lllumination and Shading

algorithms may perform extra work when modeling diffuse phenomena that
change little over large areas of an image or between images made from different
viewpoints. On the other hand, view-independent algorithms model diffuse phe-
nomena efficiently but require overwhelming amounts of storage to capture
enough information about specular phenomena.

Ultimately, all these approaches attempt to solve what Kajiya [KAJI86] has
referred to as the rendering equation, which expresses the light being transferred
from one point to another in terms of the intensity of the light emitted from the first
point to the second and the intensity of light emitted from all other points that
reaches the first and is reflected from the first to the second. The light transferred
from each of these other points to the first is, in turn, expressed recursively by the
rendering equation. Kajiya presents the rendering equation as

I(x, x/) — g(x’x/) l:e(x’x/) _’_/’p(x’x/’x//) I(x/,x”)dx//:,’ (14.31)
N

where x, x’, and x”are points in the environment; I(x, x’) is related to the intensity
passing from x” to x; g(x, x’) is a geometry term that is O when x and x’ are occluded
from each other, and 1/ > when they are visible to each other, where 7 is the dis-
tance between them; and e(x, x") is related to the intensity of light that is emitted
from x” to x. The initial evaluation of 8(x, x)e(x, x’) for x at the viewpoint accom-
plishes visible-surface determination in the sphere about x. The integral is over all
points on all surfaces S. p(x, x’, x”) is related to the intensity of the light reflected
(including both specular and diffuse reflection) from x” to x from the surface at x”".
Thus, the rendering equation states that the light from x” that reaches x consists of
light emitted by x” itself and light scattered by x’ to x from all other surfaces, which
themselves emit light and recursively scatter light from other surfaces.

As we shall see, how successful an approach is at solving the rendering equa-
tion depends in large part on how it handles the remaining terms and the recursion,
on what combinations of diffuse and specular reflectivity it supports, and on how
well the visibility relationships between surfaces are modeled.

14.7 RECURSIVE RAY TRACING

In this section, we extend the basic ray-tracing algorithm of Section 13.4 to handle
shadows, reflection, and refraction. This simple algorithm determined the color of
a pixel at the closest intersection of an eye ray with an object, by using any of the
illumination models described previously. To calculate shadows, we fire an addi-
tional ray from the point of intersection to each of the light sources. This is shown
for a single light source in Fig.14.33, which is reproduced from a paper by Appel
[APPE68]—the first paper published on ray tracing for computer graphics. If one
of these shadow rays intersects any object along the way, then the object is in
shadow at that point and the shading algorithm ignores the contribution of the
shadow ray’s light source.

Recursive Ray Tracing

OBSERVER

LINE OF SIGHT
TO P,

DARK SHADED
REGION

PICTURE.

SHADOW
BOUNDARY

Pyp DOES NOT

- CORRESPOND TO
P, ANY POINT ON
THE OBJECT

Figure 14.33 Determining whether a point on an object is in shadow. (Courtesy of Arthur Appel, IBM T.J
; ; J.

Watson Research Cente).

The illumination model developed by Whitted [WHITS80] and Kay [KAY79a]
fundamentally extended ray tracing to include specular reflection and refractive
transparency. Color Plate 41 is an early picture generated with these effects. In
addition to shadow rays, Whitted’s recursive ray-tracing algorithm conditionally
spawns reflection rays and refraction rays from the point of intersection, as
shown in Fig. 14.34. The shadow, reflection, and refraction rays are often called
sec'ondary rays, to distinguish them from the primary rays from the eye. If the
object is specularly reﬂecti_ve, then a reflection ray is reflected about the surface

Surface normal in the direction of R

Figure 14.34

Reflection, refraction, and
shadow rays are spawned
from a point of intersection.

ented to those in these sections.)

Each of these reflection and refraction rays may, in turn, recursively spawn
shadow, reflection, and refraction rays, as shown in Fig. 14.35. The rays thus form
a ray tree, such as that of Fig. 14.36. In Whitted’s algorithm, a branch is termi-
nated if the reflected and refracted rays fail to intersect an object, if some user-
§peciﬁed maximum depth is reached or if the system runs out of storage. The tree
1s evaluated bottom-up, and each node’s intensity is computed as a function of its
children’s intensities.

We can represent Whitted’s illumination equation as

b= luki Oy + Y SifuTps, ko O (N - L) + k(N - H))"] + Koy + ki | (14.32)

1<i<m

where 1, is the intensity of the reflected ray, kis the transmission coefficient

lllumination and Shading

. Surface normal
. Reflected ray
. Shadow ray

T, Transmitted ray

Viewpoint Point light source

Figure 14.35

Viewpoint

Figure 14.36
The ray tree for Fig. 14.35.

Program 14.1

Pseudocode for simple
recursive ray tracing
without antialiasing.

Rays recursively spawn other rays.

ranging between 0 and 1, and /y; is the intensity of the refracted transmitted ray.
Values for /;; and I, are determined by recursively evaluating Eq. (14.32) at the
closest surface that the reflected and transmitted rays intersect. To approximate
attenuation with distance, Whitted multiplied the /, calculated for each ray by the
inverse of the distance traveled by the ray. Rather than treating § ; as a delta func-
tion, as in Eq. (14.22), he also made it a continuous function of the k, of the objects
intersected by the shadow ray, so that a transparent object obscures less light than
an opaque one at those points it shadows.

Prog.14.1 shows pseudocode for a simple recursive ray tracer. RT_trace deter-
mines the closest intersection the ray makes with an object and calls RT_shade to
determine the shade at that point. First, RT_shade determines the intersection’s
ambient color. Next, a shadow ray is spawned to each light on the side of the sur-
face being shaded to determine its contribution to the color. An opaque object
blocks the light totally, whereas a transparent one scales the light’s contribution. If
we are not too deep in the ray tree, then recursive calls are made to RT_trace to
handle reflection rays for reflective objects and refraction rays for transparent
objects. Since the indices of refraction of two media are needed to determine the
direction of the refraction ray, the index of refraction of the material in which a ray
is traveling can be included with each ray. RT_trace retains the ray tree only long
enough to determine the current pixel’s color. If the ray trees for an entire image
can be preserved, then surface properties can be altered and a new image recom-
puted relatively quickly, at the cost of only reevaluating the trees. Sequin and
Smyrl [SEQU89] present techniques that minimize the time and space needed to
process and store ray trees.

select center of projection and window on view plane;
for (each scan line in image) {
for (each pixel in scan line) {
determine ray from center of projection through pixel:

Recursive Ray Tracing

pixel= RT_trace (ray, 1);

)

}

/: Intersept ray with objects and compute shade at closest intersection. */
/" Depth is current depth in ray tree. */

?T_color RT_trace (RT_ray ray, int depth)
'detem]ine closest intersection of ray with an object;
if (object hit) {
compute normal at intersection;
return RT_shade (closest object hit, ray, intersection, normal, depth)

else

| return BACKGROUND_VALUE;

/* Compute shade at point on object, tracing rays for shadows, reflection, refraction.*/

RT_color RT_shade (
RT_object object, /* Object intersected */
RT_ray ray, /* Incident ray */

RT_point point, /* Point of intersection to shade */
RT_normal normal, /* Normal at point */

int depth) /* Depth in ray tree */

RT_color color; /* Color of ray */

RT_ray rRay, tRay, SRay; /* Reflected, refracted, and shad *
_ f) ; s . ow rays */
RT_color rColor, tColor: /* Reflected and refracted ray colors */y

color = ambient term;
for (each light) {
SRay = ray to light from point:
if (dot product of normal and direction to light is positive) {
compute how much light is blocked by opaque and transparent surfaces
| and use to scale diffuse and Specular terms before adding them to color;
}
if (_depth.< maxDepth) { /* Return if depth is too deep. */
if (object is reflective) {
rRay = ray in reflection direction from point;
rColor = RT trace (rRay, depth + 1);
scale rColor by specular coefficient and add fo color;

if (object is fransparent) {
tRay = ray in refraction direction from point;
if (total internal reflection does not oceur) {
tColor = RT _trace (tRay, depth + 1);
scale tColor by transmission coefficient and add to color;

lllumination and Shading

J
J
}

return color; /* Return color of ray. */

J

Figure 14.35 shows a basic problem with how ray tracing models refraction:
The shadow ray L 5 is not refracted on its path to the light. In fact, if we were to
simply refract L 5 from its current direction at the point where it exits the large
object, it would not end at the light source. In addition, when the paths of rays that
are refracted are determined, a single index of refraction is used for each ray.

Ray tracing is particularly prone to problems caused by limited numerical pre-
cision. These show up when we compute the objects that intersect with the second-
ary rays. After the x, y, and z coordinates of the intersection point on an object
visible to an eye ray have been computed, they are then used to define the starting
point of the secondary ray for which we must determine the parameter ¢ (Section
13.4.1). If the object that was just intersected is intersected with the new ray, it will
often have a small, nonzero ¢ because of numerical-precision limitations. If not
dealt with, this false intersection can result in visual problems. For example, if the
ray were a shadow ray, then the object would be considered as blocking light from
itself, resulting in splotchy pieces of incorrectly “self-shadowed” surface. A simple
way to solve this problem for shadow rays is to treat as a special case the object
from which a secondary ray is spawned, so that intersection tests are not performed
on it. Of course, this does not work if objects are supported that really could
obscure themselves or if transmitted rays have to pass through the object and be
reflected from the inside of the same object. A more general solution is to compute
abs(¢) for an intersection, to compare it with a small tolerance value, and to ignore
it if it is below the tolerance.

The paper Whitted presented at SSIGGRAPH 79 [WHIT80], and the movies he
made using the algorithm described there, started a renaissance of interest in ray
tracing. Recursive ray tracing makes possible a host of impressive effects—such as
shadows, specular reflection, and refractive transparency—that were difficult or
impossible to obtain previously. In addition, a simple ray tracer is quite easy to
implement. Consequently, much effort has been directed toward improving both
the algorithm’s efficiency and its image quality. For more detail, see Section 16.12
of [FOLE90] and [GLAS89].

14.8 RADIOSITY METHODS :

Although ray tracing does an excellent job of modeling specular reflection and dis-
persionless refractive transparency, it still makes use of a directionless ambient
lighting term to account for all other global lighting contributions. Approaches
based on thermal-engineering models for the emission and reflection of radiation
eliminate the need for the ambient-lighting term by providing a more accurate
treatment of interobject reflections. First introduced by Goral, Torrance,

Radiosity Methods 515

Greenberg, and Battaile [GORAS84] and by Nishita and Nakamae [NiSHSS], these
algorithms assume the conservation of light energy in a closed environment. All
energy emitted or reflected by every surface is accounted for by its reflection from
or absorption by other surfaces. The rate at which energy leaves a surface, called
its radiosity, is the sum of the rates at which the surface emits energy and reflects
or transmits it from that surface or other surfaces. Consequently, approaches that
compute the radiosities of the surfaces in an environment have been named radi-
osity methods. Unlike conventional rendering algorithms, radiosity methods first
determine all the light interactions in an environment in a view-independent way.
Then, one or more views are rendered, with only the overhead of visible-surface
determination and interpolative shading.

14.8.1 The Radiosity Equation

In the shading algorithms considered previously, light sources have always been
treated separately from the surfaces they illuminate. In contrast, radiosity methods
allow any surface to emit light; thus, all light sources are modeled inherently as
having area. Imagine breaking up the environment into a finite number 7 of dis-
crete patches, each of which is assumed to be of finite size, emitting and reflecting
light uniformly over its entire area. If we consider each patch to be an opaque
Lambertian diffuse emitter and reflector, then, for surface I

Bi=E; +p; Z BiF;_; 4 (14.33)

A

I<j=<n !

B; and B; are the radiosities of patches i and J, measured in energy/unit time/unit
area (i.e., W/m?). E; is the rate at which light is emitted from patch i and has the
same units as radiosity. p; is patch i’s reflectivity and is dimensionless. F i 1s the
dimensionless form factor or configuration factor, which specifies the fraction of
energy leaving the entirety of patch j that arrives at the entirety of patch /, taking
into account the shape and relative orientation of both patches and the presence of
any obstructing patches. A; and A; are the areas of patches 7 and ;.

Equation (14.33) states that the energy leaving a unit area of surface is the
sum of the light emitted plus the light reflected. The reflected light is computed by
scaling the sum of the incident light by the reflectivity. The incident light is in turn
the sum of the light leaving the entirety of each patch in the environment scaled by
the fraction of that light reaching a unit area of the receiving patch. BF;_; is the
amount of light leaving a unit area of A; that reaches all of A;. Therefore, it is nec-
essary to multiply by the area ratio A i/ A; to determine the light leaving all of A;
that reaches a unit area of A;. !

Conveniently, a simple reciprocity relationship holds between form factors in
diffuse environments,

Thus, Eq. (14.33) can be simplified, yielding

