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Data Center Computing

» Challenges
— Increase hardware utilization and efficiency
- Meet SLOs

 Heterogeneous workloads

- Diverse resource demands Long jobs help improve hardware
v Short jobs v.s. long jobs utilization while short jobs are

— Different QoS requirements important to QoS

v Latency v.s. throughput



Data Center Trace Analysis
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Normalized slowdown
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MapReduce jobs experience various degrees of slowdowns

2. Spark jobs suffer from more slowdowns due to frequent inter-task

synchronization and the re-computation of failed RDDs



Our Approach

 Container-based task preemption
— Containerize tasks using docker and control resource via cgroup
— Task preemption without losing the execution progress
v Suspension: reclaim resources from a preempted task

v Resumption: re-activate a task by restoring its resource

 Preemptive fair share scheduler

— Augment the capacity scheduler in YARN with preemptive task scheduling and
fine-grained resource reclamation



Related Work

» Optimizations for heterogeneous workloads
- YARN [SoCC'13]: kill long jobs if needed Long job slowdown and resource waste X

- Sparrow [SOSP" £ short jobs can timely preempt long jobs ~ C"a"'sm for preemption X

- Hawk [ATC'15): v/ No need for cluster reservation nine optimal reservation X
- Task preemptio v Presgrwpg long jOl? S progress
v" Application agnostic

- Natjam [SoCCT Fine-grained resource management
- CRIU [Middleware 1 5]: on-demand checkpointing Application changes required X

ard to decide frequency X

» Task containerization
— Google Borg [EuroSys'15]: mainly for task isolation Still kill-based preemption X



Container-based Task Preemption

» Task containerization
— Launch tasks in Docker containers

- Use cgroup to control resource allocation, i.e., CPU and memory

» Task suspension
— Stop task execution: deprive task of CPU

— Save task context: reclaim container memory and write dirty memory pages onto disk

 Task resumption

— Restore task resources



Task Suspension and Resumption
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Two Types of Preemption

 Immediate preemption (IP)
— Reclaims all resources of a preempted task in one pass
— Pros: simple, fast reclamation

— Cons: may reclaim more than needed, incur swapping, and cause long reclamation

« Graceful preemption (GP)
— Shrinks a preempted task and reclaims its resources in multiple passes, at a step of r =(c, m)
— Pros: fine-grained reclamation, avoid swapping

— Cons: complicated, slow reclamation, tuning of step r needed



BIG-C: Preemptive Cluster Scheduling

e Container allocator

— Replaces YARN's nominal
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Source code available at https://github.com/yncxcw/big-c




YARN's Capacity Scheduler

r,: long job demand

f,: long job fair share
a: over-provisioned rsc
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Compute DR at Task Preemption
(20CPU,10GB) and a= <10CPU,15GB) , whatis p ?

—_—

T p
. 1 is the total demand of many
° CapaCIty scheduler |_> small tasks, which may not be
~ able to fully use 1T0GB mem
p= (10CPU,10GB) CPU since CPU is not fully satisfied

 Preemptive fair sharing

10GB p

p= (10CPU, 20CPU><1OGB>

_ Memory reclamation is in

= (10CPU5GB) |_> proportion to the reclaimed
CPU CPU according to 7,




Container Preemption Algorithm

Choose a job with the
longest remaining time

Choose a container ¢
from the preempted job
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Immediate preemption (IP)
suspends an container and
reclaims its entire resource 7,

Graceful preemption (GP) shrinks
an container and reclaims its
resource at a step of 7_,. GP
reclaims resources from multiple
tasks (containers) and jobs.



Optimizations

* Disable speculative execution of preempted tasks
— Suspended tasks appear to be slow to cluster management and will likely trigger
futile speculative execution
* Delayed task resubmission

— Tasks may be resubmitted immediately after preemption, causing to be
suspended again. A suspended task is required to perform D attempts before it is
re-admitted



Experiment Settings

 Hardware
— 26-node cluster; 32 cores, 128GB on each node; 10Gbps Ethernet, RAID-5 HDDs

 Software
— Hadoop-2.7.1, Docker-1.12.1

» Cluster configuration
— Two queues: 95% and 5% shares for short and long jobs queues, respectively
— Schedulers: FIFO (no preemption), Reserve (60% capacity for short jobs), Kill, IP and GP
— Workloads: Spark-SQL as short jobs and HiBench benchmarks as long jobs



Cluster utilization (%)

Synthetic Workloads
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CDF

Short Job Latency with Spark
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« FIFO is the worst due to the inability to preempt long jobs
« Reserve underperforms due to lack of reserved capacity under high-load

* GPis better than IP due to less resource reclamation time or swapping



Performance of Long Spark Jobs
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« FIFO is the reference performance for long jobs
e (P achieves on average 60% improvement over Kill.
« [P incurs significant overhead to Spark jobs:

- aggressive resource reclamation causes system-wide swapping
- completely suspended tasks impede overall job progress



CDF
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« FIFO (not shown) incurs 15-20 mins slowdown to short jobs

« Re-submissions of killed MapReduce jobs block short jobs

* |P and GP achieve similar performance



Normalized JCT (s)

Performance of Long MapReduce Jobs
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« Kill performs well for map-heavy workloads

« |Pand GP show similar performance for MapReduce workloads
- MapReduce tasks are loosely coupled
- Asuspended task does not stop the entire job



Google Trace

Contains 2202 jobs, of which 2020 are classified as short jobs and 182 as
long jobs.

Cluster utilization (%)
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Summary

» Data-intensive cluster computing lacks an efficient mechanism for task preemption

— Task killing incurs significant slowdowns or failures to preempted jobs

* BIG-C is a simple yet effective approach to enabling preemptive cluster scheduling
— lightweight virtualization helps to containerize tasks

— Task preemption is achieved through precise resource management

* Results:

— BIG-C maintains short job latency close to reservation-based scheduling while achieving similar

long job performance compared to FIFO scheduling



Thank you !
Questions ?



Backup slides ...
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CDF

Evaluation: Google trace
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CDF
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Effect of GP granularity
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« D=3 effectively throttles re-submissions and prevents repeated preemption
« Basic preemption unit: (1CPU, 2GB) , two units work best



