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A Tail Latency SL.O Guaranteed Task Scheduling
Scheme for User-Facing Services
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Abstract—A primary design objective for user-facing services
for cloud and edge computing is to maximize query throughput,
while meeting query tail latency Service Level Objectives (SLOs)
for individual queries. Unfortunately, the existing solutions fall
short of achieving this design objective, which we argue, is largely
attributed to the fact that they fail to take the query fanout ex-
plicitly into account. In this paper, we propose TailGuard based
on a Tail-latency-SLO-and-Fanout-aware Earliest-Deadline-First
Queuing policy (TF-EDFQ) for task queuing at individual task
servers the query tasks are fanned out to. With the task pre-
dequeuing time deadline for each task being derived based on
both query tail latency SLO and query fanout, TailGuard takes an
important first step towards achieving the design objective. A query
admission control scheme is also developed to provide tail latency
SLO guarantee in the presence of resource shortages. TailGuard
is evaluated against First-In-First-Out (FIFO) task queuing, task
PRIority Queuing (PRIQ) and Tail-latency-SLO-aware EDFQ (T-
EDFQ) policies by both simulation and testing in the Amazon EC2
cloud. It is driven by three types of applications in the Tailbench
benchmark suite, featuring web search, in-memory key-value store,
and transactional database applications. The results demonstrate
that TailGuard can significantly improve resource utilization (e.g.,
up to 80% compared to FIFO), while also meeting the targeted tail
latency SLOs, as compared with the other three policies. TailGuard
is also implemented and tested in a highly heterogeneous Sensing-
as-a-Service (SaS) testbed for a data sensing service, demonstrating
performance gains of up to 33% . These results are consistent with
both the simulation and Amazon EC2 results.

Index Terms—Task scheduling, resource management, tail
latency SLO, user-facing service.

1. INTRODUCTION

T has been widely recognized that the query tail latency for
I user-facing services, such as web searching and emergency
response through edge-based crowdsensing, has a great impact
on user experience and hence, business revenues. For example,
for Amazon online web services, every 100-millisecond addition
of query tail latency causes 1% decrease in sale [1]. To meet strict
tail latency Service Level Objectives (SLOs), the resources for
user-facing services are generally over-provisioned [2], at the
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cost of reduced profit. As a result, a key design objective of a
user-facing service, called the design objective in short here-
after, is to maximize the resource utilization or query throughput,
while meeting tail latency SLOs for individual queries.

However, achieving the above design objective is by no means
easy. A query for a typical user-facing service may spawn a
number of tasks, known as query fanout, to be dispatched
to, queued and serviced in parallel in different servers or edge
nodes where the data shards reside and the slowest task of the
query determines the query response time [3], [4]. The range
of query fanouts may differ from one service to another, e.g.,
up to several hundreds for online social networking [5], on
the order of several thousands to tens of thousands for web
search [3], and potentially up to millions for emergency response
through edge crowdsensing [6]. A small number of outliers
(caused by, e.g., skewed workloads [7] or software/hardware
resource variations [8]) can significantly impact the query tail
latency performance [3]. While a large body of works have been
devoted to alleviating the impact of outliers on the query tail
latency performance (e.g., [9], [11], [12], [13], [14], [15], [16],
[17], [18]), to the best of our knowledge, no existing solution
attempts to meet more than one query tail latency SLO to satisfy
different performance requirements of individual users, while
maximizing the resource utilization or query throughput, hence
falling short of the design objective.

In this paper, we claim that a solution that stands a chance to
achieve the design objective must be not only tail latency SLO
aware but also query fanout aware. This is simply because o
meet a given tail latency SLO, the task resource demands for
tasks belonging to queries with different fanouts are different.
For example, assume that with a given amount of resource
allocated to process each task and the task response time for
each task has 1% probability to be over 100 ms. Then the
query response time for a query with fanout % has probability,
1-0.99%7, to be over 100 ms, meaning that a query with k =1
and ky = 100 have 1% and 63.4% probabilities of being over
100 ms, respectively. This implies that while a query with ky = 1
can meet the tail latency SLO in terms of the 99th percentile tail
latency of 100 ms, a query with ks = 100 cannot. In order to
allow the query with k¢ = 100 to also meet the same tail latency
SLO, a task associated with the query must be allocated a much
larger amount of resource so that the chance it will exceed 100 ms
is as small as 0.01% . This ensures that the probably that the
query response time exceeds 100 ms is 1-0.99991%0 = 0.01 or
1% , i.e., meeting the same tail latency SLO as the query with
ks = 1. This example clearly demonstrates that to meet a query
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tail latency SLO for all queries regardless query fanouts, the task
resource demands for tasks belonging to queries with different
fanouts are different and a task belonging to a query with a
larger fanout demands more resources, confirming our claim.
Although some works [18], [19] use task replicas to speed up
the straggled tasks for queries with task fanout, they do not take
query fanout into individual task resource allocation. As a result,
these approaches fail to maximize system resource utilization
and hence, do not achieve the design objectives.

The implication of the above observation is significant. First,
even with all the queries sharing a given tail latency SLO,
the tasks belonging to queries with different fanouts should
be treated differently. Any solution that fails to take the query
fanout explicitly into account is guaranteed to result in resource
overprovisioning, simply because such a solution will have to
allocate task resources based on the worst-case task resource
demand. This partially explains why the way to meet stringent
tail latency SLOs for large-scale user-facing services in today’s
datacenters is normally through resource over-provisioning [2].

Second, consider a user-facing service that supports multiple
classes of queries with a higher class requiring a more stringent
tail latency SLO. Since the resource demand for a task is a
function of not only the tail latency SLO but also the fanout
of the query the task belongs to, it becomes apparent that a
task associated with a query of a lower class but with a larger
fanout may end up demanding more resources than a task in a
query of a higher class but with a smaller fanout. This renders
class-based task queue scheduling disciplines (e.g., PRIority-
based task Queuing (PRIQ) [2], [20], [21]), task fanout-unaware
queue management policies (e.g., the Tail-latency-SLO-aware
Earliest-Deadline-First Queuing (T-EDFQ)), or task preemp-
tion [22] policies inadequate to achieve the design objective.
This may also render some task reordering solutions solely based
on task sizes [8], [23] inadequate.

In this paper, we propose TailGuard, a Tail-latency-SLO-
and-Fanout-aware Earliest-Deadline-First Queuing(TF-EDFQ)
policy, as a first step towards achieving the design objective
for user-facing services in general. As a top-down approach,
TailGuard decouples the upper query level design from the lower
task level design. First, at the query level, a task decomposition
technique is developed to translate the query tail latency SLO
for a query with a given fanout into a task pre-dequeuing time'
deadline for tasks spawned by the query at the task level,
reflecting the resource demand of the tasks. This effectively
decomposes a hard cotask scheduling problem at the query level
into individual queue management subproblems at the task level.
Second, at the task level, a single TF-EDFQ corresponding to
a task server is used to enforce the task pre-dequeuing time
deadlines, as a way to differentiate resource allocation for tasks
with different resource demands. TailGuard addresses a critical
challenge by prioritizing the most urgent tasks to meet query
tail latency SLOs, thereby improving system utilization. In
principle, TailGuard permits unlimited number of query classes
and is lightweight, as it incurs minimum overhead for task

'A task pre-dequeuing time includes all the the delays a task experiences
before it is dequeued from the task queue.

pre-dequeuing deadline estimation and requires to implement
only a single earliest-deadline-first queue per task server for any
user-facing applications. A query admission control scheme is
also developed to provide tail latency SLO guarantee in the face
of resource shortages. A primary version of this paper appeared
in [24].

TailGuard is evaluated against First-in-First-Out (FIFO)
queuing, PRIQ and T-EDFQ by both simulation and testing in the
Amazon EC2 cloud. Three traces generated from the Tailbench
benchmark suite [25], featuring web search, in-memory key
value store, and transactional database applications, are used
as input. The results demonstrate that TailGuard can improve
resource utilization by up to 80% , while meeting the targeted
tail latency SLOs, as compared with the other three policies.
The query admission control scheme is also tested and the
results indicate that it can indeed provide query tail latency SLO
guarantee. Finally, TailGuard is implemented and tested in a
highly heterogeneous Sensing-as-a-Service (SaS) testbed for an
edge-based temperature-and-humidity sensing service, with test
results in lines with the other ones.

1I. BACKGROUND AND RELATED WORK
A. User-Facing Services

User-facing services are a predominant class of workloads
in today’s cloud and have also emerged as an important class
of workloads in an edge-cloud ecosystem, generally known
as SaS? [26]. Predominant user-facing services are driven by
queries that require query responsiveness in sub-seconds to
seconds and may need to touch on massive datasets, which
are typically carried out in a data parallel fashion. The working
dataset for a service are distributed to many task servers. Accord-
ingly, a query may spawn a number of tasks to be dispatched to
some or all of these task servers to be processed.

A user-facing service may be launched in a dedicated data-
center cluster owned by a service provider, e.g., the web search
service by Google, in a cloud by a tenant who rents cloud
resources from a cloud service provider (e.g., Amazon cloud),
or in an edge-cloud ecosystem owned by multiple stake-holders,
including individuals who own the sensing data and/or edge
devices and cloud service providers.

Fig. 1 depicts a generic user-facing service processing
model [27], [28]. It is composed of three parts, including a
front-end server, a mid-tier server (called query handler in this
paper), and a set of back-end leaf servers (called task servers in
this paper),® each hosting a piece of the total dataset, also known
as a shard, a partition, or a published sensing dataset (e.g., in an
edge node).

When a user request arrives at the front-end server, its work-
flow is parsed to generate a set of queries to be issued se-
quentially to the query handler at the mid-tier server. Due to

ZFor an Sa$, users send sensing requests to the cloud. The cloud then
dispatches related query tasks to geo-distributed edge nodes to acquire desired
sensing data collected and processed through crowdsensing, which are subse-
quently merged in and returned to the users from the cloud.

3Task servers are also known as, e.g., workers, virtual-machines (VMs),
containers, or edge nodes, depending on the specific services to be studied.
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Fig. 1. A typical user-facing application process architecture.

query/task dependency, the next query cannot be issued until
the current one finishes. For each query received, the query
handler spawns a number of tasks for the query and dispatches
them to the queues corresponding to the task servers* that will
serve them when they reach the queue heads. The tasks for the
same task server are queued based on a given queuing mech-
anism. In practice, task servers are usually allocated dedicated
CPU/memory/storage resources in the form of, e.g., cores, VMs,
containers, or pods, as well as fix-sized data shards, forming a
more or less homogeneous task server cluster. As a result, the
differentiation of resource allocation among tasks with different
resource demands are mainly through task queuing policies, e.g.,
PRIQ [2], [20], [21], task-reordering-based queuing [8], [23], or
EDFQ, unless task-aware resource auto-scaling [29] is allowed.

Upon completion of the execution of a task, the task result is
returned to the query handler to be merged with the task results
from the other tasks of the query. The query finishes when all the
task results are merged and sent to the front-end server. Hence
the task response time for the slowest task dictates the query
response time. In turn, the request completes when the last query
in the request finishes.

B. Tail Latency Aware Solutions for User-Facing Services

User-facing services generally call for query tail latency SLO.
A query tail latency SLO can be interpreted in two different
ways. For example, for a query tail latency SLO expressed as
the 99th percentile query tail latency of 300 ms, it may mean that
out of 100 queries, probabilistically 99 queries will experience
query response times within 300 ms; it may also be interpreted
as that with 99% probability, a query will be fulfilled within
300 ms. The second interpretation, applied in this paper, means
that a query tail latency SLO can be applied to any given query,
called per tail latency SLO hereafter.

Many works have been devoted to addressing query tail
latency related issues for user-facing services, which can be
broadly classified into two categories, i.e., outlier-alleviation,
focusing on curtailing the tail length of the task response time to
improve overall query tail latency performance, and fail latency
SLO guarantee for queries sharing a single tail latency SLO.
In what follows, we elaborate more on the solutions in the two
categories, respectively.

Outlier-Alleviation: Most existing solutions fall into this cat-
egory. Some typical examples in this category are listed as

4Note that the queuing may take place either centrally at the query handler or
at individual task servers.

follows. Solutions based on task-size-aware task reordering in a
task queue [8], [23], [30], [31] are proposed to avoid head-of-line
blocking of small-sized tasks by large-sized ones to reduce the
mean task latency. Task-aware scheduling schemes [13], [14],
[15], [32], [40] are designed to shorten the tail latency for tail la-
tency critical tasks in workloads with both batch and tail latency
critical queries. Redundant-task-issue solutions [7], [12], [18],
[19] are developed to reduce the query tail latency by allowing a
task to be issued to multiple task server replicas for queries with
task fanout. Task execution time prediction through workload
profiling [9], [11], [16], [17], [27] and machine learning [33],
[34] are widely employed to adjust the level of parallelism to
remove task bottlenecks or to avoid sending tasks with predicted
long execution time to poorly performing task severs to reduce
task tail latency. Solutions based on synchronized garbage col-
lection for all task servers [3], [35] are proposed to minimize
variabilities of task execution times among parallel tasks to
reduce query tail latency. Solutions that allow partial results
to be returned to fulfill a query, e.g., [36], can maintain more
predictable query tail latency at the cost of possible loss of partial
results. Dynamic resource allocation based on the feedback
loop control mechanisms [8], [37] are proposed to help reduce
query tail latencies. CPU power control schemes [18], [38] are
developed to dynamically adjust voltage and frequency scaling
(DVFS) for task servers based on task execution time to save
energy and maintain low task tail latency. A query fanout control
scheme [4] is designed to control the fanout in queries to opti-
mize the system performance. A transaction scheduling solution
for geo-distributed databases [39] uses transaction timestamps
to reduce both mean and tail latencies for edge computing. All
these solutions help reduce the query tail latency, but cannot
provide SLO guarantee.

Tail Latency SLO guarantee: There are a few existing solu-
tions in this category, including Cake [41], PriorityMeister [42],
SNC-Meister [43], WorkloadCompactor [44] and PSLO [45], all
for shared datacenter storage applications. All these solutions,
except Cake, aim at meeting a single query tail latency SLO for
all queries with fanout of one only. Cake can handle fanout of
more than one, but is unable to enable per-class or per-query tail
latency SLOs, as it relies on direct measurement of the overall
tail latency statistics as input for control, resulting in fanout-
unaware resource overprovisioning. Clearly, a solution based
on direct tail latency statistics measurement like Cake cannot be
extended to allow per-query resource allocation, simply because
the needed statistics are unavailable at this granularity. Some
tail latency SLO guaranteed solutions for micro-service such as
GrandSLAm [46] and Sinan [47] are proposed. But, again, they
cannot support per-query tail latency SLO.

III. TAILGUARD

In this section, we first give the TailGuard query processing
model. Then we present the task pre-dequeuing time budget
decomposition solution and address its implementation issues.
Finally we present the query admission control scheme. The
major symbols used in TailGuard are listed and defined in
Table I.
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TABLE I
THE SYMBOLS USED IN TAILGUARD

Symbol Description
N number of task servers
M number of queries in a request
kg fanout of a query
Ty task pre-dequeuing time budget for a query
to query arrival time
tp task pre-dequeuing time deadline, tp = to+71}
tpr task pre-dequeuing time
tpo task post-queuing time or unloaded task re-
sponse time
tr task response time, ¢t = tpr + tpo
xg Lo pth percentile query tail latency SLO
xy(ky)/zp(ky)  unloaded/loaded pth percentile tail latency for
a query with fanout k¢
F () Fy(t) CDF of unloaded/loaded task response time
with respect to task server [
F5@)/Fq(t) CDF of unloaded/loaded response time for a
query
P(ky) probability of a query with fanout &
Task queue /Task \
sorted by tp
Task, tp
—
Query |Find 1=k, =N
W compute
> 7P Teand e
to=tetT, L T
Query e
handler
Fig. 2. TailGuard query processing model. A task queue for a task server can

be set in the task server or in the query handler.

A. Problem Statement

The key to the design of TailGuard is the task pre-dequeuing
time budget decompostion or pre-dequeuing time deadline esti-
mation. The task pre-dequeuing time deadline estimation prob-
lem can be formally stated as follows: For a query with fanout,
kg, a given tail latency SLO in term of :rf LO and arrival time,
to, find the task queuing deadline, tp = to + Tb(ngO, ky),
for tasks spawned by the query. Here, Tb(xf: LO k), the task
pre-dequeuing time budget, is the maximum allowable task pre-
dequeuing time before the task must be dequeued and given/sent
to the task server to be processed, in order to meet the query tail
latency SLO. Central to the TailGuard design is to calculate
Tb(ngO, kf).

B. TailGuard Query Processing Model

Consider a query processing model directly derived from
Fig. 1, as depicted in Fig. 2. It is composed of a query arrival
process, a query handler, and NV task servers. The query arrival
process characterizes the randomness of queries arriving at the
query handler.

At the query level, upon receiving a query at time, ¢, the
query handler first determines how many tasks (i.e., the query
fanout, k y) need to be spawned and to which £y task servers these
tasks need to be dispatched. The query handler estimates task

pre-dequeuing time budget 7} and computes the task pre-
dequeuing time deadline tp = to + T}, shared by all the tasks
associated with the query.’ Finally, the tasks, together with their
deadlines, are dispatched to the queues corresponding to the task
servers. Since task pre-dequeuing time budget, T3, is an explicit
function of both x;? LO and k 1 for the query, TailGuard by design
permits per-query tail latency SLOs. At the task level, each task
queue adopts a TE-EDFQ, based on tp (25, k¢). When a task
is to be enqueued at a task queue, if the corresponding task server
is idle, the task is serviced immediately, otherwise, it is inserted
into the task queue with tasks ordered in increasing order of
tp’s, hence with the task of the smallest ¢ at the head of the
queue. Whenever a task in service finishes, the task at the head
of the queue is put in service immediately. Finally, upon the
completion of execution of a task, the task result is sent back to
the query handler to be merged. A query finishes as soon as the
merging of all the task results completes.

TailGuard ensures that tasks with a higher chance to cause
the violation of the associated query tail latency SLO will be
serviced earlier, thus improving the system utilization.

C. Estimation of Task Pre-Dequeuing Deadline

The key to the design of TailGuard is the task pre-dequeuing
time budget decompostion or estimation of the pre-dequeuing
time deadline. In this subsection, we first present the solution for
estimation of task pre-dequeuing time deadline and then propose
a way to implement it.

1) Solution: Now we present the solution of estimation of
task pre-dequeuing deadline. First, we note that the task response
time (also called loaded task response time), ¢,., can be generally
expressed as, t, = tp, + t,,, Where ¢, represents the task pre-
dequeuing time and ?,, stands for task post-queuing time or
unloaded task response time. Z,,,- is composed of task scheduling
time and task queuing time, if task queuing takes place centrally
at the query handler. It also includes task dispatching time, if
task queuing occurs at the task server. t,, includes all the times
the task incurs after de-queuing.

Now we assume that the Cumulative Distribution Function
(CDF) of unloaded task response time t,,, F}"(t), with respect
to task server, [, can be measured and updated for all task servers
I =1,...,N. Furthermore, let x, (k) and F{5(t, kr) represent
the pth percentile unloaded query tail latency and the CDF of
unloaded query latency for queries with fanout k¢, respectively.
Here, a query latency is considered as unloaded (loaded) if the
query response time does not (does) include pre-dequeuing time,
tpr. Also define n = n(i) to be the mapping between the i-th
task in a query and the n-th task server the task is dispatched
to, for ¢ = 1, ..., ky. Clearly, the unloaded query latency is the
task post-queuing time of the slowest of all k¢ tasks. According
to the ordered statistics [10] by assuming that all task service

SThe rationale for assigning the same budget to all the tasks of a query is
as follows. Mathematically, with two reasonable assumptions made, i.e., a task
resource demand is an decreasing function of the task budget and the sum of the
task budgets for all the tasks in a query must be upper bounded to meet a given
query tail latency SLO, it can be easily shown that assigning the same budget
results in the minimum overall resource allocation.
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times are independent, we have,

tkif

HF (1)

By definition, we have,

% G (ay (kyp) ky) - @

Now assuming that all the tasks in a query experience the
same pre-dequeuing time t,,-, then we have,

zp (ky) = x}f (kf) + tpr 3)

This means that the task pre-dequeuing time budget
Ty(z%© ky) can be defined as, Ty(z5™C ky) = -0 —
:c;j(k 1), or equivalently, the task pre-queuing time deadline can
be defined as,

tp —t0—|—Tb( SLO kf) —t0—|—x a:;j (kif) 4)

In other words, for aquery arrived att = ¢, as showninFig. 2,
so long as all the tasks belonging to this query are dequeued no
later than ¢, the query tail latency SLO, 519, is guaranteed
to be met.

Ideally, under the work conserving condition,® if a queuing
policy can ensure that all the tasks exactly meet their queuing
deadlines, the design objective is achieved. In practice, however,
such a queuing policy may not exist. As a first step, TailGuard
adopts EDFQ based on tp, i.e., TF-EDFQ, to enforce the task
queuing deadlines. This queuing policy can ensure that the task
with the earliest queuing deadline is placed at the head of the
queue before deadline. However, it cannot guarantee that the
task at the head of the queue can always be served before
deadline, simply because the task ahead of it may be still in
service when the deadline is reached. On the other hand, the
task may also have a chance to be dequeued before deadline,
if the task server becomes idle before deadline. This implies
that TailGuard may tolerate a small percentage of tasks missing
their deadlines without violating the tail latency SLOs as the tail
latency is a probabilistic measure.

A remark on meeting request tail latency SLO: For a user-
facing request with multiple round queries, we can prove that
the pre-dequeuing time budget for the request is the request tail
latency SLO minus the unloaded request tail latency. This budget
can be arbitrarily assigned to any query, provided that the sum
of total query budgets does not exceed the request budget.

Consider a request composed of M queries to be issued
sequentially and with the request tail latency SLO expressed in
terms of the pth percentile of request latency of, 2752 Now,

the request response time ¢ = Ef\i 1 tr.i» where t,. ; is the query
response time for the ¢-th query. Although this relationship is an
additive one, the one for the corresponding tail latency is not. As
the CDF of the request response time, F'z (), is the convolutions
of all the CDFs of the constituent query response times, in
general, 219570 < oM 25 %©, making query decomposition
for requests difficult. In what follows, we show that the above

%The work conserving condition refers to the condition whereby the task
server is always busy as long as there are unfinished tasks at the server.

task decomposition technique can be generalized to establish an
additive relationship between the request pre-dequeuing time
budget and task pre-dequeuing time budgets for the constituent
queries, paving the way for the development of a task decom-
position technique for requests.

Define unloaded request latency, tRO = wal tpo,i» and the
CDF of the unloaded request response time, F'};(t), to be the
CDF of tﬁo, where t,, ; is the unloaded query latency for the i-th
query. Further assume that all the tasks of query ¢ have the same
pre-dequeuing time, t,,;, and define request pre-dequeuing
time, t;fr = Zf\il pri- Then we have the loaded request re-
sponse time 5 = S"M (0 4 tyri) = tft +ti . Clearly, by
substituting .., tpr, tpo, Fo, and Fg with tf, t;f;, tffo, Fr, and
F'g, respectively, and following (3), we have,

.Z'Ilj = J}fu + tfr = J)f’u + Z tpr,i, (5)

where xf‘ and xf‘u are the loaded and unloaded pth percentile tail
latency of the request (5) means that the request pre-dequeuing

time budget, Tb = 15 SLO _ o RY anditis additive, i.e., TbR =

P
Zi:l T i, here T, ; is the task pre-dequeuing budget for query
i,fort=1,..., M.

Note that as long as T/ (i.e., t1. < T)%)is met, the request tail
latency SLO will be met, regardless the assignments of T}, ;’s.
However, different assignments may lead to different resource
utilizations. Hence, a key challenge that will be the main focus
of our future work is: with a given total budget 7%, how to assign
budgets T}, ; to individual queries so that the resource utilization
is maximized.

A remark on the relationship with outlier-alleviation solu-
tions: Finally, note that TailGuard is orthogonal and comple-
mentary to many of the existing outlier-alleviation solutions.
An outlier-alleviation solution can help effectively reduce the
tail lengths of the task service time distributions, F(¢)’s, hence,
improving the achievable query tail latency SLOs. With an
outlier-alleviation solution, Tailguard only sees a different un-
loaded query response time distribution, and hence can directly
use it to compute the task pre-dequeuing time budget.

2) Practical Considerations in TailGurad’s Implementation:
Now we discuss the implementation issues including how to
estimate and update the unloaded task CDFs. The above solution
for estimation task pre-dequeuing time deadline requires the
availability of the task post-queuing time distributions, Fj(t),
for all the task servers, which must be conveyed to the query
handler for task pre-dequeuing time budget estimation. Here, we
propose an approach to estimate F(¢)’s by means of a combined
initial offline estimation process and a periodical online updating
process.

Offline Estimation Process: As mentioned earlier, user-facing
services are likely to run in a more or less homogeneous cluster.
So before the service starts, we set Fj(t) =~ F(t), forl = 1,..N.
This lends us a handy way to perform an initial offline estimation
of only a single distribution function F'(t), which serves as the
initial distribution for all the task servers.
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More specifically, use a query handler and single task server
and load it with a typical task workload trace to collect a
sufficient number of samples of task post-queuing times offline.
Then use these samples to construct F'(¢) to be used as the
initial distribution function for all task servers. This will allow
task queuing deadlines to be estimated at the very start of a
user-facing service.

Online updating process: To account for the inevitable het-
erogeneity in practice (e.g., due to skewed workloads, uneven
resource allocation and resource availability changes), Fj(t)’s
must be periodically updated online. Fortunately, this can be
done with low cost. When the query handler receives and merges
the task result for a task from task server [, it uses the current time
minus the task dequeue time (which is either locally available if
the queuing takes place in the query handler, or comes with the
task result from the task server [) as the post-queuing time for the
task to update Fj(t). This updating process accounts for all the
possible post-queuing delays incurred by the tasks, including
the long delays caused by outliers. Hence TailGuard captures
heterogeneity through online updating process.

TailGuard implementation complexity: The fact that the un-
loaded task tail latency is independent of system load, and hence
the query queuing deadline is independent of system load. This
simplifies the implementation of TailGuard because it only needs
to measure a single unloaded tail latency. The computation
complexities for both task queuing deadline estimation and
queuing management in TailGuard are low. The former entails
the evaluation of two equations, i.e., (2) for xg(k ), which can
be done in the background for all possible k;’s in advance
and updated when Fj(t)’s change and (4) for each query. The
latter requires the management of a single EDFQ. As a result,
TailGuard is a lightweight solution.

D. Query Admission Control

TailGuard can provide tail latency SLO guarantee for all
queries, when there are enough resources to sustain the work-
load. In the presence of resource shortages due to, e.g., sud-
den surges of workloads or hardware/software failures, some
upcoming queries may need to be rejected to ensure that all
admitted queries can meet the prepaid tail latency SLOs. Query
admission control is particularly desirable in the case where
resource auto-scaling cannot be done, e.g., due to monetary
budget or resource constraints.

With EDFQ queuing, a task may be dequeued before its
deadline. As a result, statistically, the query tail latency SLO
can still be met even if some tasks are dequeued after their
deadlines (i.e., violating their deadlines). We tested TailGuard
using various workloads and found that the query tail latency
SLOs can still be met, when a small portion (less than 2% in
our tests) of tasks miss their deadlines. With this understanding,
TailGuard sets an upper bound threshold for the percentage of
tasks missing their deadlines, Rgt 1 for query admission control.
Whenever the task deadline miss ratio hits the upper bound
threshold, the system immediately triggers admission control.
If the task queuing takes place centrally at the query handler,
the information on whether a task misses its deadline or not

is immediately available to the query handler, otherwise, this
information can be piggybacked on the task results returned
from the task severs. The query handler can update the task
deadline violation ratio in a given moving time window. When
the ratio exceeds the upper bound threshold, upcoming queries
are rejected, till the ratio falls back below the threshold again.
The moving time window can be set to be the same as the time
window in which the tail latency SLOs should be guaranteed.

E. Resource Auto-Scaling

In case resource can be dynamically scaled, a resource auto-
scaling scheme should be enabled to guarantee the query tail
latency SLO while maximizing system resource utilization.
Resource auto-scaling can be categorized into two types: vertical
and horizontal. Vertical scaling involves the addition or removal
of CPU and memory resources, while horizontal scaling pertains
to the management of the number of containers (i.e., adding or
removing containers). The mechanism used depends on resource
availability.

We set an upper bound threshold, Rfm, and a low bound
threshold, R%,,, for the task deadline miss ratio to facilitate
resource upscaling and downscaling. Whenever the task dead-
line miss ratio hits the upper or lower bound threshold, the
resource is scaled up or down. Clearly, as long as the task
deadline miss ratios for all tasks fall between the lower and
upper bound thresholds, the system is expected to work at high
resource utilization without violating request tail latency SLOs.
Both thresholds can be set offline through measurement and be
dynamically adjusted online.

IV. PERFORMANCE EVALUATION

To cover a wide range of applications, TailGuard is firstly
evaluated based on simulation using the workload statistics for
three datacenter applications available in Tailbench [25] as input.
We first characterize the workload and present the simulation
results along the fanout and service class dimensions; with an
outlier-alleviation scheme; and with query admission control.
We then implement and test TailGuard in the Amazon EC2
cloud. Finally we verify TailGuard in a highly heterogeneous
SaS testbed.

The performance of TailGuard will be compared against
FIFO, PRIQ and T-EDFQ. In terms of queuing policy, FIFO
is simply a first-in-first-out queuing policy. PRIQ assigns tasks
of different classes to different queues with strict priorities
given to the queue of a higher class over that of a lower class.
T-EDFQ works the same way as TailGuard without considering
the query fanout, i.e., the pre-dequeuing time deadline is set as
tp =to + a3 ©. Clearly, both PRIQ and T-EDFQ degenerate
to FIFO if all queries have the same tail latency SLO, i.e., the
case with a single class.

A. Workloads

For simulation, a user-facing workload must be characterized
by a query arrival process, a query fanout distribution and a task
post-queuing time distribution. Unfortunately, the available real
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traces simply do not contain the needed information. Although
traces for commercial user-facing services in cloud are available,
e.g., those made available by Google [20], [29] and Alibaba [2],
[21], they only include the CPU and memory usage informa-
tion for task servers, not the information needed to drive the
simulation at the task level, including the arrival process, query
fanouts and task service times. Hence, we resort to modeling for
the first two and benchmarks for the third one, as described in
detail below.

First, since the Poisson process has been widely recognized
as a good model for cloud applications in general [27], [48],
[49], by default, we assume that the query arrival process is
Poisson with mean arrival rate, A, a tunning knob to adjust the
system load. Meanwhile, to test the performance sensitivity of
TailGuard with respect to the burstiness of query arrivals, a
burstier arrival process, i.e., the Pareto arrival process [50], is
also used in one simulation case. In the Pareto process, the time
interval between any two consecutive query arrivals is randomly
sampled from the following heavy-tailed Pareto distribution,

R PR

(6)
where x,, is the minimum time interval, a tuning knob of the
load. «@ determines the variance of the time interval, a measure
of burstiness, which is less than 2 in practice [51]. Hence we set
a = 1.4 to catch heavier burstiness than the Poisson process.

Second, although a few publications do offer fanout distri-
bution, P(ky), for ky = 1,...,N, for the user-facing services,
e.g., the Facebook social networking service [5], they do not
provide task service times needed for the task-level simulation.
This, however, should not be too much of a concern, as Tail-
Guard needs to be applicable to both the existing and future
workloads whose P(ky)’s are not known yet. Hence, we adopt
quite different P (k) models for different case studies to gain a
wide coverage. As we shall see, for all those cases tested, Tail-
Guard consistently outperforms the FIFO, PRIQ and T-EDFQ
queuing policies, which strongly suggests that the TailGuard’s
performance gain is insensitive to P(kys)’s.

Third, as a solution meant to be used by the current and
future user-facing services in general, TailGuard should be tested
against user-facing services with a wide range of task service
time distributions. To this end, we resort to Tailbench [25] to
gain access to applications with a wide range of task service
time distributions. Tailbench provides eight user-facing task
benchmarks. Each of these workloads allows a sufficiently large
number of task service time samples to be collected to construct
F(t) for task service time, assuming that the post-queuing
time, 1,,, is dominated by the task service time, for the lack
of the information about the rest of the post-queuing delays.
We further assume that Fj(t) = F(t) for [ = 1,...,N, i.e., the
homogeneous case, which do not change over time (all the other
delays and heterogeneity will be accounted fully in the SaS case
study). These workloads can be classified into three groups with
distinct characteristics for F'(¢), and the CDFs of each group
of applications are similar. We select one workload from each
group to be tested, including Masstree for in-memory key-value

TABLE II
THE MEAN TASK SERVICE TIME T7,, (ms) AND THE UNLOADED 99TH
PERCENTILE QUERY TAIL LATENCY zgq (ms) WITH VARIOUS FANOUTS

Bench Tm zg9(1)  x§,(10)  x§,(100)  x§,(1000)
Masstree  0.176  0.212 0.247 0.473 1.041
Shore 0.341  2.117 2.721 2.829 6.019
Xapian 0.925 2.592 2.998 3.307 7.149

store, Shore for SSD-based transactional database and Xapian
for web search.

Fig. 3 depicts the CDFs and the unloaded 95/99th percentile
task tail latencies for the three workloads. Table II also gives
the related statistics, including the mean task service time (7;,,)
and the unloaded 99th percentile query tail latency at fanouts
ks =1, 10, 100, and 1000, derived from (1) and (2). First, we
note that Masstree has the smallest mean and variance of task
service time with a sharp increase of CDF around the mean.
Shore exhibits the largest variability of unloaded task service
time of all the three with z{y(1000) reaches 6.019 ms, about
18 times of its mean service time, exhibiting relatively long tail
behavior. Xapian has the largest mean task service time of the
three.

B. Impact of Query Fanout

In this subsection, we focus on testing the impact of the
query fanout. We present two cases, i.e., a single class case
and a two-class case. Consider a cluster of size N = 100
and three different types of queries corresponding to three
different fanouts 1, 10 and 100, similar to the testing scenario
in [54], in which fanouts 1, 8 and 33 are used. Further assume
P(1)=100/111, P(10) = 10/111, and P(100) = 1/111, i.e., the
probability for a fanout is inversely proportional to the fanout
itself, similar to the one observed by Facebook [5]. This makes
the total numbers of tasks from the three query types to be, on
average, the same. For a given tail latency SLO of x5, the
task pre-dequeuing time budget for a query with fanout & (1,
10 or 100) is Tp, = 2580 — xdy (k).

Note that meeting the tail latency SLO for queries as a whole
does not guarantee that queries of individual types can meet
the tail latency SLO. Hence, in the following simulation, we
measure the tail latency for each type of queries and identify the
maximum load at which all three types of queries meet their tail
latency SLOs.

We first consider the case with a single service class, i.e.,
all the queries have to meet a single SLO. In this case, both
PRIQ and T-EDFQ behave exactly the same as FIFO and hence,
we only compare TailGuard against FIFO. Fig. 4 depicts the
maximum loads that can meet the tail latency SLO for TailGuard
and FIFO for four different tail latency SLOs (these SLOs are
chosen such that the corresponding maximum loads fall in the
range of 20% to 60% which are the typical system loads for
the current commercial clouds serving user-facing services [20],
[21]). This gives us a good idea about TailGuard’s performance
gain/loss with respect to those of the currently practiced ones.
As we can see, for all the cases, TailGuard achieves higher loads
compared to FIFO, while meeting the same tail latency SLO.
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Fig. 4. The maximum loads with a single service class. in the three workloads. (a) Masstree; (b) Shore; and (c) Xapian.

TABLE III
THE 99TH TAIL LATENCY (m.s) OF THREE TYPES OF QUERIES AT MAXIMUM
LOADS FOR THE MASSTREE WORKLOAD

Kr;=1 K ;=10 K;=100

799=0.8  FIFO 0439 0594 0./98
TailGuard 0572 0745 0.797
T99=10 FIFO 0533 0731 0.997
TailGuard 0705 0.941 0.994
Tg9=12 FIFO 0647 0.889 1.192
TailGuard  0.817  1.098 1.193

T99=14 FIFO 0751 1.061 1389
TailGuard 0945 1262 1392

The performance gain increases as the tail latency SLO becomes
tighter. This is because a query with a higher fanout has a tighter
task pre-dequeuing deadline and hence, higher chance to violate
the tail latency SLO. Therefore, TailGuard that reorders the tasks
based on pre-dequeuing deadlines can help meet the tail latency
SLO for all queries, resulting in higher performance than FIFO,
especially when the tail latency SLO becomes more stringent.
For example, for Masstree, the maximum load increases from
20% for FIFO to 28% for TailGuard at z5-C = 0.8 ms, result-
ing in about 40% higher resource utilization. In other words,
TailGuard can save 40% task server resources over FIFO (also
PRIQ and T-EDFQ), while meeting the same tail latency SLO,
hence reducing the cost.

To gain more insights, for Masstree, Table III gives the break-
downs of the tail latencies at the maximum loads for the three
types of queries. First, we note that at the maximum loads, the
query type with k¢ = 100 barely meets the tail latency SLOs for
both schemes. In other words, the maximum achievable load for
both queuing policies are constrained by the query type with the
highest k. For the other two query types, the tail latencies are

smaller than the corresponding tail latency SLOs, implying that
they get more resources than they need, especially for the one
with £y = 1. The performance gain for TailGuard comes from
more balanced resource allocation among the three types, as
evidenced by the closer tail latencies among the three types than
those for FIFO. The results clearly indicate that the query fanout
has to be taken into consideration in task resource allocation
for meeting query tail latency SLO to maximize the system
performance.

Nevertheless, for TailGuard, there is still much room left
to be improved, with e.g., a tail latency gap of 32.5% (i.e.,
100x(1.392-0.945)/1.392) at ks = 1 and 9.9% (i.e., 100x(1.392-
1.262)/1.392) at ky = 10 left to be closed (see the case of
Zgg = 1.392 ms at the bottom). This happens simply because
TailGuard provides less accurate deadline guarantee for tasks
with tighter deadlines. More specifically, as mentioned earlier,
TailGuard cannot guarantee that a task can always be put in
service at the instant it reaches its deadline, as the processing
unit in the task server may not be idle at that instant. This
additional delay is likely to be statistically the same for all tasks
regardless of their deadlines, meaning that tasks with tighter
budgets will see relatively larger additional delays and hence,
can sustain smaller maximum loads. To further balance the
resource allocation among queries of different types and hence,
improve the overall load, a possible solution is to adjust the
deadline budget T, for each query type dynamically based on the
tail latency gap measured periodically at runtime. This approach,
however, may not be scalable, as in practice, the number of types
of queries, or the number of queries with distinct fanouts, may
be large. In the following subsection, we propose to do so on a
per-service-class basis instead to improve the scalability.
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(a) Poisson and (b) Pareto arrival process.

Now we consider the case with two service classes with the
tail latency SLO of the lower class being 1.5 times of that of
the higher class, i.e., 1.5x99, Where xgg is the tail latency SLO
for the higher class. Each query is randomly assigned to one
of the two classes with equal probability. Both the Poisson and
Pareto arrival processes are considered. Only the results for the
Masstree workload are given as the the results for the other two
workloads are similar.

Fig. 5 shows the maximum loads under which all queries can
meet their tail latency SLOs. From the results (Fig. 5(a)) with
the Poisson arrival process, we can see that the performance
gains of TailGuard over FIFO increase to up to 80% , much
higher than that in the single class case (i.e., up to 40% ). FIFO
treats every task equally. Hence its performance is constrained
by the most resource demanding queries, i.e., the higher class
queries with the largest fanout. The TailGuard performance gain
is up to 40% with respect to PRIQ. PRIQ gives higher priority to
the higher class queries, resulting in lower class queries having
less resources to meet their tail latency SLOs. The TailGuard
performance gain is up to about 22% with respect to T-EDFQ,
smaller than that with respect to PRIQ. This means that by
incorporating the actual tail latency SLO, rather than just the
class information, T-EDFQ can allocate task resources more
accurately than PRIQ does. In turn, TailGuard improves over
T-EDFQ by further incorporating query fanout information in
task resource allocation.

The performance gains for TailGuard against the other three
schemes with the Pareto arrival process (Fig. 5(b)) are similar to
those with the Poisson arrival process. Meanwhile, the maximum
loads decease about 10% to 18% for all schemes compared
to those with the Poisson arrival process. This means that the
burstiness of query arrivals mainly impact the overall achievable
load, but much less on the relative performance of different
queuing policies. Hence, in the following cases studies, we only
present those with the Poisson arrival process.

C. Multiple Tail Latency SLOs At a Fixed Fanout

Again, consider the cluster of size N = 100. Now all queries
have the same fanout of £ = 100, i.e., for each query, its tasks
are served by all the task servers in the cluster in parallel, which s
the case for web searching service. We evaluate the performance
of TailGuard for workloads with two different service classes,
denoted as Classes I and II. The tail latency SLOs for Class I/II
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Fig. 6. The 99th percentile latency at different loads. The cyan line indicates
the required tail latency and the arrows points to the maximum load that the tail
latency can be met.

are 1/1.5, 6/10 and 10/15 ms for Masstree, Shore and Xapian,
respectively. Again, these tail latency SLOs are chosen such
that the achievable maximum load ranges from 20% to 60% .
A query has equal probability to request for either of the two
classes. For any query of a given class, by substituting the
corresponding 75£¢ and 7, (100) from Table II into (4), we
arrive at the task pre-dequeuing time budgets. For example, for
Masstree, the budgets for classes I and I are 1-0.473=0.527 ms
and 1.5-0.473=1.027 ms, respectively. As the fanout is the same
for all queries, T-EDFQ behaves the same as TailGuard, and
hence we compare the performance of TailGuard against both
FIFO and PRIQ.

Fig. 6 presents the simulation results. For each plot, the cyan
dash line represents the tail latency SLO for that class and the
arrows, each having the same color as the tail latency curve for
a queuing policy, indicate the maximum achievable loads that
meet the tail latency SLOs.

As one can see, for all three workloads, FIFO, which is class
unaware, gives equal resources to queries from both classes.
Since the task resource demands or task pre-dequeuing time
budgets for tasks from classes I and II are quite different, e.g.,
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0.527 ms and 1.027 ms, respectively, as calculated above, for
Masstree, indiscriminately allocating equal resources to tasks
results in a very low achievable load for class I queries but very
high achievable load for class II queries, e.g., 45% for class I, as
shown in Fig. 6(a), and higher than 60% for class II, as shown in
Fig. 6(b). Consequently, to meet the tail latency SLOs for both
classes, FIFO allows the cluster to run at 45% for Masstree, 36%
for Shore (see Fig. 6(c)) and 49% for Xapian (see Fig. 6(¢)).

PRIQ, on the other hand, is class aware, but it gives strict
priority to tasks in Class I over Class II. This results in un-
balanced resource allocation in favor of Class I over Class II.
Consequently, the maximum load for class II is about 48% for
Masstree, and about 45% for both Shore and Xapian, while the
maximum load for class I reaches more than 60% for all three
workloads. Again, the low load for class II limits the overall
achievable load that meets both tail latency SLOs.

In contrast, as a class-aware approach and with task budgeting,
TailGuard can balance the resources allocated to tasks closely in
proportion to their resource demands, resulting in much closer
maximum loads for the two classes (i.e., within 5% difference)
for all three workloads. As shown in Fig. 6, the maximum loads
for Classes I and II for Masstree/Shore/Xapian are about 54%
/51% 158% and 57% /56% / 59% , respectively. Hence, the
maximum loads that meet both tail latency SLOs are 54% /51%
/58% for the three workloads, respectively. The performance
gain of TailGuard over FIFO and PRIQ are up to 40% (i.e, from
36% to 51% ) compared to FIFO and up to 30% (i.e., from 45%
to 58% ) compared to PRIQ.

The above results also indicate that for TailGuard, the max-
imum achievable load is constrained by Class I, meaning that
there is still room for improvement. This can be easily under-
stood by the same reasoning we made earlier. Namely, Tail-
Guard provides less accurate deadline guarantee for tasks with
tighter budgets. As a result, tasks belonging to queries from
Class I, which have a tighter budget, are likely to miss their
pre-dequeuing deadlines at alower load than those from the other
class. As alluded to earlier, a potential solution to further improve
the performance of TailGuard is to adjust the task delay budgets
dynamically to close the gap. This can be done much easier
between classes than between fanouts, as the number of classes
to be enforced is likely to be small, say, adozen at most. Although
developing such a solution is left as our future work, in what
follows, we want to test how much performance improvement
one may achieve by properly adjusting the budgets. Since the
load gap between the two classes for Xapian is already very
small, i.e., 1% (58% versus 59% ), we consider Masstree and
Shore only, which have load gaps of 3% and 5% , respectively.

We adjust the task delay budgets for Class II tasks for both
Masstree and Shore. By experiment, we find that by adding about
15% and 18% to the original budgets of 1.027 ms and 7.171 ms
for Masstree and Shore, respectively, the maximum achievable
loads for both classes become almost indistinguishable, reaching
about 56% and 53% (i.e., improving about 2% compared without
budget adjustment) for Masstree and Shore, respectively, as
shown in Fig. 7. The performance improvement is relatively
small due to the presence of only two classes. As the number
of classes increase, the disparity among maximum loads may
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Fig. 7. The 99th percentile tail latency of two classes after adjusted task pre-
dequeuing time budgets.
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become more pronounced. The budget adjustment scheme could
be putinto action when the performance gain is sufficiently large.

D. TailGuard With Query Admission Control

The TailGuard query admission control scheme is tested here.
Consider the same case presented in Section IV-C (only the
result of Masstree is given due to limited space). We first run
TailGuard without admission control to find the task queuing
deadline violation threshold RY,, at the maximum acceptable
load when TailGuard can barely provide the tail latency SLO
guarantee. The maximum acceptable load thus found is about
54% and the corresponding threshold is 1.7% . We use a moving
window with size of 1000 queries (or 100000 tasks) to compute
the task queuing deadline violation ratio.

Fig. 8 shows the accepted/rejected loads and the query tail
latencies at different loads. First, we see that the query tail
latency SLOs for both classes are guaranteed at all loads. When
the load is over the maximum acceptable loads, the query tail
latency of Class I closely approaches its tail latency SLO, while
the tail latency of Class II is a little below its SLO. This is
due to the fact that Class I tasks have tighter pre-dequeuing
time budgets to meet and hence have higher chances to miss the
pre-dequeuing time deadlines as we explained in Section IV-C.
Second, we note that the accepted loads (the load is computed
using the accepted queries only) closely approach its respective
maximum acceptable loads (within 2.5% ). Further increasing
the load beyond the maximum acceptable loads, the accepted
load drops to about 6% below the maximum acceptable loads.
There are two reasons for this to happen. First, TailGuard may
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not drop the exact number of queries needed to perfectly meet the
tail latency SLO. Second, just like any feedback loop control so-
lutions, TailGuard incurs a delay between the measurement and
control, which inevitably makes the achievable load to be lower
than the maximum acceptable load. Nevertheless, these results
demonstrated that the TailGuard query admission control can
indeed provide tail latency SLO guarantee, while maintaining
high resource utilization.

In our simulation, we assume all incoming queries are rejected
when the system exceeds a defined threshold. However, in
real systems, job rejection rules can be customized to achieve
specific objectives, such as maximizing overall business profit.
For instance, queries with lower class or lower price, or queries
with larger fanout that demand more resources, are more likely
to be rejected under these rules. In such cases, the upper bound
threshold RZ 5, would need to be recalculated to align with the
query control scenario.

E. TailGuard With Resource Auto-Scaling

Now we test the resource auto-scaling scheme, based on the
upper and lower bound thresholds of task deadline miss ratio.
We consider the same case as one for query admission control,
except the system loads changing over time. The test runs for a
total of 6 seconds. For the first 2 seconds, the system operates at
50% load. It then increases to 60% load for the next 2 seconds,
and finally drops back to 50% load for the last 2 seconds.

Upper bound threshold RcUth = 1.7% used for query admis-
sion control is a bit too loose for auto-scaling, causing query
tail latency SLO violation for a short period of time. In case
of admission control, incoming queries are dropped, allowing
task queue length to be reduced rapidly. But with resource
auto-scaling, the queue length persists for a longer period as
all queries are admitted. Consequently, we set a smaller upper
bound threshold RY,, to be 1.5% . Additionally, we observed
that the system operates at a load that is at least 20% below
its maximum allowable load when the task deadline miss ratio
is less than 0.5% . Therefore, we set 0.5% as the lower bound
threshold.

In our approach, we implement resource vertical scaling by
adjusting resources in a manner that allows the average task
service time to decrease by 20% or increase by 25% per round of
scaling. This strategy ensures that the system’s resources remain
consistent after completing one cycle of scaling up and scaling
down. When the task deadline miss ratio hits the upper or lower
bound threshold, the resource auto-scaling is triggered.

Fig. 9 presents the 99th percentile query tail latency and task
deadline miss ratio at the different runtimes. When the system
loads increases to 60% at second 2, the task deadline miss
ratio quickly goes over the upper bound threshold, triggering
a resource upscale. Despite the task queue remaining lengthy
for some time after the resource upscale, the reduced upper
bound threshold helps preventing a breach of the tail latency
SLO. At second 4, the system load decreases, causing the task
deadline miss ratio to fall below the lower bound threshold and
prompting resource downscale. Due to inherent delay, the query
tail latency experiences a temporary reduction before returning
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Fig. 9. TailGuard with auto-scaling scheme. (a) 99th percentile query tail

latency (ms); and (b) Task deadline miss ratio (% ), RT, RSUt ;, and Rﬁt ;, are the

task deadline miss ratio, upper and low bound thresholds of task deadline miss
ratio, respectively.

to its previous level. The results indicates that the upper and
lower bound thresholds for task deadline miss ratio are effective
for resource auto-scaling.

F. Multiple Tail Latency SLOs and Mixed Fanouts

Now we study the performance of TailGuard on systems with
multiple service classes of distinct query tail latency SLOs and
mixed query fanouts. Consider the cluster of size N = 1000.
The query fanout, £, is uniformly distributed from 1 to 1000,
ie., P(ks) = 1/1000 for k; = 1....,1000. Due to limited space,
we only present the results of the Masstree workload (similar
results are obtained for the other two workloads). Consider four
service classes, i.e., Classes 1, 2, 3 and 4, having requested 99th
tail latency SLOs of 1.4, 1.8, 2.2 and 2.6 ms, respectively. Again,
the tail latency SLOs are set such that the system runs at medium
loads, while meeting the tail latency SLOs. With the given tail
latency SLOs, the task pre-dequeuing time budgets for queries
of different classes and fanouts can then be readily calculated
from (4). Further assume that a query has equal probability to
request any one of the four classes of service.

Although queries from any given class may have fanouts
ranging from 1 to 1000, TailGuard can meet the tail latency
SLO for all queries as long as tasks meet their pre-dequeuing
time deadlines. However, to verify that this is the case, the
simulation must track the maximum allowable load that meets
the tail latency SLO for queries with fanout of 1000. This is
because queries with the highest fanout have the tightest budget
and hence, the lowest maximum allowable load that meets
the tail latency SLO among all queries of the same class, as
demonstrated in Section IV-B. Unfortunately, a practical concern
is that it may take too long in terms of the sampling time to be
effective. For example, consider the mean query arrival rate,
A = 1000 queries per second. With four classes and the uniform
fanout distribution, on average, each class will see only one
query with fanout of 1000 every 4 seconds. In order to get a
reasonably reliable estimation of the 99th percentile tail latency,
a sampling window of at least 10000 samples must be used,
which however, corresponds to a time window of 40000 seconds!
This is definitely too large to capture the impact of both system
and workload variabilities on TailGuard performance, which
may happen at a much smaller timescale, say, on the order of
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Fig. 10. Mixed fanout and multiple tail latency SLOs.

minutes. This example also demonstrates that a solution based
on direct query tail-latency measurement like Cake [41] is not
viable to enable per-query tail-latency SLOs.

Taking the above concerns into consideration, in this study,
we only track the maximum load that meet the tail latency SLO
for all the queries in each class as a whole, regardless of query
fanout. Using the same example above, this allows 250 samples
to be collected per second or a time window of 40 seconds, small
enough to test the TailGuard performance, which however, is
done at the per-class, rather than per-query granularity.

Fig. 10 presents the results for the Masstree workload. Simi-
larly to the previous cases, compared to the other three schemes,
the resources allocated by TailGuard are very well balanced,
resulting in the maximum loads that meet the tail latency SLOs
for all four classes within 4% of one another. Consequently,
TailGuard achieves better overall performance than the other
three. More specifically, maximum loads for TailGuard, FIFO,
PRIQ and T-EDFQ are 57% ,45% , 43% and 48% , respectively.
The performance gains of TailGuard over FIFO, PRIQ and
T-EDFQ are about 27% , 33% and 19% , respectively.

G. Joint TailGuard and Outlier-Alleviation Solution

As we mentioned in Section III-B, TailGuard is orthogonal
and complementary to most existing outlier-alleviation solu-
tions. To demonstrate this is indeed the case, we test the per-
formance of TailGuard, along with the Adaptive Slow-to-Fast
task scheduling scheme (called ASF in this paper) based on
DVES [38]. In ASF, a task server starts to serve a task at a
low power level and switches to a higher power level to shorten
the task execution time if a task service time runs longer than a
threshold. The goal of ASF is to meet the query tail latency SLO,
while minimizing the power consumption. In our simulation, a
task runs at a normal (low) power level until its service time
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Fig. 11.

reaches twice the mean task service time, when it switches to
run at a higher power level so that the remaining task service
time is reduced by half (i.e., the task service speed doubles).
Clearly, TailGuard is orthogonal to ASF. From TailGuard’s point
of view, the only difference ASF makes is that the CDF of the
task service time, F'(t), seen by TailGuard is changed to a new
one with a shorter tail. Hence ASF helps TailGuard to achieve
either a higher query throughput or tighter query tail latency
SLOs. We use the same case given in Section IV.C to test it.
Again, we only present the results for the Masstree workload
due to space limitation.

Fig. 11 depicts the performance of TailGuard compared with
FIFO and PRIQ. We can see that all three schemes can run at
higher loads to support the required tail latency SLOs, thanks to
ASF (see Fig. 6(a) and (b)). The performance gains of TailGuard
over FIFO and PRIQ are almost the same as that without ASF.
Namely, the maximum load with guaranteed tail latency SLO
increases from about 54% , 44% and 48% to about 63% , 54%
and 54% for TailGuard, FIFO and PRIQ, respectively. These
results demonstrate that TailGuard may work with some of the
outlier-alleviation solutions seamlessly to further improve the
performance.

H. Evaluation in the Amazon EC2 Cloud

To verify the simulation results, we implement TailGuard
in a small cluster in the Amazon EC2 cloud. The TailGuard
implementation includes the query scheduling code and the
Spark plug-in code. TailGuard is implemented by modifying
the open source implementation codes for Eagle [52] and Pi-
geon [31]. The query scheduler is deployed at the application
front-end, exposing services to allow the framework to submit
query scheduling requests using remote procedure calls (RPCs).
Apache Thrift [53] is used by all RPCs for internal communi-
cations between modules of a scheduler. Both the query handler
and task servers are all hosted on m4.large instances.

The cluster is composed of 1 query handler and 100 task
servers. Although the dedicated computing resources are used,
the task non-service time ¢, that accounts for the query process-
ing delay, task dispatching delay, task result returning delay, and
merging processing delay is much larger than the mean service
times for all three workloads, which are in sub-milliseconds.
Hence, to alleviate the domination of the task response time
by t,, for our experiment, we increase the mean task service

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on March 11,2025 at 16:38:10 UTC from IEEE Xplore. Restrictions apply.



Class Ill (Masstree)

Class IV (Mas;tree)

800 ;
—+—TailGuard-IMP ——FIFO-IMP

00 —
——TailGuard-IMP|—~—FIFO-IMP
- TailGuard-SIM ~e-FIFO-SIM

—e—PRIQ-IMP| - - Required SLO

|8 PRIQ-SIM

- TailGuard-SIM -~ FIFO-SIM
600 |—e—PRIQ-IMP| - - Required SLO|
~a-PRIQ-SIM

N
=)
S

w
=3
[=]

99th percnetile tail latency (ms)
-l (s
=)
o

99th percnetile tail latency (ms)
B
o
o

0 — 0 N i -
20 25 30 35 40 45 50 55 60 20 25 30 35 40 45 50 55 60
Load (%) Load (%)

(@) (b)

m Class lll (Shore) m Class IV (Shore)
£ 160 . - £ 3000 - :
= —-TailGuard-IMP |- FIFO-IMP N —~TailGuard-IMP [4~FIFO-IMP
?1 400 |+ TailGuard-SIM -+ FIFO-SIM 8 500 2 TailGuard-SIM| --e--FIFO-SIM
9 --PRIQ-IMP - -Required SLO /- o -6-PRIQ-IMP |- ~Required SLO d
T 1200 .0-PRIQ-SIM : ket -a-PRIQ-SIM
= P = 2000
- 1000 i o
= = 1500
g 800 g g
S © 1000g
g 600 g
5 400 ‘ o — 5 500 : :
= 20 25 30 35 40 45 50 55 60 © 20 25 30 35 40 45 50 55 60
Load (%) Load (%)
(c) (d)
@ Class Il (Xapian) @ Class IV (Xapian)
E1200————— £ 2000 —_—
z ——TailGuard-IMP |<-FIFO-IMP N —~TailGuard-IMP [~~FIFO-IMP
I TailGuard-SIM |-#-FIFO-SIM g | TailGuard-SIM||----FIFO-SIM
© 1000 |--PRIQ-IMP |- -Required SLO o |=-PRIQ-IMP| - -Required SLO| /"
= -a-PRIQ-SIM <l L1500 |-a-PRIQ-SIM
& g0 8 e
B 2
° G 1000
S 600 & | T |
5 g -
Q Qg
< i H £ L : H
& 400 ! ! 5 500% i .
® 20 25 30 35 40 45 50 55 60 & 20 25 30 35 40 45 50 55 60
Load (%) Load (%)
(e) (f)

Fig. 12.  Amazon EC2 implementation (IMP) vs simulation (SIM).

times by 300, 200 and 100 times, i.e., 52.8 ms, 68.3 ms and
92.5 ms for Masstree, Shore and Xapian, respectively. With this
setup, the task service time is on the same order as the task
non-service time. We introduce two service classes, i.e., Classes
IIT and IV. The corresponding tail latency SLOs for Class III/IV
are 250/350, 1000/1500 and 800/1200 ms for Masstree, Shore
and Xapian, respectively. Similar to Case IV.C, all queries have
the same fanout 100.

Fig. 12 presents the results for both experiments in EC2,
denoted as IMP, and simulation, denoted as SIM. As expected,
TailGuard achieves better performance than both FIFO and
PRIQ for all the three workloads (again T-EDFQ behaves the
same as TailGuard in this case). Clearly, the experiment results
are consistent with the simulation results, with the differences
within 10% . The difference increases as the load increases.
This is because t,., which is overlooked in simulation, becomes
larger for the experiment as the load increases. The increased
t, value makes the tail latency for the experiment alway larger
than that for the simulation. Nevertheless, we can see that the
performance gains of TailGuard over FIFO and PRIQ for the
experiment are almost the same as those for the simulation for
all the three workloads. These results, to some extent, verify the
effectiveness and accuracy of simulation results presented in the
previous sections.
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1. Evaluation in an SaS Testbed

Finally, we evaluate and compare TailGuard against the other
three schemes in an on-campus SaS testbed being developed.

Testbed Setup: The testbed is currently composed of four
clusters of edge nodes, located in four rooms in two buildings, in-
cluding a server room and a Graduate Research Assistant (GRA)
office next to a wet lab in one building, and a faculty office and a
Graduate Teaching Assistant (GTA) office in another building.
Each of these four clusters, referred to as Server-room, Wet-lab,
Faculty and GTA clusters hereafter, consists of 8§ Raspberry Pi
devices, serving as edge nodes, with each currently attached with
a temperature sensor and humidity sensor and connected to the
Internet through an Ethernet switch. Each edge node receives
sensing data from both sensors periodically and keeps up to
eighteen-month-worth of the data records. Since the Wet-lab
cluster may require low delay sensing data, we use the higher
performing Raspberry Pi’s to furnish the cluster than the ones
for the other three and have the query handler co-located with
the cluster to minimize the communication delay.

Use Cases: We consider three likely use cases belonging to
three distinct classes, A, B, and C, to stress test TailGuard, with
the 99th percentile tail latency SLOs equal to 800, 1300, and
1800 ms, respectively.

First, we note that the server room and wet lab are shared by
many research groups and individuals, who may want to closely
monitor individual devices they own to track the sensing data.
This use case can stress test TailGuard by generating heavier
workload on these two clusters than the other two. To create
even more unbalanced load, instead of evenly distributing the
load on these two clusters,” we place 80% of such workload
on the Server-room cluster and the rest 20% randomly assigned
to the others. Moreover, queries of this use case are considered
class A with the most stringent tail latency SLO and constitute
50% of the total queries.

Second, we consider a use case targeting at potential users
who may want to get an overall reading of the temperature and
humidity in all areas with low delay. For such use case, a query
fans out 4 tasks, each accessing a randomly selected edge node
in a separate cluster. This use case is considered less time critical
than the previous one and thus designated class B. We assume
that it takes up 40% of the total queries.

Third, some users may require detailed, relatively longer term
sensing data records to be retrieved from all edge nodes with a
loose tail latency SLO. Hence, all the queries in this use case
have fanout 32 and are assigned as class C', and 10% of the total
queries are assigned to this class.

SaS testbed Architecture: Fig. 13 depicts the SaS testbed
architecture. The query handler runs in a PC and consists of a
query/task process module and an aggregator module. Queuing
takes place centrally in the query/task process module with
32 sets of queuing buffers allocated, one for each edge node.
The testbed resources are managed by K3s [55], which or-
chestrates the pod resource allocation in edge nodes. All the

"Note that equipped with the highest performing nodes and closest to the
query handler, the Wet-lab cluster can hardly pose a performance bottleneck.
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communications between the query handler and an edge node
use keep-alive HTTP/1.1 connections.

When a query of a given class arrives, the query/task process
module generates the right number of tasks including their
intended edge nodes, and then sends the tasks to the corre-
sponding edge nodes. A task arriving at an edge node retrieves
one or multiple temperature and/or humidity records from the
local database. It has an equal probability of retrieving one
to up to thirty-day-worth of consecutive records starting from
a random time in the eighteen-month period. After retrieving
the records, the edge node sends the records to the aggregator
module and an edge-node-idle message to the process module.
Upon receiving the records for all the query tasks, the aggregator
merges the records for the query, which are finally sent to the
user. Fig. 14 gives the detailed breakdown of the time sequence
per query processing. The task response time consists of task pre-
dequeuing time and post-queuing time. The task pre-dequeuing
time includes task process time, enqueue time, queuing time and
dequeuing time, and the task post-queuing time is composed of
task dispatching time, service time, result return and merging
times.

To further test if TailGuard can perform well with inaccu-
rate CDFs of unloaded task post-queuing times, we let all 8
edge nodes in each cluster share the same CDF based on the
samples evenly collected from all edge nodes in the cluster.
Fig. 15(a) presents the CDFs for all four clusters. First, we
note that the CDFs (red and green lines) for Faculty and GTA
clusters are almost identical, as they use the same model of
Raspberry Pi’s and located in the same building. With the same
model of Raspberry Pi’s but located in a different building and
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Fig. 15. (a) The task post-queuing time CDFs in four clusters. Circle and

diamond represent the 95th and 99th percentile tail latencies, respectively. (b),
(c) and (d) are the 99th percentile query tail latency of the three classes at various
loads.

closer to the query handler, the CDF for the Sever-room cluster
concentrates more in the lower post-queuing time region than
the previous two. In contrast, equipped with the highest perform-
ing Raspberry Pi’s and co-located with the query handler, the
Wet-lab cluster offers significantly smaller overall post-queuing
time than the other three. More specifically, The mean, 95th,
and 99th task post queuing times are about 82/31/92/91 ms,
235/112/226/228 ms, and 300/136/306/304 ms for the Server-
room/Wet-lab/Faculty/GTA clusters, respectively, making the
system heterogeneous. With class A queries highly concentrated
on the Server-room cluster, we create a highly heterogeneous
scenario where the Server-room cluster is the most heavily
loaded, whereas the Wet-lab cluster is highly under utilized. This
is an ideal scenario to stress test TailGuard. The reason is that a
query from any class that has a task using the Server-room cluster
has a higher probability to be the slowest one and hence a high
chance to determine the query response time. In this case, the
query fanout impact on the query performance is much reduced,
making TailGuard less effective with respective to the other three
queuing policies, which are fanout agnostic.

Results and Analysis: Fig. 15(b), (c) and (d) present the
results. We note that TailGuard, FIFO, PRIQ and T-EDFQ can
achieve the maximum load of about 48% , 38% , 36% and 42% ,
respectively. This results in the performance gains of TailGuard
over FIFO, PRIQ and T-EDFQ to be 26.3% , 33.3% and 14.3%
, respectively. As one can see, both the performance gains and
the maximum load differences in such a highly heterogeneous
system are in line with the simulated ones (homogeneous sys-
tems).

The above stress test, together with the simulation, demon-
strates that TailGuard is effective to improve resource allocation
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performance for user-facing services, even in a heterogeneous
system with highly unbalanced workload patterns, and varied
processing and communication delays. As the testbed grows
larger, one can expect that the performance gains of TailGuard
over the other three fanout-agnostic schemes will further in-
crease, because the average query fanout is likely to increase
with the number of edge nodes in the testbed.

V. CONCLUSION

In this paper, we propose TailGuard for user-facing services,
aiming at maximizing resource utilization, while providing tail
latency SLO guarantee. TailGuard decouples the upper query
level design from the lower task level design. First, at the query
level, a decomposition technique is developed to compute the
task pre-dequeuing time deadline for a query with the given
tail latency SLO and fanout. Second, at the task level, based on
the task pre-dequeuing time deadline, a simple EDFQ policy is
employed to manage task queues to improve the resource uti-
lization. A query admission control and a resource auto-scaling
scheme are also developed based on the task deadline miss ratio.
TailGuard is evaluated by simulation and implementation in
Amazon EC2 Cloud using three Tailbench workloads as input.
The results demonstrate that TailGuard can improve resource
utilization by up to 80% while meeting tail latency SLOs,
compared to the FIFO, PRIQ and T-EDFQ queuing policies.
TailGuard is also implemented and tested in a heterogeneous
SaS testbed and the test results agree with the simulated ones.
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