

Computer Graphics
Spring 2015 Midterm

Page 1 of 9

NAME:

Prob # 1 2 3 4 5 6
Points 11 12 10 22 21 24

Time: 80 Minutes

NOTES:
a. Credit is only given to the correct numerical values.
b. All numerical values must be calculated with three digits of

accuracy after the decimal point.
c. Do not write on the back side of the papers.

1. Given two pints A(6,8,3) and B(16,2,11), find the sequence of transformations to

bring the point A to the origin and make point B to be on the z axis.

 Matrix #2: Rx (4 points) Matrix #1: Translate (3 points)
1 0 0 0 1 0 0 -6
0 0.8 0.6 0 0 1 0 -8
0 -0.6 0.8 0 0 0 1 -3
0 0 0 1 0 0 0 1

 Matrix #4: Matrix #3: Ry (4 points)
 0.707 0 -0.707 0
 0 1 0 0
 0.707 0 0.707 0
 0 0 0 1

Computer Graphics
Spring 2015 Midterm

Page 2 of 9

2. Consider a parametric quadratic curve in 3-dimensional space.

This curve @t=0 is passing through point)6,4,2(0 p

 The derivative of the curve @ t=0 is
dt

dp0 =(1,3,7)

 and the derivative of this curve @t=1 is
dt

dp0 =(3, 4, 1)

Find the coordinates of this curve @ t=0.5

The coordinates of the curve @ t=0.5 is 5.0p 2.75,5.625,8.75

ቐ

ሻ࢚ሺ࢞ ൌ ࢚૚ࢇ
૛ ൅ ࢚૚࢈ ൅ ૚ࢉ

ሻ࢚ሺ࢟ ൌ ࢚૛ࢇ
૛ ൅ ࢚૛࢈ ൅ ૛ࢉ

ሻ࢚ሺࢠ ൌ ࢚૜ࢇ
૛ ൅ ࢚૜࢈ ൅ ૜ࢉ

@t=0, ቐ
ሺ૙ሻ࢞ ൌ ૛
ሺ૙ሻ࢟ ൌ ૝

ሺ૙ሻࢠ ൌ ૟

 => ൝
૚ࢉ ൌ ૛
૛ࢉ ൌ ૝
૜ࢉ ൌ ૟

 (2 points)

@t=0, ቐ
ᇱሺ૙ሻ࢞ ൌ ૚
ᇱሺ૙ሻ࢟ ൌ ૜

ᇱሺ૙ሻࢠ ൌ ૠ

 => ൝
૚࢈ ൌ ૚
૛࢈ ൌ ૜
૜࢈ ൌ ૠ

 (2 points)

 @t=1, ቐ
ᇱሺ૚ሻ࢞ ൌ ૛ ∗ ૚ࢇ ൅ ૚࢈ ൌ ૛ ∗ ૚ࢇ ൅ ૚ ൌ ૜

ᇱሺ૚ሻ࢟ ൌ ૛ ∗ ૛ࢇ ൅ ૛࢈ ൌ ૛ ∗ ૛ࢇ ൅ ૜ ൌ ૝

ᇱሺ૚ሻࢠ ൌ ૛ ∗ ૜ࢇ ൅ ૜࢈ ൌ ૛ ∗ ૜ࢇ ൅ ૠ ൌ ૚

 => ൝
૚ࢇ ൌ ૚
૛ࢇ ൌ ૙. ૞
૜ࢇ ൌ െ૜

 (4 points)

 @t=0.5, ቐ
.ሺ૙࢞ ૞ሻ ൌ ૛. ૠ૞
.ሺ૙࢟ ૞ሻ ൌ ૞. ૟૛૞

.ሺ૙ࢠ ૞ሻ ൌ ૡ. ૠ૞

 (3 points)

Computer Graphics
Spring 2015 Midterm

Page 3 of 9

3. Point A(-10, 5) is given in a two dimensional world coordinate system. Find the
coordinates of the point A on the screen after it is mapped from window to
viewport.
xwmin = -15 ywmin = 1 xwmax = 6 ywmax = 9

 Normalized device coordinate of the viewport:

xvmin = 0.1 yvmin = 0.25 xvmax = 0.6 yvmax = 0.8

 The origin of the screen coordinate system is defined in the upper left corner of

the screen and the screen resolution is 1920 by 1080.
Use rounding to convert from float to integer.

࢞ࡿ ൌ
૙. ૟ െ ૙. ૚

૟ െ ሺെ૚૞ሻ
ൌ ૙. ૙૛૜ૡ

 ࢞࡭ ൌ ൣ૙. ૚ ൅ ૙. ૙૛૜ૡ൫െ૚૙ െ ሺെ૚૞ሻ൯൧ ൈ ૚ૢ૛૙ ൌ ૝૛૙. ૝ૡ~૝૛૙

࢟ࡿ ൌ
૙. ૡ െ ૙. ૛૞

ૢ െ ૚
ൌ ૙. ૙૟ૡૠ

 ࢟࡭ ൌ ሾ૙. ૛૞ ൅ ૙. ૙૟ૡૠሺૢ െ ૞ሻሿ ൈ ૚૙ૡ૙ ൌ ૞૟૟. ૠૡ૝~૞૟૟

(6 points)

Screen coordinates of point A after mapping are: (420, 566) (4 points)

Computer Graphics
Spring 2015 Midterm

Page 4 of 9

4. The viewing parameters for a perspective projection are given as

VRP(WC)=(2,3,5) VPN(WC)=(0, 0,4)
VUP(WC)=(0,2,0) PRP (VRC)=(10,8,5)

 umin (VRC) = 3 umax (VRC) = 5

 vmin (VRC) = 38 vmax (VRC) = 42

 nmin (VRC) = 8 nmax (VRC) = 9

 Find the sequence of transformations which will transform this viewing volume into
a standard perspective view volume which is bounded by the planes: x=z ; x=-z ;
y=z ; y=-z ; z=1 ; z=zmin

a. Find the Shear matrix (Matrix #6)
b. Find the scale matrices (Matrix #7 and Matrix #8).
c. Find the zmin after all transformations are done.

 Matrix #2: Rx Matrix #1: Translate

1 0 0 0 1 0 0 -2
0 1 0 0 0 1 0 -3
0 0 1 0 0 0 1 -5
0 0 0 1 0 0 0 1

 Matrix #4: Rz Matrix #3: Ry
1 0 0 0 1 0 0 0
0 1 0 0 0 1 0 0
0 0 1 0 0 0 1 0
0 0 0 1 0 0 0 1

 Matrix #6: Shear (8 points) Matrix #5: Translate

1 0 -1.2 0 1 0 0 -10
0 1 6.4 0 0 1 0 -8
0 0 1 0 0 0 1 -5
0 0 0 1 0 0 0 1

 Scale2 (6 points) Scale1 (4 points)

0.25 0 0 0 5 0 0 0
0 0.25 0 0 0 2.5 0 0
0 0 0.25 0 0 0 1 0
0 0 0 1 0 0 0 1

Zmin= 0.750 (4 points)

Computer Graphics
Spring 2015 Midterm

Page 5 of 9

5. Clip line AB A(10.2 , 4.6 , -7.4) , B(-9.8 , -3.4 , 8.6) against the three
planes x=z ; y=z ; and ; z=1 in the standard perspective viewing volume with

zmin=0.1

Note: You do not need to clip against the other three planes in the standard volume.
You must specify your reason for accept or rejecting an intersection point.

Plane t Intersection point (x,y,z)
Accept

or
Reject

Reason to accept or reject

x = z 0.489 (0.422, 0.689, 0.422) R |y|>z

y = z 0.5 (0.2, 0.6, 0.6) A |x|<z

z=1 0.525 (-0.3, 0.4, 1) A
|x|<z
|y|<z

(9 points) (6 points)

Equation of line AB

ቐ

ሻ࢚ሺ࢞ ൌ െ૛૙࢚ ൅ ૚૙. ૛
ሻ࢚ሺ࢟ ൌ െૡ࢚ ൅ ૝. ૟

ሻ࢚ሺࢠ ൌ ૚૟࢚ െ ૠ. ૝

 (6 points)

Computer Graphics
Spring 2015 Midterm

Page 6 of 9

6. Consider the following OpenGL program:

1: from OpenGL.GL import *
2: from OpenGL.GLU import *
3: from OpenGL.GLUT import *
4: def display():
5: glClear(GL_COLOR_BUFFER_BIT)
6: glBegin(GL_TRIANGLES)
7: glColor3f(1,1,1)
8: glVertex3f(-1,0,0)
9: glVertex3f(1,0,0)

10: glVertex3f(0,1,0)
11: glEnd()
12: glFlush()
13: glutSwapBuffers()
14: glutInit(sys.argv)
15: glutInitDisplayMode(GLUT_DOUBLE|GLUT_RGB)
16: glutCreateWindow(b"PyOpenGL Demo")
17: glutDisplayFunc(display)
18: glMatrixMode(GL_PROJECTION)
19: glLoadIdentity()
20: glFrustum(-1,1,-1,1,1,30)
21: gluLookAt(0,0,3,0,0,0,0,1,0)
22: glMatrixMode(GL_MODELVIEW)
23: glLoadIdentity()
24: glutMainLoop()

Which displays the following:

Computer Graphics
Spring 2015 Midterm

Page 7 of 9

a. If the code in line 21 is replaced with: (4 points)
gluLookAt(0.0, 0.0, 2.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0)
What happens to the image on the screen? (all other lines stay the same).

□ The size of the image of the object on the screen get larger
□ The size of the image of the object on the screen get smaller
□ The image of the object on the screen moves to the right
□ The image of the object on the screen moves to the left
□ The image of the object on the screen rotate clockwise
□ The image of the object on the screen rotate counter-clockwise
□ Nothing changes

b. If the code in line 21 is replaced with: (4 points)
gluLookAt(0.0, 0.0, 3.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0)
What happens to the image on the screen? (all other lines stay the same).

□ The size of the image of the object on the screen get larger
□ The size of the image of the object on the screen get smaller
□ The image of the object on the screen moves to the right
□ The image of the object on the screen moves to the left
□ The image of the object on the screen rotate clockwise
□ The image of the object on the screen rotate counter-clockwise
□ Nothing changes

c. If the code in line 21 is replaced with: (4 points)
gluLookAt(0.0, 0.0, 3.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0)
What happens to the image on the screen? (all other lines stay the same).

□ The size of the image of the object on the screen get larger
□ The size of the image of the object on the screen get smaller
□ The image of the object on the screen moves to the right
□ The image of the object on the screen moves to the left
□ The image of the object on the screen rotate clockwise
□ The image of the object on the screen rotate counter-clockwise
□ Nothing changes

d. If the code in line 20 is replaced with: (4 points)
glFrustum(-2,0,-1,1,1,30)
What happens to the image on the screen? (all other lines stay the same).

□ The size of the image of the object on the screen get larger
□ The size of the image of the object on the screen get smaller
□ The image of the object on the screen moves to the right
□ The image of the object on the screen moves to the left
□ The image of the object on the screen rotate clockwise
□ The image of the object on the screen rotate counter-clockwise
□ Nothing changes

e. If the code in line 20 is replaced with: (4 points)
glFrustum(-2,2,-2,2,1,30)
What happens to the image on the screen? (all other lines stay the same).

□ The size of the image of the object on the screen get larger
□ The size of the image of the object on the screen get smaller
□ The image of the object on the screen moves to the right
□ The image of the object on the screen moves to the left
□ The image of the object on the screen rotate clockwise
□ The image of the object on the screen rotate counter-clockwise
□ Nothing changes

Computer Graphics
Spring 2015 Midterm

Page 8 of 9

f. If the code in line 20 is replaced with: (4 points)

glFrustum(-1,1,-1,1,1,10)
What happens to the image on the screen? (all other lines stay the same).

□ The size of the image of the object on the screen get larger
□ The size of the image of the object on the screen get smaller
□ The image of the object on the screen moves to the right
□ The image of the object on the screen moves to the left
□ The image of the object on the screen rotate clockwise
□ The image of the object on the screen rotate counter-clockwise
□ Nothing changes

Computer Graphics
Spring 2015 Midterm

Page 9 of 9

















 



1000

0100

00cossin

00sincos

)(



zR






















1000

0cos0sin

0010

0sin0cos

)(




yR






















1000

0cossin0

0sincos0

0001

)(



xR

ு௘௥௠௜௧௘ܯ ൌ ൦

2 െ3 0 1
െ2 3 0 0
1 െ2 1 0
1 െ1 0 0

൪											ܯ஻௘௭௜௘௥ ൌ ൦

െ1 3 െ3 1
3 െ6 3 0
െ3 3 0 0
1 0 0 0

൪

Rotate a vector around x axis until it lies in the xz plane





















1

c

b

a

V































1000

00

00

0001

2222

2222

cb

c

cb

b
cb

b

cb

c

Rx

Rotate a vector around y axis until it lies in the yz plane





















1

c

b

a

V
































1000

00

0010

00

2222

2222

ca

c

ca

a

ca

a

ca

c

Ry

Rotate a vector around z axis until it lies in the yz plane





















1

c

b

a

V



































1000

0100

00

00

2222

2222

ba

b

ba

a
ba

a

ba

b

Rz

How to convert a general perspective view volume into canonical perspective volume
Step 1: Translate VRP to origin
Step 2: Rotate VPN around x until it lies in the xz plane with positive z
Step 3: Rotate VPN around y until it aligns with the positive z axis.
Step 4: Rotate VUP around z until it lies in the yz plane with positive y
Step 5: Translate PRP (COP) to the origin
Step 6: Shear such that the center line of the view volume becomes the z axis
Step 7: Scale such that the sides of the view volume become 45 degrees
Step 8: Scale such that the view volume becomes the canonical perspective volume

