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Abstract
Immersive applications such as Augmented Reality (AR)

and Mixed Reality (MR) often need to perform multiple
latency-critical tasks on every frame captured by the camera,
which all require results to be available within the current
frame interval. While such tasks are increasingly supported
by Deep Neural Networks (DNNs) offloaded to edge servers
due to their high accuracy but heavy computation, prior
work has largely focused on offloading one task at a time.
Compared to offloading a single task, where more frequent
offloading directly translates into higher task accuracy, of-
floading of multiple tasks competes for shared edge server
resources, and hence faces the additional challenge of balanc-
ing the offloading frequencies of different tasks to maximize
the overall accuracy and hence app QoE.

In this paper, we formulate this accuracy-centric multitask
offloading problem, and present a framework that dynami-
cally schedules the offloading of multiple DNN tasks from a
mobile device to an edge server while optimizing the over-
all accuracy across tasks. Our design employs two novel
ideas: (1) task-specific lightweight models that predict of-
floading accuracy drop as a function of offloading frequency
and frame content, and (2) a general two-level control feed-
back loop that concurrently balances offloading among tasks
and adapts between offloading and using local algorithms
for each task. Evaluation results show that our framework
improves the overall accuracy significantly in jointly offload-
ing two core tasks in AR — depth estimation and odometry
— by on average 7.6%–14.3% over the best baselines under
different accuracy weight ratios.
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1 Introduction
Fueled by the rise of metaverse, immersive mobile apps

such as Augmented Reality (AR) often need to perform a
number of challenging tasks to provide enhanced user ex-
perience. Consider Pokemon Go, a representative AR app,
where players use their mobile devices to capture, train and
battle with virtual creatures called Pokemon which appear
as if they exist in the real-world environment. Supporting
realistic, interactive, and immersive user experience such
as allowing Pokemon to hide behind a tree or jump on a
tree branch requires performing several essential computer
vision tasks for each frame, at the high frame rate of the
camera capture, e.g., every 16.7 ms: (1) Odometry: While a
player moves within her real-world surroundings, the mo-
bile device needs to track the camera pose to render virtual
objects (e.g., Pokemon) at the correctly perceived locations;
(2) Depth estimation: The mobile device needs to process
the distance information between the camera and physical
objects, in order to correctly render virtual objects into the
physical environment, e.g., allowing Pokemon to hide behind
a tree; (3) Object detection: Being able to identify physical
objects in each camera frame enhances the virtual objects
with spatial and contextual awareness of their surrounding
physical world and allows them to interact accordingly, e.g.,
if a tree branch is nearby, the Pokemon jumps onto it.
Equally importantly, all of the tasks of such an AR app

performed on each frame are latency-critical; the results
for the current frame need to be available in the current
frame interval, as otherwise they will miss the rendering for
the current frame, as dictated by the stringent QoE of AR
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apps, e.g., 60 FPS [47]. We note this is a critical difference
from latency-sensitive applications such as video analytics
pipelines where frames of surveillance cameras are uploaded
to the cloud for real-time analytics which can tolerate a
delay of hundreds of milliseconds [45]. To clearly distinguish
the two scenarios, we denote the accuracy returned by AR
tasks as the current-frame accuracy (CFA), and that for video
analytics pipelines as delayed-frame accuracy (DFA).
Deep Neural Network (DNN) models have been increas-

ingly used to support these complex AR tasks due to their
high accuracy (e.g., [13, 20, 28, 34, 53, 54]). In contrast, tra-
ditional AR frameworks, e.g., ARCore, have several known
limitations including low resolution and only getting ac-
curate results for up to 5 meters for depth estimation [8].
However, the high-accuracy, DNN-based solutions are gen-
erally computationally heavy. Running state-of-the-art DNN
models on commodity mobile devices could take hundreds
of milliseconds or even seconds [47, 50, 63]. To attain high
accuracy results on resource-constrained devices, offload-
ing (also known as edge-assisted solutions) has been pro-
posed [6, 47, 49], where camera frames are uploaded to a
cloud or edge server for DNN inference.

Despite the importance of offloading multiple tasks of an
AR app, the large amount of recent work on edge-assisted
AR have focused on offloading a single task at a time, in
particular, object detection (e.g., [18, 39, 41, 66]), assuming a
user (AR app) is allocated a dedicated edge server or GPU.
Such solutions can potentially be applied to offloading multi-
ple tasks of an AR app of a user by allocating each offloaded
task a dedicated GPU. However, such an approach is not
cost-effective and not scalable. In fact, to control the server
cost, in a shared edge cloud, a user may only be allocated
a slice of a GPU [1, 16, 56]. For example, in Amazon Elastic
Inference, GPUs are partitioned and priced per TFLOPS [56].
Offloading multiple tasks of a latency-critical app faces

a new design objective beyond that for offloading a single
task. In offloading a single task, when the end-to-end offload-
ing latency is longer than a frame interval, which happens
often due to server inference and frame transfer delay, the
task result for the current frame is generated by either di-
rectly returning the last server-returned result (e.g., [50])
or by applying some local tracking technique to that result
(e.g., [17, 18, 47, 50]). In both cases, the current frame accu-
racy suffers from staleness of the last server-returned result.
Hence, in offloading a single task, the primary goal is to
reduce the end-to-end offloading latency, as the lower the
end-to-end offloading latency, the less stale the last server-
returned result, and the higher the task accuracy.
In contrast, when an app needs to offload multiple tasks,

which compete for shared resources allocated to a user (e.g.,
edge server GPU), offloading of different tasks have to be
interleaved in some manner which increases the staleness of
the last returned server inference result for each task and ad-
versely affects the accuracy of all tasks. Since the accuracy of

different tasks can affect the app QoE differently, in addition
to reducing the end-to-end offloading latency for each task,
multitask offloading faces a new design goal: how to balance
the offloading of different tasks to maximize the overall accu-
racy that ultimately determines the app QoE. Existing works
on multi-DNN inference scheduling (e.g., [19, 30, 42, 71, 76])
only focus on maximizing throughput or reducing SLO vio-
lation, without consideration for accuracy.
In general, the combination of task accuracies that opti-

mize the app QoE is app specific and is beyond the scope
of this paper. We assume such a function 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦_𝑚𝑒𝑟𝑔𝑒 ()
that merges the accuracies of all app tasks into a single over-
all accuracy metric is given, e.g., by the app developer. We
formally state the accuracy-centric multitask offloading
(AccuMO) problem:

Given the function 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦_𝑚𝑒𝑟𝑔𝑒 () for an app that of-
floads multiple tasks 𝑡1, . . . , 𝑡𝑘 and the server resource con-
straints, how to schedule the offloading of the tasks to maximize
the overall accuracy 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦_𝑚𝑒𝑟𝑔𝑒 (𝑡1, . . . , 𝑡𝑘 )?

Tackling the above multitask offloading scheduling prob-
lem faces two challenges: (1) How to estimate the accuracy
or accuracy drop if a task is offloaded under a candidate
schedule? (2) How should the scheduler balance offloading
of different tasks in an online manner given the interde-
pendence between current and future offloading decisions,
while maximizing the overall accuracy?

In this paper, we present a framework called AccuMO
that dynamically schedules offloading of multiple compute-
intensive DNN tasks of an AR app from a mobile device to
an edge server while optimizing the overall accuracy across
the tasks. Our design is motivated by two key insights we
made about AR tasks: (1) local tracking accuracy drop rates
are content-dependent, and different tasks may be affected
by different content features; (2) although offloading solu-
tions achieve higher accuracies than directly running a local
algorithm on the device, e.g., a lite model, on average, the
local algorithm may perform better on selected frames, e.g.,
when the camera is moving fast and local tracking suffers
from low continuity across consecutive frames.

In addition to maximizing the overall accuracy of the tasks,
an additional design goal of the AccuMO framework is to
easily support any mix of app tasks. To achieve this, we
develop a modular design that runs two concurrent control
loops that both adapt according to frame content dynamics:
a low-level control loop is per task and adapts between local
tracking and using the local algorithm for each frame, and a
global control loop runs model predictive control (MPC) [15]
to dynamically balance offloading of the tasks.
We have implemented the AccuMO framework and two

core tasks of immersive AR apps — depth estimation and
odometry — on commodity Android phones and GPU servers.
Our evaluation using a large set of videos with diverse frame
content and camera movement show that in jointly offload-
ing the two core tasks in AR on commodity devices,AccuMO



AccuMO: Accuracy-Centric Multitask Offloading in Edge-Assisted Mobile Augmented Reality ACM MobiCom ’23, October 2–6, 2023, Madrid, Spain

improves the overall task accuracy over the best baseline by
2.3%–11.9% (avg. 7.6%), 6.7%–14.6% (avg. 10.1%), 10.8%–16.7%
(avg. 14.3%), 2.3%–15.2% (avg. 11.2%), and -2.8%–23.9% (avg.
11.2%) under 5 diverse accuracy weight ratios. In particular,
AccuMO improves the accuracies of both tasks simultane-
ously over round-robin scheduling by up to 13.4% for depth
estimation and up to 33.8% for odometry.

In summary, our main contributions are as follows:
• We present, to our best knowledge, the first accuracy-
centric multitask offloading framework that jointly op-
timizes the overall accuracy of multiple tasks of an AR app
running on a mobile device to an edge server.

• We present a novel two-level control feedback loop design
that allows for easily adding new tasks while optimizing
the overall accuracy across the tasks.

• We also present the first, complete edge-assisted offload-
ing design for two core AR tasks, depth estimation and
odometry, which includes local trackers, local algorithms,
and novel accuracy models, which are used to dynamically
select between them.

• We implement and experimentally validate our AccuMO
framework design by comparing it with various static
offloading schemes.
We have open-sourced the AccuMO framework to stimu-

late further research on multitask offloading in AR.1

2 Background: TheOffloading + Local Track-
ing Paradigm

In this section, we give a brief background on the popular
offloading + local tracking paradigm.
In edge-assisted AR, even with powerful GPUs, a typi-

cal DNN inference still takes tens of milliseconds, failing to
return the result within the same frame interval. For exam-
ple, models in Meta’s object detection model zoo [60] have
a median inference time of 52.5 ms on Tesla V100, much
longer than the per-frame time of 16.7 ms needed by an AR
app running at 60 FPS [47]. In such cases, the result of an
offloaded frame may come back several frame intervals later,
and stale server-returned results have to be used for the
interim frames, resulting in reduced accuracy.

To mitigate the staleness of server DNN inference results,
local tracking has been proposed to generate more accurate
task results for the current frames than simply using the
last returned result from the server [5, 7, 17, 18, 25, 47, 48,
50, 64, 65, 67, 70, 74]. Specially, a local tracker runs on the
mobile device and adjusts the DNN inference results for the
last offloaded frame 𝑓𝑙 sent back by the server to generate
refined results for the current frame 𝑓𝑐 , by analyzing the
changes between the stale frame 𝑓𝑙 and the current frame
𝑓𝑐 , as shown in Figure 1a. We denote edge-assisted solutions
that exploit local tracking as the offloading + local tracking
paradigm. Local trackers are fast and can typically finish

1https://github.com/JonnyKong/AccuMO
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Figure 1: The offloading + local tracking paradigm.

within one frame time. They are also task-specific and often
custom-designed for each type of tasks. For example, for
object detection, local trackers usemotion vectors to estimate
the movement of an object within a bounding box, and adjust
the bounding box accordingly [47, 70].
While local tracking improves the accuracy of the result

for the current frame 𝑓𝑐 (compared to directly reusing the
last server returned result), the gap between its accuracy and
that of running the server DNN model (if we could), denoted
as accuracy drop, still widens with tracking stride, defined
as the frame distance between 𝑓𝑙 and 𝑓𝑐 , due to increased
staleness of the results for frame 𝑓𝑙 . For example, in Figure 1a,
the tracking stride is 2 for frame 𝑘 + 2, and 3 for frame 𝑘 + 3,
since the local tracker has to use the last returned result for
frame 𝑘 in performing local tracking for these two frames.
Prior work also examined other optimizations for DNN

offloading for AR, e.g., pipelining [47, 50] and frame compres-
sion [17, 18, 47]. However, under the network conditions we
consider, e.g., 802.11ac, pipelining is less effective as DNN in-
ference latency dominates network delay (§8.3), while frame
transmission time saved by compression is offset by the com-
pression overhead. To our knowledge, local tracking is the
only design option (apart from on-device lite models) that
ensures the results for the current frame are available in the
current frame interval.

3 Motivation
3.1 Accuracy Impact of Multitask Offloading
Compared to single-task offlaoding, multitask offloading

impacts the task accuracy and hence the app QoE in two
ways: (1) it reduces per-task accuracy, and (2) it can reduce
accuracy for different tasks by different amount. To quan-
tify these impact, we conducted a measurement study using
depth estimation and odometry as the two example tasks.
Offloading each task follows the offloading + local tracking
paradigm discussed above. The server runs DNN models
AdaBins [10] and DAVO [40] for the two tasks, respectively,

https://github.com/JonnyKong/AccuMO
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Table 1: Task accuracies under different offloading schedules.

Single task RR WRR 1:2

Depth estimation (AbsRel ↓) 0.166 0.192 0.213
Odometry (𝑡𝑒𝑟𝑟 ↓) 0.038 0.094 0.066

Overall accuracy w/ (0.5, 0.5) weights N/A 0.143 0.140
Overall accuracy w/ (0.7, 0.3) weights N/A 0.163 0.169

where a single inference of the two models takes 49 ms and
54 ms on an NVIDIA RTX 2080 Ti GPU. The client runs warp-
ing and Kalman filter (see §6 for details) as the local trackers
for the two tasks. The client and the server are connected
with 802.11ac. We report the absolute relative error (AbsRel)
for depth estimation and the KITTI odometry metric (𝑡𝑒𝑟𝑟 )
for odometry, averaging over all videos in the dataset. The
detailed setup, metrics, and dataset can be found in §8.1. In
single-task offloading, each task is offloaded back to back. In
offloading both tasks, we used the simple round-robin and
several other static schemes.
Impact on per-task accuracy. Table 1 shows the average
accuracies across all videos in our dataset. Compared to
single-task offloading, i.e., only running and evaluating one
of the tasks, the accuracies of the two tasks when offloaded
under round-robin drop by 15.7% and 166.7%, respectively.
Intuitively, the reason for the accuracy drop in concurrent
offloading is the reduced offloading frequency, and hence
increased local tracking stride. Increased local tracking stride
affects the average local tracking accuracy in two ways: (1)
frame 𝑓𝑙 which corresponds to the latest offloading result
becomes more stale and hence less similar compared to the
current frame 𝑓𝑐 , which leads to less accurate local tracking;
(2) more frames, e.g., all frames between 𝑓𝑐 and 𝑓𝑐+𝑠𝑡𝑟𝑖𝑑𝑒−1,
will be using the stale result (from the server) for 𝑓𝑙 in lo-
cal tracking. The average depth estimation tracking stride
increases from 6.68 when offloaded alone to 8.75 when of-
floaded along with the second task in a round-robin manner.
Impact on relative accuracy drop.We repeated the two-
task offloading experiment by changing round-robin to re-
peatedly offloading depth estimation once followed by of-
floading odometry twice, denoted as the “WRR 1:2” scheme.
Table 1 shows compared to round-robin, such an offload
schedule improves the accuracy of odometry by 29.8% at the
cost of reducing the accuracy of depth estimation by 10.9%.
Assume a hypothetical accuracy merge function that calcu-
late the overall accuracy as the weighted accuracy of the two
tasks. Table 1 shows that under (0.5, 0.5) weights, WRR 1:2
achieves 2.4% higher overall accuracy than RR, while under
(0.7, 0.3), RR achieves 3.7% higher accuracy than WRR 1:2.
3.2 Prior Work on DNN Offloading

The large amount of prior work on DNN offloading have
primarily focused on single-task offloading, and the few ex-
ceptions onmulti-task offloading did not consider optimizing
the current frame accuracy (CFA) of the offloaded tasks.
DNN offloading for a single task. Researchers have de-
signed many DNN offloading systems for single AR tasks

Table 2: Comparison between AccuMO and other works on
multitask offloading.

Application Objective

MCDNN [33] Video analytics Max. DFA
LinkShare [35] Low frame rate apps Min. deadline violation

AccuMO AR / latency-critical apps Max. CFA

such as object detection [17, 18, 47], human pose estima-
tion [47], and depth estimation [50]. Glimpse [18] sends
key frames to the server side to perform object detection,
and employs local tracking on the client side to mask the
offloading latency. Liu et al. [47] additionally employ opti-
mizations like pipelined streaming and inference as well
as region-of-interest encoding. In addition to visual fea-
tures, MARVEL [17] utilizes IMU data to track the objects.
Meng et al. [50] examines the performance of offloading the
depth estimation task under different setups, e.g., with or
without local tracking and under different bandwidths.

There have also been much work on DNN offloading with
a single DNN task with relaxed latency constraints, in par-
ticular, for video analytics. These work propose several tech-
niques to optimize the offloading latency. (1) Frame com-
pression algorithms specifically designed for DNN offload-
ing were proposed to improve the compression ratio and
task accuracy over standard image/video compression algo-
rithms [23, 62, 66]. (2) Offloading regions of interest [49] or
key frames [45] also reduces frame transmission latency. (3)
Partial offloading splits the DNN model between the mobile
device and the server, at an intermediate DNN layer that
is significantly smaller than the input [9, 24, 36, 39, 43, 44].
Researchers have also studied special cases of the offload-
ing problem, e.g., for high resolution frames [75] and when
multiple devices offload similar data [22, 31].
Offloading multiple DNN tasks. While most works on
optimizing DNN inference for mobile devices have focused
on one task at a time, few works studied offloading mul-
tiple DNN tasks. Table 2 compares existing multitask of-
floading works with AccuMO. A major difference is that
both MCDNN [33] and LinkShare [35] target applications
with relaxed latency requirements such as video analytics,
while AccuMO focuses on latency-critical applications like
AR. LinkShare does not optimize overall accuracy. MCDNN
tries to maximize the overall accuracy, but it only focuses on
delayed frame accuracy (DFA). In contrast, AccuMO maxi-
mizes overall current-frame accuracy (CFA) for AR apps.
Local tracking. Local trackers have been developed for a
variety of computer vision tasks — these techniques are or-
thogonal and can benefit both single-task andmultitask DNN
offloading. Local trackers for object detection are based on
feature point extraction and matching [7, 18], correlation
filters [48, 64, 65], motion vectors [47], optical flow [17],
and/or inertial data [17]. Human object detection and super-
resolution local trackers both utilize motion vectors [25, 47,
67, 74], while the local tracker for depth estimation relies on
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Figure 2: Accuracy drop timeline for depth estimation and
odometry on a sample video when increasing the stride from
6 to 12.

warping [50].
Optimizing multiple tasks on-device. For on-device DNN
inference, Potluck [32] enables computation reuse across
applications on the same mobile device via caching, Heim-
dall [68] coordinates DNN execution and rendering by parti-
tioning and scheduling DNNs in blocks, and RT-mDL [46]
schedules a series of compressed models across mobile CPU
and GPU based on their accuracy and latency requirements.
These systems are all designed for non-real-time applications,
and do not meet the latency requirements of AR.

4 Key Insights
Intuitively, as the task accuracy is correlated with its of-

floading frequency, the key to multitask offloading schedul-
ing is to balance offloading of multiple tasks under the con-
straint of edge server resource, e.g., the GPU. If the accuracy-
offloading frequency correlation is static, the optimal offload-
ing schedule can be derived offline. However, we observe
that frame content can affect the offloading accuracy. In this
section, we discuss two key observations that motivate our
adaptive online multitask offloading design.
(1) Offloading frequency-accuracy correlation is frame-
dependent. Figure 2 shows the local tracking accuracy drop
timeline of the two tasks on a sample video when increasing
the stride from 6 to 12. From the timeline, we see that local
tracking accuracy drops for both tasks change over time.
After comparing the accuracy drops with the input frames
side by side, we observe that the accuracy drop rate (accuracy
drop per frame delay) is affected by the frame content. For
example, Figure 2 annotates two data points with different
depth estimation accuracy drops with their corresponding
frames. The one corresponding to high depth estimation
accuracy drop has larger regions of cars, because warping —
the local tracker for depth estimation — cannot accurately
handle regions with moving objects (see §6.1). Furthermore,
Figure 2 shows that there is minimal correlation between
the local tracking accuracy drops of the two tasks. In fact,
the accuracy drop rate of odometry is instead affected by the
angular velocity of the camera (see §6.2.3). We thus make
our first observation: (K1) Local tracking accuracy drop rates
are content-dependent, and different tasks may be affected by
different content features.
Design challenges. This observation suggests that instead

0 500 1000 1500 2000
Frame

0.0

0.4

0.8

1.2

Ab
sR

el

Round-robin offloading
Local algorithm

Figure 3: Depth estimation accuracy timeline of round-robin
offloading vs. the local algorithm FastDepth on a sample
video. Round-robin offloading has the same setup as Table 1.

of offloading the tasks following some static schedule, e.g.,
round-robin, adaptively increasing (decreasing) a task’s of-
floading frequency when its local tracking accuracy drop
rate goes up (down) can potentially result in improved over-
all accuracy for all tasks. Designing a framework to exploit
this observation faces several challenges: (i) how to estimate
the local tracking accuracy drop rates during runtime? (ii)
how to make the optimal offloading decisions?
(2) Is local tracking the best thing to do on-device? We
experimentally compare offloading + local tracking with run-
ning local algorithms, which are either lite DNN models or
conventional algorithms that can finish within one frame
interval on the mobile device. Figure 3 compares the depth
estimation accuracy obtained from round-robin offloading to
that of a lite model FastDepth [59] on a sample video. We see
that while offloading outperforms the lite model on average
(0.212 vs. 0.284), its accuracy is much worse for some frames,
e.g., frames 1600 to 2000. We make our second key observa-
tion: (K2) Even though the accuracies of the local algorithms
are significantly worse than the offloading solutions on average
across the frames of a video, the local algorithms can achieve
better accuracies for some individual frames. In particular, this
happens in two situations: (1) when the content changes very
fast, and (2) when the local tracking stride is large enough,
i.e., due to other offloading tasks occupying the server GPU
resource. Further, we observe little correlation between of-
floading and lite model accuracies. This is because while the
local tracker is affected by content changes, the lite model,
which is a DNNmodel taking a single frame as input, is more
likely affected by static features within a frame.
Design challenges. Exploiting K2 in multitask offloading
faces several challenges: (i) how to estimate the local algo-
rithm accuracies during runtime? (ii) how to incorporate the
accuracy estimates in making offloading decisions?

5 AccuMO Design
Motivated by the above key insights, we design a content-

aware adaptive multitask offloading framework called Ac-
cuMO that jointly optimizes the accuracies of multiple tasks
by dynamically controlling each task’s offloading frequency
and switching between offloading and local algorithms.
5.1 Design Goals

We design the multitask offloading framework to achieve
the following goals:
Support for different application needs. The system
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should accommodate different high-level application needs,
in particular different needs for balancing task accuracies.
Optimized overall task accuracy. The system should opti-
mize the overall accuracy across the tasks.
Extensible for different tasks. The system can easily sup-
port varying numbers of tasks. Furthermore, it should ac-
commodate different task designs, e.g., with or without a
local algorithm.
Real-time. The system should produce results in real-time,
e.g., 60 FPS, to support latency-critical applications like AR.
5.2 Architecture Overview
Design rational. As shown in Figure 4, AccuMO employs a
modular design to support different numbers of tasks. There
is one task component for each task. To meet the real-time
requirement, we employ the offloading + tracking paradigm
for each task, and thus each task component requires a high
accuracy DNN model running on the server GPU and a local
tracker that runs in real-time. Furthermore, to exploit our sec-
ond key insight (K2), each task component may also contain
a local algorithm. To dynamically switch between the two,
an accuracy model is required to estimate their accuracies
based on the frame content.
Exploiting our first key insight (K1), we employ a global

scheduler to control when and for which task to offload each
frame captured by the camera and/or other sensors based on
each task’s accuracy estimates. We design our global sched-
uler using model predictive control (MPC) [15], a control
theory optimization algorithm, rather than machine learning
algorithms, to meet our flexible accuracy and extensibility
design goals. Machine learning algorithms would require
hardcoded task number, task design, and optimization goals
which then have to be trained offline, while control theory-
based algorithms are more flexible in dynamically adapting
to different tasks and application needs, e.g., how to merge
the task accuracies.

Our MPC scheduler only decides on the offloading sched-
ule, while leaving the decision of switching between offload-
ing and local algorithms to the individual tasks. While an
algorithm that makes both decisions jointly might produce
better schedules, we decide to decouple the decisions to ac-
commodate diverse task component designs. For example, a
task might not have a local algorithm, or a single design may

serve as both the local tracker and the local algorithm and
the “local tracker vs. local algorithm” decision is made inter-
nally (see §6.2.2). Our MPC scheduler accommodates both
of these cases by simply not considering the local algorithm
accuracy drop for that task.
Control loops. We develop a modular design that runs two
concurrent control loops that both adapt according to frame
content dynamics: a low-level control loop is per task and
adapts between local tracking and using the local algorithm
for each frame; and a global control loop runs MPC to dy-
namically balance offloading of the tasks. We observe that
accuracy models may be time consuming to run, or they
can only estimate task accuracies on certain key frames (see
§6.1). To meet the real time and extensibility goals, we run
accuracy models concurrently with the other two control
loops. Effectively, the two control loops make decisions based
on the most recent accuracy estimates, exploiting the tem-
poral locality. In summary, the framework consists of two
control loops, in addition to the accuracy models, running
concurrently and continuously:
• MPC scheduler:When a new frame becomes available,
and there is currently no unfinished offloading, the MPC
scheduler determines the next task to offload for that frame
based on the latest accuracy estimates by the task-specific
accuracy models.

• Local selector: For each frame, either the local tracker or
the local algorithm is executed for each task, depending
on which one has higher estimated accuracy.

• Accuracy model: The local tracker and local algorithm
accuracy models for each task are executed repeatedly on
the most recent frame, i.e., best effort. The most recent
accuracy estimates are used by the two control loops.

Adding new tasks. Our modular design simplifies the ad-
dition of new tasks. To offload a task under any framework
under the offloading + local tracking paradigm, the devel-
oper already needs to choose and prepare a local tracker to
run on the client, and a DNN model to run on the server.
To add such a task in AccuMO, the developer (1) can reuse
the chosen local tracker and server DNN model, (2) option-
ally uses an off-the-shelf local algorithm for the task (e.g.,
a lightweight DNN model), and (3) only needs to develop
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an accuracy model for the new task. We provide a set of
easy-to-follow guidelines for developing accuracy models in
§5.4, and we show how to apply them to derive the accuracy
models with a case study in §6.1 and §6.2.3.
5.3 Local Tracker and Local Algorithm
As described in §3, local trackers adjust the stale results

from the server DNN models for the current frame. They
need to run fast in order to be executed for every frame. For
many tasks, off-the-shelf algorithms, possibly designed for
other purposes originally, could be used readily [50, 64, 70].
In contrast to the local tracker, a local algorithm directly

produces task results from camera or sensor data, without
relying on server DNN results. It needs to be fast to be ex-
ecuted for every frame. The local algorithm could be a lite
DNN model designed for mobile devices, but it could also be
a conventional algorithm without any learning components.
5.4 Accuracy Model
The accuracy models for each task estimate the accura-

cies for both offloading (i.e., the local tracker) and the local
algorithm. First, to model the accuracy for offloading, since
local trackers introduce accuracy drops in adjusting the stale
server DNN results, we only need to estimate the accuracy
drop (w.r.t. that of running the server DNN model) or ac-
curacy drop rate (per frame delay). We propose a set of
principles that can be easily followed in developing accuracy
models for different tasks. (1) We start by identifying limi-
tations of the local tracker, i.e., what kind of inputs lead to
bad tracking results. (2) Next, we identify and extract fea-
tures that quantify good inputs vs. bad inputs. (3) Finally, we
derive the correlation between the extracted features and
accuracy drops or accuracy drop rates.
Second, for modeling the accuracy of local algorithms,

since they typically have much worse accuracy compared
to the server DNN models, an effective method to approxi-
mate their accuracy is by treating the server DNN results as
the ground truth [47, 73]. To make the accuracy modeling
comparable to local trackers’ estimated accuracy drops (as
opposed to accuracy), we subtract the local algorithm accu-
racy estimate by the server DNN model’s average accuracy
(calculated offline), which transforms it into the accuracy
drop relative to the DNNmodel. §6.1 shows such an accuracy
estimation method on the depth estimation lite model works
well. However, other task-specific methods may also be used
for local algorithm accuracy estimation.
5.5 Model Predictive Control Scheduler
Ideally, given perfect knowledge of offloading and local

algorithm accuracies over an entire video, the optimal of-
floading plan can be calculated offline.2 While perfect accu-
racy information is not available in practice, it is possible
to estimate the current and future accuracies during a short

2We assume the network transmission delay is relatively stable, which holds
under the network conditions and frame sizes we consider (§8.1).

Algorithm 1: Offloading scheduling using MPC
input : the list of tasks 𝑇 with offloading histories

latest accuracy estimates 𝐴 for all tasks
horizon length 𝑁

overall accuracy function 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦_𝑚𝑒𝑟𝑔𝑒 ()
𝑑∗ = ∞, 𝑡∗ = 𝑡default;
for 𝑝 in ValidOffloadPlans(𝑇, 𝑁 ) do

𝑑 = SimulatePlan(𝑝,𝑇 ,𝐴, 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦_𝑚𝑒𝑟𝑔𝑒 ());
if 𝑑 < 𝑑∗ then

𝑑∗ = 𝑑, 𝑡∗ = 𝑝 [0];
end

end
offload the current frame for task 𝑡∗;

horizon of 𝑁 frames [𝑘, 𝑘 + 𝑁 ] using the accuracy models
described before. With the estimated accuracies, we can cal-
culate the optimal offloading plan in this horizon, apply the
first step of the plan (i.e., for the current frame), and move
the horizon forward to [𝑘 + 1, 𝑘 + 𝑁 + 1]. This scheme is
known as model predictive control (MPC) [15, 69].
The MPC algorithm. Algorithm 1 shows the MPC offload-
ing scheduling algorithm for deciding the next task to of-
fload the frame/sensor data for. The algorithm is executed
to decide the offloading task whenever a new frame is to
be offloaded, i.e., when the last offloaded result has been
received by the mobile device. It essentially populates and
simulates all valid offloading plans within a horizon of 𝑁
frame intervals, calculates the overall accuracy drop of each
plan using the accuracy estimates from the accuracy models,
and picks the first offloaded task in the plan that has the
lowest overall accuracy drop in the horizon for offloading.

Since the maximum offloading frequency is constrained by
the task offloading latencies, only the plans that offload the
next frame after the last offloading results have come back
are valid. This drastically reduces the number of plans to be
simulated and allows the MPC algorithm to run in real-time.
Further, we prune heavily unbalanced plans where one task
is offloaded much more often than the other, e.g., one task is
offloaded four times while the other is offloaded only once,
which leads to overly unbalanced task accuracies. Each valid
plan is simulated by starting with the current task offloading
status and rolling out the steps in the plan. For each frame,
we choose the lower between the local tracker’s accuracy
drop and the local algorithm’s accuracy drop. Finally, we
compute the accumulated overall accuracy drop.
An example. Consider an application with two offloading
tasks, and the offloading latencies are two frame times for
both tasks. With a horizon 𝑁 = 4, the valid plans are [1, 0,
1, 0], [1, 0, 2, 0], [2, 0, 1, 0], and [2, 0, 2, 0], where 1 and 2
represents offloading task 1 and task 2 respectively, and 0
means no offloading. Assuming the local tracker accuracy
drop rates per frame are 𝑟1 and 𝑟2 for the two tasks, the local
algorithm accuracy drops are 𝑑1 and 𝑑2, and frame 𝑘 − 4 was
offloaded for task 1 while frame 𝑘 − 2 was offloaded for task
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Figure 5: Simulating an example MPC plan [2, 0, 1, 0]. A
curved arrow points from a frame offloaded for a task, to the
frame interval when the offloading result comes back.

2. Figure 5 shows the simulation of the plan [2, 0, 1, 0]. The
local tracker accuracy drop is calculated by multiplying the
tracking stride with the local tracker accuracy drop rate, e.g.,
4𝑟1 in min(4𝑟1, 𝑑1). Finally, the plan’s overall accuracy drop
is obtained by merging the accuracy drops of all tasks across
all frames in the plan according to accuracy_merge().

6 Case Study: Offloading AR Tasks
In this section, we present a case study of how the modular

design of our AccuMO framework can easily support multi-
ple tasks, using two representative tasks from a complete AR
app — depth estimation and visual odometry. Since the MPC-
based offloading scheduler is generic, applying AccuMO in
our case study boils down to designing the local tracker, the
local algorithm, and their accuracy models for each task.
6.1 Depth Estimation
Background. Depth estimation infers the depth map for a
given image, containing the distance between the camera
and surrounding environment represented by each pixel.
The depth estimation results can be used for many tasks, e.g.,
rendering occlusion between virtual and physical objects in
AR, and perception in self driving. In this paper, we focus
on monocular depth estimation, since most smartphones
are equipped with monocular cameras. Recently, several
monocular depth estimation DNNs have been proposed (e.g.,
[10, 51, 58]). While accurate, such DNN models are compute-
intensive and require offloading.
Depth local tracker. We use warping [50], a lightweight
geometry-based algorithm, as the local tracker for the depth
estimation task. It takes as input the depth map of the last
frame𝐷1, and the relative pose change between the last frame
and the current frame 𝑝12, and outputs the depth map of the
current frame 𝐷 ′

2 as an approximation for the unknown 𝐷2.
Specifically, given the intrinsics parameters of the camera,
warping first converts the depth map into a point cloud
in the last frame’s camera coordinate system. Then, using
𝑝12, it transforms the point cloud into the current frame’s
camera coordinate system. Finally, it projects the point cloud
onto the camera plane and performs nearest interpolation to
generate 𝐷 ′

2, the estimated depth map of the current frame.

D1 D2D2' (warped from D1)

Error in D2'

RGB1 RGB2RGB2' (warped from RGB1) -

Figure 6: Moving objects cause errors for depth local tracker.
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Figure 8: Example timeline of the
accuracy model. Sharp drops are
due to receiving offloaded results.

Accuracy model for depth local tracker. The depth accu-
racy model estimates the error increase caused by the local
tracker, i.e., warping, relative to if the server DNN model
could be used. Since warping assumes the objects in the
scene are static, dynamic objects will make warping inac-
curate. This is shown in Figure 6, where a second vehicle
is moving in front of the ego vehicle where the camera sits.
Warping assumes that the second vehicle is stationary rela-
tive to the ego vehicle and hence the camera, and thus the
vehicle in 𝐷 ′

2 is incorrectly predicted as being closer to the
ego vehicle. This results in high errors around the second ve-
hicle, as shown in the error map. We make a key observation
that the magnitude of the error is determined by the relative
depth between the vehicle’s surface and the background, and
hence the error of 𝐷 ′

2 can be estimated by (1) identifying
regions in the frame that are affected by moving objects; and
(2) accounting for the relative depth difference between the
moved object and the background.
Based on the observation, we propose a novel accuracy

model for estimating the warping error: (1) Warp 𝑅𝐺𝐵1 to
𝑅𝐺𝐵′

2. Since warping assumes objects are static, 𝑅𝐺𝐵′
2 differs

from the real 𝑅𝐺𝐵2 on moving objects. (2) Capture moving
objects by calculating the optical flow F from 𝑅𝐺𝐵′

2 to 𝑅𝐺𝐵2,
and (3) compute 𝐷 ′′

2 by translating the pixels of 𝐷 ′
2 based

on F, where the resulting 𝐷 ′′
2 accounts for the motion of

moving objects. (4) Finally, calculate the absolute relative
error (AbsRel) between𝐷 ′

2 and𝐷
′′
2 as an estimate for the error

caused by warping. Note that we are using AbsRel between
𝐷 ′
2 and 𝐷 ′′

2 as a proxy for the AbsRel between 𝐷 ′
2 and the

ground truth. Assuming the warping error increases at a
constant rate, we divide the estimated error by the warping
stride between the two input frames, to get the error increase
rate 𝑟 (the average error increase per frame).

Figure 7 shows the predicted and actual depth estimation
errors exhibit a strong correlation using the proposed depth
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Figure 9: Example timeline of estimated error vs. ground-
truth error of the depth estimation local algorithm.

accuracy model. Figure 8 plots an example timeline which
shows the predicted error follows the actual error closely.
Local algorithm and its accuracy model. Since the above
depth estimation DNN models [10, 51, 58] are compute-
intensive, several lightweight depth estimation DNN models
have been proposed to run on mobile phones and embedded
devices in real-time [52, 59], with compromised accuracy.

To support adaption between local tracking and lite model,
we estimate the error of the lite model following the method
described in §5.4. The client estimates the error of the lite
model’s output against the server returned depth map for
the same frame. Since the server DNN model is much more
accurate, the estimated error against server DNN output is
close to that against the ground truth, as shown in Figure 9.
6.2 Odometry
6.2.1 Background. Odometry is the use of various sensor
data to estimate the ego-pose (location and orientation) of the
device relative to a starting position. The input sensor data
can be monocular or stereo camera frames, depth maps (e.g.,
from Lidar), IMU, GPS, or a combination of them. We focus
on commodity smartphones in indoor or urban areas, where
only monocular camera frames and IMU data are available.
For camera frames, a pair of consecutive frames 𝑓1 and 𝑓2
are taken as inputs, and the algorithm estimates the relative
pose change between 𝑓1 and 𝑓2. The current pose is estimated
by accumulating the sequence of pose changes from start.
In offloading, 𝑓1 and 𝑓2 are offloaded frames, which could be
non-consecutive. The poses of the frames in-between are
given by the local tracker, as described below.
6.2.2 Kalman Filter as Local Tracker and Local Algo-
rithm. We use a Kalman filter [57] together with the IMU
data as both local tracker and local algorithm for odometry.
Since IMU only reports accelerations and angular velocities,
the Kalman filter first integrates them to obtain translations
and rotations. Secondly, the Kalman filter maintains internal
states including position, velocity, orientation, and their esti-
mated error covariance, which helps to reduce IMU sensor
noise. For example, if the velocity covariance is small yet
the acceleration reported by IMU is huge, it is likely that
the acceleration data contain noise. Lastly, the server DNN
pose estimations can be similarly fused with the Kalman
filter’s internal states. Hence the Kalman filter with IMU
data can estimate ego-pose with or without server DNN re-
sults, and we use it as both a local tracker (when with server
DNN results) and a local algorithm (when without) in our
framework. Furthermore, since it calculates the relative im-

Ground truth
Prediction
Translation error

Figure 10: Translation
error between trajec-
tory segments.

Figure 11: Scatter plot of accuracy
drop vs. angular velocity.

portance between server DNN results and IMU data based
on the error covariance, it is also used as an accuracy model
for choosing between offloading and local algorithms.
6.2.3 Accuracy Model. Since the Kalman filter does not
explicitly estimate the local algorithm accuracy drop, we
will design an offloading accuracy model for use in the MPC
scheduler. We first introduce the odometry accuracy metric.
Accuracy metric. The commonly used KITTI odometry
metric [26, 72], denoted as 𝑡𝑒𝑟𝑟 , is calculated in 3 steps: (1)
extract all pairs of segments of (100, 200, . . . , 800) meters
long from both ground truth and prediction trajectories, (2)
compute the translation error between each pair (see Fig-
ure 10) and divide it by the segment length, and (3) average
the error over all segment pairs.

The above odometry metric 𝑡𝑒𝑟𝑟 is calculated offline with
segment as the basic unit, which cannot be used by the MPC
scheduler in our framework which plans online at the frame
level. To this end, we adapt 𝑡𝑒𝑟𝑟 for the MPC scheduler and
calculate the accuracy drop caused by a different offloading
schedule on a sequence of frames by calculating 𝑡𝑒𝑟𝑟 only
over the segments that contain the frames, while keeping
the offloading schedule for other frames unchanged. We use
this frame-level accuracy as a proxy for the offline 𝑡𝑒𝑟𝑟 in the
MPC scheduler instead.
Camera rotation amplifies translation error. By compar-
ing the trajectories produced by different offloading sched-
ules, we observe that they mainly deviate when the camera
rotates (i.e., with high angular velocity, see Figure 16 for an
example). The reasons are two-fold. First, camera rotation
changes the view more drastically compared to translation,
and thus it is more difficult to match the two input frames as
the stride increases, where the stride for the odometry task
is the difference between the frame IDs of the two consec-
utive offloaded frames. Second, as shown in Figure 10, the
translation error of a frame is amplified when it is further
away from the camera rotation point, causing higher 𝑡𝑒𝑟𝑟 .
The accuracy model. We draw the scatter plot between
angular velocity and accuracy drop in Figure 11 to quantify
the correlation between them. The accuracy drop is calcu-
lated when increasing the inter-frame stride from 4 to 8 for
a sequence of 32 frames while keeping the rest at stride 4.
The angular velocity is calculated on the same 32 frames.



ACM MobiCom ’23, October 2–6, 2023, Madrid, Spain Z. Jonny Kong, Qiang Xu, Jiayi Meng, and Y. Charlie Hu

The data points are mainly distributed at the bottom region,
rather than forming a line, as accuracy drop depends on not
only the 32 frames, but also all the frames in the affected seg-
ments. Nonetheless, Figure 11 indicates that angular velocity
can be used to estimate the upper bound of accuracy drop.

Furthermore, we argue that it is imperative to optimize all
the frames with high accuracy drops, as these frames cause
high errors to all segments that contain them, which spread
the impact of suboptimal offloading schedule to longer dis-
tances, which was not captured by the proxy accuracy drop
calculation (see §8.5). For this reason, we estimate the upper
bound of the accuracy drops. Since the upper bound can be
affected by outliers, we perform the 95th quantile regres-
sion [11] which corresponds to the orange line in Figure 11.
During runtime, the angular velocity is calculated from

recent poses, and the upper bound of offloading accuracy
drop is estimated based on the model discussed above, which
is derived offline. Similarly, we assume linear accuracy drop
with increasing strides in estimating the accuracy drop rate.

7 Implementation
We implement our multitask offloading framework Ac-

cuMO for the case study on depth estimation and odometry.
Client.We implement the client, including the MPC sched-
uler, task-specific local trackers, local algorithms, and accu-
racy models as an Android application in 2K lines of Java
and C++ code. The control loops and the MPC scheduler are
implemented in Java. For depth estimation, the local tracker
(warping) is implemented in C++ and runs on the phone CPU.
We use FastDepth [59], a state-of-the-art depth estimation
DNN designed for embedded devices, as the local algorithm,
and run it on the phone CPU on top of the ncnn [3] DNN
inference framework. We use FlowNet2S [37], a lightweight
DNN, to estimate the optical flow used by the accuracymodel,
and it runs on the phone GPU utilizing TensorFlow Lite [29].
For odometry, the Kalman filter implementation adopts the
insfilterErrorState object in the MATLAB Sensor Fu-
sion and Tracking Toolbox [4], and is converted to C using
the MATLAB Coder [2] to run on mobile devices.
Server. We implemented the server in about 300 lines of
Python code. We use AdaBins [10] (implemented in PyTorch)
as the server DNNmodel for depth estimation andDAVO [40]
(implemented in TensorFlow) for odometry. Both DNN mod-
els are loaded upon server startup.

The client and the server communicates over TCP. Camera
frames are uploaded to the server in raw YUV420 format
(the default Android camera format) with resolution 448×128,
while depth maps are sent back in raw 16-bit bitmaps.

8 Evaluation
8.1 Methodology
Evaluation setup.Our client app runs on a Samsung Galaxy
Note20 Ultra 5G phone with a Qualcomm Snapdragon 865+
SoC, which has eight Kyro 585 CPU cores and an Adreno 650

GPU. We use two different servers with GPUs of different
tiers, an NVIDIA GeForce RTX 2080 Ti and a more powerful
NVIDIA A40. We evaluate AccuMO under 802.11ac for
indoor scenarios and 5G mmWave for outdoor scenarios. For
802.11ac, we connect the phone and the server to the same
access point (550 Mbps for both uplink and downlink, 3 ms
RTT). We emulate the 5G mmWave network using the tc tool
on top of the 802.11ac setup, based on recent 5G mmWave
measurements (152 Mbps uplink, 1715 Mbps downlink, 14 ms
RTT) [27]. However, note that we are only able to emulate up
to 550 Mbps for 5G mmWave downlink due to the 802.11ac
downlink bandwidth limit. When not specified, we default
to the 2080 Ti GPU and 802.11ac network.
Dataset. To evaluate our case study of performing depth esti-
mation and odometry for AR, we need a dataset that concur-
rently provides IMU data and ground truths for both depth
estimation and odometry, and has a camera frame rate of at
least 60 FPS. To the best of our knowledge, we are not aware
of any existing dataset that satisfies all these requirements.
To this end, we resort to the same methodology as in prior
works [38, 55] — we use CARLA [21], an autonomous driv-
ing simulator, to generate a synthetic dataset with sufficient
sensor data and ground truth labels. We generated videos
of 40 seconds long with the camera mounted on top of the
ego-vehicle capturing frames of size 832×256 at 60 FPS. As
the simulator only outputs ground truth IMU data, we added
noise to the IMU data based on typical IMU data sheets [12].

To analyze the impact of video content, we further classify
videos into “easy” ones vs. “hard” ones. In §6, we show that
depth estimation offloading accuracy is affected by moving
objects, while odometry is affected by camera rotation. To
this end, we categorize the videos based on (1) the percent-
age of pixels occupied by dynamic objects identified by a
semantic segmentation DNN [61], and (2) the average camera
angular velocity using ground truth pose. We classify each
video to have high (H) / low (L) dynamic object percentage
/ angular velocity, and select 20 videos from each of the 4
combinations, i.e., L/L, L/H, H/L, and H/H. We generated 20
additional videos to train the DNN models (see §7).
Metrics. We evaluate depth estimation using the popular
absolute relative error (AbsRel) [14]. We evaluate odometry
using the KITTI odometry metric (𝑡𝑒𝑟𝑟 ), as discussed in §6.2.3.
8.2 Baselines

We compare AccuMO with the following baselines:
Local algorithms (LA). In this setup, all task results are

produced by the local algorithms running on the phone with-
out offloading.
Round-robin (RR). This setup offloads the tasks in a

round-robin manner (Figure 1b).
Weighted round-robin (WRR). This setup is similar to

RR, except that some tasks are offloaded more frequently
than others. We denote a specific configuration of WRR as
WRR 𝑥 :𝑦, where the first task (depth estimation) is offloaded
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Figure 12: The overall accuracies (lower is better) under different video categories and varying accuracy weight ratios.

𝑥 times and then the second task (odometry) is offloaded 𝑦
times. We study WRR 3:1, 2:1, 1:2, and 1:3.

All at once (AAO). In this setup, for each offloaded frame,
DNN models for all tasks will be executed.

In RR, WRR, and AAO, the offloading results are processed
by the local trackers, but local algorithms are not used. We
will evaluate the impact of local algorithms in §8.5.

We do not provide direct comparisons to MCDNN [33]
and LinkShare [35], as they target different applications and
have different design objectives, and their mechanisms are
not applicable to AR applications, as discussed in §3.2.
8.3 Overall Performance
We compare the performance of AccuMO with all base-

lines under the default environment setup and a number of
accuracy merge functions that calculate weighted average
of the accuracies for depth estimation and odometry tasks
with varying weights 4:1, 2:1, 1:1, 1:2, and 1:4. We set the
MPC horizon to be 30 frames, and restrict the maximum task
offloading ratio to be 3:1, i.e., the other task will be offloaded
next time if one task has been offloaded three times in a row.
Comparison with baselines. We compare the overall ac-
curacy of our framework, which is the weighted average
of the task accuracies, with other baselines under different
accuracy weights. As shown in Figure 12, AccuMO improves
over the best baseline (the one with the best average overall
accuracy across the four video categories) under each weight
ratio 4:1, 2:1, 1:1, 1:2, and 1:4 by 2.3%–11.9% (avg. 7.6%), 6.7%–
14.6% (avg. 10.1%), 10.8%–16.7% (avg. 14.3%), 2.3%–15.2% (avg.
11.2%), and -2.8%–23.9% (avg. 11.2%) across different video
categories. In particular, AccuMO performs on par with the
best baseline, i.e., WRR 1:2, in worst cases (-2.8% improve-
ment on L/L videos for weight ratio 1:4), while it outperforms
the best baseline significantly in best cases (23.9% improve-
ment on L/H videos for weight ratio 1:4).
Individual task accuracies. While the objective of Ac-
cuMO is to optimize the overall accuracy, individual task
accuracies help us understand why a scheduler has good or
bad overall accuracy. Table 3 shows the accuracies of indi-
vidual tasks under weight ratio 1:1, along with the overall
accuracy. We make the following observations. (1) The ac-
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curacies of LA for both tasks are among the worst across
all algorithms, indicating the need for offloading. (2) For
the RR and WRR schedulers, as shown in Figure 13, offload-
ing one task more frequently improves the accuracy of that
task, but hurts the accuracy of the other task. (3) In con-
trast, AccuMO consistently improves over RR, obtaining
4.3%–13.4% accuracy improvements for depth estimation and
18.9%–33.8% accuracy improvements for odometry, depend-
ing on the video categories. (4) Finally, AAO represents a
different kind of tradeoff compared to the RR andWRR sched-
ulers. The depth estimation accuracy drops due to increased
tracking stride, while the odometry accuracy improves due
to decreased stride between the two odometry DNN input
frames. However, our framework still outperforms AAO, as
our dynamic offloading schedule can provide even smaller
strides for frames with high accuracy drop rates.
Impact of video content. From Table 3, we observe that the
content or the difficulty of the videos have huge impacts on
both task accuracies and task accuracy drop rates. Videos
with higher percentage of dynamic objects lead to overall
worse depth estimation accuracies, and the accuracy differ-
ences among the RR andWRR schedulers are also higher. The
same relationship applies to videos’ average angular velocity
and the odometry accuracy. For both tasks, our framework
achieves higher accuracy improvements over RR on more
difficult videos due to the higher accuracy drop rates. For
example, for depth estimation, our framework improves over
RR by 7.7% on L/L videos but by 13.4% on H/L videos. In gen-
eral, a task is offloaded more frequently when its accuracy
drop rate is high and the other task’s is low. However, we
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Table 3: Average depth (estimation) error (AbsRel), odom(etry) error (𝑡𝑒𝑟𝑟 ) under weight ratio 1:1, along with overall accuracies
(lower is better). The best accuracies achieved under each video category are highlighted in bold.

L/L L/H H/L H/H
Depth Odom Overall Depth Odom Overall Depth Odom Overall Depth Odom Overall

LA 0.288 0.238 0.263 0.290 0.244 0.267 0.276 0.301 0.289 0.301 0.221 0.261
RR 0.168 0.053 0.111 0.160 0.148 0.153 0.201 0.051 0.126 0.239 0.125 0.182

WRR 3:1 0.156 0.167 0.161 0.145 0.437 0.290 0.181 0.119 0.150 0.221 0.452 0.336
WRR 2:1 0.163 0.113 0.138 0.149 0.332 0.241 0.188 0.088 0.138 0.226 0.397 0.311
WRR 1:2 0.188 0.034 0.111 0.175 0.114 0.145 0.224 0.022 0.123 0.265 0.094 0.179
WRR 1:3 0.208 0.037 0.123 0.200 0.105 0.152 0.252 0.026 0.139 0.292 0.091 0.192
AAO 0.197 0.038 0.117 0.193 0.156 0.174 0.236 0.032 0.134 0.274 0.108 0.191

AccuMO 0.155 0.043 0.099 0.153 0.098 0.126 0.174 0.034 0.104 0.216 0.083 0.149

note that our framework is still able to improve the accu-
racies of both tasks by 9.6% and 33.6% respectively on the
H/H videos. As we will see in §8.4, the reason is two-fold.
First, the offloading accuracy drop rates for both tasks still
change over time, and they change independently. Secondly,
the local algorithms can be used instead when both tasks
have high offloading accuracy drop rates, which mitigates
the contention on server resources.
Latency breakdown. Figure 14 breaks down the end-to-
end offloading latency under AccuMO for both tasks and
when performing AAO offloading. Offloading a frame for
depth estimation and odometry takes 70.98 ms and 61.05 ms
respectively, which translates to 5 and 4 frame times. For
both tasks, server DNN inference (50.39 ms and 53.73 ms)
takes up a major portion of the total latency. For network
transmission, the majority of the time for odometry is spent
uploading the frame to the server, while for depth estimation,
more time is needed to send the depth map back. We also
note that our MPC scheduler is fast (0.2 ms) and has minimal
impact on offloading latency. Finally, the AAO offloading
latency is much longer than offloading a single task, as both
server DNN models need to be executed.
As for other components in the case study, the depth es-

timation local tracker (warping) takes 15.04 ms, the depth
estimation local algorithm (FastDepth) takes 13.42 ms, and
the odometry local tracker/local algorithm (Kalman filter)
takes 0.03 ms, i.e., all finish within one frame time, making
it possible to support real-time applications like AR. For the
accuracy models, while the odometry accuracy model (ex-
tracting angular velocities) and the depth estimation local
algorithm accuracy model (comparing the local algorithm
depth map with the server DNN depth map) take minimal
time, the depth estimation offloading accuracy model (esti-
mating the optical flow using FlowNet) takes 66.15 ms, and
thus it has to run asynchronously, as discussed in §5.2.
8.4 Scheduler Behavior Analysis
To understand how the estimated accuracy drops affect

AccuMO’s scheduling decisions, and how the scheduling
decisions in turn affect the task accuracies, in Figure 15 we
plot all the relevant information in the same figure for a
sample H/H video.
Similar to what is shown in Figure 2, the estimated accu-
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Figure 15: The timeline for a sample H/H video.

racy drop rates of the two tasks are largely uncorrelated (1st
figure). The MPC scheduler makes offloading decisions based
on the estimated accuracy drop rates. The 3rd figure plots
the depth estimation vs. odometry offloading frequency ratio
within a sliding window of 8 offloaded frames. As we restrict
the maximum offloading ratio to 3:1, the ratio ranges from
1/3 (when odometry is offloaded frequently) to 3/1 (when
depth estimation is offloaded frequently).We see that a task is
offloaded more frequently when its accuracy drop rate is rela-
tively high and the other task’s is relatively low. Furthermore,
we notice that the offloading ratio stays at 3/1 frequently,
which means that odometry is offloaded less frequently than
depth estimation. However, the odometry accuracy is still
better than that of RR, which we explain in §8.5. When the
depth estimation local algorithm gives better accuracy over
offloading as shown in the 2nd figure, e.g., for frames 1200–
1400, the framework switches to local algorithm instead for
depth estimation (3rd figure). Meanwhile, the offloading op-
portunities are saved for odometry, as indicated by the close
to 1/3 scheduling ratio in the 3rd figure. The 4th figure shows
that the depth estimation accuracy, which is the moving av-
erage of 16 frames, improves over RR when the offloading
frequency increases, e.g., for frames 200–600, or when the
local algorithm is used, e.g., for frames 1200–1400, while the
accuracy is worse than RR when the offloading opportunity
is saved for odometry, e.g., for frames 900–1000. On average,
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Table 4: Ablation study on the contribution of offloading
scheduling and local algorithm to depth estimation accuracy.

Scheduler AbsRel ↓ Imp. over RR

RR 0.192 -
RR w/ LA 0.180 6.3%
AccuMO w/o LA 0.183 4.7%
AccuMO 0.175 8.9%
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Figure 16: Odometry trajectories of a sample video.AccuMO’s
offloading schedule is overlayed on its trajectory.

the depth estimation accuracy is better than that of RR.
Impact of accuracy model. The optimality of AccuMO’s
scheduling decisions could be affected by the accuracy of the
accuracy models. To estimate the impact, we test AccuMO
with accuracy model outputs replaced by actual accuracy
drops. The overall accuracy on H/H videos under weight
ratio 1:1 is 0.148, on par with that of AccuMO backed by
accuracy models (0.149). This is because AccuMO only re-
quires accuracy models to have moderate accuracy levels
that are sufficient for the MPC scheduler to determine the
right offloading ratios (3rd figure of Figure 15), and the ex-
periment shows that our accuracy models are adequate to
support AccuMO’s scheduling decisions.
8.5 Task-Specific Analysis
Depth estimation. Figure 15 has shown that the depth es-
timation accuracy improvement over RR is contributed by
two factors: (1) the depth estimation task is offloaded more
frequently when its estimated accuracy drop rate is high,
and (2) the local algorithm is instead used when its accu-
racy is estimated to be better than offloading. To estimate
the contribution of the two factors, we perform an ablation
study where we run AccuMO without the depth estimation
local algorithm (AccuMO w/o LA), and run RR additionally
with the depth estimation local algorithm and the accuracy
model (RR w/ LA), so that the scheduler switches to the local
algorithm based on the accuracy estimates. Table 4 shows
that RR w/ LA and AccuMO w/o LA each contribute about
60% and 40% of the total accuracy improvements, indicating
that both are needed to attain high accuracy improvements.
Odometry. Since the odometry accuracy metric is calculated
with segments, rather than frames, as the basic unit, in Fig-
ure 15 we calculate the accuracy of each frame by averaging
over the accuracies of all segments containing the frame (see
§6.2.3). We notice that for many frames, e.g., frames 1800–
2000, the per-frame accuracy is better than under RR even
though the task is offloaded less frequently around these
frames. This is because with high-accuracy-drop-rate frames

Table 5: Task accuracies under different network and server
configurations and scheduling algorithms on H/H videos.

RR AccuMO
Depth ↓ Odom ↓ Depth ↓ Odom ↓

802.11ac + 2080 Ti 0.239 0.125 0.216 0.083
5G + 2080 Ti 0.252 0.181 0.228 0.162
802.11ac + A40 0.217 0.105 0.200 0.078

(e.g., frames 1400–1600) offloaded more often, the accuracies
of all segments containing those frames are improved, which
in turn improves the accuracies of less frequently offloaded
frames (e.g., frames 1800–2000) contained in these segments.
As another example, in Figure 16, the RR trajectory mainly
deviates from the ground-truth at places where the camera
rotates. AccuMO offloads the odometry task more often at
these frames, resulting in a trajectory that is closer to the
ground truth. The extended impact of these high-accuracy-
drop-rate frames also supports our accuracy model design
of estimating the accuracy drop upper bound (§6.2.3).
8.6 Impact of Network and Server Configuration

In Table 5, we analyze the performance of our framework
under the emulated 5G mmWave network. Furthermore, we
also evaluate our framework against a more powerful server
GPU — NVIDIA A40. The accuracies of both tasks become
worse when switching from 802.11ac to 5G, mainly due to the
longer transmission time caused by the higher RTT (14 ms
vs. 3 ms for 802.11ac). On the other hand, the task accuracies
improve when switching to the A40 server GPU due to faster
DNN inference (from 50.39 ms to 39.66 ms for depth estima-
tion and from 53.73 ms to 50.56 ms for odometry). Under
all configuration combinations, our framework consistently
improves over RR by 7.8%–9.6% for depth estimation and
10.5%–33.6% for odometry, indicating that our framework is
generalizable to different network and server configurations.

9 Conclusion
In this paper, we presented to our knowledge the first

framework that dynamically schedules offloading of mul-
tiple compute-intensive DNN tasks of an AR app from a
mobile device while optimizing the overall DNN inference
accuracy across the tasks. We designed our framework to
easily support diverse tasks by employing a general, two-
level control feedback loop that adapts between alternative
local execution options within each task module and globally
balancing offloading among multiple tasks using MPC. Our
evaluation results show that our framework can improve the
overall task accuracy by on average 7.6%–14.3% over the best
baseline under different accuracy weight ratios for depth
estimation and odometry in edge-assisted AR.
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