
Do Larger (More Accurate) Deep Neural Network Models Help
in Edge-assisted Augmented Reality?

Jiayi Meng
∗

Purdue University

Zhaoning Kong
∗

Purdue University

Qiang Xu

Purdue University

Y. Charlie Hu

Purdue University

ABSTRACT
Edge-assisted Augmented Reality (AR) which offloads compute-

intensive Deep Neural Network (DNN)-based AR tasks to edge

servers faces an important design challenge: how to pick the DNN

model out of many choices proposed for each AR task for offloading.

For each AR task, e.g., depth estimation, many DNN-based models

have been proposed over time that vary in accuracy and complexity.

In general, more accurate models are also more complex; they are

larger and have longer inference time. Thus choosing a larger model

in offloading can provide higher accuracy for the offloaded frames

but also incur longer turnaround time, during which the AR app

has to reuse the estimation result from the last offloaded frame,

which can lead to lower average accuracy.

In this paper, we experimentally study this design tradeoff using

depth estimation as a case study. We design optimal offloading

schedule and further consider the impact of numerous factors such

as on-device fast tracking, frame downsizing and available net-

work bandwidth. Our results show that for edge-assisted monocular

depth estimation, with proper frame downsizing and fast tracking,

compared to small models, the improved accuracy of large models

can offset its longer turnaround time to provide higher average es-

timation accuracy across frames under both LTE and 5G mmWave.

CCS CONCEPTS
• Human-centered computing → Ubiquitous and mobile
computing systems and tools; Ubiquitous and mobile com-
puting design and evaluation methods.

KEYWORDS
Edge-assisted Augmented Reality, Deep Neural Network, Monocu-

lar Depth Estimation

ACM Reference Format:
Jiayi Meng, Zhaoning Kong, Qiang Xu, and Y. Charlie Hu. 2021. Do Larger

(More Accurate) Deep Neural Network Models Help in Edge-assisted Aug-

mented Reality?. In ACM SIGCOMM 2021 Workshop on Network-Application
Integration (NAI’21), August 27, 2021, Virtual Event, USA. ACM, New York,

NY, USA, 6 pages. https://doi.org/10.1145/3472727.3472807

∗
Both authors contributed equally to this research.

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

NAI’21, August 27, 2021, Virtual Event, USA
© 2021 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-8633-3/21/08.

https://doi.org/10.1145/3472727.3472807

1 INTRODUCTION
Augmented Reality (AR) promises unprecedented interactive and

immersive experiences to users in a real-world environment, where

physical objects that reside in the real world are enhanced by

computer-generated perceptual information, and has applications

across diverse areas such as retail, education, and entertainment.

The global mobile AR market is forecast to reach 21 billion dollars

with 2 billion mobile AR users by 2024 [1].

A complete AR app needs to perform a number of challenging

tasks to understand and interact with the physical environment.

These include pose estimation, object detection, and depth esti-

mation [3]. Using the popular Pokemon GO app as an example,

pose detection allows the AR app to track the 6 DoF (degrees of

freedom) of the camera relative to the physical environment; object

detection allows the AR app to detect objects in the physical world

such as trees and buildings in order to decide where to position

a Pokemon; and depth estimation determines the distance of the

physical objects from the camera in order to decide how to place

the Pokemon relative to a physical object, e.g., in front of or behind

a tree.

Performing each of the tasks with high accuracy is challeng-

ing. In the past few years, Deep Neural Networks (DNN)-based

solutions have been developed for these tasks that can achieve

reasonably high accuracy. However, such DNN models are also

too computation-intensive to run on resource-constrained mobile

devices in real time. As a result, offloading such DNN inference

tasks to edge cloud servers has become the de facto approach to

leveraging such DNN-based solutions (e.g., [7, 13]).
Offloading DNN-based AR tasks to edge servers, known as edge-

assisted AR, faces an important design challenge: how to pick a

DNN model out of many choices proposed for each AR task to run

on the edge server. For a given AR task, e.g., depth estimation, many

DNN-based models have been proposed over time. In general, more

accurate models are also more complex; they are larger, require

larger input, and have longer inference time. Thus choosing a larger

model in offloading can provide higher accuracy for the offloaded

frames but also incur longer turnaround time for a given network

and an edge server, during which the AR app has to reuse the

estimation result from the last offloaded frame, which can lead to

lower average accuracy.

In this paper, we experimentally study this important design

tradeoff in edge-assisted AR using depth estimation as a case study.

State-of-the-art DNN-based depth estimation, known as monoc-
ular depth estimation, performs accurate depth estimation using a

single RGB camera which is low cost and widely available on mo-

bile devices. A number of monocular depth estimation models have

47

This work is licensed under a Creative Commons Attribution International 4.0 License.

https://creativecommons.org/licenses/by/4.0/

NAI’21, August 27, 2021, Virtual Event, USA Jiayi Meng, Zhaoning Kong, Qiang Xu, and Y. Charlie Hu

Table 1: Specifications and performance of the three DNN models for monocular depth estimation.

Model Size Model Name Input Res. Output Size MACs (×109) Abs. Rels.
Error

Inf. Time on
Server (ms)

Inf. Time on
Pixel 2 (s)

Small SC-SfmLearner [6] 832×256 832×256 18.81 13.4% 8.18 1.57

Medium MonoDepth2 [10] 1024×320 1024×320 21.45 11.6% 12.34 1.64

Large DenseDepth [5] 1248×384 1248×384 191.45 10.5% 41.80 14.08

been proposed in the past few years [5, 6, 10]. As in many other

areas of deep learning research, the progress has focused on improv-

ing accuracy. As a result, more accurate depth estimation models

generally are more complex and larger and have longer inference

time. In our study, we picked three state-of-art DNN models for

monocular depth estimation, SC-SfmLearner [6], MonoDepth2 [10]

and DenseDepth [5]. Table 1 summarizes the characteristics of the

three models. We see that they have increasing input frame sizes

and model sizes (measured in the number of multi-and-add oper-

ations, or MACs), and correspondingly longer inference time, of

8.18ms, 12.34ms and 41.80ms, on a server GPU (GeForce 2080 Ti),

but also increasingly lower average estimation errors, of 13.4%,

11.6% and 10.5%, respectively (using the KITTI dataset [15]). We

denote the three models as Small, Medium, and Large, respectively,

in the rest of the paper.

We proceed with studying the accuracy-delay tradeoffs of depth

estimation DNN models by experimentally comparing the average

estimation accuracy across all frames in a video (offloaded and

not offloaded) in offloading the three monocular depth estimation

models, in four steps. We emulate offloading to an edge server on a

PC equipped with a GeForce 2080 Ti GPU. We use 12 videos from

the widely used KITTI dataset (that are not used for training the

three models) in our evaluation.

First, we compare the three models under a baseline offloading

scheme under the typical cellular bandwidth available today (i.e.,
LTE with measured uplink and downlink bandwidth of 25Mbps

and 110Mbps, respectively), where the frames are offloaded as fre-

quently as the network and the edge server can accommodate, and

in between two offloaded frames, the estimation result for the last

offloaded frame is reused for the current frame. To determine the

maximal offloading frequency, we develop optimal offloading sched-

uling for the two cases where either the network transmission or

the server inference time is the bottleneck. Our results show that

Small, Medium and Large models suffer long network transmission

latency under LTE, causing increasingly lower offloading frequen-

cies, once every 11, 15 and 23 frames, which translate into high

average errors, of 21.7%, 22.5% and 22.2%, respectively.

Second, we study how incorporating on-device fast tracking for

the non-offloaded frames affect the design tradeoff. Specifically,

we exploit warping, a lightweight geometric image reconstruction

technique, to synthesize the depth map for a target frame (a non-

offloaded frame) from the reference depth map for a reference

frame (the last offloaded frame) predicted by the DNN model, using

the relative pose change between those two frames. Surprisingly,

our results show that warping slightly increases the average error

to 22.1%, 22.6% and 25.3% for Small, Medium and Large models,

respectively. The reason is that warping works well when the two

frames have similar content but cannot handle new content in the

target frame that did not exist in the reference frame, e.g., during
fast camera movement or scene change.

Third, we study if downsizing frames to reduce network trans-

mission latency will improve the accuracy of larger DNN models.

We explore frame downsizing, a lightweight compression algorithm

by dropping pixels uniformly
1
. Our results show that frame down-

sizing with carefully chosen target size can significantly reduce the

end-to-end offloading delay of large models without compromising

their accuracy; the average estimation accuracy across the three

models are 17.2%, 19.6%, and 17.0% without fast tracking, and 15.9%,

17.0%, and 15.5% with fast tracking, respectively.

Finally, we study whether improved network bandwidth, i.e., the
emerging 5G, will help larger DNN models to achieve better accu-

racy. We repeat the offloading experiments with frame downsizing

over 5G mmWave, by emulating the average uplink and downlink

bandwidth of 73Mbps/520Mbps measured in the wild [14]. Our

results show that as expected, 5G mmWave significantly increases

offloading frequency for all models, to once every 2, 3, and 3 frames,

respectively. However, the improved offloading frequency helps the

larger model much more than the smaller one; the errors become

15.1%, 17.1% and 15.6% without fast tracking, and 14.3%, 15.0% and

13.5% with fast tracking, respectively.

In summary, our evaluation study shows that for edge-assisted

monocular depth estimation, with proper frame downsizing and

fast tracking, compared to small models, the improved accuracy of

large models can offset its longer turnaround time to provide higher

average estimation accuracy across frames under both LTE and

5G mmWave.. Our findings highlight the importance of carefully

choosing the right DNN model out of the myriad (and ever increas-

ing number) of DNN models proposed by the machine learning

researchers in edge-assisted AR.

2 MOTIVATION
We give a brief overview of monocular depth estimation DNN

models and motivate the need for offloading them to edge servers.

2.1 Monocular Depth Estimation using DNN
Models

Depth estimation aims at estimating a depth map of the surround-

ing real-world environment of the mobile device, which stores a

distance value between the camera and the real-world object for

every frame pixel. Depth information has many use cases in AR,

e.g., accurately blending virtual objects with physical objects on

the screen, or generating shadows of virtual objects and enabling

realistic physics simulations. Directly measuring depth data using

1
The downsizing operation takes only a few milliseconds even on mobile devices (e.g.,

Pixel 2), which does not reduce the offloading frequency.

48

Do Larger (More Accurate) Deep Neural Network Models Help in Edge-assisted Augmented Reality? NAI’21, August 27, 2021, Virtual Event, USA

sensors has not been widely adopted on commodity mobile de-

vices, because of their high cost or limited measurement range and

operating conditions, e.g., up to 5m for LiDAR in iPhone 12 Pro.

In the past few years, monocular depth estimation based on

CNN models and using a single RGB camera widely available on

commodity mobile device has been proposed and shown to achieve

high accuracy [5, 6, 8–12, 16].

More recently, several scale-consistent
2
monocular DNN models

have been proposed which lend themselves readily usable for AR

on any mobile device with a single RGB camera. We select three

representative scale-consistent monocular depth estimation models

in our study: (1) DenseDepth follows a standard encoder-decoder

network architecture and leverages high-performance pre-trained

CNN models to improve accuracy via supervised learning, using

large-scale datasets [5]. (2) MonoDepth2 is a self-supervised ap-

proachwithout the need of ground-truth labels but requires training

using data collected from stereo cameras [10]. (3) SC-SfmLearner

is a fully unsupervised framework where the depth network can be

solely learned from monocular videos without using ground-truth

depth or stereo image pairs [6].

2.2 Need for Edge Offloading
Table 1 summarizes the characteristics of the three models. To

characterize their complexity, we calculate the number of multiply-

and-accumulate operations (MACs) per inference (using ptflops [2])

for each DNNmodel. We also measure the per-frame inference time

of each model when executing on a server equipped with Intel Xeon

W-2133 CPU and Nvidia GeForce RTX 2080 Ti (used throughout

the paper). All three models are trained using the same subset of

videos in the KITTI dataset [15] for fair comparison. To measure

the estimation error, we use the remaining 12 videos of the KITTI

dataset, and calculate the average depth estimation error across all
frames of each video when applying each model. The per-frame

estimation error is calculated as the average pixel-wise absolute

relative difference between the ground truth and estimated depth

maps.

Table 1 shows that larger models tend to have longer inference

time but also higher estimation accuracy. In particular, DenseDepth

is the largest model with 191.45 × 10
9
MACs, compared to Mon-

oDepth2 with 21.45×109 MACs and SC-SfmLearner with 18.81×109

MACs. As a result, it has the longest inference time of 41.80ms but

also the lowest average error of 10.5%; MonoDepth2 has a lower

inference latency of 12.34ms but higher average error of 11.6%; and

finally SC-SfmLearner has the lowest inference time of 8.18ms but

also the highest average error of 13.4%. In the rest of this paper,

we refer to the three DNNs as “Large”, “Medium” or “Small” DNNs,

respectively.

Running DNN models on mobile devices. To evaluate the per-

formance of executing the DNN models on mobile devices, we

ported the models to use PyTorch Android API [4], and built a sim-

ple application that runs TorchScript to estimate the depth maps

from RGB images using the ported models, on a Pixel 2 phone. Ta-

ble 1 shows that the inference time of the Small, Medium and Large

2
Scale-consistent models can predict depth maps for a sequence of RGB frames in a

video with the same scale, while scale-inconsistent models predict depth maps with

unknown or varying scales and hence are generally not applicable to AR.

DNNs are 1.57s, 1.64s and 14.08s, respectively. Such long per-frame

inference latency severely limits the frame rate of inference and

their realtime usage in AR, and motivates the need for offloading

to edge servers for potentially much reduced inference time.

Roadmap. Comparing the accuracy of the three DNN models in

edge-assisted depth estimation is challenging since the performance

of offloading each DNN model to an edge server can be affected

by two major factors, (1) offloading frequency which in turn is

affected by offloading scheduling, frame downsizing and available

network bandwidth, and (2) local optimization for non-offloaded

frames. To navigate through these factors, we proceed with our

model size/end-to-end accuracy tradeoffs of depth estimation DNN

models in three steps, by incrementally considering more factors.

3 BASELINE OFFLOADING SCHEME OVER
LTE

We start with a baseline offloading scheme over today’s cellular net-

work, LTE, assuming there is only one edge server (GPU) available

to one mobile device at a time.

3.1 Tradeoff between Model Accuracy and
Offloading Latency

Offloading a computation-intensive task, e.g., a DNN model, for

mobile AR requires three steps: (1) uploading a single frame from

the mobile device to the edge server over the wireless network, (2)

performing DNN inference for the uploaded frame, and (3) transmit-

ting the estimation result back to the mobile device. The end-to-end

offloading latency using DNN modelm can be modelled as:

Tend−to−end = Tul (m) +Tinf (m) +Tdl (m) (1)

where Tul and Tdl denote the time taken in uploading the RGB

frame to the server and sending the estimation result to the client,

respectively, and Tinf is the inference time on the server.

In practice, the end-to-end offloading time can exceed the per-

frame duration (e.g., 16.7ms for 60 FPS). For example, if end-to-end

offloading takes L frame intervals, then the AR app can only offload

every L-th frame to the edge server, and the result of each offloaded

framewill be used as the estimate for L future, non-offloaded frames.

For example, if frames T, T+L, etc, are offloaded, the result of frame

T will come back at T+L-1, and used as the estimation for frames

T+L, ... , T+2L-1. As a result, the longer the offloading delay, the

more stale the estimation result will be, and more frames will be

using that stale result, and hence the lower the average estimation

error across the frames of a video will be.

In comparing different-sized DNNmodels, we expect that a larger

DNNmodel to have longer inference time and network transmission

time and hence offloading delay, but also higher accuracy for each

offloaded frame. Since their tradeoff on the average error can not

be modelled analytically, we resort to experimental evaluation.

3.2 Optimal Offloading Scheduling
The above discussion suggests that minimizing offloading delay and

maximizing offloading frequency will minimize the average error

from offloading. Since network transmission and server inference

exploit different resources (network and GPU, respectively), pipelin-

ing can be used to maximize the offloading frequency. However,

49

NAI’21, August 27, 2021, Virtual Event, USA Jiayi Meng, Zhaoning Kong, Qiang Xu, and Y. Charlie Hu

 Inf

Frame k

Frame k+3

UL DLInf

16.7ms

UL Inf

ULFrame k+6

DL

(a) Inference-dominant offloading (average reuse distance: 5)

Frame k

Frame k+5

UL DLGap

16.7ms

Inf

UL GapInf

ULFrame k+10

DL

Inf

(b) Network-dominant offloading with pipelining (average reuse
distance: 11)

Frame k

Frame k+8

UL

16.7ms

Inf

UL Inf

DL

DL

(c) Network-dominant offloading sequentially (average reuse dis-
tance: 10.5)

Figure 1: Different offloading scenarios have different of-
floading scheduling policies (Inf: inference).

depending on the relative latency of the two tasks, pipelining them

may also increase the offloading delay. In the following, we sepa-

rately consider two possible scenarios, and study how to minimize

the average error from offloading.

In the first scenario, denoted as inference-dominant offloading, the
inference latency is longer than the network transmission delay, i.e.,
Tinf > Tul +Tdl . As shown in Figure 1a, inference for frame k can

be stably pipelined with downlink traffic for the last offloaded frame

and uplink traffic for the next offloaded frame without affecting the

per-frame end-to-end offloading delay, and the maximum offloading

frequency is simply determined by the per-frame inference duration

on the server, i.e., f =
⌈ Tinf
Tf rame

⌉−1
, where Tf rame is per-frame

interval, e.g., 16.7ms under 60 FPS.

In the second scenario, denoted as network-dominant offloading,
the network transmission delay is longer than inference delay, i.e.,
Tul +Tdl ≥ Tinf . To pipeline network transmission with inference,

downlink traffic for frame k has to wait for uplink traffic for next

offloaded frame to complete, which leads to a gap between inference

and downlink transmission for frame k , as shown in Figure 1b. To

stably pipeline network-dominant offloading, the total duration

of gap and inference should equal that of uplink and downlink

transmission for each frame, i.e.,Tдap+Tinf = Tul+Tdl , whereTдap
is the duration of the gap, and the maximum offloading frequency

f is determined by the total network transmission duration for a

single frame, i.e., f =
⌈
Tul+Tdl
Tf rame

⌉−1
.

However, pipelining network transmission and server inference

in this way in network-dominant offloading can result in longer end-

to-end offloading delay. An alterative offloading schedule, simply

offloading without pipelining, achieves the lowest possible per-

offloading end-to-end delay ofTul+Tinf +Tdl , as shown in Figure 1c,
which also dictates its maximum offloading frequency to be f =⌈Tul+Tinf +Tdl

Tf rame

⌉−1
.

To estimate which offloading schedule (pipelining vs. no pipelin-

ing) achieves the minimal average error from offloading for

Table 2: Performance of offloading DNN models under LTE
and 5G mmWave.

Model Frame Res.
for Net.

Net. Latency
(UL/DL) (ms)

Inf. Time
(ms)

Offloading
Freq.

LTE

Small 832×256 114.24/45.62 8.18 11

Medium 1024×320 167.68/62.10 12.34 15

Large 1248×384 244.03/85.65 41.80 23

LTE + best frame downsizing

Small 208×64 21.20/16.91 8.18 3

Medium 416×128 39.81/22.65 12.34 5

Large 208×64 21.20/16.91 41.80 3

5G mmWave

Small 832×256 40.33/12.39 8.18 4

Medium 1024×320 58.81/15.83 12.34 6

Large 1248×384 85.22/20.75 41.80 9

5G mmWave + best frame downsizing

Small 416×128 14.58/7.60 8.18 2

Medium 416×128 14.58/7.60 12.34 3

Large 416×128 14.58/7.60 41.80 3

network-dominant offloading, we define reuse distance which mea-

sures the frame distance between an offloaded frame Fi and each

frame Fj that reuses the result of frame Fi . The reuse distance can
be calculated using offloading frequency and end-to-end offloading

latency. Since one offloaded frame Fi may be reused by multiple

future frames, we calculate the average reuse distance for each of-

floading schedule. For a given DNN model, the larger the average

reuse distance, the worse the average estimation accuracy across

all frames.

In summary, the optimal offloading scheduling works as follows.

First, it determines the type of offloading based on estimated la-

tencyTul ,Tdl andTinf , given network uplink/downlink bandwidth,
server compute capability, and the DNN model to be offloaded. If

it is inference-dominant offloading, we pipeline network transmis-

sion and server inference; if it is network-dominant offloading,

we compare the average reuse distance between pipelining and

no pipelining, and select the schedule that has the smaller reuse

distance.

3.3 Experimental Results

Experimental setup.We emulate offloading RGB frames of the 12

videos to the edge server over LTE by setting the upload/download

throughput to be 25Mbps/110Mbps (measured using iperf in the

wild) and the RTT to be 30ms (measured between an edge server

and the mobile client using traceroute).

Results.Wefirst calculate the optimal offloading frequency. Table 2

shows that Small, Medium and Large models have increasingly

smaller offloading frequencies, of once every 11, 15 and 23 frames,

respectively, which are primarily determined by the long network

transmission latency.

We next evaluate the average accuracy of offloading the three

DNNmodels to the edge across the 12 KITTI videos. Figure 2a shows

that compared to the offline model accuracy (Table 1), offloading

incurs significant error increase for all three models. The Small

DNN achieves the lowest average error of 21.7%, 1.6X higher than

50

Do Larger (More Accurate) Deep Neural Network Models Help in Edge-assisted Augmented Reality? NAI’21, August 27, 2021, Virtual Event, USA

Offline Base FT D1 D2 D3 FT+D1 FT+D2 FT+D30
5

10
15
20
25
30
35

Av
g.

 E
st

im
at

io
n

Er
ro

r (
%

)

Small Medium Large

(a) LTE

Offline Base FT D1 D2 D3 FT+D1 FT+D2 FT+D30
5

10
15
20
25
30
35

Av
g.

 E
st

im
at

io
n

Er
ro

r (
%

)

Small Medium Large

(b) 5G mmWave
Figure 2: Average absolute relative errors of different of-
floading approaches to single edge server over LTE and 5G
mmWave. Base: offloading alone. FT: offloading with fast
tracking. D1, D2 and D3: downsizing frames to 832×256,
416×128 and 208×64, respectively.

its offline accuracy. The Medium and Large DNNs achieve average

errors of 22.5% and 22.2%, respectively, which are 1.9X and 2.1X

higher than the corresponding offline DNN accuracy. The results

suggest that directly reusing the result from the last offloaded frame

leads to poor accuracy for non-offloaded frames and hence low

average accuracy for edge-assisted AR.

4 HOW DOES LOCAL FAST TRACKING HELP?
Since directly reusing the result from the last offloaded frame leads

to poor estimation accuracy for non-offloaded frames, we next

study how the idea of local fast tracking (e.g., [7, 13]) which can

improve the estimation accuracy of non-offloaded frames affects

the relative performance of different-sized DNN models.

Fast tracking. we use a geometry-based method called “warping”

to synthesize the depth map of a target frame dtдt , i.e., a non-

offloaded frame, using the depth map of a reference frame dr ef ,
i.e., the last offloaded frame, and the relative pose change of the

camera between the two frames p(re f , tдt). In detail, dr ef is first

mapped to points in the 3D space using its pixel values, forming a

point cloud that represents the 3D surfaces of the captured objects.

dtдt is then inferred from the point cloud via simple linear algebra,

using p(re f , tдt) which identifies the viewpoint change from the

reference frame to the target frame.

Experimental results. Figure 2a shows that even though fast

tracking does not change offloading frequencies, surprisingly, it

increases the average error to 22.1%, 22.6% and 25.3% for the Small,

Medium, and Large DNNs, respectively. To understand why, we

look into the 12 videos. We observe that warping actually increased

the average error for about 6 out of 12 videos for each DNN model,

which have many frames with new content in the non-offloaded

frames not seen in the last offloaded frame, due to fast camera

movement or frequent scene change. Since warping relies on the

depth in the reference frame to infer the depth for the target frame,

it cannot estimate the depth for such new content in non-offloaded

frames.

5 HOW DOES FRAME DOWNSIZING HELP?
Since network transmission latency dominates end-to-end offload-

ing latency and hence offloading frequency, we next study how

downsizing frames, which reduces network transmission latency

for all models, affects the relative performance of different-sized

DNN models.

Frame downsizing. Frame downsizing is a lightweight compres-

sion algorithm that simply drops pixels uniformly, e.g., every other

row and every other column of the image. For every frame to be

offloaded, the client first subsamples it to some resolution, then

transmits the downsized frame to the server, and then the server

upsamples the frame back to the original resolution of the input

expected by the DNN model for inference. After the inference, the

server downsizes the depth map before sending it back to the client.

Frame downsizing reduces the transmitted frame size, but may

degrade the frame quality. It is lightweight and does not add to the

end-to-end offloading delay.

Since different downsizing resolutions may affect offloading dif-

ferently, we select three different resolutions, i.e., 832×256, 416×128
and 208×64 (denoted as D1, D2 and D3).

Experimental results. Table 2 shows downsizing frames to the

carefully chosen resolution, i.e., 208×64, 416×128 and 208×64, for

Small, Medium and Large DNNs, respectively, significantly reduces

network transmission latency and improves the offloading frequen-

cies to once every 3, 5 and 3 frames, which result in the highest

accuracies without and with fast tracking under LTE for the three

DNN models, respectively.

Figure 2a shows that (1) without fast tracking, the Large DNN

achieves the lowest error of 17.0% when downsizing frames to

208×64, lower than the best accuracy achieved by the Medium and

Small models (19.6% and 17.2%, respectively); (2) With fast tracking,

the Large DNN achieves the lowest error of 15.5% when downsizing

frames to 208×64, lower than the best accuracies achieved by the

Medium and Small models (17.0% and 15.9%, respectively). The

results suggest that different DNN models have different sensitivity

to frame downsizing.With carefully chosen downsample size, frame

downsizing can significantly reduce the end-to-end offloading delay

of the Large model without compromising its accuracy, and making

it achieve the highest average accuracy among the DNN models.

6 HOW DOES 5G MMWAVE HELP?
Since network transmission latency dominates end-to-end offload-

ing latency and hence offloading frequency, we next study how

the emerging faster network, i.e., 5G mmWave, affects the relative

performance of different-sized DNN models.

Experimental setup. We repeat the offloading experiments by

changing the wireless network from LTE to 5G mmWave. We use

the calculated average upload and download bandwidth using traces

measured for 5G mmWave [14], of around 73Mbps/520Mbps when

the client is walking/driving, and our measured RTT under 5G

mmWave using traceroute of 12ms in Downtown Boston.

51

NAI’21, August 27, 2021, Virtual Event, USA Jiayi Meng, Zhaoning Kong, Qiang Xu, and Y. Charlie Hu

Results. Table 2 shows that without frame downsizing, 5G

mmWave significantly improves the offloading frequencies com-

pared to LTE for all three DNN models, to once every 4, 6 and 9

frames, respectively. With carefully chosen target size for down-

sizing frames, the offloading frequencies further increase to once

every 2, 3 and 3 frames. Figure 2b shows that the improved offload-

ing frequencies from 5G mmWave and downsizing translate into

improved average estimation error for all three models: (1) without

fast tracking , the average errors of Small, Medium and Large DNNs

drop to 15.1%, 17.1% and 15.6%; (2) fast tracking further reduces the

average errors to to 14.3%, 15.0% and 13.5%, respectively. In other

words, the Large model achieves the highest average accuracy from

edge offloading.

7 CONCLUSION
In this paper, we experimentally studied the design tradeoff in pick-

ing from different-sized DNN models in edge-assisted monocular

depth estimation, an important task of AR. Our results show that

for edge-assisted monocular depth estimation, with proper frame

downsizing and fast tracking, compared to small models, the im-

proved accuracy of large models can offset its longer turnaround

time to provide higher average estimation accuracy across frames,

under both LTE and 5GmmWave. In ongoing work, we are studying

the same design challenge in offloading other AR tasks, including

object detection and pose estimation.

ACKNOWLEDGMENTS
We thank our shepherd Kai Gao and the anonymous reviewers for

their helpful comments. This project is supported in part by NSF

grant 2112778.

REFERENCES
[1] 2020. Mobile augmented reality (AR) market revenue worldwide from 2019

to 2024. https://www.statista.com/statistics/282453/mobile-augmented-reality-

market-size/.

[2] 2021. Flops Counter for Convolutional Networks in Pytorch Framework. https:

//github.com/sovrasov/flops-counter.pytorch

[3] 2021. Fundamental concepts of ARCore. https://developers.google.com/ar/

discover/concepts.

[4] 2021. PYTORCH MOBILE. https://pytorch.org/mobile/android/

[5] Ibraheem Alhashim et al. 2018. High quality monocular depth estimation via

transfer learning. arXiv preprint arXiv:1812.11941 (2018).
[6] Jiawang Bian et al. 2019. Unsupervised scale-consistent depth and ego-motion

learning frommonocular video. Advances in neural information processing systems
32 (2019), 35–45.

[7] Tiffany Yu-Han Chen et al. 2015. Glimpse: Continuous, real-time object recogni-

tion on mobile devices. In Proceedings of the 13th ACM Conference on Embedded
Networked Sensor Systems. 155–168.

[8] David Eigen et al. 2014. Depth map prediction from a single image using a

multi-scale deep network. arXiv preprint arXiv:1406.2283 (2014).
[9] Huan Fu et al. 2018. Deep ordinal regression network for monocular depth

estimation. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition. 2002–2011.

[10] Clément Godard et al. 2019. Digging into self-supervised monocular depth

estimation. In Proceedings of the IEEE/CVF International Conference on Computer
Vision. 3828–3838.

[11] Iro Laina, , et al. 2016. Deeper depth prediction with fully convolutional residual

networks. In 2016 Fourth international conference on 3D vision (3DV). IEEE, 239–
248.

[12] Bo Li et al. 2015. Depth and surface normal estimation from monocular images

using regression on deep features and hierarchical crfs. In Proceedings of the IEEE
conference on computer vision and pattern recognition. 1119–1127.

[13] Luyang Liu et al. 2019. Edge assisted real-time object detection for mobile aug-

mented reality. In The 25th Annual International Conference on Mobile Computing
and Networking. 1–16.

[14] Arvind Narayanan et al. 2020. Lumos5G: Mapping and Predicting Commer-

cial mmWave 5G Throughput. In Proceedings of the ACM Internet Measurement
Conference. 176–193.

[15] Jonas Uhrig et al. 2017. Sparsity Invariant CNNs. In International Conference on
3D Vision (3DV).

[16] Tinghui Zhou et al. 2017. Unsupervised learning of depth and ego-motion

from video. In Proceedings of the IEEE conference on computer vision and pattern
recognition. 1851–1858.

52

