Scheduler Activations for Interference-Resilient
SMP Virtual Machine Scheduling

Yong Zhao!, Kun Suo!, Luwei Chengz, and Jia Rao!
1The University of Texas at Arlington, {yong.zhao, kuo.suo, jia.raoj@uta.edu
2Facebook, chengluwei@fb.com

Abstract

The wide adoption of SMP virtual machines (VMs) and resource con-
solidation present challenges to efficiently executing multi-threaded
programs in the cloud. An important problem is the semantic gaps
between the guest OS and the hypervisor. The well-known lock-
holder preemption (LHP) and lock-waiter preemption (LWP) prob-
lems are examples of such semantic gaps, in which the hypervisor
is unaware of the activities in the guest OS and adversely desched-
ules virtual CPUs (vCPUs) that are executing in critical sections.
Existing studies have focused on inferring a high-level semantic
state of the guest OS to aid hypervisor-level scheduling so as to
avoid the LHP and LWP problems.

In this work, we find a reverse semantic gap - the guest OS is
oblivious of the scheduling events at the hypervisor, leaving the
potential of addressing the LHP and LWP problems in the guest
OS unexploited. Inspired by scheduler activations (SAs) in hybrid
threading, we proposed interference-resilient scheduling (IRS), a
guest-hypervisor coordinated approach to enhancing load balanc-
ing in the guest. IRS informs the guest OS before vCPU preemption
happens at the hypervisor to activate in-guest load balancing. As
such, critical threads on preempted vCPUs can be migrated to other
running vCPUs so that the LHP and LWP problems are all alle-
viated. Experimental results with Xen and Linux guests show as
much as 42%, 43%, and 46% performance improvement for parallel
programs with blocking, spinning synchronizations, and multi-
threaded server workloads, respectively.

CCS Concepts « General and reference — Performance; «
Software and its engineering — Operating systems;

Keywords Virtualization, Cloud Computing, Multi-tenancy, Se-
mantic Gaps.

1 Introduction

Symmetric Multiprocessing virtual machines (VMs) are becoming
increasingly common in cloud datacenters. To fully utilize hard-
ware parallelism, SMP VMs are often used by cloud users to host
multi-threaded applications. On the other hand, cloud providers
prefer oversubscribing their datacenters by consolidating multiple
independent VMs onto a single machine to improve hardware uti-
lization and reduce energy consumptions. For example, in desktop

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or
a fee. Request permissions from permissions@acm.org.

Middleware ’17, December 11-15, 2017, Las Vegas, NV, USA

© 2017 Association for Computing Machinery.

ACM ISBN 978-1-4503-4720-4/17/12...$15.00
https://doi.org/10.1145/3135974.3135975

(a) Performance Slowdown (b) Process migration latency

o 35 120
g B No interference
g 8 w/ interference Zzzzsa . 100
R I T Z 80
o =
2 o g 60
R T e 1 §
2 4l - - . 3 40
k]
5 20
2 05

food o 0

fluidanimate ua raytrace alone 1VM 2VM 3vM

Figure 1. LHP and LWP cause significant slowdown to parallel
programs. (a) Programs with user-level load balancing are more
resilient to interference. (b) Existing load balancing in the guest OS
is ineffective in addressing LHP and LWP.

virtualization, VMware suggests a physical CPU (pCPU) can be
shared by as many as 8 to 10 virtual desktops [35]. However, over-
subscription requires that the CPU be multiplexed among multiple
VMs so that each VM receives only a portion of the pCPU cycles.

CPU oversubscription introduces challenges to efficiently ex-
ecuting parallel and multi-threaded programs in SMP VMs. One
well-known issue is the lock-holder preemption (LHP) problem [13].
LHP occurs when a vCPU is descheduled by the hypervisor while
the thread currently running on that vCPU is holding an impor-
tant lock. As the performance of parallel applications as a whole
depends critically on the cooperation of multiple threads, if one
thread holding the lock is preempted, other threads waiting for
the lock are unable to make progress until the descheduled vCPU
is rescheduled. Thus, the delay of one vCPU will significantly de-
grade the overall performance of the parallel program. Lock-waiter
preemption (LWP) [3, 18, 31] is a similar problem in virtualized
environments and can cause severe slowdown.

The root cause of the LHP and LWP problems is the semantic
gap between the guest OS and the hypervisor. In virtualized en-
vironments, there exist two scheduling domains: (1) the guest OS
schedules processes on vCPUs and (2) the hypervisor schedules
vCPUs on physical CPUs. The scheduling activities in the guest OS
are completely oblivious to the hypervisor. Thus, a vCPU can be
preempted at any time by the hypervisor regardless of what this
vCPU is executing. If vCPUs with threads waiting for entering into
or already in the critical sections are preempted, LWP and LHP will
occur respectively. There have been studies narrowing the semantic
gap by inferring scheduling events inside VMs at the hypervisor
using heuristics [1, 2, 17, 20, 22, 25, 26, 36], or approximating VM co-
scheduling to mitigate the LHP problem [10, 21, 30, 32], or allowing
the guest OS to assist hypervisor scheduling [9, 11, 13, 24, 34, 38].
These approaches have their respective limitations. Different work-
loads require distinct heuristics to identify thread criticality; co-
scheduling is expensive to implement and causes CPU fragmen-
tation [28]; synchronization-oriented optimizations make the hy-
pervisor scheduling very complex and can possibly compromise
fairness between VMs.

In this work, we identify another semantic gap, which is ne-
glected in the literature — the guest OS is also unaware of the

scheduling events at the hypervisor. If this gap is bridged, the guest
OS can proactively migrate a critical thread if the host vCPU is
preempted. We ran parallel programs in a 4-vCPU VM and slowed
down one vCPU by co-locating another compute-bound VM with
the vCPU to create interference. The interfered vCPU had frequent
LHPs and LWPs. Figure 1 (a) shows the performance slowdown of
three parallel application. Fluidanimate from the PARSEC bench-
marks [33] and ua from the NPB benchmark [7] use blocking and
spinning synchronization, respectively, and had significant slow-
downs. In contrast, raytrace was resilient to LHP and LWP due
to its user-level load balancing, which absorbed the slowdown by
distributing work to threads having no interference.

Modern OSes are equipped with complex load balancing schemes
to efficiently utilize multiprocessor systems. However, load balanc-
ing in the guest OS is not effective in virtualized environments.
Process migration is the critical operation in load balancing. Fig-
ure 1(b) shows the latency of migrating a process in a Xen VM from
a vCPU with frequent preemptions to another vCPU without in-
terference. We measured the average latency of 30 migrations. The
frequency of preemption was managed by placing different num-
bers of compute-bound VMs with the source vCPU of the migration.
The reference migration latency was obtained when the VM ran
alone and there were no vCPU preemptions. Figure 1 (b) suggests
that process migration latency increases with the level of contention
on the vCPU and the latency jump at each step corresponds to the
VM scheduling delay (i.e., 30ms in Xen credit scheduler [8, 39])
incurred by adding one more VM. The results infer that load balanc-
ing in the guest OS is unable to address the LHP and LWP problem
and itself is affected by vCPU preemptions.

There are two reasons why in-guest load balancing does not
help mitigate LHP and LWP, both of which are due to the unaware-
ness of hypervisor scheduling events in the guest OS. First, vCPU
preemptions do not cause load imbalance in the guest, thereby the
guest is unable to invoke process migration. Second, threads on pre-
empted vCPUs are in “running” state, though they are actually not
running, to the guest OS. As a result, the guest OS fails to migrate
such “running” threads because it thinks it is unnecessary. Process
migrations will only be successful until the preempted vCPU is
scheduled again.

To fully unlock the potential of the guest OS in addressing the
LHP and LWP problems, we design interference-resilient scheduling
(IRS), a simple approach to bridging the guest-hypervisor semantic
gap and guiding guest load balancing. Inspired by scheduler acti-
vations (SA) [4] in hybrid threading, IRS notifies the guest OS and
activates in-guest load balancing when a vCPU is to be preempted
by the hypervisor. As such, lock holder threads can be promptly
migrated to other running vCPUs to avoid LHP and LWP.

We have implemented a prototype of IRS in Xen 4.5.0 and Linux
3.18.4, and performed comprehensive evaluations with various par-
allel and multi-threaded workloads. Experimental results show that
IRS can improve the performance of NPB and PARSEC benchmarks
by up to 43% and 42%, respectively, especially for programs with
heavy synchronization. Moreover, IRS can reduce the latency of
multi-threaded server workloads by as much as 46%.

The rest of the paper is organized as follows. Section 2 discusses
previous work on the LHP and LWP problems and presents our
motivation. Section 3 and 4 describe the design and implementation
of IRS, respectively. Evaluation results and analysis with various

Normalized to fair share

0
Ty, G0, 105, %cg BT 08 MG FT_SPUA raytrace
2 % e,

S, G,
() 7y
Uy s, By, V2
cy, iy, (R
s N %o "k

Figure 2. Parallel applications suffer low CPU utilization due to
interference. User-level load balancing helps efficiently utilize CPU
under interference.

parallel applications are given in Section 5. Section 6 discusses
limitations and future work. We conclude this paper in Section 7.

2 Related Work and Motivation

Previous work attempting to eliminate this semantic gap can be di-
vided into two categories: (1) Hypervisor-level approaches that treat
the guest OS as a black box and (2) guest OS-assisted approaches
employing para-virtualization. This section discusses these works
and their limitations, followed by the motivation of our work.

2.1 Hypervisor Level Approaches

To deal with the LHP problem, VMware ESX 2.x [32] proposed
the strict VM co-scheduling. This scheme allows vCPUs of the
same SMP VMs to be synchronously scheduled and descheduled on
different pCPUs. Despite its effectiveness in minimizing synchro-
nization latency, it causes CPU fragmentation and vCPU priority
inversion problems [28]. CPU fragmentation can lead to ineffective
CPU utilization in environments where parallel applications are
simultaneously hosted with sequential workloads [6, 12, 23, 27].
In order to lessen the severity of the CPU fragmentation problem
caused by strict co-scheduling, relaxed co-scheduling [32] intro-
duced in VMware ESX 3.x aimed to enable sibling vCPUs to make
progress at similar paces and only requires the vCPUs that accrue
enough skew to run simultaneously, while balance scheduling [30],
a probabilistic co-scheduling scheme, increased the chance of co-
scheduling sibling vCPUs by assigning them to different pCPUs.
However, relaxed co-scheduling and balance scheduling distrib-
ute the sibling vCPUs across different pCPUs without considering
the requirement for cooperative scheduling between vCPUs of the
same VM and these two approaches still have LHP problem.

Demand-based coordinated scheduling [20] adopted TLB shoot-
down IPI and reschedule IPI between different vCPUs as heuristics
to identify cooperative vCPUs and proposed urgent vCPU first
scheduling to prioritize vCPUs that are handling critical threads
in the VM. Passive inference of guest OS events at the hypervi-
sor is not applicable to many workloads. For example, IPI-based
heuristics are not effective in identifying critical threads for parallel
workloads with spinning synchronization.

2.2 Guest OS-Assisted Approaches

To narrow the guest-hypervisor semantic gap, guest OSes are para-
virtualized to coordinate with the hypervisor to avoid LHP. Dy-
namic adaptive scheduling [37] modified the guest OS to detect
excessive spinning and report this information to the hypervisor. If
a VM has reported frequent high spin waiting time, the hypervisor
regards this VM as synchronization intensive and tries co-schedule
its vCPUs as much as possible. Uhlig et al., [34] proposed a delay

preemption mechanism to minimize synchronization latency. Be-
fore a user-level thread acquires a spin-lock, the guest OS notifies
the hypervisor of this pending event on the vCPU on which the
thread is running. The notification requests that the vCPU not be
preempted for a predefined period of time to avoid LHP.

The common issue of these guest OS-assisted approaches is that
the guest OS is only responsible for passing down the information
about lock holders and relies on the hypervisor to efficiently sched-
ule vCPUs. As a result, the hypervisor needs to frequently deviate
from its existing scheduling algorithm to utilize the semantic in-
formation for more efficient scheduling. Such invasive changes to
hypervisor-level scheduling not only make hypervisor design more
complex but can compromise VM fairness.

2.3 Motivation

As discussed above, existing work, either the hypervisor-level or
guest OS-assisted approach, focused on making the hypervisor
aware of the synchronization event inside the guest OS to aid
scheduling. We show that there is a great potential of the guest OS
to address the LHP problem.

Potential of guest OS load balancing We ran representative par-
allel benchmarks from the PARSEC and NBP benchmark suites in a
4-vCPU Xen VM. The LHP and LWP problems were caused by plac-
ing another CPU-bound VM with one of the 4 vCPUs. The vCPUs
of the parallel VM and the interfering VM were pinned to separated
pCPUs. The vCPU that experienced LHP and LWP shared the same
pCPU with the interfering VM. The PARSEC benchmarks were
compiled with pthreads and NBP benchmarks were compiled us-
ing OpenMP with OMP_WAIT_POLICY set to passive. All benchmarks
used blocking synchronization.

Figure 2 shows the CPU utilization of the parallel VM relative
to its fair share. Ideally, both VMs should receive the fair share of
the pCPU capacity. As shown in the figure, all parallel programs
except raytrace suffered much lower CPU utilizations compared
to their fair shares, indicating that the parallel VM did not fully
or efficiently utilize its CPU entitlement. The culprit is that the
interfering VM caused frequent LHPs and LWPs to the parallel VM.
If a critical thread is preempted, all other threads need to wait for
the critical section until the preempted vCPU is rescheduled. With
blocking synchronization, the waiting threads are put to sleep and
their host vCPUs become idle even when there are sufficient pCPU
allocated to the parallel VM.

Programs with spinning synchronization suffer similar perfor-
mance degradation due to LHP, but do not show low CPU utiliza-
tions. Instead of going idle, the waiting vCPUs busily wait on the
lock and burn CPU cycles. Although the parallel VM is able to
utilize its fair share, most CPU cycles are spent on spinning and few
are used to carry out meaningful computation. Hardware-based
techniques, such as pause loop exiting (PLE) [14], detect excessive
spinning and stop a VM to prevent it from wasting CPU cycles.
The effect is equivalent to blocking-based synchronization and the
parallel VM will suffer low CPU utilization in the presence of LHP.

In contrast, Figure 2 also shows that raytrace was able to fully
use its fair share even in the presence of LHP and LWP. This ex-
plains its resilience to interference as shown in Figure 1. Raytrace
implements a work-stealing mechanism at user level and threads
that complete their assigned work sooner steal the work originally
assigned to slower threads. As such, interference has less impact on
the overall performance as meaningful work is migrated to faster

or interference-free threads/vCPUs. Similar interference resilience
can also be observed in programs compiled with Intel TBB [15] and
OpenMP using a dynamic thread schedule.

This motivating example demonstrates that load balancing can
effectively address the LHP and LWP problems and mitigate the
slowdown caused by interference. However, only programs that
have specific compiler support or have their own user-level load
balancing are resilient to interference. Programs relying on the
guest OS, e.g., Linux, for load balancing suffer low CPU utilizations
and significant performance slowdowns. In general, there are two
approaches in guest OS load balancing: push migration and pull
migration. Push migration periodically checks load imbalance and
pushes threads from busy to less-busy vCPUs; pull migration occurs
when a vCPU becomes idle and steals (or pulls) excessive work or
ready (but not running) threads from a busy vCPU. Both approaches
fail to work effectively in virtualized environments. First, the load
imbalance at the hypervisor does not lead to imbalance in the guest
OS and push migration is not invoked. Second and most importantly,
threads on preempted vCPUs are not considered excessive work
by the pull migration as they are in the “running” state.

Issues with hypervisor load balancing Hypervisors also imple-
ment complex schemes for balancing vCPUs among pCPUs. Hyper-
visor level load balancing falls short of addressing the LHP and LWP
problems in two ways. First, lacking the information on thread crit-
icality, the hypervisor is unable to precisely identify the vCPU that
experiences LHP and LWP. Second, the hypervisor treats vCPUs
from different VMs equally and relies purely on the computational
load on pCPUs for load balancing. Thus, it is possible that hypervi-
sor places vCPUs from the same VM onto the same pCPU to attain
better load balance, thereby causing the CPU stacking problem [30].
Our experimental results show that CPU stacking can incur 10-20x
performance degradation to PARSEC benchmarks when the parallel
VM and the interfering VM shared the same set of 4 pCPUs but
all vCPUs were unpinned. The same issue can also be observed in
other hypervisors, such as KVM [19] and VMware [32].
Summary Parallel programs suffer significant performance loss
due to LHP and LWP and so are unable to efficiently utilize their
CPU allocations. Effective load balancing of parallel threads can
greatly alleviate the LHP and LWP problems. These observations
motivated us to enhance the guest OS load balancing in virtualized
environments so as to make any workload resilient to interference.
To this end, we design interference-resilient scheduling (IRS), a sim-
ple approach to bridging the guest-hypervisor semantic gap and
unlocking guest OS load balancing.

3 IRS Design

IRS is a coordinated approach that bridges the guest-hypervisor
semantic gap at the guest OS side. The objective is to enhance
the guest OS load balancing to make parallel programs resilient to
interference between VMs, thereby mitigating the LHP and LWP
problems. The heart of IRS design is the mechanism of scheduler
activations (SA) in response to vCPU preemptions at the hypervisor.
Inspired by the classical scheduler activation approach in hybrid
threading, in which the OS kernel notifies the user-level scheduler
if a user-level thread blocks in the kernel so that the user-level
scheduler can pick another ready user thread to execute. Similarly,
IRS informs the guest OS once its vCPU is to be preempted. The

(VM 2
Linux VM 1

©
C

SA vCPU1
Xen {UMT (UM
' vCPU1 , (vCPU2

VM
_____ VvCPU

Figure 3. The architecture of IRS.

Hardware

guest OS then migrates the thread running on the preempted vCPU
to another running vCPU to avoid LHP and LWP.

Figure 3 shows the architecture of IRS in a Xen environment.
There are four components in IRS: SA sender, SA receiver, context
switcher (CS), and migrator. Before Xen preempts a vCPU, it sends
a notification to the vCPU via SA sender residing in Xen (step @).
Upon receiving the notification, SA receiver in the guest starts
the load balancing process (step @). To enable task migration, the
CS deschedules the thread on the preemptee vCPU and marks the
thread as migrating (step ®). Last, the migrator moves the thread to
a sibling vCPU with least waiting time (step @). Next, we elaborate
on the design of these components in the context of Xen and Linux
guests.

3.1 SA Sender and Receiver

SA sender and receiver together establish a communication channel
between the hypervisor and the guest OS. Algorithm 1 shows the
interactions between the SA sender and receiver. SA sender is on the
critical schedule path of the hypervisor. Whenever the hypervisor
decides to preempt a current running vCPU, it sends a notification
to the preemptee vCPU to allow the guest OS to respond to the
preemption. Only vCPUs that are involuntarily preempted and are
still willing to run (i.e., runnable) will be notified (line 4-5). To
avoid duplicate notification, the SA sender also needs to check if
there is an SA notification pending for a vCPU in the guest OS.
The SA notification is per-vCPU. After the notification is sent, the
hypervisor delays the preemption and allows the preemptee vCPU
to continue running and process the notification (line 7).

The SA receiver resides in the guest OS and takes three steps to
respond to the SA notification: (1) deschedule the current running
task on the preemptee vCPU and perform a context switch (line 12).
The return value of the context switcher determines the response to
the hypervisor; (2) asynchronously wake up the migrator thread to
move the descheduled task to a different vCPU (line 13); (3) return
the control back to the hypervisor (line 15). Once the hypervisor
receives the response, it clears the SA pending flag of the vCPU to
enable the next round of SA.

The hypervisor-guest communication uses Xen’s event chan-
nel for SA notification. To ensure timely delivery of the SA, we
design the notification as a virtual interrupt (vIRQ) for the guest
OS. The SA receiver is essentially the interrupt handler of the new

Algorithm 1 Send and acknowledge SA event.

1: Variables: The vCPU to be preempted v; The SA acknowledge-
ment sent by the guest OS ops.
: /* Hypervisor: send SA event */
: procedure SEND_SA_EVENT(v)
if vcpu_runnable(v) and sa_pending(v) then
send_guest_vcpu_virq(ve, VIRQ_SA_UPCALL)
set_sa_pending(v)
return continue_running(v)
end if
: end procedure
: /* Guest OS: acknowledge SA completion */
: procedure AcKk_SA_EVENT(void)
ops = context_switcher()
wake_up_migrator()
/* Return the control back to hypervisor and clear SA pend-
ing flag on the host vCPU */
HYPERVISOR _sched_op(ops, NULL)
: end procedure

b A A o

R e
T S

=
o v

vIRQ. Note that one change to hypervisor level scheduling is neces-
sary for enabling SA - any vCPU preemption needs to be delayed
until the guest OS completes the processing of SA. This change
may affect existing scheduling in the hypervisor, such as fairness
and I/O prioritization. To minimize the impact, the SA receiver
should complete fast. The context switching of the current running
task should be performed on the preemptee vCPU and the vCPU
needs to be active. Once the context switch is done, the migrator is
asynchronously invoked and can run on other vCPUs. Thus, the
required delay at the hypervisor only includes the time to handle
the vIRQ and perform one task context switch in the guest. Our
profiling suggests that IRS adds 20-26 us delay to the hypervisor
scheduling. Since the time slice of hypervisor scheduling is in the
granularity of milliseconds, e.g., 30ms in Xen, 6ms in KVM, and
50ms in VMware, the delay is negligible from the perspective of fair
CPU allocation. However, if vCPU preemption is due to prioritizing
an I/O-bound vCPU, the delay will add to I/O latency.

3.2 Context Switcher

The purpose of the context switcher is to faithfully reflect the status
of a vCPU in the guest OS to bridge the semantic gap. For example,
if a vCPU is preempted and put back to the runqueue of a pCPU, the
task currently running on the vCPU in the guest OS should also be
descheduled. After a context switch, the vCPU should be put into a
proper state so as not to affect hypervisor-level scheduling. In Xen,
vCPUs are in one of the following three states: running, runnable,
and blocked. While running means a vCPU is executing on the
pCPU, runnable indicates that the vCPU has been preempted but it
has a task to run. If a vCPU is idle or waiting for I/O completion, it
has no tasks to run and will be put in the blocked state. Xen devises
different scheduling policies for different vCPU states. For example,
a vCPU waking up from a blocked state will be considered latency
sensitive and be prioritized.

To preserve the scheduling policy at the hypervisor, the SA re-
ceiver should respond differently to the hypervisor depending on
the execution state of the vCPU after task context switch. The

Algorithm 2 Migrate task from preempted vCPU.

1: Variables: The task to be migrated p; the least loaded vCPU
Umin in the guest OS; the state of a vCPU s; the runqueue of a
vCPU rqy.

: /* Guest OS: migrate task to least loaded vCPU */

: procedure MIGRATE_TASK(p)

Omin = NULL

for each online vCPU v do

rqmin = 1q_of(vmin)
s = get_vcpu_runstate(v)
if s == IDLE then
Umin =0
break
end if
if s == RUNNING then
ro = rq_of(v)
if rqy.rt_avg <rqmin.rt_avg then

b A A o

[
GoR W N = O

Umin =0
end if
end if
end for
if Uin # NULL then
__migrate_task(p, vmin)
return SUCCESS
else
return FAIL
24: end if
25: end procedure

NN DN DN e e e e
W N2 QY R

context switcher returns different operations to the SA receiver (Al-
gorithm 1, line 12). If there is no runnable task left in the runqueue
of the vCPU after the current running task is descheduled, the idle
task will be put on the vCPU and the context switcher returns
operation SCHEDOP_block. In contrast, if there are other runnable
tasks, the vCPU should be put in the runnable state in hypervisor.
In this case, context switcher returns operation SCHEDOP_yield,
which does not change the vCPU state but simply yields to the
hypervisor.

3.3 Migrator

The migrator is responsible for distributing the descheduled task
from a preempted vCPU to another running vCPU so that the task
does not need to wait for the original vCPU to be scheduled so
as to run. If the descheduled task is a lock holder or lock waiter
and is scheduled sooner due to load balancing, the LHP and LWP
problems are alleviated. As discussed in Section 2.3, load balancing
in the guest OS is not effective due to the two semantic gaps: load
imbalance at hypervisor does not trigger load balancing in guest
OS; task migration does not apply to “running” tasks even though
the host vCPU is preempted. The context switcher addresses the
second gap by descheduling the task upon vCPU preemption. The
migrator bridges the first gap.

Since the guest OS, e.g., Linux, has implemented complex load
balancing schemes, we design the migrator to be minimally in-
trusive to the existing balancing algorithm. Since the guest load
balancer is unable to sense the load imbalance at the hypervisor,
the migrator does not consider the load balance in the guest and

vCPU 1 preempted

C) Critical Section

vCPU 1 vCPU 1
pCPU 0 (T1 'I Other VMs I ~J T1J

T1 migrated back

VOPU2

pCPU1 [T2 A

j ‘\ VCPU 2

T2 blocked, | T2 wakes up,\: T2 wakes up,

VCPU 2 becomes idle | migrated out ™| preempts T1
| s

Figure 4. Pingpong migration caused by IRS and a simple approach
to preserve locality.

forcibly move the descheduled task to a different vCPU. The goal
is to migrate the task to the least loaded vCPU. Algorithm 2 shows
how to find the least loaded vCPU. The migrator iterates over all
online vCPUs of the guest OS until it finds a target vCPU for migra-
tion. Note that preempted vCPUs also appear to be “online” to the
guest OS. Therefore, the migrator needs to call down to the hyper-
visor to check the actual vCPU state (line 7). Ideally, the migrator
finds an idle sibling vCPU and the search will end as the task can
run immediately on this vCPU (line 8-10).

If there are no idle vCPUs, the migrator tries to find the least
loaded vCPU (line 12-17). As there are two levels of load balance
in virtualized systems, i.e., the balance in the guest OS and in the
hypervisor, the migrator aims to find a lightly loaded vCPU, which
not only has few tasks on the vCPU runqueue in the guest but
also experiences little contention from other VMs on the pCPU.
We rely on the real time estimate of runqueue load (i.e., rt_avg)
in Linux to measure vCPU busyness. The metric rt_avg considers
the weighted process load in the guest OS as well as the contention
on the pCPUs. It uses steal time, which measures the time during
which a vCPU is runnable but unable to run due to contention, to
quantify hypervisor-level CPU contention. The migrator compares
vCPUs using the rt_avg of their runqueues to pick the least loaded
vCPU.

Another challenge in designing the migrator is to ensure that
load is balanced between sibling vCPUs when preempted vCPUs
come back online. To minimize intrusive changes to the guest OS,
the migrator relies on the existing load balancer in Linux to move
tasks back to the rescheduled vCPU. However, one drawback of
task migration is the loss of cache locality. The migrator aims to
preserve cache locality as much as possible. Besides the push and
pull migrations in Linux, there is another scenario in which task
migration is necessary and related to parallel programs. For work-
loads with blocking synchronization, such as pthread mutex and
barrier, the Linux kernel checks load balance when waking up
waiting threads, e.g., lock waiters. If the vCPU where the waiting
thread slept on is running another task, the waking task is mi-
grated to a different vCPU. Figure 4 illustrates this problem and the
migrator’s simple solution.

As shown in Figure 4, when vCPU-1 is preempted, task-1 (T1)
is migrated to idle vCPU-2, on which task-2 (T2) is blocked and
waiting for the lock held by T1. Once T1 releases the lock, T2 is
woken up. Because T1 is currently running on vCPU-2, T2’s the
host vCPU, T2 will be migrated out, likely to vCPU-1 as it is idle
now. This design is to avoid unnecessary preemptions of a running
task if there exist idle vCPUs. However, the wake up balancing
causes pingpong migrations between vCPUs, which leads to poor

cache locality. Waking tasks are frequently migrated away from
their original vCPU because the migrator distributes tasks from
preempted vCPUs to idle vCPUs.

The migrator employs a simple approach to address this issue.
Instead of migrating the waking task, the wakeup load balancer in
Linux is modified to check the status of the current running task to
determine if the waking task should preempt the current task. The
migrator tags each task that is migrated due to preempted vCPU.
If the current running task is tagged, the wakeup balancer allows
the waking task to preempt the current task. The dotted box in
Figure 4 shows the original Linux design and the arrow points to
the new design. This simple solution guarantees that waiter tasks
always wake up from their host vCPU to preserve locality. We
rely on the Linux load balancer to migrate the tagged task back to
the preempted vCPU when it is scheduled again. This design only
applies to blocking workloads. For spinning workloads, the Linux
balancer will migrate the tagged task back to its original vCPU as
its runtime on the new vCPU is short and it is not “cache hot”.

4 Implementation

We have implemented IRS in Xen 4.5.0 and Linux 3.18.4. We intend
to make the changes to the hypervisor and guest OS minimally
intrusive and use existing scheduling and load balancing primitives.
IRS requires small changes to Xen (less than 30 lines of code) and
Linux guest kernel (about 130 lines of code). Next, we describe the
modifications to Xen and Linux in detail.

4.1 Modifications to Xen Hypervisor

For SA notification, we add a new virtual interrupt VIRQ_SA_UPCALL
in Xen and use a dedicated event channel for SA communications
between Xen and the guest OS. The credit scheduler in Xen is mod-
ified to temporarily delay the preemption of vCPUs until the guest
OS acknowledges the completion of SA. Once Xen relinquishes the
control of the vCPU scheduling, it relies on the guest OS to respond
to the SA notification and return the control back to Xen. This may
create security issues if malicious guests never return to the hy-
pervisor. As discussed in Section 3.1, SA processing typically takes
20-26 ps, so the hypervisor can set a hard limit for SA completion
to prevent rogue users from exploiting SA.

4.2 Modifications to Linux Guest OS

The main functionalities of IRS are implemented in the guest OS.
We implement SA receiver as the interrupt handler of the new
VIRQ_SA_UPCALL interrupt. Since interrupt handlers should be kept
small, SA receiver delegates the SA response to Xen to the con-
text switcher. We implement the context switcher as the bottom
half of the VIRQ_SA_UPCALL vIRQ. We create a new softirq called
UPCALL_SOFTIRQ in the guest OS and assigned the context switcher
as its handler. In Linux, softirqs have different priorities. We set
the UPCALL_SOFTRIQ to a lower priority than the TIMER_SOFTIRQ,
which is responsible for handling periodic timer events because the
Linux kernel relies critically on timer interrupts to perform task
scheduling. When timer interrupt and SA interrupt arrive at the
same time, we ensure that the timer interrupt, which may trigger
task switching in the Linux scheduler, is handled prior to the SA
interrupt. This is to prevent tasks that were to be descheduled at
the timer interrupt from being migrated.

The context switcher uses existing scheduling primitives in Linux
to pick the next task when the current running task is desched-
uled. After the context switch is completed, it asynchronously in-
vokes the migrator to distribute the descheduled task to another
vCPU for load balancing. Before the migration is performed, the
context switcher calls hypercall HYPERVISOR_sched_op with ei-
ther SCHEDOP_block or SCHEDOP_yield as the command to return
control to Xen. The migrator is implemented as a system-wide
kernel thread. It borrows the idea from existing migration function
migration_cpu_stop but need not require to run on the vCPU
from where the task is migrated. This greatly shortens the amount
of time the preemptee vCPU needs to be active, thereby reducing
the delay at the hypervisor scheduler. The migrator probes the
runtime states of vCPUs via the hypercall HYPERVISOR_vcpu_op to
determine the least loaded vCPU for migration. If a target vCPU is
found, the migrator invokes function __migrate_task to migrate
the task.

5 Evaluation

In this section, we present an evaluation of IRS using various par-
allel and multi-threaded workloads. We study the effectiveness of
IRS in improving the performance of various parallel workloads
with different types of synchronization (§ 5.2). We then extend the
evaluation to multi-threaded workloads with little synchronization
(§ 5.3). We also investigate how well IRS improves overall system ef-
ficiency when consolidating multiple parallel workloads (§ 5.4) and
perform a scalability and sensitivity analysis of IRS in response to
various levels of interference (§ 5.5). Finally, we study the potential
of IRS in mitigating the vCPU stacking problem (§ 5.6).

5.1 Experimental Settings

Our experiments were performed on a DELL PowerEdge T420
server, equipped with two six-core Intel Xeon E5-2410 1.9GHz
processors, 32GB memory, one Gigabit Network card, and a 1TB
7200RPM SATA hard disk. We ran Linux kernel 3.18.4 as the guest
and dom0 OS, and Xen 4.5.0 as the hypervisor. We created two VMs,
each configured with 4 vCPUs and 4GB memory. One VM was used
to run parallel and multi-threaded workloads and the other was
the interfering VM. We enabled para-virtualized spin-locks in the
guest kernel but it had no effect on NPB performance as OpenMP
uses its user-level spin implementation.

CPU pinning We first created a controlled environment to study
the benefit of IRS by disabling vCPU load balancing at the hypervi-
sor. Both VMs were set to share four cores in one of the two proces-
sors. Each vCPU is pinned to a different pCPU. Thus, two vCPUs
from the two VMs share the same pCPU. Note that if vCPUs were
unpinned, VM oblivious load balancing at the hypervisor causes
CPU stacking problem and incurs significant performance degrada-
tion and unpredictability to parallel workloads. In Section 5.6, we
evaluated IRS performance in an unrestricted environment with all
vCPUs unpinned.

Workloads We selected the following workloads and measured
their performance with IRS and three representative scheduling
strategies.

e PARSEC [33] is a shared memory parallel benchmark suite. We
compiled the benchmarks using pthread and used the native

80
60 -t 1-inter. PLE [ZZ2 1-inter. IRS 2-inter. Relaxed-Co =1 4-inter. PLE [ZZ2 4-inter. IRS I _ |
40 1-inter. Relaxed-Co EZ=A 2-inter. PLE =13 2-inter. IRS 1 4-inter. Relaxed-Co =1
20 168 -119 VE_’H-I

; Ao Ml 0 o B gl — i -
-20 AU Y R -
40 Mz s
-60

(a) w/ Microbenchmark

-162.81 -97.42
» W/ .
T
H D S | N

""""" 4284 257

Performance Improvement (%) Performance Improvement (%) Performance Improvement (%)

Figure 5. Improvement on PARSEC performance (blocking).

input for all benchmarks. PARSEC benchmarks use various block-
ing synchronization primitives (e.g., mutexes, condition variables
and barriers).

o NASA parallel benchmarks (NPB) [7] include 9 parallel programs
derived from computational fluid dynamics applications. We used
the OpenMP implementation of the benchmarks and set the prob-
lem size to class C. Environment variable OMP_WAIT_POLICY was
set to active to enable spinning synchronization between threads.

e SPECjbb2005 [29] is a multi-threaded client/server benchmark.
Synchronization is occasionally needed when customer requests
compete for the same database table. Performance is measured by
the throughput of the server, e.g., business operations per second
(bops) and the latency of the common request type, e.g., the new
order transaction.

o Apache HTTP server benchmark [5] stress tests the throughput
and latency of a webserver using a large number of requests.
Threads servicing client requests are independent and do not
require synchronizations.

Interfering workloads We used two types of interfering work-
loads to create contention between VMs. We first used a micro-
benchmark to generate synthetic interference. The micro-benchmark
consisted of a varying number of CPU hogs that compete for the
CPU cycles and had almost zero memory footprint. The use of the
micro-benchmark is to perform controlled experiments that has
persistent interference to the workloads under test. In addition to
the micro-benchmark, we also co-located PARSEC and NPB bench-
marks with two realistic background interfering workloads respec-
tively. streamcluster and ua have fine-grained synchronizations
at the granularity of 20-30ms and 1-2s while fluidanimate and lu
have coarse-grained synchronizations every 6 and 30 seconds.
Scheduling strategies We compare the performance of IRB with
three state-of-the-art scheduling strategies for parallel programs.

e Xen: we used the default credit scheduler without any optimiza-
tions for parallel programs as the baseline.

e PLE: pause-loop exiting is a hardware-level mechanism for spin
detection. It detects the execution of excessive PAUSE instructions,
which are commonly found in spin lock implementation, and
causes trapping (via VM-exit) into the hypervisor. In Xen, the
credit scheduler switches to a different vCPU if the current vCPU
is stopped by PLE. To enable PLE, all workloads were run in
hardware-assisted virtualization (HVM) VMs.

e Relaxed-Co: we implemented VMWare’s relaxed co-scheduling
in Xen. Relaxed-Co monitors the execution skew of each vCPU
and stops the vCPU that makes significantly more progress than
the slowest vCPU. A vCPU is considered to make progress when
it executes guest instructions or it is in the IDLE state. Since
VMWare documentation does not reveal further details about re-
laxed co-scheduling, we implemented an optimization for parallel
programs — when a VM’s leading vCPU is stopped, the hypervisor
switches it with its slowest sibling vCPU to boost the lagging
vCPU.

5.2 Improving Parallel Performance

In this section, we evaluate the effectiveness of IRS in improving
parallel performance for various parallel workloads. All bench-
marks were run with 4 threads, matching the number of vCPUs in
the VM. The results were the average of 5 runs.

Figure 5 and 6 show the performance improvement due to IRS
for PARSEC and NPB. Performance improvement is relative to
the vanilla Xen and Linux. We varied the level of interference
(denoted as I-inter., 2-inter., and 4-inter.) and caused LHP and LWP
problems on different numbers of vCPUs of the parallel VM. For
example, 2-inter. refers to the scenario in which either two CPU
hogs or 2-thread real applications compete for CPU cycles with
two vCPUs of the parallel VM on two pCPUs. PARSEC includes a
wide spectrum of parallel programs with different synchronization
primitives, (e.g., mutexes, condition variables, and barriers), parallel
programming models, (e.g., data parallel and pipeline parallel), and
task assignment polices, (e.g., static and dynamic assignments).

80

(a) w/ Microbenchmark

60 - 1-inter. PLE [ZZ]
40

1-inter. IRS

1-inter. Relaxed-Co XX 2-inter. PLE X

2-inter. Relaxed-Co XX

4-inter. PLE [
4-inter. Relaxed-Co 2

4-inter. IRS I -
2-inter IRS 3

Performance Improvement (%) Performance Improvement (%) Performance Improvement (%)

Figure 6. Improvement on NPB performance (spinning).

Figure 5 shows the effectiveness of IRS for all PARSEC benchmarks.
We have the following observations about IRS performance:

First, most PARSEC benchmarks benefited from IRS with as
much as 42% improvement over vanilla Xen/Linux. However, IRS
was not quite effective for some workloads with marginal improve-
ment, i.e., dedup, ferret, and raytrace. Dedup and ferret employ
pipeline parallelism and use multiple threads (i.e., 4 threads) for
each pipeline stage (4 stages in dedup and 5 stages in ferret). Thus,
there were multiple threads running on each vCPU. The Linux
scheduler was able to balance these threads as most threads will be
in the ready state, leaving little room for performance improvement.
Similarly, raytrace implements user-level load balancing and does
not need much help from IRS.

Second, performance improvement decreased as the level of in-
terference increased. While IRS had significantly improved perfor-
mance for the I-inter. and 2-inter. cases, it can degrade performance
in the 4-inter. case. When a few vCPUs were under interference,
IRS was able to migrate threads onto vCPUs without interference.
The more interference-free vCPUs, the more likely for IRS to find
idle vCPUs that can run migrated threads immediately. In contrast,
when all vCPUs were under interference, the vCPU onto which a
thread was migrated can be preempted soon, which triggers an-
other round of migration. Frequent migration violates cache locality
and may incur performance degradation, especially for memory-
intensive workloads. This overhead explains the slowdown of
some programs under IRS in the 4-inter. case.

Third, IRS was also effective when interferences were real paral-
lel workloads. The results were similar to those with the synthetic
interference except that IRS had slightly better performance in the
4-inter. case. When the interference was a real parallel program, it
demanded less CPU than the synthetic interference because the in-
terfering workload also suffered from LHP or LWP, thereby having
low CPU utilizations.

Compared to IRS, PLE and Relaxed-Co had improved parallel
performance to a certain extent, though not as much as IRS in most
cases, but incurred considerable performance degradation to some

workloads. Since blocking primitives, such as mutex and condition
variable, only spend a very short period of time spinning when
performing wait queue operations, PLE does not help much on pre-
venting excessive spinning. As shown in Figure 5, PLE had limited
performance improvement for blackscholes and swaptions but
incurred considerable slowdown to vips, bodytrack, and facesim.
The reason is that PLE avoids futile spinning but does not prevent
LHP or LWP from occurring. When a spinning vCPU is stopped
by PLE, the vCPU from the competing VM will be scheduled. Cur-
rently, there is no mechanism in Xen for prioritizing the siblings,
which are likely the lock holder or waiter, if a spinning vCPU yields
CPU due to PLE. This explains why for some workloads, PLE caused
slowdown.

In contrast, relaxed-Co is specially designed to balance the
progress of sibling vCPUs. In our implementation, we monitored
the progress of all sibling vCPUs belonging to the same VM in every
accounting period in Xen (every 30ms) and stopped the leading
vCPU to boost the most lagging vCPU. However, results in Figure 5
show that it attained less performance improvement compared to
IRS in almost all PARSEC workloads. The results also suggest that
relaxed-Co can be destructive, especially in the 4-inter. cases. For
example, it caused more than 132% performance degradation for
bodytrack in Figure 5 (c). Overall, relaxed-Co was less effective or
even destructive for blocking workloads than spinning workloads
(shown in Figure 6). The culprit was that the idle period during
which a blocking workload waits for synchronization is considered
as making progress by relaxed-Co, thereby not counted as skew.
As will be discussed in § 5.6, the idleness caused by out of syn-
chronization is not recognized by existing CPU schedulers, which
constitutes the main limitation of relaxed-Co.

For spinning workloads, the migrator in IRS was unable to find
any idle vCPUs to migrate preempted threads as threads never block
when waiting for synchronization. IRS can only find vCPUs that
are less loaded for migration. Thus, the migrated thread inevitably
needs to share the destination vCPU with another thread. Counter-
intuitively, Figure 6 shows that on average IRS attained higher

(a) w/ Fluidanimate

B 1-inter. PLE IO 1-inter. IRS 3
140 |- -inter. Relaxed-Co X1 2-inter. PLE X1
120
100 = -

80 - --

60 - --

40 - --

20

-

D

o
|

Weighted speedup (%)

2-inter. Relaxed-Co XX

4-inter. PLE 2O
4-inter. Relaxed-Co A

4-inter IRS A __}
2-inter. IRS

’i‘iii
i

i

=

Weighted speedup (%)
3
o
|

20 ” S
(578 .
S Q,O/;O
Figure 7. Weighted speedup of two PARSEC applications (blocking, higher is better).
Throughput b) Lat
16 (@) Throvghpy 50 (©) atency 5.3 Improving Multi-threaded Performance

1-inter. mm—
2-inter. =55 —
3-inter. C—=
4-inter. Z—=1

Performance improvement (%)

specjbb ab specjbb ab (99th)

Figure 8. Improvement on server throughput and latency.

performance improvement over the baseline. In vanilla Xen/Linux,
a preempted thread needs to wait one time slice in Xen, i.e., 30ms,
before its host vCPU is scheduled again, leading to long lock wait
time. In contrast, IRS migrates the lock holder thread to another
vCPU. Although the thread still needs to wait until it is scheduled
by the guest OS, the scheduling happens much sooner. Not only
does Linux guest OS use finer grained time slices (i.e., 6ms), but
also the migrated task likely has smaller virtual runtime than the
existing task on the destination vCPU and would be prioritized by
Linux completely fair scheduler (CFS). However, a similar trend
was observed — the performance gain due to IRS diminished as
interference ramped up.

PLE and relaxed-Co were more effective for spinning workloads
than blocking workloads. In most cases, they achieved close but less
improvement compared to IRS. Nevertheless, they still performed
poorly for some workloads, e.g., CG, IS, MG, and SP. In contrast,
although IRS can cause slowdowns, the degree of degradation is
not as much as PLE and relaxed-Co. It clearly demonstrates the
weakness of hypervisor-level scheduling optimizations - it is chal-
lenging to design a “one-size-fits-all” approach for different types
of workloads. An optimization effective for one workload could be
harmful to other workloads.

The improvement on parallel performance was mainly due to
much improved CPU utilization under interference. IRS was able to
boost the utilization of parallel workloads close to their fair share
under CPU contention. The enhanced load balancing in the guest
OS helped parallel workloads utilize the idle or wasted CPU cycles
in vanilla Xen/Linux.

We have shown that IRS is effective for boosting various parallel
workloads. In this subsection, we study its performance with more
general multi-threaded programs with little or no synchronization.
We show that these workloads can also benefit from IRS. We used
two different server benchmarks. SPECjbb2005 executes complex
business transactions and its request processing time are in the
range of a few hundreds of millisecond to a few seconds on our
testbed. We set the number of warehouses to 4 so that there was a
one-to-one mapping between threads and vCPUs. Apache bench-
mark (ab) tests webserver performance using a large number of
threads, each requesting a small file from the server. We set the
number of connections to 1000 and MaxClient in Apache httpd
to 512. Thus, there were 512 concurrent threads in the webserver.

Figure 8 shows the improvement in throughput and latency due
to IRS relative to vanilla Xen/Linux. Since request processing in
server workloads has little dependency and requires little synchro-
nization, PLE and relaxed-Co have little effect and their results
are not reported. The interference was one to four CPU hogs. Since
SPECjbb performs little synchronization and ab had no synchro-
nization, their CPU utilizations can achieve the fair share and IRS
does not improve utilization as it did for the parallel workloads
above. However, as shown in Figure 8, IRS was still able to improve
the throughput of SPECjbb by up to 12%, though did not help much
in ab (by as much as 4%). While IRS did not help increase utilization,
it did improve request latency, which contributed to throughput
improvement. Figure 8 (b) shows that the average latency of the
new order transaction in SPECjbb was improved by as much as 46%.
SPECjbb measures throughput based on the number of requests
that satisfy a service level objective (SLO) on latency. Thus, im-
provement on latency avoided many SLO violations and increased
effective throughput.

In contrast, IRS had marginal improvement on ab latency. Fig-
ure 8(b) shows that there was only slight improvement on the tail
latency (99* h percentile) of ab. The average latency (not shown
in the figure) was not much improved. The difference between ab
and SPECjbb is that ab had many more threads than the number of
vCPUs and each request was short. Since Linux is able to sense the
contention at the hypervisor by dynamically updating the rt_avg
load on each vCPU, the load balancer in the guest OS was able

(a)w/LU

~ 180
2 160 b—------- 1-inter. PLE [ZZJ 1-inter. IRS [2-inter. Relaxed-Co [XX] 4-inter. PLE 1 4-inter. IRS A _|
g 140 - 1-inter. Relaxed-Co XX] 2-inter. PLE X1 2-inter. IRS 4-inter. Relaxed-Co 1
o =
8 i T © [IS ¢) S - DO S
3 5 - 11 o
o o - I P4 -
g TR A
% THM

> N

b <M

(b) w/ UA
S a0 b _
§ —_
3 e . mMidl &l Wl & e
2 -1 i =9 E9RE - “
i g RISTGHAN maikxdied WAchailey RAS
£ sz sls s
=) - M ‘“ -- --{ M ‘g S
g IR i s

M ‘:.: I ‘:‘: I

CG EP FT IS MG

Figure 9. Weighted speedup of NPB applications (spinning, higher is better).

to distribute threads on vCPUs based on the level of interference
experienced by each vCPU. Therefore, IRS can only help the thread
that was running when its host vCPU was preempted. Given that
ab had a large number of threads, improvement on a few threads
did not contribute much to the overall throughput but helped the
tail latency to some extent.

This experiment demonstrates that for multi-threaded workloads
with little/no synchronization, IRS is most effective for workloads
that have an equal number of or fewer threads than the number of
vCPUs because IRS can migrate “running” threads from preempted
vCPU. For workloads with many more threads than the number of
vCPUs, load balancing in Linux is sufficiently effective, leaving no
room for IRS improvement. Similarly, as interference ramps up, the
performance gain due to IRS diminishes.

5.4 System Fairness and Efficiency

The objective of IRS is to allow the guest OS to more efficiently
utilize its CPU allocation via enhanced in-guest load balancing.
Since it requires some changes to both the guest OS and the hy-
pervisor, we are interested in studying the system-wide fairness
and efficiency when multiple realistic applications are co-located.
The foreground VM ran various parallel workloads and had IRS
enabled. We selected representative parallel programs as the inter-
fering workloads running in the background VM. The interfering
VM ran a vanilla Linux kernel and thus IRS had no effect on it ..
We define the speedup of an application as its performance under
IRS normalized to the performance in vanilla Xen/Linux. We use
the weighted (average) speedup of the foreground and background
applications to measure the overall system efficiency. The higher
the weighted speedup, the higher system efficiency. A weighted
speedup of 1 indicates the same performance as vanilla Xen/Linux.
The foreground and background workloads were both repeated at
least five times to ensure their execution completely overlapped
with each other.

Due to space limits, we briefly report the fairness between the
foreground and background VMs. IRS did not compromise fairness
and the two VMs had a fair share of the pCPUs. The only change
IRS made to the scheduling algorithm at the hypervisor is the delay
added to each vCPU preemption for the guest OS to process SA
notifications. Experimental results show that IRS improved the

!Without implementing the VIRQ_SA_UPCALL interrupt, the background VM ignores
the SA notification sent by the hypervisor.

utilization of the foreground VM but the CPU consumption never
exceeded the fair share.

Figures 7 and 9 show the weighted speedup for PARSEC and NPB
benchmarks due to different scheduling strategies with a varying de-
gree of interference. The weighted speedup follows the same trends
of performance improvement in Figure 5 and 6. For PARSEC bench-
marks (as shown in Figure 7), IRS had marginal or no speedup in
dedup and ferret. For other workloads, IRS improved the system-
wide speedup by as much as 40% and the average speedup across
all workloads was 18% and 22% when the background workloads
were fluidanimate and streamcluster, respectively.

An examination of the performance of foreground and back-
ground workloads revealed that the gain on system weighted speedup
was mainly due to the performance improvement in foreground ap-
plications. In most cases, the background application had speedup
in the range of —5% to 6%, with an exception for the case in which
raytrace and fluidanimate were co-located and fluidanimate
had 27% improvement. The performance degradation of the back-
ground application (as much as 5%) was due to the improved uti-
lization of the foreground application. Thus, the background ap-
plication had less CPU allocations. These results suggest that IRS
did not change the way the background VM was scheduled by the
hypervisor and most performance improvement of the foreground
VM was due to more efficient load balancing in the guest OS. IRS
never degraded the background performance significantly but had
unexpected improvement for some background workloads, e.g.,
fluidanimate when running with raytrace.

Compared to IRS, PLE either had marginal improvement on the
weighted speedup or hurt the overall system efficiency. For ex-
ample, PLE degraded the weighted speedup considerably for vips,
bodytrack, and facesim. Note that both the foreground and back-
ground VM had PLE enabled. The frequent trap into the hypervisor
and the lack of coordination between the VMs were the culprits
of degraded system efficiency. Relaxed-Co achieved better per-
formance than PLE, but still hurt overall system efficiency when
running bodytrack and facesim.

Similar results can be observed in Figure 9. For example, IRS
improved system speedup for most application combinations except
the SP+UA and UA+UA experiments. For spinning workloads, PLE
and relaxed-Co had better worst-case results. For all experiments
including those in Figure 7, IRS had no significant impact on system

a) x264 (mutex b) blackscholes (barrier) c) EP (blockin d) MG (spinnin
< 30 : I() : (I I) : 50 (b) () 50 () EP(g) 30 (d) MG (spinning)
- w/ Microbenchmark —[— 4 w/ Microbenchmark —[— 4 w/ Microbenchmark —— w/ Microbenchmark —E—
'GE) 25 - w/ Fluidanimate —&— — 40 w/ Fluidanimate —e— _| 40 | N w/ LU —e— _|
£ 4 w/ Streamcluster —&— w/ Streamcluster —&— ‘_ w/UA —a—
Q20 R Q
g 30 [\ N 30 [Ne =
£ 15 B N\
) 20 [NN T A 20 N -
§ 10
€ | o NON | 10 b NG E Y L -
é 5 RN 10 10
~
& 0 | | | | | I ~% 0 g | | | | | | | | | | | |
1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
of interferences # of interferences # of interferences # of interferences
Figure 10. The trend of IRS performance improvement with a varying number of interferences.
80 (a) x264 (mutex) 80 (b) blackscholes (barrier) 80 (c) EP (blocking) 80 (d) MG (spining)
I 1-inter. m—— 1-inter. m——m 1-inter. m—— 1-inter. ——
< 2-inter. ==z 2-inter. &=z=zz9 2-inter. ==z
g i i -
% 60 | 4-inter. ——= . 4 60 | 4-inter. 3 g . 60 L/ = 60
S [
9] ol
(<)
E40 e e - 40 40 g KL~ 40
® <)]
(<) S K>
§20 - gEy §I § - 20 20 |- Ezi - 20
s S S o
b I b o

1VM 2VMs 3VMs

1VM 2VMs 3VMs

Figure 11. The trend of IRS performance improvement with a varying degree of interferences.

speedup in the 4-inter. cases. The degradation or improvement of
weighted speedup was within the range of —5% to 5%.

5.5 Scalability and Sensitivity Analysis

We have shown the effectiveness of IRS when two VMs shared
the pCPUs and the hardware parallelism in SMP VMs was up to 4
vCPUs. In this section, we extend the evaluation to a larger number
of vCPUs per VM and consolidating more VMs. We are interested
in quantitatively measure the effectiveness of IRS for different types
of parallel workloads. All results were the average of five runs.

First, we created two 8-vCPU VMs and configured them to share
8 pCPUs. The foreground VM ran 8-thread parallel workloads while
the background VM executed three different types of interferences:
one CPU-bound synthetic workload and two real parallel applica-
tions. The level of interference varied, starting from one vCPU with
interference to all vCPUs (8-vCPU) with interference. We selected
four benchmarks from PARSEC and NPB for evaluation. X264 exclu-
sively uses pthread mutexes for point-to-point synchronization
and blackscholes uses pthread barriers for group synchro-
nization between threads. NPB benchmarks employ a data-parallel
programming model and use barrier-like synchronizations. EP per-
forms less synchronization and uses blocking synchronization. We
set MG to use spinning synchronization.

Figure 10 shows the trends of performance improvement due
to IRS relative to vanilla Xen/Linux. We have the following obser-
vations: (1) performance gain diminishes as the number of vCPUs
having interference increased. When all vCPUs are experiencing
interference, the average gain is marginal at about 4%. (2) Parallel
workloads with different types of synchronizations respond differ-
ently to IRS. Programs with group synchronization, such as barriers,
suffer more from LHP, thereby benefiting more from IRS. The per-
formance gain of point-to-point synchronizations, e.g., mutexes,
is less than that of group synchronizations. IRS is more effective
for mitigating LHP problems in blocking synchronization than in
spinning synchronization. (3) overall, the stated trends apply to all
three types of interfering workloads.

Next, we fixed the number of vCPUs in the foreground VM
to 4 and varied the number of interfering VMs from 1 to 3. For
example, I-inter. with three interfering VMs refers to the case that

one vCPU of the foreground VM has interference and there are 3
VMs competing for the CPU cycles on the same pCPU. Figure 11
shows that as the degree of interference increases on each interfered
foreground vCPU, the performance gain of IRS increases in most
cases. Another important observation was that IRS has significant
improvement under high degree of interference even all vCPUs
of the parallel VM experience interference (i.e., 4-inter. + 3VMs).
We conclude that IRS can be more useful in a highly consolidated
scenario with many VMs sharing the same pCPUs.

5.6 Mitigating CPU Stacking

We found that existing SMP schedulers, including the native Linux
process scheduler and Xen’s hypervisor-level vCPU scheduler, suf-
fer from a severe CPU stacking problem when parallel workloads
with frequent blocking are co-located with applications with per-
sistent CPU demands. For example, if a four-thread parallel work-
load with blocking synchronization, e.g., streamcluster, shares
4 CPUs with three persistent CPU hogs, the parallel threads or
vCPUs running these threads will be stacked on a single or a small
number of CPUs, leaving much of the hardware-level parallelism
unexploited by the parallel program. According to our PARSEC
experiments with Linux CFS and Xen’s credit scheduler, the four
parallel threads were stacked on one or two cores and had 5-20x
slowdown compared to the case in which threads or vCPUs were
pinned to separate cores.

Root causes of CPU stacking Modern SMP schedulers are de-
signed for scalability and proportional fair sharing. Each CPU in
an SMP system runs an independent fair-sharing scheduler and
relies on thread/vCPU migration for load balancing. The objective
of load balancing is to evenly distribute workload onto multiple
CPUs. and oftentimes the level of load is measured by the CPU
utilization of a thread/vCPU. CPU stacking occurs if threads of a
parallel program are placed on the same CPU and multiplexed in a
time-sharing manner. As a result, the stacked threads cannot exe-
cute simultaneously, leading to the loss of parallelism. CPU stacking
occurs due to two reasons. First, Thread or vCPU scheduling is
oblivious of the dependencies between parallel threads or vCPUs.
Thus, placing sibling threads/vCPUs on the same CPU is legiti-
mate as long as it satisfies fair sharing and load balancing. Second

(a) w/ Microbenchmark

3
T

o8
T

8
T

%) Performance Improvement (%) Performance Improvement (%)

]

]

Performance Improvement (%)
n A
o o o
1T
® i :
L
= —
< !
m E :
T :
b
Q 3
5| B
z b
[o] .
< [
s| B

- B ﬂ:|IJ:|:

SP

Figure 12. NPB performance in response to CPU stacking.

and most importantly, there exists a deficiency in existing SMP
schedulers when scheduling blocking workloads. Due to LHP and
LWP, parallel threads frequently block and wait to enter the critical
section. Since blocked threads do not consume any CPU cycles,
they exhibit deceptive idleness (DI) to the scheduler. This situation
is similar to DI in disk scheduling [16] and causes blocking threads
to be consolidated on a small number of CPUs due to their low CPU
utilization.

Figure 12 shows the performance of NPB benchmarks under PLE,
relaxed-Co, and IRS when all the vCPUs of the foreground and
background VMs were unpinned. Performance is normalized to that
in vanilla Linux/Xen and the interference was 4-inter. CPU hogs.
Since NPB benchmarks never block, the DI situation does not occur.
As shown in Figure 12, all strategies were effective in improving
NPB performance over the baseline and the degree of improve was
significantly higher than that in Figure 6, indicating a mitigation
of the CPU stacking problem. Among these scheduling strategies,
PLE prevented excessive spinning and relaxed-Co balanced the
progress of sibling vCPUs, thereby helping spreading them onto
separate cores. Compared to PLE and relaxed-Co, IRS achieved
overall higher performance gain, showing that in-guest load bal-
ancing is more resilient to CPU stacking caused by oblivious vCPU
scheduling.

Figure 13 shows the performance of PARSEC benchmarks. Note
that the stacking of PARSEC application threads was due to de-
ceptive idleness caused by LHP or LWP. The figure shows that
neither PLE nor relaxed-Co was generally effective in alleviating
CPU stacking but exacerbated the performance slowdown. For ex-
ample, PLE incurred up to 78% performance degradation compared
to the baseline in dedup. Because the CPU stacking of blocking
workloads is due to DI, PLE, which stops spinning vCPU and yields
to competing vCPUs, caused more idling of the PARSEC workload.
Relaxed-Co also caused considerable slowdown in some cases, e.g.,
dedup, vips, and canneal, because it only switched the leading
vCPU and the lagging vCPU and was unable to address the stack-
ing problem. In contrast, IRS proactively pushes threads from pre-
empted vCPUs to idle or less loaded vCPUs, preventing these vCPU
from idling. As discussed in § 5.2, With the help of IRS, blocking

(a) w/ Microbenchmark
100 [~ PLE mmmmm Relaxed-Co EXX=3

(%)

IRS =—= -~
50 f-ioioees

T
=
=)
s
=
T
S
=5
(=
!

Performance Improvement (%) Performance Improvement (%)

4 %, & e, %, b b K. S, Ao, fo.

/eo,f_s @o'% e, 6'/7/79 4’/% .{O& o%/r e/}‘@f h’eof' é’é‘y QJ//,Q eoe&/.

0, s, %,9 e "One C
e, ()

Figure 13. PARSEC performance in response to CPU stacking.

workloads avoided unnecessary idling and exhibited their factual
CPU demand to the SMP scheduler. This helped prevent the DI
problem and the resulted CPU stacking.

6 Discussion

Limitation IRS proactively migrates preempted threads to another
vCPU based on the estimation of load on the target vCPU. It cannot
eliminate all vCPU idle time or achieve perfect load balancing
because the load estimate can be inaccurate. The ideal migration
should be pull-based and happen when a vCPU becomes idle. This
calls for a new mechanism of task migration — migrating a “running”
task from a preempted vCPU.

Autonomous guest resource management IRS allows the guest
to migrate tasks among its sibling vCPUs and leads to more effi-
cient utilization of its CPU allocation. Although small changes are
needed in the guest kernel and hypervisor, we have shown that the
changes do not affect the core resource scheduling algorithms at the
hypervisor. We believe that hypervisors should provide such inter-
faces to the guest OS for autonomous and efficient guest resource
management.

7 Conclusion

This paper demonstrates that the semantic gap between the guest
OS and hypervisor leaves the potential of addressing the LHP and
LWP problems in the guest unexploited. We design IRS, a simple
approach based the classical concept of scheduler activations to
bridging the semantic gap and enhancing in-guest load balancing.
Experimental results show that IRS is especially effective for work-
loads that have a portion of threads with interference in a highly
consolidated environment.

Acknowledgments

We thank the anonymous reviewers for their insightful comments.
This work was supported by U.S. National Science Foundation
grants CNS-1649502 and The University of Texas STARs program.

References

(1]
(2]

(3]
(4]

[5
[

(71

(9]

[10]

(1]

(12]

[13]
(14]

[15]
[16]

Kernel patch. https://patchwork kernel.org/patch/9441007.

Kvm and big vms. https://www.linux-kvm.org/images/5/55/
2012-forum-Andrew-Theurer-Big-SMP-VMs.pdf.

AHN, J., PARK, C. H., AND Huw, J. In Proceedings of the 47th International Sympo-
sium on Microarchitecture (Micro) (2014).

ANDERSON, T. E., BERSHAD, B. N., LAzowska, E. D., AND LEvy, H. M. Scheduler
activations: Effective kernel support for the user-level management of parallelism.
ACM Trans. Comput. Syst. 10, 1 (1992).

ApracHE HTTP SERVER BENCHMARK. https://httpd.apache.org/docs/2.4/programs/ab.html.

ArpAcI-Dusseau, A. C. Implicit coscheduling: coordinated scheduling with
implicit information in distributed systems. ACM Trans. Comput. Syst. 19, 3
(2001).

BarLey, D. H.,, BArszcz, E., BARTON, J. T., BROWNING, D. S., CARTER, R. L., DAGUM,
L., FaTooHr, R. A., FREDERICKSON, P. O., LAsiNsKkI, T. A., SCHREIBER, R. S., S1-
MoON, H. D., VENKATAKRISHNAN, V., AND WEERATUNGA, S. K. The nas parallel
benchmarks-summary and preliminary results. In Proceedings of the ACM/IEEE
Conference on Supercomputing (SC) (1991).

BARrHAM, P., DRAGOVIC, B., FRASER, K., HAND, S., HARRIS, T., HO, A., NEUGEBAUER,
R., PRATT, L., AND WARFIELD, A. Xen and the art of virtualization. In Proceedings
of the 9th ACM Symposium on Operating Systems Principles (SOSP) (2003).
CHENG, L., Rao, J., AND Lau, F. C. vScale: Automatic and efficient processor
scaling for smp virtual machines. In Proceedings of European Conference on
Computer Systems (Eurosys) (2016).

CO-SCHEDULING SMP VMs IN VMWARE
http://communities.vmware.com/docs/DOC-4960.

DiNG, X., GiBBONS, B. P., KozucH, A. M., AND SHAN, J. Gleaner: Mitigating
the blocked-waiter wakeup problem for virtualized multicore applications. In
Proceedings of the USENIX Annual Technical Conference (ATC) (2014).

Dusseau, A. C., Arract, R. H,, AND CULLER, D. E. Effective distributed sched-
uling of parallel workloads. In Proceedings of the International Conference on
Measurement and Modeling of Computer Systems (SIGMETRICS) (1996).

FRIEBEL, T., AND BIEMUELLER, S. How to deal with lock holder preemption. In
Xen Developer Summit (2008).

INTEL CORPORATION. Intel® 64 and [A-32 Architectures Software Developer’s
Manual. December 2009.

INTEL TBB. http://software.intel.com/en-us/intel-tbb.

IYER, S., AND DRUSCHEL, P. Anticipatory scheduling: A disk scheduling framework
to overcome deceptive idleness in synchronous i/o. In Proceedings of the 8th ACM
Symposium on Operating Systems Principles (SOSP) (2001).

ESX SERVER.

[17] Jones, S. T., Arraci-Dusseau, A. C., AND ARpAcI-Dusseau, R. H. Antfarm:

(18]

[19]
[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27

[28]

[29]
[30]

[31]

Tracking processes in a virtual machine environment. In Proceedings of the
USENIX Annual Technical Conference (ATC) (2006).

Kasnyap, S., MIN, C., AND Kim, T. In Proceedings of the 6th Asia-Pacific Workshop
on Systems (APsys) (2015).

KERNEL BASED VIRTUAL MACHINE. http://www.linux-kvm.org.

Kim, H., KM, S., JEONG, J., LEE, J., AND MAENG, S. Demand-based coordinated
scheduling for smp vms. In Proceedings of the 18th International Conference on
Architectural Support for Programming Languages and Operating Systems (ASPLOS)
(2013).

KoNToTHANASSIS, L. I, WISNIEWSKI, R. W., AND ScoTT, M. L. Scheduler-conscious
synchronization. ACM Trans. Comput. Syst. 15, 1 (1997).

Novaxovic, D., Vasic, N., Novakovic, S., Kostic, D., AND BIANCHINI, R. Deepdive:
Transparently identifying and managing performance interference in virtualized
environments. In Proceedings of the USENIX Annual Technical Conference (ATC)
(2013).

OUSTERHOUT, J. Scheduling techniques for concurrent systems. In Proceedings
of the 3rd International Conference on Distributed Computing Systems (ICDCS)
(1982).

OUYANG, J., AND LANGE, J. R. Preemptable ticket spinlocks: Improving consol-
idated performance. In Proceedings of the International Conference on Virtual
Execution Environments (VEE) (2013).

Rao, J., WANG, K., ZHOU, X., AND XU, C.-Z. Optimizing virtual machine scheduling
in numa multicore systems. In Proceedings of the International Conference on
High Performance Computer Architecture (HPCA) (2013).

RAo, J., AND ZHOU, X. Towards fair and efficient smp virtual machine scheduling.
In Proceedings of the 19th ACM SIGPLAN symposium on Principles and Practice of
Parallel Programming (PPoPP) (2014).

SOBALVARRO, P., PAKIN, S., WEIHL, W. E., AND CHIEN, A. A. Dynamic coscheduling
on workstation clusters. In Workshop on Job Scheduling Strategies for Parallel
Processing (JSSPP) (1998).

SoNG, X., JICHENG, S., HAIBO, C., AND BINYU, Z. Scheduling processes, not vcpus.
In Proceedings of the 4th Asia-Pacific Workshop on Systems (APsys) (2013).

SPEC JAVA SERVER BENCHMARK. http://www.spec.org/jbb2005.

SUKWONG, O., AND K1m, S. H. Is co-scheduling too expensive for smp vms? In
Proceedings of European Conference on Computer Systems (Eurosys) (2011).
TEABE, B, N1TU, V., TCHANA, A., AND HAGIMONT, D. In Proceedings of European
Conference on Computer Systems (Eurosys) (2017).

(33]

(34]

(35]

[36

(37]

(38]

(39]

THE CPU SCHEDULER IN VMWARE VSPHEREAS 5.1.
http://www.vmware.com/files/pdf/techpaper/VMware-vSphere-CPU-Sched-
Perf.pdf.

THE PRINCETON APPLICATION REPOSITORY FOR SHARED-MEMORY COMPUTERS
(PARSEC) . http://parsec.cs.princeton.edu/.

UHLIG, V., LEVASSEUR, J., SKOGLUND, E., AND DANNOWSKI, U. Towards scalable
multiprocessor virtual machines. In Proceedings of the 3rd Conference on Virtual
Machine Research and Technology Symposium (VM) (2004).

VMWARE. Vmware horizon view architecture planning 6.0. In VMware Technical
White Paper (2014).

WELLS, P. M., CHAKRABORTY, K., AND SoHI, G. S. Hardware support for spin man-
agement in overcommitted virtual machines. In Proceedings of the International
Conference on Parallel Architectures and Compilation Techniques (PACT) (2006).
WENG, C., L1u, Q., Yu, L., AND L1, M. Dynamic adaptive scheduling for virtual
machines. In Proceedings of the 20th International Symposium on High-Performance
Parallel and Distributed Computing (HPDC) (2011).

WENG, C., ZHANG, Z., L1, M., AND Lu, X. The hybrid framework for virtual ma-
chine systems. In Proceedings of the International Conference on Virtual Execution
Environments (VEE) (2009).

XEN CREDIT SCHEDULER. http://wiki.xen.org/wiki/Credit_Scheduler.

