
Preemptive, Low Latency Datacenter Scheduling
via Lightweight Virtualization

Wei Chen, Jia Rao*, and Xiaobo Zhou
University of Colorado, Colorado Springs

* University of Texas at Arlington

Data Center Computing

• Challenges
- Increase hardware utilization and efficiency
-Meet SLOs

• Heterogeneous workloads
- Diverse resource demands

✓ Short jobs v.s. long jobs

- Different QoS requirements
✓ Latency v.s. throughput

Long jobs help improve hardware
utilization while short jobs are

important to QoS

Data Center Trace Analysis

Google traces (https://github.com/google/cluster-data)

10% long jobs account
for 80% resource usage

Short jobs have higher priority and most
preempted (evicted) tasks belong to long jobs

Tasks are evicted if
encountering resource shortage

Overhead of Kill-based Preemption

0.91 0.87
0.76

0.58 0.62

0

0.2

0.4

0.6

0.8

1

Pagerank Kmeans Bayes Wordcount Terasort

Spark

0.12 0.09

0.43

0.57

0.69

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

Wordcount Grep RandWrite Terasort SelfJoin

MapReduce

1. MapReduce jobs experience various degrees of slowdowns

2. Spark jobs suffer from more slowdowns due to frequent inter-task

synchronization and the re-computation of failed RDDs

No
rm

al
ize

d
slo

wd
ow

n

No
rm

al
ize

d
slo

wd
ow

n

Map-heavy Reduce-heavy

Our Approach

• Container-based task preemption
- Containerize tasks using docker and control resource via cgroup

- Task preemption without losing the execution progress

✓ Suspension: reclaim resources from a preempted task

✓ Resumption: re-activate a task by restoring its resource

• Preemptive fair share scheduler
- Augment the capacity scheduler in YARN with preemptive task scheduling and

fine-grained resource reclamation

Related Work

• Optimizations for heterogeneous workloads
- YARN [SoCC’13]: kill long jobs if needed

- Sparrow [SOSP’13]: decentralized scheduler for short jobs

- Hawk [ATC’15]: hybrid scheduler based on reservation

• Task preemption
- Natjam [SoCC’13], Amoeba [SoCC’12]: proactive checkpointing

- CRIU [Middleware’15]: on-demand checkpointing

• Task containerization
- Google Borg [EuroSys’15]: mainly for task isolation

Long job slowdown and resource waste✘

No mechanism for preemption✘

Hard to determine optimal reservation✘

Hard to decide frequency✘

Application changes required✘

Still kill-based preemption✘

If short jobs can timely preempt long jobs
ü No need for cluster reservation
ü Preserving long job’s progress
ü Application agnostic
ü Fine-grained resource management

Container-based Task Preemption

• Task containerization
- Launch tasks in Docker containers

- Use cgroup to control resource allocation, i.e., CPU and memory

• Task suspension
- Stop task execution: deprive task of CPU

- Save task context: reclaim container memory and write dirty memory pages onto disk

• Task resumption
- Restore task resources

Task Suspension and Resumption

Keep a minimum footprint for a preempted task: 64MB memory and 1% CPU

Reclaim
memory

Restore
memory

Deprive
CPU

Restore CPU & memory

Suspended task is alive, but does not
makes progress or affect other tasks

Two Types of Preemption

• Immediate preemption (IP)
- Reclaims all resources of a preempted task in one pass

- Pros: simple, fast reclamation

- Cons: may reclaim more than needed, incur swapping, and cause long reclamation

• Graceful preemption (GP)
- Shrinks a preempted task and reclaims its resources in multiple passes, at a step of 𝑟

	
=(c, m)

- Pros: fine-grained reclamation, avoid swapping

- Cons: complicated, slow reclamation, tuning of step r needed

BIG-C: Preemptive Cluster Scheduling

NodeNode

Resource Manager

Resource
Monitor Scheduler

Preemption
Decision

Node

Node Manager

Task Container
Allocator

Launch

Container
Monitor

S/R

Application
Master

• Container allocator
- Replaces YARN’s nominal

container with docker

• Container monitor
- Performs container suspend

and resume (S/R) operations

• Resource monitor & Scheduler
- Determine how much resource

and which container to preempt

Source code available at https://github.com/yncxcw/big-c

YARN’s Capacity Scheduler

Capacity
scheduler

Cluster
resource

task

task

…

task

task

…

DRF

𝒓𝒍: long job demand
𝒇𝒍: long job fair share
𝒂: over-provisioned rsc
𝒓𝒔: short job demand
𝒑: rsc to preempt

𝑎⃑ = 𝑟𝑙 -	𝑓𝑙

If 𝑟𝑠 < 𝑎⃑
𝑝⃑ = 𝑟𝑠

else
𝑝⃑ = 𝑎⃑

✘

Work conserving, use more than
fair share if rsc is available

• At least kill one
long task

• Rsc reclamation does not
enforce DRF

Preemptive Fair Share Scheduler

Preemptive
fair sharing

Cluster
resource

task

task

…

task

task

…

DRF

𝒓𝒍: long job demand
𝒇𝒍: long job fair share
𝒂: over-provisioned rsc
𝒓𝒔: short job demand
𝒑: rsc to preempt

𝑎⃑ = 𝑟𝑙 -	𝑓𝑙

If 𝑟𝑠 < 𝑎⃑
𝑝⃑ = 𝑟𝑠

else
𝑝⃑ = ComputeDR(𝒓𝒍		, 𝒂)

Work conserving, use more than
fair share if rsc is available

• Preempt part of
task rsc

• Enforce DRF, avoid
unnecessary reclamation

Compute DR at Task Preemption

• Capacity scheduler
𝑝⃑=〈10CPU,10GB〉

• Preemptive fair sharing
𝑝⃑=〈10CPU, 0123

41567
×10GB〉

=〈10CPU,5GB〉

If 𝑟𝑠 =〈20CPU,10GB〉 and 𝑎⃗ =〈10CPU,15GB〉, what is 𝑝⃑ ?

CPU

MEM

CPU

MEM

𝒓𝒔 𝒂

CPU

MEM

𝒑

𝒓𝒔 is the total demand of many
small tasks, which may not be
able to fully use 10GB mem
since CPU is not fully satisfiedCPU

MEM

CPU

MEM

𝒓𝒔 𝒂

CPU

MEM

𝒑

Memory reclamation is in
proportion to the reclaimed
CPU according to 𝒓𝒔

Container Preemption Algorithm

Choose a container c
from the preempted job

𝒑 >〈0, 0〉?

Choose a job with the
longest remaining time

𝑝⃑ = 𝑝⃑ - 𝑟𝐼𝑃 OR 𝑝⃑ = 𝑝⃑ - 𝑟𝐺𝑃

Reclaim resource 𝑟 from
container c. Freeze c if

swapping

Job	has	
containers	?	

Yes

No

No

END

Yes Immediate preemption (IP)
suspends an container and
reclaims its entire resource 𝑟𝐼𝑃

Graceful preemption (GP) shrinks
an container and reclaims its
resource at a step of 	𝑟𝐺𝑃. GP
reclaims resources from multiple
tasks (containers) and jobs.

Optimizations

• Disable speculative execution of preempted tasks
- Suspended tasks appear to be slow to cluster management and will likely trigger

futile speculative execution

• Delayed task resubmission
- Tasks may be resubmitted immediately after preemption, causing to be

suspended again. A suspended task is required to perform D attempts before it is
re-admitted

Experiment Settings

• Hardware
- 26-node cluster; 32 cores, 128GB on each node; 10Gbps Ethernet, RAID-5 HDDs

• Software
- Hadoop-2.7.1, Docker-1.12.1

• Cluster configuration
- Two queues: 95% and 5% shares for short and long jobs queues, respectively

- Schedulers: FIFO (no preemption), Reserve (60% capacity for short jobs), Kill, IP and GP

- Workloads: Spark-SQL as short jobs and HiBench benchmarks as long jobs

Synthetic Workloads

High, low, and multiple bursts of short jobs.
Long jobs persistently utilize 80% of cluster capacity

Time (S)

Cl
us

te
r u

til
iz

at
io

n
(%

)

Short Job Latency with Spark

• FIFO is the worst due to the inability to preempt long jobs

• Reserve underperforms due to lack of reserved capacity under high-load

• GP is better than IP due to less resource reclamation time or swapping

JCT (S) JCT (S) JCT (S)

CD
F

Low-load High-load Multi-load

Performance of Long Spark Jobs

• FIFO is the reference performance for long jobs
• GP achieves on average 60% improvement over Kill.
• IP incurs significant overhead to Spark jobs:

- aggressive resource reclamation causes system-wide swapping
- completely suspended tasks impede overall job progress

FIFO Reserve Kill IP GP FIFO Reserve Kill IP GP FIFO Reserve Kill IP GP

JC
T

(s
)

Low-load High-load Multi-load

Short Job Latency with MapReduce

• FIFO (not shown) incurs 15-20 mins slowdown to short jobs

• Re-submissions of killed MapReduce jobs block short jobs

• IP and GP achieve similar performance

Low-load High-load Multi-load

CD
F

JCT (S) JCT (S) JCT (S)

Performance of Long MapReduce Jobs

• Kill performs well for map-heavy workloads
• IP and GP show similar performance for MapReduce workloads

- MapReduce tasks are loosely coupled
- A suspended task does not stop the entire job

Map-heavy Reduce-heavy
No

rm
al

iz
ed

 J
CT

 (s
)

Wordcount Terasosrt

Low-load High-load Multi-load Low-load High-load Multi-load

Google Trace
Contains 2202 jobs, of which 2020 are classified as short jobs and 182 as
long jobs.

Time (S)

Cl
us

te
r u

til
iz

at
io

n
(%

)

• IP and GP guarantee short job latency
• GP improved the 90th percentile long job runtime by 67%,

37% and 32% over kill, IP, and Reserve, respectively
• 23% long jobs failed with kill-based preemption while BIG-C

cause NO job failures.

Summary

• Data-intensive cluster computing lacks an efficient mechanism for task preemption
- Task killing incurs significant slowdowns or failures to preempted jobs

• BIG-C is a simple yet effective approach to enabling preemptive cluster scheduling
- lightweight virtualization helps to containerize tasks

- Task preemption is achieved through precise resource management

• Results:
- BIG-C maintains short job latency close to reservation-based scheduling while achieving similar

long job performance compared to FIFO scheduling

Thank you !
Questions ?

Backup slides …

Performance Results

GP improved the 90th percentile job runtime by 67%, 37% and
32% over kill, IP, and Reserve, respectively.

JCT (S)

CD
F

JC
T

(s
)

FIFO Reserve Kill IP GP

Short jobs performance Long jobs performance

Evaluation: Google trace

IP and GP improve cluster utilization

Cluster utilization (%)

CD
F

Parameter Sensitivity

• D=3 effectively throttles re-submissions and prevents repeated preemption
• Basic preemption unit:〈1CPU, 2GB〉, two units work best

Effect of delayed resumption Effect of GP granularity

CD
F

Co
V

of
 J

CT

GP granularityShort jobs queuing time 1 2 3 4 5 6 7 8 FIFO IF KILL

