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NAME:   

Prob # 1 2 3 4 5 6 
Points 11 12 10 22 21 24 
       

Time:  80 Minutes  
 
NOTES:   
a. Credit is only given to the correct numerical values. 
b. All numerical values must be calculated with three digits of 

accuracy after the decimal point.  
c. Do not write on the back side of the papers.  

 
1. Given two pints A(6,8,3) and B(16,2,11), find the sequence of transformations to 

bring the point A to the origin and make point B to be on the z axis.  
 

 Matrix #2: Rx (4 points) Matrix #1: Translate  (3 points) 
1 0 0 0  1 0 0 -6 
0 0.8 0.6 0  0 1 0 -8 
0 -0.6 0.8 0  0 0 1 -3 
0 0 0 1  0 0 0 1 

 Matrix #4:  Matrix #3: Ry  (4 points) 
     0.707 0 -0.707 0 
     0 1 0 0 
     0.707 0 0.707 0 
     0 0 0 1 
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2. Consider a parametric quadratic curve in 3-dimensional space.  

This curve @t=0  is passing through point )6,4,2(0 p
 

 The derivative of the curve @ t=0  is  
dt

dp0 =(1,3,7)  

 and the derivative of this curve @t=1  is 
dt

dp0 =(3, 4, 1) 

 
Find the coordinates of this curve @ t=0.5 
 
 
 
 

The coordinates of the curve @ t=0.5  is   5.0p 2.75,5.625,8.75 

 

ቐ

ሻ࢚ሺ࢞ ൌ ࢚૚ࢇ
૛ ൅ ࢚૚࢈ ൅ ૚ࢉ

ሻ࢚ሺ࢟ ൌ ࢚૛ࢇ
૛ ൅ ࢚૛࢈ ൅ ૛ࢉ

ሻ࢚ሺࢠ ൌ ࢚૜ࢇ
૛ ൅ ࢚૜࢈ ൅ ૜ࢉ

 

@t=0, ቐ
ሺ૙ሻ࢞ ൌ ૛
ሺ૙ሻ࢟ ൌ ૝

ሺ૙ሻࢠ ൌ ૟

    => ൝
૚ࢉ ൌ ૛
૛ࢉ ൌ ૝
૜ࢉ ൌ ૟

 (2 points) 

@t=0, ቐ
ᇱሺ૙ሻ࢞ ൌ ૚
ᇱሺ૙ሻ࢟ ൌ ૜

ᇱሺ૙ሻࢠ ൌ ૠ

    => ൝
૚࢈ ൌ ૚
૛࢈ ൌ ૜
૜࢈ ൌ ૠ

 (2 points) 

 @t=1, ቐ
ᇱሺ૚ሻ࢞ ൌ ૛ ∗ ૚ࢇ ൅ ૚࢈ ൌ ૛ ∗ ૚ࢇ ൅ ૚ ൌ ૜

ᇱሺ૚ሻ࢟ ൌ ૛ ∗ ૛ࢇ ൅ ૛࢈ ൌ ૛ ∗ ૛ࢇ ൅ ૜ ൌ ૝

ᇱሺ૚ሻࢠ ൌ ૛ ∗ ૜ࢇ ൅ ૜࢈ ൌ ૛ ∗ ૜ࢇ ൅ ૠ ൌ ૚

    => ൝
૚ࢇ ൌ ૚
૛ࢇ ൌ ૙. ૞
૜ࢇ ൌ െ૜

 (4 points) 

 @t=0.5, ቐ
.ሺ૙࢞ ૞ሻ ൌ ૛. ૠ૞
.ሺ૙࢟ ૞ሻ ൌ ૞. ૟૛૞

.ሺ૙ࢠ ૞ሻ ൌ ૡ. ૠ૞

   (3 points) 
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3. Point A(-10, 5) is given in a two dimensional world coordinate system. Find the 
coordinates of the point A on the screen after it is mapped from window to 
viewport. 
xwmin =  -15 ywmin = 1  xwmax = 6 ywmax =  9 

 
 Normalized device coordinate of the viewport: 

xvmin = 0.1 yvmin = 0.25 xvmax = 0.6 yvmax = 0.8 

 
 The origin of the screen coordinate system is defined in the upper left corner of 

the screen and the screen resolution is 1920 by 1080.   
Use rounding to convert from float to integer. 

 

࢞ࡿ ൌ
૙. ૟ െ ૙. ૚

૟ െ ሺെ૚૞ሻ
ൌ ૙. ૙૛૜ૡ 

 ࢞࡭ ൌ ൣ૙. ૚ ൅ ૙. ૙૛૜ૡ൫െ૚૙ െ ሺെ૚૞ሻ൯൧ ൈ ૚ૢ૛૙ ൌ ૝૛૙. ૝ૡ~૝૛૙ 
 

࢟ࡿ ൌ
૙. ૡ െ ૙. ૛૞

ૢ െ ૚
ൌ ૙. ૙૟ૡૠ 

 ࢟࡭ ൌ ሾ૙. ૛૞ ൅ ૙. ૙૟ૡૠሺૢ െ ૞ሻሿ ൈ ૚૙ૡ૙ ൌ ૞૟૟. ૠૡ૝~૞૟૟ 
 
 
(6 points) 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

 
 

Screen coordinates of point A after mapping are: (420, 566) (4 points) 
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4. The viewing parameters for a perspective projection are given as 

VRP(WC)=(2,3,5) VPN(WC)=( 0, 0,4)  
VUP(WC)=(0,2,0) PRP (VRC)=(10,8,5) 

 
 umin (VRC) =  3 umax (VRC) =  5  

 vmin (VRC) = 38 vmax (VRC) = 42   

 nmin (VRC) = 8 nmax (VRC) =  9 

 Find the sequence of transformations which will transform this viewing volume into 
a standard perspective view volume which is bounded by the planes:  x=z ; x=-z ; 
y=z ; y=-z ; z=1 ; z=zmin 

 
a. Find the Shear matrix (Matrix #6) 
b. Find the scale matrices (Matrix #7 and Matrix #8). 
c. Find the zmin after all transformations are done. 

 
 Matrix #2: Rx Matrix #1: Translate 

1 0 0 0  1 0 0 -2 
0 1 0 0  0 1 0 -3 
0 0 1 0  0 0 1 -5 
0 0 0 1  0 0 0 1 

 Matrix #4: Rz Matrix #3: Ry 
1 0 0 0  1 0 0 0 
0 1 0 0  0 1 0 0 
0 0 1 0  0 0 1 0 
0 0 0 1  0 0 0 1 

 Matrix #6: Shear (8 points) Matrix #5: Translate 

1 0 -1.2 0  1 0 0 -10 
0 1 6.4 0  0 1 0 -8 
0 0 1 0  0 0 1 -5 
0 0 0 1  0 0 0 1 

 Scale2 (6 points) Scale1 (4 points) 

0.25 0 0 0  5 0 0 0 
0 0.25 0 0  0 2.5 0 0 
0 0 0.25 0  0 0 1 0 
0 0 0 1  0 0 0 1 

 
 

Zmin= 0.750 (4 points)  
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5. Clip line AB      A(10.2 , 4.6 ,  -7.4) ,  B(-9.8 , -3.4 , 8.6) against the three 
planes x=z  ;  y=z  ; and ; z=1  in the standard perspective viewing volume with 

zmin=0.1 
 

Note: You do not need to clip against the other three planes in the standard volume. 
You must specify your reason for accept or rejecting an intersection point. 

 
 
 
 
 
 
 
 
 

 
 

Plane t Intersection point (x,y,z) 
Accept 

or 
Reject 

Reason to accept or reject 

x = z 0.489 (0.422, 0.689, 0.422) R |y|>z 

y = z 0.5 (0.2, 0.6, 0.6) A |x|<z 

z=1 0.525 (-0.3, 0.4, 1) A 
|x|<z 
|y|<z 

(9 points) (6 points) 

  

Equation of line AB 

ቐ

ሻ࢚ሺ࢞ ൌ െ૛૙࢚ ൅ ૚૙. ૛
ሻ࢚ሺ࢟ ൌ െૡ࢚ ൅ ૝. ૟

ሻ࢚ሺࢠ ൌ ૚૟࢚ െ ૠ. ૝

 (6 points) 
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6. Consider the following OpenGL program: 

1:  from OpenGL.GL import *      
2:  from OpenGL.GLU import *     
3:  from OpenGL.GLUT import * 
4:  def display(): 
5:   glClear(GL_COLOR_BUFFER_BIT) 
6:   glBegin(GL_TRIANGLES) 
7:   glColor3f(1,1,1) 
8:   glVertex3f(-1,0,0) 
9:   glVertex3f(1,0,0) 

10:   glVertex3f(0,1,0) 
11:   glEnd() 
12:   glFlush() 
13:   glutSwapBuffers() 
14:  glutInit(sys.argv) 
15:  glutInitDisplayMode(GLUT_DOUBLE|GLUT_RGB) 
16:  glutCreateWindow(b"PyOpenGL Demo") 
17:  glutDisplayFunc(display) 
18:  glMatrixMode(GL_PROJECTION) 
19:  glLoadIdentity() 
20:  glFrustum(-1,1,-1,1,1,30) 
21:  gluLookAt(0,0,3,0,0,0,0,1,0) 
22:  glMatrixMode(GL_MODELVIEW) 
23:  glLoadIdentity() 
24:  glutMainLoop()  

 
 

 
Which displays the following: 
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a. If the code in line 21 is replaced with: (4 points) 
gluLookAt(0.0, 0.0, 2.0,  0.0,  0.0,  0.0,  0.0,  1.0,  0.0) 
What happens to the image on the screen? (all other lines stay the same). 

□ The size of the image of the object on the screen get larger 
□ The size of the image of the object on the screen get smaller 
□ The image of the object on the screen moves to the right 
□ The image of the object on the screen moves to the left 
□ The image of the object on the screen rotate clockwise 
□ The image of the object on the screen rotate counter-clockwise 
□ Nothing changes 
 

b. If the code in line 21 is replaced with: (4 points) 
gluLookAt(0.0, 0.0, 3.0,  1.0,  0.0,  0.0,  0.0,  1.0,  0.0) 
What happens to the image on the screen? (all other lines stay the same). 

□ The size of the image of the object on the screen get larger 
□ The size of the image of the object on the screen get smaller 
□ The image of the object on the screen moves to the right 
□ The image of the object on the screen moves to the left 
□ The image of the object on the screen rotate clockwise 
□ The image of the object on the screen rotate counter-clockwise 
□ Nothing changes 
 

c. If the code in line 21 is replaced with: (4 points) 
gluLookAt(0.0, 0.0, 3.0,  0.0,  0.0,  0.0,  1.0,  1.0,  0.0) 
What happens to the image on the screen? (all other lines stay the same). 

□ The size of the image of the object on the screen get larger 
□ The size of the image of the object on the screen get smaller 
□ The image of the object on the screen moves to the right 
□ The image of the object on the screen moves to the left 
□ The image of the object on the screen rotate clockwise 
□ The image of the object on the screen rotate counter-clockwise 
□ Nothing changes 
 

d. If the code in line 20 is replaced with: (4 points) 
glFrustum(-2,0,-1,1,1,30) 
What happens to the image on the screen? (all other lines stay the same). 

□ The size of the image of the object on the screen get larger 
□ The size of the image of the object on the screen get smaller 
□ The image of the object on the screen moves to the right 
□ The image of the object on the screen moves to the left 
□ The image of the object on the screen rotate clockwise 
□ The image of the object on the screen rotate counter-clockwise 
□ Nothing changes 
 

e. If the code in line 20 is replaced with: (4 points) 
glFrustum(-2,2,-2,2,1,30) 
What happens to the image on the screen? (all other lines stay the same). 

□ The size of the image of the object on the screen get larger 
□ The size of the image of the object on the screen get smaller 
□ The image of the object on the screen moves to the right 
□ The image of the object on the screen moves to the left 
□ The image of the object on the screen rotate clockwise 
□ The image of the object on the screen rotate counter-clockwise 
□ Nothing changes 
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f. If the code in line 20 is replaced with: (4 points) 

glFrustum(-1,1,-1,1,1,10) 
What happens to the image on the screen? (all other lines stay the same). 

□ The size of the image of the object on the screen get larger 
□ The size of the image of the object on the screen get smaller 
□ The image of the object on the screen moves to the right 
□ The image of the object on the screen moves to the left 
□ The image of the object on the screen rotate clockwise 
□ The image of the object on the screen rotate counter-clockwise 
□ Nothing changes 
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Rotate a vector around x axis until it lies in the xz plane 
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Rotate a vector around y axis until it lies in the yz plane 
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Rotate a vector around z axis until it lies in the yz plane 
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How to convert a general perspective view volume into canonical perspective volume 
Step 1: Translate VRP to origin 
Step 2: Rotate VPN around x until it lies in the xz plane with positive z 
Step 3: Rotate VPN around y until it aligns with the positive z axis. 
Step 4: Rotate VUP around z until it lies in the yz plane with positive y 
Step 5: Translate PRP (COP) to the origin 
Step 6: Shear such that the center line of the view volume becomes the z axis  
Step 7: Scale such that the sides of the view volume become 45 degrees 
Step 8: Scale such that the view volume becomes the canonical perspective volume 

 


