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Abstract—Understanding server capacity is crucial to system capacity planning, configuration and QoS-aware resource management.
Conventional stress testing approaches measure server capacity offline in terms of application-level performance metrics like response
time and throughput. They are limited in measurement accuracy and timeliness. In a multi-tier website, resource bottleneck often shifts
between tiers as client access pattern changes. This makes the problem of online capacity measurement even more challenge. This
paper presents an online measurement approach based on low-level hardware performance metrics such as instructions execution
rate and cache access behavior. Such metrics together define a system internal running state. The measurement approach uses
machine learning techniques to infer application-level performance at each tier from a set of selected hardware performance counters.
A coordinated predictor is induced over individual tier-wide models to make global system performance prediction and identify the
bottleneck when the system becomes overloaded. Experiments were conducted on a two-tier Tomcat/MySQL-configured website using
TPC-W benchmarks. Experimental results demonstrated that this approach was able to achieve an overload prediction accuracy of
higher than 90% for a priori known input traffic mix and over 85% accuracy even for traffic causing frequent bottleneck shifting. It costs
less than 0.5% runtime overhead for data collection and no more than 50 ms for each online decision-making.

Index Terms—Multi-tier website, machine learning, hardware performance counter.

1 INTRODUCTION

NDERSTANDING of server capacity is crucial to
Userver capacity planning, configuration and QoS-
aware resource management. It is known that a server
can be run in one of the three states: underloaded, satu-
rated, and overloaded. When the server is underloaded,
its throughput grows with the increase of input traffic
rate until a saturation point is reached. The saturated
throughput may not stay unchanged when the input
rate continues to increase. It may drop sharply due to
resource contention and algorithmic overhead for load
management [15]. Knowledge about the server capacity
could help measurement-based admission controller in
the front-end to regulate the input traffic rate so as to
prevent the server from running in an overloaded state.
Moreover, for input traffic of multi-class requests, server
capacity information can also be used by a back-end
scheduler to calculate the portion of the capacity to be
allocated to each class for service differentiation and QoS
provisioning [12], [31], [35].

An industry standard approach to server capac-
ity measurement is offline stress-testing using bench-
marks [6]. It views the server as a blackbox and observes
the change of server performance in terms of application-
level metrics like response time and throughput with the
increase of input load. It approximates server capacity to
be the saturated throughput or the system throughput

o The authors are with the Department of Electrical and Computer Engi-
neering, Wayne State University, 5050 Anthony Wayne Drive, Detroit,
MI 48202. E-mail: {jrao,czxu}@wayne.edu

when the observed response time starts to rise abruptly.
In [2], the authors proposed an S-client approach to
generate excessive workload efficiently for measuring
the capacity of web servers. In [6], the authors focused
on the construction of benchmarks for measuring the
basic capacities of streaming servers. In [12], the authors
suggested to measure the capacity of a server in terms
of execution units. They used a method of incremental
steps [15] to find out the server capacity by incrementally
probing the saturated throughput.

These offline profiling approaches are limited to sys-
tems with static resource configuration. They cannot
be applied to today’s highly reliable and available
servers that are capable of dynamic resource configura-
tion through techniques like hot-swapping and dynamic
frequency/voltage scaling [39].

Application-level performance metrics like response
time and throughput are good intuitive measures. How-
ever, they have limitations in accuracy and timeliness
when they are used for fine-grained QoS-aware resource
management. It is known that requests of an e-commerce
transaction have very different processing times and the
times also tend to change with server load condition. As
a result, request-specific response time becomes an ill-
defined performance measure in stress-testing of server
capacity. There were studies on the use of mean response
time to characterize the server load change in statis-
tics. Welsh and Culler showed that 90th-95th percentile
response time represented the shape of response time
curve more accurately, in comparison with average or
maximum time [33]. However, setting a request-specific



response time value for admission control remains non-
trivial. In [18], Mogul presented a case that a miscon-
figuration of the response time threshold could possibly
cause the system to enter a live-lock state. In practice,
the threshold is often set conservatively. For example,
Blanquer et al. [16] set a threshold to a half of the target
response time of the most restrictive requests for the
admission controller to regulate the incoming traffic rate.
Such a conservative estimation of the server capacity by
setting a low threshold value is equivalent to resource
over-provisioning.

Besides the limitation in accuracy, server processing
capability measured in application-level response time
may not be a timely measure for fine-grained resource
management. The observed response time of past re-
quests may mislead the front-end admission controller
to wrong decisions because of the presence of long
deadtime of requests in a multi-tier website. That is,
there is a non-negligible delay from the time a request is
admitted to the time its response is observed. Processing
tasks of the request could be queueing blocked in many
places, particularly when a system is heavily loaded.

In a multi-tier website, processing of a request often
involves multiple system components in different tiers.
Saturation of the system in the processing of one type
of requests may not necessarily mean it cannot handle
other requests. Bottleneck may also shift dynamically.
Response-time based server capacity measurement pro-
vides little insight into constrained resources.

These motivated us to develop an online capacity mea-
surement approach, based on low-level system running
statistics. Modern processors are all equipped with a set
of performance monitoring registers to record detailed
hardware-level system information during the execution
time of each application. The information includes a
large group of parameters like instruction mix, rate of
execution, memory access behaviors and branch pre-
diction accuracy [27]. Together, they define a system
internal running state and reflect aggregated effects of
the requests in concurrent execution. Questions are how
to define a small group of relevant parameters to char-
acterize the system load condition accurately, how to
map them onto a high level system overload /underload
status, and more importantly how to identify bottleneck
resource when the system becomes overloaded.

In this paper, we present effective and efficient solu-
tions to these questions. Specifically, we develop models
involving a small set of hardware performance counter
metrics to characterize the system state of each server.
We further develop a two-tier coordinated real-time clas-
sification approach to infer system overload/underload
state and identify resource bottleneck. We evaluated the
approach in a two-tier Tomcast/MySQL website using
TPC-W benchmark. Experimental results demonstrated
its effectiveness and efficiency.

The rest of the paper is organized as follows. Sec-
tion 2 gives examples to show limitations of response
time-based approaches for server capacity measurement.

Section 3 and Section 4 present the details of the hard-
ware performance counters-based capacity measuring
approach. Section 5 and Section 6 give the evaluation
methodology and experimental results. Related work is
presented in Section 7. Section 8 concludes this paper.

2 LIMITATIONS OF RESPONSE TIME METRIC

Response time is an application-level intuitive metric
for understanding server capacity and user-experienced
service quality. However, it is insufficient for the design
of request-specific admission control and fine-grained
QoS-aware resource management, particularly in multi-
tier websites. In this section, we give a brief overview
of the dynamics of websites and show limitations of the
metric.

2.1

In its simplest form, a website consists of a web server
in the front-end, a database server in the back-end, and
an application server in the middle to implement the
application logic. A configuration example is a Tomcat
servlet engine [30] for combined web and application
servers and a MySQL [19] for the database server.

Processing of transactional requests often goes
through four phases: web protocol parsing, application
servlet execution, database connection establishment,
and SQL query processing. They are synchronous in
the sense that one phase is not finished without the
completion of the subsequent phases.

Servers often deploy a multi-threaded processing
model to process multiple requests simultaneously. In
Tomcat, concurrency is set by a group of system configu-
ration parameters regarding of the maximum number of
threads to be run in parallel. Requests will be queueing
blocked, if there are no available threads. Requests in
processing could also be blocked, waiting for connec-
tions to the database server.

In the database server, SQL queries generated by
different servlets are not necessarily executed in the same
order as they arrive. Because they are executed as a batch
of interleaved queries, requests in processing may be even
been blocked inside the database server.

Dynamics of a Multi-tier Website

2.2 Website Capacity Identification

In general, a transaction processing system has a satura-
tion point (upper bound) of the throughput the system
could produce, as its load increases. After the “upper
bound” is reached, the system throughput will either
drop because of thrashing or maintain at a saturation
level, but with decreased service quality [15]. In order
to fully utilize the system resource, admission control
must be applied before the system reaches this saturation
bound.

We  conducted experiments in a typical
Tomcat/MySQL  website setting, using TPC-W
benchmark [29]; Please see Section 5 for details of
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Fig. 1. Performance of a website in different TPC-W traffic mixes.

the test-bed and TPC-W benchmark. TPC-W defines
three input traffic mixes: browsing, shopping and
ordering, with different request profiles. Table 1
summarizes the profile of each mix.

TABLE 1
Request composition in TPC-W.

[ [ Browsing [ Shopping | Ordering |

95% 80% 50%
5% 20% 50%

Browsing request
Ordering request

Figure 1(a) shows the throughput curve of these three
mixes, in terms of web interactions per second (WIPS),
as the number of concurrent clients increases. It is ex-
pected that the website would have different processing
capacities in different input traffic mixes. With an input
of ordering mix, the system throughput drops sharply
after it goes beyond the system capacity. In contrast,
the throughput stabilizes for the browsing and shop-
ping mixes. This is because browsing related requests
tend to put more pressure on the back-end database
server, while ordering requests more likely cause CPU
overload on the front-end application server. The figure
also demonstrates that the bottleneck tends to shift with
the change of input patterns.

Figure 1(b) shows the 90th percentile response time
under different input traffic patterns and different load
conditions. The figure shows that for inputs in a brows-
ing mix, the response time increases sharply when the
input load goes beyond the system capacity, although
the throughput remains unchanged.

Measurement-based admission control needs an on-
line system performance metric to represent the current
system load condition. Request response time is a widely
used intuitive system load indicator and the metric is
easy to monitor online. However, response time-based
approach has limitations:

1) It is hard to find “good” thresholds that differ-
entiate “underload” and “overload” system states,
because different requests have a large variety of
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response times and their execution times varies in
different load conditions.

2) Response time of a request can not be measured
until the request is completed. It reflects the sys-
tem status in past time windows, rather than the
system’s current load condition. Figure 2 shows the
change of response time in an experiment, in which
we injected load spikes at time of 1800th and 5400th
second. From the microscopic view of the plot, we
can see that the spike at the 5400th second can not
be detected in 10 seconds based on response time.

3) Request processing involves many resources in
different tiers. The response time metric provides
little insight into the bottleneck tier or constrained
resources. Since different types of requests put
pressure on different tiers of the system, it is possi-
ble that, under heavy load, the system’s resource
bottleneck shifts from one tier to another when
the input traffic pattern changes. Using request
response time as a system load indicator masks the
underlying system load dynamics, and hinders the
efficiency of admission control.

Response time measures the system processing capac-
ity based on application-level observation. An alterna-
tive is to measure the capacity in lower level system
performance metrics.



3 LOWER LEVEL SYSTEM PERFORMANCE
METRICS

A system provides a rich set of performance metrics in
both hardware and Operating System (OS) levels. Their
statistics represent the internal performance states at
run-time. Each internal state contributes to a high-level
“underload” or “overload” state. Identifying the system
state using lower level performance metrics poses three
challenges: (1) What metrics should be used to charac-
terize the high level performance state; (2) How to infer
high level performance states such as “underload” and
“overload” from the statistics of the metrics; (3) How to
identify the bottleneck tier in a multi-tier website, based
on the runtime statistics of each tier. We will discuss the
first two challenges in this section and leave the third in
Section 4.

3.1

System capacity often refers to the maximum amount of
work that can be completed during a certain period of
time. We refer to the amount of completed work as yield
and the amount of resource consumed during the time
as cost. An overloaded system means that its cost keeps
increasing but with stagnated or compromised yield. We
define a metric of productivity index (PI) as the ratio of
yield to cost and use it to measure the system processing
capability:

Revisit of the Concept of Capacity

Yield
I = .
Cost

This is a generic concept and yield and cost can be de-
fined at different system abstractions or under different
workload scenarios. By defining yield to be the number
of requests and cost as the wall time, PI becomes equiv-
alent to application-level throughput. Today’s modern
processors are all equipped a number of Hardware
Performance Counters (HPC) that provide a rich source
of statistical information on application execution. This
information includes but not limited to memory bus
access pattern, cache reference and pipeline execution
information. By defining yield as instructions-per-cycle
and cost the stalled CPU cycles or cache miss rate, the
PI metric reflects the instruction-level productivity.

The concept of productivity can also be defined at OS
level. We argue that OS level metrics like CPU utilization
may not be a good metric for system performance.
The following example shows that CPU utilization fails
to reflect application level performance. Consider the
following two code segments on a 2.0GHz Pentium 4
machine with 512 KB L2 cache and 512 MB memory.

#define NUM_ITERS 10000
double matrix[65536%8];
int stride=8;

void Sequential (void) {
for(line = 0; line < 65536%8; line += stride)
for(offset = 0; offset < stride; offset++)
for(i = 0; i < NUM_ITERS; i++) {
temp += matrix[line+offset];

TABLE 2
Different low-level performance under different

workloads.
[ Workload [[ IPC [ L2 (%) [ CPU% [ User% [ Time (s) |
Sequential || 0.31 0.03 100% 99.7% 414
Stride 0.13 0.92 100% 99.5% 230.5

void Stride (void) {
for(i = 0; i < NUM_ITERS; i++)
for (offset 0; offset < stride; offset++)
for(line 0; line < 65536%8; line += stride)
temp += matrix[line+offset];

}

Sequential () accesses consecutive memory locations
while Stride () visits memory in strides. Table 2 shows
the execution time for each segment and the statistics
reported by OS metrics (CPU% and User%) and hard-
ware counters level metrics (IPC (Instruction Per Cycle)
and L2 cache miss rate). The OS metrics shows no
performance difference between the two programs. In
comparison, hardware-level metrics, IPC and L2 miss
rate, reflect application-level performance more accu-
rately. More studies about the selection and effectiveness
of hardware-level PI will be given in Section 6. In the
following, we use hardware-level PI to measure the
system capacity.

For online identification, the single PI metric is not
enough to identify system state because any change of PI
can be either due to the system capacity or the input load
change. For example, a decrease in the incoming work-
load can lead to a smaller value of PI. But a decrease in PI
with sustained or increasing workload can only be due
to a system overload. During offline classification, we
keep increasing client traffic and label the system state
as “underload” until PI begins to drop, from which we
label the system state as “overload”. During the above
process, we take snapshots of hardware counter metrics
and develop an online model to correlate them to each
high-level system state in a machine learning approach.
The model makes it possible for online prediction of
system state, for a given set of hardware statistics.

In the following, we give the details of the modeling
and learning approach.

3.2 Definition of Performance Synopsis

We define a performance synopsis data structure to rep-
resent the correlation between a set of lower-level per-
formance metrics and their corresponding high-level
system states. Formally, let U = {A4;,...,4,} be a set
of attribute variables, in which A; can be any individual
hardware counter performance metric such as number
of L2 cache misses. Adding a class variable C' into U,
we have U* = {A,...,A,,C}. The class variable can
be any type of system state. In capacity identification,
it is a binary variable, taking value of 1 (“overload”) or
0 (“underload”). Each attribute A; can be instantiated
by assigning a measured value a; during each sampling
interval. Instantiating all variables in U* results in an
instance u*.



For a training set D = {uj,...,u} with N instances,
we build a synopsis to capture the relationship between
the group of attributes A4, ..., A, and class C. We denote
it by SYN({41,..., A4,},C).

3.2.1 Attribute Selection

A system often contains a large number of low-level
performance metrics that can be measured online. For
example, Linux provides over 100 OS-level metrics; Intel
CPU contains hardware performance counters for more
than 20 parameters. Including too many attributes in a
synopsis could be time complexity prohibitive.

Furthermore, irrelevant attributes in a synopsis may
even cause a loss of prediction accuracy. It is desirable
to select most relevant attributes in the training set
to reduce computing complexity and avoid noises. We
apply the concept of information gain in information
theory to evaluate the relevance between each attribute
and the class variable. Information gain is the reduction
of entropy about the classification of a test class based
on the observation of a particular attribute. For an
attribute A;, its information gain in any class of C' can
be calculated as follows:

G(C,A;)) = H(C)—H(C|A)
= — Z Prob(c)log, Prob(c) +
ceC

Z Z Prob(a, c¢)log, Prob(c|a),

a€A; ceC

where H(C) is the entropy of class variable and H(C|A4;)
is the conditional entropy of class variable given the
attribute variable A;. Attribute selection is an iterative
process, in which the most relevant attribute is added to
the attribute set each time only if its addition improves
synopsis accuracy. The overall accuracy of a synopsis is
evaluated by a 10-fold cross validation method [17].

3.2.2 Construction of Synopsis and Prediction

A synopsis builder is essentially a machine learning
algorithm that generates a synopsis from a training set.
In the following, we first present the overview of four
representative algorithms that are to be used for synopsis
construction. Impact of the algorithms on the prediction
accuracy will be discussed in Section 6.2.

Linear regression (LR): Linear regression is a regression
method that models the linear relationship between a
dependent variable C, independent variables A, ..., 4,,
and a random term e. To build the LR model is to
estimated the coefficients of each A; and e that best fit
in the training set D.

Naive bayes (Naive): Bayesian network is a powerful
tool to represent joint probability distributions over a
set of random variables. It is often made up of two
components: a directed acyclic graph B, and a set of
conditional probability tables B,. Naive bayes is one
of the most effective bayesian classifiers. It makes a

strong independence assumption: all attributes A; are
conditionally independent given the value of class C.

Tree augmented naive bayes (TAN): Unlike Naive
bayes, TAN allows the generated B, to represent correla-
tions between attributes Ay, ..., A, [14]. The correlations
between attributes are captured by imposing a tree struc-
ture on the naive Bayesian structure.

Support vector machine (SVM): SVM performs classi-
fication by constructing an n—1 dimensional hyperplane
that optimally separates the data into two categories.
Different from other classifiers, SVM is able to find out
the maximum separation between the two classes.

For a synopsis trained from a set D, we consider a
set of testing instances p*, each with a similar structure
with the instances in D. For each instance p*, the same
training algorithm of the synopsis is re-applied to gen-
erate a prediction C’ with respect to the class variable
C of the instance. We represent the prediction algorithm
as function Predict(). That is, C' = Predict(SY N, p*). If
C’ = C, the prediction is correct, otherwise incorrect.

4 Two-LEVEL COORDINATED WEBSITE CA-
PACITY IDENTIFICATION

The preceding section shows the modeling and learning
processes to correlate lower-level performance metrics to
high level system state in a single server. In a multi-tier
website, each server has a PI reference for “underload”
and “overload” states. Because the bottleneck may shift
between tiers, there are two challenges in the website
capacity identification: (1) which PI reference should be
used to identify the entire system state offline; (2) which
synopsis should be used to predict system state online?
We give an overview of the two issues and a solution
to the first issue in Section 4.1. The rest of this section is
about our coordinated learning approach to the second
challenge.

4.1

It is expected that the metrics from a bottleneck tier
have the strongest correlation to high-level performance.
We select the corresponding PI reference as a measure
of the website capacity. We define a correlation index
Corr(PI,r), in a way similar to [27], between the PI and
high level performance metric 7 (e.g. throughput) over
a time period t:

Website Capacity Identification Framework

251 (PIj = PI)(r; —7)
q-opr-0Oyr

_ Cov(PI,r)

Corr(PI,r)
opr - Op
where ¢ is the number of (PI,r) pairs sampled during
the time ¢. The correlation index between PI and r
is calculated using their means P/, 7 and standard
deviations opy, o, in the ¢ samples. The PI with the
largest Corr(Plr) value will be selected as the measure
of the entire system capacity.
Internet traffic contains many different types of re-
quests (e.g. browsing and ordering) and their mix may
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change with time. Variations of the request composition
would affect the performance of a multi-tier website
and may even lead to bottleneck shift between tiers.
Recall that synopses on each tier are constructed based
on specific traffic patterns. Intuitively, a synopsis due to
a specific workload is unlikely to be accurate for traffic
whose bottleneck lies in another tier. We build synopses
on each tier for representative workloads. The workload
selection will be discussed in Section 5.

For a given set of runtime statistics under a traffic
pattern, each workload-specific synopsis will be used
to make a prediction. To make a global system state
prediction, we propose a two-level coordinated learning
scheme which dynamically selects the best synopsis for
the given traffic pattern. Following are the details of the
scheme.

The capacity measurement framework employs a two-
level hierarchical architecture, a group of performance syn-
opses in the bottom and a coordinated predictor at the top.
Figure 3 shows the structure. The two-level coordinated
prediction architecture takes runtime statistics on each
tier machine as inputs. Based on these inputs, individual
synopses generate their predictions in regard to system
high-level states. Final state prediction will be made in
the coordinated predictor by combining these individual
predictions.

Although a synopsis is specific to tiers and traffic
patterns, the relationship between low level metrics and
system state defined by the synopsis remains valid in the
presence of workload changes, as long as the bottleneck
remains in the same tier. When the workload changes
make the bottleneck shifting to another tier, a new
synopsis should be selected. The coordinated predictor
selects the best synopses dynamically by studying the
spatial (synopsis-wise) and temporal patterns among
predictions of individual synopses.

Note that a synopsis with less accuracy with regard to
certain workloads does not mean that it provides no in-
formation for the global system state. Given a workload,
predictions from synopses have spatial patterns. For
example, synopses might make consistent predictions

for certain workloads although the predictions are not
correct. Many performance problems manifest not as a
single major shift in system behavior but rather as a
series of subtle changes. In addition to spatial prediction
patterns, temporal patterns among consecutive predic-
tions are also observed in the coordinated predictor.

4.2 Coordinated Two-level Predictor

The coordinated predictor is designed as a two-level
predictor to capture spatial and temporal patterns in
synopses predictions. The coordinated predictor is sim-
ilar in structure to a branch predictor in superscalar
processors [36]. Figure 4 shows the structure of the two-
level predictor.

The first level is a Global Pattern Table (GPT) which
represents synopsis-wise patterns. Each entry in GPT is
a Global Pattern Vector (GPV). A GPV is an m-bit vector
(m is the number of synopses), and each bit R; represents
the prediction result of corresponding synopsis during a
sampling interval 7. That is, R, = Predict(SY N;,pk).
The GPT enumerates all the possible patterns of GPV,
thus it has 2™ entries.

The second level are Local History Tables (LHTs) that
record the last h prediction results of the specific pattern
in GPT. For each of these 2™ patterns, there is a corre-
sponding LHT in the second level which contains the
occurrences of different temporal patterns. Each entry
of a LHT is referred to as Local History Bits (LHB),
denoted by H.. It is used for making the coordinated
prediction. The coordinated prediction is C” = A(H.),
where ) is the prediction decision function. The length of
LHB determines the size of the LHT table. For example,
if LHB contains v bits, which records the last v prediction
results (h = v), the corresponding LHT has 2 entries.

Along with the two-level predictor for the system state
prediction, we also include a simple bottleneck predictor
in the coordinated predictor. The bottleneck predictor
is implemented by adding an extra Bottleneck Pattern
Table (BPT) to the second level. Each entry in the BPT
is a Bottleneck Vector (BV) which is indexed by GPYV,
as well. The bottleneck prediction is B’ = A\y(bk, ..., b1),
where )\, is the bottleneck decision function.

4.3 Training and Prediction

To exploit the spatial and temporal prediction patterns,
the coordinated predictor needs to be trained. The train-
ing process is to determine the values of LHB H. in
each LHT. Initially, all H. are set to 0. The values
of H. are learned from all the instances from which
each individual synopsis is built. The training process
includes the following steps:

1) Given an instance u;, generate predictions from
each synopsis. Combining these predictions forms
a GPV. Then the GPV, denoted as a binary sequence
of < Rp—1...Rg >, is used to find the corresponding
LHT.
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2) In the LHT, the local history bits H. is indexed by
last h prediction history. Update the value of the
corresponding H, for each instance u; as follows:
If the value of the class variable in u; equals to 1,
increase H. by 1, otherwise decrement by 1.

The training of the bottleneck predictor is similar
except that instead of learning H. values, the values for
each bk, ...,b; should be trained. For bottleneck iden-
tification, we manually augment a training instance u;
with information about the bottleneck tier. For example,
if the class variable in instance u} has a value of 1 and
tier ¢ is the bottleneck for current workload, update b;
as b; = b; + 1, otherwise b; = b; — 1.

The coordinated predictor is used to make online
global system state predictions as well as bottleneck tier
predictions. The bottleneck predictor is only invoked
when the system state prediction is 1. For system state
prediction, the predictor finds the corresponding H.
according to the current value of GPV. During each
sampling interval, the coordinated prediction is made

using the prediction decision function C” = \(H.),
where
1 if H. > 0;
NH.) =3 o(H.) if —6< H,<6;
0 if H. < =4,

where § is a threshold for H,. which describes the confi-
dence in H, making a prediction.

A large 0 prevents the predictor from making a pre-
diction unless current spatial and temporal prediction
patterns occur a large number of times in previous work-
loads. Setting ¢ to a small value relaxes the restriction.
For any § > 0 there exists an interval [—§,d], in which
the predictor is not sure what prediction to make.

We develop two heuristic schemes to select a predic-
tion: an optimistic scheme and a pessimistic scheme.
These two schemes are different in function ¢(H,). The
optimistic scheme always makes a prediction of 0 (un-
derload) when H, € [—4, 4], while the pessimistic always
predicts as 1 (overload).

For the bottleneck predictor, whenever the state pre-
dictor predicts as 1, it outputs bottleneck information.
The bottleneck decision function is Ay(bg,...,b1) =
arg max(b;). That is to choose the tier having the largest

K2

value in its corresponding bit in by, ..., b; as the bottle-
neck.

4.4 An Example

We use an example to illustrate the two-level predictor.
Suppose the website has two tiers: application (AP) and
database (DB) tiers, and it takes two different types of in-
put: browsing (B) and ordering (O). There are altogether
four (m = 4) synopses: AP-O, AP-B, DB-O and DB-B
in the GPT, representing synopses for different inputs
on different tiers. An coded GPV like (0101) means
the predictions of the four synopses are “underload”,
“overload”, “underload”, and “overload”, respectively.
Assume that LHB records the last three overall system
state predictions (i.e., h=3), and they are “underload”,
“overload”, “overload”, respectively. The corresponding
entry H. in (0101)-indexed LHT is in the address of 110.
Suppose the threshold ¢ is initially set to 5. For any H.
larger than 4, the predictor will forecast an “overload”
state.

5 EVALUATION METHODOLOGY

To evaluate the two-level coordinated website capac-
ity measurement, we built a test-bed of multi-tier e-
commerce website according to the classic TPC-W bench-
mark. In our test-bed, the multi-tier website consists
of two tiers: front-end application server and back-end
database server. Representative workloads conforming
TPC-W specifications were thrown to the test-bed. Dur-
ing execution, hardware counter level runtime statistics
were collected. For comparison, OS level metrics were
also reported.

5.1 TPC-W and Workload Selection

TPC-W is a transactional web e-commerce benchmark.
Its specification defines 14 different types of requests for
an online bookstore service. In our test-bed, we deployed
the free Java implementation of TPC-W benchmark from
Rice University [25]. TPC-W defines three traffic mixes:
Browsing, Ordering and Shopping, as shown in Table
1. It classifies web interactions as either Browse or Or-
der depending on whether they involve browsing and
searching on the site or whether they play an explicit
role in the ordering process.

The primary TPC-W performance metric WIPS is
based on the shopping mix, which is the most com-
mon workload in an e-commerce website. TPC-W also



considers the extreme cases in which the workload is
either mostly composed of browsing requests or order-
ing requests. Experimented with our test-bed, browsing
mix is found to put more pressure on database than on
application server. For ordering mix, front-end becomes
the bottleneck.

We assume that the incoming traffic to a multi-tier
website ranges within the above two extreme workloads:
Browsing and Ordering. As the characteristic of the
workload changes, the bottleneck tier can be either the
back-end or the front-end and bottleneck shifting exists.
Thus we selected the browsing and ordering mix as
the representative workloads for training synopses and
the coordinated predictor. The workloads are generated
using the Remote Browser Emulator (RBE) shipped with
the Rice TPC-W implementation. We modified the RBE
to generate the workload needed in training and testing
sets. The number of concurrent clients is controlled by
the number of Emulated Browsers (EBs).

5.2 Training and testing sets

In real scenarios, internet traffic can be either steady or
bursty. To generate realistic workloads, we compose the
workload generating the training runtime statistics as
two parts:

1) Ramp-up workload. In ramp-up workloads, we
gradually increased concurrent client sessions. Be-
cause the multi-tier website can serve different
numbers of concurrent browsing clients and order-
ing clients, we increased the workload in different
rates. For browsing mix, we started with 20 con-
current clients and incremented 20 clients every 10
minutes up to a limit of 600 concurrent sessions.
For ordering mix, we started with 50 clients and
added 50 more clients each time until a total of 1500
sessions. For each browsing and ordering mix, we
ran the experiments for five hours.

2) Spike workload. Spike workload refers to occa-
sional extreme traffic burst. We set the baseline
traffic to 80 concurrent shopping clients for both
browsing and ordering spikes. Every 30 minutes,
we threw a spike workload to the baseline and
kept the spike for 10 minutes. Each browsing spike
contains 200 browsing clients and each ordering
spike has 800 ordering clients. Each experiment
also lasted for five hours.

We collected the hardware counter level and OS level
runtime statistics on each tier every second. The average
statistics over a 30 second interval combined with its
corresponding high-level state formed an instance in
a training set. The training sets were used to build
synopses and tune the coordinated predictor.

Note that although all synopses were trained from the
two extreme browsing and ordering mixes, we will show
the coordinated predicator works well for traffic of unknown
mixes as well. We designed the testing sets as four parts:

browsing mix, ordering mix, interleaved mix, and un-
known workload mix. The interleaved mix refers to a
workload that continues to switch between browsing
mix and ordering mix. For the unknown mix, we change
the transition probability in RBE to generate workload
different from either browsing or ordering mix.

5.3 Evaluation Metrics

The key measure of the effectiveness of coordinated pre-
dictor is its prediction accuracy in testing sets. Absolute
prediction accuracy is the ratio of the number of correctly
classified instances over the total number of instances. It
depends on the ratio of each class. Instead, we use the
Balanced Accuracy (BA) as the metric to evaluate the
prediction accuracy. Formally, BA can be defined as:

Prob(C" =0|C =0) + Prob(C" =1|C =1)

= 5 ,
where C' is the actual value of the class and C” is
the predicted value. Measured by BA, a good predictor
should perform well in both classes, independent of the
composition of testing sets. To evaluate the prediction
accuracy of the two-level predictor, we designed the
testing sets mentioned above. We injected approximately
40% to 50% overload instances in each testing set. Thus,
any naive method is bounded by a prediction accuracy
of 60% at most.

BA

5.4 Experiment Settings

We followed the organization of dynamic websites in [1]
to build our test-bed except that only one client machine
was used to emulate the concurrent clients. The client
machine featured a dual AMD 2.10 GHz CPU configura-
tion and 2GB memory. We ensure that the client machine
is not the bottleneck by comparing the one client ma-
chine experiment with a multiple clients setting. In both
settings, the client machine(s) were lightly loaded and
the TPC-W performance differences are within 1%. The
front-end application server and the back-end database
server were configured with Pentium 4 2.0 GHz CPU,
512 MB RAM and Pentium D 2.80 GHz CPU, 1 GB
RAM respectively. The CPUs in the servers are based on
Intel NetBurst architecture and without Hyperthreading
technology. All the devices were interconnected by a fast
Ethernet network.

The machines ran Fedora Core 6 Linux with ker-
nel 2.6.18. We used Apache Tomcat version 5.5.20 as
the application server. For the database server, MySQL
standard version 5.0.27 was used. We used Sysstat
version 7.0.3 to collect 64 OS level metrics. Hardware
counter level metrics were recorded by a kernel patch
PerfCtr [22]. There are software packages, such as
OProfile[20], PAPI [21], and PerfSuite[23], which can
be used to monitor hardware counter level runtime
metrics. Because of their overhead concerns, we wrote
a lightweight tool to read hardware counter metrics in
all physical CPUs using the global mode in PerfCtr.



TABLE 3
Collected hardware counter metrics.

Performance counter event [

Description

X87_FP_RETIRED
X87_FP_UQOP

L2_REFERENCE

L2_MISS

CPU_STALL

INS_RETIRED
ITLB_REFERENCE

ITLB_MISS
RETIRED_MISPRED_BRANCH

retired uops

x87 floating point uops

L2 cache access

L2 cache miss

CPU stalled cycles on any resource
retired instructions

translation lookaside buffer access
translation lookaside buffer miss
retired mispredicted branch

Although the global mode in Perfctr only updates
performance counter values at regular intervals which
may not be accurate enough for small code regions,
server programs always run for a long time and man-
agement operations are invoked in the granularity of
several seconds or minutes. Event counter maintenance
in hardware requires no runtime overhead [27] and we
limited our tool to minimum functionalities that just
initialize and read hardware counters to reduce runtime
overheads.

There are 18 performance counter registers in Intel
Pentium 4 CPU. Due to hardware restrictions only 9
registers can be used simultaneously. The performance
counter metrics collected in our experiments are listed
in Table 3.

The machine learning algorithms used in our exper-
iments were adapted from WEKA [32] data mining
software.

6 EXPERIMENTAL RESULTS
6.1 Effectiveness of Productivity Index

The first experiment was conducted to show the effec-
tiveness of productivity index in reflecting system high-
level performance. We took Ordering and Browsing
workloads as input and drove the test-bed into an
overloaded state. We selected yield and cost metrics
according to the correlation measure Corr. For an or-
dering mix input, the front-end server turned out to be
the bottleneck and the PI defined as IPC over L2 cache
miss rate had the most correlation with the high level
performance. For a browsing mix input, database IPC
and stalled CPU cycle metrics were selected as yield and
cost, respectively.

Figure 5 shows the effectiveness of PI as an indicator
of high-level throughput. In order to display PI and
throughput curves in a similar scale, we normalized
each of their values to their geometric means in different
sampling intervals.

Figure 5 suggests that for both workloads, the PI
and throughput metrics are in high agreement with
each other. From the microscopic views, we can see
that whenever there is a drop in PI, the corresponding
throughput would decrease. Moreover, during some in-
tervals, as pointed out by dotted arrows in the figure,

the PI is more responsive than the throughput metric.
PI also provides useful information about system-wide
performance problems. For example, for the ordering
mix input, our test-bed was overloaded due to the ap-
plication server bottleneck. A drop in PI value suggests
decreased IPC and increased L2 cache miss rate. The
degraded performance may due to wasted work during
context switching when there were too many threads in
access to L2 cache in a time multiplexing way.

6.2

The second experiment was designed to demonstrate
the prediction accuracy of individual synopsis. A high
synopsis accuracy means that the low-level metrics se-
lected are sufficient in representing system internal states
and the machine learning algorithm used is capable of
correlating low-level metrics to a high-level state.

We tested the prediction accuracy for different level of
metrics (e.g. OS level and hardware counter level) and
using different machine learning algorithms. Table 4 and
Table 5 summarize the accuracy results. We make several
observations from the results:

Individual Prediction Accuracy

1) For each testing workload, only the synopsis from
the bottleneck tier and built from a similar work-
load pattern would produce a high prediction accu-
racy. For example, the synopsis built from a brows-
ing mix on the database server had an accuracy of
0.965 in Table 4 due to TAN algorithm. But, even
with the same learning algorithm, other synopses
led to low accuracy. For example, when tested by
browsing mix the synopsis built from ordering mix
on application server resulted in an accuracy as
low as 0.5. By examining the prediction results,
we found that this synopsis generated prediction
0 (underload) most of the time.

Overall, hardware counter level metrics produced
a higher accuracy than OS level metrics. For an
ordering mix input, they achieved an accuracy
of 0.952 and 0.935, respectively. But for a brows-
ing mix input, the accuracy of OS level metrics
dropped down to 0.635. Note that we can not
claim hardware level metrics always perform better
than OS level metrics. It depends on the workload
characteristics. For some workload (ordering mix)

2)
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TABLE 4
Prediction accuracy of individual synopsis tested by Browsing mix.
Specific Synopsis OS Level HPC Level
Workload | Tier LR Naive SVM TAN LR Naive SVM TAN
Orderin APP || 0585 0.500 0.505 0.545 || 0.570 0.500 0.502 0.505
& | DB | 0473 0500 0465 0587 || 0.439 0453 0493 0.646
Browsin APP || 0.635 0.621 0505 0.603 || 0.529 0.557 0.540 0.515
& | DB 0.604 0.612 0.667 0.635 || 0.859 0935 0.957 0.965
TABLE 5
Prediction accuracy of individual synopsis tested by Ordering mix.
Specific Synopsis OS Level HPC Level
Workload [ Tier LR Naive SVM TAN LR Naive SVM TAN
Orderin APP || 0.842 0928 0965 0935 || 0.805 0.883 0.921 0.952
& | DB | 0689 0932 0776 0665 || 0.746 0791 0.844 0.840
Browsin APP || 0583 0.585 0.593 0.547 || 0.662 0.588 0.588 0.588
&| DB || 0545 0514 0512 0572 || 0635 0.659 0.662 0.694
both of them are accurate, but hardware level £ ion ti ; -LABLEh@ | . lorith
metrics perform significantly better than OS level xecution time for eéach machine learning aigorithm.
metrics in some others (browsing mix). The reason - LR | Naive | SVM | TAN
is that hardware level metrics provide more de- Execution time (ms) || 90 10 1710 | 50

tailed performance information. However, OS level
metrics should be considered for I/O intensive
workloads because hardware level metrics provide
little information on 1/O events.

Among the machine learning algorithms, SV M
and TAN gained highest accuracy in most of the
test cases. Linear regression performed worst be-
cause it can only capture linear correlations. Naive
bayes performed not as well as TAN. It is because
of its strong assumption on the independence of
low level parameters.

3)

Table 6 lists the execution time required to build a
synopsis and make a single prediction using different
machine learning algorithms. Although SV M has good
prediction accuracy, it is computational prohibitive in on-
line performance monitoring. Considering the accuracy
and runtime overhead, T AN becomes the best choice for
synopsis construction.

In addition to prediction accuracy, TAN also provides

insights on bottleneck resources. Figure 6 shows the
TAN structure for the application server synopsis built
from ordering workload. Recall that for the ordering
mix the front-end CPU is the bottleneck and server
overload is due to excessive concurrent requests. From
the Bayesian network in Figure 6, we can see that
hardware counter metrics such as ITLB_REFERENCE,
L2_MISS and ITLB_MISS were highly correlated to high-
level overload state.

6.3 Coordinated Prediction Accuracy

The third experiment was to demonstrate the overload
prediction accuracy and bottleneck identification accu-
racy of coordinated predictor under different workloads.
We used TAN learning algorithm in each synopsis and
set the length of history bits to 3. We assumed optimistic
scheme with a threshold ¢ = 5.



Overload

ITLB_REF
ERENCE

MISPRED_
BRANCH
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metrics.

Figure 7 presents the results based on both OS level
and hardware counter level metrics. For overload pre-
diction in Figure 7(a), similar to individual synopsis
accuracy, OS level metrics led to poor accuracy in a
browsing mix input. Hardware counter metrics resulted
in consistently high prediction accuracy over all the
workloads. For a priori known traffic (e.g. ordering mix),
the prediction accuracy can be up to 90%. For interleaved
workload, which consists of either browsing or ordering
mix during any interval, the coordinated predictor still
has an accuracy over 85%. The predictor is robust to
workload changes and can maintain high accuracy even
in the presence of bottleneck shifting.

It is expected that coordinated predictor would not be
able to outperform the best individual synopsis for cur-
rent workload. Based on spatial and temporal patterns
in individual synopses, the predictor actually masks
inaccurate synopses and selects the best synopsis for a
workload. But for unknown workload, individual syn-
opsis will have a degraded accuracy due to the limitation
of supervised learning. Thus, the resulted coordinated
accuracy decreased to approximately 80% in unknown
workload input, which should be still acceptable.

For the bottleneck identification in Figure 7(b), the
hardware counter level metrics also show consistently
good accuracy. It is interesting that the bottleneck predic-
tion accuracy has a similar trend as overload prediction
in Figure 7(a). This may be due to the similar way the
bottleneck identifier exploits the patterns in individual
bottleneck prediction.

Recall that the results in Figure 7 were obtained under
an assumption of optimistic scheme and a 3-bit history.
In the following, we evaluated the impact of these two
factors. Figure 8(a) shows that the schemes had little im-
pact on the coordinated accuracy and there is no single
scheme that performs consistently better than the other
one. A possible reason is that the spatial and temporal
patterns are obvious, the cases that the predictor is not
sure are rare.

The length of the history bits controls how many steps
the coordinated predictor looks back before making a
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TABLE 7
Runtime overhead in collection of low-level metrics.

Throughput loss
[OF] 2.64%
hardware counter 0.49%

Latency increment
3.74%
0.34%

prediction. Results in Figure 8(b) suggest there would be
an increased accuracy when history bits be used. In most
cases, a single history bit would improve the accuracy
by approximately 10%. However, any further history
information would lead to only a marginal improvement
or even accuracy loss.

6.4 Runtime Overhead

The last experiment was to investigate the runtime over-
head of the predictor. The cost for prediction in different
machine learning algorithms was shown in Table 6.
Table 7 lists the runtime overhead for OS and hard-
ware counter level metrics collection. We normalized
the throughput and request latency with respect to the
values without metrics collection. The experiments takes
an average of 5 executions and each execution lasted 30
minutes. The results show a much lower overhead for
the hardware counter metrics collection. The throughput
loss and latency increment are within 1% for hardware
counter metrics collection.

7 APPLICATION OF CAPACITY PREDICTION IN
ONLINE ADMISSION CONTROL

One application of multi-tier website capacity prediction
is to guide an admission controller to reject excessive
client requests when the incoming traffic exceeds the
website capacity. Accurate predictions of the system
capacity is crucial to the effectiveness of the admission
control. We implemented the two-level capacity predic-
tor in a standalone HTTP proxy residing on a separate
machine. The proxy, on which admission controls can
be applied, simply relayed the client requests to the
front end of the multi-tier website. The proxy collected
different levels of performance metrics in a specified
interval (a 10-second interval in the remaining experi-
ments), based on which the two-level predictor makes
capacity predictions.

With online admission control, we verified that appli-
cation level metrics like response time are not reliable
for system capacity identification. Figure 9(a) plots the
throughput of the multi-tier website under a transient
spike due to different admission control mechanisms.
The baseline traffic was 400 ordering clients. At the
150th second, a 600 ordering client spike was generated
by another client machine. Figure 9(a) compares the
hardware performance counter-based admission control
with the response time-based one. To isolate the effect of
admission control from the traffic variation, we simply
instructed the proxy to reject the requests from the IP
address generating the spike if an overload is detected.
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In this way, the accuracy of the capacity prediction
became the sole factor that affected the effectiveness of
the admission control.

In Figure 9(a), we can see that hardware level metrics-
based admission control can detect the overload immedi-
ately after the arrival of the spike and was able to main-
tain the throughput at a high level. In contrast, response
time-based admission control failed to respond to the
overload condition before the spike invaded the system.
As a result, the website entered a churn state with up
to 70% throughput loss and the overload remained for
some time even after the spike’s leave.

Figure 9(b) and Figure 9(c) compare the HPC level
metrics-based admission control with the OS level
metrics-based control under different traffic mixes. In-
stead of throwing transient spike to the website, we
gradually increased the client traffic to overload the
website in a step of 50 ordering clients and 10 brows-
ing clients every 30 second. We implemented a simple
adaptive rejection rate control based on the following
heuristics: increase the rejection rate by 10% if the last
system state (in the last 10-second interval) is “overload”;
restore to the initial rejection rate if the last state is
"underload”. The initial rejection rates were set to 15%
and 10% for ordering and browsing mixes respectively.

As discussed in Section 6.2, OS level metrics are
accurate in determining the system capacity under the
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ordering mix. In Figure 9(b), we see similar admission
control effects using HPC and OS level metrics: both
effectively rejected excessive requests and stably main-
tained throughput. In contrast, as shown in Figure 9(c),
OS level metrics failed to identify system overload as
accurately as HPC level metrics under browsing mix,
which results in large fluctuations in OS-based admis-
sion control.

8 RELATED WORK

Server capacity determination is crucial to the prob-
lem of resource planning, configuration, and QoS-aware
resource management. Early work on server capacity
measurement [2] focused on how to generate synthetic
workload to stress test the server capacity. Studies in
[6] defined a set of benchmarks for stress testing the
basic capacities of streaming servers. Unlike their of-
fline measurement approaches, our approach focuses on
online measuring the capability of multi-tier websites
for the purpose of request-specific QoS-aware resource
management.

Server capacity measurement is necessary for admis-
sion control and QoS-aware resource management. An
admission controller should know when to turn away
excessive requests, and the overload control mechanism
should be invoked whenever the server capacity is
reached. Most of the past work employed a single rule of
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thumb to measure server capacity based on application
level metrics such as length of the web server request
queue [26], incoming traffic density [3], [4], and request
response time [33], [16], [12]. In [33], the authors em-
ployed a SEDA structure for response time-based admis-
sion control. The architecture has no mechanism for ca-
pacity measurement. Instead, it used the target response
time to a conservative value so as to simplify the design
of their admission controller. In [16], half of the most
restrictive request response time guarantee was used
as the threshold for controlling the incoming request
rate. In [12], a measurement-based admission control
approach was based on the execution time of requests.
However, they assumed a non-preemptive shortest job
first scheduling policy in the database server. As a result,
the requests would have predictable processing time,
independent of the server load condition. It makes it
possible to estimate system utilization by monitoring
admitted requests. Most of application servers are run
in a processor sharing policy. In such servers, the pro-
cessing time of a request is affected by other requests
in concurrent execution. Even with a time-based server
capacity estimate, request response time can no longer
be used as a reference to calculate server utilization.

There were other QoS-aware resource management
work that measured server capacity based on OS level
metrics, such as server CPU utilization [10], [5], or
hardware performance counter metrics [13]. However, in
multi-tier servers, bottleneck resources may shift from
tier to tier due to the dynamics of workload and it is
difficult to set threshold values for capacity estimation.
Our approach uses a combination of these metrics and
does not require specifically setting the threshold values
for each metric.

Our work is closely related to [7], [37], [8], [11] in that
we use similar statistical models to capture underlying
server characteristics. Duan and Batu proposed to use
synopses in forecasting future event based on historic
data [11]. Cohen et al. proposed to use TAN in computer
systems [7] and Zhang et al. [37] improved the model
accuracy by maintaining an ensembles of models, In [8],
Cohen, et al. suggested to use the model to generate
system signatures for the purpose of performance prob-

lem diagnosis. Our approach is different from theirs in
the following aspects. First, we aim at real-time server
capacity measurement, while theirs targeted at recursive
problem identification. Second, they developed correla-
tion for busy servers rather than overloaded systems.
After determining the maximum concurrent level, they
set steady state workload at 50-60% of the maximum
level. Most importantly, we use multiple synopses for
multi-tiers. The prediction results from the synopses
are combined together to identify server capacity as
well as the bottleneck tier. Wildstrom et al. also em-
ployed a similar idea using system level metrics for high
level desicion making [34]. However, their goal was to
maximize throughput by reconfiguring hardware under
different traffics rather than overload prevention. We
used a hardware metrics based index to monitor system
health instead of simply using OS metrics for workload
identification.

Finally, we remark that there are recent work on the
utilization of hardware counter metrics for application
performance tuning and debugging. Examples include
works for identification of parallel program execution
phases [9], online workload modeling and job schedul-
ing [38], [27], and management of energy consumptions
in virtualized environment [28]. Their focus was on the
hardware counter events occurred within application
codes. In contrast, our work uses system-wide hard-
ware counter metrics to estimate high-level system state.
System-wide hardware counter events provide useful
information on the health of the system and bottleneck
resources.

9 CONCLUSION

In this paper, we proposed a two-level coordinated
machine learning approach to measuring the multi-tier
website capacity based on hardware performance coun-
ters. We developed performance synopses to correlate
low-level hardware counter metrics with high level sys-
tem states of each tier. A coordinated predictor was then
used to infer system-wide overload /underload state and
identify resource bottleneck. Experiments results demon-
strate the effectiveness of our approach at less than 0.5%



overhead even in the presence of workload changes and
bottleneck shifting.

Our current model cannot reflect I/O related system
performance. There is also room for accuracy improve-
ment when the input traffic pattern is unknown. This
work can be further extended to combine hardware
counter level metrics with OS level metrics to capture
I/0 related performance problems.
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