Characterizing and Optimizing Hotspot Parallel
Garbage Collection on Multicore Systems

Kun Suo”, Jia Rao”, Hong Jiang™ and Witawas Srisa-an*
A The University of Texas at Arlington

* The University of Nebraska at Lincoln

UNIVERSITY OF

N
b g TEXAS

ARLINGTON

NeBIIVERSITY I%Fa

Lincoln’

72

Exploiting Parallelism

* The rise of multicore architectures and other forms of

hardware parallelism

- Multi-core processors, accelerators, multi-queue devices, co-

processors, etc.

* Exploiting parallelism in multicore systems

BEEN B | Process
BEREN | Process 2
il I' Process 3

- Application runtimes > meet app-specific needs

- Operating systems —> balance load, preserve locality, save energy

- Synchronization primitives - minimize overhead

* Interplays among runtime, OS, and synchronization not
well understood

- Runtime assumes guaranteed thread-level parallelism

- OS schedules threads based on their CPU demands

Semantic gap

Higher is better

Intricate Program-QOS Interaction

Hardware & OS: 4-socket 12-core Intel Xeon E5-4640, 512GB memory, Linux 4.14

App: Linux perf benchmark (configured with 48 threads) CPU pinning overwrites
Linux LB and
Futex benchmarks Perfect LI guarantees 1-to-1

1.6 Ineffective Linux load balancing to better thread-to-core mapping

14 incurs more than 80% degradation
B CPU pin
M Linux LB

1.2
wake wake-parallel requeue hash lock-pi

=

0.8
0.6
0.4
0.2

o

Reasons of Imperfect Balancing

* Only runnable/ready threads are eligible for load balancing

* OS may choose not to migrate threads

| L1 Cache | | L1 Cachel | L1 Cache | | L1 Cache |

| L2 Cache | o o e RN

Data locality Cache hotness Energy saving

Harmful interactions between parallel programs and the OS scheduler

Parallel GC in HotSpot JVM

GC _, @ ® ©) GC
begins Init Parallel Final ends
Phase Phase Phase
.‘.....‘“lllllll.‘.‘lllll‘

al an . |
: Root == Steal == Final
= Task 2z Task .2 Task i
: - —s

i st
i !
T —
n o =t >
-Q....-.’.IIIIIII"‘.IIII‘.
Parallel GC

<~ (default in JDK 1.8)

— > > —>
“—— Application Application
Java (Mutator) Stop-the-world (STW) (Mutator)

execution pause execution
time time

Assigning Tasks to GC Threads

GCTask GCTask GCTask
GC task _newer _older +—»| newer _older +—»| _newer _older
GCTaskQueue
dequeue l T engqueue
GCTaskManager Monitor
get_task .7 A .
s \J \
GC thread GenericTaskQueue bl GenericTaskQueue galmlka GenericTaskQueue
steal steal

2 GCTaskThread 2 2

L]

N

Core

Native mutex Lock in HotSpot

Waiter queue Acquirer queue Heir
CXq EEEE—— EntryList —>
~
7N
2 /8
/& Q’E’\ Transfer waiters from Compete for
‘s WaitSet to cxq lock byte
GCTaskQueue GC starts 3 Competitive
is empt
e pty . WaitSet % handoff
GC ends
Mutex_lock Next GC starts, Mutex_unlock:
notify all GC threads release lock byte,
assign heir,
______________ promote acquirers,
! wake heir

1: Mutex is uncontended, |
I fast path I

CPU Stacking and Unfair Locking

Wakes up, competes for
lock, sleeps if failed

Other waiters cannot proceed

until OnDeck wins

GC threads sleeping
on the condition variable

cxq >

EntryList

—(OnDeck

If both OnDeck and previous

owner reside on the same CPU,
OnDeck (almost) never wins

void GCTaskThread::run()
{
for (;/* ever ;)X
GCTask™ task = manager()->get_task();
task->do_it();
}
}

4

o

A

\

4

Lock
owner

Fast path

GC task number

45
40
35
30
25
20
15
10

Loss of Concurrency

GC task distribution among GC threads

O 1 2 3

4 sl 67 8 9 1011 12 13 14

GCTaskThread ID

M OldToYoungRootsTask
M ThreadRootsTask

ScavengeRootsTask

B StealTask

GC thread ID

Loss of Concurrency

GC thread distribution

14 ks
12 S
10 4
8 fl
6 S
4 o
2 3
0 =

prd

O 2 4 6 8 10 12 14 16 18
Core ID

Inefficient Work Stealing

The breakdown of GC time

100%
90%
80% M Final Synchronisation
70%
B All Other Tasks
60%
"Il I I D D B
50% I ¥ Steal Task(termination) l
40% |
30% | = steal Task(steal) |
N I I D D N
[0)
20% M |nitialisation
10%
0%
\Q/

*{9 ¢ &,b«(' oé\o "\:b @é\ Q& AQ’C\ %\0&\ .6’2".0
W S & SO O
3 & & &

Why Work Stealing fails to Address the
Imbalance?

* HotSpot work stealing

- Randomly pick up two GC threads and steal from the one with a
longer queue
- A GC thread enters a distributed termination protocol after 2*N

failed steal attempts

Two random choices stealing not effective if there is
significant task imbalance among GC threads

Our Approaches

e GC thread affinity

- Dynamically bind GC threads to separate cores,
considering load

* Optimized work stealing

- Semi-random stealing 2*N,

- Only steal from live threads,2=Nattempts

GC task ID

Mitigating the GC Imbalance

GC task distribution among GC threads

GC thread distribution 9
14 8 8
12 S .7
—~ (]
v o]
10 § e 0
= -
6 oA 2 4
5 3
: 5 O,
2 Qo
S 1 I
0 S
z 0
0 2 4 6 81012141618 0 1 2 3 45 6 7 8 9 10 11 12 13 14
Core ID GCTaskThread ID
B OldToYoungRootsTask B ScavengeRootsTask

B ThreadRootsTask B StealTask

Lower is better

Improvement on Overall Performance

DaCapo execution time

1.2
=
= 1
5
o 0.8
9]
°
ég 0.6
)
0 0.4
=
©
2 0.2
o
0
jython luserach sunflow xalan
M Vanilla-JVM mw/ GC-affinity ™ w/ steal ™ Together
thread optimized combined
affinity stealing @
30.4% 17.5% 42.5%

Higher is better
Relative to the default JVM

1.4

1.2

[EEN

0.

(0]

0.

[e)]

0.

D

M Vanilla-JVM mw/ GC-affinity ™ w/ steal

SPECjvm2008 throughput

0

Together

Normalized GC time

1.2

0.8

0.6

0.4

0.2

Improvement on GC time

Lower is better

More than 80%

S &
NG N
+© @Q (QQ&
© &
&
@Q
©

B Vanilla-JVM B Optimized-JVM

Application Results

Spark execution time Lower is better
1.05
Up to 13%
1
0.95
0.9
0.8
(\’&\c’\ (\’&\\\ 0&®\ (\s\s\ (\s\\’\ (\s\“\\ (\\4~\(°\ (\\6\\’\
6(10\) 6(,0\) 600\) (Qe’b ((\e’b ((\3’6 %G(’a %e(é
\ﬁo(\ﬁo(\340< & AR & Q’b Q’b

M Vanilla-JVM ® Optimized-JVM

Latency (ms)

~

[e)]

(9]

N

w

N

=

o

Application Results

Lower is better

Cassandra read latency Improved tail
latency

median mean 95% 99%

H Vanilla-JVM H Optimized-JVM

More Results in the Paper

* Scalability
* Different heap sizes
* Multiple Java programs

* Comparison with NUMA-aware GC thread
placement and work stealing [Gidra-ASPLOS’13]

Insights & Takeaways

* Thread stacking can be mitigated through more
frequent OS load balancing, but not eliminated

- Enable SMT, disable power saving, ignore NUMA

* Possibly a bigger problem than inefficient GC

- Inherent tradeoff between sync and OS scheduling

e Sync -- limit concurrent lock contenders
e OS -- most effective if all threads are active

- Up to 68% perf. difference in PARSEC benchmarks

* More general solution in OS scheduling
e Rethinking sync optimization: OS friendly vs. unfriendly

@ Thank you !
A Questions?

