Grossberg Network
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Biological Motivation: Vision

Eyeball and Retina




Layers of Retina

The retina is a part of the brain that covers the back inner
wall of the eye and consists of three layers of neurons:

Outer Layer:
Photoreceptors - convert light into electrical signals
Rods - allow us to see in dim light
Cones - fine detail and color
Middle Layer
Bipolar Cells - link photoreceptors to third layer
Horizontal Cells - link receptors with bipolar cells
Amacrine Cells - link bipolar cells with ganglion cells
Final Layer
Ganglion Cells - link retina to brain through optic nerve
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Compensatory Processing

Emergent Segmentation:
Complete missing boundaries.

Featural Filling-In:
Fill in color and brightness.

- Before Processing

After Processing
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Visual Illusions
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Illusions demostrate the compensatory processing of the
visual system. Here we see a bright white triangle and a
circle which do not actually exist in the figures.
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Vision Normalization
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The vision systems normalize scenes so that we are only
aware of relative differences in brightness, not absolute

brightness.




Brightness Contrast

If you look at a point between the two circles, the small
inner circle on the left will appear lighter than the small
inner circle on the right, although they have the same
brightness. It is relatively lighter than its surroundings.

The visual system normalizes the scene. We see relative
intensities.




Leaky Integrator

(Building block for basic nonlinear model.)
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Leaky Integrator Response
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For a constant input and zero initial conditions:
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Shunting Model
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Shunting Model Response
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Upper limit will be 1, and lower limit will be 0.
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Grossberg Network

Layer 1 Layer 2
(Retina) (Visual Cortex)
Inout ) )
° O O
O O STM
O O
O (Adaptive Weights) \O
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Normalization Contrast
Enhancement

LTM - Long Term Memory (Network Weights)
STM - Short Term Memory (Network Outputs)
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Operation of Layer 1
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\ Normalizes the input while maintaining relative intensities. Y,




Analysis of Normalization

Neuron i response:
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Layer 1 Example
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Characteristics of Layer 1

The network 1s sensitive to relative intensities of the input
pattern, rather than absolute intensities.

The output of Layer 1 1s a normalized version of the input
pattern.

The on-center/off-surround connection pattern and the
nonlinear gain control of the shunting model produce the
normalization effect.

The operation of Layer 1 explains the brightness constancy
and brightness contrast characteristics of the human visual
system.
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Layer 2

Layer 2
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Layer 2 Operation
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Layer 2 Example
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Layer 2 Response
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Characteristics of Layer 2

As in the Hamming and Kohonen networks, the mputs to
Layer 2 are the inner products between the prototype
patterns (rows of the weight matrix W?#) and the output of
Layer 1 (normalized input pattern).

The nonlinear feedback enables the network to store the
output pattern (pattern remains after input 1s removed).

The on-center/off-surround connection pattern causes
contrast enhancement (large inputs are maintained, while
small inputs are attenuated).
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Oriented Receptive Field

When an oriented receptive field is used, instead of an on-center/off-surround
receptive field, the emergent segmentation problem can be understood.
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Choice of Transfer Function

Comments

Linear

.

Perfect storage
of any pattern,
but amplifies
noise.

Slower than

Linear
l >

Amplifies noise,
reduces contrast.

>
Faster than .
Li Winner-take-all,
inear :
suppresses noise,
T quantizes total
» | activity.
Sigmoid Supresses

L

noise, contrast
enhances, not
quantized.
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Adaptive Weights

Hebb Rule with Decay
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( Response of Adaptive Weights

Two different input patterns are alternately presented to the
network for periods of 0.2 seconds at a time.
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The first row of the weight matrix is updated when n *(¢) is active, and
\ the second row of the weight matrix is updated when n,(¢) is active. /




Relation to Kohonen Law

Grossberg Learning (Continuous-Time)
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Euler Approximation for the Derivative
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Discrete-Time Approximation to Grossberg Learning
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Relation to Kohonen Law

Rearrange Terms

W+ A) = {1 - (AN O} W (1) + a(ANm () {0 ()}

Assume Winner-Take-All Competition

W A) = {1-o} W (H+{aln () where o = a(ADnL(?)

Compare to Kohonen Rule

#W(q) = (I-a),.W(g-1)+ap(q)
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