CSE 5306
Distributed Systems

Naming

Jia Rao

http://ranger.uta.edu/~jrao/

Naming

« Names play a critical role in all computer systems
- To access resources, uniquely identify entities, or refer to
locations

 To access an entity, you have to resolve the name and
find the entity

- Name resolution

* In a distributed system, the naming system itself is
implemented across multiple machines
- Efficiency and scalability are the keys

Addresses

 To access an entity, we need the access point, which is a
special entity
v The name of an access point is an address

« An entity may have multiple access points, and its access
point may change
v The address of an access point should not be used to name the entity

v E.g., each person has multiple phone numbers to reach him/her, and
these numbers may be re-assigned to another person

 Therefore, what we need is a name for an entity that is
independent from its addresses
v I.e., a location-independent name

True Identifiers

* Are the names that are used to uniquely identify an entity
in a distributed system

* True identifiers have the following property
v Each identifier refers to at most one entity
v Each entity referred to by at most one identifier

v An identifier always refers to the same entity (no identifier reuse)

* A simple comparison of two identifiers is sufficient to
test if they refer to the same entity

Issues of Naming

 How to resolve names and identifiers to addresses

A naming system maintains a name-to-address
binding in the form of mapping table

v A centralized table in a large network is not scalable

 The name resolution as well as the table is often
distributed across multiple machines

Flat Names

* An identifier is often a string of random bits

v'Does not contain any information on how to locate the
access point of its associated entity

» Two simple solutions to locate the entity given an
identifier
v Broadcasting and multicasting (e.g., ARP)
 Broadcasting is expensive, multicast is not well supported

v Forwarding pointers

« When an entity moves, it leaves a pointer to where it went
A popular approach to locate mobile entities

Forwarding Pointers

 Advantage:
v Dereferencing can be made transparent to client - follow the
pointer chain
 Geographical scalability problems:
v Chain can be very long for highly mobile entities
v Long chains not fault tolerant
v High latency when dereferencing

* Need chain reduction mechanisms
v Update client’s reference when the most recent location is found

Forwarding via Client-Server Stubs

Process P2 Stub cs* refers to
Glisnieinh os* same server stub as

/ stub cs.
\:ﬁ Process P3

\ _ Identical client stub
Process P1 Server stub /2 [X

Client stub cs \ Process P4 Object
\D/ Local Za

invocation
Interprocess
communication |dentical _— |
server stub

The principle of forwarding pointers
using (client stub, server stub) pairs.

Chain Reduction via Shortcuts

Invocation
request is

sent to object > 4D\

At

Server stub at object's
current process returns
the current location

(@)

Server stub is no

longer referenced

by any client stub \\Z |:

Client stub sets
a shortcut

(b)

Home-based Approaches

Host's home

Ioca'tmn 1. Send pacﬁet to host at its home

L I} T

%ﬂ

. 2. Retum address b
. of current location 69
Client's
=X location

A

S\, 3. Tunnel packet to
~Acurrent location

4. Send successive packets
to current location

Host's present location C/Ob

The principle of Mobile IP.

Issues with Home-based
approaches

Home address has to be supported as long as entity
lves

Home address is fixed — unnecessary burden if entity
nermanently moves

Poor geographical scalability

Distributed Hash Table

 Review of DHT-based Chord system
v Each node has an m-bit random identifier
v Each entity has an m-bit random key

v An entity with key k is located on a node with the smallest identifier
« That satisfies id >=k, denoted as succ(k)

 The major task is key lookup
v i.e., 1o resolve an m-bit key to the address of succ(k)
v Two approaches: linear approach and finger table

 The simplest form of chord does not consider network
proximity

Key Lookup in Chord

114 | Finger table
2[4
3 9 ,\f\\
419 ¥
5 18 &
Actual node /31,—0 i Y
L A0 2. 119
111 29/ \3 e
A \@{2 %
AES e
pEl N TR = oo
5 14 P Y,
/ Resolve k = 12] \
‘ 26; from node 28 | {6
Resolving key 26 from node I L
25} \ 7
1 and key 12 from node 28 in il N
N 1 11
L e 2 [11
a Chord system. 25 Resolve k = 26 B ST
from node 1 r 5 |28
« 0
1128 W/
2 |28
- i
e T
519 7o /-1?.: 150
3 17 —16:—15; ® 1118
4 - 2 118
514 1120 3 [18
2120 428
328 511
428
54

Hierarchical Approaches (1/3)

The root directory

node dir(T) ToRaEyE]

domain T

Directory node
dir(S) of domain S

A subdomain S
of top-level domain T
‘/ (S is contained in T)

N ————— -, o— — - - - — {— {—, - - — -, — - - -—— ———————————— -

A leaf domain, contained in S

Hierarchical organization of a location service into domains, each having an
associated directory node.

Hierarchical Approaches (2/3)

Field with no data
Field for domain ~ __----_ \/
dom(N) with i
pointertoN ——]

\

Location record
" for E at node M

Location record
with only one field, i
containing an address

Domain D1

Domain D2

An example of storing information of an entity
having two addresses in different leaf domains.

Hierarchical Approaches (3/3)

Node knows
about E, so request
Node has no is forwarded to child

record for E, so
that request is
forwarded to

parent

Look-up Domain D
request !

Looking up a location in a hierarchically
organized location service.

Structured Naming

 Flat names are not convenient for humans to use

* As aresult, naming systems often support structured
names that

v Are composed from simple, human-readable names, e.g., file
names, Internet domain names

« Structured names are often organized into what is called
a hame space

v A labeled, directed graph with two types of nodes, leaf node and
directory node

Name Space

Data stored in n1

n2: "elke" home
n3: "max"
n4: "steen" n1i

n0O

n4

Leaf node Q @

Directory node

twmrc

\ mbox

Q "/home/steen/mbox"

elkﬂx \iteen

keys

Il/keysll

o "/home/steen/keys"

keys

A general naming graph with a single root node.

UNIX File Systems

Superblock File data blocks
\ R
P
) — /
Boot block Index nodes Disk block

The general organization of the UNIX file system
implementation on a logical disk of contiguous disk blocks.

Name Resolution

 The process of looking up a name in a name space

« Name resolution can take place only if we know
where and how to start
v A closure mechanism, e.g., starting from a well known root
directory, or start from home
* Linking
v Aliases are commonly used in a name space

v'An alias can be a hard link or a symbolic link

Symbolic Link

Data stored in n1 n0
n2 "elke") home keys

n3: "max"
n4: “steen” il n5) "/keys"

J
elkﬂx \teen
(n2) ¥ |
Leaf node O Data stored in n6
twmrc / mbox keys
Directory node

Q @ "/home/steen/keys"

The concept of a symbolic link
explained in a naming graph.

Mounting (1/2)

 The process of merging different name spaces

« A common approach is to

v Let a directory node (mount point) store the identifier of a
directory node (mounting point) from the foreign name space

* Information required to mount a foreign name space in a
distributed system
v' The name of an access protocol
v The name of the server
v The name of the mounting point in the foreign name space

Mounting (2/2)

Name server

Name server for foreign name space

\ Machine A \ Machine B

\

\

omo)\ A
O O

/ é&u ["nfs://flits.cs.vu.nI//home/steen"j / steen

(O]

I
1
|
I
I
1
|
1
I
1
|
I

Network

Reference to foreign name space

Mounting remote name spaces
through a specific access protocol.

Implementation of a Name Space

A name space is often implemented by name servers
v In LAN, a single name server is enough

v In large-scale systems, the implementation of a name space is often
distributed over multiple name servers

A name space for large-scale distributed systems is often organized
hierarchically

v Global layer
« Often stable, represents organizations of groups of organizations

v Administrational layer
 Represents groups of entities in a single organization

v Managerial layer

» Nodes often change frequently, e.g., hosts in a local network
» May be managed by system administrators or end users

Name Space Distribution (1/2)
Saver /l/ \g\

| . /] \
: ! (:
! 1 \\ ///
Adminis-| W90 ©NG jack il keio ¥y nec ics
trational e Sy
Iayer Il ftp WWVV\‘
. . CS 1 \
al/ \Ilnda + + csl '\\ % \ /I
___________ pc24 ¥ _>$
¢robot _-~"pub S
___ pid \\\
Witz : globe+ \
: . .
gerial e e i
Zone \ /
layer index.txt % K

An example partitioning of the DNS name space, including Internet-accessible
files, into three layers.

Name Space Distribution (2/2)

Iltem Global Administrational | Managerial
Geographical scale of network | Worldwide | Organization Department
Total number of nodes Few Many Vast numbers
Responsiveness to lookups Seconds Milliseconds Immediate
Update propagation Lazy Immediate Immediate
Number of replicas Many None or few None
Is client-side caching applied? | Yes Yes Sometimes

A comparison between name servers for implementing nodes from a large-scale
name space partitioned into a global layer, an administrational layer, and a
managerial layer.

Implementing Name Resolution (1/2)

Client's
name
resolver

. <nl,vu,cs,ftp>

>

Root
name server

2. #<nl>, <vu,cs,ftp>
8. <vu,cs,ftp> »| Name server :
4. #<vu>, <cs,ftp> ningge /\
vu
5. <Cs,ftp> »| Name server
vu node

. #<ess, <ftpe> @ L——— L. L
L CS| ...

Jellp »| Name server §
8. #<ftp> cs node :

<nl,vu,cs,ftp> T v#<n|,vu,cs,ftp>

ftp/ \
Nodes are / : E
managed by O Q

theisame SENEr === =mmcis -

The principle of iterative name resolution.

Implementing Name Resolution (2/2)

Client's
name
resolver

1. <nl,vu,cs,ftp>

'

8. #<nl,vu,cs,ftp>

7. #<vu,cs,ftp>

6. #<cs,ftp><

Root
name server

Name server
nl node

>2. <vu,cs,ftp>

Name server
VU nhode

>3. <cs,ftp>

5. #<ftp><

<nl,vu,cs,ftp> T ¢#<nl,vu,cs,ftp>

Name server
CcS node

>4. <ftp>

The principle of recursive name resolution.

Recursive v.s. lterative

e Recursive resolution demands more on each name
server

* However, it has two advantages

v Caching is more effective than iterative name resolution

 Intermediate nodes can cache the result
« With iterative solution, only the client can cache

v Qverall communication cost can be reduced

Example: The Domain Name System

» The DNS name space is organized as a root tree

e Each node in this tree stores a collection of resource recodes

Type of | Associated Description

record entity

SOA Zone Holds information on the represented zone

A Host Contains an IP address of the host this node represents

MX Domain Refers to a mail server to handle mail addressed to this node
SRV Domain Refers to a server handling a specific service

NS Zone Refers to a name server that implements the represented zone
CNAME | Node Symbolic link with the primary name of the represented node
PTR Host Contains the canonical name of a host

HINFO Host Holds information on the host this node represents

TXT Any kind Contains any entity-specific information considered useful

Decentralized DNS
Implementation

* |In standard hierarchical DNS implementation, higher-level
nodes receives more requests than low-level nodes

v Leading to a scalability problem

» Fully decentralized solution can avoid such scalability
problem

v Map DNS names to keys and look them up in a distributed hash
table

v The problem is that we lose the structure of the original names
and make some operations difficult

Attribute-based Naming

« As more information being made available, it becomes
Important to
v Locate entities based on merely a description of that is needed

* Attribute-based naming
v Each entity is associated with a collection of attributes

v The naming system provides one of multiple entities that
matches a user’s description

* Attribute-based naming systems are often known as
directory services

Hierarchical Implementation LDAP

Attribute Abbr. Value
Country C NL
Locality L Amsterdam
Organization O Vrije Universiteit
OrganizationalUnit Oou Comp. Sc.
CommonName CN Main server
Mail _Servers — 13787:20.3; 130.37.24.6, 137.87.20.10
FTP_Server — 130.37.20.20
WWW _Server — 130.37.20.20

A simple example of an LDAP
directory entry using LDAP naming conventions.

Directory Information Tree (DIT)

\C= NL
A \Oz Vrije Universiteit
OU = Comp. Sc.

A P

T

CN = Main server
. \ .

Host_Name = 38 Host_Name = zephyr

Attribute Value Attribute Value
Country NL Country NL
Locality Amsterdam Locality Amsterdam
Organization Vrije Universiteit Organization Vrije Universiteit
OrganizationalUnit| Comp. Sc. OrganizationalUnit| Comp. Sc.
CommonName Main server CommonName Main server
Host_Name star Host_Name zephyr
Host_Address 192.31.231.42 Host_Address 137.37.20.10

Decentralized (DHT) Implementation

description {

type = book type
description {

author = Tolkien book

title = LOTR

) author
genre = fantasy

} Tolkien

genre

fantasy

LOTR

(@) (b)
« Each path in attribute-value tree (AVT) produces a
hash value and mapped to a DHT

v'h1=hash(type-book), h2=hash(type-book-author) ..

Ranged Query in DHT Implementation

» Two phase approach

» Separate the name and the attribute in computing the
hash value

v Phase 1: distribute attribute names in DHT
v Phase 2: for each name, partition the values into subranges and

assign a single server for each subrange
 Drawbacks

v Updates may need to be sent to multiple servers
v Load balancing between different subrange servers

Semantic Overlay Networks

» Construct an overlay network where each pair of
neighbors are semantically proximal neighbors

v'i.e., they have similar resources

Semantic
overlay

Random
overlay

Protocol for
semantic
overlay

///; Links to nodes with

Q many files in common

Random peer

Protocol for
randomized
view

//H Links to randomly

Q: chosen other nodes

