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Abstract—Advanced high-speed network cards have made
packet processing in host operating systems a major performance
bottleneck. The kernel network stack gives rise to various sources
of overheads that limit the throughput and lengthen the per-
packet processing latency. The problem is further exacerbated
for short-lived, latency-sensitive network flows such as control
packets, online gaming, database requests, etc. — in a highly
utilized system, especially in virtualized (containerized) cloud
environments, short flows can experience excessively long in-
kernel queuing delays. As a consequence, recent research works
propose to bypass the kernel network stack to enable lightweight,
custom userspace network stacks for improved performance, but
at a heavy cost of compatibility and security. In this paper, we
take a different approach: We first analyze various sources of
inefficiencies in the kernel network stack and propose ways to
mitigate them without compromising systems compatibility, secu-
rity, or flexibility. Further, we propose PRISM, a novel mechanism
in the kernel network stack to differentiate incoming packets
based on their performance requirements and streamline the
processing stages of multi-stage packet processing pipelines (e.g.,
in container overlay networks). Our evaluation demonstrates that
PRISM can significantly improve the latency of high-priority flows
in container overly networks in the presence of heavy low-priority
background traffic.

Index Terms—kernel network stack, container overlay net-
work, packet processing, performance differentiation

I. INTRODUCTION

Network applications can have diverse performance require-
ments: Some want to transfer a large amount of data from one
machine to another as quickly and efficiently as possible (e.g.,
network file systems, database replication/migration, big data
analytics, etc.) while some send small requests and expect
quick responses with minimal delay (e.g., RPC, key-value
stores, database queries, control signals, etc.). Although in-
kernel network stack has some mechanisms to control per-
flow traffic and prioritize flows in the transmission side
(e.g., tc [1]), there is a lack of performance differentiation
mechanisms in the packet reception side – all packets arriving
in the kernel are treated equally (i.e., processed in an FCFS
manner) by the network stack. That said, the application-level
performance requirements are neglected by the kernel network
stack, resulting in suboptimal performance, especially when
both latency-sensitive and throughput-intensive flows co-exist.

The problem worsens in the case of virtual overlay net-
works which are widely used in today’s cloud environments.
Due to its high portability, high consolidation density, low
performance overhead and hence low operational cost, the
container technology (e.g., Docker [2]) has become ubiquitous

to encapsulate and host applications [3]. Modern distributed
cloud applications are even made up of hundreds or thousands
of containers (microservices) communicating with one another
over a virtual private network, which is usually implemented
as an overlay network (e.g., VXLAN [4] where the virtual
Ethernet frame is encapsulated within an outer UDP segment)
[5]–[8]. While in-kernel overlay network offers good flex-
ibility, modularity, and generality, compared to native host
networks, it incurs significant performance overhead as its
packet processing pipeline involves multiple stages [9]–[11].

We propose PRISM (priority-based streamlined packet pro-
cessing), a novel mechanism in the kernel network stack to
enable performance differentiation during packet reception and
to streamline packet processing stages for multi-stage packet
processing pipelines such as container overlay networks or
network function virtualization (NFV) chains. Unlike kernel
bypass methods [10], [12]–[15], PRISM utilizes the existing
generic in-kernel network stack — which has become mature,
stable and secure with decades of development — without
reinventing the wheel. Therefore, PRISM is fully transparent
to and compatible with existing applications, and works with
existing hardware — e.g., without requiring dedicated cores
for polling packets from the network hardware.

More specifically, with thorough performance tracing and
code analysis, we identify key optimization opportunities in
the kernel network stack for batched and interleaved process-
ing of multi-stage flows. PRISM first streamlines the packet
processing stages by improving how the network devices are
polled in the NAPI softirq handler. Further, PRISM differenti-
ates the priority of a flow by detecting its priority early in the
packet processing pipeline and adding a separate high-priority
packet queue in network devices to enable differentiation.

Our main contributions are as follows:

• We perform a comprehensive analysis (both empirical and
qualitative) to study the effect of background traffic on
the performance of latency-sensitive flows in the vanilla
kernel network stack.

• We propose a novel approach in the kernel network stack
to streamline container overlay network packet processing
and to enable performance differentiation during packet
reception.

• Our design can reduce the latency (both average and
tail) of high-priority flows in the presence of low-priority
background traffic by more than 50%.



• We release our prototype implementation to the open-
source community.

The rest of the paper is organized as follows: Section II
gives a brief background about how in-kernel packet process-
ing works and identifies sources of optimization. Section III
and IV describe the design and implementation details, respec-
tively, of PRISM. In Section V, we present our experimental
results. In Section VI, we juxtapose our solution with related
works, and then we discuss some remaining issues in Sec-
tion VII. Finally, we conclude in Section VIII.

II. BACKGROUND AND MOTIVATION

In this section, we first describe how incoming packets are
processed in the Linux kernel and then present two sources of
inefficiencies when the kernel network stack processes packets
in a complex pipeline that involves multiple network devices.
Without loss of generality, we focus on container overlay
networks as they are the most common way to construct a vir-
tual network for containers in the cloud. Finally, we motivate
some opportunities for optimizing the kernel packet processing
pipeline to improve performance that are transparent to (and
fully compatible with) existing applications.

A. NAPI Packet Processing

When a packet arrives in a host, the operating system (OS)
can handle the packet in two fundamental ways: interrupt or
polling. In interrupt mode, the network interface controller
(NIC) raises an interrupt every time a packet arrives, causing
the CPU to switch to the interrupt context and process that
packet. This is favorable under low load, but becomes unrea-
sonably expensive and inefficient under high load, especially
with fast modern network cards. In polling mode, a CPU thread
periodically checks the kernel ring buffer to see if there are any
new packets (DMA-ed by the NIC). Unlike the interrupt mode,
this is more efficient under high load due to reduced context-
switching overheads. However, under low load, it either wastes
a lot of CPU cycles or increases latency depending on the
polling frequency. Since Linux kernel version 2.6, incoming
network packets are processed in the kernel by the New API
(NAPI) pipeline [16], which brings the best of both worlds,
i.e., it enables interrupts under low load but switches to the
polling mode under high load.

NAPI starts off in the interrupt mode: the NIC raises a
hardware interrupt (irq) on the reception of the first packet.
However, instead of processing the packet through the entire
network stack, the hardware interrupt handler (i.e., the top-
half ) simply notifies the kernel that there are packets in the
device’s receive queue ready to be processed. The actual
packet processing happens in a separate kernel thread as a
NAPI polling loop (i.e., the bottom-half ). This mechanism of
deferring the packet processing out of the hardware interrupt
context is known as software interrupt (softirq). The irq han-
dler raises a softirq (NET_RX for packet reception) by adding
the network device to the NAPI poll list — a per-CPU list of
network devices with packets available in their receive queues
— and setting a bit flag (if not already set) indicating pending

softirq.1 This will schedule the corresponding softirq handler
(net_rx_action in the case of the NET_RX softirq) on that
CPU. The softirq handler then starts polling and processing
packets from the network devices in the NAPI poll list until
either the packet queue is empty or it has used up its allotted
time slice or packet quota. The time slot or packet quota
prevents the softirq from monopolizing the CPU core and
ensures the softirq handler behaves as a good kernel citizen.
For each device, NAPI processes a batch of packets in the
FIFO order and moves on to the next device in the poll list.
The batch size is typically 64 in default Linux kernel config-
urations. Each packet is processed through the protocol stack
and then enqueued in the application receive buffer. While the
softirq handler is polling NAPI devices, hardware interrupts
are disabled on that CPU. In this way, NAPI can work in
either interrupt or polling mode appropriately depending on
the load.

In the native host network, only one network device is
involved (the physical NIC) and a packet goes through the
network stack just once. However, the situation becomes more
complicated for virtual overlay networks such as container
overlay networks. Virtual machines (VMs) and containers
provide “virtually” isolated environments with their own inde-
pendent virtual network interfaces. The virtual interfaces and
physical interfaces within a host are connected via a software
switch such as Linux bridge or Open vSwitch [18]. These soft-
ware switches allow communication between VMs/containers
running on the same virtual network but different physical
hosts. Fig. 1 shows how various physical and virtual network
devices are typically organized to construct a container net-
work using the VXLAN overlay network.

Host

Container 1 Container 2

br
vxlan1

eno1

veth1 veth2

eth1 eth2
. . .

Fig. 1. A typical architecture of network devices (physical and virtual) in a
container overlay network.

Packets destined for one of the virtual interfaces usually
arrive at the physical interface as encapsulated packets (e.g.,
VXLAN). Let us consider the journey of an encapsulated
packet: It is first processed during the polling of the physical
interface where the packet is identified as an encapsulated
packet. The outer headers are stripped off and the inner
decapsulated packet is enqueued to the receive queue of the

1If the bottom-half is deferred to a separate CPU, e.g., by receive packet
steering (RPS) [17], then an inter-processor interrupt (IPI) is also sent.



virtual bridge. Then, another softirq is raised by adding the
bridge to the NAPI poll list (if not already). The processing
of that packet is then delayed until the virtual bridge is polled
by the softirq handler, which usually happens after a batch of
packets are polled and processed from the physical interface’s
packet queue. When it is the bridge’s turn to be polled, the
inner packet goes through the network protocol layers to
identify the destination interface, which is the virtual interface
of the container. The packet is then again enqueued to the
virtual interface receive queue and yet another softirq is raised.
Again, the packet will wait until the NAPI polling loop reaches
the virtual interface. The packet then goes through the entire
protocol stack again to process the inner headers and finally
reaches the application receive buffer. While NAPI addresses
the tradeoff between interrupt and polling and adaptively
switches the two in response to the incoming traffic load, the
batched packet processing in each NAPI poll and the queuing
delays of packets at multiple devices negatively affect packet
latency, especially for virtual networks with multiple devices
and a convoluted pipeline.

1) Batched Packet Processing: At each network device,
NAPI polling processes packets in a batch (e.g., 64 packets
by default) before moving onto the next device in the poll
list. This design amortizes the overhead to switch softirq con-
texts when changing network devices among a large number
of packets, thereby reducing the per-packet processing cost.
However, the first packet completed in a batch must wait for
the remaining packets to be processed before its processing on
the next stage can begin. For latency-sensitive applications, the
delay — which in the worst case equals to the time to process
64 packets in a batch multiplied by the number of devices
— could be significant. On the other hand, only processing
one packet under each softirq would avoid the queuing delay
but impose the softirq context switching cost to each packet.
Whether the queuing delay or the softirq switching cost plays
a more important role in the overall latency depends on the
workload.

2) Interleaved NAPI Polling: In addition to the queuing
delay due to batched packet processing, our performance
tracing and analysis found that the multi-stage polling in the
NAPI poll list can also lead to interleaved processing across
different batches. For example, a typical container network
involves three devices, i.e., the physical Ethernet interface
(eth), the virtual bridge (br), and the container’s virtual
Ethernet interface (veth). The optimal polling order for the
container overlay network should be {eth, br, veth, . . .} as
this allows one batch of packets to be fully processed through
all stages before the next batch is polled. However, the traced
NAPI poll order using eBPF [19] shows that the stages of
different batches can be interleaved and the kernel can start to
process the second batch before the first batch is delivered
to the application receive buffer (as shown in Fig. 6a and
discussed later). In particular, the third stage (veth) of the
first batch is always delayed by the first stage (eth) of the next
batch. As such, latency is further delayed by the interleaving
processing scheme across different batches.

Upon detailed code review, we found this interleaved polling
order to be the result of a scalability optimization in the
NAPI device polling design, which is illustrated in Fig. 4a
and presented as the pseudocode in Fig. 2. NAPI maintains
two poll lists for each CPU: (a) a global poll list where new
devices are added (➊), and (b) a local poll list where the actual
packet processing happens. At the beginning of each softirq,
the entire global poll list is moved to the local poll list (➋).
The softirq continuously polls the devices in the local poll list
until either the local poll list is empty or the NAPI_BUDGET
(300 packets by default) is consumed. The use of two poll
lists allows new devices to be added to the global list and
packets to be processed on the local list without any locking,
thereby improving scalability. In each iteration of the packet
processing loop (line 12-20 in Fig. 2 and illustrated in Fig. 4a),
a device is dequeued from the head of the local poll list (➌).
Once a batch of packets is processed in the current device (➍),
if it still has more packets in its receive queue, the device is
added back to the tail of the local poll list (➎) so that it will
get a chance to get processed in subsequent iterations of the
device loop.

1 // device added here when softirq raised
2 POLL_LIST := per-CPU global NAPI poll list
3 // max packets to process in one softirq
4 NAPI_BUDGET := 300
5

6 function net_rx_action():
7 poll_list := empty local list
8 move POLL_LIST to the tail of poll_list
9 // at this point, the global POLL_LIST is empty

10 processed := 0
11 while true:
12 if poll_list is empty:
13 break
14 device := poll_list.pop(index=0)
15 processed += napi_poll(device, batch_size=64)
16 if device.packet_queue is not empty:
17 POLL_LIST.append(device)
18 if processed >= NAPI_BUDGET:
19 break
20 move POLL_LIST to the tail of poll_list
21 move poll_list to the tail of POLL_LIST
22 if POLL_LIST is not empty:
23 raise_softirq()

Fig. 2. NAPI polling logic in vanilla kernel (pseudocode).

The packet processing loop is a simple queuing system,
as shown in Fig. 4b. Each device has an input packet queue
from where a batch of packets are dequeued and processed
(➊). After a packet has been processed by various protocol
layers, it is either enqueued to the user application buffer or
to the input queue of the next device (➋), which causes the
next device to be added to the global poll list (if not).

3) Backlog Queue: While most of physical NIC drivers are
fully NAPI-aware and implement their own packet queues
and poll functions, most of the virtual network devices
(e.g., the veth interface) do not have their own NAPI
implementations. The common practice is to use a generic
poll function (process_backlog) and a per-CPU backlog



queue of packets that do not belong to a specific NAPI
device. Kernel has a per-CPU backlog NAPI structure that is
responsible for handling the packets belonging to “non-NAPI-
aware” interfaces. One exception is the virtual bridge device
that uses the gro_cells driver which has its own NAPI
implementation. In our overlay network example, the first
stage (eth) is processed by the NIC driver, the second stage
(br) is processed by the gro_cells driver and the third
stage (veth) is processed by the generic backlog handler. This
will be of importance later when we explain about streamlining
NAPI polling.

B. Priority Differentiation

Another fundamental issue with the kernel network stack
is that it does not consider the performance requirements of
incoming packets of network flows. Even though the kernel
has a mechanism (e.g., tc) to prioritize the order of outgoing
packets, there is no such mechanism in the reception pipeline.
As mentioned in the previous sections, different applications
have different network performance requirements. However,
the kernel processes all incoming packets in a simple FCFS
(first come, first serve) order. This can cause head-of-line
(HoL) blocking when a latency-sensitive application (e.g.,
memcached) is running alongside a throughput-intensive ap-
plication (e.g., big data analytics or video streaming). This
problem is further exacerbated in the case of virtual overlay
networks because packets have to wait in multiple queues.

For example, Fig. 3 shows the cumulative distribution of the
latency of high-priority flows with and without low-priority
background traffic, for container overlay network flows. The
experimental setup is described in Section V-A. We can see
that compared to the idle scenario, a loaded server increases
the median overlay per-packet latency by about 400% and the
tail (99th percentile) latency by about 450%.
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Fig. 3. Latency distribution of packets in the presence and absence of
background traffic.

Our goal is to process the few and small latency-sensitive
packets (end-to-end) as quickly as possible while processing
the large throughput-sensitive packets in a best-effort manner.
Thus, we can satisfy the latency requirements of short requests
without compromising the throughput requirements of large
flows. In what follows, we will describe various ways to
prioritize high-priority packets in the Linux kernel.

C. Summary

Linux kernel network stack is designed to provide a general-
purpose packet processing mechanism with good “overall”
performance. It breaks the packet processing pipeline into
multiple stages for flexibility and uses batching to improve
the overall throughput. However, kernel network stack does
not recognize the various performance requirements of indi-
vidual network flows, and the interleaved and batched packet
processing cause significant packet processing latency. In
this work, we seek to prioritize the processing of latency-
sensitive network flows, meanwhile maintaining acceptable
performance of throughput-intensive network flows.

III. PRISM DESIGN

In this section, we describe the design of PRISM. First, we
explain our solution to the interleaved NAPI polling for virtual
overlay networks. Then, we propose a mechanism to enable
priority-based packet processing in the kernel network stack.

A. Streamlined NAPI Poll

As discussed in Section II-A2, when the packet processing
pipeline involves multiple stages or devices (e.g., in an overlay
network), the order of devices is not streamlined: The second
batch of packets gets interleaved between different stages of
the first batch, incurring significant delays. We identify the root
cause to be the synchronization delay between the global and
local poll lists and the strict tail-enqueuing of pending devices
in the poll lists. This design is primarily for scalability consid-
eration and allows the existing flow parallelization techniques
(e.g., RPS) to balance flows across multiple CPUs without the
need for locking. However, for flows with multiple stages, a
single flow could saturate a CPU, leaving little room for load
balancing but causing drastic hikes in latency. Hence, to ensure
streamlined packet processing and maintain the proper device
order, PRISM resorts to a simplified single poll list design.

PRISM’s device polling design is illustrated in Fig. 4c.
Unlike the vanilla kernel, PRISM maintains only one poll list
per CPU. This eliminates the synchronization step between the
global and local lists. New devices are added to the tail of the
poll list if the device has low-priority packets (➊), or to the
head of the poll list if the device has high-priority packets
(➋). In each iteration, the device at the head is dequeued
from the poll list (➌) and a batch of packets are processed
from its packet queue (➍). When a packet is processed in one
device and requires more processing stages, it is enqueued
to the packet queue of the next device, and the next device is
added to the head (➏) or the tail (➎) of the poll list depending
on whether the packet has high priority or low priority. The
pseudocode of this device polling logic is presented, with
changes highlighted, in Fig. 7.

PRISM’s packet processing loop, illustrated in Fig. 4d, is
slightly more complicated than the vanilla kernel. To enable
priority differentiation, in PRISM, each network device has two
input packet queues: a high-priority queue and a low-priority
queue, denoted as H and L, respectively. When the device is
polled, if the high-priority queue is empty, a batch of packets
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Fig. 5. NAPI processing sequence in Vanilla vs. PRISM.

are dequeued and processed from the low-priority queue, just
like vanilla. However, if the high-priority queue is not empty, a
batch of packets are dequeued and processed from that queue
(➊). When a high-priority packet has finished its processing in
the current device, it is enqueued to the high-priority queue of
the next stage device (➋) and that device is added (or moved)
to the head of the poll list. If in the last stage, the packet data
is copied to the application buffer. The packet processing logic
is presented using pseudocode in Fig. 7 (line 22–38).

Consider the same example as in Section II-A2. Fig. 6b
illustrates the sequence of high-priority packet processing for
container overlay networks in PRISM. We have a container
network involving three stages (network devices): eth, br,
and veth. When the packets first arrive at the NIC, the poll
list will have {eth} and the softirq handler will dequeue eth
and start processing a batch of packets from its packet queue.
Once a packet is processed in eth, the second stage (br) will
be added to the head of the poll list. Since eth will still have
more packets in its packet queue, it will also add itself to the
tail of the poll list. In the second iteration of the loop, the
poll list will have {br, eth} and the first device (br) will be
dequeued and its first batch of packets will be processed. This
will have the third stage (veth) to be added to the head of
the poll list causing it to have {veth, eth}. Now, in the next
iteration, the first item (veth) is dequeued and its first batch
of packets is processed. Now the first batch of packets have
completed processing and are delivered to the user application.
In the next iteration, the poll list will only have {eth} and
repeat the same sequence as that in the first iteration. As such,
the order of devices being polled always follows the sequence
in which packets should be processed.

Iter. Device Poll list
0 — [eth]
1 eth [br, eth]
2 br [eth, veth]
3 eth [veth]
4 veth [br, eth]
5 br [eth, veth]
6 eth [veth, br, eth]

. . . . . .

(a) Vanilla

Iter. Device Poll list
0 — [eth]
1 eth [br, eth]
2 br [veth, eth]
3 veth [eth]
4 eth [br, eth]
5 br [veth, eth]
6 veth [eth]

. . . . . .

(b) PRISM

Fig. 6. NAPI device processing order in Vanilla vs. PRISM.

B. Flow Prioritization

Section II-A1 shows how the batching mechanism acts as
a tradeoff between throughput and latency. On the one hand,
as we increase the batch size, the softirq overhead (which
is usually constant) is shared among all the packets in the
batch thereby minimizing the per-packet processing cost and
maximizing the effective use of the CPU. Moreover, batching
also helps to improve the L1 instruction cache locality and
its hit rate, further reducing per-packet processing time. On
the other hand, if the packet processing pipeline has multiple
stages of batching (e.g., in container overlay networks), each
packet has to wait until all the other packets in the batch
have been processed to advance to the next stage. This
can significantly increase the per-packet queuing delay and
hence worsening latency. Meanwhile, decreasing the batch size
reduces per-packet latency but hurts overall throughput. Our
aim in this work is to minimize the latency for high-priority
packets. PRISM devises two operation modes to strike a good
tradeoff between latency and throughput.



1 // device added here when softirq raised
2 POLL_LIST := per-CPU global NAPI poll list
3 // max num of packets to process in one softirq
4 NAPI_BUDGET := 300
5

6 function net_rx_action():
7 processed := 0
8 while true:
9 device := POLL_LIST.pop(index=0)

10 if device == NULL:
11 break
12 processed += napi_poll(device, batch_size=64)
13 if device.high_packet_queue is not empty:
14 POLL_LIST.insert(device, index=0)
15 else if device.low_packet_queue is not empty:
16 POLL_LIST.append(device)
17 if processed >= NAPI_BUDGET:
18 break
19 if POLL_LIST is not empty:
20 raise_softirq()
21

22 function napi_poll(device, batch_size):
23 processed := 0
24 if device.high_packet_queue is empty:
25 while processed < batch_size:
26 if device.low_packet_queue is empty:
27 break
28 pkt := device.low_packet_queue.dequeue()
29 process_packet(pkt)
30 processed += 1
31 else:
32 while processed < batch_size:
33 if device.high_packet_queue is empty:
34 break
35 pkt := device.high_packet_queue.dequeue()
36 process_packet(pkt)
37 processed += 1
38 return processed

Fig. 7. PRISM NAPI processing logic (pseudocode).

1) PRISM-sync: In this mode, all the stages of high-priority
packets are processed synchronously in a run-to-completion
manner within a single softirq. A packet is processed through
all the stages and delivered to the user application before
the next packet starts processing, which effectively disables
batching. This approach stems from the fact that under a
moderate to highly loaded system, a packet spends a significant
fraction of its life waiting for its turn in various packet queues.
In this mode, for high-priority flows, there is only one device
in the poll list: the first physical device (eth in our example).
The subsequent stage devices are never added to the poll list
because the packet never goes into their packet queues.2 All
the stages of its processing pipeline are executed sequentially
one after another synchronously.

This mode minimizes the time the packet lives in the kernel
network stack and delivers it to the user-level application
buffer as soon as possible. Fig. 5b illustrates the sequence
of packet processing in PRISM-sync mode. Note that even
though there are three packet processing stages, each batch
belongs to the same device, and the time to process one
packet is much smaller compared to that in vanilla Linux. This

2Even though the packet does not go to the packet queue, each stage is
processed in the same context of the respective network devices.

mode is suitable if the high-priority flows that have a stringent
requirement on latency and are tolerant of throughput loss.

2) PRISM-batch: As discussed in Section II-A1, the batch-
based NAPI polling achieves low per-packet processing cost
but involves queuing at multiple devices and asynchronous
invocation of multiple softirqs. Though batch-based packet
polling and processing is much desired (to achieve overall high
performance), it turns out to be challenging to enforce flow
prioritization in such a setting: Since we cannot use interrupts
inside a softirq context, prioritizing packets can be done by
periodically checking (or polling) for packets in the high-
priority queue of all network devices. This periodic checking
can be done in different granularity. On one extreme, this
can be done after processing each packet. However, if the
proportion of high-priority packets is low, it wastes a lot of
CPU cycles and reduces the efficiency of the system. On the
other extreme, it can be done for each device when it is polled
by the NAPI device polling loop, in which case, it is essentially
the same as low-priority packet processing. In PRISM-batch
mode, we seek a “sweet spot” between these two extremes
via batch-level preemption. PRISM-batch ensures that packets
of all priority are processed in batches. However, we make sure
that the high-priority batches are processed (through all stages)
before low-priority batches. Batch-level preemption is enabled
by: 1) allowing devices to be added to the head of the poll
list, and 2) maintaining two packet queues in each network
device and processing low-priority queues only when high-
priority queues are empty. Thus, the worst-case preemption
latency for high-priority flows equals to the processing time
of one stage of one batch of low-priority packets.

The processing sequence of our example container overlay
network in PRISM-batch mode is illustrated in Fig. 5c. Note
that even though packets are processed in batches, we make
sure that the first batch is processed completely (through all
three stages) before the next batch is fetched. The time to
process one packet is greater than PRISM-sync mode, but still
significantly less compared to that in the vanilla kernel. This
mode is suitable for improving the latency of high-priority
flows while still maintaining acceptable throughput.

IV. IMPLEMENTATION

We implemented PRISM on top of Linux kernel version
5.4 with ∼550 lines of code. Our implementation is open-
sourced.3. This section discusses the implementation details
and its limitations.

A. Packet Priority Identification

Our work focuses on the mechanism of prioritizing high-
priority packets. The policy of deciding which packets to treat
as high-priority is a matter of users’ decisions. In fact, there
are many ways to set packet priorities. One could treat small
packets/flows as high-priority packets and big ones as low-
priority. Similarly, we can set the priority based on specific
applications. For example, one can treat memcached as a high-
priority application and spark as a low-priority application.

3https://github.com/munikarmanish/prism

https://github.com/munikarmanish/prism


This would essentially translate to marking some port numbers
as high priority. In our implementation, we employ a simple-
yet-generic user-configurable priority policy. We allow users to
dynamically set IP and port pairs to mark high-priority flows at
runtime via the proc filesystem [20]. PRISM maintains a global
database of high-priority IP and port numbers that are checked
for each incoming packet to determine its priority. It also
maintains a global binary proc variable that users can use to
select either PRISM-sync or PRISM-batch mode of operation.

Network packets in the Linux kernel are represented by
a metadata structure called the socket buffer (sk_buff or
skb in short). While traversing through the network stack
processing stages, the same skb is passed through different
protocol layers and different device queues. So, to prevent
having to re-compute the priority of an skb in every stage,
we add a binary variable to the skb structure. Upon packet
reception, when the skb is allocated for the first time in
the first stage in the context of the physical device (inside
the mlx5e_napi_poll function in the case of Mellanox
ConnectX-5 EN driver), the priority of the packet is deter-
mined by comparing its IP address and port numbers against
the global high-priority database.

B. Multiple Packet Queues

The Linux kernel maintains a per-CPU global data struc-
ture called softnet_data that contains a member variable
poll_list. This is the global NAPI poll list as shown in
Fig. 4c. Network devices are represented in the Linux kernel
by the net_device data structure (or netdev in short),
which stores all the device metadata such as ifindex, name,
MAC address, etc. However, the poll_list does not hold
pointers to the netdev structures. Instead, it contains another
device-level data structure created to implement NAPI called
napi_struct, which is a per-CPU data structure that is
associated with a particular netdev. The input packet queue for
NAPI is defined in the net_device structures (for physical
devices) or some other per-CPU data structures associated
with the napi_struct structure. In this paper, we extend
these data structures to add another packet queue designated
as a high-priority queue. For example, the backlog device —
which is used as a fallback napi_struct for virtual devices
that do not have their own NAPI implementations such as for
veth — uses a packet queue called input_pkt_queue
in the per-CPU softnet_data structure. So we simply
extend the softnet_data structure by adding another
packet queue similar to input_pkt_queue. This adds one
sk_buff_head, consuming negligible 24-byte additional
kernel memory per CPU.

C. PRISM NAPI Processing

The kernel raises the NET_RX softirq for packet reception,
which is handled by the net_rx_action function. This is
the function where NAPI devices are polled from the global
poll_list. In PRISM, we modify the net_rx_action
function to implement the logic presented in Fig. 7. Specif-
ically, we remove the usage of the local poll list and make

sure we get the next device to process directly from the global
poll_list to enable batch-level preemption.

PRISM allows adding NAPI device to the head of the poll
list. This is done by the stage transition functions that are
responsible for sending packets to the input packet queue
of another device or stage, adding the device to the poll
list, and raising a softirq if needed. gro_cells_receive
and netif_rx are commonly used as stage transition func-
tions for Linux bridges and veth interfaces, respectively.
In PRISM, we modify the stage transition functions to treat
high-priority packets differently. In the PRISM-batch mode,
the stage transition functions simply move a packet to the
appropriate queue and add the device to the head or tail of
the poll list depending on the packet’s priority. In the PRISM-
sync mode, instead of enqueuing the packet, we directly call
the function responsible for processing the next stage of the
packet, e.g., netif_receive_skb.

Finally, each NAPI struct has a virtual poll function
which is responsible for processing one batch of packets.
For the backlog device, this function is process_backlog.
In PRISM, we modify these packet polling functions to give
precedence to the high-priority queue. If there are packets in
the high-priority queue, we only process one batch of high-
priority packets and return. We process the low-priority queue
only if the high-priority queue is empty when this function is
called.

D. Implementation Limitations

One limitation of our implementation lies in that it cannot
perform priority-differentiation in the first stage of in-kernel
network reception (at the physical NIC driver). It is because
the packet processing code in the physical device driver is
vendor and model-specific, i.e., every vendor’s driver pro-
cesses packets in their own way. They have their own data
structures to represent packets and packet queues to exploit
the hardware-specific optimization features, hence usually very
different from generic packet processing functions written in
the core kernel network stack. Implementing our design on
physical device drivers is not impossible: We need to capture
a packet before the skb is allocated, determine its priority, and
then process it differently. However, it would take considerable
engineering effort to decode the internals of the vendor-
specific code base and require modifying the implementation
of their network interface drivers. We leave this as a possible
future work. In contrast, in this work, we implement our design
in the core kernel stack that implements the generic drivers for
the virtual network devices (e.g., bridges and virtual Ethernet
interfaces) and evaluate how much performance improvement
we can achieve with this vendor-agnostic approach.

V. EVALUATION

In this section, we present the experimental results for
PRISM. We focus on the effectiveness of PRISM in improving
the responsiveness of high-priority flows in the presence of
low-priority background traffic. We compare our results with
the vanilla Linux kernel. We conduct the experiments within



two groups. First, we use a set of microbenchmarks to evaluate
PRISM. Further, we report the performance results of PRISM
using real-world application benchmarks.

A. Experimental Setup

The experiments were performed on two Dell PowerEdge
R640 machines each equipped with 20-core (40 hyperthreads)
Intel Xeon Silver 4114 processors (2.2 GHz), 128 GB memory.
They were directly connected (point-to-point) with Mellanox
ConnectX-5 EN 100-Gigabit Ethernet. Hyperthreading and
Turbo Boost were both enabled, and the CPU frequency
was set to the maximum. The maximum processor C-state
was set to 1 (lowest possible) to minimize the effect of
processor wakeup cycles. Both machines ran Ubuntu 18.04
with Linux kernel version 5.4. For container support, we used
Docker version 20.10.7 with the overlay mode. Docker overlay
network uses Linux’s builtin VXLAN to encapsulate container
network packets. Network optimization features such as TSO,
GRO and RSS were all enabled in all tests. In almost all
experiments, the low-priority background traffic was generated
with sockperf [21] in the UDP or TCP throughput mode and
consumed 60–70% of the available CPU time on the server
machine. In addition, all the network processing was directed
to a single core to stress test that core.

B. Microbenchmarks

1) Streamlined processing: In this test, we compared the
latency and throughput offered by Vanilla, PRISM-sync and
PRISM-batch approaches in the absence of low-priority back-
ground traffic. Fig 8 shows the per-packet latency and over-
all throughput observed in these three approaches. In these
experiments, the server was configured to dedicate one core
for packet processing and an another core for user appli-
cation (containerized sockperf UDP server). This dedicated
core was used to simulate a busy server where single core
is responsible for processing packets from multiple flows.
The client machine was used to generate a constant load
of 300 Kpps (containerized sockperf client). Compared to
the Vanilla mode, the PRISM-sync mode reduced per-packet
latency (both median and tail) by about 50%. Meanwhile, the
PRISM-batch lies in between. Sockperf measures latency from
the client application as the round-trip time divided by two.

We also compared the maximum throughput (in terms of
packet rate using small packets) supported by one packet
processing core on the server machine. In Fig. 8, the through-
put of Vanilla and PRISM-batch are close to each other
(∼400 Kpps). However, PRISM-sync mode only supports a
per-core throughput of about 300 Kpps. The reason for the
drop in throughput is because PRISM-sync mode lacks batch-
ing benefits, as described in Section III-B1 — it is equivalent
to a packet processing system with the batch size being one.

These results show a clear trade-off between latency and
throughput in a constrained system. PRISM-sync mode pro-
vides the best per-packet latency, but compromises throughput.
On the other hand, Vanilla mode provides the maximum rela-
tive throughput but the worst per-packet latency. The PRISM-
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Fig. 8. Performance comparison of Vanilla, PRISM-batch, and PRISM-sync

batch mode provides a middle-ground that can be used if the
high-priority flows can afford to compromise a little latency
for better throughput.

2) Priority differentiation: In this test, we compared the
latency of a high-priority flow when it was running concur-
rently with other low-priority background traffic. In the server
machine, the packet processing was done on a single core to
simulate different types of flows being processed concurrently.
Two containerized sockperf servers ran on separate cores, one
for low-priority background traffic and the other for high-
priority traffic. On the client machine, containerized sockperf
clients were used to generate 1) a low-priority constant back-
ground traffic of ∼300 Kpps, which consumed about 60–70%
of the receiver’s packet processing core, and 2) a high-priority
constant traffic of 1000 pps. We again compared the latency
for various modes.
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Fig. 9. Per-packet latency of high-priority container traffic in the presence of
low-priority background traffic.

In Fig. 9, the dashed black line represents the per-packet
latency of the high-priority flow in the idle case, i.e., the
requests were sent to an idle server. The solid colored lines
represent the per-packet latency of the high-priority flows in
the busy case, i.e., in the presence of a constant low-priority
background traffic. The three colors represent the different
modes of NAPI processing. From this figure, we can see that
compared to the idle case, the latency of high-priority flow
degrades significantly when it is competing with other flows
for CPU. Again, compared to Vanilla, PRISM-sync mode can
reduce both the average and tail latency by 50%. PRISM-batch
mode, on the other hand, reduces average latency better (closer



to PRISM-sync) than tail latency.
Fig. 10 shows the result of a similar experiment, but

on the host network. We can see that in this case, PRISM
cannot improve the latency of high-priority flows, compared to
Vanilla, when competing with low-priority background traffic.
This is because the host network stack does not contain any
virtual devices, and thus the host packet processing pipeline
only consists of a single stage. As explained in Section IV-D,
our prototype of PRISM cannot enable priority-based packet
processing in the physical NIC driver (i.e., the first packet
processing stage). Therefore, PRISM is most effective for
a multi-stage packet processing pipeline involving multiple
virtual devices (e.g., container overlay networks).
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Fig. 10. Per-packet latency of high-priority host traffic in the presence of
low-priority background traffic.

Moreover, Fig. 11 shows how the per-packet latency of the
foreground (high-priority) traffic is affected by increasing the
background load. The shaded regions represent the minimum
and the tail (99th percentile) latency, whereas the solid col-
ored line denote the average latency. The dashed line is the
CPU utilization of the background packet processing. As the
background load increases, the latency increases suddenly at
the beginning. This is because the load is not enough to keep
the CPU from going into power-saving mode, and more pack-
ets trigger the CPU sleep-wakeup cycle, which significantly
affects the latency. Yet, as the background load increases to
about 80–90% CPU usage, the latency decreases steadily. Once
the CPU is overloaded, the latency explodes to 1–2 ms (not
shown in the figure). We also see that PRISM’s tail latency is
close to Vanilla’s average latency, and PRISM’s average latency
is close to Vanilla’s minimum latency. Therefore, PRISM can
improve the latency in all background loads.

C. Application benchmarks

1) Memcached: We also tested the effect of low-priority
background traffic on the response times of memcached re-
quests (high-priority). Memcached is a distributed in-memory
key-value store that is widely used for caching web objects
[22]. We used the memaslap [23] benchmark as the high-
priority flow and sockperf UDP throughput traffic as the low-
priority background traffic. The result is shown in Fig. 12.
Here, for both the idle and busy server, we ran the memaslap
benchmark between the two containers. We compare the result
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Fig. 11. Effect of changing background load on high-priority latency.

between Vanilla and PRISM-sync mode. In the idle case, there
is no significant difference between Vanilla and PRISM-sync.
However, in the busy case, the throughput of memcached
drops significantly (by 80%) and the average memcached
latency increases by more than 5×. The throughput loss is
partially due to less CPU time available for memcached in the
presence of background traffic. Compared to Vanilla, PRISM
has almost 2× the throughput and the minimum, average
and tail latencies are reduced by ∼66%, ∼47% and ∼27%
respectively, similar to our microbenchmark results. In PRISM
mode, the memcached latency on a busy server is closer to
that on an idle server. The throughput, on the other hand, is
still significantly lower than the idle case.
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Fig. 12. Memcached performance in the presence of low-priority background
traffic.

2) Web Server: We evaluated the performance of web-
serving traffic (high-priority) in the presence of low-priority
background traffic. We ran the Nginx [24] server in a container
on the receiving host to serve a small static HTML file of less
than 1 KB. Meanwhile, on a different container running on the
other host, we used the wrk2 [25] HTTP benchmarking tool
with a single connection to generate high-priority web requests
and measured the performance of the web traffic. Low-priority
background traffic was generated using the sockperf TCP
throughput test with a constant rate of 20 Kpps with 64 KB
packets (which is fragmented into MTU-sized packets by the
egress kernel stack).

Fig. 13 shows latency (average and tail) and throughput
of the web traffic under various configurations. In the figure,
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a busy server implies the presence of the low-priority back-
ground traffic. When busy, compared to Vanilla, PRISM-batch
reduces both average and tail latency by ∼14%, and improves
throughput by ∼15%. Furthermore, PRISM-sync improves
latency and throughput by ∼22% and ∼25% respectively.
This throughput improvement for PRISM-sync contradicts the
microbenchmark results. We believe in this case, the network
is still dominated by low-priority background traffic which is
batched to improve the overall throughput.

VI. RELATED WORK

1) Kernel stack optimizations: The inefficiency of the in-
kernel network stack has been a well-known problem, espe-
cially in light of modern fast network cards. It is reported that
the Linux kernel network stack has latency and throughput
many times worse than raw hardware [26]. As such, many
researchers have proposed various ways to optimize different
aspects of the in-kernel network stack such as reducing data
copies [27]–[29], interrupt coalescing [30], improving cache
locality [27], [28], [31], system call batching [32], flow
steering [17] and load balancing [31].

2) OS bypass: Due to the inherent overhead of OS kernel
network stack and the challenges in kernel development, many
researchers have tried to completely or partially bypass the
kernel network stack and propose custom network stacks. One
class of work uses modern NIC capabilities and userspace
network library such as DPDK [12] to couple packet pro-
cessing directly with the userspace applications [13]–[15].
Another group of work propose unikernel-based library oper-
ating systems specifically designed for fast network processing
[33]. Moreover, hardware manufacturers have been trying
to mitigate the kernel overhead by offloading (various parts
of) network processing to hardware [34]. Recently, there
is a growing trend in the Linux networking community to
accelerate packet processing using eBPF [19] and XDP [35].

3) Container network acceleration: Recently, a number of
work has been done to specifically analyze and accelerate
container overlay networks. For example, Slim [10] tries to
bypass the overhead of extra virtual devices in container
overlay networks while still maintaining similar API to user
applications — by providing a shim library that performs
IP/port manipulation behind the scene. Similarly, FALCON

[11] accelerates a single overlay flow by pipelining the pro-
cessing stages on to different cores.

While most of the existing work has focused on the overall
network performance such as overall latency and throughput,
to the best of our knowledge, PRISM is the first study focusing
on priority differentiation in the kernel network stack, and is
orthogonal to all the existing work.

VII. DISCUSSION

1) Priority-differentiation in the driver: The end goal of
this project is to enable end-to-end priority-based packet
processing, from the NIC all the way to user-level applications.
In our proof-of-concept implementation, we have managed to
enable PRISM on the generic driver used by the virtual network
devices such as bridge and virtual Ethernet (veth) interfaces.
However, reaping the full potential of this design also requires
implementing PRISM both 1) when the packet is first received
by the physical NIC, and 2) when the packet has finished
the protocol processing and is ready to be delivered to the
user-level applications. Enabling PRISM in the physical NIC is
challenging as it requires modifying the packet queuing logic
in the vendor-specific device drivers. While this has to be done
separately for each driver, the idea should be simple enough
and be portable to almost all network drivers. We leave it as
one of our ongoing work. Due to this limitation, PRISM cannot
differentiate priority in host network.

2) Kernel-user interface: Synchronizing the kernel-user in-
terface is another challenge. Even when the packet processing
is prioritized in the kernel stack for a specific flow, the packets
may still have to wait an indefinite amount of time waiting
for the user-level applications to wake up. This wakeup time
is worse when a user application is running on a different
core as it also adds inter-processor communication (IPC)
overheads. We believe that our solution can benefit more if
user applications, just like network packets, are also prioritized
and can be preempted. This requires significant study and we
leave it as a future work.

3) Multiple priority levels: Our current design only consid-
ers the simple case of two levels of priorities based on the two
classes of network traffic: 1) high-volume throughput-intensive
flows, and 2) low-volume latency-sensitive flows. While this
classification is sufficient for many scenarios, there may be
more complex scenario where a more fine-grained priority



control is desired. We believe that it should be feasible to
extend PRISM to multiple priority levels, and we leave it as a
future study.

4) Effect on other applications: PRISM modifies the NAPI
design of the in-kernel network stack — it only changes
the order how incoming packets are processed in the kernel.
However, the total amount of packet processing work, which
depends on the total number of packets, remains unchanged.
Additionally, the packet processing logic executes under the
softirq context, which has a strictly higher priority than other
user and/or kernel threads. Therefore, as long as the CPU has
packets to be processed, whether in Vanilla or PRISM mode,
packet processing always has a higher priority — there is a
possibility of starvation for other threads that wait to run on
that CPU. That said, PRISM does not affect other applications
in a different way compared to Vanilla.

VIII. CONCLUSION

The paper has showed that the competition with throughput-
intensive background traffic negatively affects the per-packet
latency of short-lived, latency-sensitive flows. This problem
becomes more prominent for container overlay network which
involves multiple stages in its packet processing pipeline. We
have demonstrated that it is largely due to the head-of-line
blocking and the inefficient interleaved packet processing in
the kernel network stack. We have presented PRISM, a new
design to enable priority-based streamlined packet processing
for container overlay networks. PRISM not only streamlines
the interleaved packet processing pipelines, but also minimizes
the head-of-line blocking by allowing the high-priority flows
to preempt the low-priority flows. The evaluation of our
prototype on both microbenchmarks and real-world applica-
tions shows that PRISM can significantly reduce the packet
processing latency of high-priority flows by more than 50%
and increase the throughput by up to 100% in the presence of
low-priority background traffic.
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