
Poster: Can Mobile Hardware Keep Up with Today’s
Gigabit Wireless Technologies?

Shivang Aggarwal1, Swetank Kumar Saha1, Pranab Dash2, Jiayi Meng2,
Arvind Thirumurugan1, Dimitrios Koutsonikolas1, Y. Charlie Hu2

1University at Buffalo, The State University of New York, 2Purdue University
{shivanga,swetankk,athirumu,dimitrio}@buffalo.edu,{dashp,meng72,ychu}@purdue.edu

ABSTRACT
With the advent of bandwidth-hungry applications and the
new advancements in wireless LAN standards (802.11ad,
802.11ay) and cellular technologies (5G), modern smart-
phones need to be able support multi-Gbps data rates. In
this work, we explore if today’s smartphones are capable of
handling such high-speed network traffic. Using two high-
end smartphones, we show that, contrary to previous beliefs,
they can indeed support Gbps data rates without significant
strain on their hardware resources. Using projections, we
further show that up to 12.8 Gbps could be supported with
just 50% CPU utilization. Finally, we explore the factors that
make this possible and the contribution of each of them.
ACM Reference Format:
Shivang Aggarwal, Swetank Kumar Saha, Pranab Dash, Jiayi Meng,
Arvind Thirumurugan, Dimitrios Koutsonikolas, Y. Charlie Hu.
2019. Poster: Can Mobile Hardware Keep Up with Today’s Gigabit
Wireless Technologies? In The 25th Annual International Confer-
ence on Mobile Computing and Networking (MobiCom ’19), October
21–25, 2019, Los Cabos, Mexico. ACM, New York, NY, USA, 3 pages.
https://doi.org/10.1145/3300061.3343398

1 INTRODUCTION
An entire class of smartphone applications is emerging that
demands multi-Gbps from the underlying wireless network.
Examples of such applications include mobile Virtual reality
(VR)/Augmented reality (AR) and live 4K video streaming.
This list is bound to grow in the future as app developers
race towards providing immersive experiences to smart-
phone users and as more video content starts becoming
available at ultra-high resolutions.

Research in the wireless networking space did predict this
need and has come up with solutions and technologies that
are indeed capable of providingmulti-Gbps data rates. In the
Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for third-party components of this work must be honored. For all other
uses, contact the owner/author(s).
MobiCom ’19, October 21–25, 2019, Los Cabos, Mexico
© 2019 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-6169-9/19/10.
https://doi.org/10.1145/3300061.3343398

context of indoor WLANs, IEEE 802.11ad and the upcoming
802.11ay are the prime technologies that are capable of
Gigabit throughput. On the cellular side, with the advent
of 5G, there are several candidates (e.g., mmWave around
28/39 GHz) that hold the promise of breaking the one Gbps
end-to-end throughput barrier. In fact, consumer devices
supporting multi-Gbps throughput are already available
in the market including but not limited to laptops (Acer
TMP648-MG-789T) and routers (Netgear Nighthawk R9000)
with 802.11ad chipsets and smartphones equipped with
802.11ad and 5G interfaces (Asus ROG, Samsung Galaxy
S10 5G, Moto Z3 5G Mod).
The smartphone is a critical component of this emerg-

ing ecosystem but, surprisingly, it has not received enough
attention to assess whether the device hardware can meet
the demands that come with supporting multi-Gbps net-
work speeds. In fact, several previous works (e.g., [1, 2])
have projected that CPU processing in smartphones may
become a bottleneck even if networking technologies were
to support such high data rates. Based on these projections,
they have even proposed solutions that favor performing
certain computation on-board the smartphone as opposed
to offloading to remote servers.
In this work, we examine this assumption and seek to

answer the following question: can mobile hardware keep
up with today’s and future’s multi-Gbps wireless technolo-
gies? Specifically, we examine two top-tier Android devices,
Google Pixel 2 (Oct. 2017) and Asus ROG phone (Oct. 2018),
and explore how they would perform under Gigabit-scale
network traffic. We not only find that these devices are ca-
pable of supporting 1.6 Gbps network traffic but also show
using projections that they are future-proof with the Pixel
2 phone capable of supporting up to 2.3 Gbps and the ROG
phone up to 12.8 Gbps. Next, we investigate further to un-
derstand why our observations are in stark contrast to past
projections. Specifically, we focus on two important fac-
tors that we believe significantly affect CPU performance:
(1) CPU Affinity in the context of the big.LITTLE archi-
tecture and (2) impact of TCP/Generic Segmentation Of-
floading (TSO/GSO) and Generic Receive Offloading (GRO).
Lastly, we look at two other factors critical for smartphones,
namely Energy Aware Scheduling (EAS) and battery life

https://doi.org/10.1145/3300061.3343398
https://doi.org/10.1145/3300061.3343398
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3300061.3343398&domain=pdf&date_stamp=2019-10-11


and show that these are not prohibitive to supporting Gbps
network speeds.

2 EXPERIMENTAL SETUP
Table 1: Phone Specifications.

Google Pixel 2 ASUS ROG Phone

CPU
Snapdragon 835 (Octa-core,
4x2.46GHz & 4x1.90GHz)

Snapdragon 845 (Octa-core,
4x2.96GHz & 4x1.76GHz)

RAM 4GB 8GB
Battery 2700mAh 4000mAh
WiFi 802.11a/b/g/n/ac 802.11a/b/g/n/ac/ad
OS Android 9.0 (Pie) Android 8.1 (Oreo)

Devices. Table 1 lists the two smartphones used in our
study along with their hardware specifications. The ROG
phone, with its newer processor, supports a higher maxi-
mum CPU frequency than the Pixel 2. Both CPUs are built
on top of ARM’s big.LITTLE architecture with 2 clusters
with 4 cores in each. The ROG phone hosts an 802.11ad NIC
which is capable of providing data rates up to ∼1.65 Gbps,
in addition to a legacy 802.11ac NIC present in both devices
capable of providing data rates up to ∼500 Mbps.
Methodology.We use iperf3 to generate TCP traffic with
sources rates varying from 100 Mbps to the maximum sup-
ported by the device and log the Total and Soft IRQ (used
for processing incoming network packets) CPU utilization
on the smartphone from /proc/stats. All results reported
are averages of several 60 s downlink data transfer sessions.
For each device, we use the network interface/technology
that provides the maximum throughput (802.11ac for Pixel
2; 802.11ad for ROG phone).

3 CPU PERFORMANCE
3.1 Baseline
To establish a baseline, we measure the Total and Soft IRQ
(SIRQ) CPU utilization under backlogged traffic. For Pixel 2,
with the 802.11ac interface, we observed a maximum down-
link throughput of 542 Mbps with the total CPU utilization
around 11.6%. Out of the total CPU utilization, SIRQs ac-
count for 8.5%, a significant portion of the total value. The
ROG phone using its 802.11ad interface supports a much
higher throughput of ∼1.7 Gbps while keeping its CPU uti-
lization limited to 17.1% (downlink). SIRQs account for 8.1%
out of the total value. Note that maximum frequency for
the ROG phone’s CPU is slightly higher (2.95 GHz vs. 2.46
GHz) than that of Pixel 2 and given that the CPU governors
in the two can behave differently we do not make a direct
comparison of the utilization values here.
3.2 Non-backlogged Traffic
To remove any artifacts arising due to the CPU governor we
manually fix the CPU frequency to the maximum supported
value by each of the two devices. To better understand the
CPU utilization trend for different network loads, we vary
the source data rate at the sender between 100 Mbps and
the maximum throughput supported by each device.

Pixel 2 (Fig. 1(a)) shows a linear trend between CPU uti-
lization (for both Total and SIRQ) and throughput. Since
the maximum throughput is limited by the 802.11ac inter-
face to 500 Mbps, we extrapolate the CPU utilization to 1.6
Gbps which can potentially be supported with less than 50%
CPU utilization. However, note that to support the 4 Gbps
throughput required for wireless AR/VR according to [2],
CPU utilization would hit 84%, making it impractical.
For the ROG phone (Fig. 1(b)), we observed a similar

linear growth of CPU utilization with increasing network
traffic. However, the slope here is rather flat and the CPU
utilization is capped at less than 15% even at the maximum
supported 802.11ad throughput of 1.7 Gbps. Extrapolating
this further, supporting 4 Gbps on the ROG phone would
result in only 19% CPU utilization. In fact, the ROG phone
can potentially support throughputs of up to even 12.8 Gbps
with 50% CPU utilization, still leaving enough unutilized
CPU capacity to be used by other applications. This further
provides us with proof that smartphone devices already
support hardware that can process network traffic at multi-
Gbps speeds and network performance will remain limited
by the wireless technology itself, at least for the near future.

Lastly, in order to do a fair comparison between the two
devices, we set the ROG’s CPU frequency to be the same
as Pixel 2’s maximum supported value (2.46 GHz). Interest-
ingly, we observe (Fig. 1(c)) the CPU utilization trend to be
almost identical to the case when ROG’s CPU was clocked
at its maximum frequency (2.95 GHz). This is especially
surprising given the SoC used by the two phones is just
one generation apart and have CPUs based on the same
architecture. We plan to explore this further in the future.
We also repeated the measurements with several differ-

ent frequencies supported by the big and LITTLE cores of
the ROG phone’s CPU. We observed that ROG phone can
achieve the maximum throughput (1.7 Gbps) at all the big
core frequencies and for all the LITTLE core frequencies
greater than 826 MHz.
3.3 Understanding CPU Utilization
We investigated further to understand how the smartphones
used in our study (especially the ROG phone) are able to
process the Gbps network workloads without spending
significant CPU resources. Here, we discuss two factors
that we believe are significant in this aspect.
3.3.1 Linux Segmentation Offloading. Linux Segmentation
Offloading allows for the CPU-intensive task of packet seg-
mentation to be performed at the network interface card
(NIC) instead of the CPU. On the sender side, TSO/GSO
delays the packet segmentation as much as possible so that
one big chunk of data can traverse down the network stack
instead of multiple small ones reducing the overhead of
processing each packet. On the receiver side, GRO performs
the complementary operation. To evaluate the impact of
these optimizations, we disable them and run our baseline
experiments again with the ROG phone. With GRO off, the



200 400 600 800 1000 1200 1400 1600
Throughput (Mbps)

0

10

20

30

40

50

U
ti

liz
at

io
n

 (
%

)

Total CPU
Soft IRQ

(a) Pixel 2 over 802.11ac at the maximum frequency
(2.46GHz).

300 600 900 1200 1500 1700

Throughput (Mbps)

0

10

20

30

40

50

U
ti

li
za

ti
o

n
 (

%
)

Total CPU
Soft IRQ

(b) ROG Phone over 802.11ad at the maximum fre-
quency (2.95GHz).

300 600 900 1200 1500 1700

Throughput (Mbps)

0

10

20

30

40

50

U
ti

li
za

ti
o

n
 (

%
)

Total CPU
Soft IRQ

(c) ROG Phone over 802.11ad at Pixel 2’s maximum
frequency (2.46GHz).

Figure 1: CPU and SIRQ Utilization at different throughputs.

average throughput is degraded down to 366 Mbps, a sharp
drop from the 1.6 Gbps (with GRO on).
Remark: GSO/GRO optimizations are extremely critical for
achieving multi-Gbps rates.
3.3.2 CPU Affinity. Upon investigating the big drop in
throughput observed in §3.3.1, we realized that CPU1 (which
does most of the SIRQ processing) is fully utilized and hence
becomes the bottleneck. Note that CPU1 is a LITTLE core
(clocked at a maximum of 1.76 GHz). If we move the SIRQ
processing from CPU1 to one of the big cores (say, CPU5),
we observed the throughput improved significantly to 1.23
Gbps. Although this is lower than the GRO-enabled values
(1.7 Gbps), it still amounts to a 4x gain just by moving from
the LITTLE to the big core. Note that it is not trivial to split
SIRQ over a large number of cores as it can potentially cre-
ate out-of-ordering, degrading TCP performance. We plan
to look at designing solutions for split SIRQ processing.
Remark: Selecting the appropriate CPU core is important
to prevent SIRQ processing from becoming the bottleneck.

4 OTHER FACTORS
4.1 Energy Aware Scheduling (EAS)
Another factor that comes into play at these high data rates
is the CPU scheduling policy. Recently, EnergyAware Sched-
uling (EAS) has become popular and more device manufac-
turers are adopting it. EAS gives the Linux kernel sched-
uler hints by looking at the performance and the power
consumption of the CPUs in order to optimize energy con-
sumption. It is enabled by default in the ROG phone but
it is disabled once the phone is connected to a charger. To
quantify the impact of the EAS scheduler, we measure the
throughput in both charging and discharging states and
repeat the measurements with both GRO on and off. With
GRO on, the phone can achieve the maximum throughput
irrespective of the charging states. For the GRO off case, Ta-
ble 2 shows the performance with big and LITTLE cores in
the two states. With the LITTLE core, a maximum of ∼620
Mbps can be achieved while charging and the throughput
drops to almost half (366 Mbps) when the phone is discharg-
ing. Even with big core, the phone supports a maximum

throughput of 1.56 Gbps, close to the maximum value of
1.7 Gbps. However, when discharging, the throughput is
degraded to 1.1 Gbps, a drop of ∼400 Mbps. We also plan to
consider CPU scheduling as one of the aspects to study in
our future work.

Table 2: Throughput (Mbps) with GRO off.

big Core LITTLE Core
Discharging 1183.56 366.17
Charging 1557.44 620.95

Remark: The EAS scheduler can have a detrimental effect
on the network performance if CPU-network optimizations
like GRO are not used.
4.2 Battery Life
An important aspect for practically supporting ultra-fast
data transfers is whether the battery consumption is within
acceptable limits. To test the rate of ROG Phone’s battery
drain due to Gigabit data transfers, we charge the battery
to 100% and run a 20 minute long data transfer in both the
uplink and downlink directions separately. We observed
that the battery percentage dropped by just 4-5% in both
the cases while providing 1.7 Gbps (downlink)/1.4 Gbps (up-
link) throughput. In the future, we plan to do a much more
extensive study using power monitors to better understand
aspects like how much power is consumed by the radio vs.
the CPU for network-related processing.
Remark: Battery life is not significantly affected by long
running Gbps rate data transfers.

5 ACKNOWLEDGEMENTS
Thisworkwas supported in part byNSF grants CNS-1553447,
CNS-1422304, and CNS-1719369.

REFERENCES
[1] Andres Garcia-Saavedra, Pablo Serrano, Albert Banchs, and Giuseppe

Bianchi. 2012. Energy Consumption Anatomy of 802.11 Devices and
Its Implication on Modeling and Design. In Proc. of the ACM CoNEXT
(CoNEXT ’12).

[2] Zeqi Lai, Y. Charlie Hu, Yong Cui, Linhui Sun, and Ningwei Dai. 2017.
Furion: Engineering High-Quality Immersive Virtual Reality on To-
day’s Mobile Devices. In Proc. of the ACM MobiCom (MobiCom ’17).


	Abstract
	1 Introduction
	2 Experimental Setup
	3 CPU Performance
	3.1 Baseline
	3.2 Non-backlogged Traffic
	3.3 Understanding CPU Utilization

	4 Other Factors
	4.1 Energy Aware Scheduling (EAS)
	4.2 Battery Life

	5 Acknowledgements
	References

