Radial Basis Networks
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The first layer weight vectors ;w! are called “centers” of
N the basis functions.
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Gaussian Transfer Function (Local)
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Example Network Function

wi=—1,wy, =1,b =2,b, =2

2 2 2
Wlal :1, W1,2 :l,b :O




B o
Parameter Variations

0.5<h <8 0<w,, <2
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Pattern Recognition Problem
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17 Radial Basis Solution

Choose centers at p, and p5: Choose bias to be 1:
Wi — P, -1 bl 1
p: 1 -1 1

This will cause the following reduction
in the basis functions where they meet:

a=e” =M 202201353

Choose the second layer bias to
produce negative outputs, unless we
are near p, and p;. Choose second
layer weights so that output moves
above 0 near p, and p;.

w2 =[2 2]»*=[-1]
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Final Decision Regions




(Global Versus Local

Multilayer networks create a distributed representation.

— All sigmoid or linear transfer functions overlap in their activity.

Radial basis networks create local representations.

— Each basis function is only active over a small region.
The global approach requires fewer neurons. The local
approach is susceptible to the “curse of dimensionality.”

The local approach leads to faster training and is suitable
for adaptive methods.



Radial Basis Training

Radial basis network training generally consists of two
stages.

During the first stage, the weights and biases in the first
layer are set. This can involve unsupervised training or
even random selection of the weights.

The weights and biases in the second layer are found
during the second stage. This usually involves linear least
squares, or LMS for adaptive training.

Backpropagation (gradient-based) algorithms can also be
used for radial basis networks.



Assume Fixed First Layer

We begin with the case where the first layer weights (centers) are
fixed. Assume they are set on a grid, or randomly set. For random
weights, the bias can be Js'

The training data 1s given by
Pt oot gt

With first layer weights and biases fixed, the first layer output can

be computed:
b’ a, = radbas(ng)
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This provides a training set for the second layer:
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Linear Least Squares (2" Layer)
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Matrix Form
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Linear Least Squares Solution

F(x)=t"t-2t"Ux+x" [UTU + pl]x
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Example (1)

g(p):1+sin(%p)for—2ﬁp£2

p=1{-2,-12,-04,04,12,2}
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Example (2)
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Example (3)

x"=[U"U+pI] Ut
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Example (4)
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Bias Too Large
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Subset Selection

Given a set of potential first layer weights (centers), which
combination should we use?

An exhaustive search 1s too expensive.

Forward selection begins with an empty set and adds
centers one at a time.

Backward elimination begins by using all of the potential
centers and then removes them one at a time.

There are other combinations of the forward and backward
methods.

We will concentrate on one forward selection method,
called Orthogonal Least Squares.



Forward Selection
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There will be one row of U for each input/target pair.

If we consider all input vectors as potential centers, there
will be one first-layer neuron for each input vector:
n=0+1.

In this case, the columns of U represent the potential
centers.

We will start with zero centers selected, and at each step
we will add the center (or column of U) which produces
the largest reduction 1n squared error.
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Orthogonalize the Columns
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Orthogonalized Least Squares
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Gram-Schmidt Orthogonalization
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Incremental Error

The total squared value 1s:
t't=[Mh+e| [Mh+e]=h"M'Mh+e'Mh+h'M’e+e’e
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Therefore, basis function i contributes the following to the

squared value: -
h'm, m,

Normalized error contribution: 0; =
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OLS Algorithm

First Step (k= 1): d
) - ) —
m’'=u, i=1...,0 1 O (i)
ml ml
( )Zm 0, = o) = max{ol(i)} m, =m{' =u,
Fori=1,....,0, i#i,i#1,....01 #1,_,
m’ u | k-1
I/'](]?: mTJm ’ ]:1’ ’k_l ml(cl):ui_ rj(l/sz
J J=1
() O () () .
-t T )
m m0) t't
r]k :’/}(jll;)a ]:19 .,k—l mk:mgfik)




~
Stopping Criteria

l—ioj <O
j=1

To convert to original weights:
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Jj=k+1
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Competitive Learning for First Layer

~

 Cluster the input space using a competitive layer (or
Feature Map).

 Use the cluster centers as basis function centers.

« The bias can be computed from the variation in each
cluster:
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ackpropagation
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