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Abstract
The cloud is an increasingly popular platform to deploy

applications as it lets cloud users to provide resources to

their applications as needed. Furthermore, cloud providers

are now starting to offer a "pay-as-you-use" model in which

users are only charged for the resources that are really used

instead of paying for a statically sized instance. This new

model allows cloud users to save money, and cloud providers

to better utilize their hardware.

However, applications running on top of runtime environ-

ments such as the Java Virtual Machine (JVM) cannot benefit

from this new model because they cannot dynamically adapt

the amount of used resources at runtime. In particular, if an

application needs more memory than what was initially pre-

dicted at launch time, the JVM will not allow the application

to grow its memory beyond the maximum value defined at

launch time. In addition, the JVMwill hold memory that is no

longer being used by the application. This lack of dynamic

vertical scalability completely prevents the benefits of the
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"pay-as-you-use" model, and forces users to over-provision

resources, and to lose money on unused resources.

We propose a new JVMheap sizing strategy that allows the

JVM to dynamically scale its memory utilization according to

the application’s needs. First, we provide a configurable limit

on how much the application can grow its memory. This

limit is dynamic and can be changed at runtime, as opposed

to the current static limit that can only be set at launch time.

Second, we adapt current Garbage Collection policies that

control how much the heap can grow and shrink to better

fit what is currently being used by the application.

The proposed solution is implemented in the OpenJDK 9

HotSpot JVM, the new release of OpenJDK. Changes were

also introduced inside the Parallel Scavenge collector and

the Garbage First collector (the new by-default collector in

HotSpot). Evaluation experiments using real workloads and

data show that, with negligible throughput andmemory over-

head, dynamic vertical memory scalability can be achieved.

This allows users to save significant amounts of money by

not paying for unused resources, and cloud providers to

better utilize their physical machines.
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1 Introduction
The cloud is an increasingly popular platform to deploy

applications. One of the main factors contributing to this

popularity is the simplicity in how resources can be added

(or removed) to an application as they are (or not) needed.

Furthermore, cloud providers have started to offer a "pay-as-

you-use" model instead of the traditional "pay-as-you-go"

model.
1
The models "pay-as-you-use" and "pay-as-you-go"

are different in the way resources are assigned to applica-

tions (note that an application might be running on top of a

virtual machine [3] or inside a container [2]). In a "pay-as-

you-use" model, cloud users only pay for the resources that

are actually being used by their applications as opposed to

the "pay-as-you-go" model, in which users pay for statically

sized virtual machines or containers. When using the "pay-

as-you-use" model, unused resources are given back to the

virtualization or container engine, allowing other applica-

tions to take advantage of such resources. From now on, for

simplicity, the term instance will be used when both a virtual

machine or a container are equally applicable. Host engine

will also be used when a virtualization engine (hypervisor)

or a container engine are equally applicable.

The "pay-as-you-use" model is usually achieved using con-

tainers or virtual machine ballooning [14, 18]. For example,

if an application needs to grow its memory, the host engine

might grant more memory to the instance where the applica-

tion is running. Once the application memory requirements

decrease, the host engine is able to reclaim back the extra

memory that is not being used by the application.

However, runtime environments such as the Java Virtual

Machine (JVM) fail to dynamically adjust their resource re-

quirements at runtime in a variety of workloads (more details

in Section 2.1). In particular, if an application needs more

memory than what was given to the JVM at launch time,

the JVM does not allow the application to use more memory

and therefore, the JVM must be re-launched with a higher

memory limit. The opposite problem is also present, i.e., if

an application is not using all the memory that once was

used, it is not possible to control/force the JVM to give this

memory back to the host engine.

In sum, JVM applications cannot dynamically scale their

memory requirements. Once the JVM is launched, the mem-

ory limit is fixed and cannot be changed. This means that if

the memory requirements change, the host engine would be

able to scale the memory resources as the application needs

but the JVM does not allow it due to architectural restrictions.

This creates a gap between the real resource needs and what

the customer is paying for.

1
White papers presenting these concepts can be found

at www.infoq.com/articles/java-cloud-cost-reduction and

www.forbes.com/sites/forbestechcouncil/2018/03/28/deceptive-cloud-

efficiency-do-you-really-pay-as-you-use.

The main goal of this work is to allow JVMs (the Open-

JDK in particular) to dynamically scale their memory usage

taking into consideration an application’s needs. Thus, if

an application needs more memory than what was initially

predicted at launch time, the JVM should be able to grow

its heap. On the other hand, if an application does not need

all the memory that was once used, the heap should shrink

and unused memory should be given back to the host en-

gine. In addition, and since this problem comes from the

lack of support for vertical memory scalability in the JVM,

no changes to the host engine, operating system, or user

application should be required for this solution to work. Fi-

nally, design and implementation changes introduced into

the JVM should not compromise application throughput, and

should not require any downtime/restart in order to scale

the application memory.

The challenge of dynamically scaling memory is that cur-

rent JVMs, the OpenJDK in particular, impose a fixed limit on

how much memory can be used throughout the application

execution. Changing the JVM to allow a dynamic memory

limit is not trivial as the internal JVM data structures are

setup to work with a static memory limit, and cannot be

easily setup again without rebooting the entire JVM.

There are clearly several naive solutions that may seem to

solve the problem. For example, simply rebooting the JVM

to provide a higher memory limit is not adequate; the appli-

cation needs to be re-launched and this process takes time,

and stops any service provided by the application. Using

many JVMs with small heap sizes that could be created or

destroyed, as more memory is needed or not, is also not

adequate; in fact, such a solution does not work in situations

where individual tasks require more memory than what is

available in each single JVM. Finally, another naive solution

is to simply setup a JVM with a very large memory limit.

This provides an application with enough memory to run its

workload but leads to resource/money waste whenever the

application is not using all the memory that was reserved.

In conclusion, there is currently no solution to providing

dynamic memory vertical scalability in the JVM.

To solve this problem, we propose a new JVM heap sizing

strategy that allows available memory to scale up and down

according to a real application needs. In order to do so, two

important steps are required.

First, a new runtime configurable memory limit for the

heap size is provided; this limit, named CurrentMaxMemory,
defines how much memory an application can currently use.

Contrary to the static memory limit defined at launch time,

CurrentMaxMemory can be re-defined at runtime, and can

also be programmatically adjusted. One clear advantage of

using CurrentMaxMemory (instead of the original JVM static

limit) is that cloud users can adapt the amount of memory

given to the JVM along the way, and do not need to guess at

launch time the application memory requirements.
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The second step to achieve the proposed goals is to rethink

the Garbage Collection (GC) policies that control how much

and when the heap memory is given back to the host engine.

In the proposed solution, it is essential that unused memory

gets uncommitted and thus given back to the host engine

as soon as possible. To do so, we introduce additional logic

into the JVM to trigger a heap compaction whenever the

amount of unusedmemory is significant (this is controlled by

a configurable variable). The heap reduction can be triggered

at any time, not only during a GC.

We implement and evaluate the above mentioned JVM

changes to provide dynamic vertical memory scalability on

the OpenJDK 9 HotSpot JVM, the current release of one of

the most used JVM implementations. We also modified the

Parallel Scavenge collector and the Garbage First collector,

the new default GC algorithm, to change the policies that

control how and when the heap can grow or shrink.

The proposed solution is evaluated using the DaCapo

benchmark suite as well as real workloads and data pro-

vided by Jelastic.
2
Through several experiments, we show

that with a very small memory footprint overhead, we pro-

vide dynamic memory scalability with negligible application

throughput overhead. This allows users to save money that

would otherwise be spent on unused resources.

The contributions of this work are threefold. First, it presents

a novel heap sizing strategy that allows the memory used

by the JVM to scale up and down, as opposed to the current

static strategy. This enables JVM applications to take advan-

tage of the "pay-as-you-use" model. Second, the proposed

solution is evaluated and different aspects of our solution

are exercised showing very promising results. Finally, all the

code is open source and a patch is being prepared to be sent

to the OpenJDK, allowing everyone to benefit from it.

2 Motivation
This section presents concepts that are important to under-

stand the motivation and design decisions of this work. First,

it explains how resources can be used in the cloud and their

billing models, further motivating the problem solved in this

work. Then, it describes the target applications, for which

the solution proposed in this work is mostly beneficial. This

section closes with a description of important memory man-

agement concepts and architectural principles of the JVM.

These are specially important to understand the design deci-

sions proposed in our solution.

2.1 Resource Scalability in the Cloud
Elasticity is one of the key features in cloud computing; it

allows host engines to dynamically adjust the amount of

allocated resources to meet changes in application’s work-

load demands [1]. Such a feature is crucial for scalability

2
Jelastic is a decentralized multi-cloud provider that introduced the "pay-

as-you-use" model. It can be reached at jelastic.com

Figure 1. Jelastic Reserved vs Used Container Resources

which can be provided along two dimensions: horizontal

(adjusting the number of instances), and vertical (adjusting

the resources assigned to a single instance). In the context

of this work, we focus on the second one.

Regardless of the scalability dimension used, cloud providers

are currently enforcing one out of two different billing mod-

els: i) "pay-as-you-go", and ii) "pay-as-you-use". In the first,

users are billed for statically reserved resources while in the

second, users are billed for the actual used resources.

In this paper, we focus on the "pay-as-you-use" model,

as there are a number of interesting use cases that benefit

from it (more details in the next section). Figure 1 further

motivates this problem by showing the difference between

the used and reserved resources in Jelastic cloud for the

last three years (from December 2014 to December 2017).

By analyzing this chart, it is possible to observe that the

difference between the reserved memory (Limits) and the

actual usedmemory (Used Resources) increases through time.

This means that the amount of unused memory, i.e., memory

for which cloud users are paying but not using, is increasing.

In December 2017, the amount of unused memory is above

26 TB in Jelastic cloud. In addition, the unused memory

represents almost three times the amount of used memory

(approximately 9 TB of used memory compared to 26 TB of

unused memory). Therefore, there is an enormous potential

to reduce the cost of cloud hosting for cloud users by using

the "pay-as-you-use" model in which users to pay for the

used resources (and not for the reserved resources).

Vertical scalability is a fundamental requirement for the

"pay-as-you-use" billing model. In order to take advantage

of it, both the cloud provider (i.e., the host engine) and the

application running inside the instance must support vertical

scalability. However, as described in Section 2.3, current

runtime environments, specifically the OpenJDK HotSpot

JVM, do not vertically scale.
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Use Cases Short Description

user sessions user-based services save sessions (in

memory) that timeout after some time

in-memory data services that cache reads or consolidate

writes that are flushed after some time

periodical jobs services that run at particular times to

retrieve, process, or store some data

Table 1. Examples of Target Use Cases

2.2 Target Cloud Applications
The solution proposed in this work targets applications that

have periodical patters of memory usage, i.e., applications

that can have periods of time with high memory usage and

other periods of time with lowmemory usage. In this section,

we analyze some real-world examples, based on Jelastic cloud

provider, for which this class of applications represents a

significant fraction of their client’s applications.

Table 1 presents three examples of popular use cases in

Jelastic cloud provider. The first example is related to user-

based services that maintain in memory user sessions which

timeout after some time. Web servers (such as Apache Tom-

cat) evidence this characteristic as most users of certain web

sites are active during the day and, at night, almost no user is

active. Therefore, most memory used during the day to hold

user sessions is unused during the night. Another use case

are services that keep data is in-memory to either provide

fast reads or to consolidate writes (for example Hazelcast or

Cassandra). This data is flushed after sometime and can lead

to high amounts of memory being unused for longs periods

of time. Finally, periodical jobs are another example of a very

common use case. In such scenarios, schedulers can be used

to launch services at specific times to retrieve, process, or

store data. One popular example is periodical log processing.

To conclude, for all these use cases (that can hold unused

memory for a long time), the "pay-as-you-use" model enables

not only cloud users to save significants amount of resources

(and therefore money), but also cloud providers to better

use their machines (e.g., to support more applications in the

same physical computer).

2.3 Memory Management in the JVM
Most runtime environments, the HotSpot JVM in particular,

provide automatic memory management. This means that a

user application does not need to explicitly allocate and deal-

locate memory. Instead, it is the responsibility of the runtime

environment to manage memory (including its allocation

and deallocation) providing it when the application requires

so to hold some application data/objects.

Runtime environments (e.g., JVM) often provide memory

to applications in the form of a heap abstraction. The heap,

from an application point of view, is a continuous segment

of memory that can be used to hold application objects. How

the heap is implemented and managed is hidden from the

application and is the responsibility of the Garbage Collector.

2.3.1 GC Data Structures
The Garbage Collector (component responsible for the GC)

is a fundamental component in high level language runtime

design. Among other tasks, the collector is responsible for re-

claiming unused heap memory and thus making it available

for future use. Unused heap memory is reclaimed during

heap collections, during which the collector analyzes which

objects are unreachable and thus need to be collected (and

their memory freed).

In order to work efficiently, the collector maintains sev-

eral auxiliary internal data structures that optimize the GC

process. One of such data structures, for example, is the card

marking table, which is used to keep track of pointers that

cross heap sections.

These internal data structures are set up at JVM launch

time and are prepared to deal with, at most, the heap size

limit defined at launch time. Since i) these data structures are

essential for the collector to work and, ii) they are continu-

ously being read and updated by the collector, changing the

amount of memory that these data structures must handle

is not trivial. To do so, one would have to stop the whole

JVM (including GC and application threads) to re-initialize

these data structures. This would require significant engi-

neering effort and would also lead to significant application

downtimes. Therefore, currently, the only solution to change

the heap size limit is to re-start the JVM, incurring into a

significant application downtime.

2.3.2 Reserved vs Committed vs Used Memory
Users can only define the heap size limit at launch time and,

at runtime, the application is assured to have a fixed memory

area to place application objects (the heap). The application

is also assured that there will be free space to allocate objects

if the heap is not full with live objects (as the collector reuses

memory that was occupied by unreachable objects).

However, the JVM grow or shrink the heap size at runtime

(within the limits defined at launch time) according to differ-

ent sizing policies. For example, if the amount of live objects

keeps increasing and the current heap gets full, the collector

will try to grow the heap (while remaining within the limit

previously defined at launch time). On the other hand, if the

used space is very low, the collector might shrink the heap

during a collection. These heap operations (grow and shrink)

will change the state of the heap memory.

In the JVM, heap memory can be in different states. We

now present a simplified model, yet general enough to rep-

resent real implementations, consisting in three states:

• used, memory that is actually being used to hold ap-

plication objects (which might be reachable/live or
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unreachable/garbage). The used memory is a subset

of the committed memory (defined in the next item);

• committed, memory that constitutes the actual heap.

committedmemory may contain live objects, unreach-

able objects (garbage waiting to be collected), or may

be unused (free space for new application objects).

The committed memory is a subset of the reserved
memory (defined in the next item);

• reserved, memory whose address space is already

reserved inside the JVM but may still be not commit-

ted in the JVM. Uncommitted memory (i.e., reserved
memory that is not committed) does not have physical
memory assigned to it.

Upon launch time, the JVM reserves enough memory to

accommodate the maximum heap size defined by the user.

The initial committed memory size, if not specified by the

user, is computed through implementation specific GC heap

sizing policies. The used memory is zero. Throughout an

application execution, the committedmemory (i.e., the heap

size) may grow (up to the amount of reserved memory) or

shrink depending on several factors such as increase or de-

crease of used memory.

These operations are controlled by different collector im-

plementation specific heap sizing policies, and they are only

executed when the heap is being collected. This leads to a

significant problem for applications that do not trigger GCs

during long periods of time (e.g., if applications are idle or

do not allocate new objects). For these applications, there is

no way to reduce the heap size even if the amount of unused

memory is very high.

3 Dynamic Vertical Memory Scalability in
the JVM

Dynamically adapting JVM’s resources to better fit an appli-

cation’s needs is an increasingly important problem, essential

to improve resource efficiency in the cloud. However, JVMs

evidence some problems handling changes in the amount

of resources given to them while running some classes of

applications (such as the ones described in Section 2.2). Thus,

we propose a re-design of the heap sizing strategy to allow

JVMs to scale up and down the amount of memory handled

by the JVM (and thus, the amount of memory available to the

application). This new strategy consists of two main steps: i)

define a dynamic maximum memory limit for JVM applica-

tions (see Section 3.1), and ii) adapt GC heap sizing policies

to better fit the application needs (see Section 3.2).

3.1 Letting the Memory Heap Grow
In current JVM architectures, the size of the memory heap is

statically limited by an upper bound, from now on named

MaxMemory, defined at JVM launch time; this value affects

how much memory is reserved and imposes a limit on how

much memory can be committed (and therefore, used by the

Algorithm 1 Set Current Maximum Heap Size

1: procedure Set_Current_Max_Memory(new_max)
2: committed_mem← CommittedMemory
3: reserved_mem← MaxMemory
4: if new_max > reserved_mem then
5: return f ailure

6: if new_max < committed_mem then
7: triддer GC
8: committed_mem← CommittedMemory
9: if new_max < committed_mem then
10: return f ailure

11: CurrentMaxMemory← new_max

12: return success

application). Committed memory starts, if not specified by

the user at launch time, with a GC specific value that may

depend on several external factors. Then, committedmemory

may grow if there is no space left to accommodate more live

application objects. Once committed memory grows and fills

all the reserved memory, no more heap growth is allowed

and allocation errors will occur if more memory is necessary.

In order to allow the application to scale and to use more

memory, the heap must keep growing. However, as discussed

before (in Section 2.3.2), it is not trivial to increase the re-

served memory at runtime (mainly due to difficulties with

the resizing of GC internal data structures). To solve this

problem, we propose a new dynamic limit on how much

memory the application can use, named CurrentMaxMemory.
This limit can be changed at runtime whenever the user

decides that it is appropriate.

Increasing or decreasing this limit will result in more or

less memory available for the heap. The committed memory

can grow until it reaches CurrentMaxMemory. By definition,

CurrentMaxMemory is a subset of MaxMemory (reserved mem-

ory) and contains CommittedMemory (see Expression 1).

CommittedMemory ⊆ CurrentMaxMemory ⊆ MaxMemory
(1)

The MaxMemory value must still be set (mainly because it

is necessary to properly setup GC data structures) but it can

be set conservatively to a very high value. This will only

impact the reserved memory, which does not affect the in-

stance memory utilization. It will also slightly increase the

committed memory because larger (in terms of memory) GC

internal data structures will be necessary to handle larger

volumes of data. However, as shown in Section 5.4, this over-

head is negligible and the committed memory overhead is

hardly noticeable.

Algorithm 1 depicts how the CurrentMaxMemory value

can be set at runtime. As previously explained, CurrentMax-
Memory cannot be higher than MaxMemory, and thus the oper-
ation fails (line 5) if the new value is higher than MaxMemory
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(reserved memory). On the other hand, if the new value is

lower than CommittedMemory, we first need to try to reduce

the committedmemory so that the value of CommittedMemory
is lower than the new value for CurrentMaxMemory. To do

so, a GC cycle is triggered (line 7) and, after the cycle fin-

ishes, a new test is performed (line 9). If the new value

for CurrentMaxMemory is still lower than CommittedMemory
than the operation fails (line 10). Otherwise, a new value is

assigned to CurrentMaxMemory.
By taking advantage of this operation, a user does not need

to guess the application memory requirements at launch

time, being able to control it (i.e., vertically scaling the JVM

memory) by simply setting a new value for CurrentMaxMemory.
This value can be also be changed programmatically.

3.2 Give Memory Back to the Host Engine
To be able to dynamically scale memory, the JVM must not

only be capable of increasing its memory usage but must be

also able to reduce it. Thus, when not using memory, the

JVM must be able to free unused memory, and give it back

to the host engine so that it can be used by other instances.

We discuss in this section, how to properly scale down JVM

memory usage.

The first step to scale down memory is to reduce the size

of the JVM heap or, in other words, to reduce the size of

the CommittedMemory. This operation usually occurs at the

end of a GC cycle if the percentage of committed memory

that contains no live objects (i.e., unused memory) is high.

The problem, however, is that if no GC cycles are triggered

(e.g., if an application does not need to allocate objects, or

if an application is idle); in such a case, it is not possible to

scale down memory and thus, memory is kept in the JVM

although it is not being used.

To solve this problem, we propose the introduction of pe-

riodic memory scale down checks that verify if it is possible

to scale down the JVM memory. If so, a GC cycle is triggered.

The decision to trigger a GC cycle or not is based on two

different factors: i) over committed memory (i.e., amount

of committed memory that is not being used), and ii) time

since the last GC. The goal is to reduce memory usage by

uncommitting unused memory, but also not to disrupt the

application execution by triggering very frequent collections.

Algorithm 2 presents a simplified version of the code that

checks if a GC cycle should be triggered to resize the heap.

This decision depends on two conditions: i) if the difference

between the CommittedMemory and UsedMemory is above a
specific threshold (MaxOverCommittedMemory), and ii) if the
time since the last GC is above another specific threshold

(MinTimeBetweenGCs).
In sum, if the over committed memory is high, it means

that the JVM should scale down its memory. To avoid dis-

rupting the application execution with potentially many

GC calls to scale down memory, a scale down triggered

Algorithm 2 Should Resize Heap Check

1: procedure Should_Resize_Heap
2: commit_mem← CommittedMemory
3: used_mem← UsedMemory
4: time_since_gc← TimeSinceLastGC
5: over_commit← commit_mem − used_mem
6: if over_commit < MaxOverCommittedMem then
7: return f alse

8: if time_since_gc < MinTimeBetweenGCs then
9: return f alse

10: return true

GC cycle is only launched if no other GC cycle ran at least

MinTimeBetweenGCs seconds ago (a configurable value).

Both MaxOverCommittedMemory and MinTimeBetweenGCs
are configurable at runtime. By controlling these two vari-

ables, users can control how aggressively the JVMwill reduce

its heap size. It is important to note that, the more aggressive

the policies to scale downmemory are, the more interference

there will potentially be in the application execution (spe-

cially when the application is not idle). This topic is further

discussed in Section 5.3).

3.3 Memory Vertical Scaling
In short, as described above, we propose two important

changes to the JVMheap sizing strategy: i) introduce a config-

urable maximummemory limit, and ii) periodic heap resizing

checks. These two features are essential for providing verti-

cal memory scalability, and no feature could be discarded or

replaced using already existing mechanisms inside the JVM.

On the one hand, the configurable maximum memory

limit (CurrentMaxMemory) is essential to avoid guessing ap-

plications’ memory requirements, and also to dynamically

bound the memory usage. This dynamic limit could not be

replaced by simply setting MaxMemory to a very high value as
the user would not have any control on how much memory

the application would really use, and therefore how much it

would cost in the cloud.

On the other hand, periodic heap resizing checks are nec-

essary to force the JVM to uncommit unnecessary memory.

This is specially important for applications that might be

idle for long periods of time, during which no GC runs and

therefore, no heap resizing would be possible.

4 Implementation
The proposed ideas were implemented in the OpenJDK 9

HotSpot JVM, one of the most used industrial JVM imple-

mentations. In addition, we currently support two widely

used OpenJDK collectors: i) Parallel Scavenge (PS), and ii)

Garbage First (G1), the new by default and most advanced

collector in HotSpot.
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The provided implementations consist in several small

but precise changes in the JVM code. These changes are

sufficient to provide the features proposed in this paper. As

the implementation is relatively contained, and does not

change core algorithms (such as the collection algorithms),

we envision that it would be portable to other collectors very

easily. We are currently preparing the code to send a patch

proposal to the OpenJDK HotSpot project.

In the rest of this section, we describe the two main imple-

mentation challenges of our solution: i) how to implement

the dynamic memory limit (CurrentMaxMemory), and ii) how
to implement the periodic heap resizing checks. We clearly

indicate whenever the implementation is different between

the two supported collectors (PS and G1).

4.1 Dynamic Memory Limit
As discussed in Section 2.3, the JVM allows the user to specify,

at launch time, a number of configuration parameters, one of

which, the maximum memory limit (MaxMemory). This limit

is static and therefore cannot be changed at runtime.

To implement and set up the dynamic memory limit (i.e.,

the value of CurrentMaxMemory), we create a new JVM run-

time variable which can be set either at launch time using

the JVM launch arguments or changed at runtime using an

OpenJDK tool named jstat. Since the CurrentMaxMemory
value must respect the invariant presented in Section 3.1,

every time a new value is requested, the JVM executes the

code presented in Algorithm 1.

Besides assigning new values to CurrentMaxMemory we

also had tomodify the allocation paths and heap resizing poli-

cies (in both G1 and PS) to respect the invariant check. For ex-

ample, the JVMwill fail to grow the heap if the resulting heap

size is larger than the value defined in CurrentMaxMemory
even if the new size is below the MaxMemory value.

4.2 Heap Resizing Checks
As discussed in Section 3.2, it is also necessary to reduce the

heap size (committed memory) to return unused memory

back to the host engine in a timely manner. To do so, the

code presented in Algorithm 2 must be executed frequently.

To avoid excessive performance overhead, we piggy-back

the heap resize checks in the main loop of the JVM control

thread. This control thread runs in an infinite loop which is

iterated nearly once every second. Inside the loop, several in-

ternal checks are performed, and internal maintenance tasks

may be triggered (such as a GC cycle). We modified the con-

trol thread loop to also include the heap resizing check. This

ensures that our resizing check is executed frequently and

with a small performance overhead by utilizing the existing

JVM control thread mechanism.

4.3 Integration with Existing Heap Resizing Policies
Whenever the heap resizing check returns true, meaning

that the heap should be resized to return memory to the host

engine, a heap resizing operation is triggered. Currently, this

operation is implemented through a full GC cycle (we are

working so that in future, a full GC can be avoided). The way

a full GC cycle leads to a heap resize is, however, different

in the two supported collectors (G1 and PS).

In G1, a full collection leads inevitably to several heap

ergonomic checks that will determine if the heap should

grow or shrink. The thresholds used for these checks are

tunable through several heap launch time arguments. In

other words, no changes are introduced into G1 heap sizing

code and it suffices to trigger a full collection cycle in order

for the heap size to be adjusted.

PS, however, employs a different adaptive sizing algorithm

to adjust the heap size based on feedbacks from previously

completed collections. PS sets two targets for each GC: i)

pause time, and ii) throughput. The pause time target sets an

upper bound for the GC pause time; the throughput target

specifies the desired ratio of GC time and the total execu-

tion time. Based on these two targets, the adaptive sizing

algorithm shrinks the heap on two occasions. First, if the

GC pause time exceeds the pause time target, PS shrinks

the heap until the target is met. Second, if the throughput

target is met, i.e., the proportion of GC time in the total

time is less than 1%, PS shrinks the heap to save memory.

To avoid abrupt changes to the heap size and performance

fluctuations, PS uses the moving average of the pause times

of recent GCs in the adaptive sizing algorithm.

Unlike the G1 collector, which resizes the heap imme-

diately after a full GC reclaims memory, the PS collector

relies on the adaptive sizing algorithm to adjust the heap

size. There are several challenges in shrinking the heap in PS.

First, since the heap resizing is based on the moving average

of recent GC times, a single GC triggered by the change of

CurrentMaxMemory may not lead to a heap size change. Sec-

ond, PS divides the heap into the young and old generations.

Heap resizing involves adjusting the sizes of the two genera-

tions and carefully dealing with their boundary. To enable

timely heap resizing in PS, we bypass the adaptive sizing

algorithm whenever the heap resizing check (Algorithm 2)

returns true and forces a heap resizing.

5 Evaluation
This section presents evaluation results for the solution pre-

viously described. The main goals of this evaluation are the

following: i) show that it is possible to reduce the JVM heap

size (committed memory), and thus reduce the instance mem-

ory by utilizing the proposed solution (see Section 5.2); ii)

show that this reduction in the JVM memory footprint does

not impose a significant performance overhead for applica-

tions (see Section 5.3); iii) show that the memory overhead

(for holding large GC data structures) associated to having

a very large MaxMemory limit is negligible (see Section 5.4);
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Table 2. DaCapo Benchmarks

Benchmark # Iters CMaxMem MaxOCMem MinTmGCs
avrora 5 32 MB 16 MB 10 sec

fop 200 512 MB 32 MB 10 sec

h2 5 1024 MB 256 MB 10 sec

jython 5 128 MB 32 MB 10 sec

luindex 100 256 MB 32 MB 10 sec

pmd 10 256 MB 32 MB 10 sec

sunflow 5 128 MB 16 MB 10 sec

tradebeans 5 512 MB 128 MB 10 sec

xalan 5 64 MB 16 MB 10 sec

iv) show how much cloud users can save by allowing JVM

applications to scale memory vertically (see Section 5.5).

In each experiment, we show results for both our im-

plementations and their respective baseline implementa-

tions. For simplicity, plots are labeled as follows (from left to

right): G1 (unmodified Garbage First collector); VG1 (Vertical

Garbage First, modified version of Garbage First); PS (un-

modified Parallel Scavenge collector); VPS (Vertical Parallel

Scavenge, modified version of Parallel Scavenge).

5.1 Evaluation Environment
In order to simulate a real cloud environment, we prepared

a container engine installation which was used to deploy

JVM applications in containers. The physical node that runs

the container engine is equipped with an Intel(R) Core(TM)

i7-5820K CPU @ 3.30GHz, 32 GB DDR4 of RAM, and an SSD

drive. The host OS runs Linux 4.9 and the container engine

runs Docker 17.12. Each container is configured to have a

limit of memory usage of 1 GB, and two CPU cores.

To exercise our solution, we take advantage of the widely

used and studied DaCapo benchmark suite [4] (version 9.12).

Each benchmark execution is performed in a single container

in complete isolation (i.e., no other applications running in

the same container and host OS).

Table 2 presents the benchmarks and configurations used.

The table presents, for each benchmark, the number of iter-

ations used to produce results, and the values for the vari-

ables: CurrentMaxMemory, MaxOverCommittedMemory, and
MinTimeBetweenGCs. Other DaCapo benchmarks (batik,
eclipse, lusearch, tomcat, and tradesoap) could not be

used as they do not run in OpenJDK 9.

In our experiments, each benchmark runs for a number

of iterations, in addition to warm-up iterations (which are

not accounted for the results). Most benchmarks run for 5

iterations (after the warm-up iterations), which is enough

to extract reliable statistics regarding the execution. Bench-

marks with very short iteration execution times run for more

iterations (the shorter the execution time is, more iterations

are needed). This is necessary because a single GC cycle

might increase the time of a single iteration by a large factor.

Figure 2. Container Memory Usage (MB)

Figure 3. JVM Heap Size (MB)

We prepare each benchmark to run with different Current-
MaxMemory limits (heap size). Each limit is determined by run-

ning the same benchmark with different CurrentMaxMemory
limits until the lowest limit with the highest throughput is

found (i.e., we optimize for throughput and then try to re-

duce the footprint). Except in Section 5.4, all experiments are

configured with CurrentMaxMemory equal to MaxMemory.
The MaxOverCommittedMem is set to either half or quarter

of the current max heap size. We found that these values pro-

vide a good memory scalability while imposing a negligible

throughput overhead (this tradeoff is discussed in Section

5.3). MinTimeBetweenGCs is set to 10 seconds, meaning that

a heap sizing operation can not be started if a GC cycle ran

less than 10 seconds ago. In a real scenario, this value would

reflect the periodicity of the cloud provider’s billing period

(hourly, daily, etc).

5.2 Dynamic Memory Scalability
This section presents results on how much can the applica-

tion memory footprint be reduced by employing the heap

sizing strategy proposed in Section 3.2. This footprint change

is presented from two perspectives: i) the container memory

usage (see Figure 2), and ii) the JVM heap size or committed

memory (see Figure 3). Both figures present the average and

standard deviation values for their respective metric.

Looking at the container memory usage, it is possible to

observe that most benchmarks greatly benefit from lower

memory usage when VG1 or VPS are used (compared to G1

and PS respectively). Also from these results it is possible

to conclude that the benefit is greater for benchmarks with



Dynamic Vertical Memory Scalability for OpenJDK Cloud Applications ISMM’18, June 18, 2018, Philadelphia, PA, USA

Figure 4. Execution Time (ms)

higher memory usage, i.e., there is more memory to save in

applications which use more memory. Taking the h2 bench-

mark as an example, using VG1 or VPS instead of G1 or PS

leads to 46.3% and 41.3% reduction in the container used

memory (respectively). Another interesting fact is that both

PS and VPS lead to smaller application memory footprint

when compared to G1 and VG1, respectively. This is due to

how PS is internally implemented.

The same conclusions taken from the container memory

usage can also be drawn from the JVM heap size (presented

in Figure 3). Both plots are highly correlated as the JVM heap

size directly impacts the container memory usage. Using h2
as example, using VG1 or VPS instead of G1 or PS leads to

53.0 % and 49.6 % reduction in the JVM heap size.

5.3 Heap Resizing Performance Overhead
The reduction in the container used memory and JVM heap

size comes from periodically checking if a heap resizing

operation should be performed. This operation (currently

implemented through a GC cycle) triggers periodic GC cycles

which force the application to run with a smaller memory

footprint. In this section we measure how much the through-

put of the application is affected when our heap sizing ap-

proach is enforced.

Figure 4 presents the average and standard deviation for

the execution time for each benchmark across G1, VG1, PS,

and VPS. From the plot, it is possible to observe a slight

increase in the execution time for both VG1 and VPS when

compared to G1 and PS (respectively). Using h2 again as

example, using VG1 or VPS instead of G1 or PS leads to a 2%

and 6% execution time overhead respectively.

The memory footprint improvement and throughput over-

head measured so far are directly related to the configu-

ration used (see Table 2), in particular the value of the pa-

rameter MaxOverCommittedMemory. Figure 5 presents a VG1
throughput versus memory tradeoff to provide a better un-

derstanding of how much memory improvement can be

achieved and at which cost in terms of throughput.

To build these plots, we ran each benchmark with differ-

ent MaxOverCommittedMemory values: 16 MB, 32 MB, 64 MB,

128 MB, 256 MB, and with no limit (i.e., equivalent to run-

ning G1). As we move MaxOvercommittedMemory to smaller

Figure 5. Throughput vs Memory Tradeoff

Figure 6. h2 Container Used Memory (MB) for Different

Max Heap Limits

values, the throughput decreases and the memory footprint

is reduced.

Each plot compares the throughput and the container

memory usage. Each axis is normalized to the best possible

value (either the best throughput or the smallest memory

footprint). For example, if a point is placed at 1.00 throughput

and 0.80 memory, it means that the highest throughput is

achieved when the memory footprint is 20 % higher than the

smallest possible memory footprint.

Taking h2 as an example again, we can analyze the through-

put evolution as wemove towards smaller values of MaxOver-
CommittedMemory (i.e., moving from left to right). Consid-

ering the first two h2 points as (Throughput;Memory), we

have (1.00;0.64) and (0.98;0.94). From these two points, it

is possible to see that we can reduce the average memory

utilization by 30% at a 2% throughput overhead.

In sum, from these plots, it is possible to perceive how the

throughput of each benchmark behaves when a smaller value

of MaxOverCommittedMemory is imposed. The interesting

conclusion to take is that, for several benchmarks (mostly

on the left-hand side of Figure 5), with less than 10% of

throughput overhead, it is possible to reduce the memory

footprint by up to 20%.

5.4 Internal Data Structures Overhead
As discussed in Section 3, setting the MaxMemory limit to

a conservative very high value will force the JVM to setup

larger GC internal data structures that need to be prepared to

handle a large heap. This raises a potential problem as setting

up a high MaxMemory value will result in larger GC internal

data structures, which might require a lot of memory.
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Figure 6 presents the container used memory for differ-

ent values of MaxMemory for the h2 benchmark. The value

of CurrentMaxMemory is fixed across all runs, and is set to

1024MB. This experiment exercises values of MaxMemory
starting at 1x the CurrentMaxMemory (1GB) until 1024x the

CurrentMaxMemory (1TB).

From this experiment, it is possible to conclude that being

conservative and setting MaxMemory to a very high value

does not lead to an increasedmemory footprint. In h2, setting
a heap max size 32x larger compared to the smallest memory

footprint with highest throughout only adds 31.3MB to the

container. In other words, increasing the MaxMemory by 32GB
results in 31.3MB of increased container memory usage. We

do not show the results for other benchmarks due to the

lack of space. Nevertheless, the size of the GC internal data

structures does not depend on the user application and thus,

the trade-off between increased MaxMemory and extra data

structure footprint is the same.

5.5 Real World Workload
For this final evaluation experiment, we perform an Amazon

EC2 cost estimation (comparing the unmodified JVM to our

solution) for a very common real-world workload (according

to Jelastic logs). We prepared the following scenario based

on real-world utilization in Jelastic cloud. We use a Tomcat

webserver container with 4, 8, 16, and 32 GBs of RAM. The

server is mostly accessed during the day. At night (approxi-

mately for 8 hours), there is almost no access to the server.

User sessions (which occupy most of the memory) timeout

after some time (10 minutes, in our experiment). As there

is no user activity during the night, no GC is triggered and

thus, the heap stays at full size all the time. When using the

solution proposed in this work, the container usage drops to

approximately 100 MB during the night. Figure 7 presents a

plot showing a Tomcat webserver with 8 GBs of RAM for a

24 hour period. As described, VG1 (the proposed solution) is

able to reduce the container memory to approximately 100

MBs for a period of 8 hours (10 to 18 hours in Figure 7) while

G1 keeps full memory usage all the time.

We now calculate how much it would cost to deploy this

workload on Amazon EC2 (assuming that Amazon EC2 sup-

ports resource elasticity, e.g., one could change the instance

resources at runtime). If that is the case, we could host our

Tomcat server during the day using an instance with more

memory than the instance used during the night. In Table 3,

we show the projected monthly cost for running Tomcat in

an unmodified JVM, and in a JVM running our heap sizing

approach (VJVM). We show results for Tomcat servers with

4 to 32 GBs of RAM. By analyzing the results in Table 3, it

is possible to achieve, for this particular workload a cost

reduction of up to 33%.

From the cloud provider’s point of view, there are also

benefits. Since the Tomcat server is now running in a much

smaller instance (up to 64x smaller, for the 32 GB instance),

Figure 7. Tomcat Memory Usage (MB) during 24 hours

Table 3.Monthly Amazon EC2 Cost (USAOhio Data Center)

Approach Daily Nightly Total Saving

4GB-JVM 23.01 $ 11.53 $ 34.00 $

4GB-VJVM 23.01 $ 1.44 $ 24.44 $ 29.40%

8GB-JVM 46.03 $ 23.01 $ 69.04 $

8GB-VJVM 46.03 $ 1.44 $ 47.47 $ 31.00%

16GB-JVM 92.06 $ 46.03 $ 138.00 $

16GB-VJVM 92.06 $ 1.44 $ 93.50 $ 32.60%

32GB-JVM 184.12 $ 92.06 $ 276.00 $

32GB-VJVM 184.12 $ 1.44 $ 185.00 $ 33.00%

and since memory is the limiting factor for oversubscribing

[12], it is possible to collocate instances and reduce up to 64x

the amount of hardware used to run the same instances.

6 Related Work
Applications have different memory requirements and even a

single application often deals with different task sizes result-

ing in different memory demands throughout its execution

[18]. The challenge is then to assign the application with the

correct amount of memory such that: i) it is not penalized in

terms of throughput due to lack of available memory, and ii)

it does not lead to resource waste.

Other researchers have looked into the problem of deter-

mining the correct amount of memory to assign to a particu-

lar JVM application (or set of applications) from two different

perspectives: i) assign memory to an instance, or ii) resize

the JVM heap. In the next sections, both perspectives are

discussed and compared to our approach.

6.1 Memory Balancing in Virtualized Environments
As discussed in Section 2.1, both virtual machines and con-

tainers support dynamic changes to the memory assigned to

them. However, determining the real memory requirements

at runtime is still an open problem.

Waldspurger et al. [14] propose a page sampling approach

to infer the instance memory utilization. During a sampling

interval, accesses to a set of random pages are monitored

and, by the end of the sampling period, the page utilization is

used as an approximation for the global memory utilization.
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Zhou et al. [19] propose the use of a page miss ratio curve

to dynamically track the working set size. This curve can

be built using data from special hardware or statistics from

the OS; the former tracks the miss ratio curve for the entire

system, while the latter tracks it for individual applications.

Jones et al. [11] infer memory pressure and determines the

amount of extra memory required by an instance by mon-

itoring disk I/O and inferring major page faults. Lu et al.

[13] propose an LRU based miss ratio curve to estimate the

memory requirements for each instance. Using their solu-

tion, there is a pool of memory which can be used to assign

different amounts of memory to different instances. Memory

accesses to the pool are tracked by the host engine. The work

by Zhao et al. [18] dynamically adapts the memory assigned

to each system VM by using an LRU predictor. To build such

a predictor, the authors intercept memory accesses to a sub-

set of memory pages. Finally, Caballer et al. [7] present a

solution based on a memory over provisioning percentage.

In this solution, memory usage is probed periodically and

the amount of memory assigned to each instance is increased

or decreased in order to allow a memory over provisioning

percentage all the time.

6.2 Heap Sizing
Previous attempts to determine the optimal heap size have

used techniques in which the size of the heap can be con-

trolled in order to: i) allow the application to achieve target

performance goals (such as throughput and/or pause times),

and ii) avoid resource (memory) waste. This heap sizing prob-

lem can be seen as a trade-off between having a very large

heap, which might trigger paging (due to limited memory

in the host), and having a very small heap which decreases

throughput due to an increased GC overhead. This trade-off

is often modeled using a ’sweet-spot’ curve [6, 15].

Although heap sizing is awell-studied problem, researchers

are still looking for better approaches/trade-offs for this prob-

lem. Brecht et al. [6] propose a heuristic-based heap sizing

mechanism for the Boehm collector [5]. Using this sizing

mechanism the heap is allowed to grow by different amounts,

depending on its current size and on a set of threshold val-

ues. The goal is to avoid both GC overhead (due to a small

heap) and paging (due to a large heap). The heap size cannot,

however, be reduced due to collector limitations [5].

Yang et al. [16, 17] take advantage of reuse distance his-

tograms and a simple linear model of the required heap. In

their approach, a JVM communicates with a Virtual Memory

Manager (which is running in a modified OS) in order to

acquire information about its own working set size, and the

OS’s available memory. With this information, the collector

is able to make better decisions in order to avoid paging.

The Isla Vista [8] is a feedback-directed heap resizing

mechanism that avoids GC-induced paging, using informa-

tion from the OS. Costly GCs are avoided by increasing the

heap size (while physical memory is available). When allo-

cation stalls are detected, the heap size shrinks aggressively.

Hertz et al. [10] use a region of shared memory to allow

executing instances to gather information on page faults and

resident set size. This information is then used to coordinate

collections and select the correct heap sizes. The cooperative

aspects of the memory manager are encoded using a fixed

set of rules, known as Poor Richard’s memory manager. In

White et al. [15] it is shown that control theory could be

applied to model the heap sizing problem. The developed

controller monitors short-term GC overhead and adjusts the

heap size in order to achieve performance goals.

6.3 Discussion
When comparing previous approaches (determining the cor-

rect memory needs for an instance or a JVM), it is important

to note that the proposed solution in this work is not meant

to replace them. Instead, our solution attacks problems that

are preventing both host engines and heap sizing policies

from cooperating. Works similar to ours include solutions

that try to make the host engines cooperate with the heap

sizing engines [9, 16, 17]. However, such works require mod-

ifications to the host engines, something that is very hard to

request in current cloud environments.

In sum, current JVM applications running on containers

or virtual machines are not able to scale their memory re-

quirements due to the lack of mechanisms inside the JVM

that would allow the JVM and the host engine to exchange

memory as required.

7 Conclusions
This work proposes a new heap sizing approach that allows

the OpenJDK HotSpot JVM to vertically scale its memory

resources. In particular, the proposed solution i) allows the

cloud user to dynamically adjust the maximummemory limit

for the JVM (without requiring the JVM to restart), and ii)

timely releases unused memory back to the host engine.

We implement and evaluate our approach using the Open-

JDK HotSpot JVM 9. Experiments include the DaCapo bench-

mark suite and the Tomcat webserver exercised with real

world based workloads. Results are very promising as the

footprint of most applications can be greatly reduced with a

very small throughput overhead. We are preparing the code

to send an OpenJDK HotSpot patch.
3
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