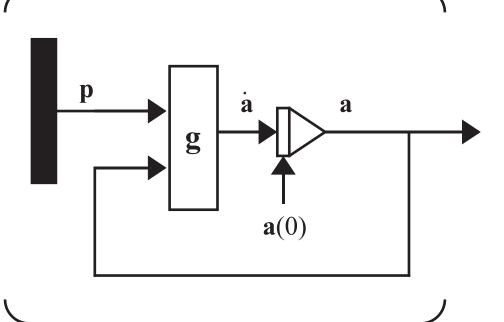


Stability

1

Recurrent Networks

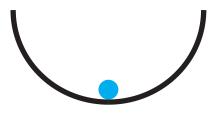
Nonlinear Recurrent Network



$$d\mathbf{a}(t)/dt = \mathbf{g}(\mathbf{a}(t), \mathbf{p}(t), t)$$

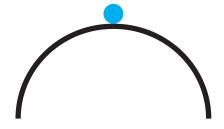
Types of Stability

A ball bearing, with dissipative friction, in a gravity field:



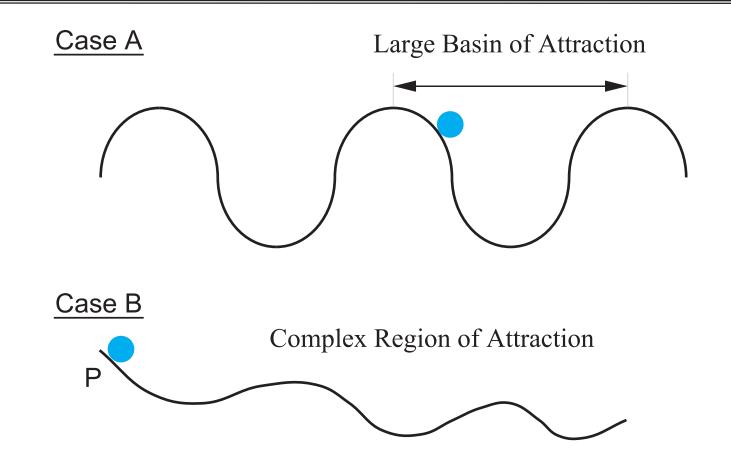
Asymptotically Stable

Stable in the Sense of Lyapunov



Unstable

Basins of Attraction



In the Hopfield network we want the prototype patterns to be stable points with large basins of attraction.

Lyapunov Stability

$$\frac{d}{dt}\mathbf{a}(t) = \mathbf{g}(\mathbf{a}(t), \mathbf{p}(t), t)$$

Eqilibrium Point:

An equilibrium point is a point \mathbf{a}^* where $d\mathbf{a}/dt = \mathbf{0}$.

Stability (in the sense of Lyapunov):

The origin is a stable equilibrium point if for any given value $\varepsilon > 0$ there exists a number $\delta(\varepsilon) > 0$ such that if $||\mathbf{a}(0)|| < \delta$, then the resulting motion, $\mathbf{a}(t)$, satisfies $||\mathbf{a}(t)|| < \varepsilon$ for t > 0.

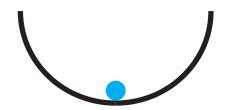
5

Asymptotic Stability

$$\frac{d}{dt}\mathbf{a}(t) = \mathbf{g}(\mathbf{a}(t), \mathbf{p}(t), t)$$

Asymptotic Stability:

The origin is an asymptotically stable equilibrium point if there exists a number $\delta > 0$ such that if $||\mathbf{a}(0)|| < \delta$, then the resulting motion, $\mathbf{a}(t)$, satisfies $||\mathbf{a}(t)|| \to 0$ as $t \to \infty$.



Definite Functions

Positive Definite:

A scalar function $V(\mathbf{a})$ is positive definite if $V(\mathbf{0}) = 0$ and $V(\mathbf{a}) > 0$ for $\mathbf{a} \neq 0$.

Positive Semidefinite:

A scalar function $V(\mathbf{a})$ is positive semidefinite if $V(\mathbf{0}) = 0$ and $V(\mathbf{a}) \ge 0$ for all \mathbf{a} .

7

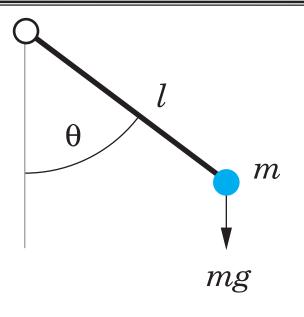
Lyapunov Stability Theorem

$$\frac{d\mathbf{a}}{dt} = \mathbf{g}(\mathbf{a})$$

Theorem 1: <u>Lyapunov Stability Theorem</u>

If a positive definite function $V(\mathbf{a})$ can be found such that $dV(\mathbf{a})/dt$ is negative semidefinite, then the origin $(\mathbf{a} = \mathbf{0})$ is stable for the above system. If a positive definite function $V(\mathbf{a})$ can be found such that $dV(\mathbf{a})/dt$ is negative definite, then the origin $(\mathbf{a} = \mathbf{0})$ is asymptotically stable. In each case, $V(\mathbf{a})$ is called a Lyapunov function of the system.

Pendulum Example



$$m l \frac{d^2 \theta}{dt^2} + c \frac{d \theta}{dt} + mg \sin(\theta) = 0$$

State Variable Model

$$a_{1} = \theta \qquad \frac{da_{1}}{dt} = a_{2}$$

$$a_{2} = \frac{d\theta}{dt} \qquad \frac{da_{2}}{dt} = -\frac{g}{l}\sin(a_{1}) - \frac{c}{ml}a_{2}$$

9

Equilibrium Point

Check: a = 0

$$\frac{da_1}{dt} = a_2 = 0$$

$$\frac{da_2}{dt} = -\frac{g}{l}\sin(a_1) - \frac{c}{ml}a_2 = -\frac{g}{l}\sin(0) - \frac{c}{ml}(0) = 0$$

Therefore the origin is an equilibrium point.

Lyapunov Function (Energy)

$$V(\mathbf{a}) = \frac{1}{2}ml^{2}(a_{2})^{2} + mgl(1 - \cos(a_{1}))$$
 (Positive Definite)
Kinetic Potential
Energy Energy

Check the derivative of the Lyapunov function:

$$\frac{d}{dt}V(\mathbf{a}) = \left[\nabla V(\mathbf{a})\right]^T g(\mathbf{a}) = \frac{\partial V}{\partial a_1} \left(\frac{da_1}{dt}\right) + \frac{\partial V}{\partial a_2} \left(\frac{da_2}{dt}\right)$$

$$\frac{d}{dt}V(\mathbf{a}) = (mgl\sin(a_1))a_2 + (ml^2a_2) \left(-\frac{g}{l}\sin(a_1) - \frac{c}{ml}a_2\right)$$

$$\frac{d}{dt}V(\mathbf{a}) = -cl(a_2)^2 \le 0$$

The derivative is negative semidefinite, which proves that the origin is stable in the sense of Lyapunov (at least).

Numerical Example

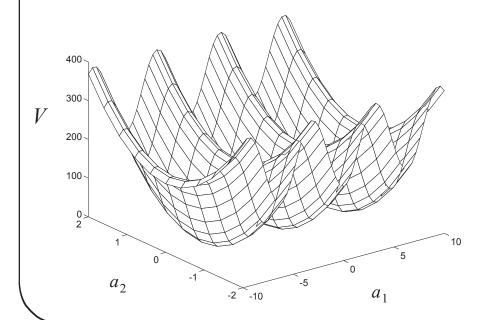
$$g = 9.8$$
, $m = 1$, $l = 9.8$, $c = 1.96$

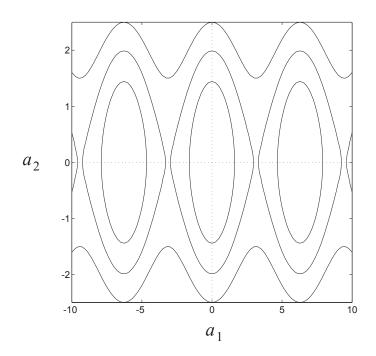
$$\frac{da_1}{dt} = a_2$$

$$\frac{da_1}{dt} = a_2 \qquad \frac{da_2}{dt} = -\sin(a_1) - 0.2a_2$$

$$V = (9.8)^{2} \left[\frac{1}{2} (a_{2})^{2} + (1 - \cos(a_{1})) \right] \qquad \frac{dV}{dt} = -(19.208)(a_{2})^{2}$$

$$\frac{dV}{dt} = -(19.208)(a_2)^2$$

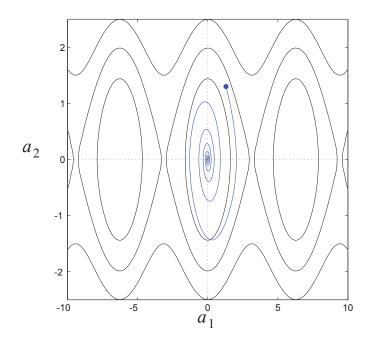




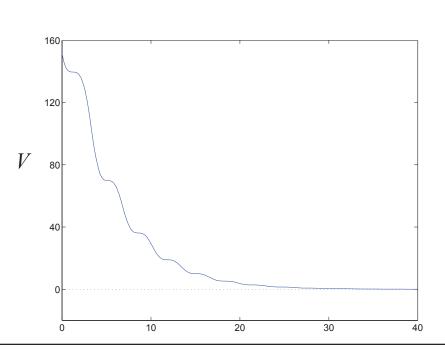
Pendulum Response

 a_1

$$\mathbf{a}(0) = \begin{bmatrix} 1.3 \\ 1.3 \end{bmatrix}$$



 a_2



Definitions (Lasalle's Theorem)

Lyapunov Function

Let $V(\mathbf{a})$ be a continuously differentiable function from \Re^n to \Re . If G is any subset of \Re^n , we say that V is a Lyapunov function on G for the system $d\mathbf{a}/dt = \mathbf{g}(\mathbf{a})$ if

$$\frac{dV(\mathbf{a})}{dt} = (\nabla V(\mathbf{a}))^T \mathbf{g}(\mathbf{a})$$

does not change sign on G.

$\underline{\text{Set } Z}$

 $Z = \{\mathbf{a}: dV(\mathbf{a})/dt = 0, \mathbf{a} \text{ in the closure of } G\}$

Definitions

Invariant Set

A set of points in \Re^n is invariant with respect to $d\mathbf{a}/dt = \mathbf{g}(\mathbf{a})$ if every solution of $d\mathbf{a}/dt = \mathbf{g}(\mathbf{a})$ starting in that set remains in the set for all time.

Set *L*

L is defined as the largest invariant set in Z.

Lasalle's Invariance Theorem

Theorem 2: Lasalle's Invariance Theorem

If V is a Lyapunov function on G for $d\mathbf{a}/dt = \mathbf{g}(\mathbf{a})$, then each solution $\mathbf{a}(t)$ that remains in G for all t > 0 approaches $L^{\circ} = L \cup \{\infty\}$ as $t \to \infty$. (G is a basin of attraction for L, which has all of the stable points.) If all trajectories are bounded, then $\mathbf{a}(t) \to L$ as $t \to \infty$.

Corollary 1: <u>Lasalle's Corollary</u>

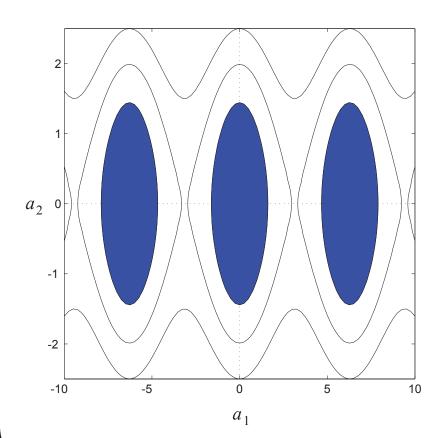
Let G be a component (one connected subset) of

$$\Omega_{\eta} = \{\mathbf{a} \colon V(\mathbf{a}) < \eta\}.$$

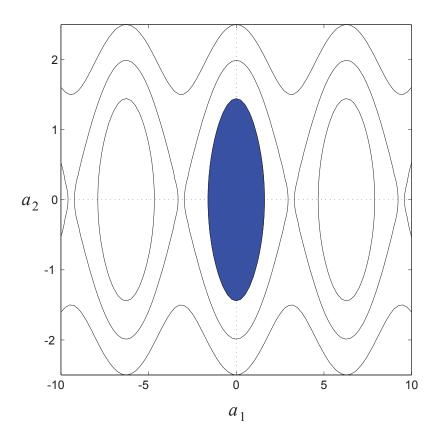
Assume that G is bounded, $dV(\mathbf{a})/dt \le 0$ on the set G, and let the set $L^{\circ} = \operatorname{closure}(L \cup G)$ be a subset of G. Then L° is an attractor, and G is in its region of attraction.

Pendulum Example

$$\Omega_{100} = \{ \mathbf{a} : V(\mathbf{a}) \le 100 \}$$



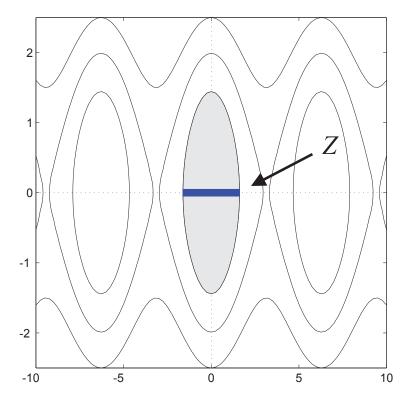
$\Omega_{100} = \{ \mathbf{a} \colon V(\mathbf{a}) \le 100 \}$ $G = \text{One component of } \Omega_{100}.$



20

Invariant and Attractor Sets

 $Z = \{\mathbf{a}: dV(\mathbf{a})/dt = 0, \mathbf{a} \text{ in the closure of } G\} = \{\mathbf{a}: a_2 = 0, \mathbf{a} \text{ in the closure of } G\}$



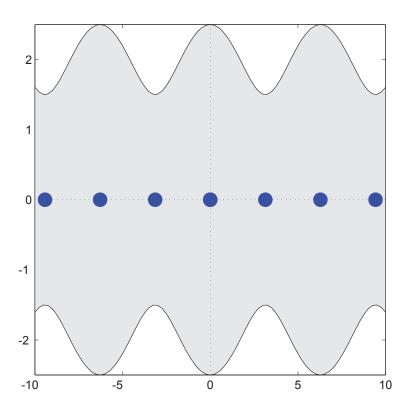
$$L = \{ \mathbf{a} : \mathbf{a} = 0 \}$$

Larger G Set

$$G = \Omega_{300} = \{ \mathbf{a} : V(\mathbf{a}) \le 300 \}$$

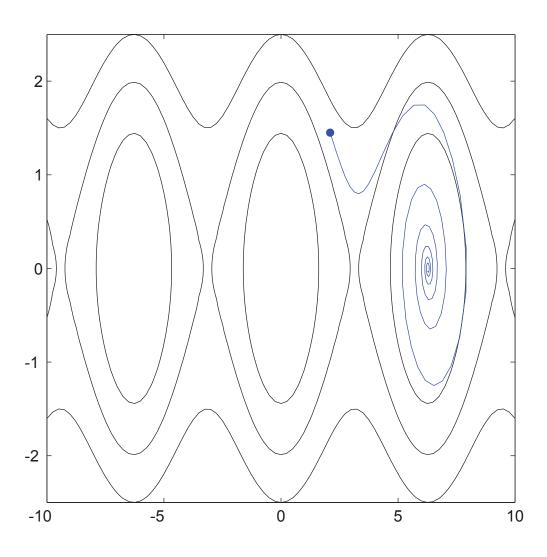
$$Z = \{a: a_2 = 0\}$$

$$G = \Omega_{300} = \{ \mathbf{a} : V(\mathbf{a}) \le 300 \}$$
 $L^{\circ} = L = \{ \mathbf{a} : a_1 = \pm n\pi, a_2 = 0 \}$



For this choice of G we can say little about where the trajectorywill converge. 20

Pendulum Trajectory



Comments

We want G to be as large as possible, because that will indicate the region of attraction. However, we want to choose V so that the set Z, which will contain the attractor set, is as small as possible.

V = 0 is a Lyapunov function for all of \Re^n , but it gives no information since $Z = \Re^n$.

If V_1 and V_2 are Lyapunov functions on G, and dV_1/dt and dV_2/dt have the same sign, then $V_1 + V_2$ is also a Lyapunov function, and $Z = Z_1 \cap Z_2$. If Z is smaller than Z_1 or Z_2 , then V is a "better" Lyapunov function than either V_1 or V_2 . V is always at least as good as either V_1 or V_2 .