

Computer Graphics Spring 2014 Quiz 2

NAME:

Time: 5 Minutes

NOTES:

- a. Credit is only given to the correct numerical values.
- b. All numerical values must be calculated with three digits of accuracy after the decimal point.
- c. Do not write on the back side of the papers.
- 1. The viewing parameters for a perspective projection are given as $VRP(WC)=(0,0,0) VPN(WC)=(0,0,1) VPN(WC)=(0,0,1) PRP (VRC)=(4,7,10) u_{min} (VRC) = 6 u_{max} (VRC) = 11 v_{min} (VRC) = -3 v_{max} (VRC) = 5 n_{min} (VRC) = 12 n_{max} (VRC) = 20$

Given all other transformations, find the **shear** matrix which will transform this viewing volume into a standard perspective view volume which is bounded by the planes: x=z : x=-z : y=-z : z=1

planes: $x=z$; $x=-z$; $y=z$; $y=-z$;					
Matrix #2: Rx					
1	0	0	0		
0	1	0	0		
0	0	1	0		
0	0	0	1		
Matrix #4: Rz					
1	0	0	0		
0	1	0	0		
0	0	1	0		
0	0	0	1		
Matrix #6: Shear					
<mark>1</mark>	<mark>0</mark>	<mark>0.45</mark>	<mark>0</mark>		
<mark>0</mark>	<mark>1</mark>	<mark>-0.6</mark>	<mark>0</mark>		
<mark>0</mark>	0	1	<mark>0</mark>		
<mark>0</mark>	<mark>0</mark>	<mark>0</mark>	1		
Matrix #8: Scale					
0.1	0	0	0		
0	0.1	0	0		
0	0	0.1	0		
0	0	0	1		

Matrix #1: Translate					
1	0	0	0		
0	1	0	0		
0	0	1	0		
0	0	0	1		
Matrix #3: Ry					
1	0	0	0		
0	1	0	0		
0	0	1	0		
0	0	0	1		
Matrix #5: Translate					
1	0	0	-4		
0	1	0	-7		
0	0	1	-10		
0	0	0	1		
Matrix #7: Scale					
4.0	0	0	0		
0	2.5	0	0		
0	0	1	0		
0	0	0	1		

