Preemptive, Low Latency Datacenter Scheduling
via Lightweight Virtualization

Wei Chen, Jia Rao*, and Xiaobo Zhou
University of Colorado, Colorado Springs
* University of Texas at Arlington

UNIVERSITY OF

University of Colorado y . \
s Colorado Springs V& TEXAS

ARLINGTON

Data Center Computing

» Challenges
— Increase hardware utilization and efficiency
- Meet SLOs

 Heterogeneous workloads

- Diverse resource demands Long jobs help improve hardware
v Short jobs v.s. long jobs utilization while short jobs are

— Different QoS requirements important to QoS

v Latency v.s. throughput

Data Center Trace Analysis

Distribution of |CT Task event statistics

1.0 90
mmm Submission
: : ; ‘ — 80 Eviction
| | | \ n *r
o © 4|
U 0.4} B
Y 30}
5 O 20
02 b B
0.0 . _ - _ 0 i ! L L
10! 10° 103 10* 10° 10° 0 10 20 30 40 50
Job completion time (s) ime (h)
10% long jobs account Tasks are evicted if
for 80% resource usage encountering resource shortage

Short jobs have higher priority and most
preempted (evicted) tasks belong to long jobs

Google traces (https://github.com/google/cluster-data)

Normalized slowdown

1

0.8

0.6

0.4

0.

N

0

1.

Overhead of Kill-based Preemption

Spark MapReduce
c 08 069
o [c o
' oo —g 0.6 0.57
0.58 ' S 05 0.43
n
- 04
03
‘© 0.2 0.12
E o)
s, 1 =
= 0
Pagerank Kmeans Bayes Wordcount Terasort f Wordcount Grep | | RandWrite Terasort Selfloin |
Map-heavy Reduce-heavy

MapReduce jobs experience various degrees of slowdowns

2. Spark jobs suffer from more slowdowns due to frequent inter-task

synchronization and the re-computation of failed RDDs

Our Approach

 Container-based task preemption
— Containerize tasks using docker and control resource via cgroup
— Task preemption without losing the execution progress
v Suspension: reclaim resources from a preempted task

v Resumption: re-activate a task by restoring its resource

 Preemptive fair share scheduler

— Augment the capacity scheduler in YARN with preemptive task scheduling and
fine-grained resource reclamation

Related Work

» Optimizations for heterogeneous workloads
- YARN [SoCC'13]: kill long jobs if needed Long job slowdown and resource waste X

- Sparrow [SOSP" £ short jobs can timely preempt long jobs ~ C"a"'sm for preemption X

- Hawk [ATC'15): v/ No need for cluster reservation nine optimal reservation X
- Task preemptio v Presgrwpg long jOl? S progress
v" Application agnostic

- Natjam [SoCCT Fine-grained resource management
- CRIU [Middleware 1 5]: on-demand checkpointing Application changes required X

ard to decide frequency X

» Task containerization
— Google Borg [EuroSys'15]: mainly for task isolation Still kill-based preemption X

Container-based Task Preemption

» Task containerization
— Launch tasks in Docker containers

- Use cgroup to control resource allocation, i.e., CPU and memory

» Task suspension
— Stop task execution: deprive task of CPU

— Save task context: reclaim container memory and write dirty memory pages onto disk

 Task resumption

— Restore task resources

Task Suspension and Resumption

Keep a minimum footprint for a preempted task: 64MB memory and 1% CPU

| Memory usage | D e Swapplng act|V|ty
: 5 5 ‘ h ‘ | || XXX read
‘ : : 1 | ©0@ write
woRR Suspended task is alive, but does not
Reclalm makes progress or affect other tasks .
| memory 5 | “= ™[& Deprive “iRestore CPU & memory
.. Restore] -§ - @ | CPU\' | \ -
~memoryf | ©
| \ | Q o | .
200 k- B — 0 X ¢
} V4
0 Z’ 0
0 50 100 150 200 250 300 D

Two Types of Preemption

 Immediate preemption (IP)
— Reclaims all resources of a preempted task in one pass
— Pros: simple, fast reclamation

— Cons: may reclaim more than needed, incur swapping, and cause long reclamation

« Graceful preemption (GP)
— Shrinks a preempted task and reclaims its resources in multiple passes, at a step of r =(c, m)
— Pros: fine-grained reclamation, avoid swapping

— Cons: complicated, slow reclamation, tuning of step r needed

BIG-C: Preemptive Cluster Scheduling

e Container allocator

— Replaces YARN's nominal

Resource Manager

Preemption

Resource
Monitor

~

container with docker [
N

Decision
]—P[Scheduler]
"/

* Container monitor

— Performs container suspend

and resume (S/R) operations

* Resource monitor & Scheduler

— Determine how much resource

and which container to preempt

/

N

ar
o ’b@a/ Launch Node Managmr\

|

Task

Container
Allocator

Application
Master

S/R
f Container
Monitor /

\%k
|

Source code available at https://github.com/yncxcw/big-c

YARN's Capacity Scheduler

r,: long job demand

f,: long job fair share
a: over-provisioned rsc
: short job demand
p: rscto preempt

a=r7-f
If v.<a
p=7, * Atleastkill one
else long task
p=d

e Rsc reclamation does not
enforce DRF

Cluster
resource

Work conserving, use more than
fair share if rsc is available

\,(/
(

>—

N
/ T

- — <

Capacny
scheduler -~

e \

9

)

o>

T,

long job demand

7,: long job fair share
a: over-provisioned rsc
r.. shortjob demand

p: rscto preempt

%]

a=1,-f

If ¥s<a . Ppreempt part of
p=7 task rsc
else

p = ComputeDR(r; a)

« Enforce DRF, avoid
unnecessary reclamation

4)
it

- J

/\

Preemptive Fair Share Scheduler

Work conserving, use more than Cluster
fair share if rsc is available resource

\ DRF /

—_———

_ Preemptive \)

»-. /

/ = _ fair sharlng
.—/

Compute DR at Task Preemption
(20CPU,10GB) and a= <10CPU,15GB) , whatis p ?

—_—

T p
. 1 is the total demand of many
° CapaCIty scheduler |_> small tasks, which may not be
~ able to fully use 1T0GB mem
p= (10CPU,10GB) CPU since CPU is not fully satisfied

 Preemptive fair sharing

10GB p

p= (10CPU, 20CPU><1OGB>

_ Memory reclamation is in

= (10CPU5GB) |_> proportion to the reclaimed
CPU CPU according to 7,

Container Preemption Algorithm

Choose a job with the
longest remaining time

Choose a container ¢
from the preempted job

4

=N —_—

Iazp‘TTPORﬁ=ﬁ'rGP

\ 4

Reclaim resource r from
container ¢. Freeze ¢ if

swappin

Immediate preemption (IP)
suspends an container and
reclaims its entire resource 7,

Graceful preemption (GP) shrinks
an container and reclaims its
resource at a step of 7_,. GP
reclaims resources from multiple
tasks (containers) and jobs.

Optimizations

* Disable speculative execution of preempted tasks
— Suspended tasks appear to be slow to cluster management and will likely trigger
futile speculative execution
* Delayed task resubmission

— Tasks may be resubmitted immediately after preemption, causing to be
suspended again. A suspended task is required to perform D attempts before it is
re-admitted

Experiment Settings

 Hardware
— 26-node cluster; 32 cores, 128GB on each node; 10Gbps Ethernet, RAID-5 HDDs

 Software
— Hadoop-2.7.1, Docker-1.12.1

» Cluster configuration
— Two queues: 95% and 5% shares for short and long jobs queues, respectively
— Schedulers: FIFO (no preemption), Reserve (60% capacity for short jobs), Kill, IP and GP
— Workloads: Spark-SQL as short jobs and HiBench benchmarks as long jobs

Cluster utilization (%)

Synthetic Workloads

100 ‘ ' N [

= |ow-load | . = - ,fi‘,_

| oee Highdoad | = gRiRaem R ie N
o1 it foad SEis T F}ﬂ
60! | | = :
40+
20!
OO 260 460 660 800 1000

Time (S)
High, low, and bursts of short jobs.

Long jobs persistently utilize 80% of cluster capacity

CDF

Short Job Latency with Spark

L Low-load High-load Multi-load
0.8t 0.8t 0.8} .'.
o4l .3 |=== FIFO 1 04L - S | === FIFO | 04l % |= FIFO]
» Reserve » Reserve » Reserve
: | Kill f A ITITIE Kill | Kill
02 R e 02+ & R —_— 02} [=
: r GP H v GP : r GP
0.0 1 i 1 1 ooL > . T 0.0 € i 1 ;
0 50 100 150 200 250 0O 50 100 150 200 250 300 350 0 50 100 150 200 250
JCT (S) JCT (S) JCT (S)

« FIFO is the worst due to the inability to preempt long jobs
« Reserve underperforms due to lack of reserved capacity under high-load

* GPis better than IP due to less resource reclamation time or swapping

Performance of Long Spark Jobs

Low-load High-load Multi-load
3500 . . . 3500 — 3500 (| . .
@ 50th long jobs @ 50th long jobs 3 50th long jobs
3000 - | mmmm 90th long jobs 130001 | ummm 90th long jobs 130001 | mmmm 90th long jobs |’
| 2500} ... 2s500f —
| 2000} | 2000}
1 1500L b 11500}t
{ 1000} 11000}
500} 500}
0 : 0
FIFO Reserve Kill IP GP FIFO Reserve Kill IP GP FIFO Reserve Kill IP GP

« FIFO is the reference performance for long jobs
e (P achieves on average 60% improvement over Kill.
« [P incurs significant overhead to Spark jobs:

- aggressive resource reclamation causes system-wide swapping
- completely suspended tasks impede overall job progress

CDF

Low-load
1.0 ,
0.8 O . :\
0.6
0.4} - o
» Reserve
: \\5\\ S KI”
GP
L) N ‘ ‘
0.0 1 . .
50 100 150 200 250

Short Job Latency with MapReduce

JCT (S)

High-load
1.0 g e
: nd S
0.8 - v $
0.6}
0.4} -]
=: Reserve
g s | Kill
GP
0.0

JCT (S)

0 50 100 150 200 250 300 350

1.0

0.8}

0.61

0.4+

0.0

Multi-load

» Reserve
....... Kill

— |P

GP

0 50 100150200250300 350400

JCT (S)

« FIFO (not shown) incurs 15-20 mins slowdown to short jobs

« Re-submissions of killed MapReduce jobs block short jobs

* |P and GP achieve similar performance

Normalized JCT (s)

Performance of Long MapReduce Jobs

Map-heavy Reduce-heavy
Wordcount Terasosrt
1.4 , 2.0 !
‘ ' [1 Reserve
__________________________________ | | — Kill
VVVVVVVVVVVV 15_ . - |p
1 f mEmm GP

0.0

oL
Low-load High-load Multi-load Low-load High-load Multi-load

« Kill performs well for map-heavy workloads

« |Pand GP show similar performance for MapReduce workloads
- MapReduce tasks are loosely coupled
- Asuspended task does not stop the entire job

Google Trace

Contains 2202 jobs, of which 2020 are classified as short jobs and 182 as
long jobs.

Cluster utilization (%)

122 ~ + |Pand GP guarantee short job latency]Ililzzaattilcfr?
0 4 « GP improved the 90th percentile long job runtime by 67%,

sol & 37% and 32% over kill, IP, and Reserve, respectively
20| ._ « 23% long jobs failed with kill-based preemption while BIG-C

ol cause NO job failures.
ETRALNVAN WY VSTV W NPT YWY

4000 8000 12000 16000
Time (S)

Summary

» Data-intensive cluster computing lacks an efficient mechanism for task preemption

— Task killing incurs significant slowdowns or failures to preempted jobs

* BIG-C is a simple yet effective approach to enabling preemptive cluster scheduling
— lightweight virtualization helps to containerize tasks

— Task preemption is achieved through precise resource management

* Results:

— BIG-C maintains short job latency close to reservation-based scheduling while achieving similar

long job performance compared to FIFO scheduling

Thank you !
Questions ?

Backup slides ...

CDF

1.0

0.8}
0.6}
0.4}

020 |

0.0

Performance Results

Short jobs performance

s

________________ — FIFO

------- Kill

— I
GP

-- Reserve

50 150 250 350

JCT (S)

450

JCT (s)

8000

JOOO L i

6000

Long jobs performance

3 50th percentile long jobs

5000+ -

4000

S3000

2000+
1000

0
FIFO Reserve

Kill

GP improved the 90th percentile job runtime by 67%, 37% and
32% over Kill, IP, and Reserve, respectively.

CDF

Evaluation: Google trace

1.0
0.8t
0.6+t
o4l A FIFO §
. == Reserve
s o Kill
; v v _ - GP
0.0 i x i i ;
0 20 40 60 80 100 120

Cluster utilization (%)

IP and GP improve cluster utilization

CDF

1.0

Parameter Sensitivity

0.4}

H B H H H H
: : r : :
N

N &9 N N N . N
Y A : . : : :
R : : :
.

D
D
D

CoV of JCT

=01
=1
=2

O OO0

g
U hWw

'MM’U'I'H!

0.45 -
0.40|
035
0.30}
0.25}
0.20]
0.15F
o.101 = I}
0.05}

0.0
0

1020 .3io 40 5:0 6:0 70 80
Short jobs queuing time

Effect of GP granularity

T

0.00-

4 5 7 8 FIFO IF KILL

GP granularity

« D=3 effectively throttles re-submissions and prevents repeated preemption
« Basic preemption unit: (1CPU, 2GB) , two units work best

