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Exploiting Parallelism

* The rise of multicore architectures and other forms of

hardware parallelism

- Multi-core processors, accelerators, multi-queue devices, co-

processors, etc.

* Exploiting parallelism in multicore systems
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- Application runtimes > meet app-specific needs

- Operating systems —> balance load, preserve locality, save energy

- Synchronization primitives - minimize overhead

* Interplays among runtime, OS, and synchronization not
well understood

- Runtime assumes guaranteed thread-level parallelism

- OS schedules threads based on their CPU demands

Semantic gap



Higher is better

Intricate Program-QOS Interaction

Hardware & OS: 4-socket 12-core Intel Xeon E5-4640, 512GB memory, Linux 4.14

App: Linux perf benchmark (configured with 48 threads) CPU pinning overwrites
Linux LB and
Futex benchmarks Perfect LI guarantees 1-to-1

1.6  Ineffective Linux load balancing to better thread-to-core mapping

14 incurs more than 80% degradation
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Reasons of Imperfect Balancing

* Only runnable/ready threads are eligible for load balancing

* OS may choose not to migrate threads
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| L2 Cache | o o e RN

Data locality Cache hotness Energy saving

Harmful interactions between parallel programs and the OS scheduler



Parallel GC in HotSpot JVM
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Assigning Tasks to GC Threads
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Native mutex Lock in HotSpot

Waiter queue Acquirer queue Heir
CXq EEEE—— EntryList —>
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GC ends
Mutex_lock Next GC starts, Mutex_unlock:
notify all GC threads release lock byte,
assign heir,
______________ promote acquirers,
! wake heir
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CPU Stacking and Unfair Locking

Wakes up, competes for
lock, sleeps if failed

Other waiters cannot proceed

until OnDeck wins

GC threads sleeping
on the condition variable

cxq >

EntryList

—( OnDeck

If both OnDeck and previous

owner reside on the same CPU,
OnDeck (almost) never wins

void GCTaskThread::run()
{
for (;/* ever ;)X
GCTask™ task = manager()->get_task();
task->do_it();
}
}
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GC task number
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Loss of Concurrency

GC task distribution among GC threads
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GC thread ID

Loss of Concurrency

GC thread distribution
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Inefficient Work Stealing

The breakdown of GC time
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Why Work Stealing fails to Address the
Imbalance?

* HotSpot work stealing

- Randomly pick up two GC threads and steal from the one with a
longer queue
- A GC thread enters a distributed termination protocol after 2*N

failed steal attempts

Two random choices stealing not effective if there is
significant task imbalance among GC threads



Our Approaches

e GC thread affinity

- Dynamically bind GC threads to separate cores,
considering load

* Optimized work stealing

- Semi-random stealing 2*N,

- Only steal from live threads,2=Nattempts



GC task ID

Mitigating the GC Imbalance

GC task distribution among GC threads
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Lower is better

Improvement on Overall Performance

DaCapo execution time
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Normalized GC time
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Application Results

Spark execution time Lower is better
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Latency (ms)
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Application Results

Lower is better

Cassandra read latency Improved tail
latency

median mean 95% 99%
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More Results in the Paper

* Scalability
* Different heap sizes
* Multiple Java programs

* Comparison with NUMA-aware GC thread
placement and work stealing [Gidra-ASPLOS’13]



Insights & Takeaways

* Thread stacking can be mitigated through more
frequent OS load balancing, but not eliminated

- Enable SMT, disable power saving, ignore NUMA

* Possibly a bigger problem than inefficient GC

- Inherent tradeoff between sync and OS scheduling

e Sync -- limit concurrent lock contenders
e OS -- most effective if all threads are active

- Up to 68% perf. difference in PARSEC benchmarks

* More general solution in OS scheduling
e Rethinking sync optimization: OS friendly vs. unfriendly
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