Time Capsule:
Tracing Packet Latency across Different
Layers in Virtualized Systems

Kun Suo”, Jia Rao”, Luwei Cheng*, Francis C. M. Lau”

UT Arlington®, Facebook*, The University of Hong Kong”

Virtualization and Multi-Tenancy

* Mainstream in data centers
v Fault isolation and enhanced security

v Improved hardware utilization

* Challenging to guarantee QoS
v Complex virtualization stacks

v Performance interference

Latency-sensitive network apps
suffer poor and unpredictable performance

Para-virtualized Network I/O

Virtual
Switch

Native | | Backend
Driver Driver

Physical machine

App

Frontend
Driver

—»IHypervisor

Hardware]

Physical interrupt

-

Virtual interrupt

[

Protection domain

\Vj

Cross-machine
communication

Possible Causes of Long Latency

* Additional layers of software stack

v Asynchronous notifications

v Data copy End-to-end latency monitoring
and analysis is key to identifying

e Resource contention Mo GETIR AR

v' Time-sharing CPU

v Contentions on data structures, e.g., locks and queues

e Packet transmission in DC network

Challenges in Monitoring Packet
Latency in Virtualized Systems

* Across the boundaries of protection domains

v Machines, privileged domains, guests, and hypervisor

* Correlating events in various components

v Asynchronous packet processing

* Fine-grained tracing with low overhead

v Troubleshooting at packet level

* Application transparency

v A wide spectrum of network apps, no access to code

Related Work

* Tracing tools
v App: gperf
v 0S: SystemTap, Dtrace, Perf, and bcc

v Hypervisor: Xentrace

* Distributed tracing

v'Causal tracing: Pip[NSDI'06], X-Trace[NSDI’07], Dapper
[Google], Fay [SOSP’11], Magpie [HotOS]

v Log mining: Draco [DSN’12], [Nagaraj NSDI’12], [Xu
SOSP’09]

Related Work (cont’)

* Tracing metadata propagation

v Pivot Tracing [SOSP’15], X-Trace [NSDI'07],
Dapper[Google]

v Propagating task IDs and timestamps using task
containers or embedding the info into protocol headers

Tracing virtualized network 1/0:
v" Fine-grained tracing at packet level
v Packet processing at multiple hosts and different layers.
Trace metadata propagation is difficult

Time Capsule

Timestamp packet processing at each tracepoint and
append the tracing info to the packet payload

Advantages:
v' Traces embedded in packets go across the boundaries of
protection domains
v" Timestamps taken at different points have happened-
before relation. No need to capture causality

Time Capsule in Action

|
[
Physical machine O
Tracepoint
Virtual ‘ ________ »
Kwitch '
Receive
Shared -
Memory
Send
©,
[Hardware] L Dump trace
— Restore packet payload

w Preserve the last timestamp at a sender to
capture causality relationship across machines

Timestamping at Tracepoints

* Challenges
v Low overhead
v Available in separate protection domains
v Dealing with time drift on multiple hosts

e Solution
v Para-virtualized clocksouce xen or kvim—clock

v Function native read tscp to read tscvalues,
nanosecond granularity, ~20ns overhead for each reading

v’ Set constant tsc to ensure consistent tsc readings across
difference cores

Timestamping across Machines

* Network transmission time
Isc, —1sc,
* Transmission time can be negative or inaccurate

v TSC ticks at different rates on machines a and b

v TSC resets at different times on machines a and b

TSC Calibration

Objective:
Estimate t2 — t1 using readings
of tsc_b and tsc_a

==« Machine a

Steps:
1) Estimate machine a’s tsc reading
tsc’_aat tl as if both machines
reset tsc at the same time

= \lachine b

2) Converttsc’_atotsc’ b, the g
equivalent tsc reading on
machine b Notation:

3) Calculate packet transmission a : time difference when two machines’

tsc was reset
[3: absolute tsc difference

More details in the paper cpufreq : CPU frequency of a machine

time astsc_ b—tsc’ b

Tracing Payload

| Time Capsule packet >]

l«—— Original packet ——>}«— Tracing payload ->|
Use skb put toappend trace nc o | T | pua | Tracing Tracing
data to the original payload UDP raw data | meta data

0 . [} "' [
Each timestamp is 8 bytes : E - -

. Raw data Sampling
Sampling decision bit determines (Sender side) [decision bit
the sampling rate [Rawdata g et

(Receiver side) annotation bit

Annotation bit decides which
tracepoint(s) to enable

Trace Collection

Ring buffers in physical NIC driver (Tx) and guest OS
network stack (Rx)

Tracing data is removed from the packet payload and
copied to the ring buffers
v Before packet is copied to user space (Rx)

v’ Before packet is transmitted by NIC driver (Tx)

mmap the ring buffers to /proc file systems in user space

Periodically dump trace to storage for latency analysis

Evaluation

Hardware

* two PowerEdge T420 servers

* two 6-core 1.90GHz Intel Xeon E5-2420 CPUs
* 32GB memory

* Gigabit Ethernet

Software

* Hypervisor: Xen 4.5

* Dom 0 and Dom U kernel: Linux 3.18.21
* VM: 1vCPU + 4GB memory

Latency(ps)

Time Capsule Overhead

Time Capsule incurs no more than
2% latency increase

=*—avg —*99% 99.90%

Latency(us)
[EEN
S

Number of tracepoints

Sockperf UDP latency

=*—=avg —*+99% 99.90%

1/16 1/8 1/4 1/2 1

Sampling rate

Latency(us)

2000

1500

1000

500

0

Per Packet Latency

Packet level latency monitoring:
1. Capture latency fluctuation
2. More responsive to traffic change
3. Capture transient spikes in user-perceived latency

Average latency per second Latency per packet

2000

N\

1500 TN
1000 -y

Latency(us)

[\

S

0

1 2 3 4 5 6 7 8 9 10 11 12
Time (second) Time (second)

—sockperf —sockperf
Foreground sockperf UDP request
Background netperf interference arrive at
the 1.5 second and left at the 6.5 second

Latency(us)

Diagnosis with Latency Breakdown

W Dom(b) MXen DomU

B DomO MXen DomU B DomO(a)
120 3000

100 2500

80 2000

Latency(us)

1500

1000
0

Colocation of latency-sensitive and throughput-intensive
workloads in the same VM incurs long and unpredictable latency

60

40

20

0

Latency breakdown reveals that packet batching at the backend
NIC driver was the culprit

Taming Long Tail Latency in Xen

VM-1
{ sockperf}

[e

Case 1

VM-1 VM-2

sockperf}(ﬁ loop]

V

AV

Xen }

Case 2

18000
___ 16000
(V5]

2 14000
> 12000
S 10000
8000
6000
4000
2000

Late

——Case1l —*=C(Case 2

Bugs in Xen’s credit scheduler
Time capsule helps find them!

BUG-1

] Case 2
| Observatlops: BDom0 MXen M DomU
Predictable latency spike every 250

packets

40
35
30
25
20

Spike always starting with delay in Xen 1(5)

The tail latency close to 30ms

Latency(ms)

Packet index

BUG-1:Xen mistakenly boosts the priority of CPU-
intensive VMs, which causes long scheduling
delays of the 1/0-bound VM in Xen
http://lists.xenproject.org/archives/html/xen-
devel/2015-10/msg02853.html

Latency (us)

20000

15000

10000

5000

After BUG-1 is Fixed

25% 50% 75% 90% 95% 99% 99.50%99.90%99.99%

—e—Case 1l ==Case 2 after BUG-1 is fixed2

Tail latency is still not bounded

Additional Xen Bugs

Observations:

B Dom0 MEXen DomU
1. The occurrence and

magnitude of the latency % ‘ ‘
. H 2.
spike are unpredictable E
)
2. Spike always starting with &,
delay in Xen E
0

Packet index

BUG-2: Xen does not timely activate I/O VMs that
are deactivated due to long idling

https://lists.xenproject.org/archives/html/xen-
devel/2016-05/msg01362.html

BUG-3: 1/0 VMs’ BOOST priority can be
prematurely demoted
https://lists.xenproject.org/archives/html/xen-
devel/2016-05/msg01362.html

Future Work

* Dynamic instrumentation

v Extend Time Capsule to dynamically add tracepoints using
BPF

 Automated analysis

v use machine learning to extract better information from
packet traces

* Disk1/0O

v extend TC to disk I/O requests. Challenge is the lack of a
commonly shared data structure, such as skb in networking,
across layers in virtualized block I/O stacks

Conclusions

 Motivation

Tracing latency in virtualized systems is challenging due to the
isolation of protection domains and requirements for low
overhead and application transparency

* Time Capsule
An in-band profiler to trace network latency at packet level in
virtualized environments

 Evaluation

Time Capsule incurs low overhead, enables fine-grained packet
level tracing, and latency breakdown, which helps to detect
bugs that cause long tail latency in Xen

Thank, you !

Questions?

FAQ

* Will time capsule affect the user-perceived packet size?

No and yes. When packets are received, MTU is no longer a limit for
packet size. Time capsule is able to append as much data as needed
to the payload and the tracing payload is removed before the packet
arrives at the user space. Thus, the users are unaware of the tracing
activities. However, time capsule needs to append 8 bytes to the
packet to store the last timestamp at the sender side. In rare cases,
this will affect the number of packets transmitted. For example, if the
original packet size is 2999 bytes (a little less than two MTUs), adding
8 bytes to the original payload will require one more packet to be
transmitted.

