
Coterie: Exploiting Frame Similarity to Enable
High-Quality Multiplayer VR on Commodity Mobile

Devices
Jiayi Meng∗

Purdue University
meng72@purdue.edu

Sibendu Paul∗
Purdue University
paul90@purdue.edu

Y. Charlie Hu
Purdue University
ychu@purdue.edu

Abstract
In this paper, we study how to support high-quality immer-
sive multiplayer VR on commodity mobile devices. First, we
perform a scaling experiment that shows simply replicating
the prior-art 2-layer distributed VR rendering architecture to
multiple players cannot support more than one player due
to the linear increase in network bandwidth requirement.
Second, we propose to exploit the similarity of background
environment (BE) frames to reduce the bandwidth needed
for prefetching BE frames from the server, by caching and
reusing similar frames. We find that there is often little sim-
ilarly between the BE frames of even adjacent locations in
the virtual world due to a “near-object” effect. We propose
a novel technique that splits the rendering of BE frames
between the mobile device and the server that drastically
enhances the similarity of the BE frames and reduces the
network load from frame caching. Evaluation of our imple-
mentation on top of Unity and Google Daydream shows our
new VR framework, Coterie, reduces per-player network
requirement by 10.6X-25.7X and easily supports 4 players
for high-resolution VR apps on Pixel 2 over 802.11ac, with
60 FPS and under 16ms responsiveness.

CCS Concepts. • Human-centered computing → Ubiq-
uitous andmobile computing systems and tools;Ubiq-
uitous and mobile computing design and evaluation
methods.

Keywords.Virtual Reality, multiplayer, mobile devices, frame
similarity

∗Both authors contributed equally to this research.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
ASPLOS ’20, March 16–20, 2020, Lausanne, Switzerland
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7102-5/20/03. . . $15.00
https://doi.org/10.1145/3373376.3378516

ACM Reference Format:
Jiayi Meng, Sibendu Paul, and Y. Charlie Hu. 2020. Coterie: Ex-
ploiting Frame Similarity to Enable High-Quality Multiplayer VR
on Commodity Mobile Devices. In Proceedings of the Twenty-Fifth
International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS ’20), March 16–20, 2020,
Lausanne, Switzerland. ACM, New York, NY, USA, 15 pages. https:
//doi.org/10.1145/3373376.3378516

1 Introduction
Virtual Reality (VR) promises applications in diverse fields
such as entertainment, health care, education, and many
others. According to Market Research Engine [13], the global
virtual reality market is expected to exceed $33 billion by
2022 and will grow at a CAGR of more than 55% in the
forecast period.

Despite its high promise, the industry has struggled with
a “chicken-and-egg” dilemma, lack of content and slow mar-
ket penetration of custom-made VR units. One promising
direction to break the dilemma for wide adoption of VR is
to enable high-resolution VR games on commodity mobile
devices (i.e., smartphones) overWiFi. Such an approach, how-
ever, is extremely challenging due to the limited hardware
(CPU/GPU) capabilities of modern smartphones, which in
turn are dictated by their battery constraint.

Furion [27] is the state-of-the-art VR system that supports
high-resolution VR apps on commodity mobile devices. It
splits rendering of VR contents between the mobile device
and the server to meet the stringent QoE requirement, e.g.,
60 FPS. Furion exploits a key observation that for most VR
apps, the VR content rendered can be divided into foreground
interactions (FI) which are hard to predict but cheap enough
to render on the mobile device, and background virtual envi-
ronment (BE) which are expensive to render but fairly pre-
dictable following the player’s movement and hence can be
pre-rendered and prefetched from the server during game
play just in time to satisfy the stringent per-frame render-
ing latency requirement. However, Furion was designed and
demonstrated to support 4K-resolution VR games for a single
player on commodity mobile devices.
Supporting multiplayer VR is posing a significant new

opportunity and challenge to the VR industry [3, 8, 14]. As
such, we set out to tackle the next research challenge – Is

Session 10B: Mobile/intermittent 
applications — Off and on again?  

ASPLOS’20, March 16–20, 2020, Lausanne, Switzerland 

923

https://doi.org/10.1145/3373376.3378516
https://doi.org/10.1145/3373376.3378516
https://doi.org/10.1145/3373376.3378516
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3373376.3378516&domain=pdf&date_stamp=2020-03-13


it feasible to enable high resolution multiplayer VR apps on
commodity mobile devices over WiFi?
We start with a scaling experiment to gain insight into

the performance bottleneck if we simply replicate the Furion
architecture N -fold, one for each player, and add synchro-
nization of foreground interactions of multiple players. Such
an approach would incur little extra load on each mobile de-
vice. Our measurement of three representative multiplayer
VR games on Pixel 2 phones confirms that such an approach
is bottlenecked by the increased load on the wireless net-
work, which in turn leads to almost proportional increase in
the latency for prefetching each BE frame from the server
and consequently the per-frame rendering latency. Our ex-
periment suggests that the key to support multiplayer VR
apps on commodity devices and WiFi is to cut down the
network bandwidth requirement.
Since the frames are already compressed with the best

video compression technique [27], we ask the question – can
we cut down the frame transfer frequency by exploiting the
similarity of BE frames in nearby locations in the virtual
game world? For example, if the BE frames for the consec-
utive locations that a player travels through in the virtual
world are sufficiently similar, we can reuse the prefetched
BE frame for one location for the next adjacent locations.
We denote this form of locality of BE frames as intra-player
frame similarity. In addition, frame similarity may exist be-
tween the BE frames needed by two players as they travel
through nearby locations of the virtual world, for example,
in a car-racing VR game. We denote this second form of
locality as inter-player frame similarity.

However, our measurement results from 9 representative
4K VR apps (6 outdoor and 3 indoor) show that even the BE
frames of adjacent locations in the virtual game world are
rarely similar enough, due to a “near-object” effect where
a small displacement of near objects changes many more
pixels in the rendered frame than that of faraway objects.
We propose a novel technique that overcomes the “near-

object” effect by separating the part of the BE that is near the
player’s location from those that are far away, denoted as
near BE and far BE, respectively. We show such decoupling
when applied to the same 9 VR games above significantly
improves both intra-player and inter-player frame similarity.
Interestingly, we found that exploring inter-player similar
frames on top of intra-player similar frames offers little addi-
tional benefits, even for multiplayer games with high multi-
player movement proximity, because multiple players rarely
travel along exactly the same path in the virtual world.

To demonstrate the effectiveness of exploiting frame simi-
larity in supporting high-resolution multiplayer VR apps, we
design and implement Coterie, a new VR framework that
renders FI and near BE on the mobile, prefetches prerendered
far BE from the server, and uses a frame cache to exploit
reuse of intra-player similar frames.

A key challenge in the design of Coterie is to determine
the cutoff radius that separates near BE from far BE. Ideally,
we should use the largest possible cutoff radius that does
not cause the FI and near BE rendering time (RT) on the
mobile device to exceed the latency constraint, i.e., 16.7ms,
to maximize far BE similarity, However, since the FI and
near BE rendering time depends on the device and location
(i.e., the object density) in the virtual world, determining the
optimal cutoff requires searching the cutoff for every location
in the virtual world which is computational prohibitive (a VR
virtual world can have hundreds of millions of locations).

To address the above challenge, we develop an adaptive
cutoff scheme that recursively partitions the game virtual
world until the cutoff radiuses within each subregion become
roughly uniform. For the largest VR game we experimented
with (CTS), our adaptive scheme reduces the number of
cutoff calculations needed from 268 million locations in the
virtual world to 235 subregions, which makes offline cutoff
calculation feasible (at most a few hours).

Finally, our testbed evaluation of the Coterie implemen-
tation using three open-source high-quality VR apps from
Unity ported to Google Daydream, Viking Village [12], CTS
Procedural World [4] and Racing Mountain [10], shows that
Coterie reduces per-player network requirement by 10.6X—
25.7X and comfortably supports the QoE (60 FPS and 16ms
latency) for 4K-resolution versions of the VR apps for 4 play-
ers on Pixel 2 phones over 802.11ac, while incurring accept-
able resource usage (under 65% GPU usage and 40% CPU
utilization), which allows the system to sustain long running
of VR apps without being restricted by temperature control.

In summary, this work makes the following contributions:

• It experimentally demonstrates that the prior-art VR
architecture for commodity mobile devices cannot sup-
port 4K-resolution multiplayer VR apps due to the
linear increase in network load;
• It proposes to explore the similarity of BE frames and
caching to reduce the network load in prefetching BE
frames from the server to drastically cut down the
network demand;
• It presents a novel technique for significantly enhanc-
ing the similarity of BE frame of nearby locations in
the virtual world by decoupling the rendering of near
BE frames and far BE frames;
• It presents the design and implementation of the Co-
terieVR system that demonstrates exploiting BE frame
similarity allows supporting 4K-resolution multiplayer
VR apps on Pixel 2 over 802.11ac.

Finally, the 10.6X-25.7X per-player network load reduction
achieved by exploiting intra-player frame similarity not only
enables high-resolution multiplayer VR but also significantly
optimizes single-player VR on commodity mobile devices.

Session 10B: Mobile/intermittent 
applications — Off and on again?  

ASPLOS’20, March 16–20, 2020, Lausanne, Switzerland 

924



2 Background
In this section, we briefly review the QoE requirement of
VR apps and how the prior art, Furion [27], supports 4K-
resolution VR apps on mobile devices for a single player.

2.1 QoE Requirements of VR apps
Supporting VR is more challenging than supporting 360
videos (e.g., [30, 31]). In addition to a headset and a ren-
derer, a VR system also consists of a controller that receives
user interactions via physical buttons and sensors which
enable user interactivity with the virtual world.
While the QoE requirements for acceptable user experi-

ence in VR systems appear the same as in 360 videos, namely,
(1) Low input-to-display latency, i.e., under 10-25ms [2]
motion-to-photon latency, (2)High-quality visual effects,
i.e., supporting 4K or higher resolution frames, and (3)Mobil-
ity, i.e., the headset or the VR system should be untethered
so as not to constrain user interactions [19, 20], supporting
user interactions in VR via the controller makes meeting
these QoE requirements more challenging. This is because
unlike in 360-degree video streaming where head movement
can be predicted (e.g., [30]) to prefetch video frames, in VR
user interactions via controllers are hardly predictable.

2.2 Supporting Single-player VR on Mobile
Supporting high-quality VR games on commodity mobile
devices is challenging even for a single player due to the
constrained mobile hardware and wireless technologies. We
briefly review two straight-forward approaches followed by
the prior art, Furion.

Local rendering (Mobile). The simplest approach to sup-
porting VR on untethered mobile devices is to perform ren-
dering entirely on the mobile device, which has been made
available on commercial VR systems such as Google Day-
dream [6] and Samsung Gear VR [5]. Due to the constrained
CPU/GPU capabilities of mobile devices, such systems can
only support low-resolution VR apps.

Remote rendering (Thin-client). The obvious alterna-
tive approach is to avoid overloading the mobile device
CPU/GPU altogether and instead offload the compute-intensive
rendering load to a powerful server and wirelessly stream
the rendered frames to the headset or mobile device used as
the display device. However, supporting high-resolution VR
apps this way would require multi-Gbps bandwidth to satisfy
the per-frame latency constraint [19]. Such high data rate
would exhaust the CPU of the mobile device from packet pro-
cessing, e.g., Furion [27] estimates processing 4Gbps would
require 16 equivalent cores running at 70% utilization on a
Pixel phone.

Furion. Furion [27] presents the first VR system design
that meets all three QoE requirements on commodity mobile
devices and WiFi, for single-player 4K-resolution VR apps.

To overcome the resource exhaustion of local rendering
and remote rendering, Furion employs a split architecture
that splits the rendering task between the mobile device and
the server, based on the key observations that (1) for most VR
apps, the VR content rendered can be divided into foreground
interactions (FI) and background virtual environment (BE); (2)
FI are triggered by players operating the controller or signals
from other players, and hence are random and hard to predict,
while BE is updated according to the user movement and
thus changes continuously and is predictable; and (3) FI are
much more lightweight to render compared to BE.
To enable pre-rendering and prefetching of frames, VR

systems such as [23, 27] discretize the virtual world of a VR
game into a finite number of grid points, so that the server
just needs to pre-render frames when viewed from those grid
points. With virtual world discretization, Furion achieves
4K-resolution mobile VR by

1. dividing the VR rendering workload when a player
moves from grid point i to the next grid point i+1 into
FI and BE,

2. leveraging the mobile GPU to render FI at grid point i ,
3. leveraging the remote rendering engine on the server

to pre-render and prefetch the background environ-
ment for grid point i+1,

4. decoding previously prefetched BE for grid point i on
the phone, and

5. combining FI and BE for grid point i on the phone to
generate the final frame.

Additionally, because after arriving at the next grid point,
the player may change her head orientation which is hard to
predict, Furion prefetches 4K panoramic frames (3840×2160
pixels) of BE from the server which can be cropped to render
any Field-of-View (FoV) frame for background environment
at almost no cost or delay.

3 Challenges in Supporting Multiplayer VR
The straightforward way of extending a single-player VR
solution such as Furion to support multiplayer VR apps is to
replicate the client-server architecture N -fold, one for each
player. To understand how scalable such an approach is, we
experimentally evaluate a prototype.

Multi-Furion. Our prototype, Multi-Furion, extends the
single-player Furion to support multiple players by adding
support for players (mobile devices) to exchange FI so that
every player can independently render the FI of all players
locally, which will then be integrated with the prefetched
BE as before.

We implement exchanging FI among the mobile devices in
Multi-Furion through Photon Unity Networking (PUN) [9].
PUN enables Unity object synchronization with low latency.

Session 10B: Mobile/intermittent 
applications — Off and on again?  

ASPLOS’20, March 16–20, 2020, Lausanne, Switzerland 

925



Using PUN, an FI object can sync the position, rotation and
animation with its remote duplicates for every frame.1

Experimental setup.To gain insight into howwellMulti-
Furion as well as Mobile-only and Thin-client approaches
scale in supporting multiple-player VR apps, we ported three
popular high-resolution VR apps from the top three genres
of Unity Store, Viking Village [12], CTS Procedural World [4]
and Racing Mountain [10] (originally ported from virtual-
world Unity apps), using the Google Daydream SDK.

For all three versions of each app, we embedded PUN
downloaded from Unity with foreground interactions to
support the multiplayer scenarios. In both Thin-client and
Multi-Furion versions, the server uses H.264 (found in [27] to
outperform MJPG and V9 for encoding VR frames) to encode
rendered frames before transmitting them to the clients.

Our testbed (used throughout the paper) includes 4 Pixel
2 phones and a desktop server with an Intel 6-core Xeon
E5-1650 CPU, NVIDIA GeForce GTX 1080 Ti graphic card,
and 16GB RAM that runs Windows 10 and Unity 5.6. Using
iperf, we measured the TCP download throughput from the
server over 802.11ac to be around 500Mbps.

Findings. Each game is played in the same way 5 times
for each version, each lasting 10 minutes. Table 1 shows the
average performance of the three VR designs in supporting
the three high-resolution VR apps for 1 player and for 2
players. We make the following observations. (1) The per-
formance of the Mobile version stays about the same when
running with 1 player and with 2 players in terms of FPS
and frame latency and in terms of CPU/GPU load. (2) As
expected, the Thin-client version suffers close to 2X increase
in network transfer latency of each frame, because the server
has to transfer 2 frames (to the 2 players) in each rendering
interval, which inflates the already high inter-frame latency
from the 41–50ms to 52–64ms range, reducing the FPS from
20 or so down to 16 or so. (3) Like Thin-client, Multi-Furion
also suffers close to 2X increase in network transfer latency
in prefetching BEs from the server, due to the doubled load
on the network, which inflates the inter-frame latency from
just meeting the 16.7ms requirement for 60 FPS to almost
21ms, which reduces the FPS down to 42–48. (4) In all exper-
iments, the server CPU load remains under 12% (not shown)
and hence is not the cause of network delay. The server GPU
is also not the bottleneck in Multi-Furion which fetches pre-
rendered BE frames. (5) Under Multi-Furion, the phone GPU
is lightly used, around 15%. This observation is exploited
later in our key idea (§4.3).

4 Exploiting Frame Similarity
Our measurement study suggests that the key to support-
ing multiplayer VR is to cut down the network bandwidth

1It takes 2-3ms for each client to sync its FI with the server which are
combined and retrieved by all players for rendering in the next interval.

Table 1. Performance of Mobile, Thin-Client, and Multi-
Furion on Pixel 2 phones over 802.11ac.

App
(players) FPS

Inter-
Frame
lat.
(ms)

Phone
CPU
load
(%)

Phone
GPU
load
(%)

Per
Frame
size
(KB)

Net.
delay
(ms)

Mobile
Viking (1P) 26 38.2 17.3 88.0 - -
CTS (1P) 24 42.0 9.5 99.0 - -

Racing (1P) 27 38.2 10.3 92.0 - -
Viking (2P) 24 42.5 19.6 88.0 - -
CTS (2P) 21 48.3 9.6 99.0 - -

Racing (2P) 25 40.3 13.2 93.0 - -
Thin-client

Viking (1P) 24 41.1 25.1 7.0 586 9.7
CTS (1P) 20 50.3 24.5 9.5 590 9.9

Racing (1P) 20 50.0 21.2 10.9 680 11.3
Viking (2P) 19 52.2 25.0 8.0 586 19.8
CTS (2P) 16 59.0 30.4 9.7 590 20.1

Racing (2P) 15 64.1 21.2 13.9 680 21.2
Multi-Furion

Viking (1P) 60 16.0 23.2 13.2 550 9.2
CTS (1P) 60 16.6 29.7 12.9 440 7.5

Racing (1P) 60 16.5 29.4 14.0 564 9.3
Viking (2P) 45 22.2 31.0 16.4 550 18.3
CTS (2P) 48 20.8 32.9 15.4 440 16.2

Racing (2P) 42 23.8 32.2 14.8 564 18.5

requirement, which scales with the number of players, per-
frame size, and how often a frame is transferred from the
server to each client. Since the frames are already compressed
with the best video compression technique available [27],
we ask the question – can we cut down the frame transfer
frequency?
Intuitively, if the BE frames for nearby grid points in the

game virtual world are similar enough, a client can reuse
the prefetched BE frame for one grid point at the next ad-
jacent grid point(s) to reduce the frequency for prefetching
BE frames. The effectiveness of such an approach rests on
answering two questions:

1. How similar are BE frames for nearby locations?
2. How to maximally expose the similarity among BE frames

to reduce the network load in multiplayer VR apps?

4.1 How Similar are Nearby BE Frames?
Intra-player frame similarity. We first measure the simi-
larity between BE frames for adjacent grid points traveled by
a player, for 6 outdoor and 3 indoor VR apps ported from 3D
games from Unity Asset Store [11] (by adding foreground
interactions), as listed in Table 2. The player plays each game
(with 4K resolution) on a Pixel 2 phone for 10 minutes.

We record the player trajectory in the virtual world during
game play under Multi-Furion. We then offline generate the
panoramic BE frame for each grid point in the trajectory on

Session 10B: Mobile/intermittent 
applications — Off and on again?  

ASPLOS’20, March 16–20, 2020, Lausanne, Switzerland 

926



0.0 0.2 0.4 0.6 0.8 1.0
SSIM

0

20

40

60

80

100

CD
F 

(%
)

Racing
DS
FPS
Viking
CTS
Soccer
Pool
Bowling
Corridor

(a) Before decoupling (whole BE)

0.0 0.2 0.4 0.6 0.8 1.0
SSIM

0

20

40

60

80

100

CD
F 

(%
)

Racing
DS
FPS
Viking
CTS
Soccer
Pool
Bowling
Corridor

(b) After decoupling (far BE)

Figure 1. Similarity of adjacent BE frames for 6 outdoor and
3 indoor VR apps before and after near BE-far BE separation.

Table 2. List of 6 outdoor and 3 indoor VR apps in our study.

Game Genre FI Type
Racing racing/chasing racing car movement outdoor
DS racing/chasing racing car movement outdoor

Viking competing shooting roaming and killing enemies outdoor
CTS group adventure/mission walking and jumping outdoor
FPS competing shooting roaming and killing enemies outdoor

Soccer group adventure/mission moving and hitting balls outdoor
Pool static sports walking and hitting balls indoor

Bowling static sports walking and throwing balls indoor
Corridor group adventure roaming indoor

the server and compute the similarity between adjacent BE
frames.

As in previous VR systems [23, 27], we choose Structural
Similarity (SSIM) [39] as the metric to quantify the common-
ality between a pair of frames. SSIM is a de facto metric for
measuring the similarity between two images by modeling
the human eye’s perception [23]. The human subject study
in [23] concludes that an SSIM value higher than 0.90 indi-
cates that the distorted frame well approximates the original
high-quality frame and provides “good” visual quality.

Figure 1(a) plots the CDF of the similarities between each
BE frame and its next adjacent frame in the trajectory. To
our surprise, we see close to zero frame similarity, i.e., the
percentage of BE frames that exhibit an SSIM value larger
than 0.90 when compared to its adjacent BE frame in the
trajectory ranges between 0% and 20% for the 9 VR games.

Inter-player frame similarity. For a class of outdoor
multiplayer VR apps, we observe that the multiple players
typically interact closely and hence tend to be in close prox-
imity with each other in the virtual world at any given mo-
ment through out the game play. For example, in a typical car
racing game, multiple cars will chase each other closely in
the same track, and in an adventure game, multiple avatars
closely follow each other to survive and defeat their enemies.
For such multiplayer games, a frame rendered for one player
may potentially be sufficiently similar to that for a nearby
player and hence reused by the other player.

Motivated by this observation, we next measure the simi-
larity between the BE frames for two players in playing the
same 9 VR apps, where two players play each game on Pixel
2 phones for 10 minutes, simultaneously.

0.0 0.2 0.4 0.6 0.8 1.0
SSIM

0

20

40

60

80

100

CD
F 

(%
)

Racing
DS
FPS
Viking
CTS
Soccer
Pool
Bowling
Corridor

(a) Before decoupling (whole BE)

0.0 0.2 0.4 0.6 0.8 1.0
SSIM

0

20

40

60

80

100

CD
F 

(%
)

Racing
DS
FPS
Viking
CTS
Soccer
Pool
Bowling
Corridor

(b) After decoupling (far BE)

Figure 2.Best-case similarity of BE frames between 2 players
for 9 VR apps before and after near BE-far BE separation.

Entire BE w/ nearby objects at adjacent locations

BE w/o nearby objects at adjacent locations

SSIM

0.67

SSIM

0.96 

Figure 3. “Near-object” effect degrades the frame similarity.

We record the trajectories of both players during game
play. We then offline generate the panoramic BE frame for
each grid point in each player’s trajectory on the server and
compute the inter-player frame similarity as follows. For
each panoramic BE frame in Player 1’s trajectory, we search
through all the panoramic frames rendered for Player 2 to
find the one that is the most similar, based on the SSIM value,
and record the similarity. We denote this similarity as best-
case similarity, as it assumes we can always find the frame
of the other player that is most similar.
Figure 2(a) plots the CDF of the best-case similarities be-

tween the two players. As with intra-player similarity, there
is almost zero inter-player frame similarity, i.e., the percent-
age of Player 1’s BE frames that have best-case SSIM values
larger than 0.90 is close to 0% for the 9 VR games.

4.2 The “Near-Object” Effect
To gain insight into why the BE frames for nearby locations
rarely have high SSIM, we visually compared many pairs of
adjacent BE frames in the single-player traces. We observed
that many BE frames contain objects (assets in Unity’s termi-
nology) near the player in the virtual world, because of which
even a slight displacement of the player location can lead to
visible change between the frames.

Figure 3 shows an example where the BE frames from two
nearby locations in the Viking Village game have a low SSIM
value of 0.67 (top figures) but have a high SSIM value of 0.96
(bottom figures) after removing the objects near the players,
i.e., the viewing points.
The above “near-object” effect can be explained by the

technique used by VR engines such as Unity in rendering

Session 10B: Mobile/intermittent 
applications — Off and on again?  

ASPLOS’20, March 16–20, 2020, Lausanne, Switzerland 

927



Near BE 
(trees & boxes)

Far BE 
(houses 
& wall)

Near & Far BE
(ground)

Radius (r)
 

Figure 4. Separating near and far BE.

the frames, called Perspective Projection [38]. The technique
emulates how human eyes view the world by mapping a 3D
grid-point of the game world into a point in the 2D frame.
Specifically, it converts faraway objects to be viewed smaller
and the nearby objects to be viewed larger in order to provide
realism to human eyes. As a result, a small displacement of
near objects is more pronounced, i.e., it changes many more
pixels in the rendered frame, than that of faraway objects.

4.3 Key Idea: Exposing BE Frame Similarity
The above insight into how near-objects diminish the sim-
ilarity of BE frames rendered from nearby locations in the
virtual world, coupled with the observation that the GPU is
underutilized in the split-rendering architecture (about 15%
utilization as shown in Table 1), motivates us to design a
new way of splitting the VR content to be rendered on the
mobile device and the server.

Decoupling near and far BE. The “near-object” effect
suggests that if we separate the part of the BE that is near
the player’s location from those far away, denoted near BE
and far BE, respectively, the similarity of the far BE frames
rendered from nearby locations in the virtual world should be
significantly enhanced. Procedurally, we define near BE and
far BE based on a cutoff radius, where the objects within and
outside the radius belong to near BE and far BE, respectively,
as shown in Figure 4.2

Where to render near and far BE? To incorporate such
a separation into the split-rendering architecture design, we
need to decide where to render near and far BE.
Since far BE tends to contain many more objects than

near BE, especially for outdoor VR apps (see Table 2) which
accounts for a majority of the VR apps in VR appstores [15–
17], rendering far BEwill remain computationally prohibitive
for the mobile device and hence should be performed on the
server (and far BE frames should be prefetched as before).
Near BE contains fewer objects than far BE and thus can

potentially be rendered on either the mobile device or on
the server. However, because near BE is near the viewing
point, a near BE frame will occupy a significant portion
of the final frame. As a result near BE frames will remain
large; our results show that near BE and far BE frames are of
2It is ok for an object to be cut in the middle; its two halves will be rendered
in the near BE and far BE, respectively.

0 2 4 6 8 10 12 14 16
Cutoff Radius (m)

0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00

SS
IM

loc1
loc2
loc3
loc4

Figure 5. Adjacent far BE
frame similarity vs. cutoff ra-
dius for 4 randomly sampled
locations.

6 7 8 9 10 11 12 13 14
Num. of Sampled Locations per Cut

0.25
0.50
0.75
1.00
1.25
1.50
1.75
2.00

RT
 E

st
im

at
io

n 
Er

ro
r (

%
)

Viking Village
Racing
CTS

Figure 6. Percentage of
randomly sampled locations
whose near BE rendering
time exceeds Constraint 1.

comparable sizes, about half of the original BE frame. Thus
rendering near BE on the server would not lower the network
load much, and near BE should be rendered on the mobile
device.
The remaining design challenge is how to determine the

cutoff radius that separates near objects in the virtual world,
from faraway ones. We first discuss the constraint on the
cutoff radius and then present a practical scheme that avoids
deciding a cutoff radius for every grid point.

Constraint on cutoff radiuses. Intuitively, the larger
the cutoff radius, the further away the objects in the far BE,
and the more similar the far BE when viewed from nearby
locations will be. Figure 5 shows the SSIM between two
adjacment far BE frames at each of four randomly chosen
locations in Viking Village as we vary the near BE-far BE
cutoff radius. We see that the SSIM value quickly and mono-
tonically increases with the cutoff radius, from 0.68, 0.63,
0.75, and 0.83 at the cutoff radius of 0 (i.e., the whole BE
is the far BE) to above 0.9 at the cutoff radius of 4 meters.
However, a larger radius will also result in higher rendering
load on the mobile device since near BE will contain more
objects. This tradeoff suggests that we should use the largest
possible cutoff radius that does not cause the rendering time
(RT) on the mobile device to exceed the latency constraint,
i.e., 16.7ms:

RTF I + RTNearBE < 16.7ms

The above constraint on the cutoff radius suggests that
the right choice of cutoff is app and device dependent, as
both the FI and near BE rendering time are app and device
dependent. This in turn suggests that the cutoff needs to be
determined for each app offline, i.e., during app installation,
based on measurement on the device.

Determining RTF I . For each app, the rendering time for
FI is determined by the nature of the game-allowed FI and
generally does not depend on the location in the virtual
world. Therefore, we can first experimentally determine the
FI rendering time on a given device to find an upper bound.3

3Typical user foreground interactions with the game, including for multi-
players, can be prerecorded and replayed during installation time.

Session 10B: Mobile/intermittent 
applications — Off and on again?  

ASPLOS’20, March 16–20, 2020, Lausanne, Switzerland 

928



For example, for the three 4K-resolution VR apps, we mea-
sured RTF I based on player game plays to be bounded well
below 4ms on Pixel 2, which gives a conservative time con-
straint on rendering near BE on Pixel 2 in determining the
cutoff radius:

RTNearBE < 16.7ms − RTF I = 16.7ms − 4ms = 12.7ms (1)

Calculating cutoff radiuses. Since the rendering speed is
correlated with the triangle count of the objects [1], we first
measure the object density at a location in the game virtual
world by the triangle count within a fixed cutoff radius. We
observe that the object density across the virtual world of
the VR games can vary significantly. This suggests that using
a single cutoff radius that satisfies Constraint 1 for the entire
virtual world will be inefficient as we will end up with a
smaller radius than necessary for many locations. On the
other hand, customizing one cutoff radius for every location
in the virtual world is computationally infeasible as a VR
game can easily contain up to hundreds of millions of grid
points in the virtual world.
We make a key observation that though the object den-

sity can vary in different locations of the game world, it
changes gradually and tends to be uniform within a small
region. Building on the observation, we propose an adaptive
cutoff scheme that drastically reduces the number of cutoff
radiuses that need to be calculated. In particular, the scheme
recursively partitions the game virtual world until the cutoff
radiuses for different locations with each subregion become
roughly uniform.
The adaptive scheme works as follows. Since the play-

ers move in 2D in the virtual world in typical VR games,
the recursive partitioning of the virtual world will be 2D.
The partitioning procedure is recursive, first invoked with
the complete game world. At each invocation, it samples
K random locations from the input game region, calculates
the maximal cutoff radius for each location that satisfies
Constraint 1, and checks if the radiuses for the K sampled
locations are similar. If so, it records the minimal radius
as the radius for the region and returns. If not, the object
density in the region is likely uneven, and the procedure par-
titions the region into 4 equal-sized subregions and recurs
on them. Effectively, the recursively partitioned subregions
form a quadtree, and we denote the subregions that are not
partitioned further the “leaf regions”.

We experimentally determine the suitable choice of K . For
each K value, we follow the above procedure to recursively
partition the game world into a quadtree of leaf regions, and
then experimentally measure the percentage of locations in
the player trajectory traces from experiments in §4.1 that
do not satisfy Constraint 1 using the derived cutoff radiuses
for their leaf regions. Figure 6 shows that for the 3 VR apps,
Viking Village, Racing, and CTS, if we set K to be 10, the
percentage of locations in the trace whose rendering time
RTnearBE using the calculated cutoff violates Constraint 1 is

Table 3. Game stats and the output and running time of the
adaptive cutoff scheme.

App
Game

Dimension
(meter2)

Grid
Points

(million)

Quadtree
Depth

(avg/max)

Leaf
Reg.

Proc.
Time
(hrs)

Viking
Village 187 × 130 24.90 5.87/6 2944 6.60

CTS 512 × 512 268.40 3.81/4 235 1.30
Racing
Mt. 1090 × 1096 7.70 3.70/4 136 1.25

DS 1286 × 361 3.00 3.80/4 160 1.66
FPS 71 × 70 5.09 3.92/4 208 1.10

Soccer 104 × 140 14.90 3.88/4 136 1.18
Pool 10 × 13 0.13 2.68/3 19 0.14

Bowling 34 × 41 1.43 2.00/2 16 0.13
Corridor 50 × 30 1.54 2.80/3 40 0.29

less than 0.25%. Thus we use 10 as a suitable choice for K in
our design.

In summary, our adaptive cutoff scheme adaptively gener-
ates cutoff radiuses according to the varying object density
in the game world to minimize the total number of cutoff
radiuses that need to be calculated for separating far/near
BE frames at different locations in the game world while
maximizing the cutoff radius for each leaf region and hence
the locations within. The maximized cutoff radius in each
leaf region in turn leads to high similarity between the far
BE frames in nearby locations and hence high frame cache
hit ratio (shown in §7).

4.4 Effectiveness of the Adaptive Cutoff Scheme
To measure the effectiveness of the adaptive cutoff scheme,
we apply it to the same 6 outdoor and 3 indoor multiplayer
VR games evaluated in §3 to partition the virtual world into
leaf regions and find their corresponding near BE-far BE
cutoff radiuses.

Table 3 summarizes the basic stats about the 9 games and
the output of the adaptive cutoff scheme. The results show
the effectiveness of the scheme: (1) In general, the larger the
dimension of the virtual world, the deeper the quadtree of
recursively partitioned leaf regions. For example, compared
to the 6 outdoor games, the 3 indoor games have smaller
dimensions and consequently shallower quadtrees and fewer
leaf regions. (2) However, the quadtree depth of a specific
game depends on the variation of object density in the game
world. Viking Village has about 20× smaller game dimension
than Racing and DS, but has a deeper quadtree and 10×-20×
more leaf regions than them. This is because Viking Village
has higher variation (non-uniformity) of object density (i.e.,
triangle counts) in its virtual world.
Figure 7 shows the distribution of the cutoff radiuses for

the leaf regions of the 9 games. We see that the cutoff radius
stays in a small range for all except two outdoor apps, DS
where half of the cutoff radiuses are spread between 10 and

Session 10B: Mobile/intermittent 
applications — Off and on again?  

ASPLOS’20, March 16–20, 2020, Lausanne, Switzerland 

929



0 25 50 75 100 125 150 175 200
Cutoff Radius of Leaf Region (m)

0

20

40

60

80

100

CD
F 

(%
)

Viking
CTS
Racing
Soccer
DS
FPS
Bowling
Pool
Corridor

Figure 7. CDF of cutoff ra-
diuses of the leaf regions of
9 VR games generated by the
adaptive scheme.

3.
3

3.
5

3.
8

4.
1

4.
4

4.
7

5.
0

5.
2

5.
5

5.
8

6.
1

Log(Triangle Density) (/m^2)

2
4
6
8

10
12
14
16
18
20
22
24
26
28

Cu
to

ff 
Ra

di
us

 (m
)

0%

2%

4%

6%

8%

10%

Figure 8. Cutoff radius vs.
triangle density for 420 leaf
regions (heatmap).

100 meters, and Racing Mountain where all cutoff radiuses
are evenly spread between 10 and 180 meters. For DS, the
widespread of cutoff radiuses is because the regions near
start/end locations of racing are densely populated with
game assets including people and big stadiums, while the
rest of the vast virtual world is sparsely populated with game
assets. For Racing Mountain, a few regions along the track
are very close to a forest of trees while other regions are
sparsely populated with few assets.
We zoom into Viking Village to see how the adaptive

scheme adapts the cutoff radius with the object density. Fig-
ure 8 shows the object density (measured in triangle count
per meter2) and the corresponding cutoff radius generated
for 420 leaf regions (30 per cutoff radius between 2 and 28
meters) in a heatmap. We see a clear correlation: the higher
the object density, the smaller the generated cutoff radius.

In summary, our adaptive cutoff scheme is highly effective
– for the largest VR game we experimented with, CTS, it
reduces the number of cutoff calculations needed from 268
million locations in the virtual world to 235 subregions. The
scheme makes offline cutoff radius calculation feasible, i.e.,
at most a few hours each for the 9 games.

4.5 Frame Similarity Improvement
To measure the impact of separating near BE from far BE on
frame similarity, we calculate the intra-frame and inter-frame
similarities for far BE frames only for the same 9 multiplayer
VR games using the cutoff radiuses generated by the adaptive
cutoff scheme in §4.4.

Figure 1(b) shows that the similarity between adjacent far
BE frames for a single player is drastically higher for the 6
outdoor games; the percentage of adjacent BE frame pairs
that have an SSIM of over 0.9 ranges between 85% for DS-
Racing to 100% for the other games. Similar improvement
is observed for the 3 indoor games; the percentage ranges
between 65% to 90%.
Similarly, Figure 2(b) shows that the best-case similarity

between far BE frames for two players in the 6 outdoor VR
apps also increases significantly: the percentage of best-case

Table 4. Five frame cache configurations.

Version Reuse Intra-player
Frames

Reuse Inter-player
Frames

Version 1 ✓(exact)
Version 2 ✓(exact)
Version 3 ✓(similar)
Version 4 ✓(similar)
Version 5 ✓(similar) ✓(similar)

Table 5. Cache hit ratio of Viking Village under 5 cache
versions.

Version 1-player 2-player 3-player 4-player
Version 1 0.0% 0.0% 0.0% 0.0%
Version 2 0.0% 0.0% 0.0% 0.0%
Version 3 80.8% 80.8% 80.8% 80.8%
Version 4 0.0% 63.9% 67.2% 65.4%
Version 5 80.8% 80.4% 80.4% 87.7%

BE frame pairs that have an SSIM of over 0.9 ranges between
55% for FPS to 100% for the other games. The inter-player
similarity is much lower for the 3 indoor games however;
the percentage varies between 2% (Pool) to 33% (Bowling).
This is expected as multiple players in these indoor games
do not follow each other closely in the virtual world.

4.6 Added Benefit of Exploiting Inter-player Frame
Similarity

To understand the added benefits of exploiting inter-player
frame similarity on top of intra-player frame similarity, we
perform the following caching experiment.
We collect the per-player movement trace for the 1, 2, 3,

and 4-player testbed experiments in §7. We then replay the
players’ movement and emulate each player’s far BE frame
requests against an infinite-sized frame cache under different
cache lookup schemes for each player, and assume the reply
from the server is overheard and cached by all the players.
Note there is no need to generate and manipulate the actual
far BE frames as the cache lookup outcome is determined by
the frame locations in the game (explained below).
Specifically, we compare 5 versions of cache lookup con-

figurations as shown in Table 4. Version 1 caches frames
prefetched by the local client and serves exactly matched
frames. Version 2 caches frames sent to other players (e.g.,
from “overhearing”) and serves exactly matched frames. Ver-
sion 3 adds on top of Version 1 serving similar frames ac-
cording to cache lookup algorithm in §5.3. Version 4 adds
on top of Version 2 serving similar frames as in Version 3.
Finally, Version 5 combines Versions 3 and 4 to serve exact
and similar frames, self-prefetched or prefetched by other
players.
Table 5 shows the results for Viking Village which has

the lowest inter-player movement locality and SSIM higher

Session 10B: Mobile/intermittent 
applications — Off and on again?  

ASPLOS’20, March 16–20, 2020, Lausanne, Switzerland 

930



Wireless Rx / TxWireless Rx / Tx

Server

Encoder

Client  kRender Engine

Integration

Decoder

PrefetcherSensors

He
ad

se
t &

Co
nt

ro
lle

r
Di

sp
la

y

Render Engine

Far BE 
rendererFI & Near 

BE Renderer

Cache

Multi-
Sync

Figure 9. Coterie architecture.

than 0.9 for 100% best-case BE frame pairs. We make the
following observations. (1) Version 1 has no cache hit as the
player does not traverse the exactly same path. Similarly,
Version 2 has no cache hit, suggesting even for VR games
with high player movement locality, the trajectories of differ-
ent players rarely overlap exactly. (2) Version 3 which reuses
cached frames prefetched by a client itself already achieves
80% cache hit ratio, which reduces the frame prefetching
frequency by 5X. (3) Version 4 which reuses cached frames
sent to other players also achieves a high cache hit ratio,
63.9%-67.2% for 2-4 players. (4) But finally, if a client already
reuses self-prefetched similar frames, caching frames sent
to other players does not give significant additional benefit,
as shown in the almost identical hit ratios for Version 3 and
Version 5, for 2-4 players. This is because multiple players
usually do not follow the same identical path.
The above experiment suggests that Version 3, which

reuses similar frames prefetched by a client itself, already
reaps most of the benefits of frame caching. For this reason,
and also because wireless overhearing (i.e., the promiscuous
mode) is not supported by current Android Qualcomm built-
in NICs for security reasons, we do not exploit inter-player
frame similarity in the final Coterie design.

5 Coterie Design
The goal of Coterie design is to enable high-resolution mul-
tiplayer VR apps on commodity mobile phones and WiFi
networks by reducing the network bandwidth requirement.
Coterie achieves this goal via a 3-layer rendering architec-
ture that (1) decouples BE into near BE and far BE to expose
the similarity of far BE frames, (2) renders FI and near BE
on the mobile devices, and (3) caches and reuses similar far
BE frames to significantly reduce BE frame prefetching from
the server.

5.1 Architecture Overview
Figure 9 shows the Coterie system architecture which con-
sists of a server running on a desktop and multiple clients
each running on a commodity phone.

Coterie server. In offline processing, the server first runs
the adaptive cutoff algorithm to recursively divide the virtual
world into multiple leaf regions, and then pre-renders and
pre-encodes (using x264 [18] with Constant Rate Factor of 25
and fastdecode tuning enabled) panoramic far BE frames for
all the grid points the player can reach. During game play,
the server replies to far BE frame requests from any client
with encoded prerendered panoramic far BE frames in TCP.
Coterie client. During each time window when a player
moves from one grid point in the virtual world to the next,
the client renders the frame for the next grid point by con-
currently performing four tasks, followed by frame merging:

1. FI and near BE rendering: The hardware sensors
collect the new pose from the headset and the move-
ment and FI from the controller, which trigger the
Render engine to start rendering FI (with the latest
multiplayer synchronization) and near BE for the next
grid point.

2. Decoding: The prefetched compressed far BE frame
for the next grid point is read from the frame cache
and sent to the upper layer, Android hardware decoder,
for decoding.

3. Prefetching and caching:The prefetcher determines
the far BE frames for the neighbors of the next grid
point, and searches in the frame cache for the exact or
similar frames. If all needed frames are found in the
frame cache, the prefetching is skipped; otherwise, the
prefetching request is sent to the server, and replied
frames are cached.

4. Synchronizing FI: The FI of the players are synchro-
nized via PUN (over UDP) on all mobile devices via
the server; the synchronized FI will be used in the next
frame rendering time slot.

5. Merging: The decoded far BE frame is merged with
the locally rendered FI and near BE in the Render en-
gine, which is then projected for each eye for display
to the player.

The four time-critical tasks are performed in parallel. The
end-to-end latency to render a new frame is:

Tsplit_r ender =max (Tphone_r ender_F I+Tphone_r ender_nearBE ,
Tphone_decode_f arBE ,Tphone_pref etch_next_f arBE ,

Tphone_sync_F I ) +Tmerдe (2)

The design of tasks 1, 2, 4 and 5 are straight-forward and we
discuss their implementation details in §6. Below, we discuss
task 3 (prefetching and caching) in detail.

5.2 Prefetching Far BE frames
At eachCoterie client, each far BE frame prefetching request
is first sent to the frame cache, and is only sent out to the
server if the cache cannot find a similar frame. Because of
the high similarity of adjacent far BE frames, a prefetched
far BE frame for grid point i can often be reused for adjacent

Session 10B: Mobile/intermittent 
applications — Off and on again?  

ASPLOS’20, March 16–20, 2020, Lausanne, Switzerland 

931



2

5

4 6

7

T1: move to 2; 
prefetch 4, 5, 6, 7  

0

1

3

Figure 10. Prefetching far BE frames.

grid points within several hops. Figure 10 shows an example
where the far BE frame at grid point 0 resides in the cache
and can be reused at nearby grid points within the shaded
region.

This frame reuse not only reduces the frequency of prefetch-
ing from the server, but also creates a larger time window for
each prefetching. When the Coterie client is moving from
point 0 towards point 2, it just needs to finish prefetching
the far BE frame for point 4 and its neighbors 5, 6, 7 at any
time before reaching point 4.
The large prefetching window simplifies scheduling the

prefetching of multiple clients. Instead of coordinating the
prefetching requests of multiple clients, e.g., using TDMA,
to avoid collision, we simply let each Coterie client start
prefetching the next set of frames not in the cache right
away after the first time reusing a cached frame, based on
the current moving direction.

5.3 Frame Cache
The frame cache at each Coterie client caches far BE frames
prefetched by the client. Intuitively, a cached far BE frame for
a location can be reused for any sufficiently close location in
the virtual world. However, since our adaptive cutoff scheme
can lead to different cutoff radiuses for nearby locations, e.g.,
those belonging to different leaf regions, the cache lookup
algorithm also needs to check for additional conditions other
than proximity.

Cache lookup algorithm.The cache stores relevantmeta-
data for each cached far BE frame, such as its corresponding
grid point and belonging leaf region. A cache lookup for
grid point k returns a cached far BE frame as a hit if it satis-
fies three criteria: (1) Its grid point is within some distance
threshold dist_thresh from grid point k ; (2) It is in the same
leaf region as grid point k , since different regions may have
different cutoff radiuses (§4.3), which will cause a gap be-
tween the near BE and far BE of the two locations; (3) Its
corresponding near BE contains the same set of objects as
that for grid point k to ensure there are no missing parts after
merging the rendered near BE with the cached similar far
BE frame. The three conditions ensure a reused far BE frame
will integrate with the near BE rendered smoothly. Out of
all the cached frames that satisfy the above constraints, the
one closest to the grid point being looked up is returned as
the most similar frame.

The distance threshold dist_thresh is derived offline, one
for each leaf region, by sampling K grid points in the region.

For each sampled grid point l , we binary-search dist_threshl
(e.g., starting from 32 downwards) until using it, the far BE
frame has high similarity (i.e., SSIM > 0.9) with that of an-
other random grid point within the radius of dist_threshl . Fi-
nally, for each leaf region, we choose theminimumdist_threshl
of the K sampled grid points as its distance threshold.

Cache replacement policy. For fast access, the frame
cache needs to be in phone memory. Since smartphones
typically come with limited memory, e.g., 4GB on Pixel 2, we
need an effective replacement policy to maximize the cache
hit ratio. We explore two replacement policy designs. (1)
LRU, which exploits temporal locality in access patterns; (2)
FLF (Furthest location first), which exploits spatial locality
by evicting the cached frame that is among the furthest from
the player’s current position in the virtual world.

6 Implementation
We implement Coterie in Unity and Google Daydream.

Offline preprocessing.We implement an offline prepro-
cessing module to implement the adaptive cutoff scheme
(§4.3) and determine the distance threshold used for cache
lookup (§5.3). Considering the varying elevation and slope
of the terrains where players stand in the virtual world, we
apply ray tracing to find the foothold of the players and then
adjust the height of the camera to gain the same views as the
players. The offline preprocessing module is implemented in
1200 lines of C# code.

Renderer. To implement the renderer module, we create
a Unity prefab called SphereTexture. At each rendering in-
terval, the prefab sets the camera’s far clip plane to be the
preprocessed cutoff radius, it uses Unity APIs to load the far
BE panoramic frame decoded from the prefetched video into
the texture, and the Unity engine uses its built-in camera to
crop the far BE from SphereTexture and render near BE and
FI together with the cropped far BE to the display.

Decoder. Coterie leverages a third-party video player
IJKPlayer [7] to exploit hardware-accelerated Android Medi-
aCodec to decode the videos based on H.264. We modified
about 1100 lines of C code in IJKPlayer to make it compatible
with the renderer module.

Frame Cache and Prefetcher.We implement the frame
cache module and the prefetcher module as a Unity plugin
for the VR games in around 1100 lines of C code. The former
checks for similar frames for a prefetching request. The latter
sends the request to the server and then passes the server
reply to the frame cache.

Sensing and Projection. We utilize Google Daydream
SDK to (1) pass data collected from the sensors on the phone
and the controller to the Unity engine; (2) project the frame
generated by the renderer into two frames for the two eyes.

Ease of portingVRapps.Wedevelop theCoterie frame-
work to be app-independent which simplifies VR game de-
velopment. To port a new VR game, the game developer just

Session 10B: Mobile/intermittent 
applications — Off and on again?  

ASPLOS’20, March 16–20, 2020, Lausanne, Switzerland 

932



Table 6. Average cache hit ratio across the players in the 3
games.

Game Viking Racing CTS
Avg. cache hit ratio 80.8% 82.3% 88.4%

needs to (1) apply the offline preprocessing module to deter-
mine the cutoff radiuses and distance threshold; (2) generate
panoramic frames of far BE based on the generated radiuses;
(3) attach SphereTexture as a Unity prefab to the player cam-
era to merge near and far BE properly; and (4) simply apply
all other Coterie modules as plugins to the Unity project.

7 Testbed Evaluation
In this section, we evaluate Coterie’s end-to-end perfor-
mance and system resource usage in supporting VR games
running on commodity phones. Due to page limit, we pick
three multiplayer VR apps, Viking Village, CTS Procedural
World, and Racing Mountain, one each from the 3 outdoor
game categories (Table 2), that also have the largest dimen-
sion and the most grid points in the game world out of the 9
games (Table 3) and thus are the most challenging to imple-
ment on mobile devices. Our experiment setup is the same
as described in §3. We compare Coterie with Thin-client
and Multi-Furion as described in §3.

Offline preprocessing. Coterie first runs the adaptive
cutoff algorithm to recursively divide the virtual world into
multiple leaf regions. The results were discussed in §4.5.

Caching results. Both LRU and FLF work effectively as
spatial locality and temporal locality coincide well in each
player’s movement. We omit the details due to page limit.
Table 6 shows that exploiting intra-player frame similarity of
far BEs achieves 80.8%, 82.3%, and 88.4% average frame cache
hit ratios across 4 players for the 3 games, respectively, in the
experiments below. These cache hit ratios tranlate into 5.2X,
5.6X, and 8.6X reduced far BE frame prefetching frequency
per player from the server for the 3 games, respectively.

7.1 Visual Quality, Frame Rate, Responsiveness
We first compare the QoE of the three VR apps running on
Thin-client, Multi-Furion, and Coterie with 2 players.

Image quality. In our experiment, we measure the SSIM
between the frames rendered by each of the schemes with
the frames directly generated on the client with 1920×1080
pixels, the resolution of Pixel 2 display. Table 7 shows the
image quality results. Coterie obtains SSIM scores above
0.93, representing good visual quality of the generated frames.
The reason that Coterie achieves higher SSIM than Multi-
Furion and Thin-client is because it renders both FI and near
BE locally without suffering encoding and decoding loss.

Frame rate. Table 7 shows that across all three high-
quality VR games, Thin-client delivers the lowest FPS, be-
tween 15-19 FPS, Multi-Furion delivers 42-48 FPS, due to

Table 7. Visual quality, FPS and Responsiveness of each
VR app under different implementations. (T: Thin-client, M:
Multi-Furion, C: Coterie)

App Visual Quality
(Average SSIM)

Average
FPS

Responsive-
ness (ms)

Viking (T) 0.912 19 41.0
CTS (T) 0.904 16 50.0

Racing (T) 0.949 15 42.2
Viking (M) 0.915 45 22.0
CTS (M) 0.907 48 20.1

Racing (M) 0.953 42 21.2
Viking (C) 0.937 60 15.8
CTS (C) 0.979 60 15.9

Racing (C) 0.975 60 15.6

extra network delay incurred by the second player, while
Coterie comfortably delivers 60 FPS.
Responsiveness. Following [22], we define responsive-

ness as the motion-to-photon latency, i.e., the elapsed time
from when a user interaction for motion is detected by the
device to when the corresponding frame is sent to the display.
Table 7 shows that Coterie achieves far better responsive-
ness than the other systems. In particular,Coteriemaintains
the latency of 15.9ms, while Multi-Furion incurs the high
latency of 22.0ms from the linearly increased network load.

7.2 Scalability
Figure 11 shows how Coterie and Multi-Furion, with and
without cache, scale with the number of players for the three
apps. The original Multi-Furion has no frame cache. Multi-
Furion with frame cache caches locally prefetched BE frames
and performs exact matching. Coterie without cache differs
from Multi-Furion in that it prefetches far BE frames as
opposed to BE frames, which are about 2X-3X the size of far
BE frames. We make the following observations. (1) All 4
versions achieve 60 FPS for 1 player, because the network is
not bottlenecked. (2) The FPS ofMulti-Furionwith orwithout
cache are almost identical, and gradually degrade with more
players, reaching 24 for 4 players, due to increased network
contention and lack of similarity between BE frames. (3) The
FPS of Coterie without cache also degrades as the number
of players increases, but slower than Multi-Furion, due to
less network contention from prefetching smaller far BE
frames. (4) Coterie with cache comfortably maintains 60
FPS for 4 players, from high reuse of similar frames in the
cache.

7.3 Resource Usage
We next measure the resource usage of Coterie in support-
ing the multiplayer VR apps.

CPU/GPU utilization. We leverage procfs (/proc/stat)
and sysfs (/sys/class/kgsl/kgsl-3d0) to obtain CPU and GPU
load stats. Table 8 shows that Coterie incurs 32% CPU usage

Session 10B: Mobile/intermittent 
applications — Off and on again?  

ASPLOS’20, March 16–20, 2020, Lausanne, Switzerland 

933



1 2 3 4
Number of Players

0
10
20
30
40
50
60

FP
S

M-Furion w/o cache
Coterie w/o cache

M-Furion
Coterie

(a) Viking Village

1 2 3 4
Number of Players

0
10
20
30
40
50
60

FP
S

M-Furion w/o cache
Coterie w/o cache

M-Furion
Coterie

(b) CTS

1 2 3 4
Number of Players

0
10
20
30
40
50
60

FP
S

M-Furion w/o cache
Coterie w/o cache

M-Furion
Coterie

(c) Racing

Figure 11. Scalability of Coterie compared with Multi-Furion.

0
20
40
60
80

100

CP
U 

Lo
ad

(%
)

0
20
40
60
80

100

GP
U 

Lo
ad

(%
)

2
3
4
5
6

Po
we

r
(W

)

10
20
30
40
50
60

Te
m

pe
ra

tu
re

(C
el

siu
s)

0 5 10 15 20 25 30
Time (min)

0
20
40
60
80

100
120

Ba
nd

wi
dt

h
(M

bp
s)

1p 2p 3p 4p

(a) Viking Village

0
20
40
60
80

100

CP
U 

Lo
ad

(%
)

0
20
40
60
80

100

GP
U 

Lo
ad

(%
)

2
3
4
5
6

Po
we

r
(W

)

10
20
30
40
50
60

Te
m

pe
ra

tu
re

(C
el

siu
s)

0 5 10 15 20 25 30
Time (min)

0
20
40
60
80

100
120

Ba
nd

wi
dt

h
(M

bp
s)

1p 2p 3p 4p

(b) CTS

0
20
40
60
80

100

CP
U 

Lo
ad

(%
)

0
20
40
60
80

100

GP
U 

Lo
ad

(%
)

2
3
4
5
6

Po
we

r
(W

)

10
20
30
40
50
60

Te
m

pe
ra

tu
re

(C
el

siu
s)

0 5 10 15 20 25 30
Time (min)

0
20
40
60
80

100
120

Ba
nd

wi
dt

h
(M

bp
s)

1p 2p 3p 4p

(c) Racing

Figure 12. Scalability of resource usage under Coterie.

Table 8. Performance of Coterie on Pixel 2 over 802.11ac.

App
(players) FPS

Inter-
Frame
lat.
(ms)

Phone
CPU
load
(%)

Phone
GPU
load
(%)

Per
Frame
size
(kB)

Net.
delay
(ms)

Viking (1P) 60 16.0 31.76 55.51 280 7.0
CTS (1P) 60 16.6 27.76 44.81 150 6.0

Racing (1P) 60 16.0 26.99 39.18 194 6.5
Viking (2P) 60 16.5 31.89 57.24 280 8.9
CTS (2P) 60 16.6 28.13 46.89 150 6.3

Racing (2P) 60 16.2 28.98 43.25 194 7.5

and 58% GPU usage on average on the Pixel 2 phones in
supporting the three high-quality multiplayer VR games
with inter-frame latency below 16.7ms. Moreover, the GPU
usage also does not increase with 2 players compared to with
1 player and the far BE frame transfer delay remains less
than 9ms.

Network usage. Table 9 shows that for Coterie, as the
number of players increases from 1 to 4, the average band-
width usage of transmitting BE frames across the 3 games

increases from 11-26 Mbps to 42-100 Mbps, while that of
exchanging FI among the players increases from 1 Kbps to
275 Kbps, around 2-4 orders of magnitude lower than the
traffic for BE. Since two or more players under Multi-Furion
saturated the network bandwidth as shown in Table 1, we
only show the network load for 1 player for Multi-Furion.
Compared to Multi-Furion, Coterie reduces the network
load of each player by 10.6X-25.7X. In other words, Coterie
not only enables high-resolution multiplayer VR but also sig-
nificantly optimizes single-player VR on commodity mobile
devices.

CPU/GPU usage over time. Next, we measure the re-
source usage while playing each game for 30 minutes, with
1, 2, 3 and 4 players. Figure 12 shows that the CPU/GPU load
under Coterie remains steady over the 30-minute window.
We see Coterie incurs up to 40% CPU load and 65% GPU
load for the three apps even for four players. Moreover, the
CPU and GPU utilization do not increase with the number
of players. This is because the rendering load on individ-
ual Coterie clients remains independent of the number of
players.

Session 10B: Mobile/intermittent 
applications — Off and on again?  

ASPLOS’20, March 16–20, 2020, Lausanne, Switzerland 

934



Table 9. Network bandwidth usage of server transmitting
far BE frames (in Mbps) and exchanging FI (in Kbps).

App Net. bandwidth usage (BE/FI)
Multi-Furion Coterie

1P 1P 2P 3P 4P
Viking 276/1 26/1 52/71 76/153 100/266
CTS 264/1 14/1 27/68 42/151 56/260

Racing 283/1 11/1 22/52 34/129 42/275

Temperature over time. Since VR apps are known to be
power-intensive, we also measure the phone SoC temper-
ature while running the three VR games. Figure 12 shows
the SoC temperature increases gradually but stays under
the thermal limit of Pixel 2, i.e., 52 Celsius (from reading
/vendor/etc/thermal-engine.conf).

Battery power draw over time. To measure the power
draw during the 30-minute run, we log the current and volt-
age values from /sys/class/power_supply/battery and then
compute the battery power offline. In all the experiments,
the screen brightness is locked at 100% under the VR mode
by the Android framework. Figure 12 shows that the power
draw stays fairly steady at 4W on average for the three VR
games. This can be explained by the steady CPU/GPU load
and network load on the WiFi radio as we increase the num-
ber of players. Given Pixel 2’s battery energy capacity of 2770
mAh, at the observed power draw rate, all three high-quality
multiplayer VR apps can last for more than 2.5 hours.

7.4 User Study
Coterie ensures reused BE frames are sufficiently similar to
the original frames. However, it may potentially increase the
discontinuity of adjacent frames for each player. Since there
are no standard metrics for measuring discontinuity, we
conducted an IRB-approved user study with 12 participants
to assess the impact of potential discontinuity on the user
experience. To ensure the participants will watch the same
game play, we first collected 6 single-player movement traces
(i.e., location in the virtual world), 2 traces for each of the
three games and 20 seconds per trace, and then replayed the
traces to the participants on Pixel 2 phones and Daydream
headsets on top of Multi-Furion and Coterie, respectively.
The participants were asked to grade for each game replay
the difference between Multi-Furion and Coterie from 1
(very annoying) to 5 (imperceptible).

Table 10 shows the average score of 6 traces ranges from
4.5 to 4.75, meaning most of the participants think the dif-
ference is either invisible or visible but acceptable. Some
volunteers observed slight stuttering at locations where the
cutoff radius was small and a few objects were visually large
in far BE, which made slight changes in far BE noticeable.

3User study score: 1: very annoying; 2: annoying; 3: slightly annoying; 4:
perceptible but not annoying; 5: imperceptible.

Table 10. User scores in replaying the three VR games.4

Score 1 2 3 4 5
Percentage 0.0% 0.0% 5.5% 29.2% 65.3%

8 Related Work
We discuss closely related work in three areas.

Mobile virtual reality. Supporting untethered high-quality
interactive VR, or “cutting the cord”, has attracted strong in-
terests from both industry and academia. Flashback [22]
prerenders and caches on the mobile device all possible
views, which can not support interactive VR imposed by user
actions and requires overwhelming storage on the phone.
Luyang et al. [30] exploit the adaptive Vsync hardware fea-
ture to adaptively change the rendering timings on the server
in order to reduce the rate of missing frames, but assume a
strong laptop as the mobile client to perform parallel decod-
ing. Furion [27] as shown in §2 can only support a single
player.

Mobile 360-degree video streaming.Manyworks study
supporting high-quality 360-degree video streaming on head-
mounted displays or commodity phones. Several works [21,
26] propose to pre-cache panoramic frames to provide the
clients the freedom of changing orientation during playback.
Otherworks [24, 25, 31, 35, 41, 42] exploit different projection
and tile-based or viewport-based video encoding schemes
to save network bandwidth. Compared to VR, 360-degree
streaming does not need to render FI or predict player move-
ment. EVR [29] co-optimizes cloud offloading with device
hardware to reduce the energy of 360 video rendering.

Offloading formobile gaming. There have been a large
body of work on real-time rendering/cloud gaming for mo-
bile devices [23, 28, 32–34, 36, 37, 40]. The latency require-
ment of VR systems (e.g., under 25ms) is more stringent than
games (e.g., 100-200ms [34]) due to the near-eye setting.

9 Conclusion
To our best knowledge, Coterie presents the first frame-
work that enables high-quality, immersive multiplayer VR
on commodity mobile devices. Coterie tackles the challenge
in scaling the prior-art VR system for multiple players, the
proportional increase of network load, by exploiting similar-
ity between background environment (BE) frames for nearby
locations fetched from the server. Exploiting such frame sim-
ilarity allows Coterie to reduce the prefetching frequency
for each player by 5.2X-8.6X and the per-player network
load by 10.6X-25.7X and comfortably support 4 players for
4K-resolution VR apps on Pixel 2 over 802.11ac.

Acknowledgments
We thank the anonymous reviewers for their helpful com-
ments. This project is supported in part by NSF/Intel grant
1719369.

Session 10B: Mobile/intermittent 
applications — Off and on again?  

ASPLOS’20, March 16–20, 2020, Lausanne, Switzerland 

935



References
[1] 2013. Triangles Per Second: Performance Metric or Choco-

late Teapot? https://community.arm.com/developer/tools-
software/graphics/b/blog/posts/triangles-per-second-performance-
metric-or-chocolate-teapot.

[2] 2014. What VR Could, Should, and almost certainly Will be within two
years. http://media.steampowered.com/apps/abrashblog/Abrash%
20Dev%20Days%202014.pdf.

[3] 2017. What Makes Multiplayer VR A Success And A Chal-
lenge? https://www.vrfocus.com/2017/09/what-makes-multiplayer-
vr-a-success-and-a-challenge/.

[4] 2018. CTS Procedural World. https://assetstore.unity.com/packages/
tools/terrain/cts-complete-terrain-shader-91938.

[5] 2018. Gear VR. http://www.samsung.com/global/galaxy/gear-vr/.
[6] 2018. Google Daydream. https://vr.google.com/daydream/.
[7] 2018. Ijkplayer. https://github.com/Bilibili/ijkplayer.
[8] 2018. Location-based entertainment is a multi-billion dollar mar-

ket for virtual reality. https://greenlightinsights.com/location-based-
entertainment-a-multi-billion-dollar-market-for-virtual-reality/.

[9] 2018. Photon Unity Networking. https://www.photonengine.com/en-
US/PUN.

[10] 2018. Racing Mountain. https://assetstore.unity.com/packages/
templates/systems/racing-game-template-41864.

[11] 2018. Unity 3D. https://unity3d.com.
[12] 2018. Viking Village. https://assetstore.unity.com/packages/essentials/

tutorial-projects/viking-village-29140.
[13] 2018. Virtual Reality Market Size, Share And Forecast To

2022. https://www.marketwatch.com/press-release/virtual-reality-
market-size-share-and-forecast-to-2022-2018-07-04.

[14] 2018. Why Multiplayer Is Key to Location-Based VR Success. https:
//immersed.io/multiplayer-location-based-vr/.

[15] 2019. Oculus Go VR Store. https://www.oculus.com/experiences/go/
?locale=en_US.

[16] 2019. Oculus Quest VR Store. https://www.oculus.com/experiences/
quest/?locale=en_US.

[17] 2019. PlayStation VR Store. https://www.playstation.com/en-gb/
explore/playstation-vr/games/.

[18] 2019. x264 library. http://www.videolan.org/developers/x264.html.
[19] Omid Abari, Dinesh Bharadia, Austin Duffield, and Dina Katabi. 2016.

Cutting the Cord in Virtual Reality. In Proceedings of the 15th ACM
Workshop on Hot Topics in Networks. ACM, 162–168.

[20] Omid Abari, Dinesh Bharadia, Austin Duffield, and Dina Katabi. 2017.
Enabling High-Quality Untethered Virtual Reality.. In NSDI. USENIX,
531–544.

[21] Matthias Berning, Takuro Yonezawa, Till Riedel, Jin Nakazawa,
Michael Beigl, and Hide Tokuda. 2013. pARnorama: 360 Degree Inter-
active Video for Augmented Reality Prototyping. In Proceedings of the
2013 ACM Conference on Pervasive and Ubiquitous Computing Adjunct
Publication (Zurich, Switzerland) (UbiComp ’13 Adjunct). ACM, New
York, NY, USA, 1471–1474. https://doi.org/10.1145/2494091.2499570

[22] Kevin Boos, David Chu, and Eduardo Cuervo. 2016. FlashBack: Immer-
sive Virtual Reality on Mobile Devices via Rendering Memoization.
In Proceedings of the 14th Annual International Conference on Mobile
Systems, Applications, and Services. ACM, 291–304.

[23] Eduardo Cuervo, Alec Wolman, Landon P Cox, Kiron Lebeck, Ali
Razeen, Stefan Saroiu, and Madanlal Musuvathi. 2015. Kahawai: High-
quality mobile gaming using gpu offload. In Proceedings of the 13th
Annual International Conference on Mobile Systems, Applications, and
Services. ACM, 121–135.

[24] Jian He, Mubashir Adnan Qureshi, Lili Qiu, Jin Li, Feng Li, and Lei
Han. 2018. Rubiks: Practical 360-Degree Streaming for Smartphones.
In Proceedings of the 16th Annual International Conference on Mobile
Systems, Applications, and Services (Munich, Germany) (MobiSys ’18).
ACM, New York, NY, USA, 482–494. https://doi.org/10.1145/3210240.

3210323
[25] Mohammad Hosseini and Viswanathan Swaminathan. 2016. Adaptive

360 VR Video Streaming: Divide and Conquer! CoRR abs/1609.08729
(2016). arXiv:1609.08729 http://arxiv.org/abs/1609.08729

[26] Evgeny Kuzyakov and David Pio. 2016. Next-generation
video encoding techniques for 360 video and vr.(2016).
https://code.facebook.com/posts/1126354007399553/nextgeneration-
video-encoding-techniques-for-360-video-and-vr.

[27] Zeqi Lai, Y. Charlie Hu, Yong Cui, Linhui Sun, and Ningwei Dai. 2017.
Furion: Engineering High-Quality Immersive Virtual Reality on To-
day’s Mobile Devices. In Proc. of ACM MobiCom.

[28] Kyungmin Lee, David Chu, Eduardo Cuervo, Johannes Kopf, Yury
Degtyarev, Sergey Grizan, Alec Wolman, and Jason Flinn. 2015. Outa-
time: Using speculation to enable low-latency continuous interaction
for mobile cloud gaming. In Proceedings of the 13th Annual Interna-
tional Conference on Mobile Systems, Applications, and Services. ACM,
151–165.

[29] Yue Leng, Chi-Chun Chen, Qiuyue Sun, Jian Huang, and Yuhao Zhu.
2019. Energy-efficient Video Processing for Virtual Reality. In Pro-
ceedings of the 46th International Symposium on Computer Architecture
(Phoenix, Arizona) (ISCA ’19). ACM, New York, NY, USA, 91–103.
https://doi.org/10.1145/3307650.3322264

[30] Luyang Liu, Ruiguang Zhong, Wuyang Zhang, Yunxin Liu, Jian-
song Zhang, Lintao Zhang, and Marco Gruteser. 2018. Cutting the
Cord: Designing a High-quality Untethered VR System with Low
Latency Remote Rendering. In Proceedings of the 16th Annual In-
ternational Conference on Mobile Systems, Applications, and Services
(Munich, Germany) (MobiSys ’18). ACM, New York, NY, USA, 68–80.
https://doi.org/10.1145/3210240.3210313

[31] Feng Qian, Bo Han, Qingyang Xiao, and Vijay Gopalakrishnan. 2018.
Flare: Practical Viewport-Adaptive 360-Degree Video Streaming for
Mobile Devices. In Proceedings of the 24th Annual International Confer-
ence on Mobile Computing and Networking (New Delhi, India) (Mobi-
Com ’18). ACM, New York, NY, USA, 99–114. https://doi.org/10.1145/
3241539.3241565

[32] Ryan Shea, Di Fu, and Jiangchuan Liu. 2015. Rhizome: Utilizing the
public cloud to provide 3D gaming infrastructure. In Proceedings of the
6th ACM Multimedia Systems Conference. ACM, 97–100.

[33] Ryan Shea and Jiangchuan Liu. 2013. On GPU pass-through perfor-
mance for cloud gaming: Experiments and analysis. In Proceedings of
Annual Workshop on Network and Systems Support for Games. IEEE
Press, 1–6.

[34] Ryan Shea, Jiangchuan Liu, Edith C-H Ngai, and Yong Cui. 2013. Cloud
gaming: architecture and performance. IEEE Network 27, 4 (2013), 16–
21.

[35] Shu Shi, Varun Gupta, and Rittwik Jana. 2019. Freedom: Fast Recovery
Enhanced VR Delivery Over Mobile Networks. In Proceedings of the
17th Annual International Conference on Mobile Systems, Applications,
and Services (Seoul, Republic of Korea) (MobiSys ’19). ACM, New York,
NY, USA, 130–141. https://doi.org/10.1145/3307334.3326087

[36] Shu Shi and Cheng-Hsin Hsu. 2015. A survey of interactive remote
rendering systems. Comput. Surveys 47, 4 (2015), 57.

[37] Shu Shi, Cheng-Hsin Hsu, Klara Nahrstedt, and Roy Campbell. 2011.
Using graphics rendering contexts to enhance the real-time video
coding for mobile cloud gaming. In Proceedings of the 19th ACM inter-
national conference on Multimedia. ACM, 103–112.

[38] Robert Toth, Jim Nilsson, and Tomas Akenine-Möller. 2016. Com-
parison of Projection Methods for Rendering Virtual Reality. In Pro-
ceedings of High Performance Graphics (Dublin, Ireland) (HPG ’16).
Eurographics Association, Goslar Germany, Germany, 163–171. https:
//doi.org/10.2312/hpg.20161202

[39] Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Simoncelli.
2004. Image quality assessment: from error visibility to structural
similarity. IEEE transactions on image processing 13, 4 (2004), 600–612.

Session 10B: Mobile/intermittent 
applications — Off and on again?  

ASPLOS’20, March 16–20, 2020, Lausanne, Switzerland 

936

https://community.arm.com/developer/tools-software/graphics/b/blog/posts/triangles-per-second-performance-metric-or-chocolate-teapot
https://community.arm.com/developer/tools-software/graphics/b/blog/posts/triangles-per-second-performance-metric-or-chocolate-teapot
https://community.arm.com/developer/tools-software/graphics/b/blog/posts/triangles-per-second-performance-metric-or-chocolate-teapot
http://media.steampowered.com/apps/abrashblog/Abrash%20Dev%20Days%202014.pdf
http://media.steampowered.com/apps/abrashblog/Abrash%20Dev%20Days%202014.pdf
https://www.vrfocus.com/2017/09/what-makes-multiplayer-vr-a-success-and-a-challenge/
https://www.vrfocus.com/2017/09/what-makes-multiplayer-vr-a-success-and-a-challenge/
https://assetstore.unity.com/packages/tools/terrain/cts-complete-terrain-shader-91938
https://assetstore.unity.com/packages/tools/terrain/cts-complete-terrain-shader-91938
http://www.samsung.com/global/galaxy/gear-vr/
https://vr.google.com/daydream/
https://github.com/Bilibili/ijkplayer
https://greenlightinsights.com/location-based-entertainment-a-multi-billion-dollar-market-for-virtual-reality/
https://greenlightinsights.com/location-based-entertainment-a-multi-billion-dollar-market-for-virtual-reality/
https://www.photonengine.com/en-US/PUN
https://www.photonengine.com/en-US/PUN
https://assetstore.unity.com/packages/templates/systems/racing-game-template-41864
https://assetstore.unity.com/packages/templates/systems/racing-game-template-41864
https://unity3d.com
https://assetstore.unity.com/packages/essentials/tutorial-projects/viking-village-29140
https://assetstore.unity.com/packages/essentials/tutorial-projects/viking-village-29140
https://www.marketwatch.com/press-release/virtual-reality-market-size-share-and-forecast-to-2022-2018-07-04
https://www.marketwatch.com/press-release/virtual-reality-market-size-share-and-forecast-to-2022-2018-07-04
https://immersed.io/multiplayer-location-based-vr/
https://immersed.io/multiplayer-location-based-vr/
https://www.oculus.com/experiences/go/?locale=en_US
https://www.oculus.com/experiences/go/?locale=en_US
https://www.oculus.com/experiences/quest/?locale=en_US
https://www.oculus.com/experiences/quest/?locale=en_US
https://www.playstation.com/en-gb/explore/playstation-vr/games/
https://www.playstation.com/en-gb/explore/playstation-vr/games/
http://www.videolan.org/developers/x264.html
https://doi.org/10.1145/2494091.2499570
https://doi.org/10.1145/3210240.3210323
https://doi.org/10.1145/3210240.3210323
http://arxiv.org/abs/1609.08729
http://arxiv.org/abs/1609.08729
https://code.facebook.com/posts/1126354007399553/nextgeneration-video-encoding-techniques-for-360-video-and-vr
https://code.facebook.com/posts/1126354007399553/nextgeneration-video-encoding-techniques-for-360-video-and-vr
https://doi.org/10.1145/3307650.3322264
https://doi.org/10.1145/3210240.3210313
https://doi.org/10.1145/3241539.3241565
https://doi.org/10.1145/3241539.3241565
https://doi.org/10.1145/3307334.3326087
https://doi.org/10.2312/hpg.20161202
https://doi.org/10.2312/hpg.20161202


[40] Jiyan Wu, Chau Yuen, Ngai-Man Cheung, Junliang Chen, and
Chang Wen Chen. 2015. Enabling adaptive high-frame-rate video
streaming in mobile cloud gaming applications. IEEE Transactions on
Circuits and Systems for Video Technology 25, 12 (2015), 1988–2001.

[41] Xiufeng Xie and Xinyu Zhang. 2017. POI360: Panoramic Mobile Video
Telephony over LTE Cellular Networks. In Proceedings of the 13th
International Conference on Emerging Networking EXperiments and

Technologies (Incheon, Republic of Korea) (CoNEXT ’17). ACM, New
York, NY, USA, 336–349. https://doi.org/10.1145/3143361.3143381

[42] Chao Zhou, Zhenhua Li, and Yao Liu. 2017. A Measurement Study of
Oculus 360 Degree Video Streaming. In Proceedings of the 8th ACM
on Multimedia Systems Conference (Taipei, Taiwan) (MMSys’17). ACM,
New York, NY, USA, 27–37. https://doi.org/10.1145/3083187.3083190

Session 10B: Mobile/intermittent 
applications — Off and on again?  

ASPLOS’20, March 16–20, 2020, Lausanne, Switzerland 

937

https://doi.org/10.1145/3143361.3143381
https://doi.org/10.1145/3083187.3083190

	Abstract
	1 Introduction
	2 Background
	2.1 QoE Requirements of VR apps
	2.2 Supporting Single-player VR on Mobile

	3 Challenges in Supporting Multiplayer VR
	4 Exploiting Frame Similarity
	4.1 How Similar are Nearby BE Frames?
	4.2 The ``Near-Object'' Effect
	4.3 Key Idea: Exposing BE Frame Similarity
	4.4 Effectiveness of the Adaptive Cutoff Scheme
	4.5 Frame Similarity Improvement
	4.6 Added Benefit of Exploiting Inter-player Frame Similarity

	5 Coterie Design
	5.1 Architecture Overview
	5.2 Prefetching Far BE frames
	5.3 Frame Cache

	6 Implementation
	7 Testbed Evaluation
	7.1 Visual Quality, Frame Rate, Responsiveness
	7.2 Scalability
	7.3 Resource Usage
	7.4 User Study

	8 Related Work
	9 Conclusion
	Acknowledgments
	References



