
CSE 5306 
Distributed Systems

Naming

1

Jia Rao

http://ranger.uta.edu/~jrao/



Naming
• Names play a critical role in all computer systems

• To access resources, uniquely identify entities, or refer to 
locations

• To access an entity, you have to resolve the name and 
find the entity
• Name resolution

• In a distributed system, the naming system itself is 
implemented across multiple machines
• Efficiency and scalability are the keys

2



Addresses

• To access an entity, we need the access point, which is a 
special entity

ü The name of an access point is an address

• An entity may have multiple access points, and its access 
point may change

ü The address of an access point should not be used to name the entity
ü E.g., each person has multiple phone numbers to reach him/her, and 

these numbers may be re-assigned to another person

• Therefore, what we need is a name for an entity that is 
independent from its addresses

ü i.e., a location-independent name



True Identifiers

• Are the names that are used to uniquely identify an entity 
in a distributed system

• True identifiers have the following property
ü Each identifier refers to at most one entity

ü Each entity referred to by at most one identifier

ü An identifier always refers to the same entity (no identifier reuse)

• A simple comparison of two identifiers is sufficient to 
test if they refer to the same entity



Issues of Naming

• How to resolve names and identifiers to addresses

• A naming system maintains a name-to-address 
binding in the form of mapping table
üA centralized table in a large network is not scalable

• The name resolution as well as the table is often 
distributed across multiple machines



Flat Names 

• An identifier is often a string of random bits
üDoes not contain any information on how to locate the 

access point of its associated entity

• Two simple solutions to locate the entity given an 
identifier
üBroadcasting and multicasting (e.g., ARP)

• Broadcasting is expensive, multicast is not well supported

üForwarding pointers
• When an entity moves, it leaves a pointer to where it went
• A popular approach to locate mobile entities



Forwarding Pointers

• Advantage:
ü Dereferencing can be made transparent to client – follow the 

pointer chain

• Geographical scalability problems:
ü Chain can be very long for highly mobile entities
ü Long chains not fault tolerant
ü High latency when dereferencing

• Need chain reduction mechanisms
ü Update client’s reference when the most recent location is found



Forwarding via Client-Server Stubs

The principle of forwarding pointers 
using (client stub, server stub) pairs.



Chain Reduction via Shortcuts



Home-based Approaches

The principle of Mobile IP.



Issues with Home-based 
approaches

• Home address has to be supported as long as entity 
lives

• Home address is fixed – unnecessary burden if entity 
permanently moves

• Poor geographical scalability 



Distributed Hash Table

• Review of DHT-based Chord system
ü Each node has an m-bit random identifier
ü Each entity has an m-bit random key
ü An entity with key k is located on a node with the smallest identifier

• That satisfies id >=k, denoted as succ(k)

• The major task is key lookup
ü i.e., to resolve an m-bit key to the address of succ(k)
ü Two approaches: linear approach and finger table

• The simplest form of chord does not consider network 
proximity



Key Lookup in Chord

Resolving key 26 from node 
1 and key 12 from node 28 in 

a Chord system.



Hierarchical Approaches (1/3)

Hierarchical organization of a location service into domains, each having an 
associated directory node.



Hierarchical Approaches (2/3)

An example of storing information of an entity 
having two addresses in different leaf domains.



Hierarchical Approaches (3/3)

Looking up a location in a hierarchically 
organized location service.



Structured Naming

• Flat names are not convenient for humans to use

• As a result, naming systems often support structured 
names that 

ü Are composed from simple, human-readable names, e.g., file 
names, Internet domain names

• Structured names are often organized into what is called 
a name space

ü A labeled, directed graph with two types of nodes, leaf node and 
directory node



Name Space 

A general naming graph with a single root node.



UNIX File Systems

The general organization of the UNIX file system 
implementation on a logical disk of contiguous disk blocks.



Name Resolution

• The process of looking up a name in a name space

• Name resolution can take place only if we know 
where and how to start
üA closure mechanism, e.g., starting from a well known root 

directory, or start from home

• Linking
üAliases are commonly used in a name space
üAn alias can be a hard link or a symbolic link



Symbolic Link

The concept of a symbolic link 
explained in a naming graph.



Mounting (1/2)

• The process of merging different name spaces

• A common approach is to 
ü Let a directory node (mount point) store the identifier of a 

directory node (mounting point) from the foreign name space

• Information required to mount a foreign name space in a 
distributed system

ü The name of an access protocol
ü The name of the server
ü The name of the mounting point in the foreign name space



Mounting (2/2)

Mounting remote name spaces 
through a specific access protocol.



Implementation of a Name Space

• A name space is often implemented by name servers
ü In LAN, a single name server is enough
ü In large-scale systems, the implementation of a name space is often 

distributed over multiple name servers

• A name space for large-scale distributed systems is often organized 
hierarchically

ü Global layer
• Often stable, represents organizations of groups of organizations

ü Administrational layer
• Represents groups of entities in a single organization

ü Managerial layer
• Nodes often change frequently, e.g., hosts in a local network
• May be managed by system administrators or end users



Name Space Distribution (1/2)

An example partitioning of the DNS name space, including Internet-accessible 
files, into three layers.



Name Space Distribution (2/2)

A comparison between name servers for implementing nodes from a large-scale 
name space partitioned into a global layer, an administrational layer, and a 

managerial layer.



Implementing Name Resolution (1/2)

The principle of iterative name resolution.



Implementing Name Resolution (2/2)

The principle of recursive name resolution.



Recursive v.s. Iterative

• Recursive resolution demands more on each name 
server

• However, it has two advantages
ü Caching is more effective than iterative name resolution

• Intermediate nodes can cache the result
• With iterative solution, only the client can cache

ü Overall communication cost can be reduced



Example: The Domain Name System

• The DNS name space is organized as a root tree

• Each node in this tree stores a collection of resource recodes



Decentralized DNS 
Implementation

• In standard hierarchical DNS implementation, higher-level 
nodes receives more requests than low-level nodes

ü Leading to a scalability problem

• Fully decentralized solution can avoid such scalability 
problem

ü Map DNS names to keys and look them up in a distributed hash 
table

ü The problem is that we lose the structure of the original names 
and make some operations difficult



Attribute-based Naming

• As more information being made available, it becomes 
important to 

ü Locate entities based on merely a description of that is needed

• Attribute-based naming
ü Each entity is associated with a collection of attributes
ü The naming system provides one of multiple entities that 

matches a user’s description

• Attribute-based naming systems are often known as 
directory services



Hierarchical Implementation LDAP

A simple example of an LDAP 
directory entry using LDAP naming conventions.



Directory Information Tree (DIT)



Decentralized (DHT) Implementation

• Each path in attribute-value tree (AVT) produces a 
hash value and mapped to a DHT
üh1=hash(type-book), h2=hash(type-book-author) …



Ranged Query in DHT Implementation

• Two phase approach

• Separate the name and the attribute in computing the 
hash value

ü Phase 1: distribute attribute names in DHT
ü Phase 2: for each name, partition the values into subranges and 

assign a single server for each subrange

• Drawbacks
ü Updates may need to be sent to multiple servers
ü Load balancing between different subrange servers



Semantic Overlay Networks

• Construct an overlay network where each pair of 
neighbors are semantically proximal neighbors
ü i.e., they have similar resources


