
1

QoS Guarantees and Service Differentiation for
Dynamic Cloud Applications

Jia Rao, Yudi Wei, Jiayu Gong, Cheng-Zhong Xu
Department of Electrical & Computer Engineering
Wayne State University, Detroit, Michigan 48202

{jrao,ydwei,jygong,czxu}@wayne.edu

F

Abstract—Cloud elasticity allows dynamic resource provisioning in
concert with actual application demands. Feedback control approaches
have been applied with success to resource allocation in physical
servers. However, cloud dynamics make the design of an accurate and
stable resource controller challenging, especially when application-level
performance is considered as the measured output. Application-level
performance is highly dependent on the characteristics of workload
and sensitive to cloud dynamics. To address these challenges, we
extend a self-tuning fuzzy control (STFC) approach, originally developed
for response time assurance in web servers to resource allocation in
virtualized environments. We introduce mechanisms for adaptive output
amplification and flexible rule selection in the STFC approach for better
adaptability and stability. Based on the STFC, we further design a
two-layer QoS provisioning framework, DynaQoS, that supports adap-
tive multi-objective resource allocation and service differentiation. We
implement a prototype of DynaQoS on a Xen-based cloud testbed.
Experimental results on representative server workloads show that
STFC outperforms popular controllers such as Kalman filter, ARMA
and, Adaptive PI in the control of CPU, memory, and disk bandwidth
resources under both static and dynamic workloads. Further results
with multiple control objectives and service classes demonstrate the
effectiveness of DynaQoS in performance-power control and service
differentiation.

1 INTRODUCTION

As server virtualization grows increasingly popular and
mature, hosting enterprise applications in a cloud has
become an attractive solution for scalability and cost-
efficiency. Applications running within virtual machines
(VM) have on-demand access to compute resources in
response to increased application loads. On the other
hand, virtual resources can be maintained at a mini-
mal level during off-peak periods in order to reduce
cost. Thus, virtual machines should be dynamically pro-
visioned to match actual application demands, rather
than the peak requirement. However, these demands
are difficult to estimate due to time-varying and diverse
workload. More importantly, client-perceived quality-of-
service (QoS) should still be maintained in the presence
of background dynamic resource provisioning. These ob-
servations call for an effective approach that automates
the resource allocation for cloud users.

Regulatory control is a promising method for re-
source allocation, in which a feedback controller en-
forces service-level objectives (SLO) while minimizing
the resources required. More importantly, if properly
designed, this type of control can provide predictable
performance with theoretical stability guarantees. In
general, a feedback controller applies the control input to
a target system in order to regulate the measured output
to the value of a desired output [6].

There are many control approaches that have been
applied with success to resource allocation in physical
servers; see [1], [16], [22], [9], [11] for examples. Recent
studies have focused on the application of control ap-
proaches for the allocation of virtualized resources in
clouds [12], [31], [8], [19], [18]. The cloud adds new
challenges to the QoS-oriented resource allocation, in
addition to workload dynamics. Different from physical
servers, a virtual server may see a varying capacity in
the cloud. The dynamics in the capacity can be due to the
non-uniformity in cloud resources, the opportunistic use
of additional market-based resources(e.g., Amazon spot
instances [2]) or even the rogue behavior of malicious
users [36].

Many existing work used indirect metrics such as
workload arrival rate [12], [31] and CPU utilization [8],
[19], instead of application-level performance as the
measured output. These work relied on the assumption
that there are always static relationships between the
metrics and the high-level performance. The relation-
ships are usually determined either by industry practice
or offline testing. Although easier to control, the use
of indirect metrics may not be effective in a dynamic
cloud environment. In Section 2, we show that when
the CPU utilization is 80%, the response times of an E-
Commerce benchmark can have as large as 150% varia-
tions with different capacities. Therefore, with dynamic
capacity, resource utilization is not readily translated
to application-level performance and models obtained
under one capacity setting are likely to be inaccurate
for other settings. In practice, application performance
metrics such as response time are good measures of

2

client-perceived QoS. However, these metrics usually
behave nonlinearly with respect to resource allocations
and are highly dependent on the characteristics of work-
load, as well as server capacity. This nonlinearity poses
challenges to design a stable and accurate controller.

To address the issue of the lack of an accurate server
model, the work in [8], [18] applied adaptive control
approaches based on model approximation. However,
these approaches pose limitations on how fast the work-
load and the system behavior can change [37]. In [34], we
developed a two-layer self-tuning fuzzy control (STFC)
approach for QoS assurance in web servers with respect
to response time. In this paper, we extend the STFC
approach to multiple resource allocations in virtualized
environments by introducing an extra self-tuning output
amplification and flexible rule selection mechanism. In
comparison with other popular controllers, STFC shows
better adaptability and stability. Based on the STFC,
we further design a two-layer QoS provisioning frame-
work, DynaQoS, that supports adaptive multi-objective
resource allocation and service differentiation.

To evaluate the performance of STFC and the Dy-
naQoS framework, we have built a cloud testbed based
on a Xen environment. We conducted experiments to
dynamically control the allocation of CPU, memory,
and disk bandwidth resources to three representative
cloud applications. These applications include a cluster-
based E-Commerce website (TPC-W [29]), an in-memory
key-value store (Memcached [17]), and a video stream-
ing server (Darwin streaming server [5]). For compar-
ison with STFC, we also implemented three popular
controllers within the DynaQoS framework: a model-
independent Adaptive PI controller and two controllers
based on local model approximation: Kalman filter and
ARMA controllers. Experimental results show that, STFC
outperformed the closest competitor by up to 28% and
61% under static and dynamic workloads, respectively.
The output amplification reduces the settling time to 3
control intervals and the flexible rule selection improves
the stability. Further results on simultaneous control of
performance and power show that, DynaQoS was able to
find a balance between conflicting objectives. In service
differentiation, DynaQoS guaranteed the performance
of the premium class and provided better service to
the basic class outperforming a popular differentiation
policy.

In summary, this paper makes the following contribu-
tions:

1) Proposing a novel framework, DynaQoS, to pro-
vide QoS-guaranteed automatic resource manage-
ment to cloud applications. The framework also
includes the support for multiple-objective control
and service differentiation.

2) Proposing a self-tuning fuzzy controller with adap-
tive control of output magnitude and flexible rule
selection.

3) Implementing the DynaQoS framework and
demonstrating its effectiveness on a Xen-based

cloud testbed.

The rest of this paper is organized as follows. Section 2
discusses the design objectives and the challenges in
automatic cloud resource management. Section 3 and
Section 4 elaborate the key designs and implementation
of DynaQoS, respectively. Section 5 gives experimental
results. Related work is presented in Section 6. We
conclude this paper in Section 7.

2 BACKGROUND AND MOTIVATION

In this section, we review the design objectives of a
resource controller and discuss the challenges in a cloud
environment.

2.1 Design Objectives

For cloud users, leasing virtual servers from cloud is
advantageous over buying physical machines only if
they leverage the elasticity of cloud and dynamically
maintained the virtual resources to a level that matches
actual application demands [3]. Feedback control is a
promising method for automatic resource allocation. A
resource controller should achieve diverse control ob-
jectives, maintain high resource utilization, while still
guarantee application-level QoS and realize service dif-
ferentiation. In the following, we outline the design
objectives of a resource controller:

• Precise control of multiple user-defined metrics.
The controller should transparently translate user-
defined high-level control metrics to low-level re-
source requirements and allocate resources in a way
that minimizes the error between the measured out-
put and the desired output. These metrics include
but are not limited to performance metrics (e.g.,
response time and throughput), expenditure metrics
(e.g., dollars per hour), and energy consumption
metrics (e.g., Joule per hour). Moreover, the con-
troller should also support the simultaneous control
of multiple metrics if necessary. For example, a
cloud user may request a response time target of
1 second together with a power budget of 250 watt.

• QoS guarantee and differentiation. The controller
should ensure that application-level QoS is guar-
anteed in the presence of dynamic resource con-
trol. It requires that the controller be responsive to
QoS violations and stable during oscillations. When
resources are constrained, the controller should
provide differentiated services to different service
classes.

• High resource utilization. Besides meeting the
stated control and QoS objectives, the resource con-
troller should also maintain the utilization of re-
sources at high levels. This avoids the waste in idle
resources and leads to savings in the leasing cost.

3

2.2 The Challenges

To build a resource controller realizing a high-level
objective, a mathematical model that captures the rela-
tionship between the allocated resource and the high-
level metric is necessary. Given the model, any deviation
of the high-level metric from the desired value can be
corrected by applying adjustments in the resource allo-
cation. However, the determination of the system model
in a dynamic cloud environment is not trivial. Workload
and cloud dynamics make the identification of system
models difficult. In the following, we discuss the causes
of dynamic capacity and show that the uncertainties
affect application modeling.

2.2.1 Performance interference
In a cloud environment, multiple cloud users share the
same infrastructure. Although server virtualization helps
realizing performance isolation to some extent, VMs
from different cloud users may still have chances to
interfere with each other. We show that the involvement
of the centralized virtualization layer in CPU, memory
and I/O device virtualization causes uncertainties in VM
resource allocation [20]. Rogue applications may deprive
the resources in the hypervisor and incur significant
performance degradation to other applications. For some
applications, their performance is dependent on the char-
acteristics of co-hosting VMs. For example, the actual
CPU performance relies on the memory intensity of co-
running workloads that share the last-level cache and
the actual disk performance depends on the sequentiality
of other jobs. Thus, application models obtained offline
are likely to be inaccurate online with interference from
other applications.

2.2.2 The non-uniformity of cloud resources
In this subsection, we show that even without resource
contention from others, cloud users may still see vari-
ations in the capacity of their applications due to the
inherent non-uniformity of cloud hardware.

CPU. In [3], the authors showed that time-sharing
of CPU resources in multiple VMs can provide much
more predictable performance than I/O sharing. As the
number of cores embedded on a single socket increases,
heterogeneous CPU architecture and on-chip hardware
hyperthreading has gained popularity in modern CPU
design. Despite their benefits in low energy consumption
and good scalability, these designs lead to non-uniform
CPU performance. “Big” cores are more powerful than
“small” cores and hardware threads have distinct per-
formance dependent on whether their sibling threads are
executing or not. Current Virtual Machine Monitors such
as VMware and Xen, do not consider the underlying
non-uniformities in VM CPU scheduling. Thus, even
allocated with the same amount of CPU time, the actual
CPU capacity of a VM changes over time. In Figure 1,
we draw the performance differences of a set of mi-
cro and macro-benchmarks due to the underlying non-

uniformity of cloud resources. The testbed was a Dell
server with 12 CPU cores with hyperthreading enabled.

1) Micro-benchmark. We used a simple matrix mul-
tiplication program and measured its performance
in terms of cycles per instruction (CPI). We tested
with the program running alone (i.e., non-HT) and
with a infinite loop keeping the sibling core busy
(i.e., HT).

2) Macro-benchmark. We used a MapReduce job that
classifies approximately 20000 documents into 20
newsgroups using Bayes Networks and measured
its execution time. Since the benchmark is a multi-
threaded program, HT allows threads to be sched-
uled on hyperthreads while non-HT ensures that
no hyperthreads are used.

Figure 1(a) and Figure 1(b) show that the non-uniformity
of CPU performance results in 40% and 38% perfor-
mance differences in the micro and macro-benchmarks,
respectively.

Memory. With the advances in multicore architecture,
memory access also becomes non-uniform. New multi-
core systems increasingly use the non-uniform memory
access (NUMA) architecture for scalability considera-
tions. In such systems, a processor can access its own
memory (i.e., local memory) or other processors’ mem-
ory (i.e., remote memory) through high-speed processor
interconnects. As applications become more memory-
hungry, VMs with tens of Gigabyte memory is not rare.
Application memory is inevitably composed of a mix of
local and remote memory making the throughput and
latency dependent on access locations. We used the fol-
lowing benchmarks to show how much the non-uniform
memory access can affect application performance on a
Dell NUMA machine:

1) Micro-benchmark. We used the STREAM [28]
benchmark to measure the absolute memory band-
width of local and remote memory.

2) Macro-benchmark. We selected one of the most
memory-intensive programs, i.e. mcf, in the SPEC-
CPU2006 [27] benchmark and measured its execu-
tion time on local and remote memory.

Figure 1(a) shows that there is 14% discrepancy in peak
bandwidth of local and remote memory. This causes an
execution time difference of 23% to mcf in Figure 1(b).

Disk. Disk access has been non-uniform since the
introduction of storage techniques such as Zone-Bit-
Recording (ZBR). It stores more sectors per track on
outer tracks than inner tracks (i.e., slower), resulting
in lower latency and higher throughput in the outer
tracks (i.e., faster). As a consequence, VMs configured
with the same size of virtual disks may see different
disk performance. We created two VMs each with a
10GB virtual disk and put the disk image files on two
partitions that are 200GB away from each other. We ran
the following benchmarks:

1) Micro-benchmark. We ran the command dd in-
side VMs to measure the absolute disk throughput

4

when sequentially reading 2GB data.
2) Macro-benchmark. We used the PostMark [26]

benchmark and measured its performance in terms
of execution time.

As shown in Figure 1(a), the different locations on
the disk incurred 35% performance variations on peak
throughput. Although the discrepancies in storage can
sometimes be hidden by computation, macro-benchmark
PostMark still shows a non-negligible performance dif-
ference (22% in Figure 1(b)).

2.2.3 Opportunistic use of variable resources
Besides uncertainties from the underlying cloud hard-
ware, dynamics in VMs’ capacity can also come from
market-based accesses to additional resources. Amazon
Elastic Compute Cloud (EC2) provides Spot Instances [2]
as a complementation to On-demand Instances and Re-
served Instances. Different from the other two, Spot In-
stances make use of unused Amazon EC2 capacity and
are charged a much lower spot price. Cloud users bid
on spare capacity and run Spot Instances as long as their
bids exceed the spot price. Spot price changes with the
supply and demand. The instances whose owner’s bids
are below current spot price will be terminated. If hosted
applications are resilient to nondeterministic capacity ad-
ditions and removals, mixing reserved capacity (i.e., on-
demand or reserved instances) with transient capacity
(i.e., spot instances) would be a cost-effective way for
time-varying workloads.

Next, we study how the non-determinism in capacity
can pose challenges in modeling resource to application
performance. Figure 2 plots the application performance
of TPC-W against the resource utilization (i.e., CPU uti-
lization) under different capacities. We threw 500 shop-
ping clients to the TPC-W virtual cluster and created
different levels of capacities by adding or removing VMs
from the virtual cluster. For example, a total number of 4
VMs, each with one core, is equivalent to a capacity of 4-
core. As shown in Figure 2, the relationship between ap-
plication performance and CPU utilization changes with
capacity. When CPU utilization is 80%, both response
time (Figure 2(a)) and throughput (Figure 2(b)) show
as large as 150% variations. With dynamic capacity, re-
source utilization is not readily translated to application
performance. System models obtained under one capac-
ity setting are likely to be inaccurate for other settings.
Without an accurate system identification, control-based
resource allocation will suffer poor performance.

In summary, these challenges motivated us to develop
a model-free and online resource control method that
deals with complex resource to performance relationship
and dynamic capacity. We propose a novel fuzzy control-
based framework, namely DynaQoS, for the manage-
ment of VM resources.

3 THE DYNAQOS FRAMEWORK
In this section, we present the design of DynaQoS,
a prototype of fuzzy control-based resource allocation

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

CPU Memory Disk

N
or

m
al

iz
ed

 p
er

fo
rm

an
ce

non-HT

HT

local
remote

faster

slower

(a) Micro-benchmarks

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

Bayes Mcf Postmark

N
or

m
al

iz
ed

 p
er

fo
rm

an
ce

non-HT

HT

local

remote

faster

slower

(b) Macro-benchmarks

Fig. 1. The non-uniformity of cloud resources.

 400

 800

 1200

 1600

 2000

 60 70 80 90 100

R
es

po
ns

e
tim

e
(m

s)

CPU utilization (percent)

1-core
2-core
3-core
4-core

(a) Response time

 0

 50

 100

 150

 200

 250

 60 70 80 90 100

T
hr

ou
gh

pu
t (

re
q\

s)

CPU utilization (percent)

1-core
2-core
3-core
4-core

(b) Throughput

Fig. 2. Different resource to performance relationship due
to dynamic capacity.

for cloud applications. For a specific cloud application,
DynaQoS dynamically allocates the constrained resource
to meet a set of predefined control objectives.

3.1 Design of DynaQoS
As shown in Figure 3, DynaQoS is composed of two
layers of controllers. The first layer is a group of self-
tuning fuzzy controllers (STFC) that control individual
objectives. During each control interval, a STFC queries
the corresponding QoS profile manager for the reference
value of the controlled metric. A QoS monitor peri-
odically reports the achieved value of the metric. The
metrics to be controlled can be conventional application-
level performance metrics such as response time or
throughput; or any user-defined high-level metric, we
show an example of such metrics in Section 5. In a
cloud environment, more interesting control can be the
control of current leasing expenses (based on variable
resource prices) towards a target of leasing budget, or
the control of VM-level power consumption below a per
VM budget [10]. The STFC takes the difference between
the reference value and the achieved one as well as the
change of the error as its inputs and outputs a resource
request to the second layer gain scheduler.

When there are multiple control objectives, the second
layer gain scheduler aggregates the resource requests
from individual STFCs and forms a unified resource
request. The aggregation of individual requests is based
on the weights (gain) of each STFC when determining
the final request. The gains are dynamically adjusted
according to the control errors of STFCs. Service dif-
ferentiation is necessary if multiple service classes exist
and the aggregated resource demand is beyond the
available capacity. We define multi-level objectives in the

5

STFC

STFC

... Gain
Schedule

Cloud Resource
Management

Add/remove
capacity

QoS Profile QoS Monitor

Capacity
request

C
ontrol

reference

C
on

tr
ol

er

ro
r

Fig. 3. The structure of the DynaQoS framework.

QoS profile manager for each service class. If resource
contention is detected and it can not be resolved for a
certain number of control intervals, the class with lowest
priority modifies its control objective to the next level.

3.2 The Self-tuning Fuzzy Controller
Due to workload and cloud dynamics, the relationship
between allocated capacity and the received service qual-
ity exhibits considerable nonlinearities. The relationship
can often be linearized at fixed operating points. It is
well known that the linear approximation of a nonlinear
system is accurate only within the neighborhood of the
operating point. Abrupt changes in workload traffics
and the non-determinism in VM capacity can possibly
make the simple linearization inappropriate. Instead of
modeling the system in mathematical equations, fuzzy
control employs the control rules of conditional linguistic
statements on the relationship of allocated resources and
the high-level objectives [7].

Figure 4 illustrates the structure of the Self-tuning
Fuzzy Controller. It consists of three components,
namely the fuzzy logic controller, the scaling-factor con-
troller and the output amplifier. The fuzzy controller
implements a static fuzzy control logic and the scal-
ing factor controller together with the output amplifier
makes the basic controller adaptive to dynamic server
capacity.

The resource allocated in control interval k+1, denoted
by u(k + 1), is adjusted according to its error e(k) (i.e.,
the normalized difference between the reference value
and the achieved one) and change of error ∆e(k) in
previous control interval k using a set of control rules
embedded in the fuzzy logic controller. e(k) and ∆e(k)
are calculated using the reference value r(k) and the
observed value y(k). For the stability of the control
system, we define the normalized error e(k) in a range
of [−1, 1]:

e(k) =

{
r(k)−y(k)

r(k) 0 ≤ y(k) ≤ 2r(k);
−1 y(k) > 2r(k).

Based on these, the controller calculates resource ad-
justment ∆u(k) for the next control interval. The resource
adjustment is then fed into the next layer gain scheduler.

The fuzzy logic controller contains four building
blocks. The actual fuzzy logic is implemented as a set
of If-Then rules of quantified control knowledge about
how to adjust the allocation according to e(k) and ∆e(k).
The fuzzification interface converts controller inputs into

Inference
mechanism

Rule-base

Fuzzy logic controller

D
ef

uz
zi

fic
at

io
n

Fu
zz

ifi
ca

tio
n

Scaling-factor controller

Output
amplifier

to next layer
gain schedule

∑ Ke

α

u(k)

αKΔu

Δu(k)

KΔe

From QoS
monitor

y(k)

r(k)

From QoS
profile

e(k)

Δe(k)

Fig. 4. The structure of the STFC.

TABLE 1
The description of linguistic values.

Linguistic value Description
NL negative large
NM negative medium
NS negative small
ZE zero
PS positive small
PM positive medium
PL positive large

certainties in numeric values of the input membership
functions. The inference mechanism activates the rule-
base and applies fuzzy rules according to the fuzzi-
fied inputs and generates the fuzzy conclusions for the
defuzzification interface. The defuzzification interface
converts fuzzy conclusions into the change of allocation
in numeric value.

The STFC is built on the static fuzzy logic controller
by adding the self-tuning scaling factors and the output
amplifier. There are three scaling factors: input factors
Ke and K∆e, output factor α, and output amplifier
K∆u. The change of input scaling factors changes the
connection of input values to suitable rules, The change
of output scaling factor and the amplifier together adjust
the amplitude of the output. The actual inputs of the
fuzzy logic controller are |Ke|e(k) and |K∆e|∆e(k). Thus,
the resource allocated to the VM during management
interval k + 1 is

u(k + 1) = u(k) + α|K∆u|∆u(k) =

∫
αK∆u∆u(k)dk.

3.2.1 Design of the rule base
The design objective is to translate human expert’s
knowledge into a set of rules to control the re-
source allocation. In the fuzzy logic controller, the con-
trol rules are defined using linguistic variables. For
brevity, linguistic variables “e(k)”, “∆e(k)”, and “∆u(k)”
are used to describe e(k), ∆e(k), and ∆u(k), respec-
tively. The linguistic variables assume linguistic values
NL,NM,NS,ZE,PS, PM, and PL. Their meanings are
shown in Table 1. They indicate the sign and the size in
relation to the other linguistic values.

Figure 5(a) gives an simple illustration of typical con-
trol effect. In this figure, we identify five zones with

6

different characteristics. Zone 1 and 3 are characterized
with opposite signs of e(k) and ∆e(k). That is, in Zone
1, e(k) is positive and ∆e(k) is negative; in Zone 3, e(k)
is negative and ∆e(k) is positive. In these two zones, it
can be observed that the error is self-correcting and the
achieved value is moving toward the reference value.
Thus, ∆u(k) needs to be set to keep current trend.

Zone 2 and 4 are characterized with the same signs
of e(k) and ∆e(k). That is, in Zone 2, e(k) is negative
and ∆e(k) is negative; in Zone 4, e(k) is positive and
∆e(k) is positive. Different from Zone 1 and Zone 3, in
these two zones, the error is not self-correcting and the
achieved value is moving away from the reference value.
Therefore, ∆u(k) should be set to reverse current trend.

Zone 5 is characterized with rather small magnitudes
of e(k) and ∆e(k). Therefore, the system is at a steady
state and ∆u(k) should be set to maintain current state
and correct small deviations from the reference value.
The resulted control rules are summarized in Figure 5(b).
For example, when “e(k)” and “∆e(k)” are NL and PS,
“∆u(k)” is set to PM .

3.2.2 Fuzzification, inference and defuzzification
At the heart of a fuzzy controller are the membership
functions that quantify the certainty (between 0 and 1)
that an input fall in the corresponding ranges. We select
the “triangle” membership function, which is the most
widely used in practice. We set the width and height
of the “triangle” membership function to be 2/3 and
1, respectively. See our previous work [34] for design
details of the membership function. The fuzzification
component translates the inputs into corresponding cer-
tainty in numeric values of the membership functions.
Let µm(e(k)) denote the certainty of e(k) of the mth
membership function, and µn(∆e(k)) the certainty of
∆e(k) of the nth membership function.

The inference mechanism is to determine which rules
should be activated and what are the conclusions. Let
µ(m,n) denote the certainty of rule(m,n). The and oper-
ation in the premise is calculated via minimum:

µ(m,n) = min{µm(e(k)), µn(∆e(k))}.

Based on the outputs of the inference mechanism,
the defuzzification component calculates the fuzzy con-
troller output, which is a combination of multiple control
rules, using “center average” method. Let b(m,n) denote
the center of membership function of the consequent
of rule(m,n). In this case, it is where the membership
function reaches its peak. The fuzzy control output is

∆u(k) =

∑
m,n b(m,n) · µ(m,n)∑

m,n µ(m,n)
.

3.2.3 Design of the self-tuning controller
The fuzzy logic controller only defines the basic control
rules according to the inputs of e(k) and ∆e(k). It out-
puts the sign and magnitude of the allocation adjustment

∆u(k). With cloud dynamics, there could be a lot of
fluctuations in the control effect. To achieve accurate,
responsive, and stable control, the following issues need
to be addressed:

1) When there are abrupt workload or capacity
changes, the control should be responsive enough
to correct the resource discrepancy within a small
number of steps.

2) When there are considerable fluctuations in the
control effect, it may be due to two reasons. The
fluctuations may come from the inaccuracies of the
controller that incurs control overshooting; or it
may be due to the process delay [23] of the resource
allocation. A process delay is the time between the
resource allocation and the actual adjustment effect
can be reflected in application performance. Both
problems can be alleviated by decreasing the con-
trol magnitude or prolonging the control interval
to stabilize the control effect.

To address the above issues, we design the self-tuning
controller to have adaptive output magnitude and flexi-
ble control rules. The self-tuning features are realized by
dynamically changing the input, output scaling factors
and the output amplifier. The output scaling factor α
and the output amplifier K∆u(k) together determine the
magnitude of the allocation adjustment. In our previous
work [34], we used another level of fuzzy controller to
adjust the output scaling factor α. However, the output
∆u(k) of the fuzzy logic controller is within the range
of [−1, 1]. The change of α has limited effect on the
magnitude of the control output. To overcome abrupt
workload and capacity changes, the magnitude needs to
be changed dynamically based on current conditions. We
preserve the adaptive controller of α as in [34] and add
a self-tuning output amplifier. The amplifier implements
heuristic control knowledge as follows:

K∆u(k) = | c
2
· e(k)|,

where c is the current allocation for a specific resource.
For example, c can be the cap value of the CPU allocation
in a Xen platform or the current memory size. The
amplifier follows a heuristic rule that the maximum
resource adjustment should not exceed half of current
capacity for stability and should be proportional to the
control error for adaptability. Note that the direction of
the adjustment is still determined by the fuzzy logic.

To address the problem of process delay and control
inaccuracies, fuzzy control rules also need to be tuned
based on current conditions. Recall that the actual inputs
of the fuzzy logic are the Kee(k) and K∆e∆e(k), Ke and
K∆e together are able to determine which membership
functions or control rules are to be activated. As shown
in Figure 5(b), small values of Ke and K∆e tend to
activate rules in the center of the rule table, such as the
rules in Zone 5; large values are likely to trigger rules
such as PL and NL. Observations in the control of real
plants suggest that it is often desirable to decrease the

7

R
es
p
on

se
ti
m
e

Sampling period

reference response time

5

2 3

41

Reference value

O
bs

er
ve

d
va

lu
e

Sampling period

(a) The control effect

PS

PMPL

ZE

NS

NM

NL

“∆e(k)”“∆u(k)”

“e(k)”
PL

PL

PL

PL

PL

PL

PL

PL
PL

PL

PM

PM

PM

PM

PM
PM

PL

NL

NM

NS

ZEPS

PS

PS

PS

PS

PS
PS

ZE

ZE

ZE

ZE

ZE

ZE
ZE

NS

NS

NS

NS

NS

NS

NM

NM

NM

NM

NM

NL

NL

NL NL

NL

NL

NL

NL

NL

NL
1

3

4

2

5

(b) The rule table

Fig. 5. Design of the fuzzy control rules.

Algorithm 1 The gain scheduling algorithm.
1: Input ∆u1(k), . . . ,∆un(k), e1(k), . . . , en(k);
2: Output ∆u(k);
3: Initialize w1, . . . , wn to all zeros;
4: for n iterations do
5: wi = |ei(k)|∑n

j=1
|ej(k)|

;

6: end for
7: ∆u(k) =

∑n

i=1
∆ui(k) · wi;

8: return ∆u(k);

control magnitude during fluctuations. Thus, we define
Ke and K∆e as:

Ke(k + 1) = (1− γ)Ke(k) + γe(k),

K∆e(k + 1) = (1− γ)K∆e(k)− γ∆e(k),

where γ is a discount factor that gives more weight on
the observance of recent e(k) and ∆e(k) while still taking
history information into consideration. In Figure 5(a), we
can see that, during fluctuations the trajectory of control
is likely to follow Zone 1 → Zone 2 → Zone 3 → Zone
4. If the pattern is repeated many times, fluctuations
exist and e(k) shows as a series of positive and negative
values. Gradually, Ke would converge to a small value
close to zero, which triggers rules with small or zero
magnitude. When the control effect stabilizes, if the
achieved control deviates from the reference value, Ke

will quickly restores to a larger value by accumulating
e(k) with same signs. The self-tuning scheme works
similarly for ∆e(k) except that ∆e(k) has the same
sign during fluctuations and a subtraction is used to
compensate consecutive ∆e(k). The self-tuning of the
control rules helps mitigate process delays by generating
a sequence of small or zero actuations for more stable
control.

3.3 Scheduling multiple objectives
There exist many control problems in which the con-

sideration of multiple objectives is required, and these
objectives may conflict with each other. The Gain sched-
ule component in the DynaQoS framework implements
a weighted scheduling algorithm that synthesizes the
outputs from individual STFCs with different objec-
tives. The resulted output is the final resource adjust-
ment request. Algorithm 1 takes individual STFCs’ out-

puts ∆u1(k), . . . ,∆un(k) and the corresponding errors
e1(k), . . . , en(k) as inputs and outputs the synthesized
adjustment ∆u(k). We assume that there always exists a
control solution for the multiple-objective control prob-
lem. The weights are dynamically changed based on
individual STFCs’ control errors. In the extreme case, the
multiple-objective control degrades to a single-objective
control, if one objective generates near zero errors.

3.4 Realizing service differentiation

Service differentiation is desirable when the aggregated
resource demand of multiple service classes is beyond
the limit of available resources. Although cloud systems
allow prompt allocation of resources in response to the
increase in client traffic, there are still cases that the total
demand can temporally exceed available capacity. First,
the cloud user who owns the cloud application may
run out of budget preventing him adding more capacity
during a spike load. Second, applications running on the
market-based cloud resources may see capacity fluctua-
tions due to the supply and demand. Finally, compli-
cations in cloud resource scheduling and performance
interference also contribute to the variation of capacity.
For example, results in Figure 1(b) show up to 38%
variations in application performance due to scheduling
dynamics; the authors in [36] also demonstrated possible
CPU cycle stealing between cloud users.

To provide QoS guarantees, we consider service dif-
ferentiation to be initiated by individual service classes.
When resource contentions are detected, the service class
with a lower priority would adapt its SLO (e.g., a
response time target) to a lower level. By setting different
control objectives, the premium class will receive more
resources than the basic class while the basic class will
not be starved for resources by maintaining a degraded
level of service. We enforce strict priorities between
classes. That is the class with a higher priority adapts
to a lower level only when the lower priority classes
have reached their minimum service levels. To detect re-
source contentions, DynaQoS follows a simple heuristic
of tracking the control performance. If DynaQoS sees
a predefined number of serious SLO violations (i.e.,
∆e(k) < 0 and |∆e(k)| > ε) for a certain level of class and
the resource adjustment did not correct the control errors
(i.e., ∆u(k) > 0), classes with lower priorities would start

8

to adapt to a lower level. Classes at different ranks have
the tolerance of different numbers of violations, which
ensures that clients with lower priorities will always
degrade before the high priority clients. For example,
the premium class may only tolerate 10 consecutive
violations while the basic class can bear up to 30. When
capacity is limited, the basic class would release the
resource first.

3.5 Scalability considerations
The scalability of DynaQoS depends on the complexity
of the fuzzy control problem and the scale of the cloud
application. To limit the control complexity, we confine
the problem to controlling a single bottleneck resource
and leave the identification of the constrained resource to
cloud users. In practice, the number of control objectives
and number of service classes are also limited. As will
be shown in Section 5.2 and Section 5.3 that DynaQoS
works effectively with two control objectives and two
classes. Therefore, by carefully defining the control prob-
lem, we avoid the scalability issues.

DynaQoS assumes that there always exists a front-end
node in cloud applications, from which it queries infor-
mation for making control decisions. While the collection
of such information is dependent on the actual imple-
mentation of the cloud application, DynaQoS decides
how resources are distributed to VMs. For scalability,
DynaQoS applies the resource adjustment to a cloud
application by uniformly adjusting resources on individ-
ual VMs. Given the number of online VMs, DynaQoS
calculates the resource allocation on each VM and mul-
ticasts the request to the servers hosting these VMs. This
design simplifies the interactions between DynaQoS and
the VMs that receive resources, thus improves scalability.

4 SYSTEM IMPLEMENTATION

4.1 Cloud applications
TPC-W is an E-Commerce benchmark that models after
an online book store. We employed a three-tier cluster
implementation of TPC-W, which consists of an Apache
web server (version 1.3.11) and a group of Tomcat
(version 5.5.20) application and MySQL (version 5.0.45)
database servers. We put the Apache and all the Tomcat
servers into one VM forming a unified front-end, and
replicated the MySQL server into a number of DB VMs,
one MySQL per VM. We empirically determined that
the DB tier was the bottleneck tier under the browsing
workload. To generate dynamic workloads with varying
CPU demands, we modified the TPC-W client generator
to throw different number of requests at different times.
The performance of TPC-W was measured by the request
response time. We configured the front-end VM with 8
core and 4 GB memory and the DB VMs each with 2 GB
memory. DynaQoS managed the CPU allocation to the
DB VMs.

Memcached is a in-memory key-value store. It caches
data objects such as results from database calls and

page rendering. Its performance depends heavily on the
size of memory it uses for caching objects. We con-
figured Memcached (version 1.4.10) to remove cached
data if memory is exhausted. When VM memory size
is not large enough, cached data may be retrieved
from disk storage resulting in degraded performance.
We wrote a Memcached client emulator to generate
random GET (i.e., the retrieve operation) requests with
configurable working set size (WSS). The larger the WSS,
the more memory is required, and vice versa. Before
the retrieval of objects, we populated Memcached with
approximately 1GB data. We measured Memcached’s
performance by its throughput (i.e., request per second).
We used a single VM with 4 cores to host Memcached
and DynaQoS managed the memory allocation to the
VM.

Darwin streaming server is a multimedia server that
streams hinted video contents using various protocols.
Depending on the size of the video files, the streaming
workload can be either CPU-intensive or disk I/O-
intensive. We configured the Darwin server to stream
15 Quicktime movies with a total size of 30GB. Thus,
its performance is bottlenecked by disk bandwidth. We
used the StreamingLoadTool shipped with the Dar-
win server as the client emulator and modified it to gen-
erate dynamic workload by periodically changing the
number of active movie sessions. The more sessions, the
more disk bandwidth is needed. We measured Darwin
server’s performance in terms of client-side movie play
rate (i.e., KBit per second). The Darwin VM was set
to 4 core and 2 GB memory. The disk bandwidth was
controlled by DynaQoS.

4.2 Testbed

Our testbed consists of virtual hosts, multiple clients,
and a NFS server. The physical machines for virtual
hosting were two DELL servers with two Intel Xeon
X5650 CPUs and 32 GB memory. Each CPU has 6 cores
with hyperthreading enabled resulting in a total capacity
of 24 logical CPUs. The front-end and back-end DB VMs
were hosted on separate machines. We used a number
of client machines each with 8 cores and 8 GB memory
to generate workloads for TPC-W, Memcached, and
Darwin streaming server. The NFS server used a RAID5
partition to serve the VM disk images. We used Xen
version 4.0.2 as our virtualization environment. dom0
and guest VMs were running Linux kernel 2.6.32 and
2.6.18, respectively. All the severs were connected with
a Gigabit Ethernet.

4.3 Implementation of DynaQoS

QoS monitor. We measured application-level perfor-
mance at the client side of each cloud application. Gen-
erally, we modified the workload generators to maintain
logs of finished requests. We wrote utility programs to
parse the logs and calculate the average performance for

9

every control interval. We used response time, through-
put, and play rate as the control outputs for TPC-W,
Memcached, and Darwin streaming server, respectively.

QoS profile manager. Each service class works with a
QoS profile manager to determine the control objective.
The control objectives are specified in terms of a set of
desired control outputs with different levels. For service
differentiation, the profile manager also sets the number
of SLO violations that can be tolerated by a class before
a target adaptation is needed. For service differentiation
in Section 5.3, we only considered the service differen-
tiation in TPC-W and two classes: Premium and Basic.
They both have three levels of SLO specified in terms
of response times, {1s, 5s, 10s}, and with adaptation
thresholds: 10 and 30 violations, respectively.

Self-tuning fuzzy controller. STFC has been imple-
mented as a set of user-level daemons in the virtual host
(i.e., dom0 in a Xen environment). It takes the measured
application-level performance (from QoS monitor) and
the performance objective (QoS profile manager) as input
and outputs the resource adjustment to Xen’s manage-
ment interface. If multiple control objectives exist, two or
more STFCs form a unified request. The control interval
is set to 30 seconds for all the experiments.

Resource allocation. CPU resources are allocated to
each DB VM via Xen Credit Scheduler in terms of cap
values. A cap value represents the upper limit of CPU
time can be consumed by a VM. For a virtual cluster
with 4 VMs and each with 4 cores, the CPU allocation
can be in the range of [1, 1600]. The CPU time is allocated
to individual virtual clusters. We assume good load
balancing by the Tomcat balancer, thus distribute CPU
cap values uniformly within the cluster. All VMs are
given the same weight during allocation.

Memory size of the Memcached VM is adjusted by
the Xen privilege management interface xm mem-set
at a granularity of 1 MB. To avoid the out of memory
(OOM) error, we set the minimum memory size to be
256 MB. For I/O bandwidth of the Darwin VM, we used
command lsof to correlate the VMs virtual disks to pro-
cesses and change the corresponding processes’ band-
width allocation via the Linux device mapper driver
dm-ioband [25].

5 EXPERIMENTAL RESULTS

5.1 Comparing STFC to other popular control meth-
ods

We design experiments to study the efficacy of DynaQoS
in resource allocation under both static and dynamic
workloads. For comparison, we have also implemented
three popular controllers within the DynaQoS frame-
work:

Kalman filer [8] is a data processing method that uses
a series of measurement with noises to produce values
closer to the true values of the measurement. It is used
in [8] to track the utilization of CPU and allocate CPU

resources correspondingly to maintain the utilization to
a specified value.

Adaptive proportional integral (PI) [19] controller directly
tracks the error of the measured performance and adjusts
resource allocations to minimize the error. The gains of
the proportional and integral parts are set to | c2 · e(k)|,
similarly as the STFC, to allow adaptive control.

Auto-regressive-moving-average (ARMA) [18] builds a
local linear relationship between resource allocation and
application performance with recently collected sam-
ples. If application performance deviates from the target
value, the controller computes the allocation that corrects
the error based on the obtained model. We empirically
determine that a second-order ARMA model with a
window size of 20 generates the most control accuracy.

To measure the performance of a controller, we define
a metric, relative deviation R(e), based on root-mean
square error:

R(e) =

√∑n
k=1 e(k)2/n

r(k)
,

where r(k) is the control objective and e(k) is the error.
The smaller the R(e), the more the measured output
concentrates near the target value and better the con-
troller’s performance. To compare the performance of
different controllers, we take the performance of STFC
as a baseline and define the performance difference
between STFC and other controllers as:

PerfDiff =
R(e)other −R(e)STFC

R(e)STFC
.

Figure 6(a) plots the response times of different control
methods with static TPC-W workload. The workload
was set to 200 browsing clients, each with a mean think
time of 1 second. We selected the set point of the con-
trollers to be 1 second except that we followed [8] and set
the Kalman filter’s set point to be 90% CPU utilization,
which translates to approximately a 1-second response
time under the capacity of 16 cores. The virtual cluster
had 4 DB VMs each with 4 VCPUs and its initial capacity
was set to 6 cores (a cap of 600). From Figure 6(a), we
observe that, all the control methods except ARMA can
bring the response time close to the 1 second target but
with different deviations. ARMA requires a local model
to predict the proper CPU allocation, thus whenever a
deviation from the target is detected it needs several
control intervals to build a new model.

For the control of memory size and disk bandwidth,
we used similar controller settings for STFC, Adaptive
PI, and ARMA. As for Kalman filter, it is hard to set
thresholds for disk bandwidth and memory utilizations
because these concepts are usually ill-defined. We set
Kalman filter to directly work with application-level
performance. The set points of Darwin server and Mem-
cached were set to 120 KBit/s and 800 req/s, respec-
tively. Figure 6(b) shows that STFC outperformed all
controllers by successfully maintaining the play rate
close to the target. The closest competitor in this test was

10

also Adaptive PI because it is similar to STFC in nature.
It is expected that, in Figure 6(c), all the controllers have
much larger deviations from the target. The reason is
that when memory is insufficient, the guest operating
systems incur considerable background disk swapping
which can last several control intervals. This delayed
effect spanning over multiple control intervals affect
controllers’ performance significantly.

We are also interested in the adaptability of the con-
trollers under dynamic workloads. Specifically, we study
how the controllers perform in response to SLO viola-
tions and if they can maintain resource utilization at
high levels. Figure 7, Figure 8, and Figure 9 plot the
performance and resource allocations of TPC-W, Darwin
streaming server, and Memcached in a 90-minute pe-
riod, respectively. The intensities of the workloads were
increased every 30 intervals (i.e., 15 minutes) with the
period between the 60th and the 90th interval being the
traffic peak. After the peak, the workloads dropped ev-
ery 30 intervals until reaching the original traffic levels.

For the TPC-W benchmark, as shown in Figure 7,
ARMA performed worst among the controllers with a
large number of SLO violations. Kalman filter was not
responsive to workload changes and failed to bring the
response time back to the target before the workload
changed again. Both of STFC and adaptive-PI success-
fully maintained the response times around the target.
Figure 7 also suggests that STFC is more responsive
to the workload change with an average settling time
of 3 intervals. In contrast, adaptive-PI had an average
settling time of 6 intervals. An examination of the CPU
allocations reveals that Kalman filter was not responsive
to workload changes and ARMA was too sensitive to
the dynamics. It confirms that controllers based on local
model approximation impose limitations on how fast
workloads can change. Both STFC and Adaptive PI ef-
fectively expanded the virtual cluster as traffic increased
and shrunk it when the spike left, resulting in high
utilizations.

For the Darwin streaming server and Memcached
workloads, as shown in Figure 8 and Figure 9, Kalman
filter and ARMA had expected poor performance. Both
STFC and adaptive-PI do not assume any models of un-
derlying system, and were able to adjust the disk band-
width and memory properly. In Figure 8 and Figure 9,
we also find that STFC maintains more stable allocations
during the period between the workload changes. This
explains the more stable control performance of STFC in
these two tests, especially in the Memcached workload.
We attribute the more stable control of STFC to the
flexible rule selection mechanism as it triggers control
actuations with small or zero magnitude during oscilla-
tions. In Figure 10, we quantitatively compare STFC with
other three controllers using the PerfDiff metric. In all
three tests, STFC outperformed the closest competitor by
17% (TPC-W, Adaptive PI) and 37% (TPC-W, Adaptive
PI) in static and dynamic workloads, respectively. In
workloads that are more nonlinear (e.g., Memcached),

STFC is more advantageous defeating other controllers
by at least 28% and 61% in static and dynamic work-
loads.

5.2 Scheduling multiple objectives

In the previous experiment, we set the control objectives
precisely at predefined values. In many problems, relax-
ing the “point” objectives to some suboptimal “regions”
is also acceptable. This observation makes simultane-
ous control of multiple objectives possible. DynaQoS
applies gain scheduling to balance the trade-off between
conflicting objectives. In this experiment, we study the
simultaneous control of two objectives, application-level
performance and power within the DynaQoS frame-
work. Since memory and disk allocation has little effect
on the power consumption, we focus on the control of
the TPC-W benchmark for its CPU allocation.

We assume that individual cloud users are allocated
power budgets to limit the power consumption of their
applications. We approximate power budgeting for each
cloud application by dedicating the physical host to one
user and measuring the system-wide power. There are
existing work focusing on the VM-level power measure-
ment [10] and the techniques can be used by DynaQoS
to support multiple user power budgeting. The system-
wide power consumption is measured with a WattsUp
Pro power meter. The meter records the power con-
sumption every second and we calculate the average
power value for each control interval (i.e., 30 second).
The more CPU resource is used, the the larger the power
consumption is. The set points were set to 1 second and
250 watt for response time and power, respectively.

Figure 11 plots the response time and power consump-
tion during the control. Before the 30th interval, there
existed a balance point between application performance
and power consumption. DynaQoS successfully identi-
fied the balance point and stabilize the response time and
power consumption at approximately 800ms and 190w,
respectively. Starting from the 30th interval, we launched
background jobs in the host consuming considerable
power. In this way, we emulate the circumstances in
which some other jobs belonging to the same cloud
user eat a lot of power and the user needs to limit the
power usage by the cloud application. From Figure 11,
we can see that the combined power consumption im-
mediately exceeded the budget. DynaQoS was able to
contain the consumption within the budget by reducing
the CPU allocation to the cloud application. When the
response time or the power deviated from the target,
DynaQoS gave more weight to the corresponding STFC.
With the settings of the objectives, DynaQoS successfully
brought response time and power close to their targets
with stable performance. Once background jobs ended,
DynaQoS returned back to the (800ms, 190w) balance
point.

11

 0
 500

 1000
 1500
 2000

 10 20 30 40 50 60 70 80 90 100

Time interval (30s)

STFC
 0

 500
 1000
 1500
 2000 ARMA

 0
 500

 1000
 1500
 2000 Adaptive PI

 0
 500

 1000
 1500
 2000 Kalman filter

R
es
po
ns
e
tim
e
(m
s)

(a) TPC-W

 0
 60

 120
 180
 240

 10 20 30 40 50 60 70 80 90 100

Time interval (30s)

STFC
 0

 60
 120
 180
 240

ARMA
 0

 60
 120
 180
 240

Adaptive PI
 0

 60
 120
 180
 240

Kalman filter

S
tre
am

ra
te
(K
bi
t/s
)

(b) Darwin streaming

 0
 400
 800

 1200

 10 20 30 40 50 60 70 80 90 100

Time interval (30s)

STFC
 0

 400
 800

 1200 ARMA
 0

 400
 800

 1200 Adaptive PI
 0

 400
 800

 1200 Kalman filter

Th
ro
ug
hp
ut
(r
eq
/s
)

(c) Memcached

Fig. 6. Performance comparison of STFC, Kalman filer, Adaptive PI and ARMA under static workloads.

 0

 1000

 2000

30 60 90 120 150

R
es

po
ns

e
tim

e
(m

s)

Time interval (30s)

 0

 800

 1600

C
PU

 c
re

di
ts

(a) STFC

 0

 1000

 2000

30 60 90 120 150

R
es

po
ns

e
tim

e
(m

s)

Time interval (30s)

 0

 800

 1600

C
PU

 c
re

di
ts

(b) Kalman filter

 0

 1000

 2000

30 60 90 120 150

R
es

po
ns

e
tim

e
(m

s)

Time interval (30s)

 0

 800

 1600

C
PU

 c
re

di
ts

(c) Adaptive PI

 0

 1000

 2000

30 60 90 120 150

R
es

po
ns

e
tim

e
(m

s)

Time interval (30s)

 0

 800

 1600

C
PU

 c
re

di
ts

(d) ARMA

Fig. 7. Performance comparison of STFC, Kalman filer, Adaptive PI and ARMA under dynamic TPC-W workloads.

40
80

120
160
200
240

 30 60 90 120 150

St
re

am
 ra

te
 (K

bi
t/s

)

Time interval (30s)

4

8

12

I/O
 b

an
dw

id
th

 (M
B/

s)

(a) STFC

40
80

120
160
200
240

 30 60 90 120 150

St
re

am
 ra

te
 (K

bi
t/s

)

Time interval (30s)

4

8

12

I/O
 b

an
dw

id
th

 (M
B/

s)

(b) Kalman filter

40
80

120
160
200
240

 30 60 90 120 150

St
re

am
 ra

te
 (K

bi
t/s

)

Time interval (30s)

4

8

12

I/O
 b

an
dw

id
th

 (M
B/

s)

(c) Adaptive PI

40
80

120
160
200
240

 30 60 90 120 150

St
re

am
 ra

te
 (K

bi
t/s

)

Time interval (30s)

4

8

12

I/O
 b

an
dw

id
th

 (M
B/

s)

(d) ARMA

Fig. 8. Performance comparison of STFC, Kalman filer, Adaptive PI and ARMA under dynamic Darwin streaming
workloads.

5.3 Service differentiation
In this section, we investigate the effectiveness of Dy-
naQoS in providing differentiated services to two client
classes, Premium and Basic. Due to limitation of space, we
only study service differentiation in TPC-W workload.
We dedicated a virtual cluster to each of the client class,
and adjusted the CPU resource to realize differentiated
services. In TPC-W, the apache web server accepts and
classifies client requests into different classes. It assigns
requests from different classes to different DB virtual
clusters. We modified the Apache web server to exam the
content of the requests and assign different port numbers
to different classes. Based on the port number, Apache
module mod_jk redirects the requests to corresponding
tomcat workload balancers which are responsible for
individual DB clusters. The tomcat balancers dispatch

the requests within the virtual cluster in a round-robin
manner.

DynaQoS applies target adaptation if resource con-
tention is detected. We compare the target adaptation
of DynaQoS to a strict differentiation policy (STRICT),
which guarantees CPU allocation of the premium class
and provides best-effort service to the basic class. To pre-
vent resource starvation of the basic class, we reserved
2-core’s capacity to the basic class. We configured the two
classes each with a cluster of 4 DB VMs. Each cluster had
16 VCPUs and can use up to 16 physical CPU resources.
The client concurrency levels were set to 200 browsing
clients for both classes resulting in an aggregate CPU
demand of approximately 20 CPUs. The server hosting
the virtual clusters has a capability of 24 CPUs, thus no
service differentiation is needed if the total demand is

12

 0

 400

 800

 1200

 30 60 90 120 150

Th
ro

ug
hp

ut
 (r

eq
/s

)

Time interval (30s)

 0

 500

 1000

M
em

or
y

(M
B)

(a) STFC

 0

 400

 800

 1200

 30 60 90 120 150

Th
ro

ug
hp

ut
 (r

eq
/s

)

Time interval (30s)

 0

 500

 1000

M
em

or
y

(M
B)

(b) Kalman filter

 0

 400

 800

 1200

 30 60 90 120 150

Th
ro

ug
hp

ut
 (r

eq
/s

)

Time interval (30s)

 0

 500

 1000

M
em

or
y

(M
B)

(c) Adaptive PI

 0

 400

 800

 1200

 30 60 90 120 150

Th
ro

ug
hp

ut
 (r

eq
/s

)

Time interval (30s)

 0

 500

 1000

M
em

or
y

(M
B)

(d) ARMA

Fig. 9. Performance comparison of STFC, Kalman filer, Adaptive PI and ARMA under dynamic Memcached workloads.

below the physical capacity. We emulated a change in
the CPU capacity by restricting the 32 VCPUs of the
clusters to the first 12 physical CPUs at the 20th interval.
This effectively reduced possible CPU usage of the two
classes from 20 to 12 CPUs. As discussed in Section 2.2.2,
the capacity change due to the hardware non-uniformity
is possible in current cloud platforms. More importantly,
the change in the actual CPU capacity does not reflect
in nominal CPU allocations, which poses challenges for
service differentiation.

In Figure 12, we compare DynaQoS with the STRICT
policy. We implemented two variations of the STRICT
policy, one with the knowledge of the new capacity, one
without. As shown in Figure 12(a), DynaQoS was able
to detect the resource contention at the 32th interval
because the premium class had saw 10 serious violations
in response time. It triggered the target adaptation of the
basic class to the next level, 5 second. The performance of
both classes stabilized at the 50th interval. The premium
class succeeded to maintain the 1-second target and
the basic class achieved a response time close to its
new target. After we increased the capacity at the 60th
interval, DynaQoS took 10 intervals to detect the change
and reset the target of the basic class back to 1 second.
Without the knowledge of the new capacity, the STRICT
policy allocates CPU resources according to the nominal
capacity, 24 CPU in the host. As shown in Figure 12(b),
the lack of actual capacity information resulted in no
service differentiation to the premium class.

In Figure 12(c), we observe that with the new capacity
information (i.e., 12 CPU), STRICT was able to guarantee
the performance of the premium class. But the basic class
suffered a 10 second response time compared with 5
second in DynaQoS. An examination of the actual CPU
allocation in DynaQoS during the contention period
revealed that the basic class achieved a 5-second level
performance because it obtained more CPU resources
than in the STRICT policy. During the contention, Dy-
naQoS kept increase the allocation of both classes until
the targets were met. The aggregated CPU allocation in
terms of cap values were beyond the actual capacity (12-
CPU). It is equivalent to a work-conserving mode but
with bounded allocation to the basic class for the pur-
pose of differentiation. Different from DynaQoS, STRICT
enforces that the total allocation is not beyond 12 CPU

 100

 150

 200

 250

 300

 350

 0 10 20 30 40 50 60 70 80 90

P
ow

er
 (

w
at

t)

Time interval (30s)

Power
Budget

 500

 1000

 1500

 2000

 2500

R
es

po
ns

e
tim

e
(m

s) Response time
SLO

Fig. 11. Simultaneous control of performance and power.

and the basic class only got 2 CPU capacity or whatever
was left by the premium class. The non-work-conserving
mode in STRICT wasted some CPU time which can
otherwise be used by the basic class.

5.4 Overhead

The overhead of DynaQoS comes from the computation
required for making control decisions and the commu-
nication incurred due to DynaQoS in the original cloud
application. The computation of fuzzy control decisions
mainly consists of input fuzzification, looking up the rule
table, and output defuzzification. The activation of these
functions only incurred less than 5% CPU utilization in
dom0, thus it poses negligible overhead on application
performance.

When the VMs of cloud applications spread over mul-
tiple hosts, DynaQoS requires additional communication
between these machines for collecting feedback infor-
mation and transmitting resource allocation requests. To
study the communication overhead, we deployed an
instance of TPC-W with 128 DB VMs on 16 physical
machines. Every control interval (i.e., 30 second), Dy-
naQoS collected the resource utilization on each host 1

and multicasted the calculated new resource allocation.
To isolate the overhead of DynaQoS from performance

1. In our testbed, we collect feedback information on application
performance from client side and collect the information on power
consumption from each host. To generalize the overhead study on
other system implementations, where information on performance or
other metrics may be collected from each host, we use the resource
utilization collection overhead to approximate the general cases.

13

10

100

1000

Static Dynamic

Pe
rfd

iff
 (%

)
Adaptive PI

Kalman filter
ARMA

(a) TPC-W

10

100

Static Dynamic

Pe
rfd

iff
 (%

)

Adaptive PI
Kalman filter

ARMA

(b) Darwin streaming

10

100

Static Dynamic

Pe
rfd

iff
 (%

)

Adaptive PI
Kalman filter

ARMA

(c) Memcached

Fig. 10. Performance comparison of STFC and other controllers in relative deviation under various workloads.

 1000

 10000

 0 20 40 60 80 100 120

R
es

po
ns

e
tim

e
(m

s)

Time interval (30s)

5000

Premium
Basic

(a) Target adaptation

 1000

 10000

 0 20 40 60 80 100 120

R
es

po
ns

e
tim

e
(m

s)

Time interval (30s)

5000

2000

Premium
Basic

(b) STRICT without capacity information

 1000

 10000

 0 20 40 60 80 100 120

R
es

po
ns

e
tim

e
(m

s)

Time interval (30s)

5000

Premium
Basic

(c) STRICT with capacity information

Fig. 12. Service differentiation with different policies.

degradations incurred due to inaccurate control deci-
sions, we disabled the resource reconfiguration on each
host. Experiments show that the infrequent information
collection and resource request transmitting incurs no
more than 2% degradation on TPC-W performance.
Thus, we conclude that DynaQoS causes insignificant
overhead to the original cloud applications.

6 RELATED WORK

Provisioning of QoS guarantees has been an active re-
search topic. Early work focused on provisioning ser-
vice guarantees or differentiation under fixed capacity.
Methods such as queuing-theoretic analysis, traditional
feedback control, and adaptive control have been studied
extensively. In [30], the authors assumed a G/G/1 queu-
ing model to guide the resource allocation. However,
this approach depends on the parameter estimation of
the model, which is difficult to obtain without under-
standing the system internals. Due to the absence of
the knowledge of underlying systems, traditional linear
feedback control was applied to control the resource allo-
cation in web servers [1], [16], [22]. Because the behavior
of a web server changes continuously, the performance
of the linear feedback control is limited. More recent
work applied adaptive control [9], [11] and machine
learning [21], [24] to address the issue of the lack of
an accurate server model. Although these approaches
provide better performance than non-adaptive feedback
control approaches, they did not address the problem of
process delay in resource allocation.

Our previous work [34] used an adaptive fuzzy control
approach without the assumption of a server model to
address the process delay in resource allocation. In this

work, DynaQoS improves our eQoS work [34] in several
ways. First, we introduce adaptive output amplification
and flexible rule selection in STFC to explicitly address
the issue of dynamic capacity. Second, DynaQoS includes
a gain scheduler for the simultaneous control of multiple
objectives. Finally, DynaQoS realizes service differenti-
ation by assigning different control targets to different
classes.

With the proliferation of virtualization technologies,
the subjects of traditional resource allocation become vir-
tual machines. The resource allocation problems usually
come with constraints defined on application-level QoS,
or system-level power consumption, or both. To auto-
mate the resource allocation, regulatory control-based
and model-based optimization methods have been stud-
ied in literature. Padala et al. [19] proposed an adaptive
proportional controller to regulate the CPU utilization to
80%. Kalyvianaki et al. [8] used a Kalman filter controller
to track the CPU utilization and adaptively maintained
the utilization to 60%. Our work does not assume any
relationship between utilization and application-level
performance. DynaQoS directly regulates application
performance metrics to desired values.

More work falls into the category of model-based
optimization. System models are determined either by
system identification [33], [32] or moving average-based
local linearization [12], [31], [18]. The authors in [33], [32]
obtained the model parameters by applying least squares
method to offline collected data. The work in [12],
[31] employed Kalman filters in the construction of an
request arrival rate model. Padala et al. [18] applied
an ARMA method to build a local model of resource
and application-level performance. System identification

14

can be difficult in some complex systems and models
obtained may not be applied to a different system. Meth-
ods based on local linearization may not be effective
under the workload with large and abrupt fluctuations.
Our fuzzy control-based approach does not rely on the
understanding of underlying systems and deals with
nonlinearities.

There are also existing work focusing on model-
independent resource allocation. Xu et al. [35] adopted
a fuzzy control approach to map application profiles to
resource demands. The fuzzy controller is updated using
clustering algorithms. Lama and Zhou [13] proposed a
similar adaptive fuzzy controller by learning its structure
and parameters online. Our work is different because
STFC directly operates on the control error and the
change of the error. Thus, it avoids the computation
of fuzzy rules for adaptability. The authors in [14], [15]
share the similar idea of performance and power control
as ours, but we also consider the control of different
resources and service differentiation. Rao et al. [20] used
reinforcement learning for autonomous resource alloca-
tion with discrete steps. In contrast, DynaQoS is capable
of allocating resource in a much finer granularity.

7 CONCLUSION

In this paper, we have proposed a novel fuzzy control
approach for the allocation of virtualized resources. We
develop a self-tuning fuzzy controller with adaptive out-
put amplification and flexible rule selection. Based on the
fuzzy controller, we further design a two-layer QoS pro-
visioning framework, DynaQoS, that supports adaptive
multi-objective resource allocation and service differen-
tiation. Experiments on a Xen-based cloud testbed and
representative cloud applications show that the fuzzy
controller outperformed three popular controllers for
CPU, memory, and disk bandwidth allocation. DynaQoS
also demonstrated its effectiveness in the simultaneous
control of performance and power and service differen-
tiation.

REFERENCES
[1] T. F. Abdelzaher, K. G. Shin, and N. Bhatti. Performance guaran-

tees for web server end-systems: A control-theoretical approach.
IEEE Trans. Parallel Distrib. Syst., 13, January 2002.

[2] Amazon Spot Instances. http://aws.amazon.com/ec2/spot-
instances.

[3] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. H. Katz,
A. Konwinski, G. Lee, D. A. Patterson, A. Rabkin, I. Stoica,
and M. Zaharia. Above the clouds: A berkeley view of cloud
computing. Technical report, EECS Department, University of
California, Berkeley, Feb 2009.

[4] C.-L. Chen. Ieee 802.11e edca qos provisioning with dynamic
fuzzy control and cross-layer interface. In ICCCN, 2007.

[5] Darwin streaming server. http://dss.macosforge.org/.
[6] J. L. Hellerstein, Y. Diao, S. Parekh, and D. M. Tilbury. Feedback

Control of Computing Systems. John Wiley & Sons, 2004.
[7] C.-H. Jung, C.-S. Ham, and K.-I. Lee. A real-time self-tuning

fuzzy controller through scaling factor adjustment for the steam
generator of npp. Fuzzy Sets Syst., 74, 1995.

[8] E. Kalyvianaki, T. Charalambous, and S. Hand. Self-adaptive and
self-configured cpu resource provisioning for virtualized servers
using kalman filters. In ICAC, 2009.

[9] A. Kamra, V. Misra, and E. M. Nahum. Yaksha: a self-tuning
controller for managing the performance of 3-tiered web sites. In
IWQoS, 2004.

[10] A. Kansal, F. Zhao, J. Liu, N. Kothari, and A. A. Bhattacharya.
Virtual machine power metering and provisioning. In SOCC,
2010.

[11] M. Karlsson, C. T. Karamanolis, and X. Zhu. Triage: performance
isolation and differentiation for storage systems. In IWQoS, 2004.

[12] D. Kusic, J. O. Kephart, J. E. Hanson, N. Kandasamy, and G. Jiang.
Power and performance management of virtualized computing
environments via lookahead control. In ICAC, 2008.

[13] P. Lama and X. Zhou. Autonomic provisioning with self-adaptive
neural fuzzy control for end-to-end delay guarantee. In MAS-
COTS, 2010.

[14] P. Lama and X. Zhou. PERFUME: Power and performance
guarantee with fuzzy mimo control in virtualized servers. In
IWQoS, 2011.

[15] P. Lama and X. Zhou. Ninepin: Non-invasive and energy efficient
performance isolation in virtualized servers. In DSN, 2012.

[16] C. Lu, T. F. Abdelzaher, J. A. Stankovic, and S. H. Son. A feedback
control approach for guaranteeing relative delays in web servers.
In RTAS, 2001.

[17] Memcached. http://memcached.org/.
[18] P. Padala, K.-Y. Hou, K. G. Shin, X. Zhu, M. Uysal, Z. Wang,

S. Singhal, and A. Merchant. Automated control of multiple
virtualized resources. In EuroSys, 2009.

[19] P. Padala, K. G. Shin, X. Zhu, M. Uysal, Z. Wang, S. Singhal,
A. Merchant, and K. Salem. Adaptive control of virtualized
resources in utility computing environments. In EuroSys, 2007.

[20] J. Rao, X. Bu, C.-Z. Xu, L. Wang, and G. Yin. VCONF: a reinforce-
ment learning approach to virtual machines auto-configuration.
In ICAC, 2009.

[21] J. Rao and C.-Z. Xu. Online measurement the capacity of multi-
tier websites using hardware performance counters. In ICDCS,
2008.

[22] P. P. Renu, P. Pradhan, R. Tewari, S. Sahu, A. Ch, and P. Shenoy.
An observation-based approach towards self-managing web
servers. In IWQoS, 2002.

[23] F. G. Shinskey. Process Control Systems: Application, Design, and
Tuning. McGraw-Hill, 1996.

[24] V. Sundaram and P. Shenoy. A practical learning-based approach
for dynamic storage bandwidth allocation. In IWQoS, 2003.

[25] The dm-ioband bandwidth controller.
http://sourceforge.net/apps/trac/ioband/wiki/dm-ioband.

[26] The PostMark file system benchmark.
http://www.freshports.org/benchmarks/postmark/.

[27] The SPECCPU benchmark. http://www.spec.org/cpu2006/.
[28] The STREAM benchmark. http://www.cs.virginia.edu/stream/.
[29] The Transaction Processing Council (TPC).

http://www.tpc.org/tpcw.
[30] B. Urgaonkar and P. Shenoy. Cataclysm: Handling extreme

overloads in internet services. In WWW, 2004.
[31] R. Wang, D. M. Kusic, and N. Kandasamy. A distributed control

framework for performance management of virtualized comput-
ing environments. In ICAC, 2010.

[32] X. Wang and Y. Wang. Co-con: Coordinated control of power and
application performance for virtualized server clusters. In IWQoS,
2009.

[33] Y. Wang, X. Wang, M. Chen, and X. Zhu. Power-efficient response
time guarantees for virtualized enterprise servers. In RTSS, 2008.

[34] J. Wei and C.-Z. Xu. eqos: Provisioning of client-perceived end-to-
end qos guarantees in web servers. IEEE Transaction on Computer,
55, 2006.

[35] J. Xu, M. Zhao, J. Fortes, R. Carpenter, and M. Yousif. On the
use of fuzzy modeling in virtualized data center management. In
ICAC, 2007.

[36] F. Zhou, M. Goel, P. Desnoyers, and R. Sundaram. Scheduler
vulnerabilities and attacks in cloud computing. arXiv:1103.0759v1
[cs.DC], Mar 2011.

[37] X. Zhu, M. Uysal, Z. Wang, S. Singhal, A. Merchant, P. Padala,
and K. Shin. What does control theory bring to systems research?
SIGOPS Oper. Syst. Rev., 43, 2009.

