
Characterizing and Optimizing Hotspot Parallel Garbage
Collection on Multicore Systems

Kun Suo
1
, Jia Rao

1
, Hong Jiang

1
and Witawas Srisa-an

2

1University of Texas at Arlington, {kun.suo, jia.rao, hong.jiang}@uta.edu
2The University of Nebraska–Lincoln, witty@cse.unl.edu

ABSTRACT
The proliferation of applications, frameworks, and services built on

Java have led to an ecosystem critically dependent on the underlying

runtime system, the Java virtual machine (JVM). However, many

applications running on the JVM, e.g., big data analytics, su�er

from long garbage collection (GC) time. The long pause time due

to GC not only degrades application throughput and causes long

latency, but also hurts overall system e�ciency and scalability.

In this paper, we present an in-depth performance analysis of

GC in the widely-adopted HotSpot JVM. Our analysis uncovers a

previously unknown performance issue – the design of dynamic

GC task assignment, the unfairness of mutex lock acquisition in

HotSpot, and the imperfect operating system (OS) load balancing

together cause loss of concurrency in Parallel Scavenge, a state-

of-the-art and the default garbage collector in HotSpot. To this

end, we propose a number of solutions to these issues, including

enforcing GC thread a�nity to aid multicore load balancing and

designing a more e�cient work stealing algorithm. Performance

evaluation demonstrates that these proposed approaches lead to

the improvement of the overall completion time, GC time and

application tail latency by as much as 49.6%, 87.1%, 43%, respectively.

CCS CONCEPTS
• General and reference → Performance; • Software and its
engineering → Garbage collection; • Computer systems or-
ganization→ Multicore architectures;

KEYWORDS
Java virtual machine, Garbage collection, Performance, Multicore.

ACM Reference Format:
Kun Suo

1
, Jia Rao

1
, Hong Jiang

1
and Witawas Srisa-an

2 1University of
Texas at Arlington, {kun.suo, jia.rao, hong.jiang}@uta.edu 2The University of
Nebraska–Lincoln, witty@cse.unl.edu . 2018. Characterizing and Optimizing

Hotspot Parallel Garbage Collection on Multicore Systems. In EuroSys ’18:
Thirteenth EuroSys Conference 2018, April 23–26, 2018, Porto, Portugal. ACM,

Porto, Portugal, 15 pages. https://doi.org/10.1145/3190508.3190512

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for pro�t or commercial advantage and that copies bear this notice and the full citation

on the �rst page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior speci�c permission and/or a

fee. Request permissions from permissions@acm.org.

EuroSys ’18, April 23–26, 2018, Porto, Portugal
© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-5584-1/18/04. . . $15.00

https://doi.org/10.1145/3190508.3190512

1 INTRODUCTION
Due to its ease of use, cross-platform portability, and wide-spread

community support, Java is becoming popular for building large-

scale systems. Many distributed systems, such as Cassandra [2],

Hadoop [11], Kafka [17], and Spark [40], are written in Java. Fur-

thermore, there is also a steady trend towards adopting similar

managed programming languages in high performance computing

(HPC) [28, 42, 48]. Garbage collection (GC) is a crucial compo-

nent of the automatic memory management in managed runtime

systems, e.g., the Java Virtual Machine (JVM). It frees up unrefer-

enced memory in the heap such that programmers do not need

to concern about explicit memory deallocation. However, many

studies [8, 9, 29] have shown that the widely adopted, throughput-

oriented GC design su�ers from suboptimal performance and poor

scalability on multicore systems with large memory and high core

count.

Throughput-orientedGC pausesmutators, i.e., application threads,

during GC to avoid expensive synchronizations between the GC

and mutator threads. This period is called a stop-the-world (STW)

pause. Since mutators cannot make progress during a STW pause,

GC time can contribute to a non-trivial portion of application ex-

ecution time. Previous work has shown that GC can take up to

one-third of the total execution time of an application [7, 8]. It can

even account for half of the processing time in memory-intensive

big data systems [10, 29]. The exceedingly long GC time hurts sys-

tem throughput and incurs unpredictable and severely degraded

tail latency in interactive services [6, 23].

Parallel GC employs multiple GC threads to scan the heap and

is designed to exploit hardware-level parallelism to reduce STW

pause time. However, many studies have reported ine�ciency and

poor scalability of parallel GC on multicore systems. Existing stud-

ies [8, 9, 12, 34, 44] focus on optimizing the parallel GC algorithm

in the JVM and assume that the underlying operating system (OS)

provides the needed parallelism to execute parallel GC. There has

been much research on analyzing the scalability of multi-threaded

applications based on this assumption. We found that OS thread

scheduling, particularly multicore load balancing, can have sub-

stantial impact on parallel GC performance. Our experiments with

OpenJDK 1.8.0 and the Parallel Scavenge (PS) garbage collector

revealed that many representative Java applications, including pro-

grams from the DaCapo, SPECjvm2008, and HiBench big data bench-

marks, are unable to fully exploit multicore parallelism during GC.

The main culprit is the uncoordinated design of the JVM and the

underlying multiprocessor OS. On the one hand, modern OSes

have complex load balancing algorithms due to the consideration

of scalability, data locality, and energy consumption. Depending

on di�erent types of workloads, the OS thread scheduler needs to

https://doi.org/10.1145/3190508.3190512
https://doi.org/10.1145/3190508.3190512

strike a balance between grouping threads on a few cores and dis-

tributing them on many cores. On the other hand, the JVM, which

assumes perfect OS load balancing, has its own design for e�cient

load balancing among GC threads and synchronization primitives

used within the JVM, e.g., mutex.
In this paper, we identify two vulnerabilities in the HotSpot JVM

and Parallel Scavenge due to the lack of coordination with OS-level

load balancing. First, Parallel Scavenge implements dynamic GC

task assignment to balance load among GC threads, but uses an

unfair mutex lock to protect the global GC task queue. Although

the unfairness is necessary for minimizing locking latency and be-

lieved to be harmless to GC performance, it inadvertently limits the

concurrency in parallel GC when the underlying OS load balancing

is “imperfect” and some GC threads are stacked on the same core.

In this case, one or a few GC threads, which are able to continu-

ously fetch GC tasks, will block other GC threads, leaving much

of multicore parallelism unexploited. Since the unfair mutex imple-

mentation is also used for synchronizing VM threads and mutators,

this problem may also exist in many user space Java applications.

Second, to further balance GC load, an idle GC thread steals work

from a randomly selected GC thread. A steal attempt fails if the

selected GC thread has no extra work to be stolen. This lack of

coordination between the JVM and the multicore OS causes the

heuristics that guide work stealing to be ine�ective, which delays

the termination of the GC.

To address these vulnerabilities, we propose two optimizations

in the HotSpot VM. Through an in-depth analysis of the e�ect of

unfair locking on GC performance and the evaluation of two �xes to

the unfairness issue in the JVM mutex, we �nd that GC thread a�n-

ity, which dynamically binds GC threads to separate cores based

on CPU load, is e�ective in preventing load imbalance among GC

threads. To address the ine�ciency in GC work stealing, we devise

an adaptive stealing policy that dynamically adjusts the number of

steal attempts according to the number of active GC threads and

improves steal success rate using a semi-random stealing algorithm.

Our experiments with industry-standard benchmarks, DaCapo and
SPECjvm2008, and two real-world Java applications, Cassandra data-
base and HiBench big data benchmarks, show up to 49.6%, 87.1% and

43% improvement on application execution time, GC time and re-

quest tail latency, respectively, due to our optimizations on parallel

GC. To summarize, this paper makes the following contributions:

• In-depth analysis of GCperformance inmulticore sys-
tems. We leverage comprehensive GC pro�ling, knowledge

of OS scheduling and thread synchronization to identify vul-

nerabilities in Parallel Scavenge and the HotSpot JVM that

can in�ict a loss of concurrency during parallel GC. The re-

sulted load imbalance signi�cantly prolongs the STW pause

time.

• Proposing two optimizations to address GC load im-
balance. We discuss our attempts to addressing GC load

imbalance and propose a dynamic GC load balancing scheme

with coordination between the JVM and the OS kernel. We

further improve GC load balancing by designing an adaptive

and semi-random work stealing algorithm inside the JVM.

• Comprehensive evaluations of the proposed optimiza-
tions. Our evaluations on DaCapo, SPECjvm2008, Cassandra,

and HiBench show considerable and consistent improvement

on parallel GC. We also demonstrate that our optimizations

improve the performance on application scalability, vari-

ous heap con�gurations as well as in complex application

execution environments,

The rest of this paper is organized as follows. § 2 introduces the

design of Parallel Scavenge, monitor-based synchronization in the

HotSpot JVM, and explains how load balancing works in Linux CFS.

§ 3 analyzes the root causes of GC load imbalance and ine�cient

GC work stealing and § 4 proposes two optimizations to addressing

these issues. § 5 presents experimental results and analysis. § 6

reviews the related work and § 7 concludes this paper.

2 BACKGROUND
2.1 Parallel Scavenge
Garbage Collection is the process of automatically freeing objects

that are no longer referenced by application threads (mutators). It

scans root references in the heap and records references that are

reachable during the scan. Objects with unreachable references

are regarded as garbage and are reclaimed in a sweep phase. Par-

allel Scavenge uses a stop-the-world design, which pauses mu-

tator threads until GC completes. The collection involves three

phases: initialization phase, parallel phase, and �nal synchronization
phase [8]. In the initialization phase, the VM thread ensures that

all mutator threads are suspended before waking up GC threads.

After the GC threads become live, the VM threads sleep and wait

for the �nal phase. Collection is performed in the parallel phase,

in which the GCTaskManager creates and adds GC tasks into the

GCTaskQueue from where multiple GC threads can fetch and exe-

cute them in parallel. With the help of the global task queue, Parallel

Scavenge implements dynamic task assignment among GC threads

(Section 2.2).

Parallel Scavenge performs generational garbage collection [1]

by dividing the heap into multiple generations: young, old, and
permanent generation. The young generation is further divided into

one eden space and two survivor spaces, i.e., from-space and to-

space. When the eden space is �lled up, a minor GC is performed.

Referenced objects in eden and from survivor space are moved

to the to survivor space, and unreferenced objects are discarded.

After a minor GC, the eden and the from space are cleared, and

objects survived in the to space have their age incremented. After

surviving a prede�ned number of minor GCs, objects are promoted

to the old generation. Similarly, as the old generation is �lled up,

a major GC is triggered to free space in the old generation. Both

minor and major GCs obtain tasks from GCTaskQueue except that
GCTaskManager prepares di�erent GC tasks for them. Among GC

tasks, steal tasks are used to balance load between GC threads

and are always placed after normal GC tasks in GCTaskQueue. GC
threads that have fetched steal tasks attempt to steal work from

other GC threads. When all GC threads complete the parallel phase

and suspend themselves, the VM thread is woken up, entering the

�nal synchronization phase. After resizing the generations based

on the feedback of recently completed GCs, the VM thread wakes

up the mutators and suspends itself until the next GC.

GCTaskQueue
_insert_end _remove_end

GCTask GCTask GCTask
_newer _older _newer _older _newer _older

GCTaskThread

GCTaskManager
get_task

steal

dequeue enqueue

GenericTaskQueue GenericTaskQueue GenericTaskQueue
steal

Figure 1: Dynamic task assignment in Parallel Scavenge.

2.2 Dynamic GC Task Assignment
Figure 1 shows the implementation of dynamic GC task assignment

during the parallel phase of Parallel Scavenge. At the beginning of

the parallel phase, GCTaskManager adds various types of GC tasks,

e.g., OldToYoungRootTask, ScavengeRootsTask, ThreadRootsTask,
and StealTask, to the GCTaskQueue. As these tasks may contain

di�erent amounts of work, the load assigned to GC threads can

be unbalanced. Dynamic task assignment, which only sends a task

to a GC thread when it requests one, helps resolve the imbalance

as GC threads assigned with smaller tasks would fetch more. To

prevent concurrent access to GCTaskQueue, GCTaskManager is im-

plemented as a monitor, which can only be owned by one GC thread

at a time. GC threads keep attempting to fetch (i.e., get_task) and
execute a task each time. Multiple GC threads are synchronized

by a monitor-based GC task manager. If the queue is empty, i.e.,

all GC tasks have been completed, a GC thread suspends itself to

the WaitSet in the monitor. Threads sleeping in the WaitSet can
later be woken up when new tasks are added to the task queue, i.e.,

when the next GC begins. The waking GC threads compete for the

mutex lock before they can dequeue a GC task.

2.3 Work Stealing among GC Threads
To further balance load, a GC thread can steal work from another

thread if it would otherwise stay idle. Once a GC task is fetched from

the task queue, a GC thread divides it into many �ne-grained tasks

and pushes them into a local task queue, i.e., GenericTaskQueue
in Figure 1. Such �ner-grained tasks can be stolen by others. For

example, a root task in the young-generation collection pushes

every reference it accesses in the object graph to the local breadth-

�rst-traversal queue, in which each reference leading to a sub-graph

is a �ne-grained task.

Parallel Scavenge places steal tasks, one for each GC thread, after

ordinary GC tasks in GCTaskQueue. Therefore, if no ordinary tasks

are available in the queue, GC threads fetch steal tasks and start

work stealing. A GC thread enters the �nal synchronization phase

when GCTaskQueue is empty and there is no task to be stolen from

other GC threads. Parallel Scavenge uses a distributed termina-

tion protocol to synchronize GC threads. After 2 ∗ N consecutive

unsuccessful steal attempts, a GC thread enters the termination

procedure, where N is the number of GC threads.
1
It atomically

increments a global counter _offered_termination to indicate

1
HotSpot uses a heuristic to determine the number of GC threads: N = (ncpus ≤
8)?ncpus : 3 + ((ncpus ∗ 5)/8), here ncpus denotes the number of CPU cores.

cxq EntryList

WaitSet

OnDeck

Lock
owner

GC
thread

Mutex is uncontended,
fast path

co
nte

nd
ed

,

slo
w pa

th

Heir

Compete for
lock byte

GCTaskQueue
is empty

Mutex_unlock:
release lock byte,

assign heir,
promote acquirers,

wake heir

Acquirer queueWaiter queue

Mutex_lock Next GC starts,
notify all GC threads

Transfer waiters from
WaitSet to cxq

Figure 2: Native monitor in the HotSpot JVM.

termination. If the counter reaches N , all GC threads have termi-

nated and the parallel phase ends.While in the termination protocol,

a GC thread periodically peeks if there are any root tasks available

from any of the GC threads. If so, it decrements the counter and

returns back to stealing. The core of a steal attempt is the function

steal_best_of_2 that selects two randomly chosen GC threads

and steals tasks from the one with the longer queue [27].

2.4 The Implementation of Monitor in HotSpot
Monitor is a synchronization mechanism that contains a condition

variable and its associated mutex lock. It allows threads to have

mutual exclusive access to a shared data structure and to wait

on a certain condition. Figure 2 shows the structure of the native

monitor in HotSpot. Parallel Scavenge implements GCTaskManager
as a monitor to protect GCTaskQueue. When GCTaskQueue is empty,

either before the �rst GC or at the end of the previous GC, all GC

threads sleep in WaitSet. GCTaskManager noti�es and wakes up

all GC threads when the next GC begins.

The critical design in monitor is the mutex lock, which should

strike a balance between e�ciency and scalability. To this end,

HotSpot implements two paths, fast and slow, for lock acquisition. A

thread acquires the ownership of a mutex by changing the LockByte
in the mutex from zero to non-zero using an atomic compare-and-

swap (CAS) instruction. On the fast path, a thread �rst attempts to

CAS the LockByte. If the mutex is not contended, lock acquisition is
successful. Otherwise, the thread turns to the slow path. Although

a CAS fast path o�ers low locking latency for a small number of

threads, it incurs considerable cache coherence tra�c on a many-

core system with a large number of threads [20].

The slow path is designed for scalability. It contains two separate

queues for lock contenders: cxq and EntryList and two internal

lock states: OnDeck and owner. Recently-arrived threads push them-

selves onto cxq if the fast path fails. In addition, GCTaskManager, at
the beginning of each GC, transfers sleeping GC threads from the

WaitSet of the monitor to cxq, letting waking GC threads compete

for the mutex. Owner is the current lock holder and OnDeck is the
thread selected by the owner as the presumptive heir to acquire

the lock. The OnDeck thread is promoted from the EntryList. If
EntryList is empty, ownermoves all threads on cxq to EntryList.
Both queue promotion and heir selection are performed by the lock

owner when it unlocks the mutex.
This slow path is e�cient for highly contended mutex. It throttles

concurrent attempts to acquire the lock from a large number of

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4

1 2 4 8 16 1 2 4 8 16N
or

m
al

iz
ed

 e
xe

cu
tio

n
tim

e (a) DaCapo benchmarks

Mutator execution time
GC time

DaCapo
lusearch

DaCapo
xalan

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4

1 2 4 8 16 1 2 4 8 16N
or

m
al

iz
ed

 e
xe

cu
tio

n
tim

e (b) Kmeans in HiBench

Mutator execution time
GC time

Large
dataset

Small
dataset

 0

 0.5

 1

 1.5

 2

 2.5

 3

1 2 4 8 16 1 2 4 8 16N
or

m
al

iz
ed

 e
xe

cu
tio

n
tim

e

(c) GC scalability

Mutator execution time
GC time

DaCapo
lusearch

DaCapo
xalan

1e-01

1e+00

1e+01

1e+02

1e+03

1 4 16 64 256
 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

La
te

nc
y

(m
s)

G
C

 R
at

io
(%

)

(d) Cassandra read latency

Mean
95%
99%

99.9%
GC Ratio

Number of threads

Figure 3: The impact of GC on application performance.

threads. For example, GC threads are transferred from WaitSet
to cxq without being woken up to avoid severe contention from

multiple CAS attempts. Furthermore, threads on cxq or EntryList
are in the sleep state and not allowed to attempt lock acquisition.

HotSpot ensures that there can be at most one OnDeck thread. Thus,
at any time, there are at most three (types of) contenders on the

lock: the OnDeck thread, the owner that just released the lock, newly
arrived thread(s) which has not been placed on cxq. To avoid the

lock-waiter preemption problem [32], in which a thread supposed

to acquire the lock is preempted, delaying other waiters, HotSpot

uses a competitive hando� policy. Instead of directly passing the

lock from the owner to the OnDeck thread, the owner wakes up the

OnDeck thread and lets it compete for the lock by itself. As such,

even if OnDeck is preempted, other threads are still able to acquire

the lock through the fast path. Although the above mutex design
provides excellent throughput, it sacri�ces short-term fairness: 1)

it allows the owner thread to re-acquire the mutex lock, possibly

causing starvation to the lock waiters on cxq and the OnDeck thread;
2) newly-arrived threads can bypass the queued lock waiters. We

will show in § 3 that the short-term unfairness can cause severe

ine�ciency in the parallel phase of Parallel Scavenge.

2.5 Linux Load Balancing
Load balancing is a critical component in an OS scheduler. By evenly

distributing threads on all cores, it minimizes the average queuing

delay on individual cores and exploits the parallelism on multicore

hardware. However, load balancing has become very complex in

modern OSes due to the consideration of overhead, scalability, data

locality, and power consumption. In this section, we describe the

load balancing algorithm in Linux’s Completely Fair Scheduler

(CFS), the widely used OS scheduler in production systems.

Due to scalability concerns, CFS uses per-core run queues on a

multicore machine. Individual cores are responsible for time sharing

the CPU among multiple threads. Load balancing is implemented

by means of thread migration across cores. Overall, CFS tracks

load on each core and transfers threads from the most loaded core

to the least loaded. Since thread migrations between cores require

inter-core synchronization, load balancing should not be performed

too frequently to avoid high overhead. In general, there are three

scenarios that trigger load balancing: 1) a core becoming idle for the

�rst time will attempt to steal runnable threads from the run queue

of a busy core; 2) a core periodically runs the balancing algorithm;

3) a waking thread can be migrated from its current core to the

idlest core in the system.

Load balancing can be ine�ective for several reasons. First, Linux

only migrates “runnable” threads between cores. Thus, GC threads

that frequently sleep may miss either idle balancing (scenario 1) or

periodic load balancing (scenario 2). In addition, the load balance

interval in CFS is coarse grained compared to the length of GC

tasks. For example, the default interval for periodic load balanc-

ing between two hyperthreads is 64ms and the interval increases

(multiply by 2) as the distance between the CPUs increases. In com-

parison, for most applications, the GC should complete within a few

hundreds of milliseconds to avoid a long pause of the application

threads. Therefore, each individual GC task typically lasts a few

tens or hundreds of microseconds. Third, CFS avoids waking up

idle cores that are in a deep sleep state for load balancing to save

energy. In any of these circumstances, multiple GC threads can be

stacked on a few cores even when there are idle cores in the system.

Therefore, load balancing in CFS is most e�ective with workloads

with a stable degree of parallelism but fails to function properly

with GC threads that exhibit dynamic parallelism.

3 ANALYSIS OF INEFFICIENT PARALLEL GC
This section presents an in-depth analysis of the performance of

Parallel Scavenge on a multicore machine. We �rst show the poor

scalability of parallel GC and its impact on application performance.

Then, we attribute the suboptimal GC performance to load imbal-

ance among GC threads and ine�cient stealing.

3.1 Parallel GC Performance and Scalability
We selected four workloads, two scalable workloads xalan and

lusearch from the DaCapo benchmarks [5], kmeans, a well-known
clustering algorithm for data mining from the HiBench big data

benchmarks [14], and Cassandra, a distributed NoSQL database.

For the traditional JVM workloads, such as xalan and lusearch,
the JVM heap size was set to three times of the minimum heap

requirement [13]. Kmeans and Cassandra had a heap size of 4GB

and 8GB, respectively. All benchmarks were executed on Linux

4.9.5, OpenJDK 1.8.0 and Parallel Scavenge. The experiments were

tested on a Dell PowerEdge T430 with dual Intel 10-core processors.

Details of the testbed and benchmark settings can be found in

Section 5.1.

Figure 3 (a) shows the performance of xalan and lusearch with

various numbers of mutator threads and a breakdown of mutator

execution time and GC time. Parallel Scavenge sets the number of

GC threads to 15 on our 20-core machine. As shown in Figure 3 (a),

(b) GC thread distribution

’data.txt’ matrix

 0 2 4 6 8 10 12 14 16 18
Core ID

 0
 2
 4
 6
 8

 10
 12
 14

G
C

 th
re

ad
 ID

 0

 2

 4

 6

 8

 10

N
um

be
r o

f g
et

_t
as

k(
) c

al
le

d

 0
 10
 20
 30
 40
 50
 60

0 2 4 6 8 10 12 14

G
C

ta
sk

 n
um

be
r

GC thread ID

(a) GC task distribution

OldToYoungRootsTask
ScavengeRootsTask

ThreadRootsTask
StealTask

Figure 4: Task and thread load imbalance in lusearch GC.

in xalan and lusearch, mutator time dropped as the number of mu-

tators increased and thus GC time became more signi�cant in the

overall execution time. For instance, GC contributed to 43.2% of the

total time in the case of 16 mutator threads, incurring unacceptable

overhead to application performance. Next, we evaluated the per-

formance of kmeans in Spark. Figure 3 (b) shows the performance

with a varying number of mutators and two input sizes: small and

large. Similar to the DaCapo results, the ratio of GC time increased

as mutator time decreased. In addition, the large dataset incurred

much higher GC overhead compared to the small dataset.

In Figure 3 (c), we �xed mutator threads to 16 and varied the

number of GC threads to study GC scalability. For both xalan and

lusearch, parallel GC scaled poorly with increasing parallelism. The

GC time even ramped up as the number of GC threads increased.

Another observation is that mutators had prolonged execution time

with more GC threads. It suggests that ine�cient GC not only hurts

JVMmemorymanagement but also in�uencesmutator performance.

Figure 3 (d) studies request latency in the Cassandra database. We

used another client machine executing a varying number of threads

to read one million records from the database. The �gure shows that

the request latency increased exponentially with more intensive

client tra�c. The ratio of GC time in the total execution time also

climbed to 25%. As an STW collector, the increased parallel GC time

can signi�cantly prolong tail latency. In what follows, we identify

the causes of the ine�cient GC and its poor scalability.

3.2 Load Imbalance
We instrumented the HotSpot JVM to report two types of load

information during parallel GC: 1) GC task distribution among GC

threads and 2) GC thread distribution on CPU cores. We analyzed

lusearch as it shows signi�cant GC overhead and poor scalability

in Figure 3. The number of mutator threads was set to 16 and the

number of GC threads was automatically set by Parallel Scavenge

to 15.

Task Imbalance. To monitor task distribution, we modi�ed the

constructor of GC tasks to log the GC thread ID on which a GC

task is executed. According to the GC logs, parallel GC in lusearch
is dominated by minor GC, which includes �fteen OldToYoung-
RootsTasks, nine ScavengeRootsTasks, thirty-four ThreadRootsTasks
and �fteen StealTasks. Note that the number of StealTasks matches

the number of GC threads. As shown in Figure 4 (a), GC tasks,

except StealTasks, were unevenly distributed among GC threads.

GCTaskThread 4 and 6 processed all root tasks during minor GC

cxq EntryList OnDeck

Lock
owner

Fast path

Wakes up, competes for
lock, sleeps if failed

Other waiters cannot proceed
until OnDeck wins

task->do_it

If both OnDeck and previous
owner reside on the same CPU,
OnDeck (almost) never wins

Figure 5: The vulnerability of dynamic task assignment and
unfair mutex lock in multicore systems.

while others only ran StealTasks. We observed a similar task imbal-

ance in other JVM benchmarks. Lusearch incurred around 198minor

GCs during execution. The GC logs showed severe task imbalance

in most minor GCs, though the ID(s) of overloaded GC thread(s)

varied in each GC. The result clearly shows that Parallel Scavenge

failed to exploit the available parallelism (i.e., 15 GC threads) in GC.

Note that GC threads are homogeneous in Parallel Scavenge and do

not have bias in task assignment, which led us to the investigation

of GC thread execution in the underlying OS.

Thread Imbalance. To monitor GC thread execution, we traced

function GCTaskManager::get_task and recorded the number

of times each GC thread successfully dequeued a GC task from

GCTaskQueue and on which CPU the GC thread was running. Fig-

ure 4 (b) shows the execution of all GC threads of one minor GC

in lusearch. It suggests that most GC threads were stacked on a

few CPU cores while the remaining cores were idle. It is evident

that multicore parallelism was not fully exploited. Figure 4 (b) also

shows unbalanced GC task distribution with a few threads having

fetched more tasks than others did.

Root cause analysis. As discussed in Section 2.5, Linux load bal-

ancing can be imperfect and temporarily place multiple GC threads

on the same core. However, two critical questions remain unan-

swered: 1) why is OS load balancing not e�ective during the entire
GC? 2) why is time slicing/sharing on a single core not e�ective, oth-
erwise stacking GC threads should have equal opportunities to fetch
tasks and task imbalance should never occur? We identi�ed the rea-

sons by monitoring the competitions between GC threads on the

mutex lock that protects the GCTaskQueue. The GC log showed that

throughout the GC, at any point in time, there were at most two

GC threads (the OnDeck thread and the previous owner thread) ac-

tively competing for the mutex lock and the previous owner thread

(almost) always won.

Figure 5 illustrates how the loss of concurrency in parallel GC

develops. First, at the beginning of each GC, sleeping GC threads on

the monitor’s WaitSet are transferred to cxq and become waiters

of the mutex lock. This is to prevent concurrent attempts on lock

acquisition when all GC threads wake up at the same time. The

monitor selects two threads at the head of cxq to be the lock owner
and OnDeck, and the other threads remain blocked, not eligible for

lock acquisition nor OS load balancing. Then, lock competition

becomes a two-player game. Second and most importantly, the

 0

 0.2

 0.4

 0.6

 0.8

 1

h2 jython
lusearch

sunflow
xalan

compiler.compiler

compress

crypto.signverify

xml.transform

xml.validation

Pe
rc

en
ta

ge
 o

f m
in

or
 G

C
tim

e

Phase 1:
Initialisation

Phase 2:Steal
Task(steal)

Phase 2: Steal
Task(termination)

Phase 2: All
Other Tasks

Phase 3: Final
 Synchronisation

SPECjvm2008DaCapo

 0

 0.2

 0.4

 0.6

 0.8

 1

h2 jython
lusearch

sunflow
xalan

compiler.compiler

compress

crypto.signverify

xml.transform

xml.validation

Pe
rc

en
ta

ge
 o

f m
in

or
 G

C
tim

e

Phase 1:
Initialisation

Phase 2:Steal
Task(steal)

Phase 2: Steal
Task(termination)

Phase 2: All
Other Tasks

Phase 3: Final
 Synchronisation

SPECjvm2008DaCapo

Figure 6: The decomposition of minor GC time.

competition is unfair if the two threads are stacked on the same CPU.

As shown in Figure 5, after the owner releases the lock and wakes

up OnDeck, it executes the GC task it fetched from GCTaskQueue.
Once the task is completed, the previous owner thread executes

get_task again, attempting to fetch another GC task and acquire

the mutex lock. The fast lock acquisition path allows the previous

owner to bypass waiters in cxq and EntryList and directly acquire
the lock. If the two threads are on the same core, the OnDeck thread
may never acquire the lock.

Most OS schedulers avoid frequent thread context switching on a

CPU and guarantee that a thread can run for a minimum time before

it is preempted. Therefore, after releasing the lock and waking up

the OnDeck thread, the previous owner thread may continue to run

on CPU if it has not used up its minimum time quantum. In this

case, the waking OnDeck thread would fail to preempt the owner
thread and be placed by the scheduler onto the CPU run queue as a

runnable thread. Since the OnDeck misses the wakeup momentum

to preempt the owner thread, it has to wait for a whole time slice

before being scheduled. At the time the OnDeck thread is scheduled,
if the owner thread has re-acquired the lock, the OnDeck thread

would go to sleep again. This cycle repeats and the OnDeck thread

may never acquire the lock until the owner thread depletes all GC

tasks in the GCTaskQueue.
The stacking of GC threads will happen almost every time.When

GC threads are �rst created by the JVM, they are spawned on one

core. Since the GC task queue is empty at the launch time of the

JVM, all GC threads will immediately block until the �rst GC begins.

OS schedulers do not balance blocked threads, thus all GC threads

are stacked on one core when the �rst GC starts, relying on OS load

balancing to resolve the stacking. There are two practical obstacles

to e�ectively balancing stacked GC threads.

First, during lock contention, there are at most two active GC

threads, i.e., the owner thread and the OnDeck thread, that are eligi-

ble for load balancing. However, if the OnDeck cannot acquire the
lock and remain in a blocked state, load balancing will not take ef-

fect as there is no runnable thread to move. It is possible to decrease

the minimum thread runtime to increase the chance of the OnDeck
thread to preempt the owner thread, i.e., setting a smaller value

for sched_min_granularity_ns in CFS. However, the tuning of

CFS (i.e., setting the minimum thread runtime to 100µs) does not
mitigate the unfairness in lock acquisition. At the beginning of each

GC, the OnDeck thread is unlikely able to preempt the owner thread

Benchmark Total Failure Failure rate

h2 237983 166008 69.8%

jython 75036 66318 88.4%

lusearch 117383 108308 92.3%

sun�ow 45648 34695 76.0%

xalan 22783 19303 84.7%

compiler.compiler 726920 274043 37.7%

compress 29348 26513 90.3%

crypto.signverify 64493 60388 93.6%

xml.transform 457198 341555 74.7%

xml.validation 651475 188189 28.9%

Table 1: The total and failed steal attempts in
steal_best_of_2().

regardless of the minimum runtime as the owner also just woke up.

After the �rst failed attempt, the OnDeck thread becomes runnable

and has to wait a full time slice (12ms in CFS) to be scheduled. Once

the owner thread is descheduled, its minimum runtime is reset. If

the OnDeck thread fails to acquire the lock again, the vicious cycle

of block, wakeup and failed lock acquisition continues.

Second, even if the OnDeck thread acquires the lock, the ex-

ecution serialization still persists. The previously OnDeck thread

becomes the owner thread and a sleeping lock waiter thread, which
resides on the same CPU, will be promoted to OnDeck. Since the
two new lock contenders are stacked on one CPU, the unfairness in

lock acquisition still exists. Ideally, load balancing will be e�ective

when all GC threads are active and visible to the load balancer. This

requires that the non-critical section of GC, i.e., each GC task, be

long enough to keep all GC thread busy at the time of load balanc-

ing. However, the amount of work in each GC task varies greatly,

depending on the sparsity of the sub-graph reachable from a GC

task. Some tasks can be quite small in a large heap. Therefore, it

is almost impossible to keep all GC threads active all the time and

thread stacking is inevitable. As a result, unfair locking in the JVM

causes serialization among GC threads.

3.3 Ine�ective Work Stealing
As discussed in Section 3.2, there exists signi�cant load imbalance

amongGC threads. Next, we study the e�ectiveness of work stealing

in addressing the imbalance among GC threads. Figure 6 shows the

breakdown of minor GC time of some representative applications in

DaCapo and SPECjvm2008 [41]. We instrumented Parallel Scavenge

to log the execution time of each GC stage. We further recorded

detailed GC task completion time at each GC thread and divided the

parallel GC phase into root task, steal task and steal termination.

Note that the time breakdown in Figure 6 is aggregated among all

GC threads. It is possible that when some threads were in steal

termination, others were still executing root tasks. Thus, the GC

time breakdown does not re�ect the timeline of GC.

As shown in Figure 6, steal tasks dominate the total GC time in

all benchmarks, which was also observed by Gidra et al. [7]. While a

GC thread executes a steal task, it is either processing a task stolen

from another thread or attempting a steal. In contrast, the time

spent in the steal termination, during which terminated GC threads

waiting for other active threads to synchronize at the barrier of the

Algorithm 1 Dynamic GC thread balancing

1: Variable: The load on the ith core Li ; the load degree of the ith core

Di ; the average load of across all cores Lavд ; the number of cores with

low load Nlow ; GC thread ti .
2: /* Mark CPU load as: hiдh, normal , and low . */

3: function Mark_CPU_Load_Degree

4: for each core i do
5: if Li ≥ 2 ∗ Lavд then
6: Di = hiдh;
7: else if Li ≤ 0.5 ∗ Lavд then
8: Di = low ;

9: Nlow++;

10: else
11: Di = normal ;
12: end if
13: end for
14: end function
15:

16: /* Dynamically rebalance GC threads to avoid contentions */

17: function GC_Thread_Rebalance(ti)
18: if ti ’s current CPU load degree is hiдh then
19: k = rand ()%Nlow ;

20: bind ti to the kth core in the low load CPU set;

21: end if
22: end function

�nal phase, is wasted and does not contribute any meaningful com-

putation. Table 1 lists the total and failed steal in steal_best_of_2.
Most benchmarks su�ered high failure rate except compiler.compiler
and xml.validation. Recall that steal_best_of_2 selects the longer
of two randomly chosen GC thread queues to steal. If the load

is severely unbalanced, its performance can degrade to random

stealing because most attempts return two empty queues. These

observations motivated us to design a more e�cient termination

protocol and more e�ective stealing policy for steal tasks.

4 OPTIMIZATIONS
This section presents two optimizations of Parallel Scavenge to

address its vulnerability and ine�ciency in multicore systems (dis-

cussed in § 3). For each optimization, we describe its design and

implementation, and evaluate its e�ectiveness on mitigating imbal-

ance and wasteful stealing.

4.1 Addressing Load Imbalance
The culprits of load imbalance in parallel GC are ine�ective OS load

balancing of GC threads, unfair mutex acquisition, and dynamic

task assignment that allows one or a few GC threads to deplete

the GC task queue. To avoid re-designing the GC task model in

Parallel Scavenge and changing dynamic task assignment, we ex-

plored optimizations to address unfair locking, such as disabling all

fast paths in locking, enforcing fair (FIFO) mutex acquisition and

allowing multiple active lock contenders. Unfortunately, without

the help from the OS, these approaches either had no e�ect or led

to degraded performance.

A simple approach to avoiding GC threads stacking is to dis-

able the OS load balancing and pin GC threads to separate cores.

BindGCTaskThreadsToCPUs has been included as a command line

shared
memory

…

load
info

GC load
analyzer

bind_to_processor

JVM

OS
CPU CPUCPU

Load
rebalancer

Figure 7: Proactive and dynamic GC load balance.

(a) GC thread distribution

’data.txt’ matrix

 0 2 4 6 8 10 12 14 16 18
Core ID

 0
 2
 4
 6
 8

 10
 12
 14

G
C

 ta
sk

 ID

 0

 2

 4

 6

 8

 10

N
um

be
r o

f g
et

_t
as

k(
) c

al
le

d

 0

 2

 4

 6

 8

 10

 12

0 2 4 6 8 10 12 14

G
C

ta
sk

 n
um

be
r

GC thread ID

(b) GC task distribution

OldtoYoungRootsTask
ScavengeRootsTask

ThreadRootsTask
StealTask

Figure 8: Improved thread and task balance in lusearch mi-
nor GC with 16 mutators.

option in OpenJDK since version 1.4 but the backend function

bind_to_processor was never implemented on Linux, Windows,

or BSD. It was �rst proposed in speci�cation JSR-282 but no agree-

ment was made to provide the processor binding API due to lack of

evidence for GC performance improvement and the di�culties to

provide a generic API across various platforms [33]. The processor

binding interface has been implemented in Solaris, but the bene�ts

of binding was not well studied. To prove the necessity of GC thread

a�nity in parallel GC, we implemented this feature in OpenJDK

1.8.0 for Linux. When a GCTaskThread is created, it is bound to a

core whose ID matches the thread ID.

Static binding avoids stacking GC threads on cores but may

con�ict with other workloads scheduled by the OS scheduler. To

address this issue, we devise a GC thread balancing scheme (Algo-

rithm 1) to rebalance GC threads to avoid contentions with other

workloads. At the start of each parallel GC, a GC thread exam-

ines the load on its current CPU and binds to a di�erent CPU if

the current one experiences contention. We leveraged load_avg
in the Linux kernel to measure the load on each CPU. Note that

load_avg only measures the load of ready/running tasks but does

not count sleeping threads. This explains why OS load balancing

is not e�ective for stacking GC threads as most of them are in the

sleep state. To avoid stacking GC threads during the rebalancing,

we incorporated the load from sleeping threads into load_avg in
the Linux kernel.

As Algorithm 1 shows, a CPU is considered to have a high load

if its load is higher than two times of the average load across all

CPUs while a low load is less than half of the system-wide average

(line 4-9). Each GC thread checks the load of its current CPU at

the start of each GC and rebinds to a randomly picked CPU with

low load (line 14-15). Figure 7 shows the steps to rebalance GC

Algorithm 2 Adaptive and semi-random work stealing

1: /* Adaptive termination protocol: only steal from active GC threads.*/

2: Variable: The number of active GC threads Nl ive ; the queue ID to

steal q; the queue ID qs in last successful steal attempt.

3: function Steal_Task

4: for Steal attempts less than 2 ∗ Nl ive do
5: q = STEAL_BEST_OF_2 (qs)
6: if q , ϕ then
7: qs = q
8: Steal from q and return

9: end if
10: end for
11: qs = ϕ
12: Enter the termination protocol

13: end function
14:

15: /* A semi-random algorithm for queue selection */

16: Variable: The queue ID qs in last successful steal attempt.

17: function Steal_Best_of_2(qs)
18: Randomly select the �rst queue q1
19: if qs , ϕ and qs is not empty then
20: q2 = qs
21: else
22: Randomly select the second queue q2
23: end if
24: if q1 and q2 are both empty then
25: qs = ϕ and return ϕ
26: else
27: return the longer of q1 and q2
28: end if
29: end function

threads. The Hotspot JVM communicates with the Linux kernel via

the /proc �le system. The OS writes the run queue load of each

CPU to the shared memory and the JVM reads the information

when the GCTaskManager adds GCTasks to the GCTaskQueue and
the GC threads are woken up (Step 1©). The GC load analyzer

determines whether it needs to rebind a GC thread to another CPU

based on the load information (Step 2©). If needed, our implemented

bind_to_processor is used to rebind the GC thread (Step 3©).

Besides the optimizations for GC thread balancing, we also

made some modi�cations to improve the task-to-thread balance.

The default GCTask has no task a�nity even though the param-

eter UseGCTaskAffinity is enabled. We modi�ed the construc-

tor function of OldToYoungRootsTask, ScavengeRootsTask and

ThreadRootsTask to include task a�nity.When the GCTaskThread
executes get_task(), GCTaskManager prefers to dequeue the task

which has the a�nity to that thread. If no task is found matching

the a�nity, GCTaskManager dequeues any task that is available.

We evaluated the e�ectiveness of the optimized thread and task

balance design using lusearch fromDaCapo, whichwas con�gured
with 16 mutator threads and 15 GC threads. Figure 8 (a) shows that

GC threads are evenly distributed on multiple cores. The warm

temperature in the heatmap suggests that all GC threads were able

to fetch tasks from GCTaskQueue. As shown in Figure 8 (b), GC

thread and task a�nity help mitigate load imbalance among GC

threads. Compared to the case shown in Figure 4 (a), all GC threads

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4

h2 jython
lusearch

sunflow

xalan
compiler.compiler

compress

crypto.signverify

xml.transform

xml.validation

St
ea

l f
ai

lu
re

 ra
te

(b) Steal failure rate (lower is better)

Default-Steal
Optimized-Steal

 0

 0.5

 1

 1.5

 2

 2.5

h2 jython
lusearch

sunflow

xalan
compiler.compiler

compress

crypto.signverify

xml.transform

xml.validation

Re
la

tiv
e

to
 th

e
de

fa
ul

t J
VM

(a) Number of steal attempts (lower is better)

Default-Steal
Optimized-Steal

1.0

2.0
1.0

Figure 9: The optimized stealing algorithm reduces both
steal attempts and failure rate. All workloads ran with 16
mutators.

are assigned with root tasks, showing much improved task balance

among GC threads.

4.2 Addressing Ine�cient Working Stealing
In Section 3.3, we identi�ed two de�ciencies of Parallel Scavenge’s

work stealing algorithm: 1) the distributed termination protocol

is slow and incurs too many steal attempts; 2) the queue selection

algorithm is not e�ective, leading to high steal failure rate. In the

original design, a GC thread enters the termination protocol after

experiencing 2 ∗ N consecutive failed steal attempts, where N is

the number of GC threads. For each attempt, it selects two random

GC thread queues and steals from the longer one. We see two

problemswith such a design. First, the termination protocol requires

2 ∗ N failures to end a GC threads regardless of how long the GC

thread has been in the parallel GC. Towards the end of the parallel

phase, most GC threads may have been in the termination protocol.

Therefore, it is not necessary to wait for 2 ∗ N failures to enter

termination because there are only a few active threads, fromwhich

tasks can be stolen. Second, if load imbalance occurs, as we show

in Figure 4 (a), work can be assigned to a few GC threads and the

random stealing might be quite ine�ective.

To address these two issues, we propose an adaptive and semi-

random stealing algorithm, shown in Algorithm 2. We implemented

a FastParallelTaskTerminator class in HotSpot to coordinate

GC thread termination. It records the number of active GC threads

(i.e., Nl ive) that are not yet in the termination protocol. As GC

threads enter or exit the termination protocol, the active thread

count is updated. A thread only steals from the pool of active

GC threads (line 4-10). Accordingly, the criteria for thread termi-

nation becomes 2 ∗ Nl ive consecutive failed steal attempts. The

steal_best_of_2 function was also modi�ed to improve steal suc-

cess rate. It memorizes the last queue from where the steal was a

success and selects the same queue as one of the steal choices, given

that the queue is not empty (line 19-20). Another queue is picked

up randomly. Similarly, the longer of the two queues is chosen as

the stealing target.

We evaluated the e�ectiveness of the optimized stealing algo-

rithm using programs fromDaCapo and SPECjvm2008. All programs

ran with 16 mutator threads and 15 GC threads. As Figure 9 (a)

shows, the optimized stealing reduced the total number of steal

attempt for most of the benchmarks except xml.validation. Among

these attempts, the portion of failed attempts, i.e., failure rate, also

dropped, as shown in Figure 9 (b). While the reduction on steal at-

tempts or failure rate alone is not signi�cant, the aggregate bene�t

is clear. For example, the number of steals for xml.validation in-

creased by 95.1% while the failure rate dropped by 4.5x. As a result,

the total number of failed attempts decreased by 56.8%, which indi-

cates that the increased steal attempts contained mostly successful

steals. Overall, the reduction on failed attempts ranged from 18.3%

to 56.8%. As will be discussed in Section 5, the savings on futile

steal attempts lead to improved GC performance.

5 EVALUATION
In this section, we present an evaluation of our optimized JVM

using various micro and application benchmarks. We �rst study

the e�ectiveness of our design on improving the overall application

performance (§ 5.2) and on reducing GC time (§ 5.3), and compare

our work with GC optimization in other papers. We then analyze

the impact of improved GC on application scalability (§ 5.4), and

investigate how much our design improves the performance of

real-world applications (§ 5.5) and applications with di�erent heap

con�gurations (§ 5.6). Finally, we demonstrate the performance

improvement in a multi-application environment (§ 5.7) and discuss

the e�ect of simultaneous multithreading(§ 5.8).

5.1 Experimental Settings
Hardware. Our experiments were performed on a DELL Pow-

erEdge T430 server, which was equipped with dual ten-core Intel

Xeon E5-2640 2.6GHz processors, 64GB memory, Gigabit Network

and a 2TB 7200RPM hard drive. Initially, simultaneous multithread-

ing (SMT) was disabled to isolate the e�ect of our proposed opti-

mizations from interference on sibling hyperthreads. The heuristic

used to determine the number of GC threads is based on CPU count.

Enabling SMT on our testbed results in a total of 40 logical cores and

28 GC threads. Since the testbed only has 20 physical cores, 16 GC

threads would run on sibling hyperthreads, which could either have

constructive or destructive impact on Java programs [15, 19, 26, 36].

We enable SMT and study its e�ect in Section 5.8. The machine was

con�gured with the default power management and all cores ran

at their maximum frequency. Turboboost, mwait, and low power

C-States were also enabled. For database benchmarks, we used

another machine in the same Ethernet as the client.

So�ware. We used Ubuntu 16.10 and Linux kernel version 4.9.5 as

the host OS. All experiments were conducted on OpenJDK 1.8.0

with Parallel Scavenge as the garbage collector. If not otherwise

stated, we set the number of mutators to 16 and the decision on the

number of GC threads was left to Parallel Scavenge, which created

15 GC threads for our 20-core testbed. This setting ensured that

the machine is under-provisioned and both the mutators and GC

threads had access to su�cient multicore parallelism.

Benchmarks. We selected a subset of programs in the following

benchmarks and measured their performance on the vanilla JVM

and the one with our optimizations. The selected workloads are

scalable workloads that bene�t from parallel garbage collection.

The heap sizes of these benchmarks were set to 3x of their respec-

tive minimum heap sizes [13, 46]. Details on heap con�guration

are listed in Table 2. To minimize non-determinism in multicore

environments, each result was the average of 10 runs.

Benchmark Suite Heap size (MB)

h2 DaCapo 900

jython DaCapo 90

lusearch DaCapo 90

sun�ow DaCapo 210

xalan DaCapo 150

compiler.compiler SPECjvm 4000

compress SPECjvm 2500

crypto.signverify SPECjvm 2500

xml.transform SPECjvm 4000

xml.validation SPECjvm 4000

kmeans HiBench 16384

wordcount HiBench 16384

pagerank HiBench 16384

Cassandra Apache 8192

Table 2: Benchmark heap size.

• DaCapo is an open source client-side Java benchmark suite

which consists of a set of real-world applications with non-

trivial memory loads. The version we used in this paper is

9.12.

• SPECjvm2008 is a benchmark suite for measuring the perfor-

mance of a Java Runtime Environment, containing several

real life applications focusing on core Java functionalities.

The workloads mimic a variety of common general-purpose

application computations.

• HiBench is a big data benchmark suite that contains a set of

Hadoop, Spark and streaming workloads, including kmeans,
wordcount, and pagerank, etc. The version we used in this

paper is 6.0. We ran HiBench on Hadoop [11] 2.7.3 and

Spark [40] 2.0.0 on a single node. The number of threads in

the Spark executor was set to 16.

• Cassandra is an open-source distributed database manage-

ment system designed to handle large amounts of data across

many commodity servers. We use cassandra-stress to test the
read and write latency. The version of Cassandra used in this

paper was 3.0.10.

5.2 Improvement in Overall Performance
We �rst demonstrate the e�ectiveness of our optimizations on im-

proving the overall performance of various Java applications. We

adopted �ve benchmarks from DaCapo and SPECjvm2008, respec-
tively, and compared their performance in the vanilla HotSpot JVM

with that in our optimized JVM. Figure 10 (a) shows the execution

times of �ve benchmarks from DaCapo under various settings. To
quantify the performance improvement due to each optimization,

we enabled one optimization at a time, GC a�nity or optimized

stealing, while disabling the other. The resulted JVMs are labeled

as w/ GC-a�nity and w/ steal, respectively. Together refers to the

JVM with both optimizations enabled. Overall, GC thread a�nity

contributed more improvement compared to optimized stealing.

For instance, the execution time of sunflowwas improved by 30.4%

and 17.5% due to thread a�nity and optimized stealing, respec-

tively. The performance improvement was more pronounced when

both optimizations were taking e�ect. sunflow had a performance

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4

h2 jython luserach
sunflow xalanR

el
at

iv
e

to
 th

e
de

fa
ul

t J
VM

(a) DaCapo execution time (lower is better)

Vanilla-JVM
w/ GC-affinity

w/ steal
Together

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4

compiler.compiler

compress
crypto.signverify

xml.transform
xml.validation

R
el

at
iv

e
to

 th
e

de
fa

ul
t J

VM

(b) SPECjvm2008 throughput (higher is better)

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4

h2 jython
luserach

sunflow
xalan

compiler.compiler

compress

crypto.signverify

xml.transform

xml.validation

Re
la

tiv
e

to
 th

e
de

fa
ul

t J
VM

(c) Improvement on GC time

Vanilla-JVM Optimized-JVM

Figure 10: Overall and GC performance improvement on DaCapo and SPECjvm2008.

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8

h2 jython
luserach

sunflow
xalan

compiler.compiler

compress

crypto.signverify

xml.transform

xml.validation

R
el

at
iv

e
to

 th
e

de
fa

ul
t J

V
M

(a) Performance with affinity optimization

Vanilla
Node affinity

Optimized GC affinity

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8

h2 jython
luserach

sunflow
xalan

compiler.compiler

compress

crypto.signverify

xml.transform

xml.validation
R

el
at

iv
e

to
 th

e
de

fa
ul

t J
V

M

(b) Performance with stealing optimization

Vanilla
NUMA-aware stealing

Optimized stealing

Figure 11: Performance comparison onDaCapo execution time (lower is better) and SPECjvm2008 throughput (higher is better).

gain of 37.3% with together. Figure 10 (b) shows the throughput

SPECjvm2008 benchmarks. Similarly, each optimization accelerated

the operation speed of SPECjvm2008 benchmarks. For instance, the

throughput of xml.transformwas improved by 18.9% and 10.3% with

thread a�nity and optimized stealing, respectively. The combined

optimizations improved its throughput by 24.3%. Note that the over-

all performance gain is lower than the aggregate gain of individual

optimizations because each optimization improved the load bal-

ance, leaving less room to the other optimization for additional

improvement.

Thread pinning has been used in HotSpot for improving data

placement on non-uniform memory access (NUMA) machines. In

particular, Gidra et. al. [8] proposed to segregate JVM heap in dif-

ferent NUMA nodes and restrict GC threads to only access objects

in the local node. While the main purpose of segregated heap is

to improve access balance across NUMA nodes, it imposes node

a�nity on GC threads, which could alleviate the GC thread stacking

problem. In addition, segregated heap restricts work-stealing to

GC threads within the same node, reducing the number of failed

steal attempts before a GC thread enters the termination procedure.

We ported the node a�nity and NUMA-aware stealing proposed

in [8] to OpenJDK 1.8.0 and compared their performance with our

proposed optimizations.

Figure 11 (a) compares the performance of node a�nity and

our proposed dynamic thread a�nity, using the vanilla JVM as the

baseline. The results show that node a�nity improved the overall

performance compared to the vanilla JVM. The even distribution of

GC threads to the two NUMA nodes in our testbed mitigated thread

stacking, thereby improving concurrency during GC. However, our

proposed thread a�nity still outperformed node a�nity in most

DaCapo benchmarks while achieving comparable performance in

SPECjvm2008 benchmarks. It suggests that thread stacking can still

happen within a NUMA node and the one-to-one thread-to-core

binding is necessary for fully exploiting the potential of parallel

GC.

Figure 11 (b) shows the results due to NUMA-aware stealing

and our proposed adaptive stealing algorithm. From the �gure, we

can see that our approach achieved slightly better performance

over NUMA-aware stealing. Note that we did not port NUMA-

aware memory allocation proposed in [8]. The performance gain

of NUMA-aware stealing was mainly due to reduced failed steal

attempts. Since stealing is only allowed within a node, a GC thread

stops stealing after 2 ∗ Nlocal failed attempts, where Nlocal is the

number of GC threads in a node. However, node a�nity and NUMA-

aware stealing share a common drawback – the static binding of

GC threads to NUMA nodes and the restriction on where to steal

GC tasks make the two approaches vulnerable to interference in a

multi-user environment. In contrast, our approaches bind threads

to the lightly loaded cores and steal from active threads, thereby

more resilient to interference.

5.3 Improvement on Garbage Collection
Figure 10 (c) shows the performance improvement on garbage

collection in DaCapo and SPECjvm2008 benchmarks. Both optimiza-

tions were enabled and labeled as optimized-JVM. From this �gure,

we can see that our optimizations bene�ted all benchmarks and

reduced GC time. The improvement in GC time ranged from 20%

(compiler.compiler) to 87.1% (sun�ow). In general, the benchmarks

 1000
 2000
 3000
 4000
 5000
 6000
 7000

1 2 4 8 16

E
xe

cu
tio

n
tim

e
(m

s)

Number of threads

(a) H2

Vanilla
Optimized

 4000
 4500
 5000
 5500
 6000
 6500
 7000
 7500
 8000

1 2 4 8 16
E

xe
cu

tio
n

tim
e

(m
s)

Number of threads

(b) Jython

 1000
 1500
 2000
 2500
 3000
 3500
 4000
 4500

1 2 4 8 16

E
xe

cu
tio

n
tim

e
(m

s)

Number of threads

(c) Lusearch

 1000
 2000
 3000
 4000
 5000
 6000
 7000
 8000

1 2 4 8 16

E
xe

cu
tio

n
tim

e
(m

s)

Number of threads

(d) Sunflow

 1000

 1500

 2000

 2500

 3000

 3500

1 2 4 8 16

E
xe

cu
tio

n
tim

e
(m

s)

Number of threads

(e) Xalan

 0
 200
 400
 600
 800

 1000
 1200

1 2 4 8 16

G
C

 ti
m

e
(m

s)

Number of threads

(f) H2

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600

1 2 4 8 16

G
C

 ti
m

e
(m

s)

Number of threads

(g) Jython

 0

 200

 400

 600

 800

 1000

1 2 4 8 16

G
C

 ti
m

e
(m

s)

Number of threads

(h) Lusearch

 0
 100
 200
 300
 400
 500
 600
 700

1 2 4 8 16

G
C

 ti
m

e
(m

s)

Number of threads

(i) Sunflow

 0

 100

 200

 300

 400

 500

1 2 4 8 16

G
C

 ti
m

e
(m

s)

Number of threads

(j) Xalan

Figure 12: DaCapo: overall and GC scalability. (mutator varies from 1 to 16, GC thread number is 15)

that did not have as much improvement as others did were those

had relatively low steal failure rate in Table 1, i.e., compiler.compiler
and xml.validation. Low steal failure rate indicated good balance

among GC threads, thereby less room for GC improvement. It con-

�rms that load imbalance is the major ine�ciency in GC on these

benchmarks.

5.4 Scalability
GC load varies depending on the activities of mutator threads on

the heap. Therefore, it is interesting to study how the number of

mutators a�ects GC scalability and the performance impact of GC

on overall application scalability. We let Parallel Scavenge con�gure

the number of GC threads (i.e., 15 GC threads) and varied the num-

ber of mutators from 1 to 16. We evaluated two types of applications

in DaCapo: non-scalable and scalable benchmarks [35]. As shown

in Figure 12, there is not much parallelism in non-scalable appli-

cations, such as h2 and jython, and performance deteriorated or

stagnated as the number of mutators increased. In contrast, for scal-

able applications, such as lusearch, sun�ow and xalan, performance

improved with more mutators but became non-scalable as mutator

concurrency continued to increase. We had three observations: 1)

GC overhead depends on mutator activities. For non-scalable appli-

cations, more mutators did not exploit much parallelism, thereby

not creating more activities on the heap. GC time was relatively

stable with a varying number of mutators. For scalable applications,

GC overhead increased with mutator activities as load imbalance

could arise. The increased GC time could possibly a�ect application

scalability. For example, the GC time jump in lusearch from 4 to

8 mutators was the in�ection point of its scalability curve. 2) The

optimized JVM signi�cantly reduced GC time in all applications

and was not sensitive to mutator activity. Hence, it does not a�ect

application scalability. 3) The improved load balance in GC also

helped improve mutator performance as the overall performance

gain in all applications was greater than the savings on GC time.

An explanation is that good load balance during GC keeps multiple

cores active. When the STW pause ends, waking mutator threads

will have lower startup latency on active cores compared to waking

up from idle cores in deep power saving states. Further, active cores

perform more frequent load balancing and help prevent mutator

imbalance.

5.5 Application Results
Big data applications. We used wordcount, pagerank and kmeans
from HiBench to evaluate the e�ectiveness of our design in a Spark

environment. We set the heap size of Spark executors to 16GB and

mutator thread to 16. Figure 13 (a) shows the performance of these

applications with three pre-de�ned data sizes: small, large and huge.

Note that pagerank with the huge dataset crashed due to out-of-

memory errors and was not included in the �gure. The results show

that the optimized JVM consistently outperformed the vanilla JVM.

The performance improvement on individual applications increased

as the datasets became larger. However, the overall performance

improvement of big data applications was not as great as DaCapo or
SPECjvm2008 benchmarks. For example, the greatest performance

gain was 15.3% observed in kmeans with the huge dataset. The

improvement was from reduced GC and mutator time. In kmeans,
the GC time accounted for 50.3% of the total execution time, about

two thirds of which was due to full GC. It has been reported that GC

on the old generation is the bottleneck in big data application due

to the caching of Resilient Distributed Dataset (RDD) [29]. Thus,

scanning such a huge object in the heap is di�erent from other GC

tasks. The optimized JVM mainly reduced the time in minor GC for

big data applications.

Database applications. Figure 13 (b) and (c) show the latency

of read and write requests in Cassandra database. Cassandra was
launched in a JVMwith a 8GB heap and the client machine remotely

sent requests using 256 threads. The concurrency setting on the

client achieved the maximum Cassandra throughput. The results
show that our optimized JVM was most e�ective on reducing the

tail latency while had marginal improvement on the mean and

median latency. It improved the 99
th

percentile read latency in

Cassandra by 43%. The improvement on the tail latency led to up

to 31% increase on Cassandra throughput (not shown in the �gure).

 0.6

 0.7

 0.8

 0.9
 1

 1.1

 1.2

wordcount(S)

wordcount(L)

wordcount(H)

kmeans(S)

kmeans(L)

kmeans(H)

pagerank(S)

pagerank(L)

Re
la

tiv
e

to
 V

an
illa

 J
VM

(a) Spark total time

Vanilla
Optimized

 0
 1
 2
 3
 4
 5
 6
 7

median

mean
95%

99%

La
te

nc
y

(m
s)

Latency

(b) Cassandra write latency

 0
 1
 2
 3
 4
 5
 6
 7

median

mean
95%

99%

La
te

nc
y

(m
s)

Latency

(c) Cassandra read latency

 0

 0.2

 0.4

 0.6
 0.8

 1

 1.2

wordcount(S)

wordcount(L)

wordcount(H)

kmeans(S)

kmeans(L)

kmeans(H)

pagerank(S)

pagerank(L)

Avg-GC(R)

Avg-GC(W)

Total-GC(R)

Total-GC(W)

Re
la

tiv
e

to
 V

an
illa

 J
VM

(d) Application GC time

 0.6

 0.7

 0.8

 0.9
 1

 1.1

 1.2

wordcount(S)

wordcount(L)

wordcount(H)

kmeans(S)

kmeans(L)

kmeans(H)

pagerank(S)

pagerank(L)

Re
la

tiv
e

to
 V

an
illa

 J
VM

(a) Spark total time

Vanilla
Optimized

 0
 1
 2
 3
 4
 5
 6
 7

median

mean
95%

99%

La
te

nc
y

(m
s)

Latency

(b) Cassandra write latency

 0
 1
 2
 3
 4
 5
 6
 7

median

mean
95%

99%

La
te

nc
y

(m
s)

Latency

(c) Cassandra read latency

 0

 0.2

 0.4

 0.6
 0.8

 1

 1.2

wordcount(S)

wordcount(L)

wordcount(H)

kmeans(S)

kmeans(L)

kmeans(H)

pagerank(S)

pagerank(L)

Avg-GC(R)

Avg-GC(W)

Total-GC(R)

Total-GC(W)

Re
la

tiv
e

to
 V

an
illa

 J
VM

(d) Application GC time

 0.6

 0.7

 0.8

 0.9
 1

 1.1

 1.2

wordcount(S)

wordcount(L)

wordcount(H)

kmeans(S)

kmeans(L)

kmeans(H)

pagerank(S)

pagerank(L)

Re
la

tiv
e

to
 V

an
illa

 J
VM

(a) Spark total time

Vanilla
Optimized

 0
 1
 2
 3
 4
 5
 6
 7

median

mean
95%

99%

La
te

nc
y

(m
s)

Latency

(b) Cassandra write latency

 0
 1
 2
 3
 4
 5
 6
 7

median

mean
95%

99%

La
te

nc
y

(m
s)

Latency

(c) Cassandra read latency

 0

 0.2

 0.4

 0.6
 0.8

 1

 1.2

wordcount(S)

wordcount(L)

wordcount(H)

kmeans(S)

kmeans(L)

kmeans(H)

pagerank(S)

pagerank(L)

Avg-GC(R)

Avg-GC(W)

Total-GC(R)

Total-GC(W)

Re
la

tiv
e

to
 V

an
illa

 J
VM

(d) Application GC time

 0.6

 0.7

 0.8

 0.9
 1

 1.1

 1.2

wordcount(S)

wordcount(L)

wordcount(H)

kmeans(S)

kmeans(L)

kmeans(H)

pagerank(S)

pagerank(L)

Re
la

tiv
e

to
 V

an
illa

 J
VM

(a) Spark total time

Vanilla
Optimized

 0
 1
 2
 3
 4
 5
 6
 7

median

mean
95%

99%

La
te

nc
y

(m
s)

Latency

(b) Cassandra write latency

 0
 1
 2
 3
 4
 5
 6
 7

median

mean
95%

99%

La
te

nc
y

(m
s)

Latency

(c) Cassandra read latency

 0

 0.2

 0.4

 0.6
 0.8

 1

 1.2

wordcount(S)

wordcount(L)

wordcount(H)

kmeans(S)

kmeans(L)

kmeans(H)

pagerank(S)

pagerank(L)

Avg-GC(R)

Avg-GC(W)

Total-GC(R)

Total-GC(W)

Re
la

tiv
e

to
 V

an
illa

 J
VM

(d) Application GC time

Figure 13: Application performance. (’S’, ’L’ and ’H’ denote the small, large and huge data size, respectively, in HiBench.)

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500

30 320 610 900

E
xe

cu
tio

n
tim

e
(m

s)

Heap size (MB)

(a) Total time (lusearch)

Vanilla
Optimized

 0
 200
 400
 600
 800

 1000
 1200
 1400

30 320 610 900

E
xe

cu
tio

n
tim

e
(m

s)

Heap size (MB)

(b) GC time (lusearch)

Vanilla
Optimized

 800

 1000

 1200

 1400

 1600

 1800

 2000

8 16 32

E
xe

cu
tio

n
tim

e
(s

)
Heap size (GB)

(c) Total time (kmeans)

Vanilla
Optimized

 400

 500

 600

 700

 800

 900

 1000

8 16 32

E
xe

cu
tio

n
tim

e
(s

)

Heap size (GB)

(d) GC time (kmeans)

Vanilla
Optimized

Figure 14: The overall execution time and GC time of lusearch and kmeans with various heap sizes.

In what follows, we show more detailed statistics on GC time of

these applications.

Application GC time. Figure 13 (d) shows the normalized GC

time in Spark and Cassandra database. As discussed earlier, the

saved GC time in the optimized JVM contributed most to overall

performance improvement of big data applications. Compared to

the small data size, the optimizations achieve more improvement

of GC on the large data size. For database operations, both the total

and average GC time in Cassandra are reduced in the optimized

JVM. The optimized GC time was only about half of that in the

vanilla GC. The reduction on the STW pause helped rein tail latency.

5.6 Results on Di�erent Heap Sizes
For Java applications, it is important to set an appropriate heap size

to prevent too frequent garbage collection while minimizing mem-

ory usage. This section studies the performance of the optimized

JVM with di�erent heap sizes. The smaller the heap size, more fre-

quently would GC be performed but each GC takes less time as the

space to scan is smaller. On the other hand, a larger heap requires

GC to scan more space and each GC takes longer. Figure 14 shows

the total execution time and GC time of lusearch and kmeans with
di�erent heap sizes. lusearch started with a minimum 30MB heap

and increased the heap size at a step of 30MB until reaching 900MB.

Both JVMs had improving performance as the heap size of lusearch
increased. The GC time also continued to drop with larger heaps.

At the minimum heap size, the performance gain due to our opti-

mizations is narrower than that with larger heap sizes. The reason

is that within such a small heap, the overhead of managing multiple

GC threads may outweigh the bene�t of concurrency. Improved

load balance in the optimized JVM can hurt performance due to loss

of locality. Nevertheless, the optimized JVM still outperformed the

vanilla JVM by a large margin. The vanilla JVM can achieve compa-

rable performance with the optimized JVM only with a much large

memory footprint. Figure 14 (c) and (d) show a slightly di�erent

trend in kmeans. Instead of su�ering poor GC performance with

the minimum heap size in lusearch, the optimized JVM attained the

most performance gain over vanilla JVM with 8GB minimum heap

and had diminishing gain as heap size increased. As the proportion

of the GC time in the total execution time decreases with larger

heap size, performance improvement which derives from the opti-

mization on GC time reduction diminishes as the GC time becomes

less signi�cant to the total time.

5.7 Results with Multiple Applications
We further evaluated our optimizations in a multi-application envi-

ronment. First, we ran ten busy loops on ten cores to emulate some

background workloads contending for the CPU. When lusearch is

run along with the interfering workload, the OS load balancer tends

to stack the GC threads onto a few cores. Static binding may also

place GC threads with the interfering loop on the same core. As

Figure 15 (a) and (b) depict, dynamic GC thread balancing was able

to reduce the total execution time and GC time of lusearch by 49.6%

and 77.2% compared to the vanilla JVM. In addition, we evaluated

the performance of multiple co-running JVMs. We executed two

instances of lusearch or two instances of sun�ow at the same time

and the thread settings as well as the heap size were the same as

above. Figure 15 (a) and (b) illustrate the improvement of total exe-

cution time and GC time of two lusearch or sun�ow. When two JVM

applications execute simultaneously, both the total and GC time

increase compared to executing them alone in Figure 10. However,

our optimizations still bene�t both the overall and GC performance.

This is due to the GC load balancing and smart stealing that help the

applications perform more e�ciently under constrained resources.

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500
 4000
 4500

lusearch
w/ loop

2*lusearch

2*sunflow

T
im

e
(m

s)

(a) Total time

Vanilla
Optimized

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

lusearch
w/ loop

2*lusearch

2*sunflow

T
im

e
(m

s)

(b) GC time

Figure 15: Performance of the total and GC time in a mixed
application environment.

5.8 Discussion
Simultaneous multithreading. While existing studies have re-

ported both constructive and destructive e�ects of SMT on appli-

cation performance [15, 19, 26, 36], we found that enabling SMT

can mitigate the thread stacking issue. For a fair comparison and to

avoid over-threading in GC, we �xed the number of GC threads to

15 to match the number of GC threads automatically determined

by HotSpot when SMT was disabled. Figure 16 shows that enabling

SMT improved the overall performance. In CFS, the default interval

between periodic load balancing is 64ms with SMT enabled and

128ms with SMT disabled. Thread migration between sibling hyper-

threads is considered cheaper than that across physical cores and

is thus performed more frequently. In addition, with SMT enabled,

cores are less likely to enter a low-power state as activities on either

of its two hyperthreads will prevent the core from idling. This will

also increase the frequency of idle_balance in CFS. Nevertheless,

SMT does not eliminate thread stacking and our approach further

improves performance via thread a�nity and adaptive stealing.

Beyond garbage collection. There exists an inherent tradeo� be-

tween optimizations on synchronization and OS scheduling. On

the one hand, synchronization optimizations limit the number of

concurrent lock contenders to reduce either futile park-unpark ac-

tivity or CAS contention. On the other hand, OS load balancing is

e�ective only if threads that are to be balanced are visible to the

OS scheduler. Blocked threads are not eligible for load balancing

as they do not contribute to the load. Besides parallel GC, we also

observed a similar thread stacking issue in the futex-wake bench-

mark from perf benchmarks. The common issue is that programs

with �ne-grained blocking synchronization su�er execution serial-

ization because the OS load balancing is ine�ective. To address this

issue, the OS could choose to balance blocked threads or rely on

applications to provide hints on how to distribute threads on cores.

6 RELATEDWORK
6.1 Optimizing Garbage Collection
Many studies [3, 6, 12, 23, 35, 43, 44, 49] have demonstrated that it is

e�ective to improve Java application performance by reducing the

GC overhead. For instance, Yu et al. [49] discovered unnecessary

memory accesses and calculations during the compaction phase

of a full GC and proposed an incremental query model for refer-

ence calculation to accelerate the GC. To address de�ciencies in the

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6

h2 jython
luserach

sunflow
xalan

R
el

at
iv

e
to

 th
e

de
fa

ul
t J

V
M

Vanilla
Optimized

Vanilla w/ SMT
Optimized w/ SMT

Figure 16: Performance in the vanilla and optimized JVM
with or without SMT enabled.

existing JVMs, many researchers [10, 18, 23, 39, 43] proposed spe-

cialized garbage collectors or re-designed the JVM runtime. Some

other works [4, 31] proposed new interfaces to facilitate the inter-

action between applications and garbage collectors. Such designs

require changes to the application source code. In this work, we

identi�ed a previous unknown performance issue due to the lack

of coordination between parallel GC and the underlying OS. We

proposed two optimizations in HotSpot, which are transparent to

user programs.

Memory locality and access balance on NUMA multicore ma-

chines attracted much attention in recent years. Gidra et al. [8]

studied the scalability of throughput-oriented GCs and proposed

to map pages and balance GC threads across NUMA nodes. Nu-

maGiC [9] focused on improving memory access locality without

degrading the GC parallelism. It avoided costly remote memory

accesses and restricts GC threads to collect its own node’s memory.

While these works employed node a�nity to aid NUMA-aware

memory management, our work uses thread a�nity to avoid harm-

ful interactions between the JVM and the OS scheduler. Sartor et

al. [38] found that most benchmarks did not bene�t from thread

pinning in the Jikes Research Virtual Machine (RVM) [37]. This

paper discovered a performance issue due to unfair locking in the

HotSpot JVM and Linux CFS.

Work stealing dynamically balances tasks among threads to im-

prove GC e�ciency [8, 9, 12, 34, 44]. Gidra et al. [8, 9] proposed

to restrict work-stealing to GC threads that run on the same node.

Wessam [12] introduced an optimized work-stealing algorithm that

uses a single thread to accelerate the termination phase. Wu et

al. [44] proposed task-pushing instead of work-stealing to improve

stealing e�ciency. Qian et al. [34] replaced the steal_best_of_2
design with a heuristic-based stealing algorithm. A GC thread im-

mediate aborts stealing if failed and only steals from the same

victim if stealing was successful. Although this algorithm reduced

the number of failed steal attempts, it undermined concurrency

during work stealing. In contrast, we proposed to optimize the

existing best_of_2 random stealing algorithm and accelerate the

termination phase by adaptively altering the termination criteria

based on the number of active GC threads.

6.2 Accelerating Java Applications
Existing studies [35, 45, 47] improved Java performance by adopt-

ing an e�cient scheduler. For instance, Qian et al. [35] found that

the FIFO scheduler in Linux achieved higher GC e�ciency and mu-

tator performance due to less heap competition and fewer context

switches. A recent work [21] found several bugs in CFS that cores

are left idle when there are runnable threads, and proposed �xes.

The GC ine�ciency identi�ed in this paper is caused by the lack of

coordination between the JVM and Linux CFS, and thus the �xes

had no e�ect on the thread stacking issue.

As big data applications are becoming increasingly popular,

many researchers start to study optimizations of data-intensive

workloads on distributed systems through improved memory man-

agement [10, 22] or JVM runtime [18, 23, 25, 29, 30]. Another trend

in optimizing Java performance is to coordinate with hardware

architectures. Studies [3, 8, 9, 38] explored NUMA-aware designs to

improve GC locality and application performance. Maas et al. [24]

proposed a hardware-assisted GC which had high throughput and

good memory utilization to overcome the STW pause. Hussein et

al. [16] proposed a GC-aware governor balance on-chip energy

consumption and the performance. These studies are orthogonal to

our work.

7 CONCLUSION
In this paper, we identi�ed vulnerabilities in the HotSpot JVM and

Parallel Scavenge that can in�ict loss of concurrency in parallel GC.

We performed an in-depth analysis of the issue and revealed that it

resulted from complex interplays among dynamic GC task assign-

ment, unfair mutex locking, imperfect OS load balancing and less

e�cient stealing during the GC. We proposed an e�ective approach

which coordinated the JVM with the Operating System to address

GC load imbalance and designed a more e�cient work stealing

algorithm. Experiment results showed consistent performance im-

provement compared to the vanilla HotSpot JVM in various types

of applications.

ACKNOWLEDGMENTS
We are grateful to the anonymous reviewers for their comments

on this paper and our shepherd Tim Harris for his suggestions. We

also thank Lokesh Gidra for sharing the code of his work. This

work was supported in part by U.S. NSF grants CNS-1649502 and

IIS-1633753.

REFERENCES
[1] AndrewWAppel. 1989. Simple generational garbage collection and fast allocation.

In Software: Practice and Experience.
[2] Cassandra. 2008. Cassandra. http://cassandra.apache.org/.
[3] Kuo-Yi Chen, J Morris Chang, and Ting-Wei Hou. 2011. Multithreading in

Java: Performance and scalability on multicore systems. In IEEE Transactions on
Computers.

[4] Nachshon Cohen and Erez Petrank. 2015. Data structure aware garbage collec-

tor. In Proceedings of the ACM SIGPLAN International Symposium on Memory
Management (ISMM).

[5] DaCapo. 2009. DaCapo Benchmarks. http://dacapobench.org/.
[6] Hua Fan, Aditya Ramaraju, Marlon McKenzie, Wojciech Golab, and Bernard

Wong. 2015. Understanding the causes of consistency anomalies in Apache

Cassandra. In Proceedings of the VLDB Endowment.
[7] Lokesh Gidra, Gaël Thomas, Julien Sopena, and Marc Shapiro. 2011. Assessing

the scalability of garbage collectors on many cores. In Proceedings of the 6th
Workshop on Programming Languages and Operating Systems(PLOS).

[8] Lokesh Gidra, Gaël Thomas, Julien Sopena, andMarc Shapiro. 2013. A study of the

scalability of stop-the-world garbage collectors on multicores. In Proceedings of
the Twenty-First International Conference onArchitectural Support for Programming
Languages and Operating Systems (ASPLOS).

[9] Lokesh Gidra, Gaël Thomas, Julien Sopena, Marc Shapiro, and Nhan Nguyen.

2015. NumaGiC: A garbage collector for big data on big NUMA machines. In

Proceedings of the Twenty-First International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS).

[10] Ionel Gog, Jana Giceva, Malte Schwarzkopf, Kapil Vaswani, Dimitrios Vytiniotis,

Ganesan Ramalingam, Manuel Costa, Derek GMurray, Steven Hand, and Michael

Isard. 2015. Broom: Sweeping out garbage collection from big data systems. In

15th Workshop on Hot Topics in Operating Systems (HotOS).
[11] Hadoop. 2011. Hadoop. http://hadoop.apache.org/.
[12] WessamHassanein. 2016. Understanding and improving JVMGCwork stealing at

the data center scale. In Proceedings of the ACM SIGPLAN International Symposium
on Memory Management (ISMM).

[13] Matthew Hertz and Emery D Berger. 2005. Quantifying the performance of

garbage collection vs. explicit memory management. In Proceedings of the 20th
ACM SIGPLAN conference on Object-oriented programming systems languages and
applications (OOPSLA).

[14] Hibench. 2016. Hibench. https://github.com/intel-hadoop/HiBench.

[15] Wei Huang, Jiang Lin, Zhao Zhang, and J Morris Chang. 2005. Performance

characterization of Java applications on SMT processors. In Proceedings of the
IEEE International Symposium on Performance Analysis of Systems and Software
(ISPASS).

[16] Ahmed Hussein, Antony L Hosking, Mathias Payer, and Christopher A Vick.

2015. Don’t race the memory bus: taming the GC leadfoot. In Proceedings of the
International Symposium on Memory Management (ISMM).

[17] Kafka. 2011. Kafka. https://kafka.apache.org/.
[18] David Lion, Adrian Chiu, Hailong Sun, Xin Zhuang, Nikola Grcevski, and Ding

Yuan. 2016. Don’t Get Caught in the Cold, Warm-up Your JVM: Understand and

Eliminate JVM Warm-up Overhead in Data-Parallel Systems. In 12th USENIX
Symposium on Operating Systems Design and Implementation (OSDI).

[19] Jack L Lo, Luiz André Barroso, Susan J Eggers, Kourosh Gharachorloo, Henry M

Levy, and Sujay S Parekh. 1998. An analysis of database workload performance

on simultaneous multithreaded processors. In Proceedings of the 25th Annual
International Symposium on Computer Architecture (ISCA).

[20] Jean-Pierre Lozi, Florian David, Gaël Thomas, Julia Lawall, and Gilles Muller.

2012. Remote Core Locking: Migrating Critical-section Execution to Improve the

Performance of Multithreaded Applications. In Proceedings of the 2012 USENIX
Conference on Annual Technical Conference (ATC).

[21] Jean-Pierre Lozi, Baptiste Lepers, Justin Funston, Fabien Gaud, Vivien Quéma, and

Alexandra Fedorova. 2016. The Linux Scheduler: A Decade of Wasted Cores. In

Proceedings of the Eleventh European Conference on Computer Systems (EuroSys).
[22] Lu Lu, Xuanhua Shi, Yongluan Zhou, Xiong Zhang, Hai Jin, Cheng Pei, Ligang He,

and Yuanzhen Geng. 2016. Lifetime-Based Memory Management for Distributed

Data Processing Systems. In Proceedings of the VLDB Endowment.
[23] Martin Maas, Krste Asanović, Tim Harris, and John Kubiatowicz. 2016. Taurus:

A Holistic Language Runtime System for Coordinating Distributed Managed-

Language Applications. In Proceedings of the Twenty-First International Conference
on Architectural Support for Programming Languages and Operating Systems
(ASPLOS).

[24] Martin Maas, Krste Asanovic, and John Kubiatowicz. 2016. Grail Quest: A New

Proposal for Hardware-assisted Garbage Collection. In 6th Workshop on Architec-
tures and Systems for Big Data (ASBD).

[25] Martin Maas, Tim Harris, Krste Asanović, and John Kubiatowicz. 2015. Trash

day: Coordinating garbage collection in distributed systems. In 15th Workshop
on Hot Topics in Operating Systems (HotOS).

[26] Harry M Mathis, Alex E Mericas, John D McCalpin, Richard J Eickemeyer, and

Steven R Kunkel. 2005. Characterization of simultaneous multithreading (SMT)

e�ciency in POWER5. In IBM Journal of Research and Development.
[27] Michael Mitzenmacher. 2001. The power of two choices in randomized load

balancing. In IEEE Transactions on Parallel and Distributed Systems (TPDS).
[28] José E Moreira, Samuel P Midki�, Manish Gupta, Peng Wu, George Almasi, and

Pedro Artigas. 2002. NINJA: Java for high performance numerical computing. In

Scienti�c Programming.
[29] Khanh Nguyen, Lu Fang, Guoqing Harry Xu, Brian Demsky, Shan Lu, Sanazsadat

Alamian, and Onur Mutlu. 2016. Yak: A high-performance big-data-friendly

garbage collector. In Proceedings of the 12th USENIX Conference on Operating
Systems Design and Implementation (OSDI).

[30] Khanh Nguyen, Kai Wang, Yingyi Bu, Lu Fang, Jianfei Hu, and Guoqing Xu. 2015.

Facade: A compiler and runtime for (almost) object-bounded big data applications.

In Proceedings of the Twenty-First International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS).

[31] Diogenes Nunez, Samuel Z Guyer, and Emery D Berger. 2016. Prioritized garbage

collection: explicit GC support for software caches. In Proceedings of the ACM
SIGPLAN International Conference on Object-Oriented Programming, Systems,
Languages, and Applications (OOPSLA).

[32] Jiannan Ouyang and John R. Lange. 2013. Preemptable Ticket Spinlocks: Im-

proving Consolidated Performance in the Cloud. In Proceedings of the 9th ACM
SIGPLAN/SIGOPS International Conference on Virtual Execution Environments
(VEE).

[33] PATCH. 2012. Implement -XX:+BindGCTaskThreadsToCPUs for Linux. http:

//mail.openjdk.java.net/pipermail/hotspot-dev/2012-July/006222.html.

[34] Junjie Qian, Witawas Srisa-an, Du Li, Hong Jiang, Sharad Seth, and Yaodong Yang.

2015. SmartStealing: Analysis and Optimization of Work Stealing in Parallel

http://cassandra.apache.org/
http://dacapobench.org/
http://hadoop.apache.org/
https://github.com/intel-hadoop/HiBench
https://kafka.apache.org/
http://mail.openjdk.java.net/pipermail/hotspot-dev/2012-July/006222.html
http://mail.openjdk.java.net/pipermail/hotspot-dev/2012-July/006222.html

Garbage Collection for Java VM. In Proceedings of the Principles and Practices of
Programming on The Java Platform (PPPJ).

[35] Junjie Qian, Witawas Srisa-an, Sharad Seth, Hong Jiang, Du Li, and Pan Yi. 2016.

Exploiting FIFO Scheduler to Improve Parallel Garbage Collection Performance.

In Proceedings of the12th ACM SIGPLAN/SIGOPS International Conference on
Virtual Execution Environments (VEE).

[36] Yaoping Ruan, Vivek S Pai, Erich Nahum, and JohnMTracey. 2005. Evaluating the

impact of simultaneous multithreading on network servers using real hardware.

In Proceedings of the ACM SIGMETRICS.
[37] Jikes RVM. 2012. Jikes Research Virtual Machine. http://www.jikesrvm.org/.

[38] Jennfer B Sartor and Lieven Eeckhout. 2012. Exploring multi-threaded Java

application performance on multicore hardware. In Proceedings of the ACM
SIGPLAN International Conference on Object-Oriented Programming, Systems,
Languages, and Applications (OOPSLA).

[39] Rifat Shahriyar, Stephen M Blackburn, and Kathryn S McKinley. 2014. Fast

conservative garbage collection. In Proceedings of the ACM SIGPLAN International
Conference on Object-Oriented Programming, Systems, Languages, and Applications
(OOPSLA).

[40] Spark. 2014. Spark. http://spark.apache.org/.
[41] SPECjvm. 2008. SPECjvm2008 Benchmarks. https://www.spec.org/jvm2008/.

[42] Guillermo L Taboada, Sabela Ramos, Roberto R Expósito, Juan Touriño, and

Ramón Doallo. 2013. Java in the High Performance Computing arena: Research,

practice and experience. In Science of Computer Programming.
[43] Gil Tene, Balaji Iyengar, andMichaelWolf. 2011. C4: The continuously concurrent

compacting collector. In Proceedings of the international symposium on Memory
management (ISMM).

[44] Ming Wu and Xiao-Feng Li. 2007. Task-pushing: a scalable parallel GC marking

algorithm without synchronization operations. In Proceedings of the International
Parallel and Distributed Processing Symposium (IPDPS).

[45] Feng Xian, Witawas Srisa-an, and Hong Jiang. 2007. Allocation-phase aware

thread scheduling policies to improve garbage collection performance. In Pro-
ceedings of the 6th international symposium on Memory management (ISMM).

[46] Feng Xian, Witawas Srisa-an, and Hong Jiang. 2007. Microphase: an approach to

proactively invoking garbage collection for improved performance. In Proceedings
of the ACM SIGPLAN International Conference on Object-Oriented Programming,
Systems, Languages and Applications (OOPSLA).

[47] Feng Xian, Witawas Srisa-an, and Hong Jiang. 2008. Contention-aware scheduler:

unlocking execution parallelism in multithreaded Java programs. In Proceedings
of the 23rd ACM SIGPLAN conference on Object-oriented programming systems
languages and applications (OOPSLA).

[48] Yang Yu, Tianyang Lei, Haibo Chen, and Binyu Zang. 2015. OpenJDK Meets

Xeon Phi: A Comprehensive Study of Java HPC on Intel Many-Core Architecture.

In the 44th International Conference on Parallel Processing Workshops (ICPPW).
[49] Yang Yu, Tianyang Lei, Weihua Zhang, Haibo Chen, and Binyu Zang. 2016. Perfor-

mance Analysis and Optimization of Full Garbage Collection in Memory-hungry

Environments. In Proceedings of the12th ACM SIGPLAN/SIGOPS International
Conference on Virtual Execution Environments (VEE).

http://www.jikesrvm.org/
http://spark.apache.org/
https://www.spec.org/jvm2008/

	Abstract
	1 Introduction
	2 Background
	2.1 Parallel Scavenge
	2.2 Dynamic GC Task Assignment
	2.3 Work Stealing among GC Threads
	2.4 The Implementation of Monitor in HotSpot
	2.5 Linux Load Balancing

	3 Analysis of Inefficient Parallel GC
	3.1 Parallel GC Performance and Scalability
	3.2 Load Imbalance
	3.3 Ineffective Work Stealing

	4 Optimizations
	4.1 Addressing Load Imbalance
	4.2 Addressing Inefficient Working Stealing

	5 Evaluation
	5.1 Experimental Settings
	5.2 Improvement in Overall Performance
	5.3 Improvement on Garbage Collection
	5.4 Scalability
	5.5 Application Results
	5.6 Results on Different Heap Sizes
	5.7 Results with Multiple Applications
	5.8 Discussion

	6 Related Work
	6.1 Optimizing Garbage Collection
	6.2 Accelerating Java Applications

	7 Conclusion
	Acknowledgments
	References

