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ABSTRACT
With 5G deployment gaining momentum, the control-plane traffic
volume of cellular networks is escalating. Such rapid traffic growth
motivates the need to study the mobile core network (MCN) control-
plane design and performance optimization. Doing so requires real-
istic, large control-plane traffic traces in order to profile and debug
the mobile network performance under real workload. However,
large-scale control-plane traffic traces are not made available to the
public by mobile operators due to business and privacy concerns.
As such, it is critically important to develop accurate, scalable, ver-
satile, and open-to-innovation control traffic generators, which
in turn critically rely on an accurate traffic model for the control
plane. Developing an accurate model of control-plane traffic faces
several challenges: (1) how to capture the dependence among the
control events generated by each User Equipment (UE), (2) how
to model the inter-arrival time and sojourn time of control events
of individual UEs, and (3) how to capture the diversity of control-
plane traffic across UEs. We present a novel two-level hierarchical
state-machine-based control-plane traffic model. We further show
how our model can be easily adjusted from LTE to NextG networks
(e.g., 5G) to support modeling future control-plane traffic. We ex-
perimentally validate that the proposed model can generate large
realistic control-plane traffic traces. We have open-sourced our
traffic generator to the public to foster MCN research.

CCS CONCEPTS
• Networks → Mobile networks; Network performance mod-
eling; Network measurement; Network simulations; Network
management ; Network monitoring.
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1 INTRODUCTION

Motivation. The Mobile Core Network (MCN) is at the heart of the
cellular network; it manages and tracks all users’ activity (including
mobility) as well as forwards data traffic between users and the
Internet. To efficiently and flexibly handle control and data traffic
in these networks, Control-/User-Plane Separation (CUPS) was
introduced in 3GPP Release 14 for 4G [1] and refined in 3GPP
Release 15 for 5G [4], to separate cellular operations between a
control plane and a data plane to process control and data traffic,
respectively.

In the past few years, as 5G deployment has been gainingmomen-
tum, cellular networks have witnessed not only an explosive growth
in data-plane traffic, but also a significant increase in control-plane
traffic. For example, the control-plane traffic has been reported to
grow 50% faster than data-plane traffic since 2015 [57], and some
carriers are reportedly experiencing more than 100× increase in
the volume of transactions in the 5G control plane compared to
4G in 2021 [9]. Such control-plane traffic growth challenges mobile
network operators and designers to innovate on mobile network
architectural design not only for the data plane but also for the
control plane to ensure high-quality mobile user experience.

However, the large body of recent works on LTE and 5G has
focused on the data plane of MCN, i.e., on modeling data-plane
traffic (e.g., [18, 24, 37, 44, 45, 48]) and improving data-plane per-
formance and scalability [14, 38, 39, 52, 56, 58, 63]. Several recent
works have studied the control plane of MCN, but has focused on
limited control-plane event types, ignoring that real-world traffic
comprises diverse event types and has intricate event dependence
for each UE specified by 3GPP [13, 38, 39, 56, 63]. Therefore, it
remains unclear how well their designs will perform with realis-
tic large-scale control-plane traffic today as well as tomorrow for
NextG.

We argue that for MCN to sustain the rapid growth in traffic
demand in the coming years, it is equally vital and urgent to study
the impact of control-plane traffic on the MCN performance and
consequent design improvement. And, conducting such studies
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critically relies on high-fidelity large-scale control-plane traffic to
drive the MCN in order to evaluate and validate MCN designs under
realistic workloads.

Despite the need for large-scale control-plane traffic traces in
MCN, such data is only accessible bymobile network operators, who
are reluctant to directly share their traffic traces due to business and
privacy concerns. As a result, the lack of public MCN control-plane
traffic hinders the in-depth study of MCN design and performance
optimization by the broad networking and systems communities.
While previous work [24] studied the control-plane traffic, it has
mostly focused on theoretical traffic modeling without looking into
real-world traffic behavior.

Our contributions. This paper makes four contributions toward
modeling and developing a readily-usable generator for the control-
plane traffic of LTE/5G mobile networks.

(1) Understanding inapplicability of traditional traffic mod-
els. We first study whether traditional probability distributions,
which have been widely used for modeling Internet traffic, can be
readily used to model the control traffic originated by individual
UEs in the mobile network. We randomly sample 37, 325 real UEs
(consisting of three primary types of devices, i.e., phones, connected
cars, and tablets) from one major carrier in the US. We collect their
control-plane events under LTE over one whole week (196, 827, 464
events in total). We choose to study LTE, as 5G deployment is still
at an initial stage and systematic extensive trace collection has not
been done by mobile operators. We then perform two standard sta-
tistical tests, the Kolmogorov-Smirnov test [54] and the Anderson-
Darling test [67]. Our statistical test results show that surprisingly,
the inter-arrival time of the control events and the duration of UEs
continuously staying in each one of the four UE states (i.e., sojourn
time) of EPS1 Mobility Management (EMM) and EPS Connection
Management (ECM) for the mobile network cannot be modeled
as Poisson processes or other traditional probability distributions,
including Pareto [34], Weibull [66], and Tcplib [25, 26].

We further study the reasons why these traditional probability
distributions fail to model control traffic by analyzing how well
the Poisson distribution can model the burstiness of control-plane
traffic via variance-time plots [31, 43], and directly comparing the
cumulative distributions of the trace with the fitted Poisson distri-
butions. Our analysis reveals that the control-plane traffic of the
mobile network has much higher burstiness and longer tails in their
cumulative distributions, compared to the traditional probability
models.

(2)Modelling control-plane traffic, the rightway. Designing an
accurate, scalable, versatile, and open-to-innovation control-plane
traffic model for cellular networks poses several key challenges:
(1) Different types of control-plane events of a UE have intricate
dependence on each other, which cannot be easily captured by
traditional models. (2) Our measurement study above shows that
traditional probability distributions also fail to effectively model the
inter-arrival time of the events and the sojourn time of the UE states
of EMM and ECM for individual UEs. (3) Our measurement study
also shows that control-plane events exhibit significant diversity in

1EPS stands for Evolved Packet System in LTE.

device types, the time-of-the-day, and across different UEs; a single
model is unlikely to capture such diversities appropriately.

In this paper, we propose a two-level hierarchical state-machine-
based traffic model, which addresses the above modeling challenges
with three key components. (1) We extend the EMM and ECM
state machines specified by 3GPP into a two-level state machine to
capture the dependence among control events. (2) We leverage the
Semi-Markov Model to model the sojourn time and the transition
probability for the states in the two-level state machine, which
overcomes the limitation of the Markov model by assuming that the
sojourn time in the same state follows the exponential distribution
with a constant hazard rate. (3) To capture the traffic diversity in
device types, the time-of-the-day, and across UEs, we develop an
adaptive clustering scheme to effectively cluster the UEs based on
their traffic similarity for each combination of (hour, device-type)
tuple. Finally, we instantiate the parameters of our model using
a sample traffic trace for every combination of (UE-cluster, hour,
device-type).

(3) Extending the control-plane traffic model for NextG net-
works.We present a methodology to showcase how to easily adjust
our proposed traffic model for LTE to NextG (i.e., 5G); the param-
eters of the new traffic model for 5G can be readily seeded with
a large-scale control-plane trace for 5G when it is available, or
directly scaled from the 4G model.

(4) Experimental validation of proposed control-plane traffic
model. We develop a baseline and two variations of our method
using the fitted Poisson distributions without or with leveraging
our adaptive clustering scheme or two-level state machine for LTE.
We compare the synthesized traces using our method and the other
three methods against two real traces for 38K and 380K UEs, re-
spectively.

We show that our method outperforms the other three methods
from both macroscopic and microscopic perspectives: (1) We first
compare the breakdown of the synthesized events with that of
the real events. Compared with the real traces, our synthesized
traces achieve small differences, i.e., within 1.7%, 5.0% and 0.8%, for
phones, connected cars, and tablets, respectively, while the traces
generated by the baseline has the differences up to 47.8%, 47.7%,
and 47.5%, for both UE population sizes. (2) We then compare the
per-UE traffic behavior, including the numbers of events per UE
and the sojourn time in the UE states for the two dominant state
transitions (i.e., between CONNECTED and IDLE). Compared with the
other three methods, for phones, our method reduces the maximum
y-distance of the CDF of events per UE between the synthesized
and actual traces by over 7.74×/7.46× for SRV_REQ/S1_CONN_REL
events, and the maximum y-distance of the CDF of the sojourn
time in CONNECTED/IDLE states between the synthesized and actual
traces by over 4.77×/3.25×. Similar improvements are observed for
connected cars, by 1.15×∼2.65×, and for tablets, by 2.80×∼8.56×.

We have open-sourced the developed control-plane traffic gener-
ator to the community to stimulate further research on MCN design
and optimization for 4G/5G and beyond.2

2https://gitlab.com/serverless-5g/cellular-network-control-plane-traffgen
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Table 1: Breakdown of control-plane events of LTE for differ-
ent types of devices in a 7-day trace (P: phones; CC: connected
cars; T: tablets).

Event Event Type P CC T

Attach [2] ATCH 0.1% 0.9% 1.2%
Detach [2] DTCH 0.2% 0.9% 1.1%

Service Req. [2] SRV_REQ 45.5% 38.9% 43.9%
S1 Conn. Rel. [2] S1_CONN_REL 47.5% 45.2% 47.7%
Handover [2] HO 3.8% 6.6% 2.1%

Tracking Area U. [2] TAU 2.9% 7.4% 4.0%

2 BACKGROUND
We begin with a brief background of LTE network architecture and
its control-plane events.

2.1 LTE Network Architecture
The LTE mobile network consists of three components: UE, Radio
Access Network (RAN) and Evolved Packet Core (EPC), which
finally connects to the Internet to provide data services to UEs. A
UE is a device used by an end-user to communicate with the mobile
network (e.g., phone, tablet, IoT, etc.). RAN resides between UEs
and EPC and manages the radio spectrum of a distributed collection
of base stations that directly communicate with UEs.

EPC represents the MCN of LTE. It consists of five network func-
tions including Mobility Management Entity (MME), Home Sub-
scriber Server (HSS), Policy and Charging Rules Function (PCRF),
Packet Data Network Gateway (PGW), and Serving Gateway (SGW).
To efficiently and flexibly handle control and data traffic, EPC is
partitioned into a control plane and a user plane [2]. The control
plane manages signaling traffic between RAN and MME and the
other network functions of MCN (i.e., HSS, PCRF, SGW, and PGW).
The user plane (also called the data plane) forwards data traffic
among RAN, SGW, and PGW. Among the five network functions in
MCN, MME is the main signaling function, which directly connects
to UE/RAN in the control plane of LTE.

2.2 LTE Control-Plane Events
Table 1 summarizes major LTE control-plane events among UE,
RAN, and MCN.3 In the control plane [2], (1) Attach (ATCH) registers
the UE with the MCN; (2) Detach (DTCH) deregisters the UE from the
MCN, when the UE is switched off; (3) Service Request (SRV_REQ)
creates a signaling connection for the UE to send/receive signaling
messages or data; (4) S1 Connection Release (S1_CONN_REL) releases
the signaling connection in the control plane, and other resources
associated with the UE in the data plane; (5) Handover (HO) switches
the UE from current serving cell to another cell; (6) Tracking Area
Update (TAU) updates UE’s tracking area, when the UE moves to
another tracking area (comprising a new set of cells) or the periodic
timer of TAU is expired or some other cases, e.g., the UE reselects
to LTE from 3G or re-registers to LTE after the fallback for circuit-
switched services, etc.

Dependence among events. The control events listed in Table 1
for a UE are not independent, as required to conform to the 3GPP
3We ignore events that happen only between UE and RAN.

EMM_DEREGISTERED

EMM_REGISTERED

ATCH DTCH 

(a) EMM.

ECM_CONNECTED

ECM_IDLE

SRV
_REQ

S1_CONN
_REL

(b) ECM.

Figure 1: UE state machines of LTE.

protocol, regardless of whether the events are triggered by the
UE activities, power outages of base stations, etc. The protocol
specifies that one UE follows two independent state machines when
interacting with MCN: EMM and ECM [2]. Some control-plane
events, such as ATCH, DTCH, SRV_REQ, and S1_CONN_REL, can trigger
changes to the UE states, while others cannot change the UE states
but still have intricate dependence on those states and thus the
corresponding events.
(1) The EMM state machine describes the UE’s Mobility Manage-

ment states that maintain the information related to UE’s reg-
istration with the MCN. Figure 1a shows the two primary
EMM states, EMM_DEREGISTERED and EMM_REGISTERED, which
are denoted as DEREGISTERED and REGISTERED, and the corre-
sponding control events that trigger transitions between them.
Generally, the UE can be powered on (off), which in turn trig-
gers ATCH (DTCH) event to enter REGISTERED (DEREGISTERED)
state.

(2) The ECM state machine describes the signaling connectivity be-
tween the UE and the MCN, when the UE stays in REGISTERED.
Figure 1b shows the two primary ECM states, ECM_CONNECTED
and ECM_IDLE (denoted as CONNECTED and IDLE), and the corre-
sponding control events that trigger state transitions. Generally,
SRV_REQ (S1_CONN_REL) can be triggered to switch the UE state
to CONNECTED (IDLE). For the other control-plane events, some
(e.g., TAU) can happen in both CONNECTED and IDLE, while the
rest (e.g., HO) can only happen in CONNECTED.

3 MOTIVATION AND DESIGN GOALS
We discuss the motivation and design goals for modeling and gen-
erating control traffic for cellular networks, and the rationale for
modeling individual UE’s control traffic.

3.1 Usage of Control-Plane Traffic Models
In addition to the motivations for developing control-plane traffic
models discussed in §1, i.e., enabling evaluation of MCN architec-
ture design and optimization, we elaborate on several other use
cases of control-plane traffic models.
(1) Monitoring MCN. Network management critically relies on

real-time monitoring of network traffic. It has been intensively
studied recently for data flows (e.g., five-tuples), via either
sampling-based [22, 60] or sketch-based telemetry [7, 17, 23, 35,
49, 50, 79, 81]. As control-plane traffic is gaining prominence in
cellular networks, they also need to be monitored in real time.
However, it is unclear how well the above schemes will perform
for control-plane traffic in cellular networks. Accurate control-
plane traffic models can help to develop effective monitoring
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schemes, e.g., with better accuracy and smaller memory foot-
prints. For example, such models can help to determine a good
sampling rate for sampling-based monitoring when collecting
telemetry metrics.

(2) Conducting large-scale simulations for NextG cellular
networks. Industry trend analysis [29] has projected that the
number of devices (especially IoT devices) connected to the
cellular network will grow significantly in the next 5 years. To
evaluate the scalability of MCN design especially under the
traffic load in the (near) future, we need control-plane traffic
models that can capture the scaling of realistic traffic behavior
(e.g., how they will grow in ensuing years). Those models enable
the trace-driven analysis for large-scale simulations. The devel-
oped traffic models in this paper are already being actively used
by the Aether community to study the scalability of Aether 5G
core design [10].

3.2 Design Goals
To support the above usage, the mobile network’s control traffic
generator must meet the following requirements:
(1) Accuracy: The generator outputs realistic control-plane traffic

for a fixed UE population, i.e., it can capture the inter-arrival
duration of each type of events.

(2) Event-Owner Labeling: Every event in the generated control
traffic needs to be labeled with its originating UE. This is re-
quired to properly drive the network functions of the MCN, e.g.,
a UE transition among EMM and ECM states in both 4G and
5G.

(3) Scalability:The generator should output realistic control traffic
for an arbitrary UE population, e.g., for evaluating the scalability
of an MCN design under increasing workload.

(4) NextG Network Support: The generator should support next-
generation cellular networks, e.g., generating realistic control
events from 5G UEs.
As with modeling Internet traffic, modeling control-plane traffic

of cellular networks also needs to model the inter-arrival time
of packets (i.e., control events). Unlike modeling Internet traffic,
modeling control-plane traffic does not need to model the sizes of
the control events, because each event has a fixed and small size,
following the 3GPP specification.

3.2.1 Why not model aggregate control-plane traffic? We
envision the primary use of the control traffic generator is for moni-
toring or evaluating the performance of an MCN design, by driving
the MCN with the aggregate control traffic due to a given UE popu-
lation. As such, we could try to directly model the aggregate control
traffic for a given UE population (e.g., the aggregate SRV_REQ events
due to a set of UEs) by fitting the aggregate traffic for each event
type in our trace collection using some well-known probabilistic
distribution, similar to the prior work for modeling Internet traf-
fic, and then use the fitted distribution to generate synthesized
aggregate traffic of that event type for a given UE population.

However, modeling aggregate control-plane traffic across UEs
has three limitations: (1) It is oblivious to and cannot capture the
dependence among different control-plane events of individual UEs,
e.g., that a SRV_REQ should happen after a S1_CONN_REL for a given
UE. (2) Since the model only captures the inter-arrival time of the

control events of each type for the set of UEs as whole, it will not
be able to label each individual control event generated with a
proper UE id, which is needed to correctly drive event processing
performed by MCN functions, which is UE-oriented. (3) Since such
a model is derived by fitting the control traffic trace for a fixed
UE population (in the sample trace), it is often difficult to generate
traffic for different UE population sizes, e.g., if the fitted model is a
Pareto/Tcplib distribution.

For these reasons, we focus on modeling the control traffic of
individual UEs, which will not have any of the above limitations
and can be used to build a traffic generator that meets all the design
requirements discussed in §3.2.

4 FAILURE OF CLASSIC PROBABILITY
DISTRIBUTION-BASED MODELING

In this section, we study whether traditional probability distribu-
tions, which are widely adopted for Internet traffic, can model the
control-plane traffic of individual UEs in cellular networks, and if
not, why those distributions fail.

Dataset. Considering 5G deployment is still at a rudimentary stage
and systematically collecting control-plane traces of MCN is not
yet available, we choose to study an LTE trace. Specifically, we
randomly sampled 37,325 real UEs from a major mobile carrier over
the entire US and collected their control events recorded fromMMEs
over one whole week of June in 2022. The timestamps collected
have a millisecond granularity. In total, we collected 196,827,464
events.

We also categorize the UEs into three primary types of devices:
phones, connected cars, and tablets. We derive the device type of
every UE via the Type Allocation Code (TAC), which is the first
eight digits of UE’s IMEI, and can identify the corresponding man-
ufacturer and device model and thus the device type [77]. Of all
sampled UEs, 23,388 are phones, 9,308 are connected cars, and 4,629
are tablets.

4.1 Can Classic Probability Distributions Model
Individual UE Traffic?

Network traffic modeling has been a foundation area of research
over the history of the Internet. Many probability distributions have
been leveraged to model the inter-arrival time of Internet traffic, as
summarized below.
(1) The Poisson distribution is the predominant model used for

modeling network traffic arrivals [15, 30, 40, 59]. It has been
proven valid for modeling the arrival time of user-initiated ses-
sions in wide-area networks, e.g., TELNET connections and
FTP control connections [59]. Specifically, a Poisson process
characterizes the inter-arrival duration �= as independently
and exponentially distributed with a fixed rate parameter _, i.e.,
% (�= > C) = 4−_C .

(2) The Pareto distribution [34] has been applied to model self-
similarity in packet traffic of the wide-area network [6, 30].
It models the inter-arrival time by a power-law probability
distribution that follows the probability density function of
5 (G) = U GU< G−(U+1) , where U is the shape parameter and G<
is the minimum possible value of G (normally, G< = 1) [34].
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(a) SRV_REQ of P (b) S1_CONN_REL of P (c) HO of P (d) TAU of P

(e) SRV_REQ of CC (f) S1_CONN_REL of CC (g) HO of CC (h) TAU of CC

(i) SRV_REQ of T (j) S1_CONN_REL of T (k) HO of T (l) TAU of T

Figure 2: Box plots of numbers of control events per device-hour of different types of devices over 24 hours.

(3) The Weibull distribution [66] has been shown to capture the
inter-arrival time dynamics from different Internet traffic levels
(sessions, flows, and packets) [11]. A Weibull process follows
the probability density function of 5 (G) = :

_
( G
_
):−1 4−(G/_):

for G ≥ 0, where : is the shape parameter and _ is the scale
parameter.

(4) The TCPlib distribution is an empirical distribution proposed
to model the inter-arrival time within TELNET connections of
real wide-area TCP/IP traffic [30].

However, whether those theoretical distributions can model
LTE’s control-plane traffic of individual UEs is unclear. We next an-
swer this concern by addressing two following questions: (1) How
to apply traditional probability distributions to the control-plane
traffic? (2) How to validate if the traffic can be modeled using those
distributions?

4.1.1 UE clustering to facilitate applying traditional proba-
bility distributions. To properly model individual UE traffic using
classical probability distributions, we first characterize the diversity
of the control-plane traffic of LTE.

Diversity in device types, the time-of-day, and across UEs. To
understand how the control-plane traffic is affected by the time-of-
day among UEs, we divide the trace into 1-hour intervals for each
day. We analyze the diversity of numbers of events per UE across
different hours of the day. Specifically, within each 1-hour interval,
we count number of events for every type of control events for each
UE. For each device type and each event type, we draw the box plot

for number of events per UE for all the UEs across different hours
of the day. Each box plot comprises 24 boxes, where each box is
defined by the lower and upper quartiles of the data, the whiskers
at the two ends represent its minimum and maximum, the red line
in the center of the box is the median and the orange line is the
average.

Figure 2 shows that the per-UE traffic varies over different hour-
of-day for different types of devices. Specifically, the average per
device-hour volume of the four dominant event types (i.e., SRV_REQ,
S1_CONN_REL, HO, and TAU) drops significantly from the peak hour
to the slowest hour of the day by 2.27×∼86.15× for phones, by
3.43×∼1309.33× for connected cars, and by 1.45×∼90.06× for tablets.

Figure 2 also shows that among UEs of the same device type
in the same hour, the differences between maximum and mini-
mum numbers of those four dominant event types are also large
across different hours of the day, i.e., 2∼142 for phones, 1∼105 for
connected cars, and 0∼175 for tablets.

UE clustering to facilitate traffic modeling. The above control-
plane diversity has two immediate implications. First, the diversity
in device types and the time-of-the-day suggests a single probability
distribution is unlikely to model the per-UE traffic across device
types and times of the day.Thuswe first preprocess the input control
traffic trace by dividing the entire trace into non-overlapping 1-hour
intervals for each device type. However, we find it is impractical
to model the inter-arrival time for every type of control events for
every single UE for each 1-hour interval, since each UE has a very
limited number of events per hour.
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Second, to overcome this too-few-events problem, we observe
the events of different UEs are i.i.d. and hence we could merge the
inter-event arrival time of all the UEs of the same device type for
each hour and try to fit a probability distribution.4 However, the
traffic diversity across the UEs (of the same device type) suggests
that trying to fit the merged control-plane traffic across all UEs of
the same device type for the same hour with a single probability
distribution is unlikely to work well.

Instead, we cluster the UEs of the same device type using the
adaptive clustering scheme used in our proposed traffic model
(discussed later in §5.3), so that the UEs in the same cluster will both
have similar traffic characteristics and have enough data samples
to facilitate fitting by a single well-known model. Since there also
exist repetitive diurnal patterns of control traffic observed on both
weekdays and weekends (Fig. 2), we also group the inter-arrival
time of the same hour from different days together for each (UE-
cluster, hour, device-type, event-type) combination. Finally, we try
to fit the traffic in each combination with traditional probability
models using Maximum Likelihood Estimation (MLE).

In addition to the six types of control events, we also consider
the four UE states (i.e., REGISTERED, DEREGISTERED, CONNECTED,
and IDLE), which cannot be captured by modeling each event type
separately. We model the sojourn time in those states for individual
UEs using traditional probability distributions. Specifically, for each
UE, within each interval, we replay the traffic trace while following
the EMM and ECM state machines specified by 3GPP (Fig. 1a and
Fig. 1b), to calculate the duration of staying in each of the four UE
states. For each (UE-cluster, hour, device-type, state) combination,
we group the sojourn time over different UEs and days, and use
MLE to fit the grouped sojourn time.

4.1.2 Validating traditional distribution-based modeling.
We first examine whether Poisson processes can model the inter-
arrival time or the sojourn time for individual UE traffic in each
1-hour interval per device type per UE-cluster. Specifically, we ap-
ply two standard statistical tests, the Kolmogorov-Smirnov (K–S)
test [54] and the Anderson-Darling (�2) test [67]. The K–S test com-
pares the maximum distance between the empirical cumulative dis-
tribution function (CDF) of the sample data and the theoretical CDF
of the reference distribution (e.g., exponential distribution) [16].
It outputs the K–S test statistic (i.e., the supremum of the set of
the distances) along with the corresponding p-value. A p-value of
0.05 or lower is considered statistically significant between the
empirical distribution of the sample data and the reference distri-
bution [76]. The �2 test is a modification of the K–S test and gives
more weight to the tails of the observation data [69]. It outputs the
�2 test statistic, the critical values, and the corresponding signifi-
cance levels calculated for the reference distribution. The �2 test
statistic is used to compare against the critical values calculated
specifically for the reference distribution to determine whether to
accept or reject the null hypothesis under some significance level.
In this paper, we focus on the significant level of 5%.

To examine fitting with other distributions (i.e., Pareto, Weibull
and Tcplib), we repeat the same preprocessing procedure and only

4We note that merging the inter-arrival time of UEs and fitting a model is different from
merging the traces of many UEs into a single trace and fitting the resulting inter-arrival
time.

perform the K-S test to decide if the inter-event arrival time for
each type of event per UE or the duration staying in each of the
four UE states is drawn from one of those distributions. We skip the
�2 test, because it can only test against some common distributions
at the moment (e.g., normal and exponential).

Results. Surprisingly, we find that although clustering UEs can
increase the percentages of the 1-hour intervals that pass the K–S
and �2 tests for the exponential distribution from 0.0% to up to
23.8% for ATCH and DTCH, for the other event types and the four UE
states below 3.0% of the 1-hour intervals pass the K–S and �2 tests.
This suggests that Poisson processes cannot model the inter-arrival
time of all six types of events as well as the sojourn time in all four
UE states for all three types of devices. We note that there are limit
theorems in the literature [21] stating that the superposition of
many independent point processes approaches a Poisson process.
However, such results are for the inter-arrival time of the aggregate
arrival process, and thus do not imply that the individual point
process can be modeled as a Poisson process. Since, in this paper,
we aim to model the inter-arrival time of individual UE (individual
point process), our findings do not contradict with [21].

We also find that the inter-arrival and sojourn time cannot be
modeled by other traditional probability distributions (i.e., Pareto,
Weibull, and TCPlib). Additional details can be found in Appendix A.

4.2 Why do Traditional Modeling Fail?
To understandwhy traditional probability distributions fail tomodel
either the sojourn time in the four UE states or the inter-arrival
time for different control events, we zoom into the two dominant
UE states, CONNECTED and IDLE, and the two important types of
control events, HO and TAU, and analyze: (1) How well the Poisson
distribution can model an essential property of the control-plane
traffic, its burstiness; (2) Whether the upper and lower tails of the
observed inter-arrival time distribution can be captured by the
Poisson distribution.

Burstiness. We first calculate the variance of numbers of events
over different time scales, known as variance-time plot [31, 43], per
hour, per device-type, to assess how well the Poisson distribution
can model the burstiness of control-plane traffic. Specifically, we
first divide the timeline into 100ms intervals. We count the number
of events per 100ms interval for every type of device and event.
Next, we consider different time scales " , ranging from 1 to 103

seconds. For each time scale of" seconds, we calculate the average
number of events per 100ms for every"-second window 8 , denoted
as :8 , and then calculate the mean and variance of this metric
across all "-second windows, denoted as :8 and :̂8 , respectively.
We then normalize :̂8 by the square of :8 for the observation and
the reference distribution, respectively.

Figure 3 shows that for a randomly sampled cluster of phones,
the sojourn time in CONNECTED and IDLE exhibits stronger bursti-
ness than the fitted Poisson models across the time scale ranging
from 10 to 103 seconds. The differences in the log-scale normalized
variance between the real-world trace and the fitted exponential
distribution are 0.43∼2.00 and 0.18∼1.00 for CONNECTED and IDLE,
respectively. For HO and TAU, although they happen much less fre-
quently than SRV_REQ and S1_CONN_REL, which trigger the state
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(a) CONNECTED (b) IDLE (c) HO (d) TAU

Figure 3: Variance-time plots for the CONNECTED and IDLE states and the HO and TAU events for phones.

(a) CONNECTED (b) IDLE (c) HO (d) TAU

Figure 4: Comparison of CDFs between real and fitted data (Poisson) for the CONNECTED and IDLE states and the HO and TAU events
for phones.

change between CONNECTED and IDLE, their inter-arrival time still
has stronger burstiness than the fitted Poisson models across the
time scale from 10 to 103 seconds. The differences in the log-scale
normalized variance between the real-world trace and the fitted
exponential distribution are 0.20∼1.20 and -0.04∼0.63 for HO and
TAU, respectively. We observe similar results for the other clusters
and the other device types.

Inter-arrival tails. A more direct way of understanding why a
traditional probability distribution cannot model a traffic trace is
to examine whether the entire range of the observed inter-arrival
time in the trace can be captured by the Poisson model [59]. We
compare the CDF of the observed data with that of the fitted Poisson
(exponential) distribution—over the same 1-hour interval for the
sojourn time in CONNECTED and IDLE and the inter-arrival time of
HO and TAU.

Figure 4 shows that for the randomly sampled cluster of phones,
the exponential distribution fails to adequately capture the entire
range of the four quantities observed in the trace. In particular, for
CONNECTED, the maximum sojourn time is around 2106.94 seconds,
much higher than that of the fitted exponential distribution, i.e.,
156.35 seconds. For IDLE, the minimum sojourn time is around 0.16
seconds, smaller than that of the fitted exponential distribution, i.e.,
0.40 seconds. For HO, the inter-arrival duration ranges from 0.69 to
1988.18 seconds, while the fitted inter-arrival duration only ranges
from 0.78 to 559.56 seconds. As with HO, TAU has inter-arrival time
ranging from 0.62 to 2721.36 seconds, while the fitted inter-arrival
time only varies from 2.71 to 723.26 seconds. We observe similar
results for all the other clusters.

5 MODELING FOR LTE
Our analysis above reveals three key challenges in modeling the
control-plane of cellular networks: (C1) How to capture the intricate
event dependence for each UE? (C2) How to derive control-plane

traffic model to accurately capture the inter-arrival time between
events? (C3) How to capture the significant diversity of control-
plane traffic across UEs?

In this section, we propose a two-level state-machine-based traffic
model for each UE cluster (derived from an adaptive clustering scheme)
that addresses the three challenges above: (1) We develop a two-
level state machine to capture the dependence among events for
individual UEs; (2) We adopt the Semi-Markov Model to model the
duration of a UE staying in the current state and the probability of
transitioning to the next state; (3)We propose an adaptive clustering
scheme to deal with the traffic diversity across UEs for each hour
and for each device-type.

5.1 How to capture event dependence?
We observe that the six types of control events actually fall into
two categories that have different dependence on each other; those
that trigger a UE to transition among different UE states (denoted
as Category-1 events), and those that do not but have complex
dependence on UE states (denoted as Category-2 events).

Category-1 events include ATCH, DTCH, SRV_REQ, and S1_CONN_REL,
which cause the UE state to switch from one state to another fol-
lowing the EMM and ECM state machines. We observe that when
a UE changes from DEREGISTERED to REGISTERED, it always enters
CONNECTED at the same time, which follows the 3GPP protocol [2].
Therefore, the EMM and ECM state machines can be merged as one
state machine that captures the dependence (C1) of all Category-1
events, as shown in the top level in Figure 5. We denote it as the
EMM–ECM state machine.

In contrast with Category-1 events, Category-2 events (HO and
TAU) do not change the UE state. However, these events still have
intricate dependence on other control events as follows. (1) For HO, it
only happens after the UE enters CONNECTED triggered by SRV_REQ.
(2) For TAU, although it can happen in both CONNECTED and IDLE,
it sometimes follows HO in CONNECTED. This is because when the
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Figure 5: Proposed two-level state machine. The rectangles represent states at the top level. The ovals represent states at the
bottom level. The arrow with the star denotes the SRV_REQ transition can only start from S1_REL_S_1 and S1_REL_S_2. The
opposite arrow denotes the S1_CONN_REL transition can start from any of the states in CONNECTED.

UE moves and switches from one cell to another cell, it can also
enter another tracking area (a new set of cells). However, TAU does
not necessarily follow HO in CONNECTED, for example, when the UE
reselects to LTE from 3G or the UE re-registers to LTE after the
fallback for circuit-switched services, etc. (3) In the IDLE state, after
TAU, S1_CONN_REL always happens in order to release the signaling
resources assigned for the last TAU. None of these dependencies
can be easily captured by the EMM–ECM state machine. The key
challenge here is that these events can happen in either CONNECTED
or IDLE or both, and with different dependencies on other events.

To capture the dependence (C1) for Category-2 events under
the CONNECTED and IDLE states, we introduce two fine-grained
sub-state machines that are embedded inside the CONNECTED and
IDLE states of the EMM–ECM state machine, which effectively re-
fines the EMM–ECM state machine into a two-level hierarchical
state machine. In each sub-state machine, each state corresponds
to the event that happens right before entering this state, e.g., the
SRV_REQ_S state is entered after a SRV_REQ event. Each edge cor-
responds to a Category-2 control event, just like each edge in the
EMM–ECM state machine corresponds to a Category-1 event.

Specifically, we define six new states in the sub-state machines,
including HO_S, TAU_S_CONN, TAU_S_IDLE, SRV_REQ_S, S1_REL_S_1,
and S1_REL_S_2. TAU_S_CONN and TAU_S_IDLE are needed to dis-
tinguish the state entered after a TAU event in the CONNECTED and
IDLE states of the EMM−ECM state machine, respectively. Unlike
S1_REL_S_1, which represents the UE switching from CONNECTED
to IDLE, S1_REL_S_2 is needed to capture the unique behavior of
TAU in IDLE.

Figure 5 (bottom left) shows the sub-statemachine inside CONNECTED.
After SRV_REQ happens and changes the UE to the SRV_REQ_S state,
the UE can either trigger HO to enter HO_S or trigger TAU to enter
TAU_S_CONN. When the UE is in HO_S, there are two possible tran-
sitions. If the next event is HO, it causes the UE to self-loop back
to HO_S. If the next event is TAU, it changes the UE to TAU_S_CONN.
Similarly, when the UE is in the TAU_S_CONN state, the next event
is either TAU, which self-loops the UE to TAU_S_CONN, or HO, which
changes the UE to HO_S.

Figure 5 (bottom right) shows the other sub-state machine in-
side IDLE. After S1_CONN_REL happens and changes the UE to
the S1_REL_S_1 state, the UE can trigger TAU and then enters
TAU_S_IDLE. Then, S1_CONN_REL is triggered to make the UE enter

the S1_REL_S_2 state. When another TAU happens, UE changes
back to the TAU_S_IDLE state.

In essence, those two sub-state machines are the second-level
refined state machines embedded in the EMM–ECM state machine.
Further, they can run concurrently with the top-level EMM−ECM
state machine. For example, suppose that the UE is moving. The UE
may switch from CONNECTED to IDLE, if the UE does not transmit
data for some seconds. However, in the meantime, regardless of
whether the UE is in CONNECTED or IDLE, TAU can happen, as shown
in Figure 5.

5.2 How to derive control-plane traffic model?

Two-level state-machine-based Semi-Markov model. The two-
level state machine captures the dependence among control events
generated by each UE. To derive a control-plane traffic model, we
convert the 2-level state machine into a Semi-Markov model [82].
The Semi-Markov is a multi-state model for a continuous time
stochastic process with state transitions. We argue that the Semi-
Markov model is a natural fit for modeling the control-plane traffic
of cellular networks, since it can capture the intricate event de-
pendence for each UE without relying on pre-defined distributions
for the sojourn time in the traffic, which is a limitation of the
classic Markov model. Specifically, unlike a Markov model, a Semi-
Markov model does not assume that the sojourn time in the same
state follows the exponential distribution with a constant hazard
rate, which, as shown in §4.1, is not applicable to mobile network
control traffic. In particular, given the 2-level state machine con-
sisting of states and transitions, the Semi-Markov model models
(1) the probability of the state transition from state G to state ~:
?G~ = P((8+1 = ~ | (8 = G), where (8 and (8+1 represent the states
of two consecutive steps 8 and 8 + 1, respectively; (2) the duration of
staying in state G before switching to state ~, as a random variable
with the CDF: �G~ (C) = P()8+1 −)8 ≤ C | (8 = G, (8+1 = ~), where
)8 and )8+1 represent the time of the process switching to the state
(8 and (8+1, respectively.

Deriving model parameters. To model the sojourn time in one
state before switching to another state, we first collect the sojourn
time for the same transition across all UEs. Since traditional proba-
bility distributions fail to model the duration, not only for the EMM
and ECM states (§4.1), but also for the new states in the two-level
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Table 2: Mapping of primary control-plane event types be-
tween 4G (left) and 5G (right).

ATCH REGISTER (Registration)
DTCH DEREGISTER (Deregistration)

SRV_REQ SRV_REQ (Service Request)
S1_CONN_REL AN_REL (AN Release)

HO HO (Handover)
TAU −

state machine (refer to Appendix A.3 for additional details), we
derive one CDF model for the sojourn time of each transition. To
model the transition probability from one state to another, we count
the numbers of transitions across all UEs and then calculate ?G~ for
every transition (each edge in the state machine). If there is only
one outbound edge, ?G~ of the corresponding state transition is 1.

5.3 How to capture traffic diversity?
As discussed in §4.1.1, the UEs of the same device type have diverse
traffic for each type of control-plane events and the distributions
of the UEs are highly skewed for all three types of devices. As a
result, using a single model for all UEs of the same device type fails
to reproduce such diversity, as the sojourn time and the transition
probabilities of more active UEs dominate corresponding CDFs.
However, developing one model for every single UE cannot work,
because of the lack of enough data to model.

Ideally, we should model as many similar UEs as possible. How-
ever, it is challenging to achieve both a large number of UEs and
high similarity among the UEs, because of the highly diverse and
skewed control-plane traffic over all UEs for all three types of de-
vices.

To strike a balance between those two goals, we propose an
adaptive clustering scheme to recursively segregate the UEs into
different clusters, until the UEs in the cluster have roughly sim-
ilar traffic patterns or the number of UEs in the cluster is small
enough. To quantify the similarity of UE traffic, we focus on two
dominant events, SRV_REQ and S1_CONN_REL, which contribute to
84.1%∼93.0% of the total control events for all three types of devices.
We extract two features for each event type to characterize the UE
traffic: (1) number of control events; (2) standard deviation of the
duration staying in the state (CONNECTED or IDLE).

The recursive adaptive schemeworks as follows. It is first invoked
for the complete feature space and all UEs are grouped into one
cluster. At each invocation, it checks for one cluster if the features of
UEs are similar (i.e., the difference betweenmaximum andminimum
value should be smaller than some threshold \ 5 for every feature),
or if the number of UEs is smaller than another threshold \= . If
neither one is satisfied, the procedure cuts the current feature space
into 4 equal-sized sub-feature spaces, and the UEs that fall into the
same sub-feature space are grouped into a sub-cluster. Effectively,
the recursively partitioned sub-feature space forms a quadtree, and
the UEs in the sub-feature space that is not partitioned further are
grouped into a final cluster used to model the sojourn time and the
transition probabilities for different state transitions. We conduct a
binary search across the entire feature space and experimentally
find that a \ 5 value of 5 for all features and a \= value of 1000 are

REGISTER 
DEREGISTER 

DEREGISTER 

SRV_REQ 

AN_REL

RM-DEREGISTERED

CM-IDLESRV_REQ_SHO_S

CM-CONNECTED

HO HO 

Figure 6: The adjusted two-level state machine for 5G.

sufficient to segregate the UEs in the input trace into groups of UEs
with sufficiently dissimilar behavior.

Using the above thresholds, we generated 574, 199, and 70 UE
clusters per hour on average for phones, connected cars, and tablets,
respectively. As a result, we instantiated a total of 20,216 two-level
state-machine-based Semi-Markov models, one for each combina-
tion of UE cluster, hour-of-day and device type.

5.4 Modeling the start event
Typical usage of the proposed traffic model is to generate a control-
plane trace for a given number of UEs over a given duration. To
achieve it, the traffic generator needs to decide the initial state for
each UE. This means that the traffic generator needs to decide on
the starting event and the corresponding start time for every UE,
every time it synthesizes a new trace, e.g., given a starting hour of
the day.

To do this, for each hour of the input trace, we collect the first
event and the start time of all the UEs per UE-cluster per device-
type discussed above, and derive the probabilities of different event
types as the first event for the hour as well as the distribution of
the start time within the hour.

6 MODELING FOR 5G
As mentioned in §3, one of the design goals of modeling control-
plane traffic is to generate control traffic not only experienced
by today’s 4G MCN but also for future NextG (e.g., 5G). In this
section, we present a methodology to showcase how to adapt LTE’s
two-level state machine5 and how to derive model parameters for
5G. The reasons why we can easily adjust our proposed two-level
state machine for LTE to for 5G are that (1) our proposed model
is UE-centric (i.e. the generator generates control events between
UE/RAN and MCN) and thus oblivious to the internal structural
changes of MCN; (2) we observe that there exists a direct one-to-
one mapping of all primary control-plane event types (except TAU)
and UE states between 4G and 5G as discussed below.

Adjusting the two-level state machine. We carefully studied the
3GPP specifications of 4G [3] and 5G [4, 5]. We find that there exists
a one-to-one mapping of event types between 4G and 5G for all
primary types of control events, except TAU as summarized in Ta-
ble 2. As for the four UE states in LTE (REGISTERED, DEREGISTERED,
CONNECTED, and IDLE), there are also four corresponding UE states
in 5G (RM-REGISTERED, RM-DEREGISTERED, CM-CONNECTED,

5The adjusted two-level state machine is applicable to 5G SA (standalone), while the
two-level state machine for LTE is applicable to 5G NSA (non-standalone). This is
because 5G NSA operates on LTE’s MCN and thus LTE and 5G NSA share the same
event types.
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and CM-IDLE). Such high similarity of control-plane event types
and UE states between 4G and 5G enables us to easily adjust the
state machine of 4G to 5G, by simply removing the states and re-
lated transitions of TAU from 4G’s state machine (Fig. 5) to form a
new state machine for 5G (Fig. 6).

Deriving the model parameters. To instantiate the adjusted two-
level state-machine-based traffic model for 5G, there are two ways:
(1) When a large-scale 5G control-plane trace 5G is available, we
just need to follow the same methodology (§5) and derive the model
parameters. (2) When such a 5G trace is not available, e.g., due to
privacy concerns, we can scale the parameters of the proposed
traffic model for 4G to derive the model parameters for 5G.

Specifically, if we can estimate the scaling of each type of events
when a UE switches from 4G to 5G, we can use the scaling factors
to adjust the parameters in the 4G model for the 5G model. For
example, recent measurement studies (e.g., [32]) have shown UEs
tend to incur on average 4.6×more HO events when switching from
4G to 5G mmWave (NSA). Such frequency changes of some types
of events can be used to recalculate the transition probabilities and
the sojourn time in the two-level state machine for 5G (Fig. 6).

7 GENERATING TRACES FOR LTE & 5G
For LTE and 5G, the traffic generator uses the two-level state-
machine-based traffic models to generate new control traffic traces
for any given number of UEs, starting at any given hour, in the
same following way.

To synthesize a new trace for  UEs starting at hour � , the main
traffic generator runs  instances of the per-UE traffic generator
concurrently. Each per-UE traffic generator uses the traffic models
(for different hours) of a given UE cluster, according to the distribu-
tion of the UEs in the modeled trace, e.g., if 33% of the UEs belong to
Cluster X, then 33% of the per-UE traffic generators will be running
the state machine for Cluster X. The per-UE traffic generator first
decides the first event and the corresponding start time within hour
� by following the first-event model, and then starts driving the
per-hour state machine for that UE cluster for that device type one
hour after another hour.

Inmore detail, each per-UE traffic generator first samples the first
event and the corresponding start time from the first-event model.
It then runs the per-hour two-level state machine one after another,
starting from hour � . For each level of the two-level state machine,
it keeps a timer to track the time the UE stays in the current state.
Whenever the UE enters a state G , the traffic generator (1) follows
the probabilities {?G~ | ~ ∈ all states coming from G} to decide the
next state ~ and the corresponding event 4 that triggers the state
transition from G to ~; and (2) follows the CDF (�G~ ) to decide the
duration � for staying in the current state G . The traffic generator
sets the timer for � seconds and starts it. When the timer expires,
the UE generates event 4 and enters state~, and the traffic generator
repeats the process above. In addition, when the state at the top
level is changed, then for the bottom level, the traffic generator
(1) drops its next event, which was decided to happen later in the
past top-level state, (2) resets its timer, and (3) starts running the
sub-state machine corresponding to the new state of the top level,
e.g., Figure 5 (bottom left) if the top-level state machine enters
CONNECTED.

Table 3: Comparison of different modeling methods.

Method Base �1 �2 Ours

State Machine EMM−ECM EMM−ECM 2−level 2−level
Distribution Poisson Poisson Poisson CDF
UE Clustering × X X X

8 VALIDATION & EVALUATION
8.1 Model Validation for LTE
For LTE, we validate the proposed two-level state-machine-based
traffic model by comparing it with the baseline method. In addition,
to study the contribution of individual features of our method, we
also evaluate two variations of our method by varying one fea-
ture at a time. Table 3 compares those different modeling methods.
Specifically, (1) the baseline adopts the EMM−ECM state machine,
which only captures ATCH, DTCH, SRV_REQ, and S1_CONN_REL. For
those four event types, it fits the sojourn time of all UEs of the
same device type staying in DEREGSITERED, CONNECTED and IDLE
to Poisson distributions, using MLE. For the other event types, HO
and TAU, it fits the inter-arrival time of HO and TAU to Poisson. (2)
�1 adopts the EMM−ECM state machine. It applies the same UE
clusters as our method for the three device types. For each UE clus-
ter, it fits the inter-arrival/sojourn time for all six event types to
Poisson distributions. (3) �2 models the sojourn time for the states
in our method as Poisson processes using MLE, instead of using
CDFs.

To assess the scalability of our proposed method and the other
methods, we consider two different validation scenarios with dif-
ferent numbers of UEs: Scenario 1 with 38,000 UEs and Scenario 2
with 380,000 UEs, i.e., about 1× and 10× more than the UEs that we
used to estimate the model parameters. For each method, we syn-
thesize two traces for those two scenarios for one of the busy hours
on a randomly-chosen day in August 2022. We then compare the
synthesized traces with the real traces that we randomly sampled
for the corresponding numbers of UEs and hour of the day from
the same mobile operator in the entire US as §4.

The traffic generator ran on the computer equipped with 12 Intel
Xeon (R) E5-2609 v3 CPUs with the base frequency of 1.90 GHz.
The traffic generator initiated 38K and 380K instances of the per-UE
traffic generator for the two scenarios, respectively. These instances
were then scheduled as individual jobs to run on the 12 CPUs in
parallel using the parallel command with one job assigned to
each CPU at any given time. On average, it took 1.46/0.68/0.55
seconds for the per-UE traffic generators to synthesize a one-hour
trace per phone/connected car/tablet.

To evaluate the fidelity of the synthesized traces using the two
methods, we consider metrics from two perspectives: macroscopic
andmicroscopic. From the macroscopic perspective, we compare the
breakdown of the synthesized events with that of the real trace for
all UEs of each type of devices. From the microscopic perspective,
we zoom into the events generated for each UE, and compare per-UE
traffic behavior.

8.1.1 Macroscopic analysis. We first compute the breakdown
of the synthesized events and compare it with that of the real events
for each type of devices. We find that Scenario 1 and Scenario 2
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Table 4: Differences of breakdown of events between the real trace and the synthesized traces generated by different methods
under Scenario 2 with 380K UEs. The smaller the differences, the more accurate the model.

Phones Connected Cars Tablets
Real Base �1 �2 Ours Real Base �1 �2 Ours Real Base �1 �2 Ours

ATCH 0.1% -0.1% +0.1% +0.0% +0.0% 0.8% -0.8% -0.6% +0.4% +0.3% 0.5% -0.5% -0.2% +0.5% +0.6%
DTCH 2.0% -2.0% -1.6% +0.2% +0.1% 6.2% -6.2% -5.8% +0.7% +0.6% 2.3% -2.2% -1.7% +0.8% +0.8%

SRV_REQ 45.5% -45.3% -35.4% +1.8% +1.4% 38.2% -38.1% -33.9% +5.0% +4.5% 46.3% -46.1% -32.1% +0.4% -0.0%
S1_CONN_REL 46.8% -46.7% -36.5% +1.3% +1.0% 42.2% -42.0% -37.4% +2.8% +2.5% 47.7% -47.5% -33.0% +0.1% -0.1%
HO (CONN.) 3.5% +45.4% +19.9% -2.1% -1.7% 7.5% +41.4% +12.7% -5.5% -4.9% 1.9% +47.3% +10.1% -1.0% -0.7%
HO (IDLE) 0.0% +47.8% +35.0% +0.0% +0.0% 0.0% +47.7% +38.5% +0.0% +0.0% 0.0% +47.5% +21.7% +0.0% +0.0%
TAU (CONN.) 0.7% +2.2% +10.7% -0.4% -0.3% 1.3% +1.6% +15.1% -0.9% -0.8% 0.3% +2.6% +5.0% -0.2% -0.1%
TAU (IDLE) 1.5% -1.3% +7.9% -0.7% -0.6% 3.8% -3.6% +11.3% -2.4% -2.2% 1.1% -1.0% +30.1% -0.5% -0.4%

have very similar results. We next elaborate the results for Scenario
2. Additional results for Scenario 1 can be found in Appendix B.

Table 4 shows that for Scenario 2, our method synthesizes a
trace whose breakdowns of events for all three types of devices
are closer to those of the real trace, compared with those of the
traces generated by the other methods. For SRV_REQ/S1_CONN_REL,
the percentages in the synthesized trace by our method only dif-
fer from those in the real trace by 1.4%/1.0% (phones), 4.5%/2.5%
(connected cars) and -0.0%/-0.1% (tablets). In contrast, for the base-
line, the percentages of those two event types differ the most from
those in the real trace by -45.3%/-46.7% (phones), -38.1%/-42.0%
(connected cars) and -46.1%/-47.5% (tablets). With clustering, �1

achieves smaller differences than the baseline, i.e., -35.4%/-36.5%
(phones), -33.9%/-37.4% (connected cars) and -32.1%/-33.0% (tablets).
Finally,�2 achieves the differences of 1.8%/1.3% (phones), 5.0%/2.8%
(connected cars) and 0.4%/0.1% (tablets), slightly higher than our
method. This is because we use MLE to best fit the Poisson distri-
butions for the states in the two-level state machine for each UE
cluster and thus the total numbers of different synthesized events
for all UEs of the same device type are similar to those of the real
trace.

Table 4 also shows that for HO events, which should happen only
in the CONNECTED state, our method reproduces similar fractions
of HO in CONNECTED and stops generating HO in IDLE. Specifically,
in CONNECTED, the absolute differences in the percentages between
our synthesized trace and the real trace are 0.7%∼4.9%, smaller than
the other methods for the three device types. In IDLE, the baseline
and �1 mistakenly generate 21.7%∼47.8% of the total events as HO
for the three device types, because the state dependence for HO is
not captured by the EMM−ECM state machine. For TAU, which can
happen in both CONNECTED and IDLE, our method can synthesize
TAU in different ECM states correctly. The absolute differences in
the percentages between the synthesized and real traces for TAU
in CONNECTED and IDLE are 0.1%∼2.2% for the three device types.
In contrast, the traces synthesized by the baseline and �1, which
follow the EMM−ECM state machine, have larger differences from
the real trace, i.e., 1.0%∼30.1%. The results above show that our
proposed two-level state machine can capture the state dependence
well.

The synthesized trace also preserves high-level trends of con-
trol events across different device types. For example, Table 4
shows that for the four dominant types of control-plane events
(i.e., SRV_REQ, S1_CONN_REL, HO, and TAU), phones and tablets have

1.2×/1.1× larger percentages of SRV_REQ/ S1_CONN_REL events than
connected cars. This result suggests that phone and tablet users
have a higher frequency of sending/receiving data to/from the In-
ternet than connected cars. Compared with phones and tablets,
connected cars have 2.0×/2.6× and 4.0×/3.4× larger percentages of
HO/TAU events respectively, due to their higher mobility.

8.1.2 Microscopic analysis. We next evaluate the microscopic
fidelity of the synthesized traces in two ways: (1) numbers of events
per UE for different event types; (2) sojourn time of each UE staying
in one state before transiting to another state for different state
transitions. We compare the distributions between real and syn-
thesized traces by first deriving the CDFs for both traces and then
computing the maximum y-distance, i.e., the distance along the
y-axis (the probability of any “event” less than the x-axis value) of
the two CDFs, which is a conservative way to measure the fidelity
of the synthesized trace.

To validate traditional distribution-based modeling (e.g., Poisson
distributions) cannot properly model the inter-arrival/ sojourn time
for individual UE traffic, we compare the maximum y-distance
between �2 and our method for apples-to-apples comparisons.
Since SRV_REQ and S1_CONN_REL dominate the total control events
(i.e., 84.1%∼93.0% of the total events shown in Table 1), we focus
on those two events and the corresponding UE states, CONNECTED
and IDLE.

Number of events per UE. Table 5 shows that for phones, our
traffic generator can synthesize similar numbers of SRV_- REQ and
S1_CONN_REL per UE under both validation scenarios; the maxi-
mum y-distance between CDFs of the synthesized and real traces
is 6.7%∼7.0% using our method, while it is 52.1%∼53.1% using �2.
However, for connected cars and tablets, SRV_REQ and S1_CONN_REL
synthesized by our proposed model have the maximum y-distance
of 32.0%∼33.2% (connected cars) and 16.0%∼17.2% (tablets). In con-
trast, the CDFs for SRV_REQ and S1_CONN_REL generated by �2

have even larger maximum y-distance of 37.5%∼38.8% (connected
cars) and 52.3%∼52.8% (tablets) from those in the real trace.

To understand the high maximum y-distance for connected cars
and tablets, we zoom into the CDFs of the number of SRV_REQ/S1_-
CONN_REL events per UE in the real and synthesized traces for all
three types of devices (Appendix C). We find that for both SRV_REQ
and S1_CONN_REL in the synthesized trace by our proposed traffic
model, the high maximum y-distance of connected cars and tablets
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Table 5: Maximum y-distance between CDFs of numbers of SRV_REQ/S1_CONN_REL per UE and sojourn time in CONNECTED/IDLE
per UE for the synthesized and real traces. The smaller the y-distance, the more accurate the model.

Scenario 1 (38K UEs) Scenario 2 (380K UEs)
Phones Conn. Cars Tablets Phones Conn. Cars Tablets

�2 Ours �2 Ours �2 Ours �2 Ours �2 Ours �2 Ours

SRV_REQ 53.1% 6.9% 38.2% 33.2% 52.8% 16.7% 52.8% 6.7% 37.5% 32.3% 52.5% 16.0%
S1_CONN_REL 52.4% 7.0% 38.8% 32.9% 52.6% 17.2% 52.1% 6.8% 37.9% 32.0% 52.3% 17.0%
CONNECTED 30.2% 6.3% 25.0% 9.4% 23.4% 2.7% 31.0% 6.1% 23.5% 6.5% 23.1% 2.1%

IDLE 15.5% 4.8% 14.4% 11.7% 23.0% 8.2% 15.2% 4.3% 13.7% 10.4% 21.7% 6.8%

Table 6: Maximum y-distance between CDFs of numbers of
events per UE for the synthesized and real traces for inactive
/ active UE groups per device type.The smaller the y-distance,
the more accurate the model.

Scenario 1 (38K UEs) Scenario 2 (380K UEs)
Conn. Cars Tablets Conn. Cars Tablets

SRV_REQ 24.7%/12.2% 20.7%/9.8% 25.3%/11.1% 22.7%/7.8%
S1_CONN_REL 23.1%/11.8% 28.4%/9.9% 22.8%/10.6% 30.8%/7.6%

is caused by the UEs that generate only 1 event occurrence during
the selected hour, while the traffic generator predicts 2 occurrences.

To illustrate the finding above, we focus on our model. For each
type of devices, we split the UEs into two groups: (1) inactive UEs
with fewer than or equal to 2 occurrences; (2) active UEs with
more than 2 occurrences during the selected hour. We calculate the
maximum y-distance between the CDFs of the synthesized and real
traces for the two groups of UEs separately, for each device type.

Table 6 shows that for synthesized SRV_REQ and S1_CONN_REL
using our proposed model, the maximum y-distance for active UEs
with more than 2 events per UE is 10.6%∼12.2% (connected cars)
and 7.6%∼9.9% (tablets) under the two validation scenarios, while
the maximum y-distance for inactive UEs with fewer than or equal
to 2 events per UE is 22.8%∼25.3% (connected cars) and 20.7%∼30.8%
(tablets) under the two validation scenarios. The results suggest our
proposed traffic model only mis-predicts the number of events by 1
during the selected hour for connected cars and tablets. We argue
that such a difference by just 1 event per UE within a single hour
for inactive connected cars and tablets is acceptable.

Duration of staying in one state before switching to the next
state per UE. Table 5 also shows that our proposed method can
simulate more accurate distributions of the sojourn time than �2

for CONNECTED and IDLE states; the maximum y-distance for our
method for both states is 2.1%∼11.7% under both validation scenar-
ios for the three device types, while it is 13.7%∼31.0% for �2.

8.2 Model Evaluation for 5G
For 5G, we evaluate the adjusted state-machine-based traffic mod-
els by considering two different deployment modes of 5G: non-
standalone (NSA) and standalone (SA) using the mmWave fre-
quency band. 5G NSA integrates 5G RAN with existing LTE RAN
and MCN, while 5G SA operates independently with 5G MCN.
Therefore, we use the two-level state machine of LTE (Fig. 5) to
capture the event dependence for 5G NSA and the state machine

Table 7: Projected breakdown of control-plane events of 5G
NSA and 5G SA for different types of devices.

Event Type P CC T
(NSA/SA) NSA SA NSA SA NSA SA

ATCH/REGISTER 0.1% 0.1% 0.8% 0.9% 1.1% 1.2%
DTCH/DEREGISTER 0.1% 0.2% 0.7% 0.9% 1.0% 1.1%
SRV_REQ/SRV_REQ 41.7% 45.3% 36.4% 42.7% 44.4% 47.6%

S1_CONN_REL/AN_REL 40.1% 43.5% 31.4% 36.8% 40.8% 43.8%
HO/HO 15.4% 10.9% 24.7% 18.8% 9.1% 6.4%
TAU/− 2.5% − 6.0% − 3.7% −

of 5G (Fig. 6) for 5G SA. To derive the model parameters, we scale
the parameters of 4G’s traffic model for 5G NSA and 5G SA, re-
spectively, since systematic extensive trace collection is not yet
available for 5G. We focus on HO events as HO is significantly af-
fected by 5G deployments, especially considering 5G mmWave base
stations offer much smaller coverage areas compared to LTE. For
5G NSA, we use the scaling factor of 4.6× for HO (following [32]).
To estimate the scaling factor for 5G SA, we perform a controlled
experiment by collecting HO events of LTE and 5G mmWave on two
phones (connecting to LTE and 5G mmWave, separately) under the
same walking/driving scenarios. We calculate the ratio of number
of HO events under 5G mmWave over LTE as the scaling factor, i.e.,
3.0×. We then derive the model parameters for 5G NSA and 5G
SA respectively (§6). Finally, we synthesize a 7-day trace for the
same set of phones, connected cars, and tablets as the LTE trace
mentioned in §4.

Table 7 shows that compared with LTE, the percentage of HO
events under 5G NSA/SA significantly increases from 3.8% to 15.4%/
10.9% for phones, from 6.6% to 24.7%/18.8% for connected cars, and
from 2.1% to 9.1%/6.4%. 5G NSA has more HO events than 5G SA,
because in 5G NSA HO happens for not only 5G RAN but also LTE
RAN.

9 DISCUSSION: GENERALIZABILITY
We have presented the methodology of modeling and generating
control-plane traffic of cellular networks, which meet the four key
requirements listed in §3. While the parameters of the proposed
model are based on an extensive collection of real UEs of a major
mobile carrier in the US, there are some factors that may cause
changes to the control-plane traffic characteristics and thus the
model parameters. In addition to change of cellular radio technolo-
gies (discussed in §6), carriers in distinct geographic regions (e.g.,
the US and countries in Asia) may deploy base stations diversely,
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people in distinct geographic regions may also use their devices
differently, and new types of devices or applications (e.g., mas-
sive IoT, self-driving cars, etc.) may have different control-plane
traffic patterns from the three device types studied in this paper,
all of which could change the control-plane traffic characteristics.
We believe that our modeling methodology is applicable to derive
corresponding model parameters for cellular networks with such
different characteristics.

10 RELATED WORK

LTE/5G traffic modeling. Most of previous work on traffic mod-
eling for LTE and 5G [8, 12, 18–20, 24, 28, 33, 36, 37, 41, 42, 44, 45,
48, 51, 53, 55, 61, 62, 70–72, 74, 75, 83–87] focuses on the data-plane
traffic, instead of the control-plane traffic. For the control-plane traf-
fic, Dababneh et al. [24] proposed to model the total control-plane
volume on different functions of LTE’s MCN, using the number of
UEs and events’ transactions per second per subscriber. However,
they ignored the traffic diversity in device types and time-of-day,
and they also did not model the fine-grained inter-arrival time of
successive events for individual UEs.

Internet traffic modeling. There has been extensive literature
on modeling Internet traffic. Various probability distributions have
been utilized to model the inter-arrival time of Internet traffic,
including Poisson [15, 30, 40, 59], Pareto [6, 30], Weibull [11], Tc-
plib [30], etc. However, traditional probability distributions fail
to model the control-plane traffic of cellular networks (§4) with
proper state dependence per UE (§8.1). Recently, a variety of stud-
ies have been leveraging machine learning techniques to model
temporal properties of Internet traffic (e.g., [47, 64, 65, 68, 78, 80]).
However, it remains unclear whether their models can capture
fine-grained temporal properties (e.g., distribution of inter-arrival
time of events) and state dependence of the control-plane traffic of
cellular networks. We leave it as future work.

LTE/5G control-plane traffic characterization. Existing works
on characterizing control-plane traffic of cellular networks focus
only on specific event types, e.g., HO [27, 32, 46] and ATCH and
DTCH [73]. In this work, we perform an in-depth characterization
study of the control-plane traffic of real UEs in the US (encom-
passing three prominent types of devices) for the six primary event
types in LTE. Since 5G deployment is still in its early stage, we leave
the study of large-scale 5G control-plane traffic as future work.

11 CONCLUSION
Accurate modeling and generation of control-plane traffic in to-
day’s and future mobile networks has important applications such
as evaluating and optimizing MCN design and real-time monitoring
of production MCNs. In this paper, we presented a two-level hier-
archical state-machine-based control-plane traffic model based on
the Semi-Markov Model that can accurately model per-UE control-
plane traffic in cellular networks for arbitrary UE populations. Our
validation shows that ourmodel outperforms traditional probability-
based model and can synthesize realistic traces for a much larger UE
population than the trace used to instantiate the model. Specifically,
compared with the real traces, our synthesized traces achieve small

differences, i.e., within 1.7%, 4.9% and 0.8%, for phones, connected
cars, and tablets, respectively. The developed traffic models in this
paper are already being actively used by the Aether community
to study the scalability of Aether 5G core design. We have open-
sourced the developed traffic models to the wider community to
stimulate research on MCN control-plane design and optimization
for 4G/5G and beyond.
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APPENDICES
A LIMITATIONS OF TRADITIONAL

PROBABILITY DISTRIBUTIONS
In this appendix, we present additional results to show how tradi-
tional probability distributions fail to model the inter-arrival time
between events, and the sojourn time in the four EMM/ECM states
without leveraging our adaptive clustering scheme (Appendix A.1)
and with leveraging our adaptive clustering scheme (Appendix A.2),
as well as the new states in the proposed traffic model (Appen-
dix A.3), for individual UE traffic.

A.1 Can Other Traditional Probability
Distributions Model Individual UE Traffic
without UE Clustering?

We first discuss the results showing that without leveraging our
adaptive clustering scheme, the individual UE traffic (inter-arrival
time of different types of events and the sojourn time staying in the
four EMM/ECM states) cannot be fitted using the other traditional
probability models, in addition to the Poisson model discussed in
§4.1.

Results. Table 8 shows that neither the inter-arrival time nor the
sojourn time can be modeled by Pareto, Weibull, and Tcplib dis-
tributions for each UE cluster of all three types of devices, with
close to 0% of the 1-hour intervals that pass the K–S test for the
Weibull/Pareto/Tcplib distributions.

A.2 Can Traditional Probability Distributions
Model Individual UE Traffic with UE
Clustering?

We next discuss the results showing the individual UE traffic (inter-
arrival time of different types of events and the sojourn time staying
in the four EMM/ECM states) cannot be fitted using traditional
probability models after applying our adaptive clustering scheme.

Results. Table 9 shows that surprisingly the inter-arrival time of all
six types of events (ATCH, DTCH, SRV_REQ, S1_CONN- _REL, HO, and
TAU) cannot be modeled as Poisson processes for each UE cluster of
all three types of devices, since below 5.0% of the 1-hour intervals
pass the K–S test and below 23.8% for the�2 test for the exponential
distributions. For the duration of UE staying in the four EMM/ECM
states (REGISTERED, DEREGISTERED, CONNECTED, and IDLE), below

1.4% of the intervals pass the two statistical tests for the exponential
distributions for all three types of devices.

Table 9 also shows neither the inter-arrival time nor the sojourn
time can be modeled by Pareto, Weibull, and Tcplib distributions
for each UE cluster of all three types of devices. In particular, the
Weibull distribution models achieve the largest percentage of the
1-hour intervals that pass the K-S test over all UE clusters, i.e., up
to 40.0%, while the Pareto distributions and the Tcplib distributions
have at most 10.2% and 1.5% of intervals that pass the K–S test.

A.3 Can Traditional Probability Distributions
Model the Sojoun Time in New States
Proposed in Our Model?

To capture the state dependence among events, we propose a two-
level state machine where the first-level state machine is the EMM–
ECM state machine and the second-level state machine includes six
new states and nine corresponding state transitions as shown in
Fig. 5. We next discuss whether those new states can be modeled
using traditional probability distributions.

Following the same methodology mentioned in §4.1 we first
apply traditional probability distributions to the sojourn time of
each state for each combination of UE clusters, 1-hour intervals,
and device types. We then apply both the K–S test and the �2 test
to the Poisson distribution and apply only the K–S test to the other
distributions, since the�2 test can only be applied to some common
distributions at the moment (e.g., normal and exponential).

Results. Table 10 shows all traditional distributions cannot prop-
erly model the sojourn time of UE staying in those states for each
UE cluster of all three types of devices. For the Poisson distribution,
close to zero intervals and up to 2.9% of the intervals can pass the
K–S test and the �2 test, respectively. For the other distributions,
the Pareto distribution achieves the largest percentage of the 1-hour
intervals that pass the K-S test over all UE clusters, i.e., up to 24.5%,
while the Weibull distribution and the Tcplib distribution have at
most 21.5% and 3.3% of intervals that pass the test.

B SUPPLEMENTARY MACROSCOPIC
ANALYSIS FOR MODEL VALIDATION

This appendix provides supplementary macroscopic analysis (dis-
cussed in §8.1) to validate the proposed models under Scenario 1
with 38K UEs.

Table 11 shows that for Scenario 1, the proposed method synthe-
sizes a trace whose breakdowns of control-plane events for all three
types of devices are much closer to those of the real trace, than
those of the trace generated by all three baselines. For SRV_REQ
and S1_CONN_REL, the percentages in the synthesized trace by
our method only differ from those in the real trace by 1.3%/1.1%
(phones), 5.0%/2.1% (connected cars) and 0.1%/-0.3% (tablets) . In
contrast, for the baseline, the percentages of those two event types
differ themost from those in the real trace by -45.5%/-46.6% (phones),
-37.5%/-42.3% (connected cars) and -45.9%/-47.6% (tablets). With
clustering,�1 has smaller differences than the baseline, i.e., -36.4%/-
37.2% (phones), -33.0%/-37.5% (connected cars), and -28.4%/-29.5%
(tablets). As �2 follows the proposed two-level state machine with
clustering, the differences further decreases to 0.6%/0.3% (phones),
5.8%/2.7% (connected cars) and 0.5%/-0.1% (tablets).
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Table 8: Percentages of the 1-hour intervals whose inter-arrival time of different event types or sojourn time in the four
EMM/ECM states passes the statistical tests for traditional probability distributions without UE clustering.

Test Device
Type ATCH DTCH

SRV
_REQ

S1_CONN
_REL

HO TAU REG. DEREG. CONN. IDLE

Poisson
(K–S)

Phones 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
Conn. Cars 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
Tablets 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

Poisson
(�2)

Phones 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
Conn. Cars 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
Tablets 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

Pareto
(K–S)

Phones 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
Conn. Cars 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
Tablets 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

Weibull
(K–S)

Phones 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
Conn. Cars 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
Tablets 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

Tcplib
(K–S)

Phones 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
Conn. Cars 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
Tablets 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

Table 9: Percentages of the 1-hour intervals whose inter-arrival time of different event types or sojourn time in the four
EMM/ECM states passes the statistical tests for traditional probability distributions with UE clustering.

Test Device
Type ATCH DTCH

SRV
_REQ

S1_CONN
_REL

HO TAU REG. DEREG. CONN. IDLE

Poisson
(K–S)

Phones 2.0% 5.0% 0.5% 0.5% 0.1% 0.0% 0.0% 0.0% 0.0% 0.2%
Conn. Cars 2.5% 5.0% 0.2% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
Tablets 0.0% 0.6% 0.1% 0.1% 0.0% 0.0% 0.0% 0.0% 0.0% 0.2%

Poisson
(�2)

Phones 3.0% 12.5% 3.0% 2.7% 0.2% 0.0% 0.0% 1.4% 0.1% 1.3%
Conn. Cars 16.5% 23.8% 0.9% 0.0% 0.2% 0.1% 0.0% 0.0% 0.0% 0.1%
Tablets 0.5% 6.5% 0.8% 0.2% 0.0% 0.0% 0.0% 0.0% 0.1% 1.0%

Pareto
(K–S)

Phones 0.0% 0.0% 0.1% 0.7% 7.8% 10.2% 0.0% 0.0% 2.9% 5.0%
Conn. Cars 0.0% 0.0% 0.0% 0.3% 3.9% 9.7% 0.0% 0.2% 0.0% 0.7%
Tablets 0.5% 0.0% 0.5% 1.2% 5.0% 6.0% 0.0% 0.0% 3.4% 2.7%

Weibull
(K–S)

Phones 22.0% 40.0% 7.5% 5.5% 10.2% 10.2% 0.0% 1.4% 1.1% 5.3%
Conn. Cars 2.5% 0.0% 1.9% 0.8% 18.7% 10.4% 0.1% 0.0% 0.0% 0.5%
Tablets 6.6% 20.7% 3.3% 3.3% 11.8% 7.3% 0.0% 3.4% 0.9% 1.7%

Tcplib
(K–S)

Phones 0.0% 0.0% 0.4% 0.4% 0.3% 0.3% 0.0% 0.0% 0.3% 0.3%
Conn. Cars 0.0% 0.0% 0.0% 0.0% 1.5% 1.5% 0.0% 0.0% 0.0% 0.0%
Tablets 0.0% 0.0% 0.5% 0.6% 0.0% 0.0% 0.0% 0.0% 0.3% 0.3%

Table 11 also shows that for HO events, which should happen only
in the CONNECTED state, our method reproduces similar fractions
of HO in CONNECTED and stops generating HO in IDLE. Specifically,
in CONNECTED, the absolute differences in the percentages between
our synthesized trace and the real trace are -1.7% (phones), -4.6%
(connected cars) and -0.3% (tablets). They are much smaller than
those between the traces synthesized by the baseline and the real
traces, i.e., 44.0% (phones), 40.9% (connected cars) and 46.7% (tablets).
With clustering, �1 has much smaller differences from the real
traces than Base, i.e., 21.3% (phones), 10.7% (connected cars) and
13.2% (tablets). After applying both clustering and the two-level
state machine, �2 achieves the differences of -2.2% (phones), -5.3%
(connected cars) and -0.7% (tablets). In IDLE, the baseline and �1

mistakenly generate 29.5%∼46.6% of the total events as HO for the
three device types, because the state dependence for HO is not cap-
tured by the EMM−ECM state machine. For TAU, which can happen
in both CONNECTED and IDLE, our method can synthesize TAU in

different ECM states correctly. The differences in the percentages
between the synthesized and real traces for TAU in CONNECTED/IDLE
are -0.3%/-0.5% (phones), -0.8%/-3.1% (connected cars), and -0.1%/-
0.7% (tablets). In contrast, the traces synthesized by the baseline
and �1, which follow the EMM−ECM state machine, have much
larger differences from the real trace, i.e., 1.5%∼10.8% (phones), -
1.9%∼15.9% (connected cars), and 1.3%∼10.6% (tablets). The results
above show that our proposed two-level state machine can capture
the state dependence well.

C SUPPLEMENTARY MICROSCOPIC
ANALYSIS FOR MODEL VALIDATION

This appendix provides supplementary microscopic analysis (dis-
cussed in §8.1) to validate the proposed models. Specifically, for
each device type, we plot the CDFs to examine the entire range
of number of SRV_REQ/S1_CONN_REL per UE synthesized by our
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Table 10: Percentages of 1-hour intervals over all clusters that pass the two standard statistical tests for the state transitions
(denoted as outbound state−trigger event) in the two second-level state machines.

Test Device
Type

SRV_REQ
_S-HO

HO_S
-HO

TAU_S
_C-HO

SRV_REQ
_S-TAU

TAU_S
_C-TAU

HO_S
-TAU

S1_REL
_1-TAU

S1_REL
_2-TAU

TAU_S_I
-S1_REL

Poisson
(K–S)

Phones 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
Conn. Cars 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
Tablets 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

Poisson
(�2)

Phones 0.0% 0.2% 0.9% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
Conn. Cars 0.0% 0.1% 0.0% 0.0% 0.0% 2.9% 0.0% 0.0% 0.0%
Tablets 0.0% 0.7% 0.0% 0.0% 0.0% 0.0% 0.8% 0.0% 0.0%

Pareto
(K–S)

Phones 24.5% 5.9% 8.8% 0.0% 0.0% 0.0% 2.5% 1.6% 0.0%
Conn. Cars 1.3% 4.8% 7.8% 0.0% 0.0% 1.3% 0.0% 0.3% 0.0%
Tablets 14.2% 12.8% 10.0% 0.0% 0.0% 1.6% 0.0% 0.6% 0.0%

Weibull
(K–S)

Phones 6.5% 5.2% 4.3% 0.0% 0.0% 0.4% 21.5% 12.3% 0.0%
Conn. Cars 18.1% 15.6% 15.0% 0.0% 0.0% 17.0% 1.6% 0.9% 0.0%
Tablets 16.7% 9.5% 3.3% 0.0% 0.0% 1.6% 9.0% 4.2% 0.0%

Tcplib
(K–S)

Phones 0.5% 0.2% 1.2% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
Conn. Cars 0.0% 0.4% 0.0% 0.0% 0.0% 0.0% 0.3% 0.0% 0.0%
Tablets 0.0% 0.0% 3.3% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

Table 11: Differences of breakdown of events between the real trace and the synthesized traces generated by different methods
for each device type under Scenario 1 with 38K UEs. The smaller the differences, the more accurate the model.

Phones Connected Cars Tablets
Real Base �1 �2 Ours Real Base �1 �2 Ours Real Base �1 �2 Ours

ATCH 0.1% -0.1% +0.0% +0.0% +0.0% 0.8% -0.8% -0.6% +0.5% +0.4% 0.5% -0.5% -0.1% +0.5% +0.5%
DTCH 2.0% -2.0% -1.7% +0.1% +0.1% 6.1% -6.1% -5.7% +1.0% +1.0% 2.3% -2.2% -1.5% +0.8% +0.8%

SRV_REQ 45.6% -45.5% -36.4% +0.6% +1.3% 37.6% -37.5% -33.0% +5.8% +5.0% 46.1% -45.9% -28.4% +0.5% +0.1%
S1_CONN_REL 46.8% -46.6% -37.2% +0.3% +1.1% 42.4% -42.3% -37.5% +2.7% +2.1% 47.8% -47.6% -29.5% -0.1% -0.3%
HO (CONN.) 3.5% +44.0% +21.3% -2.2% -1.7% 7.1% +40.9% +10.7% -5.3% -4.6% 1.6% +46.7% +13.2% -0.7% -0.3%
HO (IDLE) +0.0% +46.6% +32.6% +0.0% +0.0% +0.0% +46.1% +38.3% +0.0% +0.0% +0.0% +45.8% +29.5% +0.0% +0.0%
TAU (CONN.) 0.7% +2.1% +10.8% -0.4% -0.3% 1.3% +1.5% +15.9% -0.9% -0.8% 0.3% +2.5% +6.4% -0.2% -0.1%
TAU (IDLE) 1.2% +1.5% +10.5% -0.6% -0.5% 4.7% -1.9% +11.9% -3.3% -3.1% 1.5% +1.3% +10.6% -0.9% -0.7%

(a) SRV_REQ of P (b) SRV_REQ of CC (c) SRV_REQ of T

(d) S1_CONN_REL of P (e) S1_CONN_REL of CC (f) S1_CONN_REL of T

Figure 7: Comparison of CDFs of number of SRV_REQ/S1_CONN_REL per UE between the synthesized and real 1-hour traces for
three types of devices in Scenario 2 with 380,000 UEs.
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proposed method, and compare them with those generated by the
baseline method.

Figure 7 presents under Scenario 2 with 38K UEs, similar to
phones, both connected cars and tablets have no explicit visual
difference in the y-axis of the CDFs between the real and synthe-
sized traces using our proposed traffic model. However, for the
baseline, there exist visible differences in the y-axis of the CDFs,
compared with the real trace. Specifically, our proposed method has
3.52×∼7.92×, 1.16×∼3.63×, and 3.07×∼11.14× smaller maximum

y-distance than the baseline method for phones, connected cars,
and tablets, respectively.

D ETHICS
The original control-plane traffic traces collected have the user
identity anonymized, ensuring the protection of user privacy. The
anonymization process separates any personally identifiable infor-
mation from the collected data, thereby preserving the anonymity
of individuals. This work does not raise any ethical issues.
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