
Interference and Locality-Aware Task Scheduling for
MapReduce Applications in Virtual Clusters

Xiangping Bu
Department of Electrical &

Computer Engineering
Wayne State University
Detroit, Michigan 48202
xpbu@wayne.edu

Jia Rao
Department of Computer

Science
University of Colorado at

Colorado Springs, Colorado
jrao@uccs.edu

Cheng-Zhong Xu
Department of Electrical &

Computer Engineering
Wayne State University
Detroit, Michigan 48202
czxu@wayne.edu

ABSTRACT
MapReduce emerges as an important distributed program-
ming paradigm for large-scale applications. RunningMapRe-
duce applications in clouds presents an attractive usage model
for enterprises. In a virtual MapReduce cluster, the in-
terference between virtual machines (VMs) causes perfor-
mance degradation of map and reduce tasks and renders
existing data locality-aware task scheduling policy, like de-
lay scheduling, no longer effective. On the other hand, vir-
tualization offers an extra opportunity of data locality for
co-hosted VMs. In this paper, we present a task scheduling
strategy to mitigate interference and meanwhile preserving
task data locality for MapReduce applications. The strategy
includes an interference-aware scheduling policy, based on a
task performance prediction model, and an adaptive delay
scheduling algorithm for data locality improvement. We im-
plement the interference and locality-aware (ILA) scheduling
strategy in a virtual MapReduce framework. We evaluated
its effectiveness and efficiency on a 72-node Xen-based vir-
tual cluster. Experimental results with 10 representative
CPU and IO-intensive applications show that ILA is able to
achieve a speedup of 1.5 to 6.5 times for individual jobs and
yield an improvement of up to 1.9 times in system through-
put in comparison with four other MapReduce schedulers.

Categories and Subject Descriptors
D.4.1 [Operating Systems]: Process Management—Schedul-
ing ; D.4.8 [Operating Systems]: Performance—Modeling
and prediction

Keywords
MapReduce; Cloud computing; Task scheduling

1. INTRODUCTION
MapReduce has become an important distributed par-

allel programming paradigm for applications with various

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
HPDC’13, June 17–21, 2013, New York, NY, USA.
Copyright 2013 ACM 978-1-4503-1910-2/13/06 ...$5.00.

computational characteristics in large-scale clusters [13]. It
forms the core of technologies powering big IT businesses
like Google, IBM, Yahoo and Facebook. Providing MapRe-
duce frameworks as a service in clouds becomes an attrac-
tive usage model for enterprises [2]. A MapReduce cloud
service allows users to cost-effectively access a large amount
of computing resources without creating MapReduce frame-
works of their own. Users are able to flexibly adjust the
scale of MapReduce clusters in response to the change of
the resource demand of their applications.

MapReduce services in clouds typically run in virtual clus-
ters. This usage model raises two new challenges. First, in-
terferences between co-hosted virtual machines (VMs) can
significantly affect the performance of MapReduce applica-
tions. Although virtualization provides performance isola-
tion to a certain extent, there is still significant interference
between VMs running on a shared hardware infrastructure.
A MapReduce cloud service has to deal with the interference
coming from contentions in various hardware components,
including CPU, memory, I/O bandwidth, and their joint ef-
fects.

In a virtual MapReduce cluster, the interference may cause
variation in VM capacity and uncertainty in task perfor-
mance [32], and ultimately impairs the correctness and ef-
fectiveness of the MapReduce key components, such as the
task scheduler, fault tolerance mechanism, and configura-
tion strategy. Our experimental results show that interfer-
ence could slow down a job by 1.5 to 7 times. Performance
degradation of MapReduce jobs due to VM interference was
also observed in Amazon EC2 [1, 32]. There were studies on
mitigating VM interference in virtual clusters through dy-
namic resource allocation, interference-aware task schedul-
ing or application parameter tuning [23, 11, 20, 27, 26, 9, 10].
However, the MapReduce framework further complicates the
interference problem on virtual clusters. MapReduce cloud
service requires mitigating VM interference while maintain-
ing the framework’s features, such as job fairness and task
data locality.

The second challenge for MapReduce cloud services is pre-
serving good data locality for tasks of each job. In a MapRe-
duce framework, the task scheduler assigns each task to an
available node“closest” to its input data to leverage the data
locality. To achieve good data locality while preserving job
fairness in shared MapReduce clusters, Zaharia et al. pro-
posed a delay scheduling algorithm to postpone a scheduled
job for a few seconds if it can not launch a local task [31].
Such locality-aware task schedulers largely assume that the
tasks are short lived. Unexpected task slowdown caused by

interference in virtual clusters may render them no longer
effective.

The MapReduce framework running on a distributed file
system offers several levels of data locality. A task and its
input data can locate in the same server node (node local-
ity), in the same rack (rack locality) or in different racks
(off-rack). Server virtualization adds one more layer of lo-
cality: tasks and their data being placed on the co-hosted
VMs of the same physical server. We refer to this as server
locality. Data exchange between co-hosted VMs is often as
efficient as local data access because inter-VM communica-
tion within one physical server is optimized by Hypervisor
and does not consume any network bandwidth. Server local-
ity is much easier to achieve than node locality, although they
are expected to deliver similar level of performance. When
applied to virtual MapReduce clusters, existing task sched-
ulers designed for physical clusters are not able to leverage
this extra layer of data locality and lose the opportunity for
achieving better performance.

In this paper, we present an interference and locality-
aware (ILA) task scheduler to address the challenges in the
provisioning of fair share MapReduce cloud services. There
are recent studies on improving the performance of MapRe-
duce applications in the cloud through resource allocation [25]
or data and VM placement [21, 24]. In contrast, ILA focuses
on task scheduling optimization in a virtual MapReduce
cluster. ILA relies on an application-level task scheduling
strategy to adapt to changes of data and VM deployment
and cloud resource allocation. It requires no modification
for the underlying resource management. We summarize
the contributions of this paper as follows:

1. We develop an exponential interference prediction model
to estimate task slowdown caused by interference in
the virtual MapReduce cluster. We also introduce a
Dynamic Threshold policy to schedule tasks based on
the prediction model.

2. We develop an Adaptive Delay Scheduling algorithm,
which improves the Delay Scheduling algorithm [31] by
adjusting delay intervals of ready-to-run jobs in pro-
portion to their input size. The algorithm also takes
into account data locality in all layers including the
server locality.

3. We develop a meta scheduling strategy to integrate
the interference-aware scheduling and locality-aware
scheduling algorithms and implement the algorithm
in an interference and locality-aware (ILA) scheduling
framework. We evaluated the efficiency of the frame-
work on a 72-node Xen-based virtual MapReduce clus-
ter. Experimental results with representative CPU
and I/O-intensive applications demonstrate that the
ILA scheduler can achieve a speedup of 1.5-6.5 times
for individual jobs and yield an improvement of up to
1.9 times in system throughput compared with four
recently proposed task schedulers. It improves data
locality among map tasks by up to 65%.

The rest of this paper is organized as follows. Section 2
introduces the background and motivation of ILA schedul-
ing. Section 3 presents the system architecture. Section 4
shows the design of our ILA Scheduler. Evaluation setting
and results are given in Section 5. Related work is discussed
in Section 6. Section 7 concludes the paper with remarks on
limitation and possible future work.

2. BACKGROUND AND MOTIVATION

2.1 Hadoop in Virtualized Environments
In this paper, we use Hadoop implementation of MapRe-

duce framework as an example to illustrate the concepts of
VM interference and data locality [3]. Hadoop partitions
each job into a number of map and reduce tasks. Each map
task runs map functions on one data block (64MB by de-
fault) of an input file. A reduce task receives intermediate
results from data dependent map tasks and generates final
results. A MapReduce framework consists of a master and
multiple slaves. The master is responsible for management
of the framework, including user interaction, job queue orga-
nization and task scheduling. Each slave has a fixed number
of map and reduce slots to perform tasks. The job scheduler
located in the master assigns tasks according to the number
of free task slots reported by each slave through a heartbeat
protocol.

Hadoop running on a distributed file system HDFS as-
sumes that the data storage is co-located within the com-
pute cluster. MapReduce framework can exploit task local-
ity without incurring extra management overhead. In the
ILA framework, each slave is deployed on one VM with at-
tached local disk image. It acts as both compute and data
node. The HDFS was built across all the VMs. There exist
other storage architectures in cloud environments. Amazon
used distinct infrastructures for storage and compute. It is
not suitable for MapReduce applications due to the require-
ment of loading data from a storage server to HDFS be-
fore the job execution and keeping large duplicated datasets
during the execution. Recent works proposed several stor-
age infrastructures to enable local data access for compute
cluster and enhance the performance of MapReduce appli-
cations [21, 24]. ILA framework is able to deal with the
interference and locality challenges under different storage
architectures.

2.2 Virtual Machine Interference
Virtual cluster is the most common platform for cloud

computing services. When multiple VMs are sharing hard-
ware resources, the performance of their hosted applications
may degrade due to imperfect VM isolation. We illustrate
this problem using 5 Xen VMs deployed on a physical server
for the execution of a benchmark of 10 representative CPU-
and I/O-intensive applications; see Table 3 in Section 5 for
their computation and I/O characteristics. Each slave VM
was configured with 3 VCPUs, 2GB memory and with 3
map slots and 1 reduce slot. The VMs competed for 10
physical cores and one shared disk. One of the VMs exe-
cuted the benchmark applications one by one and profiled
the execution time for each application task. The other co-
hosted VMs ran randomly selected applications from the
benchmark as background jobs. Figure 1 and Figure 2 show
the task completion time of each job, which is normalized
to that of the task running alone on a dedicated VM. In
Figure 1, the total CPU demand of co-hosted VMs is rep-
resented in the percentage of one physical core. We can
see that, for CPU-intensive applications, there is no signif-
icant slowdown until the background demand reaches the
capacity of 800 (8 cores). It is expected that I/O-intensive
applications were insensitive to the total amount of CPU de-
mands. Similarly, Figure 2 shows an exponential increase of
the completion time of I/O intensive applications with the

 1

 2

 3

 4

 5

 6

 7

 8

 0 200 400 600 800 1000 1200

N
om

al
iz

ed
 R

un
tim

e

Aggregated CPU demand of co-host VMs (%)

CPU intensive applications
IO intensive applications

Figure 1: Effect of CPU interference.

 1

 2

 3

 4

 5

 6

 7

 8

 0 5 10 15 20 25 30 35 40 45 50

N
om

al
iz

ed
 R

un
tim

e

Aggregate I/O rate of co-host VMs (MB/sec)

CPU intensive applications
IO intensive applications

Figure 2: Effect of I/O interference.

 0

 20

 40

 60

 80

 100

 120

 140

C
om

pl
et

io
n

T
im

e
(S

ec
)

Node locality
Server locality

Rack locality
Off rack

Figure 3: Effect of data locality.

aggregated I/O traffic from co-hosted VMs. Previous works
mitigated VM interference through dynamic resource allo-
cation or interference-aware scheduling [11, 20, 23]. But ap-
plying their approaches in virtual MapReduce clusters may
degrade system performance greatly due to the unawareness
of MapReduce’s features, like job fairness and data locality.

2.3 Data Locality
Recall that a virtual MapReduce cluster defines data lo-

cality in four layers: node locality, server locality, rack local-
ity, and off rack. We show their respective effect on perfor-
mance using 24 VMs deployed on 12 physical machines with
2 VMs on each. Each VMwas allocated sufficient resource to
eliminate interference effect. The physical machines were in-
stalled on 2 racks, connected by a 100 Mbps ethernet switch
(for the purpose of creating network contention scenarios).
We ran TeraSort application in the benchmark with 120 map
tasks over 12GB input data. From Figure 3 we can see that
tasks with server locality would finishe in approximately the
same time as those with node locality. However, tasks with
rack local and off rack data access could take as long as 3x
and 4x time to complete, respectively. The non-local data
access dramatically degraded the performance.

There are many task scheduling algorithms designed to
preserve task data locality for MapReduce applications in
physical clusters. When they are applied to virtual clusters,
the data locality can not be maintained effectively due to
the presence of VM interference. Most of the existing ap-
proaches assume that the tasks are largely short lived and
the task slots are not occupied for too long by any job. Thus,
for a given task to be run, even the target nodes with local
data are not available, they are assumed to be free up soon.
The scheduler can always launch local tasks for each job
with a few seconds delay. In a virtual MapReduce cluster,
VM interference could prolong short-lived tasks and render
the data locality policy ineffective. To demonstrate this is-
sue, we built a virtual cluster with 24 VMs on 6 physical
servers, each with 4 VMs deployed. For comparison, we
also built a physical cluster with 24 physical machines. The
clusters were run with a Hadoop framework, which deployed
the delay scheduling algorithm [31] to enhance data locality.
Table 1 shows that for the physical cluster, the approach
can achieve 98.4% node locality for a total of 120 tasks. In
contrast, in the virtual cluster, the most beneficial node and
server locality are reduced to 72.3% and 2%, respectively.
As a result, we observed 100% slowdown in job completion
time. Thus it requires a specifically designed task scheduler
for virtual MapReduce clusters.

Table 1: Degrees of data locality in different clusters
Locality Node Server Rack Off Rack Time
Physical 98.4% N/A 1.6% 0.0% 170 sec
Virtual 72.3% 2% 18.3% 7.2% 342 sec

3. SYSTEM ARCHITECTURE
The ILA scheduler works in a Hadoop virtual cluster. Fig-

ure 4 illustrates the architecture of the target system. The
cluster consists of a number of physical servers, each of which
has the same virtualized environment. Multiple VMs are
allocated onto each physical server hosting running appli-
cations, supported by Hadoop HDFS. Hadoop framework is
deployed on top of the virtual cluster with a single master
and multiple slaves. Each slave is configured to run within
one VM and the master is deployed on a dedicated physical
machine with secondary backup.

The core of ILA-based task management is located in
the master, consisting of four major components: 1) the
Interference-Aware Scheduling Module (IASM) to mitigate
the interference between tasks running on co-hosted VMs
with the help of an interference prediction model; 2) the
Locality-Aware Scheduling Module (LASM) maintains good
data locality for map tasks by using Adaptive Delay Schedul-
ing algorithm; 3) the Task Profiler estimates the task’s de-
mand of each job and feeds task information to IASM and
LASM modules; 4) the ILA scheduler instructs IASM and
LASMmodules to conduct interference-free high-locality task
management. To collect the running status of the servers, we
deployed a VM resource monitor in each VM and a physical
resource monitor in each physical server. They send resource
consumption status to ILA scheduler periodically.

4. ILA SCHEDULER DESIGN

4.1 Interference Prediction Model
In this section, we present a model to characterize the

impact of the interference. We focus on the CPU and I/O
bandwidth resources. The CPU-bound and I/O-bound work-
loads are the most common workloads for MapReduce clus-
ters.

Nonlinear Prediction Model. On the application level,
the interference can be perceived as the performance vari-
ation, including job runtime [33] and I/O throughput [11].
For generality, instead of using the absolute completion time,
we considered the task slowdown rate (S) as the predic-
tion target, which is defined on the task’s real completion
time (Treal) over the run time without interference (T),

VM/
Slave

VM
Resource
Monitor

Physical resource monitor

VM/
Slave

...

Physical Server

Job Queue

Task1 Task2 Taskn...
Task1 Task2 Taskn...

Job1

Job2

Task1 Task2 Taskn...Jobm

... ...

...

Master
Node

ILA Scheduler

Task
Assignment

IASM Interference
Prediction

Model

LASM Adaptive
Delay

Scheduling
System
StatusTask

Request

Task
Info

Task
Profiler

Physical Server

VM
Resource
Monitor

VM/
Slave

VM
Resource
Monitor

Physical resource monitor

VM/
Slave

...

Physical Server

VM
Resource
Monitor

Figure 4: System Architecture.

Table 2: System metrics
Parameters
cu: Local CPU usage in DomU

System CPU ca: Aggregated CPU usage of co-hosted VMs
c0: CPU usage in Dom0
ru: Local read rate in DomU
wu: Local write rate in DomU

System I/O ra: Aggregated read rate of co-hosted VMs
wa: Aggregated write rate of co-hosted VMs
iou: I/O utilization of physical server
tc: Average CPU demand

Task tr : Average read rate
tw: Average write rate

S = Treal/T . Such normalization helps the model deal with
applications with different magnitudes in completion time.

The interference comes from two main sources : co-existed
tasks in the same scheduled VM and the co-hosted VMs
on the same physical server. Their impact on performance
also varies with the application’s demand. The prediction
result should depend on the characteristics of the scheduled
tasks as well as the resource consumption status of the target
VM and co-hosted VMs on the same physical server. In
an Xen-based environment, the privileged domain (Dom0)
has direct access to hardwares. It is in charge of resource
management of all guest domains (DomU). All of the effects
should be included in the model. We selected CPU usage,
disk Read/Write rate and I/O utilization to represent task
demand and system status. These parameters are selected
through covariance ranking and statistical hypothesis testing
in order to keep the model simple and accurate. These eleven
performance-critical parameters are listed in Table 2.

We first constructed separate interference prediction mod-
els for pure CPU-bound and I/O-bound applications. As
shown in Figure 1, the characteristic of the data points is
fit for an exponential curve. We constructed an exponen-
tial interference model for pure CPU-intensive application
as follows:

Ŝcpu = αcpu exp (γttc +
3∑

i=1

γiCPUi + Ccpu) + C1, (1)

where the task performance depends on its own CPU de-

mand as well as all the CPU relative metrics listed in Ta-
ble 2, represented as CPUi, including the CPU usage of the
scheduled VM, co-hosted VMs and Dom0. γ and C repre-
sent the coefficient and constant in the model.

Similarly, as shown in Figure 2, the slowdown rate of I/O-
bound applications demonstrate an exponential relationship
with background I/O rate. We constructed a non-linear ex-
ponential model for pure I/O-bound applications as follows:

Ŝio =βio exp (τtrtr+τtwtw+

5∑
i=1

τiIOi+τ0c0+Cio)+C2, (2)

where task performance is estimated based on its read and
write I/O demands as well as all the I/O relative metics
listed in Table 2, represented as IOi, including Read/Write
I/O throughout of the scheduled VM, the co-hosted VMs
and the physical I/O utilization. τ and C represent the
coefficient and constant in the model. Notice that the CPU
usage of Dom0 was also introduced into the model. This is
crucial because all the requests from guest VMs are routed
through Dom0. Handling a large number of I/O requests
on behalf of guest domain will consume substantial CPU
resources in Dom0.

For general applications, both of the CPU and I/O re-
source can affect their performance. We introduced the fi-
nal general interference prediction model based on the two
special models above. We constructed a linear model to
quantify the joint impact of CPU and I/O resource on per-
formance, as follows:

Ŝ = αŜcpu + βŜio + C3, (3)

The experiments in Section 5.4 show that the general model
can achieve as high as 90% prediction accuracy. It brings
10%-15% improvement over the linear and quadratic models
used in previous works [11].

Model Training. The model was initially constructed
through offline training. For generality, we selected 10 ap-
plications shown in Table 3 for interference profile. Each
application was running on one VM with various workloads
on the same VM and co-hosted VMs. There were 6 VMs
deployed on the same physical server. We developed two
kinds of workload generators to generate CPU and I/O-
bound workloads. The CPU workload generator conducts a
set of arithmetic operations in a loop with variable time in-
tervals. The I/O workload generator repeatedly reads from
or writes to a file, which is much larger than the allocated
memory to avoid OS caching effect. Both generators are able
to issue workloads with any level of intensities by adjusting
the length of sleep interval between each iteration. We also
created 200 workload combinations by randomly selecting
real applications in Table 3 as the background applications
in profiling the interference. All the required metrics were
collected during the experiments and used as the input data
for modeling process.

In the nonlinear modeling process, we used the Gauss-
Newton algorithm [12] to generate the coefficients that mini-
mize sum of squared errors (SSE). TheGauss-Newtonmethod
is an interactive process that gradually updates the param-
eters to obtain the optimal solution. We also employed a
stepwise algorithm [14] to simplify the model as much as
possible. This stepwise process repeatedly adds or removes
possible variables from the equation and evaluates the new
re-fitting models.

Online Model Adaptation. Although the proposed

prediction model is general for all kinds of applications, it
keeps updating in order to achieve more accuracy for current
applications. The time for modeling process is less than 2
seconds on a 3.0 GHz Inter Xeon processor. It can be dy-
namically re-calibrated when the accuracy is not acceptable
with negligible overhead. The Guass-Newton method will
be triggered whenever there are k new observations, k is set
to 100 in this work. Thus the model can be easily adapted
to a new cloud platform with different applications, virtual
machines, operation systems and cloud infrastructures.

4.2 Data Locality Improvement
The impact of data locality on performance is difficult

to predict because it involves the status of multiple lev-
els of network nodes, including VMs, physical servers and
switches. Instead of using explicit models, we propose an
heuristic approach, namely Adaptive Delay Scheduling, to
improve data locality. Compared with Delay Scheduling,
the new approach is much more efficient and suitable for
the virtualized environment.

Fair and Delay Scheduling. In practice, sharing a clus-
ter between multiple users is more common and highly ben-
eficial than dedicated clusters due to low building cost and
data consolidation. We build our new scheduler on top of
the existing fair scheduler. Briefly, at each scheduling inter-
val, the fair scheduler sorts all the jobs according to their
running tasks. It always assign available compute node to
the job that is farthest below its fair share [31]. However,
such strict scheduling order may conflict the data locality.
The scheduled job may not be able to find a free node to
launch a local task.

Delay scheduling is a simple but effective approach to im-
prove locality by temporarily relaxing fairness [31]. The key
idea is when the scheduled job can not launch a local task
on the available node, the scheduler will delay this job and
skip to process the next one, until the delayed job find a
free node to run local tasks or the accumulated delay time
exceeds predefined intervals. There are multiple wait time
thresholds for different levels of data locality. For example,
in the latest version of Hadoop, the default maximum wait
time for a node local task (Tnode) is 5 seconds, after which
the scheduler will try to launch a rack local task. The default
extra wait time for a rack local task (Track) is also 5 seconds.
When the wait time goes beyond Track+Tnode, the scheduler
will launch any task of the delayed job without considering
the data locality.

Adaptive Delay Interval. The Delay Scheduling ap-
proach delays all the jobs for the same amount of time as
long as they do not have local data access. However, the im-
pact of data locality varies with the task’s input file size. For
jobs with small input file, their performance are insensitive
to data locality, as shown in Section 5.3. But the sched-
uler forces them to take unnecessary delay to achieve high
data locality. In practice, CPU-intensive applications, such
as machine learning applications, usually have small input
file. Even for data intensive applications, their tasks’ input
file size could also be changed through specific job configu-
ration. We propose an adaptive delay scheduling algorithm
with the delay interval proportional to the task input file
size, defined as follows. Note that the HDFS block size is
the largest unit for each map task, which is treated as the
upper bound for task input file size.

T̂ij =

{
0 If Fj/Fb ≤ 0.01;

Fj ∗ Ti/Fb Otherwise,
(4)

where Ti is the maximum wait time for locality level i and
T̂ij is the actual wait time for job j. Fj represents the input
file size of the tasks in job j and Fb represents the HDFS
block size. When the input size less than 1% of the block
size, the scheduler will launch the task without any delay.

Server Locality-Aware Scheduling. The virtualized
environment adds one more layer in network topology: the
co-hosted VMs. We defined it as “server local ” if the data
is not on the compute VM but on the same physical server.
The inter-VM communication within one physical machine
is more efficient than the cross-machine communication. It
will not be affected by the outside network traffic because
the communication is optimized by Hypervisor. As shown
in Section 2.3, the server local task performs closely to the
node local task. Thus we set a small delay interval for server
locality, 0.5 second in this work. After failing to find a node
local task, the scheduler will quickly search for a server local
task instead of searching for a rack local one.

The server locality information is usually unavailable in
virtual cluster. We designed several methods to detect the
VM’s physical location. Users can input the VM deployment
information through XML configuration file. The framework
can also automatically generate the information by using
traceroute from each VM to locate their physical hosts. The
first hop is always the Dom0 or Hypervisor process for the
physical server. The information may also be provided by
specially desinged management system, as used in [21].

4.3 System Monitoring and Task Profiling
The scheduling decision is based on system resource con-

sumption status and task resource demands. We deployed
one VM resource monitor in each VM and one physical re-
source monitor in each physical server. We used the stan-
dard Xen tool Xentop to monitor the CPU usage of Dom0
and each guest domain. Physical server I/O utilization and
Read/Write I/O rate of each VM were measured via Linux
iostat tool. We modified the TaskTracker in each slave (VM)
to collect the resource consumption status. The information
was sent to the JobTracker located in master node through
periodical heartbeat operations. The resource information
of physical servers was sent to JobTracker via TCP connec-
tions.

There is no standard tool to directly estimate the resource
demand of an incoming task. We estimated the information
through task profiling. For a MapReduce job, it usually
consists of many small tasks. The tasks mostly have the
same resource demand because they are often run in a data
partition model for the same problem. We can estimate the
task demand of job j D̂j based on the measured demand of
the finished ones Dj , as follows:

D̂tj =

⎧⎨
⎩

init If t = 0;
D0j If t = 1;

α ∗D(t−1)j + (1− α) ∗ D̂(t−1)j Otherwise.
(5)

The value D̂j is used to estimate the demand before the
task running and the actual demand Dj measured after the
completion is used to update the estimation for subsequent
tasks. The index t represents the update time interval. Thus
D̂tj represents the estimated demand of all the tasks in job

j scheduled during the interval t. Initially, when there is no
finished task, i.e. t = 0, we set the init demand to a high
value to avoid interference. We used a decayed model to es-
timate the task demand, which makes the new observations
more relevant in prediction than old ones. We set α to 0.8 in
this work. In this paper, we modified JobTracker to collect
the task demand information. The consumed CPU time and
the read/written file size of each task were obtained using
MapReduce CPU and FileSystem Counter, respectively.

4.4 ILA Scheduling
ILA scheduler performs the interference and locality-aware

scheduling operations on top of the fair scheduling. At each
interval, it selects a job from a wait queue sorted accord-
ing to the job’s fairness. However, occasionally, the goal of
mitigating interference and maintaining data locality may
conflict with each other. ILA scheduler always considers the
interference mitigation first due to the following two reasons:
1) VM interference causes much more performance degrada-
tion than remote data access. Scheduling a non-local task
only affect the individual task. In contrast, VM interfer-
ence may affect not only the scheduled task but also all the
tasks running on the same VM and physical server. 2) No
interference is a precondition for achieving good data local-
ity. Any unexpected task slowdown would make the data
locality policy ineffective.

Interference-Aware Scheduling. Whenever ILA sched-
uler receives a task request from one VM, it collects the
VM’s resource status as well as the information of its co-
hosted VMs and its physical host. Then it searches down
the sorted job list and gets the task’s profile of the first
job. Taking those as inputs, the prediction model returns
a quantitative value to evaluate the interference. Previous
works employed a Min-Min heuristics [11] to schedule the
tasks based on the interference prediction. The scheduler
always assign the “least-interference” task to available VMs.
However, such tasks may still lead to the severe contention
if all the tasks are resource intensive.

In this paper, we propose a scheduling strategy based on
slowdown rate thresholds, as shown in Algorithm 1. We set
a static threshold H to 1 by default, which means no task
slowdown due to interference. When a free node Nodei re-
quests a task, ILA scheduler collects the system information
and evaluates the tasks Tasksj of each job on the sorted list.
ILA only evaluates a job once using its current estimated
task demand D̂t instead of testing all individual tasks in
the job, since all the tasks in a job have similar demand. If
the predicted slowdown rate Ŝj is not higher than H , ILA
scheduler accepts job j and stops searching. Otherwise it
refuses the job and processes the next one. If eventually
no job satisfies the condition, the scheduler rejects Nodei
and lets it wait for resource releasing. Such static threshold
method could lead to many idle slots and degrade the per-
formance. For example, if current H is 1 and the number of
running slots ZR on the sever is 2, we assume that the com-
pletion time slowdown rate of all the running tasks in the
same server is no higher than current H . Then the server’s
throughput is ZR/H = 2. If we increase H to 2, which
makes ZR to go up to 6, we have the throughput 6/2 = 3.
Although all the tasks are slowed down, the throughput is
improved. There is a tradeoff between individual task per-
formance and the job’s degree of parallelism.

We introduced a dynamic threshold Hd to deal with the

problem. ILA scheduler tries to increase the parallelism if
the number of idle slots ZI becomes more than one for k
seconds (20 seconds in our experiments). Within one phys-
ical server, the scheduler compares the current throughput
ZR/Hd with the predicted throughput if adding one more

task (ZR + 1)/Ŝj . If the latter is larger, ILA schedules the

task in and updates Hd as Ŝj . Hd should not be increased

endlessly. It will be decreased gradually if Ŝj is no larger
than Hd, which means Hd has become over set.

Algorithm 1 Interference-Aware Scheduling

1: When a hearbeat is received from a free node n:
2: Collect system information Ninfo;
3: Given a job j
4: Fetch task’s profile Tasksj ;

5: Predict the slow down rate Ŝj = Model(Ninfo, Tasksj);
6: Get the number of running slots ZR and idle slots ZI

7: if ZI > 1 for k seconds then
8: // use dynamic threshold

9: if (ZR + 1)/Ŝj > ZR/Hd and Ŝj > Hd then

10: update Hd = Ŝ and return the accepted job j;
11: else
12: if Ŝj <= Hd then

13: update Hd = min(Hd−1, Ŝj) and return the accepted
job j;

14: else
15: reject job j
16: end if
17: end if
18: else
19: Hd = H; //use the predefined threshold

20: if Ŝ <= H then
21: return the accepted job j
22: else
23: reject job j;
24: end if
25: end if

Locality-Aware Scheduling. The job that has passed
through interference check is sent to LASM. The module
searches all the tasks in the job and selects one whose input
data is deployed closest to the requesting VM. We define the
level of data locality according to the corresponding network
hierarchy: L0, L1, L2 and L3 represent node local, server
local, rack local and off rack, respectively. Lj denotes the
maximum allowed locality level for job j. Ljmin denotes
the minimal achievable locality level among all the tasks in
job j given the requesting VM. If Ljmin is no higher than
Lj , ILA scheduler accepts the task. Otherwise, ILA skips
the job’s scheduling unless its accumulated wait time Wj

becomes lager than delay thresholds. T̂ij denotes the wait
time for locality level i for job j, i ∈ [0, 2]. No delay is needed
in L3. The locality-aware scheduling algorithm is shown in
Algorithm 2.

In this algorithm, each job’s maximum allowed locality
level Lj is initialized to 0, i.e. the node locality. At each
scheduling interval, Lj is reset to the locality level of the
last accepted task in job j. If the scheduler can not find a
sufficiently “close” task, the job only needs to wait for the
cumulative delay interval, which is calculated from Lj to the
minimal achievable level Ljmin, instead of from level 0. For
example, if Lj = 1 and Ljmin = 2, the job only needs to
wait for the time of T1j , instead of T0j + T1j . This strategy
tends to reduce the unnecessary delay for the jobs, for which
the low locality levels are really difficult to achieve. We set

Algorithm 2 Locality-Aware Scheduling

1: System maintains four variables for each the job j:
2: maximum allowed level Lj ; accumulated wait time Wj ;
3: task input file size Fj ;

4: the delay interval T̂ij of each level i;
5: Get job j from Interference-aware scheduling module;
6: The free VM is vmn;
7: if Fj/Fb <= 0.01 then
8: return any unlaunched task t in job j ;
9: else
10: In job j, find the task t with the minimal locality level

Ljmin for vmn;
11: // the task whose input file located “closest” to vmn

12: if Ljmin <= Lj or Wj >=
∑(Ljmin−1)

l=Lj
T̂lj then

13: set Wj = 0
14: Lj = Ljmin; // reset Lj as the recently accepted level
15: return the accepted task t in job j;
16: else
17: reject job j and update Wj

18: end if
19: end if

the level 0 delay to a very small value, 0.5 second. The delay
intervals of other levels were all set to 5 seconds.

ILA Scheduling. The ILA scheduling algorithm is shown
in Algorithm 3. At each scheduling interval, the scheduler
sorts all the jobs according to their fair shares. The job that
is farthest below its fair share obtains the free node first.
Whenever a task request comes, ILA scheduler searches the
sorted list and select the first job whose tasks do not cause
interference. Then it searches the job’s task list and pick
a task that has “sufficiently close” data access. If failing to
find a satisfactory task, the scheduler rejects the node and
lets it wait for the next scheduling interval.

Algorithm 3 ILA Scheduling

1: System maintains the job queue Q;
2: When a hearbeat is received from a free node n:
3: Collect system information Ninfo;
4: Sort jobs in Q according to the fairness policy;
5: for each job j in Q do
6: job = IASM(jobj, Ninfo);
7: if job == null then
8: skip current job j, process the next one;
9: else
10: task = LASM(job, n);
11: if task == null then
12: skip current job j, process the next one;
13: else
14: assign task to the node n;
15: break the loop;
16: end if
17: end if
18: end for
19: if task == null then
20: reject node n;
21: end if

5. EVALUATION

5.1 Experimental Setup
We evaluated the ILA scheduling framework in a 72-node

Xen-based private virtual cluster, which consisted of 12 phys-
ical servers, each was configured with 12 CPU cores, 32GB
memory and one 500GB disk. Each server hosted 6 VMs and

Table 3: A summary of MapReduce benchmarks
Name Type Introduction

TeraSort I/O Sort the input data into a total order
TeraGen I/O Generate and write data into system
Grep I/O Extract matching regular expression
RWrite I/O Random write words into log file
WCount I/O Count words in the input file
PiEst CPU Estimate Pi using Monte Carlo method
Bayes CPU Contruct Bayes Classifier on input data
Kmean CPU Cluster analysis using K-mean method
Canopy CPU Cluster analysis using Canopy method
Matrix CPU Matrix add and multiplication

each VM was configured with 2 VCPUs and 2GB memory.
The 6 VMs were configured to compete for 10 cores and one
shared disk. The virtual cluster spanned 2 racks and was
connected by a 1Gbps Ethernet.

We installed a modified version of Hadoop 0.20.205 equipped
with ILA scheduler, system resource monitors and task pro-
filers. Based on hardware capacity, we configured each slave
with 2 map slots and 1 reduce slot, for a total of 144 map
slots and 72 reduce slots in the cluster. The HDFS block
size was set to 128 MB to improved performance according
to a Facebook’s report [31]. All other parameters were set
to their default configurations.

We evaluated ILA scheduler using 10 MapReduce appli-
cations, most of which were widely used in evaluations of
MapReduce framework by previous works [24, 17, 7, 32,
31, 8]. Table 3 shows their main characteristics. The ma-
chine learning applications were from mahout project [4].
In the experiments, we compared the performance of ILA
scheduler with 4 other main competitors in practical use:
1) PureFair scheduler conducts fair scheduling using greedy
method to maintain data locality, i.e. always selecting the
“closest” task from the scheduled job without any delay [13,
31]; 2) Delay scheduler uses delay scheduling algorithm to
achieve good data locality by slightly compromising fair-
ness restriction [31]; 3) Longest Approximate Time to End
(LATE) scheduler improves MapReduce applications’ per-
formance in heterogenous environment, like virtualized en-
vironment, through accurate speculative execution [32]; 4)
Capacity scheduler, introduced by Yahoo, supports multiple
queues for shared users and guarantees each queue a frac-
tion of the capacity of the cluster [6]; We also compared two
variants of ILA: 1)Interference-Aware Only (IAO) scheduler
only conducts interference-free scheduling with the help of
IASM, but uses greedy method to maintain data locality;
2) Locality-Aware Only (LAO) scheduler only uses LASM to
conduct Adaptive Delay Scheduling to improve data locality
without considering VM interference.

5.2 Performance of ILA Scheduler
We evaluated ILA scheduler through a set of macro bench-

marks based on the workload trace from Facebook reported
in [31], according to which, the job size, in terms of number
of map tasks, presents the distribution as shown in the first
two columns of Table 4. We adjusted the total number of
jobs based on our cluster’s scale and generated a job sub-
mission schedule for 25 jobs. According to the trace, the
distribution of inter-arrival times between jobs was roughly
exponential with a mean of 14 seconds. It makes our sub-
mission schedule 253 seconds long. The tested applications

Table 4: Job type and job size distribution
JobSize % # # of I/O(size) # of CPU(size)

1-2 54% 14 6 TeraSort(2) 8 Kmean(1)
3-20 14% 4 2 TeraSort(10) 2 Bayes(20)

21-150 14% 3 1 RWrite(40)
2 Grep(120)

151-300 6% 1 1 WCount(250)
301-500 4% 1 1 PiEst(480)
> 500 8% 2 1 TeraGen(600) 1 PiEst(1000)

 0

 20

 40

 60

 80

 100

 120

 140

T
hr

ou
gh

pu
t (

ta
sk

s/
m

in
ut

e)

ILA
Pure Fair

Delay
LATE

Capacity
IAO

LAO

Figure 5: Throughput due to different schedulers.

are listed in Table 4 with the columns representing the job
size, the percentage of the total jobs, the actual number of
running jobs, the number of I/O-bound jobs and the number
CPU-bound jobs, respectively.

Figure 5 shows the system throughput due to different
schedulers. ILA scheduler yielded an improvement of up
to 1.9 time in throughput over interference-oblivious sched-
ulers, including PureFair, Delay, LATE, Capacity and LAO
schedulers, and led to an improvement of 1.3 times over IAO
scheduler. Figure 6 shows the average completion time of
each type of jobs due to different task schedulers. The re-
sults are normalized with respect to the performance due to
ILA scheduler. Compared with interference-oblivious sched-
ulers, ILA scheduler could speed up individual jobs by 1.5-
6.5 times. It led to an improvement of 1.1-2.0 times in job
completion time in comparison with IAO scheduler. The
interference-oblivious schedulers had similar performance.
The delay-based scheduling algorithm in Delay and LAO
schedulers could not speed up the jobs because the tasks
were significantly slowed down due to resource contention no
matter how they access the data. Capacity scheduler also
lost its effectiveness in such virtualized environments be-
cause it was unable to guarantee each job queue’s resource
portion in the presence of VM interference. LATE sched-
uler could not maintain its efficiency due to severe resource
contention. IAO scheduler only considers the effect of inter-
ference. The greedy data locality policy is attributed to its
performance degradation.

Figure 7 shows the percentage of tasks in the jobs with lo-
cal data access. Since node local tasks and server local tasks
have similar performance, the calculated local data access
includes both node local access and server local access. Jobs
are demonstrated in two groups: I/O-bound jobs and CPU-
bound jobs. Recall that the Adaptive Delay Scheduling al-
gorithm manages to achieve good data locality for tasks with
sufficiently large input file. Thus, for CPU-bound jobs with
small input files, ILA and LAO scheduler used default greedy
locality policy. (TeraGen and RWrite are not shown because
they have no input files). From Figure 7, we can see that

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 2 4 6 8 10 12 14 16 18 20

C
D

F

Task Slowdown Rate

ILA
Pure Fair

Delay
LATE

Capacity
IAO

LAO

Figure 8: CDF of task completion time.

for I/O-bound jobs, ILA brought the average local data ac-
cess up to 90%. It gained 65% improvement over PureFair,
LATE, Capacity and IAO schedulers, and 20% improvement
over Delay schedulers. As expected, schedulers using greedy
locality policy, such as PureFair, LATE, Capacity and IAO
schedulers, achieved the lowest local data access. For Delay
scheduler, three major factors are attributed to its worse
performance compared with ILA scheduler: first, it intro-
duces much longer delay after failing to find a node local
task. Second, launching premature rack local tasks instead
of server local ones due to the unawareness of server locality.
Third, many unexpected long tasks caused by interference
make the delay scheduling less efficient. For CPU-bound
jobs, their performance are insensitive to data locality. ILA
scheduler generated 60% local task without any delay. Al-
though Delay scheduler achieved the highest percentage, it
may cause unnecessary long time delay and harm the per-
formance.

ILA scheduler improved jobs’ performance by accelerating
each individual task. Figure 8 plots the cumulative distri-
bution of completion time of individual tasks under differ-
ent schedulers. The completion time is normalized with re-
spect to that of the task running with node local data access
and without any interference. We can see that under ILA
scheduling, 70% of the tasks (2440 tasks in total) proceed
without any slowdown, 90% run with less than 1.5x slow-
down and 99% run with less than 2.5x slowdown. IAO per-
formed slightly worse with 83% of tasks runnig less than 2x
slower and 99% running less than 10x slower. The task slow-
down rate significantly rised under the interference-oblivious
scheduling. For PureFair, Delay, LATE, Capacity and LAO
schedulers, only 15% of the tasks could run without any in-
terference and up to 60% run with more than 2x slowdown.
The completion times of 10% tasks were increased by more
than 10 times.

From the results, we can make several observations. First,
small jobs tend to be improved more by ILA scheduler than
large jobs, as shown in Figure 6. One of the reasons is that
small jobs are easily affected by interference. If one task of
a small job is slowed down greatly, the whole job’s comple-
tion time is very likely increased due to waiting for the slow
task. However, for a large job, the task slowdown can be
amortized by other concurrent normal running tasks as long
as the delayed tasks are not in the last batch. Moreover,
for a large job, the performance degradation in individual
tasks may be compromised by the increased parallel degree.
But for small jobs, the degree of parallelism is limited by
the number of tasks. Another reason for small jobs gain-
ing more improvement is that launching node local tasks is

 0

 1

 2

 3

 4

 5

 6

 7

 8

TeraSort(2) TeraSort(10) RWrite(40) Grep(120) WCount(250) TeraGen(600) Kmean(1) Bayes(20) PiEst(480) PiEst(1000)

N
or

m
al

iz
ed

 C
om

pl
et

io
n

T
im

e

ILA
Pure Fair

Delay
LATE

Capacity
IAO

LAO

Figure 6: Job completion time due to different schedulers.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

TeraSort(2) TeraSort(10) Grep(120) WCount(250) Average(I/O) Kmean(1) Bayes(20) PiEst(480) PiEst(1000) Average(CPU)

P
er

ce
nt

ag
e

of
 L

oc
al

 D
at

a
A

cc
es

s ILA
Pure Fair

Delay
LATE

Capacity
IAO

LAO

Figure 7: Data locality due to different schedulers.

much more difficult for them. Compared with large jobs,
small jobs have much fewer input file blocks, which makes
them having much less nodes with local data. Therefore,
achieving the server locality could significantly increase the
number of local nodes without degrading the performance.
As shown in Figure 7, for the small job TeraSort(2), the
schedulers which are unaware of the server locality could
only achieve less than 35% local access. ILA was able to
improve it to 85%.

The second observation is that interference could cause
much more severe performance degradation than remote data
access. Remote data access could only affect individual tasks
but interference may impose impact on the scheduled task
and all of the co-hosted tasks. As shown in Figure 6 and
Figure 8, LAO scheduler led to more job and task slow-
down than IAO scheduler. This observation explains why
ILA scheduler mitigates interference before improving data
locality if there is a conflict between these two aspects.

5.3 Benefits of Interference and Locality Aware
Scheduling

In this section, we demonstrate effectiveness of IASM and
LASM modules with the specifically designed experiments.

Benefit from IASM. IASM is the component in ILA
conducting the interference-aware scheduling. To isolate
the effect from data locality, we selected the Matrix and
TeraGen applications in evaluation because neither of them
requires input data. Each Matrix job was comprised of 150
map tasks and each TeraGen job contained 400 map tasks.
We submitted 3 Matrix jobs and 3 TeraGen jobs to the
cluster alternatively with 15 seconds time interval.

Figure 9 shows the normalized completion time of each
type of jobs due to different schedulers. Since there is no
data locality effect, ILA and IAO were reduced to the same

scheduler, which speeded up the jobs by 2.0-3.0 times com-
pared with the interference-oblivious schedulers. Delay and
LAO schedulers became equivalent to PureFair scheduler
without the data locality effect. There was also no obvious
improvement achieved by either LATE or Capacity sched-
uler. Their performance were mainly limited by the side ef-
fect of interference. From Figure 9, we can also see that job’s
completion time only varied within 18% due to ILA schedul-
ing. In contrast, under the interference-oblivious scheduling,
job’s performance fluctuated in a much wider range from
10% to 70%. The reason is that interference seldom evenly
affects all the tasks in one job. Task’s performance heav-
ily depends on the current system status of the host VM,
the physical server and its own characteristics. Thus only
the interference aware scheduling could provide a stable and
predictable system.

Benefit from LASM. LASM module is in charge of the
locality aware scheduling. To demonstrate its effectiveness,
we eliminated the influence from VM interference by design-
ing a micro-benchmark with a set of elaborately modified
applications. We carefully adjusted the resource demand of
PiEst and Grep applications by injecting idle loops into the
programs. These modified applications, noted as MPiEst
and MGrep, still consume sufficient resources to maintain
their characteristics but will not cause resource contention
even running on co-hosted VMs. Each MPiEst job con-
tained 100 map tasks and each MGrep contained 350 tasks.
We submitted 3 MPiEst jobs and 3 MGrep jobs and also
run some independent applications to mimic background
network traffic without interfering with the scheduling.

Figure 10 shows the normalized completion time and the
percentage of local tasks due to different schedulers. For the
I/O-bound job MGrep, the schedulers with LASM mod-
ules (ILA and LAO) brought the percentage of local tasks

 0

 1

 2

 3

 4

 5

Matrix(150) TeraGen(400)

N
or

m
al

iz
ed

 C
om

pl
et

io
n

T
im

e ILA
Pure Fair

Delay
LATE

Capacity
IAO

LAO

Figure 9: Benefits of interference-
aware scheduling.

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

MPiEst(100) MGrep(350)

P
er

ce
nt

ag
e

of
 L

oc
al

 D
at

a
A

cc
es

s

ILA
Pure Fair

Delay
LATE

Capacity
IAO

LAO

(a) Job data locality

 0

 0.5

 1

 1.5

 2

 2.5

 3

MPiEst(100) MGrep(350)

N
or

m
al

iz
ed

 C
om

pl
et

io
n

T
im

e ILA
Pure Fair

Delay
LATE

Capacity
IAO

LAO

(b) Job completion time

Figure 10: Benefits of locality-aware scheduling.

to nearly 100%. In contrast, the schedulers using the de-
fault greedy locality policy (PureFair, LATE, Capacity and
IAO) only achieved less than 58% locality. As a result,
these schedulers slowed down the jobs by nearly 1.8 times.
The Delay Scheduling demonstrated its advantage over the
greedy locality policy. It yielded 90% local tasks. However,
due to the awareness of the server locality, ILA scheduler
achieved a 10% improvement in data locality and a 23%
improvement in completion time over Delay scheduler.

For CPU-bound job MPiEst, without any delay, LASM-
based schedulers launched 80% local tasks and the sched-
ulers with greedy locality policy launched 50%. Only Delay
scheduler postponed tasks in order to improve data locality.
Since MPiEst is insensitive to data access, although having
achieved 95% locality, Delay scheduler was still the worst
one due to unnecessary delay for each task. It slowed down
MPiEst job by 1.3 times compared with ILA. This result
shows that LASM could speed up jobs through dynamically
setting delay intervals according to their input file sizes.

5.4 Interference Prediction Model Analysis
In this section, we evaluate the accuracy of the exponen-

tial interference prediction model. For comparison purpose,
we also designed and implemented two other models: lin-
ear model and quadratic model, which are used in previous
work [11]. These two models require the same performance
critical parameters for interference prediction, as shown in
Table 2. They estimate that the job’s performance and
the system resource consumption presents a linear and a
quadratic relationship, receptively,

To assess the prediction accuracy of the interference model,
we selected the coefficient of determination (R2) as one of
the measurement. R2 is widely used in the context of statis-
tical models whose purpose is the prediction of future out-
comes on the basis of related information. It is defined as
R2 = 1− (

∑K
i=0(yi − ŷi)

2/
∑K

i=0(yi − ȳi)
2), where K is the

total number of samples. y, ŷ and ȳ denote the actual value,
predicted value and the mean of actual values, receptively.
Table 5 shows the R2 value for each type of jobs due to
different models. The evaluated job set includes all the 10
applications listed in Table 3. We can see that, compared
with the other two models, the exponential model led to
higher R2 values for both types of jobs, which means higher
accuracy. It brought overall R2 value to 0.887. In contrast,
linear model and quadratic model only achieve 0.657 and
0.714 for overall R2 value, receptively.

We also evaluated the exponential model using a more
direct metric, the prediction error, which is defined as |y−
ŷ|/y. Figure 11 shows the yielded prediction errors for

Table 5: R2 due to different models.
Model I/O-bound CPU-bound Overall
Linear 0.676 0.611 0.657

Quadratic 0.722 0.672 0.714
Exponential 0.895 0.879 0.887

 0

 0.1

 0.2

 0.3

 0.4

 0.5

I/O-bound CPU-bound Average

P
re

di
ct

io
n

E
rr

or

Linear
Quadratic

Exponential

Figure 11: Prediction error due to different models.

each type of jobs due to different models. The box heights
represent the average prediction errors and the error bars
represent the prediction accuracy deviations among all of the
evaluated jobs. We can see that the exponential model could
reduce the average prediction error by 15% compared with
the linear model and by 10% compared with the quadratic
model. The exponential model led to an average of 12% error
rate. It was able to keep the prediction error below 14% for
all kinds of jobs. According to the experimental results in
Section 5.2 , such accuracy of the interference prediction
model is acceptable for ILA scheduling. It could efficiently
mitigate the interference and make most of the tasks running
without being slowed down.

5.5 Effectiveness of Dynamic Threshold
As discussed in Section 4.4, we introduced a dynamic

threshold policy to deal with the tradeoff between the in-
dividual task performance and the degree of the job’s paral-
lelism during interference-aware scheduling. In this section,
we evaluate the effectiveness of the dynamic threshold policy
by comparising with the static ones.

We generated three types of workloads including mixed,
pure CPU and pure I/O applications. The compared po-
lices included static policies with the threshold H set as 1,
2, 4, 6 and 8, and the policy with no threshold. Figure 12
shows the system throughputs due to different polices. We
observed that dynamic threshold policy always achieved the
highest throughput for all kinds of workloads. In contrast,
the no-threshold policy, i.e. the interference-oblivious pol-

 0

 20

 40

 60

 80

 100

 120

 140

 160

Mix I/O CPU

T
hr

ou
gh

pu
t (

ta
sk

s/
m

in
ut

e) Dynamic
H=1
H=2
H=4
H=6
H=8

No threshold

Figure 12: Performance improvement due to dy-
namic threshold policy.

icy, always performed worst. The static policies could not
yield consistent performance. For example, when H is 1,
the scheduler achieved nearly highest throughput under Mix
workload, but caused 40% performance degradation under
CPU-bound workload. That is because under the mixed
workload, the scheduler is easy to find a task without any
interference due to the diversity in task demands. However,
under a pure CPU or I/O-bound workload, increasing the
tasks’ parallelism with a little compromising individual task
performance may be more beneficial to the whole job. Thus,
there is no single optimal static threshold for all kinds of
workloads. We can see that dynamic threshold policy was
able to improve the throughput by up to 40%-100% over
static policies.

6. RELATED WORK
There have been many studies devoted to improving sys-

tem performance of cluster applications, especially MapRe-
duce applications via task scheduling optimization, adaptive
resource management or data locality improvement.

Task Scheduling for Cluster Applications. Follow-
ing on the MapReduce seminar work [13], many researches
focused on improving task scheduling algorithms for this
framework. Yahoo’s Capacity scheduler supports multiple
queues for shared users and guarantees each queue a fair
share of the capacity of the cluster [6]. Facebook’s fair-
ness scheduler uses delay scheduling algorithm to achieve
good data locality by slightly compromising fairness restric-
tion [31]. In [32], Zaharia, et al. proposed Longest Approxi-
mate Time to End (LATE) scheduling algorithm to improve
MapReduce applications’ performance in heterogenous envi-
ronment through accurate speculative execution. However,
none of them could maintain its effectiveness in virtualized
cloud environments due to VM interference.

A large body of work has studied the task scheduling algo-
rithm in other distributed frameworks. For example, in [16],
Isard et al. introduced a scheduler Quincy for Microsoft’s
Dryad computing environment [5] to achieve good data lo-
cality while maintaining fairness through an optimization
process; In [29], the Condor scheduler was extended to grid
to improve performance within locality constraints. How-
ever, these approaches are designed for physical clusters.
Their performance may be compromised by the virtualiza-
tion overhead and interference when moving to the cloud.

Resource Management and Interference Mitiga-
tion. As MapReduce cloud service becomes an attractive
usage model, virtual resource management for MapReduce
applications has draw more and more attentions. In [28, 19],
resource management frameworks were proposed to dynam-

ically adjusts resource allocations to MapReduce jobs. Park
et al. introduced a locality-aware dynamic VM reconfigura-
tion technique to improve MapReduce’s performance [25].
In [24], a resource management framework Purlieus was
proposed to enhance the performance of MapReduce jobs
by coupling data and VM placement. In [21], Li et al.
proposed, CAM, a topology aware resource manager for
MapReduce applications in clouds using a minimum cost
flow method. CAM focused on optimizing data and VM
placement with considerations of task data locality as well
as resource utilization, including both computational and
storage resources. In contrast, ILA addresses the manage-
ment issue from a different perspective. It improves the per-
formance of MapReduce applications via application-level
task scheduling optimization. ILA is able to adapt to any
data/VM deployment and resource allocation policy. It re-
quires no modification for the underlying resource manage-
ment. Moreover, ILA can not only avoid server overload due
to inappropriate VM deployment or resource allocations, but
also mitigate interference between co-hosted VMs.

Overcoming the interference between co-hosted VMs is
one of the essential challenges in cloud management. Hard-
ware or operating system solutions have been extensively
studied in previous works, including dynamical cache parti-
tion [30], intelligent memory management [22] and improved
operating system scheduling [34]. Our approach deals with
the interference problem without any modification of exist-
ing hardware platforms or operating systems. In [23], Q-
Clouds suggested to mitigate the interference by dynamically
tuning resource allocation to VMs using an online feedback
control method. Most recently, TRACON, an interference-
aware task scheduler was proposed for data-intensive ap-
plications in virtual environment [11]. It is able to effec-
tively mitigate I/O interference with the help of a prediction
model. As shown in Section 5.4, their model is less accurate
than ILA’s exponential prediction model. Also TRACON
focused on mitigating interference with no consideration of
data locality.

Locality Improvement for Cluster Applications. A
lot of works are devoted to improving data locality for data-
intensive cluster applications. In [7], a system that repli-
cated blocks based on their popularity was presented to alle-
viate data hotspots and speed up jobs. In [17], Jin et al. pro-
posed an availability-aware MapReduce data placement pol-
icy for non-dedicated distributed computing environment.
These approaches were mainly designed for physical envi-
ronment. However, in cloud environments, the predictions
on popularity [7] or availability [17] may lose their effective-
ness due to the unawareness of the presence of two levels of
topology: physical server and VM level. Hotspots may still
exist on the physical server level when the data placement
is optimized for the VM level. Moreover, in cloud, data lo-
cality optimization does not necessarily lead to performance
improvement due to the resource contention. ILA scheduler
considers both interference and task data locality.

Performance Optimization for MapReduce. The
growing popularity of MapReduce has spurred many works
on improving the MapReduce performance from system to
application level. Kang et al. improved the performance of
MapReduce virtual cluster by modifying the context-switching
mechanism of the Xen credit scheduler [18]. Herodotou et al.
proposed StarFish to improve MapReduce performance by
automatically configuring Hadoop parameters [15]. In [8],

an “outlier-control” framework Mantri was presented, which
could detect the abnormal tasks and proactively take correc-
tive action. These works are orthogonal to our ILA work.

7. CONCLUSION
This paper presents an interference and locality-aware sched-

uler for virtual MapReduce clusters. It relies on two schedul-
ing modules: IASM and LASM. The former performs the
interference-free scheduling with the assistance of a perfor-
mance prediction model and the latter improves task data
locality by using Adaptive Delay Scheduling algorithm. Ex-
perimental results show that ILA scheduler could achieve
a speedup of 1.5-6.5 times for individual jobs and yield an
improvement of up to 1.9 times in system throughput com-
pared with 4 other schedulers. It improves data locality of
map tasks by up to 65%. Although ILA scheduling algo-
rithm is designed for MapReduce framework, it could be
applicable to other virtual cluster schedulers.

In MapReduce clusters, besides locally running tasks, HDFS
may also issue I/O requests for a remote data access. ILA
considers this I/O flow as the background traffic and man-
ages to mitigate the interference through task scheduling. In
the future, we would like to extend ILA scheduler to mitigate
the interference from HDFS through intelligent data place-
ment and data node selection. In a MapReduce framework,
the data transfer between map and reduce tasks consumes
substantial network resource. ILA scheduler assumes the
mappers evenly distributed across the cluster and the lo-
cality of reducers would not greatly affect the performance.
Another direction of the future work is minimizing the com-
munication overhead between map and reduce tasks by im-
proving reducer’s locality when the distribution of map tasks
is skewed.

8. ACKNOWLEDGMENTS
This research was supported in part by U.S. NSF grants

CCF-1016966 and CNS-0914330.

9. REFERENCES
[1] Amazon ec2. http://aws.amazon.com/ec2/.
[2] Amazon elastic mapreduce. http://aws.amazon.com/

elasticmapreduce/.
[3] Apache hadoop. http://hadoop.apache.org.
[4] The apache mahout project. http://mahout.apache.org/.
[5] Microsoft dryad project. http://research.microsoft.com/

en-us/projects/dryad/.
[6] Yahoo! inc. capacity scheduler. http://hadoop.apache.

org/docs/stable/capacity_scheduler.html.
[7] G. Ananthanarayanan, S. Agarwal, S. Kandula, A. G.

Greenberg, I. Stoica, D. Harlan, and E. Harris. Scarlett:
coping with skewed content popularity in mapreduce
clusters. In EuroSys, pages 287–300, 2011.

[8] G. Ananthanarayanan, S. Kandula, A. G. Greenberg,
I. Stoica, Y. Lu, B. Saha, and E. Harris. Reining in the
outliers in map-reduce clusters using mantri. In OSDI,
2010.

[9] X. Bu, J. Rao, and C.-Z. Xu. A reinforcement learning
approach to online web systems auto-configuration. In
ICDCS, 2009.

[10] X. Bu, J. Rao, and C.-Z. Xu. A model-free learning
approach for coordinated configuration of virtual machines
and appliances. In MASCOTS, 2011.

[11] R. C.-L. Chiang and H. H. Huang. Tracon:
interference-aware scheduling for data-intensive applications
in virtualized environments. In SC, page 47, 2011.

[12] E. K. P. Chong and S. H. Zak. An Introduction to
Optimization, 3rd Edition. Wiley Press, 2008.

[13] J. Dean and S. Ghemawat. Mapreduce: Simplified data
processing on large clusters. In OSDI, 2004.

[14] N. R. Draper and H. Smith. Applied Regression Analysis.
John Wiley and Sons, 1981.

[15] H. Herodotou, H. Lim, G. Luo, N. Borisov, L. Dong, F. B.
Cetin, and S. Babu. Starfish: A self-tuning system for big
data analytics. In CIDR, pages 261–272, 2011.

[16] M. Isard, V. Prabhakaran, J. Currey, U. Wieder, K. Talwar,
and A. Goldberg. Quincy: fair scheduling for distributed
computing clusters. In SOSP, pages 261–276, 2009.

[17] H. Jin, X. Yang, X.-H. Sun, and I. Raicu. Adapt:
Availability-aware mapreduce data placement for
non-dedicated distributed computing. In ICDCS, pages
516–525, 2012.

[18] H. Kang, Y. Chen, J. L. Wong, R. Sion, and J. Wu.
Enhancement of xen’s scheduler for mapreduce workloads.
In HPDC, pages 251–262, 2011.

[19] P. Lama and X. Zhou. AROMA: Automated resource
allocation and configuration of mapreduce environment in
the cloud. In Proc. ACM International Conference on
Autonomic Computing (ICAC), pages 63–72, 2012.

[20] P. Lama and X. Zhou. Ninepin: Non-invasive and energy
efficient performance isolation in virtualized servers. In
DSN, pages 1–12, 2012.

[21] M. Li, D. Subhraveti, A. R. Butt, A. Khasymski, and
P. Sarkar. Cam: a topology aware minimum cost flow based
resource manager for mapreduce applications in the cloud.
In HPDC, pages 211–222, 2012.

[22] T. Moscibroda and O. Mutlu. Memory performance
attacks: Denial of memory service in multi-core systems. In
16th USENIX Security Symposium, 2007.

[23] R. Nathuji, A. Kansal, and A. Ghaffarkhah. Q-clouds:
managing performance interference effects for qos-aware
clouds. In EuroSys, pages 237–250, 2010.

[24] B. Palanisamy, A. Singh, L. Liu, and B. Jain. Purlieus:
locality-aware resource allocation for mapreduce in a cloud.
In SC, page 58, 2011.

[25] J. Park, D. Lee, B. Kim, J. Huh, and S. Maeng.
Locality-aware dynamic vm reconfiguration on mapreduce
clouds. In HPDC, pages 27–36, 2012.

[26] J. Rao, X. Bu, and C.-Z. Xu. A distributed self-learning
approach for elastic provisioning of virtualized cloud
resources. In MASCOTS, 2011.

[27] J. Rao, X. Bu, C.-Z. Xu, L. Wang, and G. Yin. Vconf: a
reinforcement learning approach to virtual machines
auto-configuration. In Proceedings of the 6th international
conference on Autonomic computing, ICAC ’09, pages
137–146, New York, NY, USA, 2009. ACM.

[28] T. Sandholm and K. Lai. Mapreduce optimization using
regulated dynamic prioritization. In
SIGMETRICS/Performance, pages 299–310, 2009.

[29] D. Thain, T. Tannenbaum, and M. Livny. Distributed
computing in practice: the condor experience. Concurrency
- Practice and Experience, 17(2-4):323–356, 2005.

[30] Y. Xie and G. H. Loh. Pipp: promotion/insertion
pseudo-partitioning of multi-core shared caches. In ISCA,
2009.

[31] M. Zaharia, D. Borthakur, J. S. Sarma, K. Elmeleegy,
S. Shenker, and I. Stoica. Delay scheduling: a simple
technique for achieving locality and fairness in cluster
scheduling. In EuroSys, pages 265–278, 2010.

[32] M. Zaharia, A. Konwinski, A. D. Joseph, R. H. Katz, and
I. Stoica. Improving mapreduce performance in
heterogeneous environments. In OSDI, 2008.

[33] Y. Zhang, W. Sun, and Y. Inoguchi. Predicting running
time of grid tasks based on cpu load predictions. In GRID,
2006.

[34] S. Zhuravlev, S. Blagodurov, and A. Fedorova. Addressing
shared resource contention in multicore processors via
scheduling. In ASPLOS, pages 129–142, 2010.

http://aws.amazon.com/ec2/
http://aws.amazon.com/elasticmapreduce/
http://aws.amazon.com/elasticmapreduce/
http://hadoop.apache.org
http://mahout.apache.org/
http://research.microsoft.com/en-us/projects/dryad/
http://research.microsoft.com/en-us/projects/dryad/
http://hadoop.apache.org/docs/stable/capacity_scheduler.html
http://hadoop.apache.org/docs/stable/capacity_scheduler.html

	Introduction
	Background and Motivation
	Hadoop in Virtualized Environments
	Virtual Machine Interference
	Data Locality

	System Architecture
	ILA Scheduler Design
	Interference Prediction Model
	Data Locality Improvement
	System Monitoring and Task Profiling
	ILA Scheduling

	Evaluation
	Experimental Setup
	Performance of ILA Scheduler
	Benefits of Interference and Locality Aware Scheduling
	Interference Prediction Model Analysis
	Effectiveness of Dynamic Threshold

	Related Work
	Conclusion
	Acknowledgments
	References

