
Improving Virtual Machine Scheduling
in NUMA Multicore Systems

Jia Rao, Xiaobo Zhou
University of Colorado, Colorado Springs

Kun Wang, Cheng-Zhong Xu
Wayne State University

http://cs.uccs.edu/~jrao/

Monday, February 25, 13

http://cs.uccs.edu/~jrao/
http://cs.uccs.edu/~jrao/

Multicore Systems
Fundamental platform for datacenters and HPC
- power-efficiency & parallelism

Performance degradation and unpredictability
- contention on shared resources: last-level cache, memory controller ...

NUMA architecture further complicates scheduling
- low NUMA factor, remote access is not the only/main concern

Virtualization
- app or OS-level optimizations ineffective due to inaccurate virtual topology

Monday, February 25, 13

Multicore Systems
Fundamental platform for datacenters and HPC
- power-efficiency & parallelism

Performance degradation and unpredictability
- contention on shared resources: last-level cache, memory controller ...

NUMA architecture further complicates scheduling
- low NUMA factor, remote access is not the only/main concern

Virtualization
- app or OS-level optimizations ineffective due to inaccurate virtual topology

Objective:
Improve performance and reduce variability

Monday, February 25, 13

Multicore Systems
Fundamental platform for datacenters and HPC
- power-efficiency & parallelism

Performance degradation and unpredictability
- contention on shared resources: last-level cache, memory controller ...

NUMA architecture further complicates scheduling
- low NUMA factor, remote access is not the only/main concern

Virtualization
- app or OS-level optimizations ineffective due to inaccurate virtual topology

Objective:
Improve performance and reduce variability

Approach:
Add NUMA and contention awareness

to virtual machine scheduling

Monday, February 25, 13

Motivation

Enumerate different thread-to-core assignments
- 4 threads on two-socket Intel Westmere NUMA machine

Calculate the worst to best degradation

0
20
40
60
80

100
120

lu sp ft ua bt cg mg ep sphinx3 mcf soplex milc％
 D

eg
ra

da
tio

n
re

la
tiv

e
to

 o
pt

im
al

Parallel workloads Multiprogrammed workloads

Monday, February 25, 13

Motivation

Enumerate different thread-to-core assignments
- 4 threads on two-socket Intel Westmere NUMA machine

Calculate the worst to best degradation

0
20
40
60
80

100
120

lu sp ft ua bt cg mg ep sphinx3 mcf soplex milc％
 D

eg
ra

da
tio

n
re

la
tiv

e
to

 o
pt

im
al

Parallel workloads Multiprogrammed workloads

scheduling plays an important role
for NUMA-sensitive workloads

Monday, February 25, 13

Motivation

Enumerate different thread-to-core assignments
- 4 threads on two-socket Intel Westmere NUMA machine

Calculate the worst to best degradation

0
20
40
60
80

100
120

lu sp ft ua bt cg mg ep sphinx3 mcf soplex milc％
 D

eg
ra

da
tio

n
re

la
tiv

e
to

 o
pt

im
al

Parallel workloads Multiprogrammed workloads

scheduling plays an important role
for NUMA-sensitive workloads

some workloads are NUMA
insensitive

Monday, February 25, 13

The NUMA Architecture

Two-socket Intel Nehalem NUMA machine

Cross-socket interconnect

Memory node-0 Memory node-1

Processor-0 Processor-1

Monday, February 25, 13

The NUMA Architecture

Two-socket Intel Nehalem NUMA machine

Cross-socket interconnect

Memory node-0 Memory node-1

Processor-0 Processor-1

Shared resource contention

Inter-skt communication overhead

Distributing threads

Remote memory access

Clustering threads

Co-locate data and threads

Monday, February 25, 13

The NUMA Architecture

Two-socket Intel Nehalem NUMA machine

Cross-socket interconnect

Memory node-0 Memory node-1

Processor-0 Processor-1

Shared resource contention

Inter-skt communication overhead

Distributing threads

Remote memory access

Clustering threads

Co-locate data and threads

Performance depends on
the complex interplay

Monday, February 25, 13

The NUMA Architecture

Two-socket Intel Nehalem NUMA machine

Cross-socket interconnect

Memory node-0 Memory node-1

Processor-0 Processor-1

Shared resource contention

Inter-skt communication overhead

Distributing threads

Remote memory access

Clustering threads

Co-locate data and threads

Performance depends on
the complex interplay

Scheduling is hard due to
conflicting policies

Monday, February 25, 13

Micro-benchmark

64B
Private data Private data

Random-linked list

64B

Shared data

Thread-1 Thread-N

...
Working set size

Sharing size
__sync_add_and_fetch

Monday, February 25, 13

Micro-benchmark

64B
Private data Private data

Random-linked list

64B

Shared data

Thread-1 Thread-N

...
Working set size

Sharing size
__sync_add_and_fetch

Configurable parameters:
working set size

number of threads
sharing size

Monday, February 25, 13

Experiment Testbed
Intel Xeon E5620

Number of cores 4 cores (2 sockets)

Clock frequency 2.40 GHz

L1 Cache 32KB ICache, 32KB DCache

L2 Cache 256KB unified

L3 Cache 12MB unified, inclusive,
shared by 4 cores

IMC 32GB/s bandwidth, 2 memory
nodes, each with 8GB

QPI 5.86GT/s, 2 links

Monday, February 25, 13

4 thread, sharing disabled, co-located data
with thread

Single Factor on Performance

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6

4M 8M 16M 32M 64M 128M

Local Remote

N
or

m
al

iz
ed

 ru
nt

im
e

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6

4M 8M 16M 32M 64M 128M

Sharing LLC Separate LLC

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6

1 2 4 6 8 10 12

Within socket Across socket

Working set size (byte) Working set size (byte) Number of threads

(a) Data locality (b) LLC contention (a) Sharing overhead

1 thread, sharing disabled private data disabled, sharing 1
cacheline

Monday, February 25, 13

4 thread, sharing disabled, co-located data
with thread

Single Factor on Performance

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6

4M 8M 16M 32M 64M 128M

Local Remote

N
or

m
al

iz
ed

 ru
nt

im
e

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6

4M 8M 16M 32M 64M 128M

Sharing LLC Separate LLC

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6

1 2 4 6 8 10 12

Within socket Across socket

Working set size (byte) Working set size (byte) Number of threads

(a) Data locality (b) LLC contention (a) Sharing overhead

1. When WSS is smaller than LLC,
remote access does not hurt performance

2. When WSS is beyond LCC capacity,
the larger the WSS, the larger impact

remote penalty hits performance

1 thread, sharing disabled private data disabled, sharing 1
cacheline

Monday, February 25, 13

4 thread, sharing disabled, co-located data
with thread

Single Factor on Performance

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6

4M 8M 16M 32M 64M 128M

Local Remote

N
or

m
al

iz
ed

 ru
nt

im
e

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6

4M 8M 16M 32M 64M 128M

Sharing LLC Separate LLC

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6

1 2 4 6 8 10 12

Within socket Across socket

Working set size (byte) Working set size (byte) Number of threads

(a) Data locality (b) LLC contention (a) Sharing overhead

1. When WSS is smaller than LLC,
remote access does not hurt performance

2. When WSS is beyond LCC capacity,
the larger the WSS, the larger impact

remote penalty hits performance

1. Scheduling does not affect performance
when WSS fits in LLC

2. As WSS increases, LLC contention has
diminishing effect on performance

1 thread, sharing disabled private data disabled, sharing 1
cacheline

Monday, February 25, 13

4 thread, sharing disabled, co-located data
with thread

Single Factor on Performance

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6

4M 8M 16M 32M 64M 128M

Local Remote

N
or

m
al

iz
ed

 ru
nt

im
e

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6

4M 8M 16M 32M 64M 128M

Sharing LLC Separate LLC

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6

1 2 4 6 8 10 12

Within socket Across socket

Working set size (byte) Working set size (byte) Number of threads

(a) Data locality (b) LLC contention (a) Sharing overhead

1. When WSS is smaller than LLC,
remote access does not hurt performance

2. When WSS is beyond LCC capacity,
the larger the WSS, the larger impact

remote penalty hits performance

1. Scheduling does not affect performance
when WSS fits in LLC

2. As WSS increases, LLC contention has
diminishing effect on performance

1. Inter-socket sharing overhead
increases initially but decreases

as more threads are used

1 thread, sharing disabled private data disabled, sharing 1
cacheline

Monday, February 25, 13

4 thread, sharing disabled, co-located data
with thread

Single Factor on Performance

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6

4M 8M 16M 32M 64M 128M

Local Remote

N
or

m
al

iz
ed

 ru
nt

im
e

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6

4M 8M 16M 32M 64M 128M

Sharing LLC Separate LLC

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6

1 2 4 6 8 10 12

Within socket Across socket

Working set size (byte) Working set size (byte) Number of threads

(a) Data locality (b) LLC contention (a) Sharing overhead

1. When WSS is smaller than LLC,
remote access does not hurt performance

2. When WSS is beyond LCC capacity,
the larger the WSS, the larger impact

remote penalty hits performance

1. Scheduling does not affect performance
when WSS fits in LLC

2. As WSS increases, LLC contention has
diminishing effect on performance

1. Inter-socket sharing overhead
increases initially but decreases

as more threads are used

Memory footprint, thread-level
parallelism, and inter-thread

sharing pattern determine how
much each factor affects

performance

1 thread, sharing disabled private data disabled, sharing 1
cacheline

Monday, February 25, 13

Multiple Factors on Performance

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6

4M 8M 16M 32M 64M 128M

Intra-S Inter-S

N
or

m
al

iz
ed

 ru
nt

im
e

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6

4K 8K 16K 32K 64K 128K

Intra-S Inter-S

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6

4M 8M 16M 32M 64M 128M

Intra-S Inter-S

Working set size (byte)

(a) Data locality & LLC contention (b) LLC contention & sharing overhead
(c) Locality & LLC contention

& sharing overhead

Working set size (byte)Sharing size (byte)

Intra-S: clustering threads
on node-0

Inter-S: distributing threads

Monday, February 25, 13

Multiple Factors on Performance

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6

4M 8M 16M 32M 64M 128M

Intra-S Inter-S

N
or

m
al

iz
ed

 ru
nt

im
e

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6

4K 8K 16K 32K 64K 128K

Intra-S Inter-S

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6

4M 8M 16M 32M 64M 128M

Intra-S Inter-S

Working set size (byte)

(a) Data locality & LLC contention (b) LLC contention & sharing overhead
(c) Locality & LLC contention

& sharing overhead

Working set size (byte)Sharing size (byte)

1. Dominant factor determines
performance

2. Dominant factor switches as
program characteristic changes

Intra-S: clustering threads
on node-0

Inter-S: distributing threads

Monday, February 25, 13

Virtualization
Application and guest OS see virtual topology

Virtual topology physical topology
- flat topology

- inaccurate topology

• Static Resource Affinity Table (SRAT)

• inaccurate due to load balancing 0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6

Accurate topology Inaccurate topology
N

or
m

al
iz

ed
 ru

nt
im

e

set_mempolicy in libnuma

4 threads, 32MB WSS, 128KB sharing size

Monday, February 25, 13

Related Work
Optimization via scheduling
- Contention management: [TCS’10], [SIGMETRICS’11], [ISCA’11],

[ASPLOS’10]

- Thread clustering: [EuroSys’07]

- NUMA management: [ATC’11], [ASPLOS’13]

Program and system-level optimizations
- Program transformation: [PPoPP’10], [CGO’12]

- System support: libnuma, page replication and migration

Monday, February 25, 13

Related Work
Optimization via scheduling
- Contention management: [TCS’10], [SIGMETRICS’11], [ISCA’11],

[ASPLOS’10]

- Thread clustering: [EuroSys’07]

- NUMA management: [ATC’11], [ASPLOS’13]

Program and system-level optimizations
- Program transformation: [PPoPP’10], [CGO’12]

- System support: libnuma, page replication and migration

Our work:
1. requiring no offline profiling, online

2. addressing complex interplays

3. assuming no knowledge on virtual topology

Monday, February 25, 13

Uncore Penalty as a Performance Index

Shared resource contention

Inter-skt communication overhead
Remote memory access

Monday, February 25, 13

Uncore Penalty as a Performance Index

Core memory subsystem

Shared resource contention

Inter-skt communication overhead
Remote memory access

Monday, February 25, 13

Uncore Penalty as a Performance Index

Core memory subsystem

Uncore memory subsystem

Shared resource contention

Inter-skt communication overhead
Remote memory access

Monday, February 25, 13

Uncore Penalty as a Performance Index

Core memory subsystem

Uncore memory subsystem

Shared resource contention

Inter-skt communication overhead
Remote memory access Uncore stall cycles

Monday, February 25, 13

Uncore Penalty as a Performance Index

Core memory subsystem

Uncore memory subsystem

Shared resource contention

Inter-skt communication overhead
Remote memory access

uncore penalty

Uncore stall cycles

constant

Monday, February 25, 13

Uncore Penalty as a Performance Index

Core memory subsystem

Uncore memory subsystem

Shared resource contention

Inter-skt communication overhead
Remote memory access

uncore penalty

Little’s law

uncore latency

outstanding parallel uncore rqst
uncore penalty

cycles at least one “critical”
uncore rqst

Uncore stall cycles

“critical” uncore rqst = demand
data/instruction load + RFO rqst

constant

Monday, February 25, 13

Effectiveness of Uncore Penalty Metric

-1

-0.5

0

0.5

1

4M 8M 16M 32M 64M 128M

Runtime LLC miss rate Uncore penalty

R
el

at
iv

e
to

 In
tra

-S

Working set size (byte)

(a) Data locality & LLC contention (b) LLC contention & sharing overhead (c) Locality & LLC contention
& sharing overhead

Working set size (byte)Sharing size (byte)

-1

-0.5

0

0.5

1

4M 8M 16M 32M 64M 128M
-1

-0.5

0

0.5

1

4K 8K 16K 32K 64K 128K

Relative diff

Monday, February 25, 13

Effectiveness of Uncore Penalty Metric

-1

-0.5

0

0.5

1

4M 8M 16M 32M 64M 128M

Runtime LLC miss rate Uncore penalty

R
el

at
iv

e
to

 In
tra

-S

Working set size (byte)

(a) Data locality & LLC contention (b) LLC contention & sharing overhead (c) Locality & LLC contention
& sharing overhead

Working set size (byte)Sharing size (byte)

-1

-0.5

0

0.5

1

4M 8M 16M 32M 64M 128M
-1

-0.5

0

0.5

1

4K 8K 16K 32K 64K 128K

• LLC miss rate only agrees with
runtime in a subset of runs

Relative diff

Monday, February 25, 13

Effectiveness of Uncore Penalty Metric

-1

-0.5

0

0.5

1

4M 8M 16M 32M 64M 128M

Runtime LLC miss rate Uncore penalty

R
el

at
iv

e
to

 In
tra

-S

Working set size (byte)

(a) Data locality & LLC contention (b) LLC contention & sharing overhead (c) Locality & LLC contention
& sharing overhead

Working set size (byte)Sharing size (byte)

-1

-0.5

0

0.5

1

4M 8M 16M 32M 64M 128M
-1

-0.5

0

0.5

1

4K 8K 16K 32K 64K 128K

• LLC miss rate only agrees with
runtime in a subset of runs

• Strong linear relationship between
uncore penalty and runtime

Uncore penalty LLC miss rate

r = 0.91 r = 0.61

Linear correlation coefficient r (against runtime)Relative diff

Monday, February 25, 13

NUMA-aware Virtual Machine Scheduling

Monitoring uncore penalty
- calculate each vCPU’s penalty based on PMU readings

- update penalty when performing periodic scheduler bookkeeping

Identifying NUMA scheduling candidate
- rely on application or guest OS to identify NUMA-sensitive vCPUs

vCPU migration
- Bias Random Migration (BRM)

Monday, February 25, 13

Bias Random Migration

Memory node-0

Uncore

Core Core

PMU
per vCPU uncore penalty

vCPU

Memory node-1

Uncore

Core Core

vCPU

Global penalty

Update(v)

Migrate(v)
Procedure BiasRandomPick(v)

rand = random() mod 100
if rand < v.prob then

select a core in node v.bias
reset v.prob

else
Select current core

end if
end procedure

Procedure Update(v)
 n = NUMA_CPU_TO_NODE(v.c)

update global penalty and save it in v.unc[n]
min = argmin v.unc[x], x= 0,..., NODE-1

if v.unc[n] > v.unc[min] then
 v.prob ++
else
 v.prob --
 v.bias = n
end if

end procedure

x

Procedure Migrate(v)
Update(v)
if v is a migration candidate then
 new_core = BiasRandomPick(v)
else
 new_core = DefaultPick(v)
end if

end procedure

struct vcpu {
...
int c; //current core
int bias; // migration bias
int prob; //migration probability
int unc[NODE]; //array of global penalties
...
}

Monday, February 25, 13

Bias Random Migration

Memory node-0

Uncore

Core Core

PMU
per vCPU uncore penalty

vCPU

Memory node-1

Uncore

Core Core

vCPU

Global penalty

Update(v)

Migrate(v)
Procedure BiasRandomPick(v)

rand = random() mod 100
if rand < v.prob then

select a core in node v.bias
reset v.prob

else
Select current core

end if
end procedure

Procedure Update(v)
 n = NUMA_CPU_TO_NODE(v.c)

update global penalty and save it in v.unc[n]
min = argmin v.unc[x], x= 0,..., NODE-1

if v.unc[n] > v.unc[min] then
 v.prob ++
else
 v.prob --
 v.bias = n
end if

end procedure

x

Procedure Migrate(v)
Update(v)
if v is a migration candidate then
 new_core = BiasRandomPick(v)
else
 new_core = DefaultPick(v)
end if

end procedure

struct vcpu {
...
int c; //current core
int bias; // migration bias
int prob; //migration probability
int unc[NODE]; //array of global penalties
...
}

Monday, February 25, 13

Bias Random Migration

Memory node-0

Uncore

Core Core

PMU
per vCPU uncore penalty

vCPU

Memory node-1

Uncore

Core Core

vCPU

Global penalty

Update(v)

Migrate(v)
Procedure BiasRandomPick(v)

rand = random() mod 100
if rand < v.prob then

select a core in node v.bias
reset v.prob

else
Select current core

end if
end procedure

Procedure Update(v)
 n = NUMA_CPU_TO_NODE(v.c)

update global penalty and save it in v.unc[n]
min = argmin v.unc[x], x= 0,..., NODE-1

if v.unc[n] > v.unc[min] then
 v.prob ++
else
 v.prob --
 v.bias = n
end if

end procedure

x

Procedure Migrate(v)
Update(v)
if v is a migration candidate then
 new_core = BiasRandomPick(v)
else
 new_core = DefaultPick(v)
end if

end procedure

struct vcpu {
...
int c; //current core
int bias; // migration bias
int prob; //migration probability
int unc[NODE]; //array of global penalties
...
}

Monday, February 25, 13

Bias Random Migration

Memory node-0

Uncore

Core Core

PMU
per vCPU uncore penalty

vCPU

Memory node-1

Uncore

Core Core

vCPU

Global penalty

Update(v)

Migrate(v)
Procedure BiasRandomPick(v)

rand = random() mod 100
if rand < v.prob then

select a core in node v.bias
reset v.prob

else
Select current core

end if
end procedure

Procedure Update(v)
 n = NUMA_CPU_TO_NODE(v.c)

update global penalty and save it in v.unc[n]
min = argmin v.unc[x], x= 0,..., NODE-1

if v.unc[n] > v.unc[min] then
 v.prob ++
else
 v.prob --
 v.bias = n
end if

end procedure

x

Procedure Migrate(v)
Update(v)
if v is a migration candidate then
 new_core = BiasRandomPick(v)
else
 new_core = DefaultPick(v)
end if

end procedure

struct vcpu {
...
int c; //current core
int bias; // migration bias
int prob; //migration probability
int unc[NODE]; //array of global penalties
...
}

Monday, February 25, 13

Bias Random Migration

Memory node-0

Uncore

Core Core

PMU
per vCPU uncore penalty

vCPU

Memory node-1

Uncore

Core Core

vCPU

Global penalty

Update(v)

Migrate(v)
Procedure BiasRandomPick(v)

rand = random() mod 100
if rand < v.prob then

select a core in node v.bias
reset v.prob

else
Select current core

end if
end procedure

Procedure Update(v)
 n = NUMA_CPU_TO_NODE(v.c)

update global penalty and save it in v.unc[n]
min = argmin v.unc[x], x= 0,..., NODE-1

if v.unc[n] > v.unc[min] then
 v.prob ++
else
 v.prob --
 v.bias = n
end if

end procedure

x

Procedure Migrate(v)
Update(v)
if v is a migration candidate then
 new_core = BiasRandomPick(v)
else
 new_core = DefaultPick(v)
end if

end procedure

struct vcpu {
...
int c; //current core
int bias; // migration bias
int prob; //migration probability
int unc[NODE]; //array of global penalties
...
}

Push migrate to a node with the minimum global penalty
Pull migrate (stealing) not touched for load balancing

Monday, February 25, 13

Implementation
Xen 4.0.2
- patched with Perfctr-Xen to read PMU counters

- update uncore penalty every 10ms when Xen burns credits

- lightweight random number generator using last 2 digits in TSC, in range [0,99]

Guest OS, Linux 2.6.32

- two new hypercalls: tag and clear

- tag a vCPU as candidate if cpus_allowed is a subset of online CPUs

Monday, February 25, 13

Workload
Micro-benchmark
- 4 threads, 128KB sharing size, WSS changes from 4MB to 8MB

Parallel workload
- NAS parallel benchmarks except is

- Compiled with OpenMP, busy waiting synchronization

Multiprogrammed workload

- SPEC CPU2006, 4 identical copies of mcf, milc, soplex, sphinx3

- Mixed workload = mcf + milc + soplex + sphinx3

Monday, February 25, 13

Improving Performance

0.4

0.6

0.8

1

1.2

4M 8M 16M 32M 64M 128M

Xen BRM Hand-optimized

N
or

m
al

iz
ed

 ru
nt

im
e

0.4

0.6

0.8

1

1.2

lu sp ft ua bt cg ep mg
0.4

0.6

0.8

1

1.2

soplex mcf milc sphinx3 mixed

Micro-benchmark (WSS) Parallel workload Multiprogrammed workload

Hand-optimized: offline
determined best policy

Monday, February 25, 13

Improving Performance

0.4

0.6

0.8

1

1.2

4M 8M 16M 32M 64M 128M

Xen BRM Hand-optimized

N
or

m
al

iz
ed

 ru
nt

im
e

0.4

0.6

0.8

1

1.2

lu sp ft ua bt cg ep mg
0.4

0.6

0.8

1

1.2

soplex mcf milc sphinx3 mixed

Micro-benchmark (WSS) Parallel workload Multiprogrammed workload

1. BRM outperforms Xen in most experiments
and improves performance by up to 31.7%

Hand-optimized: offline
determined best policy

Monday, February 25, 13

Improving Performance

0.4

0.6

0.8

1

1.2

4M 8M 16M 32M 64M 128M

Xen BRM Hand-optimized

N
or

m
al

iz
ed

 ru
nt

im
e

0.4

0.6

0.8

1

1.2

lu sp ft ua bt cg ep mg
0.4

0.6

0.8

1

1.2

soplex mcf milc sphinx3 mixed

Micro-benchmark (WSS) Parallel workload Multiprogrammed workload

1. BRM outperforms Xen in most experiments
and improves performance by up to 31.7%

2. BRM performs closely to Hand-optimized
and even outperforms it in some cases

Hand-optimized: offline
determined best policy

Monday, February 25, 13

Improving Performance

0.4

0.6

0.8

1

1.2

4M 8M 16M 32M 64M 128M

Xen BRM Hand-optimized

N
or

m
al

iz
ed

 ru
nt

im
e

0.4

0.6

0.8

1

1.2

lu sp ft ua bt cg ep mg
0.4

0.6

0.8

1

1.2

soplex mcf milc sphinx3 mixed

Micro-benchmark (WSS) Parallel workload Multiprogrammed workload

1. BRM outperforms Xen in most experiments
and improves performance by up to 31.7%

2. BRM performs closely to Hand-optimized
and even outperforms it in some cases

3. BRM adds overhead to NUMA insensitive
workloads

Hand-optimized: offline
determined best policy

Monday, February 25, 13

Reducing Variation

0
2
4
6
8

10
12
14

4M 8M 16M 32M 64M 128M

Xen BRM Hand-optimized

R
el

at
iv

e
st

an
da

rd
 d

ev
ia

tio
n

(%
)

0

4

8

12

16

20

lu sp ft ua bt cg ep mg
0

2

4

6

8

10

soplex mcf milc sphinx3 mixed

Micro-benchmark (WSS) Parallel workload Multiprogrammed workload

Monday, February 25, 13

Reducing Variation

0
2
4
6
8

10
12
14

4M 8M 16M 32M 64M 128M

Xen BRM Hand-optimized

R
el

at
iv

e
st

an
da

rd
 d

ev
ia

tio
n

(%
)

0

4

8

12

16

20

lu sp ft ua bt cg ep mg
0

2

4

6

8

10

soplex mcf milc sphinx3 mixed

Micro-benchmark (WSS) Parallel workload Multiprogrammed workload

1. BRM reduces runtime variation significantly,
with on average no more than 2% variations

Monday, February 25, 13

Overhead

0

5

10

15

20

ep ft mg bt cg ua lu sp

2-thread 4-thread
8-thread 16-thread

R
un

tim
e

ov
er

he
ad

 (%
)

migration disabled

Monday, February 25, 13

Overhead

0

5

10

15

20

ep ft mg bt cg ua lu sp

2-thread 4-thread
8-thread 16-thread

R
un

tim
e

ov
er

he
ad

 (%
)

1. Less than 2% overhead for 2- and 4-thread workloads
2. BRM incurs up to 6.4% overhead for 8 threads, but still useful

3. Running 16-thread workloads is problematic

migration disabled

Monday, February 25, 13

Overhead

0

5

10

15

20

ep ft mg bt cg ua lu sp

2-thread 4-thread
8-thread 16-thread

R
un

tim
e

ov
er

he
ad

 (%
)

1. Less than 2% overhead for 2- and 4-thread workloads
2. BRM incurs up to 6.4% overhead for 8 threads, but still useful

3. Running 16-thread workloads is problematic

Amazon EC2’s High-CPU Extra Large Instance has 8
vCPUs

migration disabled

Monday, February 25, 13

Conclusion and Future Work
Problem

- sub-optimal scheduling and unpredictable performance

Our approach

- uncore penalty as a performance index

- Bias random migration for online performance optimization

- improves performance and reduces variability

Future work

- inferring NUMA-sensitive vCPU

- improving scalability and considering simultaneous multithreading

Monday, February 25, 13

Q&A

Thank you !
jrao@uccs.edu

http://cs.uccs.edu/~jrao/

Monday, February 25, 13

http://cs.uccs.edu/~jrao/
http://cs.uccs.edu/~jrao/
http://cs.uccs.edu/~jrao/
http://cs.uccs.edu/~jrao/

Backup Slides begin here...

Monday, February 25, 13

Why IPC or CPI Harmful?*

IPC or CPI does not reflect performance,
even not for straggler thread

* Wood, MICRO’06

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2

 0 10 20 30 40 50 60 70 80 90 100

C
yc

le
s

pe
r i

ns
tru

ct
io

n

(a) Bt

Running alone
Busy sibling hyperthread

Busy core

 0.5

 1

 1.5

 2

 2.5

 0 10 20 30 40 50 60 70 80 90 100

C
yc

le
s

pe
r i

ns
tru

ct
io

n

Time (sec)

(b) Lu

Running alone
Busy sibling hyperthread

Busy core

Monday, February 25, 13

Questions
Why not Cycles per Instruction (CPI)?
- CPI is not useful for multiprocessor workloads

How to improve scalability?
- Li et al., PPoPP’09, relaxing consistency requirement on global update

What workload BRM is not useful for?
- short-lived jobs

Does BRM affect fairness and priorities?
- NO

Monday, February 25, 13

