fig. 3(b), the number of local PM writes in Nap is very large.
At a Zipfian of 0.9, the number of local PM writes is 88.55M,
much higher than the total number of update operations in the
workload (64M). These remote writes and extra local writes
consume the limited bandwidth of the PM, limiting the write
performance improvement of Nap on PM indexes. Third, Nap
does not separate read and write operations when identifying
hot data, so a large amount of hot data from read operations
may be meaninglessly migrated to PM in all sockets and writ-
ten back to raw PM indexes, wasting the write bandwidth
of PM.

The above experiments show that the existing NUMA-aware
work for PM KV stores has significant limitations in reducing
the number of remote PM accesses. This clearly calls for a high-
performance NUMA-aware PM KV store.

III. NSTORE DESIGN

A. Overview

To address these limitations, we present NStore, a high-
performance NUMA-aware key-value store for hybrid PM-
DRAM memory. Fig. 4 illustrates the architecture of NStore,
which consists of three components: a NUMA-aware cache

Fig. 4. Overall architecture and interactions of NStore.

with a remote access first (RAF) replacement strategy to mini-
mize remote PM reads, a persistent storage (Nlog) for localized
PM writes, and a volatile index for fast indexing of Nlog.
Among them, Nlog and RAF cache are at the heart of NStore.

• RAF cache. RAF cache is a DRAM-oriented cache for the
NUMA-aware PM index, covering multiple sockets. The
key advantage of the RAF cache over existing approaches
lies in the novel NUMA-aware RAF cache replacement
strategy, which aims to minimize remote PM reads in PM
indexes by giving higher cache priority to remote-accessed
data (Section III-B). The RAF strategy can directly replace
any existing cache replacement algorithms (such as LRU,
LFU) to invigorate them in the NUMA architecture. The
RAF cache uses a hash-table-based structure for fast ac-
cess and is primarily designed to improve performance for
read-intensive skewed workloads. Therefore, we turn off
the RAF cache to reduce overhead after write-intensive
workloads or uniform workloads are detected.

• Nlog. Nlog is a NUMA-aware log-structured storage lo-
cated in PM. Nlog creates local Nlog files in each socket
and restricts all write operations only to be appended to
the latest local Nlog file (called active file), so each write
operation can be persisted with a single local PM write.
Further, to prevent write operations from being blocked
by the single one active file in a socket, we cluster the
data based on the hash function and create a local active
file for each cluster in each socket to maximize the write
concurrency (Section III-C). In addition to remote-free
writes, Nlog conducts other optimizations to revitalize the
log-structured design in NUMA architecture. First, Nlog
designs a NUMA-aware garbage collection scheme that
efficiently reclaims free PM space using a unique h_addr
field (Section III-D and Section III-F). Second, Nlog deliv-
ers a local PM read scheme for scan operations to eliminate
remote reads and exploit the intrinsic parallelism of PM
(Section III-E). Third, Nlog implements multi-threaded
recovery based on the clusters to speed up recovery
(Section III-G).

• Volatile index. The volatile index stores all the keys and
the addresses of log entries. It can be an arbitrary exist-
ing concurrent rang index for DRAM, regardless of its
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TABLE I
VARIABLES AND DEFINITIONS

Symbols Definition

Si Socket (NUMA node) i
Cj Item j
Li The set of latencies of accessing PMs in Si from every socket
li−x Latency of accessing to PM of Si from Sx

Fj The set of access frequency of Cj from every socket
fj−y Access frequency of Cj from Sy

TFj Total access frequency of Cj in RAF
n Total number of sockets (NUMA nodes)

structure (tree-based or learned-model-based). Learned-
model-based indexes are preferred as the default choice
because they usually have good performance and a small
space footprint. We deploy the volatile index across mul-
tiple sockets because remote DRAM access is faster than
local PM access [3] (in other words, remote DRAM access
is not a performance bottleneck for persistent indexes).

Fig. 4 also shows the workflow and interaction among key
components of NStore. For the get operation, if the RAF cache
is disabled, the get thread directly searches for the targeted
key in the volatile index. Otherwise, the get thread checks the
RAF cache for the searched key and returns if it exists; if
the searched key does not exist, the get thread is redirected to the
volatile index; For the scan operation, the scan thread searches
for targeted keys in the volatile index, regardless of whether
the RAF cache is enabled. For the write operation (including
put, update and delete), the write thread first persists the action
to Nlog and then updates the volatile index. Finally, if the RAF
cache is enabled, the write thread checks for the updated/deleted
key in the RAF cache and updates it if it exists. Since volatile
index can use the existing structure, this paper only describes
in detail the workflow of read and write operations in Nlog
(Section III-E).

B. RAF Cache

To scale the performance of PM KV stores on NUMA archi-
tectures, the state-of-the-art work uses a buffer cache in DRAM
to reduce PM reads [17], where the cache replacement algo-
rithm selects cached items (i.e., key-value pairs) based on the
access frequency (i.e., the number of accesses over a period of
time) of items. Such a replacement algorithm assumes that the
penalty of each miss is the same, and improves the throughput of
the overall PM systems by reducing cache misses. However, in
the NUMA architecture, the penalty of a miss for remote access
is much higher than that for local access because remote PM
access is significantly slower than local PM access. Therefore,
in a NUMA system configured with PMs, the cache replace-
ment algorithm should be designed to minimize the number
of cache misses for remote PM access. To achieve this goal,
we design a NUMA-aware cache replacement strategy called
Remote Access First (RAF), which assigns higher weights to
remote accesses according to access latency in evaluating access
frequency. Next, we describe the RAF cache in detail. We
summarize the symbols in Table I for a clear description.

Assume that there are n sockets in a NUMA architecture.
For socket i (denoted as Si), RAF maintains a set of latencies
Li = {li−x, 1≤ x≤ n ∩ x ∈ N}, where li−x is the latency of
accessing PM in Si from Sx. For item j (denoted as Cj),
RAF maintains a set of access frequency Fj = {fj−y, 1≤ y ≤
n ∩ y ∈ N}, where fj−y is the access frequency of Cj from Sy .
Based on the above information, RAF can calculate a more real-
istic access frequency of Cj stored on Si following Equation 1.

TF j =
n∑

r=1

li−r

li−i
fj−r (1)

The larger the TF of an item, the greater the benefit of being
cached in DRAM. Unlike prior schemes, whether an item is
cached in RAF depends not only on the access frequency but
also on the miss penalty. This strategy allows us to prioritize
the caching of frequently accessed data from remote NUMA
sockets, optimizing the overall performance of the NStore.

The RAF cache structure is organized as a hash table, con-
sisting of multiple hash buckets. Each bucket contains a fixed
number of slots to store the cached items. For each hot/cached
items, the RAF cache maintains four fields: the lock for con-
currency control, the TF is used for hot item replacement, the
socket ID on which the corresponding item is persisted, and the
key value pairs.

The workflow of the RAF cache is described as follows: First,
if a searched item j exists in the RAF cache, we update its
corresponding TF following Equation 2.

TFnew = TF old +
li−y

li−i
(2)

Where, TFnew and TF old represent TF values before and
after the update, respectively. i and y represent the socket ID
to which the searched item is persisted and the socket ID to
which the get thread belongs, respectively. Second, if a searched
item j is not found in the RAF cache, we read the item from
the Nlog and insert it into the RAF cache by replacing the
coldest item (i.e., the smallest TF value) in the same buckets.
Finally, to prevent TF values from overflowing, we halve all
TF values within the same bucket when an overflow occurs.
However, the frequent triggering of TF updates or cached item
replacements during every get operation negatively impacts the
foreground operation performance. To address this issue, we
adopt a periodical sampling strategy. After a certain number of
get operations (32 by default), an TF value update or cached
item replacement is triggered.

NStore minimizes the performance impact of the RAF cache
by disabling it when detecting a uniform workload or write-
intensive workload. To identify these workloads, NStore uses
three signals: (1) the RAF cache receives less than 10% of all get
operations (uniform), (2) all cached items in the same buckets
have similar value of TF (uniform), and (3) the number of
get operations in RAF cache is less than 10% of all operations
(write-intensive).

C. Nlog Structure

To avoid remote PM writes, Nlog creates local Nlog files in
each socket to accommodate writes from local threads. Besides,
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Fig. 5. Data layout in NStore.

we disable modification of full Nlog files, and only the latest
Nlog file (called active file) in each socket supports writing.
However, as the number of threads grows, a single local active
file can become a bottleneck for write operations. To address
this challenge, we cluster the keys using a hash function. The set
of all log entries with the same hash ID (= hash(key)) is treated
as a cluster (illustrated as Fig. 4). The clusters in each socket
have their active files. Once an active file is full, it becomes a
full Nlog file that cannot be written, and a new active file is
created simultaneously. The default size of the Nlog file is 8
MB. Since there are no duplicate keys between hash clusters,
write contention only occurs within the hash cluster, improving
the concurrency of write operations.

D. Data Layout

The data layout of Nlog and volatile index is shown in Fig. 5.
In Nlog, all write operations are persisted as log entries to the
corresponding Nlog file. Only the address of the log entry with
the latest value is stored in the volatile index (i.e., v_addr). The
layout of v_addr is shown in Fig. 5. The numa_id is the socket
ID to which the log entry belongs. The log_file_id is the Nlog
file ID to which the log entry belongs. By using the numa_id,
log_file_id, and the hash cluster ID calculated by hash(key), we
can locate precisely a specific Nlog file. The offset is the address
offset of the log entry in the Nlog file, and the l_len indicates
the size of the log entry.

Nlog has three types of log entry structure for different kinds
of workloads. For a workload with a fixed size for both keys
and values, the log entry consists of five fields: op, version,
key, value, and h_addr. The op records the type of operation,
including insert (11, ins), update (10, upd), delete (01, del) and
invalidate (00, inv); where ins, upd, and del are all valid log
entries. The version records the version number for recovery;
all log entries in a cluster share one version. key and value are
used to persist the data. h_addr is a unique field for Nlog to
implement lightweight and efficient garbage collection (Sec-
tion III-F), which holds the address of the parent log entry of
the current log entry. A key may be updated several times at
runtime, and each modification will generate a new log entry.

We store the address of the previous log entry (i.e., the parent
log entry) of the key in the h_addr of the new log entry. With
h_addr, all historical log entries of a key can be linked together.
For a workload with variable-size values and fixed-size keys,
we add the v_len field to record the length of the value. For a
workload with variable size for both values and keys, we add
k_len field to record the length of the key, in addition to the
v_len field.

E. Basic Operations

Read. The read operation consists of the get operation to look
up a targeted value using a given key and the scan operation to
search all values in a key range.

Get. The get thread first finds the address of the targeted log
entry in the volatile index (i.e., v_addr), then reads the targeted
value in Nlog based on the v_addr.

Scan. The scan thread first gets all the v_addr of the keys
within the query range, then reads the targeted values in Nlog.
This process may involve random or remote PM reads, caus-
ing performance fluctuations. Therefore, inspired by delegation
methods [22], [25], Nlog adopts the local PM reads scheme,
which creates several background read threads for each socket
(called local read threads) to improve scan performance. Each
scan operation dispatches the PM read requests to the corre-
sponding local read threads based on the numa_id in v_addr.
With the local read threads, the scan operation not only fully
utilizes the parallelism of PM to accelerate random reads but
also eliminates remote reads. Our tests show that this scheme
can significantly improve scan performance for most value
sizes, but is unable to fully demonstrate the advantages of multi-
threading when the value size is very small (e.g., 8B).

Concurrent read. Since all valid log entries cannot be mod-
ified, Nlog supports lock-free reads.

Write. The write operations include put, update, and delete.
The put operation is to insert a new KV; the update operation
is to modify an existing value; and the delete operation is to
remove a KV from the index.

Put. The put thread first determines the corresponding local
active file based on the hash (key) and then requests log entry
space for the new KV according to the value length. It next
persists the new KV with the latest version number and finally
inserts the key and the v_addr of the new log entry into the
volatile index. Since there is no parent log entry, the h_addr
filed in the ins log entry is filled with the invalid h_addr. The
invalid h_addr is a specified h_addr used to indicate no history
log entries.

Update and delete. The update operation is the same as the
delete operation and consists of three steps. First, find the
v_addr of the targeted key (which is called old v_addr) in the
volatile index. Second, append the update or delete operation
to the corresponding local active file using the latest version
number. The old v_addr obtained in the first step is written to
the new log entry as h_addr. Third, update the v_addr of the
targeted key in the volatile index or delete directly.

Concurrent write. Each hash cluster in a socket uses a write
lock maintained in DRAM to support the write concurrency of
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Fig. 6. Garbage collection for Nlog.

the active file. Note that when a write thread is allocated log
entry space, it releases the lock and does not have to wait for
the data in the log entry to be persisted.

Consistency of write operations. The write thread always
writes op at the end when persisting the data in the log entry.
Each active file is initialized with 0, so a new log entry is invalid
until its op is updated to 01, 10, or 11. After a system crash, the
recovery thread ignores invalid log entries, thus ensuring crash
consistency of write operations.

F. Garbage Collection

NStore designs a lightweight and efficient garbage collection
(GC) scheme to reclaim free space in the NLog. The GC scheme
consists of two main steps: identify invalid log entries and
reclaim Nlog files.

Identify invalid log entry. There are two common ways
to track invalid log entries. The first is to directly modify the
existing log entry during delete or update operations [4], [19].
However, this method may cause remote PM writes since the
update/delete thread may not be in the same socket as the ex-
isting log entry. The second is to append updates and deletions
directly and check whether the log entry is valid by accessing
the volatile index [5], [26]. However, this approach interferes
with user requests since each log entry, except deletion, requires
a read operation in the volatile index. To minimize the impact
on the foreground requests, NStore introduces a new field in
log entry: h_addr. The addresses of the key’s parent log entries
are recorded in h_addr. Garbage collection threads can identify
invalid log entries along h_addr without frequent accesses to
the volatile index.

Fig. 6 illustrates the process of identifying invalid log en-
tries. In a Nlog file, the GC thread reads every valid log entry.
(1) When the upd log entry is read, all history log entries
are searched along h_addr until encountering invalid h_addr
(e.g., ins log entry), invalid log entry (i.e., op of the log entry
is inv), or h_addr whose address does not exist (i.e., h_addr
points to a log entry that has already been reclaimed). Then
these entries are marked reversely as invalid (i.e., set the op
to 00). Finally, check whether the upd log entry is valid, and
set the op to 00 if it is invalid. (2) When the ins log entry
is read, it is needed only to check whether the log entry is
valid since the h_addr of the ins log entry is filled with invalid
h_addr. (3) When del log entry is read, mark the log entry

and its history log entry as invalid via the same process as
described in (1), but without accessing the volatile index. With
h_addr, garbage collection in Nlog minimizes interference with
foreground threads. Since all history entries are obsolete, the
GC thread does not interfere with the foreground requests when
setting them to an invalid entry. Although remote PM writes
may occur during access to history log entries (e.g., the GC
thread 1 in socket 1 in Fig. 6 sets ins k3 in socket 2 to invalid),
these remote accesses are not on the critical path.

Reclaim Nlog file. For log structures that append deletes
or updates to the latest log file, they must preferentially recycle
older log files to avoid losing updates. For example, in Fig. 6, if
del k2 in file 1 (socket 2, hash cluster 1) is reclaimed before ins
k2 in file 0, deleted k2 will restore life during crash recovery.
However, it is difficult for Nlog to recycle log files based on
creation time because Nlog files can be created concurrently on
different sockets. Fortunately, because all historical log entries
of a log entry are marked as invalid before it is recycled,
any Nlog file can be recycled independently using h_addr to
improve garbage collection efficiency. Whether a Nlog file will
be reclaimed depends on its percentage of invalid log entries.
Nlog appends the valid log entries to the corresponding local
active file before reclaiming the Nlog file, which will cause
serious rewrite overhead if there are too many valid log entries
in the reclaimed Nlog file. Therefore, only Nlog files with a
percentage of invalid log entries exceeding the preset threshold
(gc_threshold) will be reclaimed by the GC thread.

As illustrated in Fig. 6, once the reclaimed Nlog file (noted
as a GC file) is selected, the GC thread appends all valid log
entries to the corresponding local active file (using the latest
version number and invalid h_addr). During this process, the
corresponding key of each valid entry in the volatile index will
be locked until its value address is updated to the address of
the new log entry. After all valid log entries are appended to
the active file, the GC thread reclaims the GC file space.

Concurrency of garbage collection. For optimal perfor-
mance, NStore creates one local GC thread for each socket
to minimize remote PM access. For optimal space efficiency,
NStore can create one local GC thread for each Nlog file
(excluding active files) in theory to quickly reclaim PM space.
However, excessive thread counts might diminish performance
due to remote PM writes during GC operations, as depicted in
Fig. 1(a). Therefore, limiting the number of GC threads to 8 or
below is recommended. Note that no communication is required
among GC threads.

G. Multi-Threaded Recovery

Before a normal shutdown, NStore copies the volatile index
to a predefined location of PM and persists a flag beside it to
indicate a normal shutdown. On system restart, the recovery
thread first checks and resets this flag. If the flag is marked
(indicates a normal shutdown), the recovery thread then loads
the volatile index to DRAM. If the flag is unmarked, the recov-
ery thread needs to rebuild the volatile index by scanning Nlog
files from beginning to end, and most of the recovery time is
spent on scanning. To reduce the recovery time, NStore adopts
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a multi-thread scanning scheme. It assigns a scanning thread for
each hash cluster. Within each hash cluster, if a duplicate key is
encountered, the thread keeps the log entry with the latest ver-
sion number and provides (key, v_addr) to rebuild the volatile
index. For the RAF cache, we only initialize it in the recovery
phase, and its reconstruction is completed by subsequent read
operations, regardless of the normal or abnormal shutdown.

IV. IMPLEMENTATION

NStore can use any of the existing indexes as its volatile
index. In our implementation, we deploy a learned-model-based
index ALEX [27] in DRAM to work as the volatile index.
The learned-model-based indexes, also known as learned in-
dexes, use small and efficient machine-learning models for fast
lookups, thus providing higher performance and a smaller index
footprint than B+-Trees. The most prominent of the existing
learning indexes is ALEX [28], which can contain more data
(16 MB) per node (including leaf node and non-leaf node)
by designing model-based insertion and lookup. However, the
original ALEX does not support concurrency, which can be a
performance bottleneck in dense access scenarios. To solve this
problem, we implement c-ALEX, a concurrent ALEX based on
node-level locks. Specifically, using node-level locks directly
will incur significant lock contention for leaf nodes with large
sizes and frequent writes. So, we reduce the size of leaf nodes to
512 KB to use node-level locks efficiently. For non-leaf nodes
with few writes, we use the node-level lock to control con-
currency but do not reduce the node size to avoid losing the
advantage of large nodes.

V. EVALUATION

A. Experimental Setup

Environment. All the experiments are performed on a Linux
server (kernel version 5.4.0) with the persistent memory - Intel
Optane DCPMMs. The server is equipped with four 128 GB
Optane DCPMMs, 64 GB DRAM, and two Intel Xeon Gold
5218 2.30 GHz (16-core, 32-hyperthread) CPUs. Each CPU
core has 32 KB L1 instruction cache, 32 KB L1 data cache,
1024 KB L2 cache, and 22 MB last-level cache. The four
Optane DCPMMs and 64 GB DRAM are evenly attached to two
CPU sockets (i.e., each CPU socket owns two Optane DCP-
MMs and 32 GB DRAM). The Optane DCPMMs are config-
ured in the App Direct mode. In our evaluation, applications can
access PM by first using the ext4-DAX file system to manage
the pmem device, and then relying on PMDK (version 1.8.1) to
allocate the PM space.

Comparisons. NStore is implemented with C++. We eval-
uate and compare NStore with seven available and open-
source state-of-the-art PM KV stores: Viper [4], PACTree [23],
FAST+FAIR [10], APEX [11], uTree [11], DPTree [12] and
Nap [17]. Viper is a PM-DRAM KV store that includes a
volatile hash table and a persistent DIMM-aligned log structure.
It does not support scan operations. PACTree is a persistent
trie-tree that uses a NUMA-aware persistent memory manager.
FAST+FAIR is a PM-only B+-tree and does not use DRAM.

APEX is a hybrid PM-DRAM learned index that places the
metadata, lock, bitmaps, and fingerprints of keys in DRAM.
uTree is a hybrid PM-DRAM B+-tree that puts non-leaf and leaf
nodes in DRAM and stores a linked list of KVs in PM. DPTree
first batches the writes in a DRAM B+-tree (buffer tree), then
asynchronously merges these writes into a PM-DRAM trie-
tree (base tree). The source code of DPTree does not support
delete operations, so we do not include it in the corresponding
experiments. Nap is a generic component that converts persis-
tent indexes to be NUMA-aware. The authors of Nap provide
a modified FAST+FAIR code that is compatible with Nap,
called Nap-FF, which we use in our evaluation. Since Nap is
only effective at skewed workloads and frequently crashes at
large data volumes (e.g., 200M), we evaluate Nap and NStore
independently in Section V-D using the dataset and workload
configuration of the Nap paper [17]. We modify the original
open-sourced codes for all comparison systems to make each
thread allocate PM from its local PMDK pool and configure
them using the default parameters stated in their papers. All
codes are compiled using g++ 9.4.0 with -O3. Unless otherwise
mentioned, we set the number of hash clusters to 256, set the
size of the RAF cache to 64 MB, and configure all structures
to run on all two NUMA sockets (i.e., each of the two sockets
executes half of the threads).

Datasets. We use YCSB [29] and longlat (LLT) to test all
the systems. Longlat is a realistic dataset from Open Street
Maps (OSM)1. Unlike YCSB, longlat is transformed to become
highly non-linear, consisting of compound keys that combine
longitudes and latitudes from Open Street Maps. No duplicate
elements are contained in these datasets. Each dataset has 200M
key-value pairs. By default, the key and value sizes in all the
datasets are 8 bytes. We randomly shuffle these two datasets to
simulate real-world scenarios.

Workloads. We stress test all KV stores mainly using 7
workloads: put100, put95 get5, put 50 get 50, get100, get50
upd50, upd100, delete100. Among them, put100 represents
100% of put operations (i.e., put workload), upd100 represents
update workload, and put95 get5 is a mixed workload of 95%
put operations and 5% get operations. For all runs except the
put workload, we first warm the KV stores with 200M KVs and
then perform 10M operations from different workloads; we treat
the first warming step as a put workload.

B. Overall Performance

Put performance. Figs. 7(a) and 8(a) show the average
throughput of put operations for KV stores on YCSB and
LLT, respectively, and the performance of NStore increases
steadily with the number of threads. Benefiting from local
active files, NStore has significantly higher throughput than
other structures even with only 2 threads; this advantage be-
comes increasingly apparent as the number of threads increases.
With 32 threads, NStore’s put throughput in the LLT dataset is
7.1×, 13.9 ×, 2.2×, 4.5×, 11.1×, and 1.8× higher than that
of PACTree, FAST+FAIR, APEX, uTree, DPTree, and Viper,

1https://registry.opendata.aws/osm
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Fig. 7. Throughput on the YCSB dataset (200 million KVs).

Fig. 8. Throughput on the LLT dataset (200 million KVs).

respectively. As the number of threads grows, FAST+FAIR,
APEX, PACTree, and DPTree show similar throughput trends:
the throughput decreases slightly with the number of threads.
This is because they experience more frequent structure mod-
ifications, remote writes, and lock contention in PM. At high
thread counts, the throughput of uTree and Viper does not drop
but the growth rate slows down. The reason is that they both put
the index in DRAM (so there are no structural modifications
in PM), but as the thread counts grow, the number of remote
PM writes will increase, slowing the throughput growth rate.
In addition, the one reason Viper has higher throughput than
uTree is that it assigns a thread to a log page, avoiding lock con-
tention. Figs. 7(b) and 8(b) show the KV store’s performance
on a mixed workload of 95% put and 5% get operations. With
32 threads, NStore’s put95 get5 throughput is 9.9×, 13.6×,
4.3×, 4.4×, 5.6×, and 1.8× higher than that of PACTree,
FAST+FAIR, APEX, uTree, DPTree, and Viper, respectively
(on LLT dataset). The throughput of APEX and DPTree in
put95 get5 workload is severely degraded compared to put100.
The throughput of APEX is degraded because it experiences
structure modification operations, while DPTree is because it
encounters merge operations.

Get performance. Figs. 7(d) and 8(d) show the throughput
of KV stores in get workload. When the number of threads
is less than 14 (on the LLT dataset), the read throughput of
NStore is slightly lower than APEX. However, as the number
of threads grows, NStore exhibits significantly better perfor-
mance than APEX and other structures. With 32 threads, the
get throughput of NStore in the LLT dataset is 3.5×, 5.1×,
3.5×, 1.4×, 11.2×, and 2.1× better than that of PACTree,
FAST+FAIR, APEX, uTree, DPTree, and Viper, respectively.
It is worth noting that the get throughputs of APEX, DPTree,
and FAST+FAIR drop significantly due to the remote PM reads
at high thread counts, while NStore and uTree are unaffected.
This is because NStore has local log files, and uTree allocates

space for each KV, resulting in an even distribution of data in
both sockets; in contrast, APEX, DPTree, and FAST+FAIR use
large data nodes (especially for APEX), which cause a large
amount of data to be written into one data node, leading to
uneven data distribution. PACTree is not affected by remote PM
access because it uses NUMA-aware space management, so the
data is evenly distributed in the two sockets. The throughput gap
between NStore and uTree is because we implement an efficient
concurrent learned index as the volatile index. Viper uses a
hash table in DRAM, so its throughput is higher than uTree at
low thread counts. However, Viper requires three PM accesses
per get operation (read lock, read data, and read lock again),
which makes it experience more remote PM accesses at high
thread counts, resulting in lower throughput. Figs. 7(c) and 8(c)
show the throughput of indexes in a mixed workload of 50%
put and 50% get operations. NStore, PACTree, FAST+FAIR,
APEX, Viper, and uTree all have throughputs between the put
workload (Figs. 7(a) and 8(a)) and the get workload (Figs. 7(d)
and 8(d)), which is consistent with performance trends of other
experiments.

Update performance. Figs. 7(f) and 8(f) show the through-
put of KV stores in update workload. With 32 threads, the
throughput of NStore in LLT dataset is 4.8×, 18×, 2.2×, 1.7×,
8.3×, and 2.3× larger than that of PACTree, FAST+FAIR,
APEX, uTree, DPTree, and Viper, respectively. For NStore,
PACTree, APEX, FAST+FAIR, and Viper, an update can be
approximated as a combination of a get and a put operation,
so their update throughput is very similar to the throughput of
the put50 get50. DPTree only searches the buffer tree when
updating and updates the value if the targeted key is found; if it
is not found, it is directly written to the buffer tree as new data.
Therefore, the update throughput of DPTree is similar to the
put throughput. uTree requires only one PM write to update the
value, while its put operation not only needs to allocate space
for the new KV, but also requires at least two PM writes to add
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Fig. 9. Throughput of scan operation on the YCSB dataset.

the new KV to the PM list. Therefore, the update throughput
of uTree is better than the put50 get50 throughput. Figs. 7(e)
and 8(e) show the throughput of indexes in a mixed workload
of 50% get and 50% update operations, and their throughput in
get50 upd50 is between get100 and upd100.

Delete performance. Figs. 7(g) and 8(g) show the index
throughput in a workload consisting of 100% delete opera-
tions. With 32 threads, NStore’s delete throughput in the LLT
dataset is 4.8×, 32.3×, 2.2×, 1.6×, 5.8×, and 2×, higher than
PACTree, FAST+FAIR, APEX, uTree, and Viper, respectively.
NStore deletes KVs by writing logs, so its delete throughput
is similar to the put operation’s. APEX completes deletion by
updating the key to an invalid key, so its delete throughput is
similar to its update throughput. The delete operation of uTree
removes the targeted KV from the PM list and reclaims the
space, so its delete throughput is similar to that of the put
operation. Viper deletes a KV by updating the bitmap, so its
delete throughput is similar to the update throughput. Among
all the index structures, the delete operation of FAST+FAIR is
the most complex and requires moving other KVs to avoid gaps,
so when the number of threads increases, a large number of
remote PM writes causes the delete throughput to drop.

Scan performance. Fig. 9(a) shows the scan performance
of all systems. NStore performs moderately compared to other
schemes, because the values are not stored in sorted order. With
32 threads, the scan throughput of NStore is 1.2× and 1.1×
higher than that of PACTree and uTree, respectively, but lower
than APEX, DPTree, and FAST+FAIR. APEX has the highest
scan throughput due to its large data nodes (256 KB). Each data
node in DPTree can hold 256 KVs, while FAST+FAIR only has
15 KVs. Therefore, the scan throughput of DPTree is higher in
2 threads. However, DPTree must read the data within the scan
range from the buffer tree, which may bring remote PM reads.
Consequently, the scan throughput of DPTree is lower than that
of FAST+FAIR in 32 threads. Each leaf node in PACTree can
hold 64 KVs, but it needs to construct an additional data array
in DRAM when executing a scan (i.e., all the keys in the scan
range are written to DRAM), causing its scan performance to be
relatively low. With 2 threads, uTree performs the worst among
all the indexes since traversing the PM list incurs a great number
of CPU cache misses. However, with increased thread count,
cache misses notably drop, leading to a substantial rise in scan
throughput.

Fig. 10. Throughput under different skewness of Zipfian distribution (32
threads).

Fig. 11. Throughput comparison with Nap on the YCSB dataset.

C. Performance With Skewed Access Patterns

We evaluate the performance of update and get operations
with 32 threads on the YCSB datasets with different skewness
(Zipfian factor varying from 0.5 to 0.99). Fig. 10(b) shows that
with higher skewness, all KV stores perform better because
accesses are focused on a smaller set of hot keys, making better
use of the CPU cache and are less impacted by PM’s high la-
tency. Nevertheless, the effect of the RAF cache is still very sig-
nificant: the more the skewness, the more improvement NStore
attains in get throughputs. Update operations (in Fig. 10(a))
are different. When a large number of update operations are
concentrated in a smaller set of hot keys, lock contention be-
comes a major bottleneck because the granularity of APEX and
NStore write locks are relatively large. For other indexes, the
CPU cache reduces PM accesses, resulting in higher update
throughput at higher skewness.

D. Comparison With Nap

Nap, detailed in Section II-B, is a component that transforms
existing PM KV stores into NUMA-aware stores. It primarily
improves the performance of skewed workloads. In this exper-
iment, we evaluate Nap and NStore based on the dataset and
workload configuration of the Nap paper [17]. Specifically, we
first load a 16M YSCB dataset, then execute 64M operations.
Besides, we set the maximum number of KVs that the RAF
cache can hold to 100 K, which is the same as for Nap.

Fig. 11 illustrates the update and get throughputs of
NStore and Nap with a varies of skewness (32 threads). In
Fig. 11, NStore-w/o-RAF indicates NStore without RAF cache.
Nap-FF uses FAST+FAIR as the raw PM index for Nap, and
Nap-NStore uses NStore-w/o-RAF as the raw PM index. For
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Fig. 12. Scalability with varying NUMA nodes (sockets) on the YCSB
dataset.

a fair comparison, we cancel the creation of PM-views when
testing the get throughput.

We observe that the update and get throughputs of NStore
are significantly higher than those of Nap-NStore and Nap-FF.
When the Zipfian factor (α) is 0.9, the update and get through-
puts of NStore are 15× and 20× higher than those of Nap-FF. It
is worth noting that the throughput of Nap-NStore is lower than
that of NStore-w/o-RAF, which means that Nap has negatively
optimized the update and get performance of NStore-w/o-RAF.
The reason is that NStore implements complete local updates.
However, Nap pointlessly introduces a large number of local
PM writes when creating per-socket PM views during each hot
dataset switch, consuming a lot of PM bandwidth. Additionally,
in an update workload with α= 0.99, the throughput of NStore
drops due to the severe contention caused by coarse-grained
write locks in the volatile index. When Nap shares some of
the hot updates, the lock contention of NStore is mitigated.
There are three reasons for Nap’s negative optimization on get
throughput: First, it switches hot keys at the coarser granularity
of the set, hence the high cache misses. In more tests, we
observe that the cache miss rate of RAF cache is below 10%
when α= 0.99, while that of nap is over 20%; Second, there are
a lot of slower remote accesses in the missed requests. As shown
in Fig. 3(a), remote reads account for up to 50% of missed reads
(i.e., the total number of PM reads). Third, the performance of
NStore is much higher than that of PM-only KV stores. This
makes it difficult for Nap to improve performance on NStore.

E. Scalability With Number of Sockets

In this experiment, we present a performance test of each
structure as the number of sockets grows. The first 16 threads
are bound to socket 1, while the remaining 16 are bound to
socket 2; each thread allocates PM from its local PMDK pool.
For different numbers of threads, we first insert 200M KVs (put
operations) and then perform 10M get operations.

Fig. 12 shows the throughput of the structures at different
numbers of threads/sockets. We observe that the scalability
of NStore is much better than that of the other structures. In
Fig. 12(a), NStore is hardly affected by the increase in the
number of threads/sockets because NStore creates a local Nlog
file in socket 2 to receive writes from threads 17–32. However,
the throughput growth rate of other schemes slows significantly

when the number of threads increases from 17 to 32 due to re-
mote PM accesses. In Fig. 12(b), the throughputs of all schemes
drop when socket 2 is added, which is due to the remote PM
accesses. However, as the number of threads further rises, the
get throughputs of NStore, uTree, PACTree, and FAST+FAIR
improve. This, however, is not true for APEX, DPTree, and
Viper. The data node size of APEX and DPTree is large and
it is difficult to distribute the data evenly in all sockets, so the
proportion of remote PM reads is high. Interestingly, one reason
for the better read performance of APEX than NStore on a
single socket is that the super large nodes make the structure
of APEX flatter and the access paths shorter. Viper requires at
least three PM accesses per get operation, which leads to more
remote accesses after adding socket 2, so it is difficult to recover
the performance.

F. In-Depth Analysis for NStore

Effect of RAF cache. Fig. 11 also shows the read perfor-
mance improvement of the RAF cache. Since RAF cache is only
enabled under skewed get workloads, the update throughput
of NStore and NStore-w/o-RAF is the same. From Fig. 11(b),
we observe that the RAF cache can significantly improve
the throughput of NStore as the Zipfian factor (α) increases.
NStore slightly underperforms NStore-w/o-RAF under low-
skewed workloads due to the cache miss penalties, which
mainly come from the overhead of looking up cache, replacing
cache items, and looking up missed requests in the volatile
index and Nlog. RAF cache introduces a hash table structure
to speed up in-cache lookups, uses a sampling strategy to mini-
mize the performance fluctuations from cache replacement, and
designs a remote-access-first replacement policy to minimize
the misses on slower remote requests. In contrast, Nap cache
has a negative optimization for NStore-w/o-RAF, because it
replaces hot data in units of sets, causing more cache misses
and higher replacement overhead. In addition, there are more
remote requests in Nap’s missed requests, so the miss penalties
are more severe (Section V-D).

Effect of volatile index. We design a simple but effective
concurrent learned index (i.e., c-ALEX) as the volatile index
of NStore for fast indexing (Section IV). To demonstrate the
impact of c-ALEX on NStore’s performance, we implement
NStore-B that uses B+-tree as the volatile index and Nlog as
the PM storage. Fig. 13 shows that the put/get throughput of
NStore is significantly higher than that of NStore-B at high
thread counts. Especially, the put throughput of NStore grows
faster than that of NStore-B as the number of threads increases.
This is because we preserve large nodes in learned indexes (so
fewer structural modifications caused by put operations) but
also successfully mitigate the issue of lock contention under
conditions of high concurrency.

Effect of Nlog. Nlog eliminates remote PM writes in NUMA
using separate per-socket active files. Fig. 13 illustrates the per-
formance of Nlog with other persistent storages, where NStore
is c-ALEX (as the volatile index) + Nlog (as the persistent
storage), Viper-A is c-ALEX + its log structure, NStore-B is
B+-tree + Nlog, and uTree is B+-tree + PM list.
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Fig. 13. Performance sensitivity of volatile index and Nlog on the YCSB
dataset.

Fig. 14. Throughput of NStore under different numbers of hash clusters
with 2, 16, and 32 threads on the YCSB dataset.

The impact of Nlog can be demonstrated from two aspects:
1) Comparison with the existing log structures. Comparing
NStore and Viper-A, we observe that Nlog’s put/get throughput
is higher than the log structure of Viper’s. The reason is that
NStore eliminates remote PM writes and need only one local
PM write per put operation. In addition, Viper-A’s get through-
put is lower because it uses in-place updates, and thus requires
additional PM reads for concurrency. 2) Comparison with other
persistent storage. Comparing NStore-B and uTree, we observe
that Nlog’s put throughput is higher than PM list. This is
because uTree needs to allocate space for new KVs in each
put operation. NStore-B and uTree have similar get throughput
because they both require only one PM read per get operation.

Effect of local PM reads scheme on scan operation.
To improve the performance of scan operations, we design the
local PM reads scheme (mentioned in Section III-E), which not
only eliminates remote PM reads but also takes advantage of the
internal parallelism of the PM. Fig. 9(b) shows the performance
impact of different numbers of local PM read threads with
32 scan threads. Each socket has half of the local PM threads;
that is, when there are 8 local PM read threads, 4 are included
in each socket. We observed that the larger the value size, the
easier it is for the scan operations to benefit from concurrent
local read threads. When the value size is 8B, the thread com-
munication causes a significant drop in scan throughput, and
when the value size is 512B, the advantage of local PM threads
is very apparent.

Effect of hash cluster. NStore avoids contention through
hash clusters and improves the concurrency of write operations.
In this paper, we set the default number of hash clusters to
256 for testing. Now, we use multiple numbers of hash clusters
to explore more options. Fig. 14(a) shows the variation of put

Fig. 15. Garbage collection overhead of NStore on the YCSB dataset.

performance with the number of hash clusters ranging from
16 to 256. At 2 threads, the write concurrency is small, and too
many hash clusters lead to a large number of random writes;
thus, the best performance is achieved with 16 hash clusters.
However, with the increase in threads, too few hash clusters can
lead to severe write contention. Therefore, the best performance
is achieved when the number of hash clusters is 64 for 16
threads, and when the number of threads increases to 32, the
optimal number of hash clusters is 128. Fig. 14(b) shows the
throughput variation of the update with a Zipfian at 0.9 as
the number of hash clusters increases from 16 to 256. Similar to
the even put workload performance, the number of hash clusters
with the best performance grows as the number of threads
increases. Thus, changing the number of hash clusters does
not affect the performance of the skewed workload. Fig. 14(c)
shows the variation of read performance as the increase in the
number of hash clusters. Changing the number of hash clusters
does not affect the read performance.

Garbage collection. We evaluate the garbage collection
overhead from two viewpoints: foreground workload priority
(i.e., fewer garbage collection threads) and garbage collection
priority (i.e., more garbage collection threads). For each run, we
first load the YCSB dataset in NStore and then update 75% of
the data. (a) To prioritize foreground requests, we assign only
one GC thread per socket and analyze the GC’s impact on write
performance and space usage for various gc_threshold values.
Fig. 15(a) shows the results. A larger gc_threshold means fewer
Nlog files to reclaim, and both the write performance and space
usage increase. Moreover, the increase in write performance
with growing gc_threshold is small and linear, however, when
gc_threshold exceeds 0.5, PM usage increases significantly, so
the default gc_threshold is 0.5. (b) To prioritize garbage collec-
tion, we study the effect of the number of GC threads on GC
time with varying gc_threshold values. Fig. 15(b) shows that the
GC time is reduced by 61% as the GC thread counts increase
from 2 to 8, when gc_threshold is 0.1. Hence, in scenarios with
limited PM space or light foreground workloads, additional GC
threads can expedite recycling.

G. Recovery Overhead

We evaluate the recovery time of NStore with varying
numbers of KV pairs, value sizes, and recovery threads, and
the results are shown in Fig. 16. Note that only the volatile
index needs to be rebuilt during recovery, which does not
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Fig. 16. Recovery overhead of NStore on the YCSB dataset.

incur any PM writes. When the value size is 8 B, the recovery
process with 32 threads takes only 1.2/2.4/5.3 seconds to
rebuild the volatile index containing 50/100/150 million KV
pairs, respectively. In the test with 100M KVs and 8 B value
size, the recovery time was reduced by 94% from 40.4 s with
a single thread to 2.4 seconds with 32 threads. This reduction
in recovery time is also achieved in the recovery tests with
different value sizes and data volumes, demonstrating the
effectiveness of our multi-threaded recovery strategy in
reducing scanning costs and speeding up recovery in various
scenarios. It is worth noting that we used 256 hash clusters in
our tests, and with 32 threads, each recovery thread needs to
scan 8 hash clusters. However, in our design, every hash cluster
can have a standalone recovery thread, so the recovery time
will be further reduced as the number of threads increases.

VI. RELATED WORK

PM Indexes. Existing persistent indexes are optimized for
crash consistency and performance [7], [8], [10], [11], [12],
[14]. Here are a few representative ones. FAST+FAIR [10] is a
PM-only B+-tree index designed to minimize crash consistency
overhead by tolerating transient inconsistency. APEX [11] is a
hybrid learned index placing internal nodes and leaf nodes on
PM and maintaining sophisticated data structures on DRAM to
improve performance. In addition, APEX has a large node size
and flatter structure by using machine learning models in each
node to accelerate the search. uTree [8] is a hybrid B+-tree index
designed to reduce tail latency by placing all nodes of B+-tree in
DRAM and coordinating concurrency control. DPTree [12] is a
hybrid index designed to amortize crash consistency overhead
by batch writes. Specifically, DPTree first appends data to the
buffer tree, then merges the data in the buffer tree to the base tree
when the buffer tree reaches the size threshold. However, almost
all state-of-the-art persistent indexes forgo the effect of NUMA.
Thus, they do not scale well with the number of sockets.

NUMA-aware Techniques. Researchers proposed many
techniques to solve the NUMA problem on storage engines,
including delegation [22], [25], [30] for file systems (or re-
sources contention management) and replication [16], [31],
[32] for DRAM indexes. The delegation technique uses local
worker threads to perform tasks delegated by the application
threads, which causes a huge thread communication overhead,
especially for small-sized indexing operations. The replica-
tion technique replicates all or part of indexes in each socket,
which causes every update operation to be executed at every
socket, and thus is very unfriendly to PM with crash recovery

overhead and low bandwidth. In addition, a few NUMA-aware
PM indexes have been proposed. ListDB [33] designed a
braided skiplist, which reduces remote access by building a
separate upper layer in each socket. However, this solution in-
creases the number of local PM access. PACTree [23] allocates
local PM space for structure modification threads to reduce
remote PM writes, but this scheme cannot eliminate remote PM
writes. Nap [17] proposed a generic NUMA-aware component,
which reduces remote PM access by caching hot data from the
PM KV stores into DRAM. However, Nap’s NUMA optimiza-
tion for the PM KV stores is minimal.

Log-structured Key-Value Stores. The log-structured de-
sign is prevalent in KV stores. FASTER [19] is a hash-based
KV store employing a volatile index and a hybrid log for disk
storage with in-place updates and “roll-to-tail” garbage collec-
tion. However, in-place updates introduce remote access into
the critical path of the operations. Moreover, the premise of
“roll-to-tail” is that there is a single tail for new entries, leading
to remote PM writes when appending entries. NStore maintains
multiple tails (i.e., active files) to enable fully local PM writes
and mitigate lock contention. Nibble [18] is a hash-based many-
core KV store with a multi-head log structure. However, Nibble
is not suitable for PM due to the lack of data consistency and
crash recovery mechanisms. NStore assigns an active file to a
hash cluster instead of a core in Nibble, thus enabling fast recov-
ery and more balanced write operations. Furthermore, NStore
designs an efficient garbage collection for this log structure that
ensures data consistency. These measures allow NStore to fit
pure DRAM and PM-DRAM hybrid memory. FlatStore [5],
Viper [4], and RStore [6] are all PM-DRAM hybrid KV stores
that utilize volatile indexes on DRAM and log-structured stor-
age on PM. FlatStore proposes pipelined horizontal batching
to batch small-sized requests, achieving low latency and high
throughput. Viper assigns threads to different PM regions to
minimize the thread-to-DIMM ratio, and stores data in DIMM-
aligned segments to balance DIMM contention. RStore aims to
reduce tail latency via the asynchronous programming model,
message-passing communication, and log-structured storage.
However, these approaches are not optimized for NUMA and
they do not run efficiently in the NUMA architecture due to the
unavoidable large number of remote PM accesses.

VII. CONCLUSION

In this work, we propose NStore, a high-performance
NUMA-aware key-value store containing a read-optimized
cache (RAF cache) designed for NUMA architectures, a per-
sistent log-structured storage (Nlog) to localized PM writes,
and a volatile index for fast indexing of Nlog. RAF cache
minimizes remote PM reads by giving the latter higher cache
priority. Further, with the independent local Nlog files, NStore
completely eliminates remote PM accesses in write operations.
In addition, we present several strategies for Nlog to optimize
scan, garbage collection, and recovery performance. Extensive
evaluations show that NStore achieves up to 13.9× and 11.2×
improvements in put and get throughput, respectively, com-
pared to recent PM systems.
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