
DEMO: Towards Fine-Grained and Automated Control for
Large-Scale Wireless Digital Twins

Sarath Nagadevara
sxn0581@mavs.uta.edu

University of Texas at Arlington
Arlington, Texas, USA

Afroze Rahman
afroze.rahman@uta.edu

University of Texas at Arlington
Arlington, Texas, USA

Jiayi Meng
jiayi.meng@uta.edu

University of Texas at Arlington
Arlington, Texas, USA

Abstract
The NVIDIA Aerial OmniverseTM Digital Twin (AODT) is a state-of-
the-art wireless digital twin (DT) platform for 5G and 6G R&D. The
AODT provides intuitive graphical user interfaces (GUIs) that allow
users to control a wireless DT, such as configuring radio settings
and geospatial information of distributed units, radio units, and
user equipments. However, these built-in GUIs impose significant
constraints on fine-tuned control and automation, which are crucial
for high-fidelity simulation of large-scale, real-world radio access
networks. In this work, we propose an extension to the AODT that
enables fine-grained control and automation without the need for
GUIs. We demonstrate the use of this extension by running simula-
tions within the AODT entirely through programmatic interfaces.

CCS Concepts
• Networks → Network simulations; Mobile networks; Wire-
less access points, base stations and infrastructure; Program-
ming interfaces; Network mobility; Network dynamics; • Comput-
ing methodologies → Simulation tools.

Keywords
Wireless Networks, Digital Twins, Large-Scale Simulation, Program-
matic Interfaces

ACM Reference Format:
Sarath Nagadevara, Afroze Rahman, and Jiayi Meng. 2025. DEMO: Towards
Fine-Grained andAutomated Control for Large-ScaleWireless Digital Twins.
In ACM SIGCOMM 2025 Conference (SIGCOMM Posters and Demos ’25),
September 8–11, 2025, Coimbra, Portugal. ACM, New York, NY, USA, 3 pages.
https://doi.org/10.1145/3744969.3748451

1 Introduction
A wireless digital twin (DT) is a high-fidelity virtual representa-
tion of a physical wireless network [2]. It accurately captures and
simulates the network’s intricate real-world attributes and interac-
tions between its components—such as user equipments (UEs) and
base stations—under different operational environments. It facili-
tates precise network planning and real-time, automated network
management, e.g., by conducting what-if analyses across different
network configurations. Its faster-than-real-time simulations also
enable the collection of realistic, large-scale data of radio access

This work is licensed under a Creative Commons Attribution 4.0 International License.
SIGCOMM Posters and Demos ’25, Coimbra, Portugal
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-2026-0/2025/09
https://doi.org/10.1145/3744969.3748451

networks (RANs) across diverse radio environments, which is es-
sential for training accurate and generalizable machine learning
(ML) models [1, 7].

The NVIDIA Aerial OmniverseTM Digital Twin (AODT) is a
cutting-edge wireless DT platform, which supports the research
and development of large-scale RANs for 5G and beyond [4]. It can
simulate the physical andMAC layers of RANswithin a realistic city-
scale environment. The AODT provides graphical user interfaces
(GUIs). Using these GUIs, users can manually deploy base stations
and UEs within a wireless DT and specify their configurations,
such as antenna panel settings and UE movement paths and speeds.
Alternatively, users can define a zone where a specific number of
UEs are procedurally spawned based on simple, pre-defined rules,
e.g., allowed UE locations in the DT, using the GUIs.

While deploying and configuring base stations and UEs through
the GUIs is intuitive, it fails to provide fine-grained control and
automation—especially for large-scale simulations. In the AODT,
users need to individually place each component within the wireless
DT and configure their detailed attributes through point-and-click
and drag-and-drop interactions. This can become error-prone and
time-consuming. The alternative procedural spawning option for
UEs can lead to non-deterministic or unrepresentative UE distri-
butions if not properly constrained, which can potentially lead to
inaccurate or misleading simulation outcomes. As a result, the au-
tomation capability of the AODT is limited by the lack of support
for large-scale UE and RAN deployments and their fine-grained
configurations. Without sufficient customization and automation,
it is challenging to efficiently generate extensive, consistent simula-
tion scenarios for comprehensive testing of next-generation RANs
and rapid data generation for training ML models, etc.

To address these limitations, we extend the AODT framework by
developing a configuration handler module, referred to as ConfigH-
andler. This module is a lightweight, easy-to-integrate plugin to
the ADOT. It allows users to specify the properties of simulated
distributed units (DUs) and radio units (RUs) of base stations along
with UEs using programmatic interfaces without relying on the
GUIs. To make it user-friendly, we also define a JSON schema that
aligns with the properties supported by the built-in GUIs of the
AODT. In this demo, we demonstrate how to leverage our developed
ConfigHandler to configure UEs and RANs—including positions of
DUs and RUs, UE movement paths and speeds, and antenna arrays
to be used by RUs andUEs—across different simulated environments
and perform simulations within the AODT.

2 Design of ConfigHandler
The proposed extension, ConfigHandler, comprises two main com-
ponents. ❶ The first component is responsible for loading various

190

https://orcid.org/0009-0003-1608-9521
https://orcid.org/0009-0008-9583-2913
https://orcid.org/0000-0003-3091-8894
https://doi.org/10.1145/3744969.3748451
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3744969.3748451
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3744969.3748451&domain=pdf&date_stamp=2025-09-10

SIGCOMM Posters and Demos ’25, September 8–11, 2025, Coimbra, Portugal Nagadevara et al.

Table 1: Key-value pairs defined in the JSON schema for prop-
erties of DUs, RUs, and UEs in the AODT.

DU

“id”: int “num_antennas”: int
“fft_size”: int “subcarrier_spacing”: float
“position”: (“x”: float, “y”: float, “max_channel_bandwidth”: float

“z”: float)

RU

“du_id”: int “panel_type”: string
“cell_id”: int “du_manual_assign”: bool
“height”: float “mech_tilt”: float
“position”: (“x”: float, “y”: float, “mech_azimuth”: float

“z”: float) “radiated_power”: float

UE

“user_id”: int “panel_type”: string
“manual”: bool “waypoint_config”: string
“is_indoor”: bool “waypoints”: [{ “point”: (“x”: float,
“mech_tilt”: float “y”: float, “z”: float),
“radiated_power”: float “stop_sec”: float,
“position”: (x”: float, “y”: float, “speed_mps”: float,

“z”: float”) “azimuth_offset_rad”: float }]

properties of DUs, RUs, and UEs—including geospatial and radio
attributes—from a user-defined JSON file through an implemented
function, called loadFromFile(). ❷ The second component injects
the loaded configuration data into an OpenUSD (Universal Scene
Description) stage. OpenUSD is an open-source software platform
that the AODT uses to create, edit, render, and simulate a 3D DT
environment (referred to as scene in the AODT) [5, 6]. An OpenUSD
stage is an instance of a USD data model that stores the data for
simulations and serves as the entry point for accessing and manip-
ulating the USD data used for simulations [3]. The implemented
function for the second component is addStageParams().

JSON Schema. To ensure that the input configurations comply
with the AODT, we define a JSON schema. Table 1 highlights the
primary key-value pairs defined in the schema for specifying the
attributes of DUs, RUs, and UEs. In particular, users can define a UE
movement path by specifying a sequence of their waypoints with
corresponding speeds (unit: m/s), “speed_mps”, and stop durations
(unit: seconds), “stop_sec”, in one JSON configuration file as the
input to ConfigHandler. Note that the AODT can automatically ad-
just invalid waypoints, e.g., non-reachable locations, to the nearest
reachable coordinates.

Integration into AODT. To integrate ConfigHandler into the
AODT to run simulations without the GUIs, we invoke the two com-
ponents of ConfigHandler, whenever a scene is opened. Opening
a scene involves loading all scene settings, including its 3D envi-
ronment and properties of DUs, RUs, and UEs, into the simulation
engine of the AODT. To increase flexibility, we plan to further ex-
tend the AODT to support editing of an already opened scene. This
will allow users to directly add, update, and remove DUs, RUs, and
UEs and their properties within an existing DT in the AODT.

3 Execution Flow of AODT + ConfigHandler
In this section, we discuss how to run simulations in the AODT
using the developed ConfigHandler without relying on the GUIs.

CONFIGINIT

EXECEXIT

attach_worker open_scene

start_sim

detach_worker

Figure 1: State machine of the AODT backend.

Table 2: State transition requests of the AODT backend.

Request Description

attach_worker Initialize a simulation worker in the AODT backend
open_scene Configure the AODT backend with an OpenUSD stage
start_sim Start a simulation in the AODT backend
detach_worker Detach a worker from the AODT backend

To operate the AODT without the GUIs, we observe that users
must follow the event sequence defined by AODT’s state machine.
This state machine tracks the state of a simulation. The simula-
tion states include initialization (INIT), configuration (CONFIG),
execution (EXEC), and exit (EXIT), as shown in Figure 1. With the
GUIs, the AODT manages the data and control flow between the
frontend GUIs and the AODT backend (which handles data pro-
cessing/storage and simulations) through a set of backend han-
dlers. These handlers process and respond to requests from the
frontend. The simulation state is updated in the backend based on
these frontend-driven requests, including attach_worker_request
(attach_worker), open_scene_request (open_scene), start_ sim_r-
equest (start_sim), and detach_worker_ request (detach_worker),
as illustrated in Table 2.

The execution flow without using the GUIs is as follows. At the
start of each simulation, users should begin with an attach_worker
request to transition the backend into the INIT state. Subsequently,
an open_scene request should be sent to the backend to configure
the simulation scene, during which ConfigHandler is executed.
This triggers the backend to transition into the CONFIG state. Once
the backend is in the CONFIG state, users can start the simulation
using pre-defined DUs, RUs, and UEs, by sending a start_sim
request to the backend to transition it into the EXEC state. Users
can send a detach_worker request to detach from the backend,
sending it into the EXIT state.

4 Demonstration
We demonstrate ConfigHandler, our extension to the AODT, on
two testbeds—(1) a server running Ubuntu 22.02 on AMD Ryzen
Threadripper PRO 5995WX 64-Cores Processor, with 67GB RAM,
and 2 x NVIDIA RTX 4090 40GB GPUs; and (2) a server running
Ubuntu 22.02 on AMD EPYC 7763 64-Core Processor, with 200GB
RAM, and 2 x NVIDIA A100 80GB GPUs. We install the AODT on
the servers, and run simulations with varying number of DUs, RUs,
and UEs on an OpenUSD stage of Tokyo provided with the AODT,
following the execution flow discussed in Section 3.

191

DEMO: Towards Fine-Grained and Automated Control for Large-Scale Wireless Digital Twins SIGCOMM Posters and Demos ’25, September 8–11, 2025, Coimbra, Portugal

References
[1] Jakob Hoydis, Faycal Ait Aoudia, Sebastian Cammerer, Merlin Nimier-David,

Nikolaus Binder, Guillermo Marcus, and Alexander Keller. 2023. Sionna RT:
Differentiable Ray Tracing for Radio Propagation Modeling. In 2023 IEEE Globecom
Workshops (GC Wkshps). 317–321. doi:10.1109/GCWkshps58843.2023.10465179

[2] Latif U Khan, Ibrar Yaqoob, Muhammad Imran, Zhu Han, and Choong Seon Hong.
2020. 6G wireless systems: A vision, architectural elements, and future directions.
IEEE access 8 (2020), 147029–147044.

[3] NVIDIA. 2024. Aerial Omniverse Digital Twin Documentation. https://docs.
omniverse.nvidia.com/usd/latest/learn-openusd/terms/stage.html

[4] NVIDIA. 2025. Aerial Omniverse Digital Twin. https://developer.nvidia.com/aerial-
omniverse-digital-twin

[5] NVIDIA. 2025. Scene Importer — Aerial Omniverse Digital Twin. https://docs.
nvidia.com/aerial/aerial-dt/text/scene_importer.html

[6] Pixar Animation Studios. 2021. Introduction to USD—Universal Scene Description
25.05 documentation. https://openusd.org/docs/index.html

[7] Paolo Testolina, Michele Polese, Pedram Johari, and Tommaso Melodia. 2024.
Boston Twin: the Boston Digital Twin for Ray-Tracing in 6G Networks. In Proc. of
the 15th ACM Multimedia Systems Conference (Bari, Italy) (MMSys ’24). 441–447.
doi:10.1145/3625468.3652190

192

https://doi.org/10.1109/GCWkshps58843.2023.10465179
https://docs.omniverse.nvidia.com/usd/latest/learn-openusd/terms/stage.html
https://docs.omniverse.nvidia.com/usd/latest/learn-openusd/terms/stage.html
https://developer.nvidia.com/aerial-omniverse-digital-twin
https://developer.nvidia.com/aerial-omniverse-digital-twin
https://docs.nvidia.com/aerial/aerial-dt/text/scene_importer.html
https://docs.nvidia.com/aerial/aerial-dt/text/scene_importer.html
https://openusd.org/docs/index.html
https://doi.org/10.1145/3625468.3652190

	Abstract
	1 Introduction
	2 Design of ConfigHandler
	3 Execution Flow of AODT + ConfigHandler
	4 Demonstration
	References

