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Virtualiza@on	and		Mul@-Tenancy	

• Mainstream	in	data	centers	
ü Fault	isolaEon	and	enhanced	security	

ü Improved	hardware	uElizaEon	

• Challenging	to	guarantee	QoS		
ü Complex	virtualizaEon	stacks	

ü Performance	interference	

Latency-sensi@ve	network	apps	
suffer	poor	and	unpredictable	performance		



Para-virtualized	Network	I/O	
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Possible	Causes	of	Long	Latency	

• AddiEonal	layers	of	soRware	stack	
ü Asynchronous	noEficaEons	

ü Data	copy		

• Resource	contenEon	
ü Time-sharing	CPU	

ü ContenEons	on	data	structures,	e.g.,	locks	and	queues		

• Packet	transmission	in	DC	network		

End-to-end	latency	monitoring	
and	analysis	is	key	to	iden@fying	

the	causes		



Challenges	in	Monitoring	Packet	
Latency	in	Virtualized	Systems	

• Across	the	boundaries	of	protecEon	domains	
ü Machines,	privileged	domains,	guests,	and	hypervisor	

• Correla@ng	events	in	various	components	
ü Asynchronous	packet	processing	

•  Fine-grained	tracing	with	low	overhead	
ü TroubleshooEng	at	packet	level	

• ApplicaEon	transparency		
ü A	wide	spectrum	of	network	apps,	no	access	to	code	



Related	Work	

•  Tracing	tools	
ü App:	gperf	
ü 	OS:	SystemTap,	Dtrace,	Perf,	and	bcc	
ü 	Hypervisor:	Xentrace	

• Distributed	tracing	
ü Causal	tracing:	Pip[NSDI’06],	X-Trace[NSDI’07],	Dapper	
[Google],	Fay	[SOSP’11],	Magpie	[HotOS]		

ü Log	mining:	Draco	[DSN’12],	[Nagaraj	NSDI’12],	[Xu	
SOSP’09]	



Related	Work	(cont’)	

•  Tracing	metadata	propagaEon	
ü Pivot	Tracing	[SOSP’15],	X-Trace	[NSDI’07],	
Dapper[Google]	

ü PropagaEng	task	IDs	and	Emestamps	using	task	
containers	or	embedding	the	info	into	protocol	headers	

Tracing	virtualized	network	I/O:	
ü  Fine-grained	tracing	at	packet	level	

ü  Packet	processing	at	mul@ple	hosts	and	different	layers.	
Trace	metadata	propaga@on	is	difficult	



Time	Capsule	

Timestamp	packet	processing	at	each	tracepoint	and	
append	the	tracing	info	to	the	packet	payload	

Advantages:	
ü  Traces	embedded	in	packets	go	across	the	boundaries	of	

protec@on	domains	
ü  Timestamps	taken	at	different	points	have	happened-

before	rela@on.	No	need	to	capture	causality		



Time	Capsule	in	Ac@on		
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Timestamping	at	Tracepoints	

•  Challenges	
ü Low	overhead	
ü Available	in	separate	protecEon	domains	
ü Dealing	with	Eme	driR	on	mulEple	hosts	

•  SoluEon	
ü Para-virtualized	clocksouce	xen	or	kvm-clock 
ü FuncEon	native_read_tscp	to	read	tsc	values,	
nanosecond	granularity,	~20ns	overhead	for	each	reading		

ü Set	constant_tsc	to	ensure	consistent	tsc	readings	across	
difference	cores	



Timestamping	across	Machines	

• Network	transmission	Eme	

•  Transmission	Eme	can	be	negaEve	or	inaccurate	
ü TSC	Ecks	at	different	rates	on	machines	a	and	b	

ü TSC	resets	at	different	Emes	on	machines	a	and	b	

tscb −tsca
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Figure 1. The architecture of Time Capsule.

no changes to the traced applications. We demonstrate that
fine-grained tracing and latency decomposition enabled by
TC shed light on the root causes of long tail network latency
and help identify real performance bugs in Xen.

The rest of the paper is organized as follows. Section 2
and 3 describe the design, implementation, and optimiza-
tions of Time Capsule, respectively. Section 4 presents eval-
uation results. Section 5 and 6 discuss future and related
work, respectively. Section 7 concludes this paper.

2. Design and Implementation
The challenges outlined in Section 1 motivate the following
design goals of Time Capsule: (1) cross-boundary tracing;
(2) fine-grained tracing; (3) low overhead; (4) application
transparency. Figure 1 presents a high-level overview of how
TC enables tracing for network send (Tx) and receive (Rx).
TC places tracepoints throughout the virtualized network
stack and timestamps packets at enabled tracepoints. The
timing information is appended to the payload of the packet.
For network receive, before the traced packet is copied to
user space, TC restores the packet payload to its original size
and dumps the tracing data to a kernel buffer, from where the
tracing data can be copied to user space for offline analysis.
For network send, trace dump happens before the packet
is transmitted by the physical NIC. Compared to packet
receive, we preserve the timestamp of the last tracepoint
in the payload of a network send packet to support tracing
across physical machines. Since tracepoints are placed in
either the hypervisor, the guest kernel or the host kernel, TC
is transparent to user applications. Next, we elaborate on the
design and implementation of TC in a Xen environment.

Clocksource To accurately attribute network latency to
various processing stages across different protection do-
mains, e.g., Dom0, DomU, and Xen, a reliable and cross-
domain clocksource with high resolution is needed. The
para-virtualized clocksource xen meets the requirements.
In a Xen environment, the hypervisor, Dom0, and the guest
OS all use the same clocksource xen for time measurement.
Therefore, packet timestamping using the xen clocksource
avoids time drift across different domains. Next, the clock-
source xen is based on the Time Stamp Counter (TSC) on
the processor and has nanosecond resolution. It is adequate

Time

TSC

β

α t2t10

tscb

'tsca

tsca

Machine b

Machine a

'tscb

Figure 2. The relationship of TSCs on different physical
machines. The constant tsc flag allows TSC to tick at the
processor’s maximum rate regardless of the actual CPU
speed. Line slope represents the maximum CPU frequency.

for latency measurement at the microsecond granularity. A
similar clocksource kvm-clock is also available in KVM.
Furthermore, we enabled constant tsc and nonstop tsc

of Intel processors, which can guarantee that TSC rate is not
only synchronized across all sockets and cores, but also is
not affected by power management on individual processors.
As such, TSC ticks at the maximum CPU clock rate regard-
less of the actual CPU running speed. For cross-machine
tracing, the clocks on physical nodes may inevitably tick at
different rates due to different CPU speeds. Therefore, the
relative difference between timestamps recorded on separate
machines does not reflect the actual time passage. Figure 2
shows the relationship between the TSC readings on two
machines with different CPU speeds. The slopes of the two
lines represent the maximum CPU frequency on the respec-
tive machines. There exist two challenges in correlating the
timestamps on separate machines. First, TSC readings are
incremented at different rates (i.e., different slopes). Sec-
ond, TSC registers are reset at boot time or when resuming
from hibernation. The relative difference between TSC read-
ings on two machines includes the absolute distance of these
machines since last TSC reset. For example, as shown in
Figure 2, the distance between TSC reset on two machines
is denoted by ↵ = |tareset � tbreset|, where tareset and tbreset
are the last TSC reset time of machine a and b, respectively.

Tracepoints are placed on the critical path of packet process-
ing in the virtualized network stack. When a target packet
passes through a predefined tracepoint, a timestamp based
on local clocksource is appended to the packet payload. The
time difference between two tracepoints measures how much
time it spent in a particular processing stage. For example,
two tracepoints can be placed at the backend in Dom0 and
frontend in DomU to measure packet processing time in the
hypervisor. As timestamps are taken sequentially at vari-
ous tracepoints throughout the virtualized network stack, TC
does not need to infer the causal relationship of the trace-
points (as Pivot Tracing does in [27]) and the timestamps in
the packet payload have strict happened-before relations.

Cross-machine tracing requires that the varying TSC rates
and reset times on different machines be taken into ac-
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Objec@ve:		
EsEmate	t2	–	t1	using	readings	

of	tsc_b	and	tsc_a	

Nota@on:		
:	Eme	difference	when	two	machines’																
tsc	was	reset	
:	absolute	tsc	difference		
											:	CPU	frequency	of	a	machine	
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β
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Steps:		
1)  EsEmate	machine	a’s	tsc	reading	

tsc’_a	at	t1	as	if	both	machines	
reset	tsc	at	the	same	Eme		

2)  Convert	tsc’_a	to	tsc’_b,	the	
equivalent	tsc	reading	on	
machine	b	

3)  Calculate	packet	transmission	
Eme	as	tsc_b	–	tsc’_b		

More	details	in	the	paper	



Tracing	Payload	
count for accurate latency attribution. Specifically, times-
tamps recorded on separate machines should be calibrated
to determine the latency due to network transmission be-
tween machines. We illustrate the TSC calibration process
in Figure 2. Assume that a packet is sent from machine a
(denoted by the dotted blue line) at time t1, which has a
faster CPU and its TSC starts to tick earlier, and received
at time t2 on machine b (denoted by the solid red line)
with a slower CPU. Without TSC calibration, the differ-
ence tscb� tsca can show negative transmission time. There
are two ways to measure packet transmission time in the
network based on the two timestamps tsca and tscb taken
at the sender and receiver machines. First, the difference of
TSC reset time ↵ can be estimated as | tscasync

cpufreqa
� tscbsync

cpufreqb
|,

where tscasync and tscbsync are the instantaneous TSC read-
ings on the two machines at exactly the same time. This
can be achieved through distributed clock synchronization
algorithms which estimate the packet propagation time in a
congestion-free network and adjust the two TSC readings.
Once ↵ is obtained, the absolute TSC difference � is cal-
culated as � = ↵ ⇥ cpufreqa. Then, the first calibration
step is to derive tsc0a = tsca � � to remove the absolute
TSC difference. As shown in Figure 2, tsc0a is the TSC read-
ing of packet transmission at the sender if machine a resets
TSC at the same time as machine b. Further, the equiva-
lent TSC reading at the receiver machine b when the packet
starts transmission is tsc0b = tsc0a ⇥ cpufreqb

cpufreqa
. Finally, the

packet transmission time is the difference between the times-
tamps of packet send and receive on the receiver machine b:
t2 � t1 = tscb�tsc0b

cpufreqb
.

The first calibration method only requires the examina-
tion of one packet to measure packet transmission time but
relies on an accurate estimation of ↵. Since ↵ is constant for
all packet transmissions between two particular machines,
an alternative is to estimate network condition based on
the comparisons of multiple packet transmissions. Similar
to [25], which compares packet transmission time with a ref-
erence value in a congestion-free environment to estimate
network congestions, we can roughly measure packet trans-
mission time as tsca

cpufreqa
� tscb

cpufreqb
and use cross-packet

comparison to identify abnormally long transmission time.
However, this method only identifies relative transmission
delays with respect to a reference transmission time, which
is difficult to obtain in production datacenter network and
may be variable due to packets being transmitted through
different routes.

Tracing payload To enable tracing latency across physical
or virtual boundaries, TC adds an extra payload to a packet
to store the timestamps of tracepoints. Upon receiving a
packet at the physical NIC or copying a packet from user
space to kernel space for sending, TC uses skb put(skb,

SIZE) to allocate additional space in the original packet.
The tracing information is removed from packet payload and
dumped to a kernel buffer before a packet is copied to the
application buffer in user space or sent out by the physical
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Figure 3. The structure of a Time Capsule packet.

NIC. Figure 3 shows the structure of a TC-enabled packet.
The tracing payload contains two types of data: the tracing
raw data and the tracing metadata. The tracing raw data con-
sists of 8-byte entries, each of which stores the timestamp
of a tracepoint. Users can place plenty of tracepoints in the
virtualized network stack based on their needs and choose
which tracepoints to enable for a particular workload. The
tracing metadata uses the annotation bits to indicate if the
corresponding tracepoint is enabled or not (1 as enabled).
Users define an event mask to specify the enabled tracepoints
and initialize the tracing metadata. The SIZE of the tracing
payload depends on the number of enabled tracepoints. For
latency tracing across VMs on the same physical machine,
packet is transferred between the hypervisor and domains
through shared memory. The packet size is not limited by the
maximum transmission units (MTUs). Thus, TC is able to
allocate sufficient spaces in packet payload for tracing with-
out affecting the number of packets communicated by the
application workloads. For tracing across different physical
machines, we dump all the timestamps before packets are
sent out by the NIC but preserve the last timestamp recorded
at the sender side (the sender side raw data in Figure 3) in the
tracing payload. When the packet arrives at the receiver ma-
chine, new tracing data will be added after the sender side’s
last timestamp. As such, the tracing data pertaining to the
same packet stored on multiple machines can be stitched to-
gether by the shared timestamp.

3. Overhead and Optimizations
Despite the benefits, tracing at packet level can introduce
considerable overhead to network applications. For highly
optimized services in the cloud, such tracing overhead can
significantly hurt performance. In this section, we discuss
the sources of overhead and the corresponding optimizations
in Time Capsule.

Time measurement It usually incurs various levels of cost
to obtain timestamps in the kernel space. If it is not properly
designed, fine-grained tracing can significantly degrade net-
work performance, especially increasing packet tail latency.
Optimization We compare the cost of different clocksource
read functions available in various domains using a simple
clock test tool [2] and adopt native read tscp to read
from the xen clocksource at each tracepoint. Compared to

3

•  Use	__skb_put	to	append	trace	
data	to	the	original	payload	

•  Each	Emestamp	is	8	bytes	

•  Sampling	decision	bit	determines	
the	sampling	rate	

•  AnnotaEon	bit	decides	which	
tracepoint(s)	to	enable	



Trace	Collec@on	

•  Ring	buffers	in	physical	NIC	driver	(Tx)	and	guest	OS	
network	stack	(Rx)	

•  Tracing	data	is	removed	from	the	packet	payload	and	
copied	to	the	ring	buffers	

ü Before	packet	is	copied	to	user	space	(Rx)	

ü Before	packet	is	transmimed	by	NIC	driver	(Tx)		

•  mmap	the	ring	buffers	to	/proc file	systems	in	user	space	

•  Periodically	dump	trace	to	storage	for	latency	analysis	



Evalua@on	
Hardware	

•  two	PowerEdge	T420	servers	
•  two	6-core	1.90GHz	Intel	Xeon	E5-2420	CPUs	
•  32GB	memory	

•  Gigabit	Ethernet	
	

SoUware	

•  Hypervisor:	Xen	4.5	
•  Dom	0	and	Dom	U	kernel:	Linux	3.18.21		

•  VM:	1	vCPU	+	4GB	memory	



Time	Capsule	Overhead	
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Foreground	sockperf	UDP	request	
Background	netperf	interference	arrive	at	
the	1.5th	second	and	leU	at	the	6.5th	second	

Packet	level	latency	monitoring:	
1.   Capture	latency	fluctua@on	

2.   More	responsive	to	traffic	change	
3.   Capture	transient	spikes	in	user-perceived	latency	

Average	latency	per	second	 Latency	per	packet	
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Diagnosis	with	Latency	Breakdown	

VM	

sockperf	

VM	

HPCBench	sockperf	

Coloca@on	of	latency-sensi@ve	and	throughput-intensive	
workloads	in	the	same	VM	incurs	long	and	unpredictable	latency	

Latency	breakdown	reveals	that	packet	batching	at	the	backend	
NIC	driver	was	the	culprit		



Taming	Long	Tail	Latency	in	Xen	

sockperf	

Xen	

Case	1	

sockperf	

Xen	

loop	

Case	2	

VM-1	

VM-1	 VM-2	

Bugs	in	Xen’s	credit	scheduler	
Time	capsule	helps	find	them!	

0	
2000	
4000	
6000	
8000	
10000	
12000	
14000	
16000	
18000	

Case	1	 Case	2	

La
te
nc
y	
(μ
s)
	



BUG-1	
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Case	2	
Observa@ons:	

1.  Predictable	latency	spike	every	250	
packets	

2.  The	tail	latency	close	to	30ms	

3.  Spike	always	starEng	with	delay	in	Xen	

BUG-1:Xen	mistakenly	boosts	the	priority	of	CPU-
intensive	VMs,	which	causes	long	scheduling	

delays	of	the	I/O-bound	VM	in	Xen	
hmp://lists.xenproject.org/archives/html/xen-

devel/2015-10/msg02853.html	



AUer	BUG-1	is	Fixed	
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Tail	latency	is	s@ll	not	bounded	



Addi@onal	Xen	Bugs	
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Packet	index	

Observa@ons:	
1.  The	occurrence	and	

magnitude	of	the	latency	
spike	are	unpredictable	

	
2.  Spike	always	starEng	with	

delay	in	Xen	

BUG-2:	Xen	does	not	@mely	ac@vate	I/O	VMs	that	
are	deac@vated	due	to	long	idling		

hmps://lists.xenproject.org/archives/html/xen-
devel/2016-05/msg01362.html	

BUG-3:	I/O	VMs’	BOOST	priority	can	be	
prematurely	demoted		

hmps://lists.xenproject.org/archives/html/xen-
devel/2016-05/msg01362.html	



Future	Work	

•  	Dynamic	instrumenta@on		
ü Extend	Time	Capsule	to	dynamically	add	tracepoints	using	
BPF	

•  	Automated	analysis	
ü use	machine	learning	to	extract	bemer	informaEon	from	
packet	traces	

•  	Disk	I/O	
ü extend	TC	to	disk	I/O	requests.	Challenge	is	the	lack	of	a	
commonly	shared	data	structure,	such	as	skb	in	networking,	
across	layers	in	virtualized	block	I/O	stacks	



Conclusions	

• Mo@va@on	
Tracing	latency	in	virtualized	systems	is	challenging	due	to	the	
isolaEon	of	protecEon	domains	and	requirements	for	low	
overhead	and	applicaEon	transparency	

•  Time	Capsule	
An	in-band	profiler	to	trace	network	latency	at	packet	level	in	
virtualized	environments	

•  Evalua@on	
Time	Capsule	incurs	low	overhead,	enables	fine-grained	packet	
level	tracing,	and	latency	breakdown,	which	helps	to	detect	
bugs	that	cause	long	tail	latency	in	Xen	



Thank  you ! 
           Questions? 



FAQ	

• Will	@me	capsule	affect	the	user-perceived	packet	size?	
No	and	yes.	When	packets	are	received,	MTU	is	no	longer	a	limit	for	
packet	size.	Time	capsule	is	able	to	append	as	much	data	as	needed	
to	the	payload	and	the	tracing	payload	is	removed	before	the	packet	
arrives	at	the	user	space.	Thus,	the	users	are	unaware	of	the	tracing	
acEviEes.	However,	Eme	capsule	needs	to	append	8	bytes	to	the	
packet	to	store	the	last	Emestamp	at	the	sender	side.	In	rare	cases,	
this	will	affect	the	number	of	packets	transmimed.	For	example,	if	the	
original	packet	size	is	2999	bytes	(	a	limle	less	than	two	MTUs),	adding	
8	bytes	to	the	original	payload	will	require	one	more	packet	to	be	
transmimed.		


