Assuming a right-handed 3-d coordinate system, solve the following problems. The viewing parameters for a perspective projection are given as

VRP(WC)=(1,5,7)	VPN(WC)=(2,5,8)
VUP(WC)=(3,-2,6)	PRP (VRC)=(-2,4,-20)
u_{\min} (VRC) = 10	u_{max} (VRC) = 18
v_{min} (VRC) = -10	v_{max} (VRC) = -2
$n_{\min}(VRC) = -5$	$n_{\max} (VRC) = 80$

Find the sequence of transformations which will transform this viewing volume into a standard perspective view volume which is bounded by the planes: x=z; x=-z; y=z; z=1; z=zmin

a. Find the sequence of matrices

b. Find the **zmin** after all transformations are done.

Matrix #2: Rx	Matrix #1: Translate
Matrix #4: Rz	Matrix #3: Ry
Matrix #6: Shear	Matrix #5: Translate
Scale2	Scale1

Zmin =

Point A(-5, 50) is given in a two dimensional world coordinate system. Find the coordinates of the point A on the screen after it is mapped from window to viewport.

 $x_{wmin} = -10$ $y_{wmin} = 20$ $x_{wmax} = -2$ $y_{wmax} = 120$

Normalized device coordinate of the viewport:

 $x_{vmin} = 0.2$ $y_{vmin} = 0.25$ $x_{vmax} = 0.6$ $y_{vmax} = 0.8$

The origin of the screen coordinate system is defined in the **upper left** corner of the screen and the screen resolution is 800 by 600.

Use rounding to convert from float to integer.

Find the parametric equation of a line in a 3-dimensional Cartesian coordinate system which is passing through points A(2, 5, -4) and point B(-3, 10, 1)

Given points A(9.8, -6.9, 6.2) and B(-10.2, 7.1, -5.8)

Clip line AB against the standard perspective volume. Assume $z_{\text{min}}\,{=}\,0.2$

Clip line AB against the standard parallel volume (Unit cube).

Equation of line AB

The viewing parameters for a parallel projection are given as:

VRP(WC)=(2,5,1) VUP(WC)=(5,9,2)	VPN(WC)=(8,6,10) PRP (VRC)=(3,6,-10)
$u_{\min}^{}(VRC) = -8$	u_{max} (VRC) = -3
v_{min} (VRC) = -2	v_{max} (VRC) = 8
$n_{\min}(VRC) = 2$	$n_{\max} (VRC) = 12$

Find the sequence of transformations which will transform this viewing volume into a unit cube which is bounded by the planes: x=0; x=1; y=0; y=1; z=0; z=1

Matrix #2: Rx	Matrix #1: Translate
Matrix #4: Rz	Matrix #3: Ry
Matrix #6: Translate	Matrix #5: Shear
	Matrix #7: Scale