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Abstract—As the scale of cloud systems continues to grow,
virtualized networks that provide connectivity between services
within and across data centers, are becoming increasingly impor-
tant to the performance and reliability of the cloud. Despite many
advantages, including fast deployment, ease of management,
and programmability, virtualized networks require additional
layers of abstraction and complicate monitoring and diagnosis of
performance issues compared to traditional networks on physical
hardware. Virtualized networks usually connect components in
multiple protection domains, such as a guest OS, the hypervisor,
network bridges, and separate virtualized network functions.
There is no efficient means to trace packet transmission across the
boundaries. Furthermore, it is challenging to reason about the
performance of dynamic virtualized networks. Therefore, fine-
grained, user customizable, and reconfigurable network tracing
becomes a great need. To address these challenges, we built
vNetTracer, an efficient and programmable packet profiler for
virtualized networks. vNetTracer relies on the extended Berkeley
Packet Filter (eBPF) to dynamically insert user-defined trace
programs into a live virtualized network without any changes to
the applications or restarts of the monitored network. Through
three case studies, we demonstrate the effectiveness of vNetTracer
in diagnosing various virtualized networking problems.

I. INTRODUCTION

The adoption of virtualization in enterprise systems and data
centers has given rise to on-demand, elastic, and cost-effective
cloud services. Virtualized networks, which provide connectiv-
ity to physically or virtually isolated virtual machines (VMs)
or containers, are critical to horizontally scaling the cloud
services. Studies have shown that network virtualization tech-
niques, such as software defined network (SDN) and network
function virtualization (NFV), can improve network utilization
while offering better quality-of-service (QoS) guarantees [35],
[36], [40]. However, the additional layers of abstraction, high
resource consolidation and complexity in the virtualized net-
works make it difficult to understand, diagnose, and optimize
networking performance in the cloud.

Unlike the conventional networks, virtualized networks
present unique challenges to performance tracing. First, vir-
tualized networks usually span multiple protected domains,
such as the host OS or hypervisor, virtual devices and the vir-
tual OS. Tracing end-to-end performance requires that events
within each domain can be correlated. However, no tools can
efficiently cross the boundaries of the protected domains to as-
sociate the tracing information. Second, performance issues of
virtualized networks usually occur with high load, in which the
networking performance is sensitive to the tracing overhead.

This requires a lightweight tracing tool which can monitor
virtualized networks with negligible expenditure. Third, the
complexity and volatility of virtualized networks require that
the tracing tool is reconfigurable in real time and provides a
rich set of metrics for performance diagnosis.

There are a plethora of works focusing on tracing net-
work and distributed systems. However, they fall short of
addressing the challenges in tracing virtualized networks. To
make sense the performance of virtualized networks, such
as understanding the causes of long tail latency under high
load, it is necessary to trace the network applications at
the packet level. Existing studies have shown that recording
the tracing data per packet, which often requires significant
data copy and context switching between kernel space and
user space, incurs prohibitive overhead during the system
monitoring [20], [37]. Furthermore, virtualized networks often
comprise multiple layers of abstraction to attain isolation and
allow for reconfiguration. Thus, it is essential to instrument the
virtualized system to provide the needed trace for performance
diagnosis. Manual or static instrumentations [23], [27], [28],
[31], [32], [50], [52], [59] often require intrusive changes
to the system and cannot be generalized to tracing different
applications. Machine learning-based log analysis [38], [43],
[57] relies on comprehensive instrumentation of the system,
from which meaningful information can be mined. Existing
dynamic instrumentation tools, such as DTrace [2], System-
Tap [13], and DARC [55], cannot trace across the boundary of
protected domains in virtualized systems. Distributed tracing
systems, e.g., Pivot tracing [41], are usually implemented at
application or middleware level, thereby unable to trace packet
transmission inside OS kernels.

In this paper, we leverage the extended Berkeley Packet
Filter (eBPF), a dynamic tracing mechanism in modern Linux
kernels, to enable lightweight and programmable tracing for
virtualized networks on multiple nodes. Although eBPF has
been increasingly adopted for traffic control [11], network
security [24] or accelerating network infrastructure [6], [16],
[21], there are no prior explorations of system performance
tracing based on eBPF. To this end, we present the design
and implementation of vNetTracer, an eBPF-based tracing
framework, which enables efficient, flexible and end-to-end
network performance monitoring for applications in virtualized
networks. Different from the traditional tracing tools, vNet-
Tracer has the following features:



• Tracing across boundaries: vNetTracer enables end-
to-end tracing across boundaries and can correlate dis-
tributed events in separate, protected domains.

• Efficiency: vNetTracer incurs marginal runtime overhead
and is efficient for performance monitoring and trou-
bleshooting in the highly consolidated and optimized
virtualized networks.

• Programmability: vNetTracer provides rich performance
monitoring metrics, supports customized network packet
tracing, and can be configured based on different re-
quirements. Users can modify tracepoints, tracing rules
or actions in vNetTracer at runtime.

To achieve the above goals, we make three contributions in
designing vNetTracer. First, to enable the end-to-end tracing
across software or hardware boundaries, vNetTracer generates
a unique trace ID for each packet and embeds the ID into
the network packet header of the target application. The trace
ID is used to differentiate individual network packet and
construct the tracing log for further analysis. Second, we
develop a set of performance metrics based on the tracing data,
which characterize the performance of virtualized networks,
including per-flow throughput, the decomposition of end-to-
end latency, per-flow packet drop rate, per-device network
processing time, etc. Last, we make several optimizations to
minimize the runtime overhead during the network tracing.

Another contribution of this paper is the use of vNetTracer
to trace network performance in various virtualized systems
and case studies show that vNetTracer can effectively monitor
virtualized networks and satisfy different scenarios. Specially,
vNetTracer helps us find that 1) the throughput-intensive
flow in the ingress port of Open vSwitch (OVS) might
cause the network congestion and delay latency-intensive flow
through OVS; 2) the default configuration of the Xen’s credit2
scheduler incurs long tail network latency when executing
CPU-intensive VMs and latency-intensive VMs on the same
physical CPU; 3) the inefficient processing of a large number
of softirqs in multicore systems imposes a significant perfor-
mance bottleneck for container overlay networks.

The rest of this paper is organized as follows. Section II
introduces the background and Section III describes the system
design and implementation of vNetTracer. Section IV presents
the evaluation and case studies results. Section V discusses the
related work and Section VI concludes this paper.

II. BACKGROUND

eBPF based tracing. The classic Berkeley Packet Filter
(BPF) [42] is a kernel architecture for packet capture, which
permits sending and receiving network packets at data link
layers. However, due to its limited instruction set and difficulty
in programming, the classic BPF is only used in few applica-
tions, e.g., tcpdump. Extended BPF (eBPF) is an extension
of classic BPF, which introduces lots of new features and
improves the performance. For instance, eBPF introduces new
in-kernel Just-In-Time (JIT) machine, more register support
and many new data structures for generating more complex
and advanced eBPF programs. As shown in Figure 1, eBPF
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Fig. 1: The mechanism of eBPF in Linux. The left one shows
the eBPF code insertion from user space into kernel space.
The right one shows the trace data is collected from kernel
space to user space when eBPF programs execute.

allows programmers to attach user-defined programs into the
kernel and the compiled eBPF bytecode can be executed on
a live in-kernel VM, which performs insignificant negative
impact to the kernel. Once the tracing events are triggered, the
monitoring data can be either temporarily stored in the eBPF
data structures inside kernel or collected asynchronously to the
user space. Linux started to support eBPF since kernel 3.15
and introduced more BPF enhancements in the later versions.

Compared to the traditional monitoring, tracing based on
the eBPF provides several advantages. First, it enables users
to trace high frequency modules, such as context switches
or packet processing, with little runtime overhead. Second,
instead of adding inflexible and dull log inside the systems,
the eBPF tracing is highly programmable and can be designed
for different purposes. Last, as the tracing logics can be
loaded or unloaded dynamically, it does not involve too many
modifications to the existing systems.

eBPF versus SystemTap. SystemTap [13] is a tracing plat-
form which is used for dynamically instrumenting processes
and Linux kernel activities. Many previous efforts have ana-
lyzed the SystemTap runtime overhead [10], [14], [30], [33]. In
general, the overhead of SystemTap comes from two aspects.
First, the frequency of traces and the actions that SystemTap
script performs have a significant impact on the instrumen-
tation overhead [33]. For instance, tracing high performance
network I/O, which processes tens of thousands interrupts each
second, might have non-negligible overhead to the monitored
systems. Second, the compilation of the SystemTap script
during the start stage or tracing data collection between kernel
and user space during the finish stage might also incur some
overhead. In comparison, eBPF programs execute through
an efficient virtual machine inside the kernel and the JIT
compiling minimizes the execution overhead of the eBPF
code. We will further compare and discuss the overhead of
SystemTap with eBPF in Section IV.

Limitation. vNetTracer relies on recent eBPF features, and
consequently requires a Linux kernel 4.9 and above. Also,
the eBPF program is limited by its size, which allows at
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Fig. 2: vNetTracer architecture.

most 4k instructions. In addition, as the eBPF programs are
only attached at tracepoints such as network sockets, kprobes,
etc., vNetTracer is also limited by the tracepoint position.
In comparison, many other techniques, such as Time Cap-
sule [52], can add tracepoints arbitrarily inside the virtualized
network. Furthermore, although vNetTracer is transparent to
the network applications, we still need to modify the kernel
in order to accurately trace each packet. Thus, vNetTracer is
not completely transparent to the entire system. However, as
the discussed in Section III, vNetTracer only involves tens of
lines of code modification inside the kernel.

III. VNETTRACER DESIGN

A. Overview

Figure 2 illustrates the architecture of vNetTracer. The key
components of vNetTracer include a control data dispatcher,
an agent on each monitoring machine and a raw data collector.

The control data dispatcher executes on the master node. It
reads the user input and generates formatted configuration files
in control packages and tracing scripts. Then the dispatcher
sends the files to agents on remote monitoring machines.
The agent receives the configured files from the dispatcher
and executes eBPF programs at defined locations of the
configuration files on the monitoring nodes. Agents collect the
tracing data based on the rules in the configuration files and
then send the collected data to a centralized raw data collector.
The raw data collector also executes on the master node.
It collects the raw tracing data from the agents and performs
offline analysis based on the tracing data.

Next, we used a concrete example to describe how vNet-
Tracer works. Suppose we need to measure the network
latency between two Virtual eXtensible LAN (VXLAN) layers
in the multiple host container network. We use flanneli to
represent the VXLAN network device on the ith node. First, we
input the following information into the control data dispatcher
to generate formatted control package: (1) the filter rules,
such as the containerized application source IP, destination
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Fig. 3: Add unique packet ID into network packets.

IP, source port, destination port, etc; (2) the tracepoint infor-
mation, including device name flanneli, device ID, etc; (3) the
action that records the current system time in nanosecond; (4)
the global information like the database configuration, table
names. Next the control data dispatcher sends the customized
tracing scripts to remote tracing agents on the ith node. All
eBPF scripts are attached to device flanneli and execute the
time record action when the targeted network packets pass
through. Network packets which do not match the tracing rules
will not be traced. Once the raw tracing data is fetched, it is
stored locally and then gathered to the database on the master
node. After the data is collected, further operations such as
data cleaning or calculation can be done for analysis. In this
example, we calculate the time from flanneli to flannel j to get
network latency between two VXLAN devices.

B. Tracing Across Boundaries

Tracepoints provide the system level entry point for vNet-
Tracer to attach customized source code to instrument the
system. In the current design, vNetTracer supports instrument-
ing kernel functions, return of kernel functions, kernel trace-
points and raw sockets through kprobe, kretprobe, tracepoints
and network devices. Application monitoring could be traced
through user level tracepoints such as uprobe and uretprobe.
The location of a tracepoint is defined and enabled through
user configuration files. Whenever execution of the system
reaches an enabled tracepoint, a tracing script configured
for that tracepoint is triggered and executed, generating the
corresponding tracing data.

In order to trace across boundaries, vNetTracer distinguishes
the network applications through their IP address and port
number in the packet header, and identifies individual network
packets by adding a unique ID. The packet ID is embedded
into the header of the packet such that it is carried over the
boundaries of domains. As shown in Figure 3, for the TCP
packets, we use a 4-byte space in the options of the TCP
header. For UDP packets, we use __skb_put() to allocate
a 4-byte additional space to the original packet at the sender
side. We generate a 32-bit random number as the packet ID and
store it in the space when the packet is copied from user space
to kernel space. The UDP packet ID is then removed from
the packet payload through pskb_trim_rcsum() before
it was copied to the application buffer in the receiver side
to guarantee the application transparency. As the above addi-
tional operations only involve tens of nanoseconds overhead,
they do not harm the microsecond level application latency.
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Besides the unique packet ID, vNetTracer also records the
packet number, packet length and current system time for the
detailed network measurement when a packet goes through the
tracepoints, which is further discussed in Section III-D.

In order to measure network performance metrics such as
throughput, latency, etc., we need to get timestamps from
a high resolution clock source. In each tracing script, we
obtain the nanosecond-level granularity time record from
the function bpf_ktime_get_ns(). This function reads
the clock source CLOCK_MONOTONIC inside Linux kernel,
which cannot be set by users and represents monotonic time
since the kernel is booted. The nanosecond resolution of
CLOCK_MONOTONIC is adequate for both network through-
put measurement at second granularity and latency measure-
ment at microsecond granularity. In addition, as the function
bpf_ktime_get_ns() is executed inside the tracing script
as backend and such a process always runs in the kernel space,
there is almost no overhead to read time from the clock source,
and no kernel and user space context switches happen during
the above process.

The clocks on different physical or virtual nodes may
inevitably have time skew for cross-machine tracing in dis-
tributed systems. To mitigate this issue, we adopt Cristian’s
algorithm [29] and measure the relative clock skew between
the master node and the monitoring nodes. As depicted in
Figure 4, we attach two tracing scripts at the NIC interfaces of
master node and monitoring node. We record the timestamps
once the packets were sent or received from the interfaces.
On the client side, the round trip time TRT T is measured
as T4 − T1. On the server side, the processing time TPro is
measured as T3 − T2. Thus, the one way transmission time
T1wt can be calculated as (TRT T − TPro)/2. To mitigate the
network interference, we sample 100 packet records and chose
the minimum one as the one way transmission time. Then the
clock drift ∆Tskew between the master node and monitoring
node can be treated as |T1 +T1wt −T2| and this value is used
for tracing data offline calculation and analysis.

C. Efficiency

As the position of tracepoints, rules and actions are defined
by users through configuration files, the tracing scripts are
normally attached to those tracepoints and execute the cor-
responding actions when monitored events happen. Figure 5
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Fig. 5: How eBPF code works for packet filtering and tracing.

illustrates the workflow of tracing on a network device. When
a packet goes across a network interface, the original process
is just to pass it to the next layer or network device. However,
when an tracing script is attached to the interface, the program
will be executed and check whether the packet matches the
user defined rules. If it matches, the user-defined actions, such
as recording the system time, updating the counters, etc., are
executed in the tracing script. Afterward the raw tracing data
is copied into the local memory associated with this tracing
script. If the above actions finish or the rules are not matched,
normal packet processing proceeds.

As the network monitoring might generate lots of intermedi-
ate tracing data, the overhead of vNetTracer will be extremely
high if the storage of that temporary tracing data involves
too many disk operations like traditional logs. Such overhead
is unacceptable and might hurt the application performance,
especially for high speed network services or highly consol-
idated virtualized networks. To mitigate this issue, we load
a kernel module on each monitoring machine to temporarily
store the intermediate tracing data. We used mmap() to map
a kernel buffer to the /proc file system in user space. When
the tracing scripts generate some intermediate data, it is first
copied to the memory buffer. Then we periodically dump the
tracing data from the buffer onto the disk, clear the buffer
and then collect the raw tracing data on each monitoring
machine to a centralized data processing node. As we can
adjust the memory buffer size 1 to make the data be stored
and collected infrequently, the above steps will not incur so
much overhead as to affect the application performance in
virtualized networks.

The tracing data is collected by the raw data collector
from monitoring nodes to the master node. The collection
can be processed either online or offline. For applications
which require realtime monitoring, tracing data could be sent
from agents to the collector directly. However, such a process
could consume additional CPU and network bandwidth. For
applications whose QoS is sensitive to the network or tracing
overhead, the tracing data can be collected offline. After trac-
ing is completed, all the tracing records at different tracepoints
are dumped into the trace database, where records are indexed

1Due to the limitation of malloc in Linux, the buffer size range is from
32 bytes to 128k-16 bytes.
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by their packet IDs. After the data cleaning and recomputation,
such as identifying incomplete records, timestamp alignment
for the clock skew, etc., one then can query the database to
perform customized analysis of network performance. As the
raw data collector periodically receives tracing data from the
agents, it also acts as a heartbeat monitor to guarantee that the
agents work properly.

D. Programmability

After the agents trace the network activities and the data is
collected by the raw data collector, additional calculation is
required based on those raw tracing data. In this section,
we briefly introduce the network performance metrics that
vNetTracer is focusing on.
Throughput. The network throughput measures the amount of
network packets transmitted from one side to another during a
certain period of time. To quantify the throughput at a specific
place, e.g., one network socket interface or a kernel function,
we track the packet size Si and the arrival time Ti during the
data transmission, and calculated the network throughput as
∑

N
i=1(Si− SID)/(TN − T1), where the i refers to the order of

the network packets during the transmission and SID is the 4
bytes packet unique ID.
Latency. The network latency measures the time that one
packet is transferred from one designated point to another.
Based on the packet ID mentioned in Section III-B, we track
two packets for the same packet ID at two tracepoints and
record the system time through tracing scripts. Suppose the
time we record at the two tracepoints are t1 and t2. If these two
tracepoints are within the same monitoring node, the latency
between the two tracepoints is treated as ∆T = t2− t1. If the
two tracepoints are located on two different nodes, the latency
can be calculated as ∆T = t2− t1 +∆Tskew.
Jitter. Besides the absolute latency value, the variability of
packet latency over a period of time, named jitter, is also
important, especially for realtime applications such as video
services and live broadcast. This item reflects whether the
transmission across the network is smooth or not. Based on
the latency measurement, we calculate the network jitter as
∆Ti+1−∆Ti, where the ∆Ti refers to the ith network latency of
traced packet.
Packet loss. Packet loss occurs when the packets are trans-
ferred across the network but fail to reach their destination.
Packet loss is usually caused by network congestion, network
disconnection, device failure, etc. To measure packet loss, we
track the number of packet Ni at each tracepoint and calculate

the packet loss between two tracepoints as Nloss = Ni−N j and
the packet loss rate as Rloss = Nloss/Ni.
Additional metrics. Beside the above basic metrics, more
information could also be dug from the raw data for certain
scenarios, such as packet arrival time. In addition, combined
with the tracing rules, advanced tracing information, like per-
flow throughput and the decomposition of end-to-end latency,
which are illustrated in Figure 6, can be obtained based on the
user needs.

The programmability of vNetTracer also allows the user to
control the tracing at runtime. Unlike traditional tools which
couple the monitoring logic with system execution or need to
stop the system for new tracing logic, vNetTracer strips the
tracing from the monitored system. We encapsulate the net-
work tracing into highly configured eBPF scripts and execute
them at certain tracepoints based on monitoring purposes. As
shown in Figure 2, we separate the vNetTracer control plane
from the application network flow and tracing data flow. To
realize that, we created highly modularized control package,
which includes the tracing rules, tracepoint locations, actions
and global configurations, for each tracing script. During the
execution, the vNetTracer control data dispatcher formatted
the user requirements into tracing configuration files. For
instance, users provide information such as ethernet type,
source IP, destination port, etc. to generate the filter rules,
or file names, function, device ID, etc. to generate tracepoint
locations. Once the tracing configuration files are defined,
customized tracing scripts are sent to tracing agents across
the system and collect the data. When the networks or tracing
requirements change, all the above control information can be
modified or reconfigured, and then resent to the monitoring
nodes during the system runtime. Such a process provides high
programmability and flexibility for monitoring the dynamic
virtualized networks.

E. Implementation

To enable tracing across boundaries, we added 4-byte
variable option in tcp_out_options for the TCP
header and allocated 4-byte space for the UDP header.
The unique ID is written when packets are sent through
tcp_options_write or udp_send_skb. To mitigate the
local storage overhead, we implemented a kernel module on
each monitoring node to temporarily store tracing data and
used /proc file system to avoid kernel and user space data
copies. The prototype of vNetTracer is implemented in C
and Python. Specifically, the agents are daemon processes,
which are woken up once receiving new tracing scripts. The
backend of each tracing script is implemented in C, which
executes actions inside the kernel and collects the tracing
data. The frontend is implemented in Python, which completes
the initialization, stores local data, and periodically sends
the tracing data to the collector. The control data dispatcher
consists of a frontend, which reads the user input from
terminal and generates the formatted configuration files, and
a client side that sends the configured tracing scripts to the
remote agents. The raw data collector consists of a daemon,
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which receives tracing data from the agents, and the database
operation functions to calculate the network metrics. Both
the control data dispatcher and the raw data collector are
implemented in Python. We adopt InfluxDB for the offline
storage and create tables for each tracepoint.

IV. EVALUATION

In this section, we first evaluate the overhead of vNetTracer to
show its high performance. Next, we demonstrate the utility of
vNetTracer with three case studies. The first case study is to
show critical path analysis in Open vSwitch with vNetTracer.
The second case study is using vNetTracer to tune the Xen
hypervisor scheduler for a long tail latency issue in a highly
consolidated environment. The third case study shows how we
identify the network bottlenecks inside a container architecture
using vNetTracer.

A. Evaluation Settings

Our experiments were performed on two DELL PowerEdge
T430 servers, connected by a one-Gigabit Ethernet and a ten-
Gigabit Ethernet. Each server was equipped with a dual ten-
core Intel Xeon E5-2640 2.6GHz processor, 64GB memory
and a 2TB 7200RPM SATA hard disk. The ten-Gigabit NIC
is Intel x540. We used Ubuntu 16.10 and Linux kernel 4.10 as
the host and guest OS. We used Open vSwitch 2.6.0 to connect
various VMs on the same host. The hypervisor we adopted is
KVM 2.6.1 or Xen 4.8.1, and the Docker version is 1.12.1. The
evaluation setting details of individual case studies are slightly
different and further discussed in the respective sections.

B. Overhead Analysis.

Overall overhead. We first analyzed the overhead of vNet-
Tracer on application network performance. We created two
VMs using KVM on two servers and configured each VM
with 4 vCPUs and 4GB memory. We pinned the vCPU of the
VMs to different physical CPU cores to avoid the interference.
First, we executed Sockperf [12] client side on one VM and
sent UDP requests to the Sockperf server side on another
VM to measure the average and tail latency. Then we booted
vNetTracer to trace the Sockperf performance. We executed
four tracing scripts and attached them into the Open vSwitch
port ovs-br1 in the hypervisor and virtual ethernet port

ens3 in the VM on the two physical servers. Figure 7(a) plots
the average and 99.9th percentile latency of Sockperf UDP
packets with and without vNetTracer execution. As shown in
the Figure 7(a), both average and tail latency of Sockperf were
not influenced significantly with vNetTracer. Compared to the
default performance without vNetTracer, the average latency
with vNetTracer increased less than 1%, and no traffic burst
happened during the tail latency measurement. Meanwhile,
our tracing also showed that vNetTracer did not introduce
additional network packet loss for the applications.
Comparison with SystemTap. We also compared the perfor-
mance of vNetTracer with SystemTap. We built a VM which
had one vCPU and 4GB memory on Xen and executed the Net-
perf server inside the VM. A Netperf client was sending TCP
packets on another physical server. We wrote a SystemTap
script attached at tcp_recvmsg to get the network packet.
We executed the SystemTap with option STP_NO_OVERLOAD
to disable the tracing overhead threshold. In comparison, we
used vNetTracer to attach the same kernel function and trace
the network. As shown in Figure 7(b), due to the benefit
of eBPF and our optimizations, the throughput of Netperf
degraded insignificantly when tracing under vNetTracer. How-
ever, SystemTap tracing introduced around 10% performance
loss. As explained in Section II, the frequency of traces and the
continual data copies between the kernel space and user space
introduced such overhead with SystemTap. vNetTracer traces
the network inside the kernel and keeps the tracing data in
memory. For I/O-bound applications with high load, such the
overhead cannot be neglected. We also evaluated the Netperf
performance on a 10G network and SystemTap introduced
26.5% performance loss due to high frequency of traces and
inefficient data copies.

C. Case Study I: Network Delay in the Open vSwitch

Open vSwitch (OVS) is a virtualized network switch, which
provides high quality packet switching for virtualized networks
and is widely adopted in the current cloud. In this section, we
first describe the network delay inside the OVS and discuss the
challenges to diagnose the problem. Next, we talk about how
vNetTracer helps us analyze and locate the issue. Lastly, based
on the tracing information, we share a simple yet effective
solution to mitigate the above issue of Open vSwitch.

In order to describe the network delay inside the OVS, we
created three VMs on a single physical server. The hypervisor
we used was KVM and all the VMs were connected through
OVS. The VMs were configured with four vCPUs and 4GB
memory. As shown in Figure 8(a), we executed the Sockperf
and iPerf [7] clients on VM0, another iPerf client on VM1, and
the Sockperf server as well as two iPerf servers on VM2. As
a comparison baseline, we only run the Sockperf application
to measure the latency in an uncongested network, which is
denoted as Case I in Figure 8(b). Next, we run the iPerf
client with Sockperf client simultaneously on the same VM
and record the Sockperf latency as Case II. Finally, we add
the second iPerf client on another VM based on Case II and
denote such a scenario as Case III.
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As illustrated in Figure 8(b), the tail latency of Sockperf
in Case II and Case III increased significantly compared to
the latency in the uncongested network. Similar problems can
also be observed in the physical switches [34], [58]. The
reasons behind the issues are extremely difficult to analyze
and locate as many factors along the data path can introduce
the additional overhead. For example, the latency-intensive
and throughput-intensive applications in Case II share both
the client and the server network stack, which might incur
long tail latency for Sockperf. The existing tracing techniques
either focus on a traditional environment, such as physical
network links, or lack of ability to differentiate network flows
and locate the congested part. To analyze the bottlenecks in the
virtualized network path, we executed agents of vNetTracer
on both the VMs and host machine, and bound the tracing
scripts at application sockets em and OVS ports vnet. We
used eBPF scripts to filter the Sockperf packet and decompose
its latency into three parts: the time spent inside the sender
network stack, the OVS and the receiver network stack. As
the latency decomposition shown in Figure 9(a), the time spent
inside the OVS dominated the total transmission time. As more
applications occupied the network path, the network became
increasingly congested and the time in the OVS increased.

To better understand the network delay inside the OVS, we
add more iPerf clients on VM0 based on Case II as Case
II+. Similarly, we add more iPerf clients on additional VMs
and denote that as Case III+. As shown in Figure 9(a), the
time gap between Case I and Case II is due to the queueing
delay in the OVS. Multiple applications (e.g., Sockperf and
iPerf) send network packets at the same ingress port of OVS
and the delivery speed of OVS falls far behind the packet
incoming speed. Such a gap does not increase when we added
more the application clients on VM0 in Case II+ because the
queue at ingress is highly saturated. In comparison, the time
gap between Case II and Case III, which results from the
processing delay that OVS needs to switch the network flows
from different ingress ports, increased when more clients are
sending packets through more OVS ingress ports in Case III+.
Both the above two delays make the network flow load much
larger than the OVS processing ability and introduce additional
network latency inside OVS. Compared to the delay inside
OVS, the time spent inside the client or server network stack
did not increase significantly.
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Fig. 9: Open vSwitch latency decomposition and analysis.

To mitigate the above issues, one potential solution is to
limit the network flow rate at the OVS ingress. Rate limiting
sets the maximum packet transmission rate at the virtual
ingress port of OVS, which just simply drops the network
packets above the rate and can thus limit the packet trans-
mission number from VMs to the OVS. In our experiment,
we set the ingress_policing_rate as 1×105kbps and
ingress_policing_burst as 1×104kb at both vnet0
and vnet1 of the OVS. Then we repeated the above experi-
ments in Case II and Case III. As shown in Figure 9(b), both
the average and tail latency of Sockperf decreased significantly
with rate limit in the OVS. As the default Sockperf packet
size was just 56 bytes, the workflow of iPerf was mainly
limited when its packets entered the OVS. Therefore, both
the queueing delay and OVS processing delay were mitigated
with the rate limit. The setting in the above experiments
was not the optimal configuration and just used to show the
effectiveness. In addition to the rate limit, we also tried setting
QoS policy with Hierarchy Token Bucket (HTB) at the virtual
port of OVS, which limited the clients saturating the network
bandwidth. The effect was similar as the results using rate
limit shown in Figure 9(b).

Summary. Existing tools either lack of ability to differenti-
ate the network with complex flows or cannot decompose the
long tail latency into different components along the data path.
In comparison, vNetTracer can filter and monitor the target
network flow, and locate the potential congested component
in the virtualized networks efficiently.

D. Case Study II: Tuning the Scheduler in Hypervisors

Credit2 [18] is a new generation of general purpose scheduler
for the hypervisor Xen, which is designed with focus on
fairness, responsiveness as well as scalability. In this section,
we first describe the issue we found in the current credit2
scheduler. Then, we talk how we located the issue with
vNetTracer and solved it through tuning the scheduler.

We created two VMs on a single physical server. The hy-
pervisor we used was Xen 4.8.1 and the VMs were configured
with one vCPU and 4GB memory. The hypervisor scheduler
was set as credit2 inside of Xen and the client side was
executed on another physical server. All the applications were
running within containers on the VMs. First, we executed
the Sockperf server side on one VM and sent requests to
measure the latency as the baseline. Next, we executed a
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Fig. 10: Network latency in the unconsolidated and highly
consolidated virtualized environments.

loop on another VM and pinned the vCPU of the two VMs
on the same physical CPU core. As shown in Figure 10(a),
the latency of Sockperf increased dramatically when the I/O-
bound VM shared the CPU resources with the CPU-bound
VM. For instance, the 99.9th percentile latency increased 22x
compared to the baseline. Besides, we also chose Data Caching
from Cloudsuite benchmark suites [1] to evaluate this issue.
The server side of Data Caching executed Memcached which
simulated the behavior of a Twitter caching server using the
Twitter dataset. On the client side, we set up 4 worker threads
executing 20 connections to send the requests and the ratio
of GET/SET requests was configured as 4:1. We set a fixed
request rate as 5000 rps to measure the request latency. As
depicted in Figure 10(b), similar to the results of Sockperf,
the average and tail latency of memcached increased 4.7x
and 7.5x respectively compared to the baseline. The greatest
challenge to analyze this issue is the multi-layer virtualization,
including the hypervisor, the guest OS and the containerized
applications, and the complicated virtualized network along
the software stack. These virtualized boundaries make many
traditional tools, such as Xentrace [15], DTrace [2], ineffective.

In order to analyze this problem, we executed the agents of
vNetTracer at the client, Dom0 and server side VM to trace the
network. We bound the tracing scripts at the following network
interfaces: ethernet port eth0 in the client side, network
bridge xenbr0 and backend vif1.0 in Dom0, ethernet port
eth1 and container virtual ethernet port veth684a1d9 in
the server VM. We decomposed the packet latency based on
the above setting and repeated the experiments. As shown
in Figure 11(a), when the I/O-bound VM executed alone,
the client-to-server transmission delay dominated the one way
latency. In comparison, when the I/O-bound VM shared the
same CPU core with the CPU-bound VM, the time spent
between the backend vif1.0 in Dom0 and frontend eth1 in
the server VM took more than 90% of the one way latency. As
the data path was the same as in Figure 11(a), this indicated
that scheduling delays inside of Xen caused the issue. We
checked the source code in Xen credit2 scheduler and found
the vCPU priorities used in credit1, such as OVER, UNDER
and BOOST, were all removed and all the vCPUs were just
ordered by their credit. Then we traced vCPU credit and the
data showed that the credit of the I/O-bound VM vCPU was
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Fig. 11: Latency decomposition when the Sockperf VM runs
alone or shares the physical CPU with a CPU-bound VM.

always larger than the credit of the CPU-bound VM vCPU,
which indicated that the scheduling order of vCPUs had no
problem. We further analyzed the tracing data and found that
the scheduling delay first increased up to 1000µs. Then the
scheduling delay descended for the next few packets and such
process repeated periodically as shown in Figure 11(b). That
reminded us of the scheduling rate limit inside the Xen credit2
scheduler, which is set as 1000µs by default.

The rate limit 2 was introduced into the hypervisor credit
scheduler since Xen 4.2 [17]. In order to avoid too many
schedulings and context switches, the scheduler sets the
minimum amount of time which a VM is allowed to run
without being preempted, even through a woken VM has
higher priority. This mechanism performs well and does not
harm the throughput of most network applications. However,
the average latency as well as the tail latency of many
online applications is highly interfered with such a mechanism,
especially in the highly consolidated virtualized environments.
In addition, the jitter of the I/O application also increased
significantly. For instance, the range of jitter in Figure 11(a)
was only (-7.2µs, 9.2µs) while the value grew to (-117.8µs,
1041.4µs) in Figure 11(b). To mitigate such issues, we tried
to tune the rate limit as 0 in Xen credit2 scheduler. As shown
in Figure 10(a) and (b), the network latency with rate limit
disabled is close to the baseline even though the I/O-bound
VM runs simultaneously with the CPU-bound VM on the same
physical core. Such a solution also works for the same issue
in credit1 scheduler inside Xen. We reported our findings to
the Xen open source community and the above issues were
confirmed by engineers from Citrix [9].

Summary. Unlike many tools limited in monitoring within
certain ranges, vNetTracer can efficiently trace the applica-
tion end-to-end performance in the virtualized networks and
associate the network activities across hardware and software
boundaries in isolated domains.

E. Case Study III: Bottlenecks of the Container Architecture

Containers are widely used in the cloud nowadays and the
overlay network is one of the extensively adopted infrastruc-
tures to support the container communication across multiple

2The rate limit in Case Study I refers to limiting the application packet
sending rate while the rate limit here refers to the minimum scheduling time
slice inside the Xen hypervisor.
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Netperf/iPerf throughput of VMs versus containers.

hosts. Although overlay networks bring lots of benefits, such
as ease of use, independence from the underlying architecture,
etc., they also introduce many new issues. For instance, the
performance of the overlay network is usually much worse
than the other kinds of container networks [53]. Moreover, it
is also difficult to monitor the overlay network as the packets
are encapsulated with the underlying network information. In
this section, we describe how vNetTracer helps us analyze the
bottleneck in a container overlay network.

As depicted in Figure 12(a), we created two VMs using
KVM on a single physical server. Each VM was configured
with 4 vCPUs, 4GB memory and a virtio NIC. Inside the
VMs, we used Docker to create some containers executing the
network applications. In order to connect the containers on the
two VMs, we built a default Docker overlay network and used
etcd [3] 2.2.5 as the distributed key value store. The overlay
network used VXLAN to encapsulate the original network
packets. We used Netperf and iPerf to measure the throughput
among VMs or containers. As depicted in Figure 12(b), the
TCP throughput between containers decreased significantly
compared to the VM throughput. For instance, the Netperf
TCP and UDP throughput between containers were just 16.8%
and 22.9% of that between VMs, which indicated significant
overhead in the container overlay network.

To understand the potential issue inside the container
overlay network, we first analyzed the network rate in the
virtualized network stack. We attached tracing scripts on the
kernel function net_rx_action, which is the default softirq
handlers when receiving network packets. As Figure 13(a)
shows, although the throughput of containers is far less than
that of VMs, the execution rate of net_rx_action in
containers is 4.54 times of that in VMs. This indicated that
more softirqs happened when receiving network packet in
the container network. Why do additional interrupts introduce
such significant overhead? First, additional interrupts incur
lots of context switches. As revealed by Peter et al. [44], the
scheduling overhead differs by up to 14x difference depending
on whether the receiving process is currently running. The
time to context-switch to the server process from the idle
process has more than 10x impact on a receiving process.
Second, too many interrupts might cause lots of sleep and
wakeup operations to the ksoftirqd, which is a daemon thread
that executes on each CPU core to handle the software IRQs.
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The interrupt processing of ksoftirqd will be significantly
interfered if too many sleeps and wakeups consume lots of
CPU cycles [39].

Besides the network rate, we also used vNetTracer to
analyze the softirq distribution and track packet data path
inside container networks. We attached tracing script at the
kernel function get_rps_cpu to get which CPU core the
softirq is processed on. As Figure 13(a) shows, most softirqs
are concentrated to a few CPU cores. For instance, 99.7%
and 62.9% of the net_rx_action is executed on CPU 0
in VMs and containers, respectively. However, as mentioned
above, the number of softirqs in containers is far more than
that in VMs. Therefore, such concentrated softirq distribution
and lack of multi-core usage heavily limited the network
speed in containers. The reason is due to the fact that those
software interrupts come from the same hardware interrupt on
the NIC. To keep the cache hot and take full advantage of data
locality, OSes process the softirqs from the same source on
certain cores, which significantly degrades container network
performance with large number of software interrupts. Receive
Packet Steering (RPS), which helps balance network packets
on different CPU queues, is also limited for accelerating the
container networks. As RPS only balances the packets based
on its IP addresses and port numbers and packets of one
containerized application connection has the same IP and port
combination, all the software interrupts of one application
are processed in the same CPU and the container network
performance will not benefit with RPS enabled.

To analyze the packet data path, we attached multiple eBPF
scripts at different layers in the virtualized network stack to
track the source and destination of the network packets. The
device ID and name are acquired by the ifindex and name
in net_device of the skb. Note that the tracing scripts need
to strip the VXLAN header off to read the skb information
in container networks. As shown in Figure 13(b), the data
path in container networks is far more complex than that in
VMs, which also implicated the enormous amount of software
interrupts in Figure 13(a). Different from the normal packet
processing inside VMs, the packets travel across different
layers repeatedly in the container networks. This is due to
the overlay network architecture which abstracts additional
virtualized network layers on top of the VM network. During
traveling in such much deeper and more complex container



networks, additional efforts, such as security checks, header
operation, network forwarding, etc., are needed for the pack-
ets [44]. All efforts consume additional resources and slow
down the network processing. In addition, vNetTracer also
revealed many other details such as the bottlenecks at the
Docker bridge docker0, the latency at the VXLAN device,
the additional acknowledgment overhead for TCP transmis-
sion, etc. Although optimizing container networks is a new and
complex topic, the valuable statistics provided by vNetTracer
can still reveal the potential reasons behind the poor container
network performance in Figure 12(b) and shed light on solving
this problem in our future work.

Summary. Characterizing the Linux kernel, especially for
analyzing network performance, is challenging. With vNet-
Tracer, we can attach user-defined eBPF programs into the
systems and instrument the runtime environment in a highly
efficient and customized manner.

V. RELATED WORK

Monitoring Based on System Logs. Many tools or monitoring
systems [4], [8], [19], [22], [48], [49] provide non-intrusive
tracing, which leverages existing application logs and perfor-
mance counters, to diagnose performance issues and detect
bugs in complex systems. However, tracing based on existing
system logs or static tracepoints cannot guarantee providing
what the users are interested in. In addition, too many logs
might also introduce lots of overhead and overwhelm the
valuable information. Statistical approaches, e.g., data mining,
machine learning [28], [43], [51], [57], [56], are promising
directions towards automated identification of the issues inside
the systems based on the massive tracing logs, the execution
environment as well as the application performance. For exam-
ple, Chow et al. proposed the Mystery Machine [28], which
analyzed traces of over 1.3 million requests collected over
30 days in Facebook and generated the system dependency
model and calculated the critical path. However, such solutions
are still based on existing system logs or tracing information,
which lack of the flexibility for satisfying the dynamic user
requirements and service changes, especially in virtualized
networks. Different from the above works, vNetTracer adopts
user-defined eBPF programs to trace the system, which not
only is highly efficient, but also provides customized system
information of the virtualized networks.

Dynamic Instrumentation. Annotation based monitoring [23],
[27], [32], [50] allows users to selectively trace the systems
based on their purposes. For example, Pip [47] provided appli-
cation level annotation monitoring while Pinpoint [27] and X-
Trace [32] added annotations in the libraries and middleware
software. However, such approaches not only are still lack
of the flexibility in the dynamic monitoring, but also face
the challenges of balancing the tradeoff between the tracing
efficiency and its overhead. Dynamic instrumentation allows
logging and tracing to be installed dynamically and flexibly.
Pivot Tracing [41] leveraged aspect-oriented programming to
export variables for dynamic tracing and designed a query

languages to selectively invoke user-defined tracepoints. How-
ever, Pivot Tracing is designed specifically for Hadoop and
is used to trace distributed applications only in user space.
Instead, vNetTracer focuses on dynamic tracing through the
entire virtualized network stack. Many other system tools, such
as SystemTap [13], DTrace [25], also support dynamic instru-
mentation. However, SystemTap introduces much overhead for
high frequency tracing, which is not suitable for virtualized
network instrumentation. DTrace is a troubleshooting tool in
the OSes like Solaris, FreeBSD, etc., and it does not support
system tracing in the Linux.

Tracing in Distributed Systems. In order to diagnose per-
formance problems, numerous tracing tools are designed and
used in today’s complex systems. However, many tools, such
as gperf [5], Perf [8], SystemTap, DTrace, Xentrace and
Xenalyze [15], can only trace within certain boundaries. To
address such limitations and enable monitoring in distributed
systems, many efforts [23], [26], [27], [32], [50], [54] have
been proposed to associate events across the hardware and
software boundaries. For instance, Whodunit [26] uses a com-
pact representation of a transaction context named synopsis to
profile transactions across distributed machines. Some other
papers [41], [45], [46] proposed to add the tracing information
along with the requests or packets to break the isolation. For
example, Pivot Tracing uses a per-request container called
baggage to correlate logging information with a particular
request context. Appinsight [45] and Timecard [46] try to
locate the latency bottleneck for mobile networks and their
idea is to add time information into the packet during the
transmission. Unlike these efforts, vNetTracer does not require
to add predefined tracepoints and the monitoring processes can
be programmed at runtime to handle the complex and dynamic
tracing in virtualized networks.

VI. CONCLUSION

It is important to trace network performance in order to
guarantee application performance and analyze potential is-
sues. However, virtualized networks make that increasingly
challenging as they introduce additional complex infrastructure
and changes dynamically. This paper presents vNetTracer, a
highly efficient and programmable profiler that traces network
performance in the virtualized systems. vNetTracer incurs
negligible overhead to network performance and does not re-
quire any changes to the user level applications for end-to-end
network tracing. In addition, it can also be programmed and
configured at runtime to satisfy various tracing requirements.
Our evaluation and case studies demonstrated that vNetTracer
shed light on the virtualized network monitoring and can help
users analyze, identify and localize potential issues inside
virtualized networks.
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