Towards Fair and Efficient SMP
Virtual Machine Scheduling

Jia Rao and Xiaobo Zhou

University of Colorado, Colorado Springs

http://cs.uccs.edu/~jrao/

University of Colorado
Colorado Springs


http://cs.uccs.edu/~jrao/

Executive Summary

* Problem: unfairness and inefficiency in consolidating SMP VMs

» Existing VM schedulers tavor VMs w/ more virtual CPUs

» Fairness mechanisms hurt parallel performance

* Flex is a scheduling framework that:
» Adaptively adjusts vCPU weights for VM-level fairness
» Flexibly schedules vCPUs to minimize unnecessary spinning

»  Results: 5% error to the ideally fair allocation, 30%+ performance
improvement for parallel workloads, ~1% overhead in Xen



SMP VM Consolidation

» Abundant hardware parallelism in DC

 SMP VMs are prevalent in the cloud

» 26 out of 29 instance types in Amazon EC2 have more
than two vCPUs

» Support parallel applications

» Heterogeneous consolidation is common,
e.g., Amazon EC?2



Unfair VM CPU Allocation

« CPU allocation

» NOT proportional to VM

» VMs w/ more vCPUs gain

>

weights

advantage

Common issue in all
hypervisors

VM1 VM1 VM1 VM1
vCPUO vCPU1 vCPU2 vCPUS
W T T TR
pCPUO pCPU1 pCPU2 pCPU3

T —

Fair share = two CPU cores

Normalized CPU consumption
B 3-vCPUVM O 4-vCPU VM

Xen

KVM

VMware



Causes of Unfairness

* Per-CPU scheduling

> Independent scheduler on each CPU
v 1

VM3
vCPUO

»  Each allocates CPU based on relative vCPU - -

WelghtS VM1 VM1 VM1 VM1
VCPUO | | vCPU1 || vCPU2 | | vCPU3

pCPUO pCPU1 pCPU2 pCPUS3

» Per-vCPU weight dependent on VM weight

and the number of vCPUs Equal weight VMs
Box size reflects per-vCPU weight

»  Scalable but hard for VM-level fairness

Allocations on vCPU => VM-level fairness
IFF
Same total weight on each CPU



Existing Solutions

* Capping VM CPU consumption (Cap)

> Requires pre-calculation of the tair share

Introduce significant inefficiencies

+ Non. to parallel applications

* Load balancing (LB)

»Tries to achieve equal weights on CPUs

» Balance weight vs. balance run queue length



Cap on Busy-waiting-based Workloads

* Busy-waiting synchronization Dynamic task
assignment

--------------------------------- Useful work —

» Tasks stay in a busy loop waiting 120 |- Fioina: VN~ Heteir UM Busy walling 1

for lock release _ 100

< 80

. _ ; 60

> Avoids contexts switches 10 L

Capping exacerbates the LHP issue in :
virtualized environments

LApMMILLY llIay 1nouwdaneliily pYITeClliptL

> Preemption of vCPU holding locks vCPUs that are doing useful work.

CPU time (%)

L C

> Long synchronization latency



LB on Blocking-based Workloads

* Blocking synchronization

> Tasks go to sleep if failing to acquire
the |0Ck 120 - PN TR Running e -

oo L PIN Blocked ——
| % 80 -
> Avoids wasted CPU cycles -E 60 |

I

JCF LB exacerbates the vCPU stacklng issue
* U OLAUInNII IH 0

> vCPUs belonging to one VM pile on
the same CPU Since blocking vCPUs frequently switch
between READY and RUNNING states, they
are more likely “victims” of work-stealing

> No parallelism + Long sync latency based load balancing.
Gradually, stolen vCPUs pile on a few CPUs



Related Work

* Fairness in multicore systems

» [Li-PPoPP09] - no VM-level fairness

* Minimizing sync latency in SMP VMs

Flex non- mtruswe Ilghtwelght and applicable
to different implementations

» Pause loop exit (PLE) - needs hardware support

« Spin detection

» [Wells-PACTO06] - store-based spin detection, not accurate to apps with
different store rates, e.g., LU in NAS parallel benchmark



Flex for Fairness and Efficiency

* Flexible vCPU weight (FlexW)
» Monitors VM CPU consumption
> Calculates fair shares based on VM weights

» Adjusts vVCPU weights to compensate the difference

* Flexible vCPU scheduling (FlexS)

» Stops spinning vCPUs to avoid wasted CPU cycles

> Switches the preempted vCPU with one on another CPU that is doing useful
WOork

»  Ensures that no vCPUs from the same VM stack on one CPU



FlexW Design

 Determine the fair share
> P-number of shared CPUs, wi- VM weight

»|deally fair share according to generalized processor sharing (GPS)

Siaps(ti,t2) = —<—(t2 —t1)- P
> w

J

* Adjust VM weights

Wi - VM weight

Si; aps(ti,ta)—S;(t1,t2)
Si .aps(t1,t2)

» calculate the lag  lagi(ti,t2) =
» compensate the lag with real-time weights

w; = w; + w; - lag;(t1,t2)



FlexS Design

 |dentifying busy-waiting vCPU

»  Non-intrusive identification without
application knowledge

» Common pattern in different spin
implementations

Spin loops contain a few instructions

Spin loops are executed many times

» Spin loops show high branch per
instruction (BPI) and low branch miss
prediction rate (BMPR)

S = W H~ O

2.0
1.5
1.0
0.5
0.0

BPI

B Solo
[ Spinning vCPU
E non-spinning vCPU

T

lu

L]

Sp cg povray

BPMR

B Solo
[ Spinning vCPU
E non-spinning vCPU

LI

lu

Sp cg povray



FlexS Design (cont’)

* Eliminating busy-waliting time

4

»

Periodically update a vCPU’s BPl and BMPR
Busy-waiting vCPU voluntarily yields CPU

Find a sibling vCPU to complete the unfinished time
slice

Switch the two vCPU to avoid vCPU stacking and run
gueue weight changes



Practical Considerations

Starvation
» VMs demanding less than its share will have ever increasing real-time weight

> Solution: reset real-time weight every 10s

Infeasible weight -> peak CPU demand less than the fair share
» Solution: peak demand as the fair share

False positive in identifying spinning vCPU
> Solution: reset BPl and BMPR every 10s

Inter-CPU locking overhead due to vCPU migrations

> Solution: only try twice when looking for siblings to switch- the power of two choices



Implementation

Implement Flex in Xen's credit scheduler

v

weight -> credit

» FlexW in the system-wide csched_acct() routine, adjusts
VM credit refill based on real-time weights, invoked every
30ms

» FlexS in the per-CPU schedule() function, adds
load_balance_switch() to exchange work with sibling vCPUs

»|dentify spinning vCPU in vcpu_acct() when Xen charges
credit to the current running vCPU



Evaluation Methodology

* Questions: VM-level fairness? and parallel performance?

* Workload

» NAS Parallel benchmark (OpenMP, busy-waiting sync)

» PARSEC (Pthreads, blocking sync)

*  Background interfering loops — isolate from cache contention
* Scheduling strategies for comparison

> Xen default credit scheduler

> Balance+cap+CO - [Sukwong-Eurosys11]

> Demand+cap - [KIm-ASPLOS13]



VM-level Fairness

Heterogeneous VMs:
1vCPU, 2vCPU, 3vCPU, 4vCPU

Each running while(1) loop

Si.aps(ti,ta)—Si(t1,t2) ‘
Siaps(ti,t2)

Relative lag =

Lower is better

Relative lag (%)

2 3 4 5 §) 7 8
Number of VMs

Flex: significant improvement over Xen
with no more than 5% unfairness



Proportional CPU share

VM Differentiation

4-vCPU VM s
R 3-vCPU VM -
2-vCPU VM — _

3:2:1 3:1:2 2:1:3 2:3:1 1:2:3 1:3:2

VM weights

Flex realizes proportional
share among VMs



Parallel Performance

Challenge: Flex allocates less CPU
time to the 4vCPU VM than Xen

- - - B Xen B Balance+cap+CO

0 FlexW ] FlexW+FlexS
VM1 VM1 VM1 VM1
NAS NAS NAS NAS Normalized runtime

ocPUo | | pcPut || pcrPuz || pcPus 1.5 -

Observation: FlexW alone does _
NOT guarantee good perf. - _

Reason: Imbalance wastes 0.5
CPU time

Results: FlexW+FlexS 0
performs closely to Xen
and balance+cap+CO

lu sSp ft ua ot cg ep mg
Lower Is better



Parallel Performance

VM1
Loop

VM1
Loop

VM1
Loop

VM1
Loop

pCPUO

pCPU1

pCPU2

pCPU3

H
[]

Xen B Balance+cap+CO
FlexW ] FlexW+FlexS

Normalized runtime

Expected: Flex performs _

better than Xen .

0.5
Reason: Flex allocates more CPU

time to the 3vCPU VM than Xen

ua ot cg e€ep mg

Lower is better



Mix of Parallel Workloads

Results: Flex outperforms

VM1 VM1 VM1 VM1
NAS NAS NAS NAS balance+cap by
pCPUO | | pCPU1 | | pCPU2 | | pCPU3 30.4%

B Xen B Balance+cap O Flex Lower is better

Normalized runtime

u sp ft ua bt cg ep mg

¢ ¢

Foreground NAS

Dynamic task

assignment Background lu



Overhead

System-wide csched acct () Per-CPU func. schedule ()

O Xen O Flex O Xen O Flex

Execution time (micro-second)

0 0
2 3 4 5 6 7 8 2 3 4 5 6 7 8
FlexW overhead: VM weight adjustment FlexS overhead: vCPU stealing
Overhead increases with # of VMs constant overhead, not increases
performed by the idle VM with # of VMs
not affecting paraliel frequency of schedule() - 30ms

performance less than1% overhead



Conclusions & Future Work

« Fairness-efticiency tradeoft

» Straightforward solutions to unfairness lead to poor efficiency
* Flex: a holistic solution

» Adaptively adjusts weight for fairness

» Flexibly schedule vCPUs to minimize wasted work

» Problem: NOT quite effective for apps with dynamic task assignment

e Future work

» Cross-layer application-cloud coordination



Thank you .'

Questions?

http://cs.uccs.edu/~jrao/



http://cs.uccs.edu/~jrao/

Backup Slides Begin Here ...



Parallel Performance (blocking)

PAYR%:EC PXRI\g‘IIEC PXRI\g‘IIEC PXR%?EC . Xe 4 . De man d N Cap
e e e — |:| FlexW |:| FlexW+FlexS
pCPUO pCPU1 pCPU2 pCPU3
Observation: Both Flex and 1 _ -
demand+cap improve pert.
Reason: Avoiding vCPU 05 __ I
stacking helps a lot
Conclusion: Flex does not 0 | H
. w X = bry w w
incur much penalty to s ¢ § 3 % s £ 5 g2 ¢
: = = 5 = >
blocking sync.-based apps s 2 8 5 § % 2 B8
S 8 5
S 0
o 3



