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Virtualization and Multi-Tenancy

* Mainstream in data centers
v Fault isolation and enhanced security

v Improved hardware utilization

* Challenging to guarantee QoS
v Complex virtualization stacks

v Performance interference

Latency-sensitive network apps
suffer poor and unpredictable performance
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Possible Causes of Long Latency

* Additional layers of software stack

v Asynchronous notifications

v Data copy End-to-end latency monitoring
and analysis is key to identifying

e Resource contention Mo GETIR AR

v' Time-sharing CPU

v Contentions on data structures, e.g., locks and queues

e Packet transmission in DC network



Challenges in Monitoring Packet
Latency in Virtualized Systems

* Across the boundaries of protection domains

v Machines, privileged domains, guests, and hypervisor

* Correlating events in various components

v Asynchronous packet processing

* Fine-grained tracing with low overhead

v Troubleshooting at packet level

* Application transparency

v A wide spectrum of network apps, no access to code



Related Work

* Tracing tools
v App: gperf
v 0S: SystemTap, Dtrace, Perf, and bcc

v Hypervisor: Xentrace

* Distributed tracing

v'Causal tracing: Pip[NSDI'06], X-Trace[NSDI’07], Dapper
[Google], Fay [SOSP’11], Magpie [HotOS]

v Log mining: Draco [DSN’12], [Nagaraj NSDI’12], [Xu
SOSP’09]



Related Work (cont’)

* Tracing metadata propagation

v Pivot Tracing [SOSP’15], X-Trace [NSDI'07],
Dapper[Google]

v Propagating task IDs and timestamps using task
containers or embedding the info into protocol headers

Tracing virtualized network 1/0:
v" Fine-grained tracing at packet level
v Packet processing at multiple hosts and different layers.
Trace metadata propagation is difficult



Time Capsule

Timestamp packet processing at each tracepoint and
append the tracing info to the packet payload

Advantages:
v' Traces embedded in packets go across the boundaries of
protection domains
v" Timestamps taken at different points have happened-
before relation. No need to capture causality



Time Capsule in Action
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Timestamping at Tracepoints

* Challenges
v Low overhead
v Available in separate protection domains
v Dealing with time drift on multiple hosts

e Solution
v Para-virtualized clocksouce xen or kvim—clock

v Function native read tscp to read tscvalues,
nanosecond granularity, ~20ns overhead for each reading

v’ Set constant tsc to ensure consistent tsc readings across
difference cores



Timestamping across Machines

* Network transmission time
Isc, —1sc,
* Transmission time can be negative or inaccurate

v TSC ticks at different rates on machines a and b

v TSC resets at different times on machines a and b



TSC Calibration

Objective:
Estimate t2 — t1 using readings
of tsc_b and tsc_a

==« Machine a

Steps:
1) Estimate machine a’s tsc reading
tsc’_aat tl as if both machines
reset tsc at the same time

= \lachine b

2) Converttsc’_atotsc’ b, the g
equivalent tsc reading on
machine b Notation:

3) Calculate packet transmission a : time difference when two machines’

tsc was reset
[3: absolute tsc difference

More details in the paper cpufreq : CPU frequency of a machine

time astsc_ b—tsc’ b



Tracing Payload
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Trace Collection

Ring buffers in physical NIC driver (Tx) and guest OS
network stack (Rx)

Tracing data is removed from the packet payload and
copied to the ring buffers
v Before packet is copied to user space (Rx)

v’ Before packet is transmitted by NIC driver (Tx)

mmap the ring buffers to /proc file systems in user space

Periodically dump trace to storage for latency analysis



Evaluation

Hardware

* two PowerEdge T420 servers

* two 6-core 1.90GHz Intel Xeon E5-2420 CPUs
* 32GB memory

* Gigabit Ethernet

Software

* Hypervisor: Xen 4.5

* Dom 0 and Dom U kernel: Linux 3.18.21
* VM: 1vCPU + 4GB memory
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Latency(us)
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Packet level latency monitoring:
1. Capture latency fluctuation
2. More responsive to traffic change
3. Capture transient spikes in user-perceived latency
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the 1.5 second and left at the 6.5 second



Latency(us)

Diagnosis with Latency Breakdown
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Latency breakdown reveals that packet batching at the backend
NIC driver was the culprit



Taming Long Tail Latency in Xen
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Bugs in Xen’s credit scheduler
Time capsule helps find them!



BUG-1
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BUG-1:Xen mistakenly boosts the priority of CPU-
intensive VMs, which causes long scheduling
delays of the 1/0-bound VM in Xen
http://lists.xenproject.org/archives/html/xen-
devel/2015-10/msg02853.html
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Tail latency is still not bounded



Additional Xen Bugs

Observations:
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BUG-2: Xen does not timely activate I/O VMs that
are deactivated due to long idling

https://lists.xenproject.org/archives/html/xen-
devel/2016-05/msg01362.html

BUG-3: 1/0 VMs’ BOOST priority can be
prematurely demoted
https://lists.xenproject.org/archives/html/xen-
devel/2016-05/msg01362.html




Future Work

* Dynamic instrumentation

v Extend Time Capsule to dynamically add tracepoints using
BPF

 Automated analysis

v use machine learning to extract better information from
packet traces

* Disk1/0O

v extend TC to disk I/O requests. Challenge is the lack of a
commonly shared data structure, such as skb in networking,
across layers in virtualized block I/O stacks



Conclusions

 Motivation

Tracing latency in virtualized systems is challenging due to the
isolation of protection domains and requirements for low
overhead and application transparency

* Time Capsule
An in-band profiler to trace network latency at packet level in
virtualized environments

 Evaluation

Time Capsule incurs low overhead, enables fine-grained packet
level tracing, and latency breakdown, which helps to detect
bugs that cause long tail latency in Xen



Thank, you !

Questions?



FAQ

* Will time capsule affect the user-perceived packet size?

No and yes. When packets are received, MTU is no longer a limit for
packet size. Time capsule is able to append as much data as needed
to the payload and the tracing payload is removed before the packet
arrives at the user space. Thus, the users are unaware of the tracing
activities. However, time capsule needs to append 8 bytes to the
packet to store the last timestamp at the sender side. In rare cases,
this will affect the number of packets transmitted. For example, if the
original packet size is 2999 bytes ( a little less than two MTUs), adding
8 bytes to the original payload will require one more packet to be
transmitted.



