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Abstract

Cloud computing is emerging as an increasingly impor-
tant service-oriented computing paradigm. Management is
a key to providing accurate service availability and perfor-
mance data, as well as enabling real-time provisioning that
automatically provides the capacity needed to meet service
demands. In this paper, we present a unified reinforcement
learning approach, namely URL, to automate the config-
uration processes of virtualized machines and appliances
running in the virtual machines. The approach lends itself
to the application of real-time autoconfiguration of clouds.
It also makes it possible to adapt the VM resource bud-
get and appliance parameter settings to the cloud dynamics
and the changing workload to provide service quality assur-
ance. In particular, the approach has the flexibility to make
a good trade-off between system-wide utilization objectives
and appliance-specific SLA optimization goals. Experimen-
tal results on Xen VMs with various workloads demonstrate
the effectiveness of the approach. It can drive the system
into an optimal or near-optimal configuration setting in a
few trial-and-error iterations.

1. Introduction

Cloud computing, unlocked by virtualization, is emerg-
ing as an increasingly important service-oriented comput-
ing paradigm. Management is key to providing accurate ser-
vice availability and performance data, as well as enabling
real-time provisioning that automatically provides the ca-
pacity needed to meet service demands. This is because
virtualization does not reduce the complexity of a system.
In fact, having multiple virtual machines (VMSs) running

on top of a physical computing infrastructure increases the
overall system complexity and poses new challenges in sys-
tems management. Recent server market analyses from IDC
and Gartner all pointed out the urgent need for deep man-
agement and automation technologies that would automate
operation operational processes, reduce human errors, and
improve the service availability [4, 12]. This is an echo to
IBM’s early vision for autonomic computing [16]. In this
study, we aim to develop machine learning technologies to
automate the processes of configuration and reconfiguration
of both VMs and VM-based applications (a.k.a. appliances)
online.

There are reasons for online VM reconfiguration. When
a VM is created from a template or migrated to a new host
through live migration [8], its configuration often needs to
be adjusted for the new machine to improve resource uti-
lization while meeting the cloud’s service level objective
(SLO). Because a typical network application has time-
varying workloads, there is also a need for dynamic re-
source allocation in the level of VMs in response to the
changing workload.

VM configuration is an error-prone process. In partic-
ular, in service consolidation with heterogeneous applica-
tions, it is a challenge to figure out the best settings for VMs
with different resource demands. Server virtualization has a
key requirement for performance isolation. In practice, ap-
pliances running on the same physical machine still have
chances to interfere with each other. Besides the factor of
shared cache, in [20, 10], the authors showed that bad be-
haviors of an appliance could adversely affect the others’ in
Xen due to centralized VM scheduling. This phenomenon
can also be observed on other virtualization platforms. The
interference between VMs would cause performance uncer-
tainty, which makes the VM configuration problem even



harder.

In addition to the VM capacity, application performance
is also crucially dependent on its own configuration. It is
known that web appliances like Apache and Tomcat of-
ten contain more than a hundred parameters to configure
when they are deployed. Incorrect settings of the parame-
ters would lead to performance degradation to a large ex-
tent. Traditionally, a web system is configured manually,
based on operator’s experience. Like VM configuration, this
is a non-trivial and error-prone task too. Moreover, in multi-
component systems like multi-tier websites, the interaction
between the components makes performance tuning of the
parameters harder. A misconfiguration in one tier may cause
misconfiguration in the others. Performance optimization of
individual components does not necessarily lead to over-
all system performance improvement [7]. In [38], the au-
thors demonstrated that in a cluster-based Internet service,
when the application server tier was updated with more or
less servers, the entire system configuration should be mod-
ified to adjust itself to this evolution.

Server virtualization introduces an extra layer of indirec-
tion in resource management. The need for dynamic VM
configuration/reconfiguration adds one more dimension of
challenge to appliance configuration. In particular, the con-
figuration operation must be performed on-line and auto-
matically.

In general, the configuration problem is to find an op-
timal combination of parameter settings with respect to a
performance objective function. There were recent stud-
ies on the use of classical combinatorial optimization ap-
proaches like hill-climbing and Simplex to automate the
tuning process of web applications in a static environment;
see [34, 37,7, 38] for examples. In VM-based dynamic plat-
forms, configurable parameters such as CPU time and mem-
ory size are not independent; application parameters often
have a concave downward (rather than monotonic) effect
on performance. These complicate the optimization prob-
lem. The time complexity of the classical optimization ap-
proaches prevents them from being applied frequently at
run-time for online reconfiguration of the parameters.

There were other studies on the use of feedback control
approaches to adaptively reconfiguring VMs [21], web ap-
plications [18], and dynamic resource allocation in static
and dynamic environments. Traditional feedback con-
trol approaches to QoS-aware resource management
achieved the goal of service quality assurance to some ex-
tent; see [35] and the references therein. But for controlla-

bility, they often restricted themselves to one or two control
knobs: MaxC1lient parameter in Apache server [18], CPU
shares in web server [1, 19, 31, 32, 35], network-1I/O band-
width in streaming server [39], for examples. In [21],
the authors applied adaptive control to autoconfigura-
tion of multi-tier web systems on VM-based dynamic
environments. But only results from an integral con-
troller (often with limited stability) were reported; and
the controllers for different tiers were tuned indepen-
dently.

In this paper, we present a unified reinforcement learn-
ing approach, namely URL, for autoconfiguration of VMs
and appliances. Reinforcement learning (RL) is a process of
learning by interactions with dynamic environment, which
generates optimal control (or action) policies on a given en-
vironment state. Unlike adaptive control, RL does not re-
quire a model of either the system or the environment dy-
namics. Also, RL is able to generate policies optimizing a
long-term goal based on immediate rewards of actions. Re-
cent studies demonstrated the feasibility of RL in a wide va-
riety of applications, including the design of computer sys-
tems; see [3, 13, 28, 30, 29] for examples. There were few
reports so far on the use of RL in VM-level resource man-
agement or virtual appliances. Designing a RL-based con-
troller to automate the configuration processes poses unique
challenges to be discussed in Section 2.

Because each machine contains a large number of con-
figurable parameters, such as cpu time, memory, and net-
work bandwidth, and the VMs on the same host may
interfere with each other, the large design space renders tra-
ditional optimization and feedback control approaches im-
practical in real-time resource configuration. The RL
methodology finds a good application in online autoconfig-
uration. The unified RL (URL) approach is applicable for
autoconfiguration of both VMs and multi-tier web appli-
ances. It is able to adapt the VM resource budget and ap-
pliance parameter settings in a coordinated way to the
changing workload to the provisioning of service qual-
ity assurance. In particular, the approach has the flexibility
to make a good tradeoff between system-wide utiliza-
tion objectives and appliance-specific SLA optimizations
in different VMs.

The rest of this paper is organized as follows. Section 2
presents scenarios to show the challenges in configuration
management in dynamic environments. Section 3 presents
basic ideas of the RL approach and its application in auto-
configuration. Enhancement of the approach with model-
based initialization policies is given in Section 4. Section 5



and Section 6 present the evaluation methodology, settings,
and experimental results. Related work is discussed in Sec-
tion 7. Section 8 concludes the paper with remarks on limi-
tations of the approach and possible future work.

2. Challenges of Autoconfiguration

In this section, we use Xen virtualization platform and
web applications as examples to illustrate the challenges in
determining good configurations of VMs and appliances in
clouds. Similar challenging issues exist in VMWare, Virtu-
alBox and other virtualization platforms.

2.1. Match Configuration to Changing Workload

It is known that performance of a multi-tier web sys-
tem heavily depends on the characteristics of its workload.
Different types of workload have requirements for different
amount of resources of different types. TPC-W benchmark,
and its successor TPC-APP (www . tpc . org), defines three
types of workload: ordering, shopping, and browsing, repre-
senting three traffic mixes. Because processing of a request
involves multiple system components in different tiers, our
past studies showed that saturation of the system in the pro-
cessing of one type of requests does not necessarily mean it
cannot handle the others [24]. Bottleneck may also shift dy-
namically from tier to tier. Application configuration must
match the need of current workload to achieve a good per-
formance.

For instance, MaxClients is one of the key perfor-
mance parameters in Apache, which sets the maximum
number of requests to be served simultaneously. A too small
setting would lead to low resource utilization, and a high
value may drive the system into an overloaded condition.
How to set this parameter should be determined by the re-
source demands, the traffic, and resource capacity of its
VM. For a VM resource cap, a configuration of this pa-
rameter for heavy load may lead to poor performance un-
der lightly loaded conditions.

To show the effect of overall configuration, we set up
a three-tier Apache/Tomcat/MySQL website, each run-
ning on a virtual machine. Recall Apache and Tomcat each
has more than a hundred configuration parameters. We re-
stricted our attention to eight performance-critical param-
eters from different tiers: MaxClients, Keepalive
timeout, MinSpareServers, MaxSpareServers
in Apache and MaxThreads,

server Session

timeout, minSpareThreads, maxSpareThreads
in Tomcast server. We assumed the default settings for
MySQL parameters.

We tested the application performance using TPC-W
benchmark on a cluster of Linux servers, each with two
quad-core Intel Xeon processors and eight GB memory. It
is expected that each workload has its preferred configura-
tion, under which the system would yield best performance
in terms of response time and throughput. We tuned the ap-
plication configuration manually for each workload. Fig-
ure 1(a) shows the performance under different workload
mixes. The configuration in each group of bars was best
tuned for ordering, shopping, and browsing workload, re-
spectively. From the figure, we can see that there is no single
configuration suitable for all kinds of workloads. In partic-
ular, the best configuration for shopping or browsing mixes
led to extremely poor performance under ordering work-
load. The first objective of this study is to develop an RL-
based autoconfiguration approach to adapt the application
configuration to the changing workload.

2.2. Match Configuration to Virtual Machine Dy-
namics

For a web system hosted on VMs, its throughput is
capped by the VMs configurations. Recall that in a cloud
computing environment, VMs may need to be reconfigured
on-demand in response to the change of underlying comput-
ing resources (addition/removal of nodes), fault tolerance,
service live migration, and other purposes. Any change
of the VM configuration would render the early carefully
tuned web system configuration obsolete. Real-time recon-
figuration is needed.

In the following, we continue to use the MaxClients
parameter to show the challenge due to the VM dynamics.
In this experiment, we assume an input of fixed workload,
but change the VM resource capacity dynamically. We de-
fined three levels of resource capacity: Level-1 (4 virtual
CPUs and 4GB memory), Level-2 (3 virtual CPUs and 3GB
memory), and Level-3 (2 virtual CPUs and 2GB memory).
Figure 1(b) shows the impact of MaxClients setting un-
der different VM configurations. We can observe that each
VM configuration has its own preferred MaxClients set-
ting, leading to the minimum response time. To our sur-
prise, as the VM capacity increases, the best setting of
MaxClients goes down instead of going up. A possi-
ble reason is that because with the VM becoming more and
more powerful, it can complete a request in a shorter time.
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Figure 1: Performance of applications under different settings and different VM configurations.

As aresult, the number of concurrent requests will decrease.
The measured response time of a request includes its queu-
ing time and processing time. The MaxClients parame-
ter controls the balance between these two factors. A large
value would help reduce the queueing time, but at the cost
of processing time because of the increased level of concur-
rency. The non-linear relationship between the best choice
of MaxClients and VM configuration complicates the
configuration problem of web applications.

In addition to MaxClients, we tested the effects of
other parameters under different VM configurations. We
observed similar nonlinear relationships between the best
settings of the parameters and the VM configuration. Fig-
ure 1(c) shows no single configuration is best for all VM
configurations. In particular, the performance under Level-
2 configuration may even deliver better performance under
Level-1 platform. The second objective of this study is to
extend the RL-based autoconfiguration approach to adapt
the application configuration to VM dynamics.

2.3. Interference of VMs and Heterogeneous Ap-
pliances

Server virtualization allows multiple VMs to share com-
puting resources in the same pool. Their performance is
hard to be isolated. VM interference poses one more chal-
lenge to the autoconfiguration problem. VMs of a physical
node are not necessarily homogeneous, running different in-
stances of the same application. VM heterogeneity makes
the configuration problem even harder.

Xen virtualization relies on a VM monitor (VMM) to
manage the underlying computing resources. It is the lowest
level software abstraction, consisting of two components: a
hypervisor and a driver domain. The hypervisor provides
the guest OS, also called a guest domain in Xen, the il-
lusion of occupying the actual hardware devices, by per-
forming functions such as CPU scheduling, memory map-
ping and I/O handling for guest domains. The driver domain

(domO) is a privileged VM which manages other guest do-
mains (or VMs) and executes resource allocation policies.
Xen provides a control interface in the driver domain to
manage the available resources to each VM, including the
following three performance-critical configurable parame-
ters: number of virtual CPUs (vcpu), schedule credit(time),
and memory size (mem).

In Xen’s implementation, privileged instructions and
memory writes are trapped and validated by the hypervi-
sor; I/O interrupt is handled by the VMM and data is trans-
fered to VMs in cooperation with dom0. The involvement
of the centralized virtualization layer in guest program ex-
ecution can also be found in other platforms, such as
VMware and Hyper-V. Thus, bad behavior of one VM may
adversely affect the performance of other VMs by depriv-
ing the hypervisor and driver domain resources. In [10], the
authors showed that for I/O intensive applications, by set-
ting a fixed CPU share, the credit scheduler does not ac-
count for the work done for individual VM in the driver
domain. Taking memory and virtual CPU into consider-
ation, the involvement of domO and hypervisor in VM
execution aggravates the uncertainties in resource to per-
formance mapping. For example, allocating more re-
source to one VM may result in a performance degradation
due to the other VMs’ impediment caused by resource deal-
location.

We created three VMs on a 2-socket quad-core Xeon
server, running TPC-W (e-Commerce), TPC-C (online
transaction processing, www.tpc.org), and SPECweb
(www.spec.org/web2005)  applications, respec-
tively. Their initial configurations in the form of (vcpu,
time, mem) were (2, 256, 512MB) in TPC-W, (1, 256,
1.5GB) in TPC-C, and (2, 512, 512MB) in SPECweb.
We defined four workload scenarios for the three applica-
tions, as shown in Table 1 of Section 6. Figure 2(a) shows
the applications performance under different workload sce-
narios under fixed VM configurations. We observed that
the workload change in TPC-W from browsing to or-
dering mix (workload-1) boosted the performance of



SPECweb at the cost of TPC-C; the workload reduc-
tion in SPECweb (workload-3) led to significant per-
formance degradation of TPC-C. Uncertainties in other
workload change scenarios can also be observed. Fig-
ure 2(b) shows the normalized application performance due
to VM configuration changes. Config-1 moves 1GB mem-
ory from TPC-C to SPECweb; Config-2 reduces the virtual
CPU of TPC-W from 2 to 1; Config-3 moved 256 sched-
ule credits from SPECweb to TPC-C. There are uncertain-
ties of performance changes. In particular, in the case of
config-2, the configuration change of TPC-W from 2 vir-
tual CPUs to 1 unexpectedly causes a big drop of the TPC-C
performance. The third objective of this study is to de-
velop approaches for coordinated autoconfiguration of both
VMs and appliances to adapt them to both cloud dynam-
ics and workload uncertainty.

3. URL Framework for Autoconfiguration

In general, reinforcement learning is concerned with how
an agent ought to take actions in a dynamic environment so
as to maximize a long term reward defined on a high level
goal [27]. Its outcome is a policy that maps the current en-
vironment state observed by the agent to the best action the
agent should take. Each action would yield an immediate
reward. The “goodness” of an action in a state is measured
by a value function which estimates the future cummula-
tive rewards by taking this action. The agent behavior is of-
ten formulated as a continuing discounted Markov Decision
Process (MDP) with unknown transition probabilities. For-
mally, for a set of environment states S and a set of actions
A, at each time step ¢, the agent perceives its current state
sy € S and the available action set A(s;) € A. By tak-
ing an action a; € A(s;), the agent transits to the next state
s¢+1 and receives an immediate reward 7,4 ; from the envi-
ronment. The value function of state-action pair (a, s) can
be defined as:

Qs a) = E{Z'ykrt+k+1|3t =s,ap=a}, (1)
k=0

where 0 <« < 1 is a discount factor helping the Q(s, a)’s
convergence. (1) is often referred to as -value function.

The objective of finding an optimal policy is to choose
the action that maximizes the ()-value function in each
state. It is equivalent to finding an estimation of Q(s,a)
which approximates (s, a)’s actual value. In theory, it
is known the average of the sample Q(s,a) values, col-
lected in the past interactions, approximates the actual value

of Q(s, a), given sufficiently large number of samples. Q-
learning is a temporal-difference (TD) method, which up-
dates Q(s, a) each time when a sample is collected:

Q(St, af,) = Q(Sn at)+a*[rt+1+’7*Q(5t+1; at+1)*Q(5t, at)L

2
where « is the learning rate and + is the discount factor.
The VM configuration task fits within the agent-
environment framework. Consider multiple VMs to be
configured on one or more physical machines. The envi-
ronment comprises the VMs and the agent is a VM con-
troller, namely VM-Agent. The agent keeps monitoring
the performance of each VM and adapt their configura-
tions to the dynamics of the environment online. Each
time when the agent changes a VM configuration, it re-
ceives performance feedback, either reward or penalty. Af-
ter sufficient interactions, the agent would obtain good
estimations of the Q-value of each state-action pair. Start-
ing from any initial configuration, the agent is able to
drive the VMs to optimal configurations in terms of sys-
tem’s throughput, utilization, or any other application-level
utility functions. In the case that the VMs are running dif-
ferent components of a single application (e.g. multi-tier
website), the objective can also be a service level objec-
tive (SLO), defined in the application’s SLA.

Figure 3 shows the architecture of URL framework.
VM-Agent is designed as a standalone daemon residing
in the driver domain [23]. It takes advantage of the control
interface provided by dom0 to control the configuration of
individual VMs. VM-Agent manages the VM configura-
tions by monitoring performance feedback from each VM.
Re-configuration actions take place periodically based on
a predefined time interval. VM-Agent queries the driver
domain for current state and available actions. Following
the policy generated by the RL algorithm, VM-Agent se-
lects a re-configuration action and sends it to domO for VMs
re-configuration. At the end of each re-configuration step,
VM-Agent collects the performance feedbacks in each VM
and calculates the immediate reward. The new sample of
the immediate reward is processed by the RL algorithm and
VM-Agent updates the configuration policy if necessary.

Appliances running on different VMs have their own ob-
jectives. Recall that an appliance usually contains a
number of performance-critical parameters to be config-
ured and the parameter settings (configuration) should be
adaptive to the workload uncertainty and VM environ-
ment dynamics. The appliance configuration can be con-
trolled by a RL-based agent, as well. We refer to this agent
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as App—Agent. It monitors the performance of appliances
belonging to the same application and refine their config-
urations through interactions with the appliances in a way
similar to VM-Agent to meet the application’s SLO re-
quirement [5]. Unlike VM-Agent, App—Agent is run in
a separate VM, requiring no OS or hardware level informa-
tion.

The VM-Agent and App-Agent interplay with
each other. Because they are targeted at objectives of
system-wide utilization and application-specific perfor-
mance, respectively. Coordinated configuration decisions
by VM-Agent and App-Agent in the URL frame-
work offers an opportunity of tradeoff between the two
objectives.

4. RL algorithms for Autoconfiguration
4.1. Autoconfiguration of Virtual Machines

Consider a group of VMs to be configured or recon-
figured. The VMs can be running appliances of the same
application or different applications, on a single or multi-

ple physical servers in a cloud. A VM contains a number
of configurable parameters, which together form a config-
uration. The configuration is observable in the driver do-
main. For a group of k& VM machines, we define their col-
lective configuration as a state, represented by a vector
s = (s',s2,...,s%). Each element s°, 1 < i < k, is a
vector, representing the parameter settings of the i** VM.
Without loss of generality, we consider three key VM per-
formance parameters: number of virtual cpus (vcpu), sched-
uler credit (cpu time), and memory size (mem), assuming all
other parameters are configured with default values, or re-
maining unchanged in reconfiguration. Then, we represent
a VM state s® as (vepu, time, mem). For example, state
(2, 256, 512MB) represents a VM configured with 512MB
memory, 256 scheduling credit, and 2 virtual CPUs. Be-
cause the total amount of computing resources available to
the group of VMs is limited, the parameter settings in dif-
ferent VMs have constraints. For example, the memory size
should not exceed the total size allocated to the group of
VMs, and the number of virtual CPUs should not be larger
than the number of physical cores.

For each configurable parameter, we define three oper-
ations: increase, decrease, and nop, which change the
parameter setting in a predefined step size or keep it un-
changed. A VM reconfiguration operation is a combination
of the operations on the parameters. For the group of VMs
under consideration, VM—Agent defines each action as a
combination of the VMs reconfiguration operations.

The objective of VM-Agent is to find a configuration for
each VM, which together lead to an optimal system-wide
performance, defined as a long-time cumulative reward. The
immediate reward of an action is defined according to the
overall goal of the VM-Agent. In the scenario that the VMs
running appliances of the same multi-tier web application,
for example, the performance objective is to meet the SLO
requirement in terms of response time. Accordingly, the im-



mediate reward 7 of an action can be as simple as the devi-
ation of measured response time (RT) from the SLO set-
point, i.e. r = SLO — RT'. For multiple VMs running dif-
ferent applications in the same pool of physical servers, we
define a utility function to measure the immediate reward.
It is known that each application in cloud computing has
its own target SLO in terms of response time and through-
put. We define the utility function as a geometric mean of
their normalized SLOs, 1.e. measuredSLO/targetSLO. This
is in agreement with the performance metric defined in VM-
mark virtualization benchmark [25].

Based on the RL algorithm, the VM-Agent constructs a
Q-value table for the state-action pairs and issues reconfig-
uration actions following the maximum Q-value policy. Be-
sides this type of exploitation, the agent will perform explo-
ration actions, following an e-greedy policy. With a small
probability e, the agent randomly selects an action possible
in the state so as to to capture any changes of the environ-
ment for policy refinement.

4.2. Model-based Reinforcement Learning

The basic RL method can learn by itself for autocon-
figuration. Starting from any initial policy, the VM-Agent
would gradually drive the policy to converge to a best
one through exploitation and exploration of the environ-
ment. Two remaining issues for online autoconfiguration are
adaptability and scalability.

Adaptability is the ability of RL algorithms to revise
the existing policy in response to environment changes. To
adapt current policy to a new one, the VM-Agent needs to
perform a small percentage of exploration actions to collect
new environment information. In production systems, the
exploration actions can be prohibitively expensive due to
bad client experiences. The RL algorithm usually requires a
long time to collect enough samples or accumulate enough
experience to derive a new policy. This is not acceptable for
online policy generation tasks like VM auto-configuration.

Scalability issue refers to the problem that the number of
@ values grows exponentially with the state variables. Re-
call that the optimal action policy is stored in the Q-value ta-
ble. Convergence to the optimal policy depends critically on
the assumption that each table (state, action) entry is visited
at least once. In practice, even if the storage and compu-
tational cost for a large () table is not a concern, the time
required to collect sample rewards to populate the () ta-
ble would be prohibitively long. For example, in the case

of three VMs, each with three configurable parameters, as-
suming three different settings of each parameter and six ac-
tions for each state, the minimum number of interactions re-
quired to collect the reward samples for all state-action pairs
will be as high as 3% * 6 = 118, 908 times!

In the basic RL method, VM-Agent updates the estima-
tion of each (s, a) value directly from the recently col-
lected immediate reward. In this paper, we deploy an envi-
ronmental model to generate simulated experiences for Q-
value function estimation so as to enhance the agent’s scala-
bility and adaptivity. The environment model should be able
to capture the relationship between current configuration,
action and the observed performance feedback. The model
can be trained offline from previously collected samples us-
ing supervised learning. Once trained, the model is able to
predict the reward values 7 for un-visited state-action pairs.

Model-based RL with an environmental model for re-
ward prediction offers two advantages: First, model-based
RL is more data efficient [2]. With limited samples, the
model is able to shed insight on unobserved rewards. Es-
pecially in online policy adaptation, the model is updated
every time with new collected samples. Then the modified
model generates simulated experiences to update the value
function, which expedites policy adaptation. Second, the
immediate reward models can be reused in a similar envi-
ronment as the one in which the models were learned. The
environmental dynamics in VM configuration task are the
time-varying resource demands in each VM. Different mod-
els can be learned for different combination of demands in
VMs through offline learning.

In model-based RL, the scalability problem is alleviated
by the model’s ability in coping with relatively scarcity of
data in large scales. The conventional table-based ) values
can be updated using the batch of experiences generated by
the environmental model. However, the table-based () rep-
resentation requires a full population using the rewards sim-
ulated by the model. This is problematic when the RL prob-
lem scales up. In this study, we use another layer of ap-
proximation for the Q-value function. It is expected to help
greatly reduce the time in updating the value function in
each configuration step.

In implementation, we constructed a standard multi-
layer feed-forward back-propagation neural network (NN)
with sigmoid activations and linear output to approximate
the immediate reward of actions over certain configura-
tions. The NN selection was due to NN’s ability to gener-
alize from linear to non-linear relationship between the en-



vironment and the real-valued immediate reward. More im-
portantly, it is easy to control the structure and complex-
ity of the network by changing the number of hidden lay-
ers and the number of neurons in each layer. This flexibility
facilitates the integration of the supervised learning algo-
rithm with RL for better convergence. We implemented an-
other NN-based function approximator to replace the tab-
ular form. The NN function approximator takes the state-
action pairs as input and output the approximated @) value.
It directs the issue of re-configuration actions based on the
e-greedy policy.

Algorithm 1 shows the pseudo-code of the VM-Agent
algorithm. It is run in the monitor domain, keeping watch-
ing over the status of each resident VM and recommend-
ing reconfiguration to the VM monitor periodically. At
each interval, VM-Agent records previous state and ob-
serves the actual immediate reward obtained after taking
the re-configuration action. Next action is selected by e-
greedy policy according to output of function approxima-
tor ). VM-Agent identifies the workload by examining
system-level metrics during last interval using OS-level and
hardware-level performance metrics; see [24] for details.
The function select_workload is implemented in super-
vised learning. The new sample (s, as, 7:+1) then updates
the selected environmental model. The () function approxi-
mator is batch-updated as in Algorithm 2.

Algorithm 1 The VM-Agent online algorithm
1: Initialize 4 pp. to trained function approximator.
2: Initialize t < 0, a; < nop.

3: repeat
4: st < get_current_state()

re_configure(as)

5

6:  T¢41 + observe_reward()

7 at+1 < get_next_action(st, Qappz)
8:  worload + identify-workload()
9:  Rmodel < select_model(workload)
10:  update_Rimodel (St, @ty Tt41, Rmodel)
11: update_Qapps (Rmodel ) Qappr)
12: t—t+1
13: until VM-Agent is terminated

4.3. Autoconfiguration for Virtual Appliances.

The principles of model-based RL is applicable to the
design of App-Agent for autoconfiguration of virtual ap-
pliances. Today’s web systems contain hundreds of con-
figurable parameters. Although not all of them are perfor-

Algorithm 2 Update the () approximator

1: Initialize QQqpp to the current function approximator.
2: repeat

3 sse < 0

4 for n iterations do

5: (st, at,re) < generate_sample( Rmodei)
6 target < ¢ + v * Qappa (St+1, Q1)

7 error < target — Qappz(St, at)

8 sse < 0.9 x sse + 0.1 x error x error

9: train Qapps (St, at) towards target

10:  end for

11: until converge(sse)

mance related, even a small number of performance-critical
parameters would lead to a state-action space too large to
deal with online by the basic RL method.

Like VM-Agent, we design a model-enhanced rein-
forcement learning approach for App—-Agent. It assumes
an external policy initialization strategy to accelerate the
learning process. Briefly, it first samples the performance
of a small portion of typical configurations and uses these
sample data to predict the performance of other similar con-
figurations. Based on these information, the agent runs an-
other reinforcement learning process to generate an initial
policy for the online learning procedure. Such policy ini-
tialization is expected to increase the learning adaptability
and help the App-Agent to drive appliances into a good
configuration quickly.

The scalability issue is dealt with by choosing represen-
tative states for approximation. A tradeoff exists between
the number of states to be considered and their coverage of
the states representing the dynamics of the system. We pro-
pose a parameter grouping technique to aggregate parame-
ters with similar characteristics together so as to reduce the
state space. For example, in Apache appliance, both param-
eters MaxClients and MaxThreads are limited by the
system capacity and often set to the same value in practice;
they could be put in the same group. Likewise, both param-
eters KeepAlive timeout and session timeout
are limited by the number of multiple connection transac-
tions and they could be put in another group. Based on the
Q@-value of representative configurations, we use a polyno-
mial regression algorithm to predict the appliance perfor-
mance due to different settings of the parameter and hence
the performance of other configurations.



5. Evaluation Methodology and Settings

We developed prototypes of VM-Agent and
App-Agent and evaluated their effectiveness for au-
toconfiguration of three web appliances: TPC-W, TPC-C,
and SPECweb, on Xen-based virtual machines. The phys-
ical platform was a cluster of Dell servers connected by
a gigabit Ethernet. Each server was configured with 2
quad-core Xeon CPUs and 8GB memory, and virtual-
ized through Xen Version 3.1. Both the driver domain
and the VMs were running CentOS 5.0 with Linux ker-
nel 2.6.18. The VMs mounted their file-based disk images
through a NFS server on the same cluster.

The three web appliances are target applications of to-
day’s server virtualization with different characteristics;
their mix is also recommended in VMmark applica-
tion benchmark for the evaluation of virtualization tech-
nologies [25]. TPC-W is a transactional web E-Commerce
benchmark. It defines 14 different types of requests for
an online bookstore service. TPC-W defines three traf-
fic mixes of different types of requests: browsing, ordering
and shopping. In general, ordering mix has more require-
ments for CPU resource in application server and brows-
ing and shopping mixes impose more burden on database
server.

TPC-C is an online transaction processing (OLTP) work-
load that represents a wholesale parts supplier operating out
of a number of warehouses and their associate sales dis-
tricts. It simulates the activities of terminal operators in
each warehouse in the execution of transactions against a
database. Each transaction involves a large amount of small
disk and network I/O operations. The workload size is de-
termined by the number of warehouses and the population
of operators in each warehouse.

SPECweb is a benchmark for evaluating the performance
of web servers. It has support for three types of workloads:
banking, e-commerce, and support. Each benchmark work-
load measures the maximum number of simultaneous user
sessions that a web server is able to support while still meet-
ing specific throughput and error rate requirements.

We ran the appliances and their VMs in four settings, as
illustrated in Figure 4: (a) Each tier of TPC-W application
is run as an appliance on different physical servers; (b) The
appliances of the same TPC-W service are run in the same
physical servers; (c) Multiple homogeneous appliances are
run concurrently in the same server; (d) Multiple heteroge-
neous appliances are consolidated in the server. The perfor-
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TPCW TPCW TPCW
APP DB APP

(a)
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TPCW TPCW
APP2 DB2
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Figure 4: VM and Appliances Settings for Evaluation.

mance in (a) and (b) provides a reference to the other cases
for comparison or capacity planning.

6. Experimental Results

Autoconfiguration has a two-fold objective. One is to
provide the assurance of SLA from the perspective of in-
dividual applications. The other is to maximize the system
utilization without compromising the applications’ SLAs.

6.1. Appliance Performance Optimization

The first experiment was designed to show the effective-
ness of the URL approach to adapting the configuration of
virtualized resources and web appliances. We tested the per-
formance of the App-Agent in a three-tier TPC-W imple-
mentation: Apache, Tomcat, and MySQL each running in a
VM. We dynamically changed workload and VM resource
budgets to test the adaptivity of the App—Agent.

In the terminology of machine learning, the input traf-
fic mix and the VM resource budget level together form the
agent environment. The environment would keep changing,
from one scenario to another. Recall in Section 2 we de-
fined three levels of VM configuration: Level-1 (4 virtual
CPUs and 4GB memory), Level-2 (3 virtual CPUs and 3GB
memory), and Level-3 (2 virtual CPUs and 2GB memory)
and showed each VM configuration had its own preferred
MaxClients and other parameters settings. Likewise, we
showed there was no single parameter setting that would
work for all kinds of input mixes in TPC-W applications.
In this experiment, we turned on the App-Agent and let it
to configure Apache and Tomcat servers automatically. Fig-
ure 5 shows the response time change in a time window
of 90 iterations, adapting to the environment changes from
scenario (shopping, VM Level-1 resource) to (ordering, VM
Level-2) at iteration 30, and to the scenario (browsing, VM



Level-3) at iteration 60. Results from the default configura-
tion and a heuristic trial-and-error method are also included.
In the trial-and-error method, the agent tuned the parame-
ters one by one, starting from their default settings, until all
performance-critical parameters had been tried. It mimics
the way an administrator may use to tune the system manu-
ally.

The figure shows that the App-Agent can adapt appli-
ances’ configuration to the environment change in about 5
iterations. The trial-and-error method enumerated configu-
rations started from the initial parameter value. It could be
trapped with local optimal settings. Although it could find
fairly good configurations in a short time, its performance
was about 30% worse than the RL-based agent. Although
the experiment scale was small, the results show a good sign
of potential of the App-Agent.

In the second experiment, we investigated the adaptivity
of VM-Agent by setting default values to the parameters
of Apache/Tomcat/MySQL servers. Each VM has a config-
uration of resources. We refer to the combination of the VM
configurations of different applications as a resource distri-
bution. From Figure 2, we know that there is no single dis-
tribution that would lead to maximal system performance
under different workloads. In this experiment, we assumed
two homogeneous TPC-W appliances running concurrently
in the way of Figure 4(c). The TPCW-1 appliance had in-
put change from initial shopping to browsing at time 30;
the TPCW-2 appliance had input change from initial order-
ing to shopping at time 60. Figure 6(a) shows the through-
put change of these two appliances, under the control of
VM-Agent for autoconfiguration. From the figure, we can
see both VMs suffered performance degradation when the
input workload mix changed. This suggests the presence
of mismatched VM configuration due to traffic dynamics.
The figure also shows that the VM-Agent was able to cor-
rect the configuration mismatch in a few steps and maintain
the performance at a high level. An examination of the re-
configuration logs revealed that the VM-Agent suggested
the nop action during this period. As a result, both TPC-
W appliances were able to deliver much higher throughput
than the ones with only limited configuration control. Be-
cause the VM—-Agent has limited interactions with the envi-
ronment, the recommended policies are not necessarily op-
timal. There is no guarantee the throughput of both appli-
ances are maximized.

From the 60th iteration on, the two VMs started to
run browsing and shopping mixes, respectively. Their re-
source contention and performance interference are more
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pronounced under this scenario. We examined the effective-
ness of VM-Agent by comparing it with a general trial-
and-error method. With little system knowledge, an admin-
istrator is likely to try different resource configuration by
tuning parameters one by one, whenever application perfor-
mance degradation is detected. Figure 6(b) plots the perfor-
mance due to this method. The figure suggests that, on av-
erage the VMs running browsing and shopping mixes can
achieve a maximum throughput of 4500 and 6500 concur-
rent requests. In comparison, the VM-Agent agent could
bring the throughput of both appliances to about 5000 and
7000, respectively with an improvement of about 10%.
More importantly, the VM-Agent automatically directed
the resource allocation towards target configurations with-
out any human intervention.

6.2. System Performance Optimization

The third experiment was designed to show the effec-
tiveness of the URL approach from the perspective of a
system administrator. Consider three applications: TPC-W,
TPC-C, and SPECweb, running on their own VMs as in
Figure 4(d). The application mix is a consolidation repre-
sentative defined in VMmark benchmark [25]. Recall that
TPC-W is primarily CPU-intensive while TPC-C requires
a large amount of disk I/Os and that processing of the re-
quests in SPECweb involves processor and network I/0 for
dynamic content generation and static image serving. The
objective of VM-Agent is to maximize the overall system
throughput. In this experiment, we assumed the same initial
configuration for each VM: 1.5G memory, 4 virtual CPUs,
and 256 credits (for CPU scheduling). We define four work-
load scenarios for the three appliances in Table 1. The NN
models were trained initially from offline collected experi-
ence traces which consisted of representative resource allo-
cations uniformly scattered in the state space. With a learn-
ing rate of 0.0001 and a momentum of 0.1, the initial train-
ing requires approximately 10 minutes. To fit the training
within the resource configuration interval (i.e. 60 second in
our setting) and reduce the computation requirement in the
driver domain, we performed incremental updates of the
NN models based on newly collected samples. The incre-
mental computation was limited to 50 iterations and 100
sweeps resulting in a 50-second compute time. We assume
that there were always sufficient resources reserved for the
driver domain. The reservation of dedicated resources for
the control domain is widely employed in practice.

In this experiment, we changed the workload from
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Figure 5: Performance changes with workload and VM resources due to different auto-configuration policies.
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Figure 6: Throughput change with workload in two homogeneous TPC-W appliances.

Workload-1 to Workload-3 at time 25, to Workload-0 at
time 50, to Workload-2 at time 75. In general, change of or-
dering to browsing mix would increase the CPU utilization;
reduction of the operator number tends to reduce the re-
quirement for memory; reduction of banking clients in
SPECweb reduces the requirements for both CPU and
memory. Figure 7 shows the response time and through-
put of each appliance due to model-based VM-Agent, in
comparison with a model-free approach. The Max plots in
Figure 7(b) are reference throughput of each appliance, ob-
tained when the appliance was run on a physical server
exclusively (with sufficient resources). Due to VM inter-
ferences and possible inappropriate configuration, it is ex-
pected that the throughput of each appliance would be
lower than the reference value.

In the traffic change from Workload-1 to Workload-3
at time 25, SPECweb’s workload was reduced from 800
clients to 200 clients. Both of its reference and sustained
throughput dropped significantly, as shown in Figure 7(b).
From Figure 7(a), we can see there was little change with
its response time during the time, as expected. Similarly, in
the traffic change from Workload-0 to Workload-2 at time
75, TPC-C’s load was reduced from 10 operators to 1 oper-
ator. This led to the sharp decrease of its sustained through-
put and reference throughput. Its response time was also re-
duced.
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At time 25, TPC-W traffic changed from ordering to
browsing mix. A sharp increase of response time and a de-
crease of throughput were observed. The model-based
VM-Agent brought the performance back to normal
quickly in less than 4 iterations through online resource re-
configuration. At time 50 when traffic changed from
Workload-3 to Workload-0, SPECweb load increased from
200 clients to 800, causing its response time to jump
from 0.5sec up to 2.5sec. The model-based VM-Agent
brought it back to 0.5sec almost right away in 2 itera-
tions.

Both the model-based and basic model-free agents were
started with the same VM initial configuration. In com-
parison with the basic RL approach, VM-Agent achieves
a much higher throughput and lower response time for
each benchmark during the online learning. In addition,
VM-Agent is stable in the sense that its configuration pol-
icy is able to be maintained for the same workload input.
In contrast, basic RL agent would wagger between sev-
eral configurations, some causing significant performance
penalties.

The advantage of model-based RL approach is due to the
model’s ability to generalize the environmental changes. In
another word, the model-based approach is more data effi-
cient: any change in the environment can be applied to other



Table 1: Workload scenarios in heterogeneous appliances.

TPC-W TPC-C SPECweb
Workload-0 | 600 clients in ordering mix | 50 warehouses & 10 operators | 800 banking clients
Workload-1 | 600 clients in browsing mix | 50 warehouses & 10 operators | 800 banking clients
Workload-2 | 600 clients in browsing mix | 50 warehouses & 1 operator 800 banking clients
Workload-3 | 600 clients in browsing mix | 50 warehouses & 10 operators | 200 banking clients
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Figure 7: Performance change of heterogeneous appliances with the workload change.

state-action pairs. Because the basic RL approach stores
@ values separately without interactions, an environmen-
tal change can only influence the agents decision when the
specific entry in the Q-value table is visited next time.

7. Related Work

In their visionary article, Kephart and Chess defined
autonomic computing as a general methodology in which
computing systems can manage themselves given high-
level objectives from administrators [16]. Its essence is self-
management that attempts to “free system administrators
from the details of system operation and maintenance and
to provide users with a machine that runs at peak perfor-
mance 24/7.” Since then, many research have been devoted
to the methodology; see [11] for a recent comprehensive
survey on autonomic computing.

Autoconfiguration aims to automate the system configu-
ration process and have the system reconfigured at run-time
to improve performance. In general, there are two classes
of approaches for system configuration: multivariate op-
timization and feedback control. In the multivariate opti-
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mization approaches, system configuration is formulated
as a combinatorial optimization problem with respect to
an application-specific objective (performance) function of
configurable parameters. Automated configuration is to find
a combination of parameter settings that maximize the per-
formance function. Such approaches were applied to con-
figuration of software systems like Apache server [33], ap-
plication servers [34, 37], database server [17, 26], and on-
line transaction services [7, 38]. For example, Xi et al. [34]
and Zhang et al. [37] applied hill-climbing and Simplex al-
gorithms to search optimal server configurations by adjust-
ing a small group of selective parameters. They treated the
system as a black-box and assumed that the application tier
configurations were independent of other tiers.

In a multi-component system, configurations of differ-
ent components interfere with each other. In [7], Chung et
al. demonstrated that the performance improvement can-
not be easily achieved by tuning individual parameters of
each component of a 3-tier website. In [38], Zheng et al.
developed a method to generate a parameter dependency
graph between the components to reduce the configuration
search complexity. Server virtualization adds an additional



dimension for autoconfiguration. In [26], Soror et al. de-
fined a performance function with respect to VM resources
in database applications and proposed a multi-resource re-
gression method to search good VM configurations offline.

We note that in the VM-based configuration problem, the
parameters of a VM, such as CPU time, memory size, and
network bandwidth, the parameters of an application in dif-
ferent components, are not necessarily independent. These
complicate the multivariate optimization problem. The high
time complexity of classical optimization approaches ren-
ders them impractical for online autoconfiguration.

There were other recent approaches based on feed-
back control for online configuration optimization and
QoS-aware resource allocation; see [35] and references
therein. For example, Liu et al. proposed a fuzzy control
based algorithm to adjust an Apache MaxClients pa-
rameter online in response to the changing workload [18];
Lu et al. augmented a feedback control design to re-
quest scheduling for request delay guarantees [19]; Xu et
al. proposed adaptive control control approaches to mod-
ulate CPU share between different classes of traffic for
page-view response time guarantees [31, 35]; Abdelza-
her et al.[1] and Kamra et al. [15] suggested to control ad-
mission rate to keep the system utilization bounded. For
controllability, most of them restricted themselves to sin-
gle control knob or actuator of target systems.

Conceptually, feedback control can be applied to individ-
ual components of a multi-tier system. Diao et al.[9] demon-
strated the potential of such distributed controllers in a two-
tier website with an actuator in each tier. But even in such
simple designs, setting control granularity and tuning of the
controllers became an artful work, because of the cross-tier
dependence. Padala et al. attempted to apply adaptive con-
trol to automate the configuration of virtual machines of
multi-tier web applications [21]. Their approach was based
on an assumption that the VMs on the same physical node
run in a non-work-conserving mode so that each controller
can be tuned independently. The sharing mode is too con-
servative because the underlying computing resources tend
to be under-utilized. By the adaptive control approach, each
VM was reconfigured online and automatically. However,
only results from an integral (I) controller with a single
control knob: CPU share, were reported. The controller has
very limited stability. Any extension to more practical con-
trollers like Proportional-Integral (PI) and PID controllers
with consideration of more performance-critical parameters
like memory size and virtual CPU number would immedi-
ately increase the complexity of the configuration problem
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to an untractable level.

In this paper, we present a reinforcement learning ap-
proach for online autoconfiguration of VMs and multi-tier
web applications. It is a technique of learning by interac-
tions with dynamic systems in clouds. Unlike adaptive con-
trol which relies on a system identification procedure to
form an explicit model of the system, reinforcement learn-
ing executes control over the system directly, without im-
posing model structure: if an action on a system state yields
a reward, the tendency to produce that action is strength-
ened (or reinforced) [27]. It is a technique of learning from
delayed “costs,” or a method for adaptive optimization of
a controlled discrete-time Markov chain with a finite or
countable state space. A comprehensive discussion of the
method and research progress in this area towards a gen-
eral framework can be found in our recent work in [36]. A
survey of reinforcement learning technology from a com-
puter science perspective can be seen in [14].

Due to its salient features, most recently the RL method
and Q-learning in particular, has found its application in var-
ious aspects of computer systems. Examples include job and
parallel task scheduling [36, 3], server allocation in a server
farm [28, 30], power management [29], and self-optimizing
memory controller [13]. Designing a RL-based controller to
automate the configuration process of VMs and appliances
poses unique challenges as we discussed in Section 2.

8. Concluding Remarks

In this paper, we have presented a unified reinforcement
learning methodology (URL) for autoconfiguration of VMs
and appliances in cloud computing. The URL method re-
lies on an RL-based App—-Agent to tune the application
parameter settings and an RL-based VM-Agent to adjust
VM configurations online towards maximizing long-term,
delayed performance reward. To accelerate the learning pro-
cess in large scale systems and improve data efficiency in
learning, we have developed various models to approximate
the immediate reward of actions on VM configurations.
We have evaluated the model-based RL approaches in typi-
cal web applications on Xen-based virtualization platforms.
Experimental results have demonstrated their adaptivity and
gain in appliance performance and system throughput.

Current implementation of the URL framework was lim-
ited to web appliances, focusing on the resources of CPU
and memory. There were no considerations about network-
I/O and disk-I/O bandwidth. Another important resource is



L2 cache space. In many-core CPUs, L2 cache tends to be
the first-class resource in virtualization. Extension of the
URL framework to take into account these resources and
in other enterprise applications deserves further study.

The URL framework work opens a new path for au-
toconfiguration of virtualized resources and appliances in
clouds. There are limitations with our work and reinforce-
ment learning approaches in general. RL approaches are
able to drive any initial configuration to an optimal one. But
the learning process itself takes time. Model-based RL ap-
proaches assume a system model constructed offline to ap-
proximate immediate rewards of actions and accelerate the
learning process. Although the model accuracy has little im-
pact on the quality of final configuration, it affects the qual-
ity of intermediate configurations in the learning process.
This would hinder the RL approaches from being applied
for short-lived appliances and virtual machines. In this pa-
per, we only empirically studied the steady state property of
the URL approach. That is the autoconfiguration agent can
always finish the reconfiguration process before the appli-
ance workload changes again. The transient property of the
learning agent in response to traffic perturbations deserves
further investigations in our future work.

The URL framework creates an opportunity for the
App-Agent and VM-Agent to coordinate their ac-
tions for trading-off between system-wide utilization and
application-specific performance objectives. This opportu-
nity was explored manually in current implementation and
the App-Agent and VM-Agent components were evalu-
ated separately. It is expected their interplay would give us
one more knob to tune for cloud performance and service
availability on-the-fly. On the other hand, search space ex-
plosion due to coordinated configuration of VMs and their
resident applications makes the problem of online autocon-
figuration even more challenging. We are developing a hy-
brid approach to complementing the model-free RL method
with Simplex space reduction in the beginning of coordina-
tion configuration [6].

We also note that current implementation assumes a cen-
tralized VM-Agent for configuration of VMs in the same
physical machine. For configuration of VM clusters across
multiple physical machines, a distributed RL approach is
under development [22].
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