Performance Surfaces




Taylor Series Expansion

d

F(x) = F&x*) +—F(x)| (x—x*%)
dx X=X
2
+%%F(x) (x—x*)2+
dx .
X=X
n
LLp)|  xe-x)"4
n.dxn .




Example

X

F(x) = e

Taylor series of F(x) about x*=0:

Flx) = ¢* = e_o—e_o(x—O)+%e_0(x—0)2—ée_0(x—0)3+

F(x) = 1—x+%x2—éx3+...

Taylor series approximations:

F(x)=Fy(x) =1

F(x)=F (x) = 1-x

1 2
X

F(x)=F,(x) = 1—x+2
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Plot of Approximations




Vector Case

[

F(X) = F(x}, x5, ... , X,)

F(x):F(x*)+iF(x)| *(xl_xl*)+iF(x)| ()= x,)%)
X=X X=X

dx, dx,
2
foee S F(X)l (x,—x >‘<)+1LF(X)| (xl_xl*)z
dx,, x=x " 292 X=X
1
28x18x2 X=X




8 Matrix Form

F(x) = Fx)+ VE®'|(x-x)
X=X

Gradient Hessian
- - 9° 9°
8_x1F(X) 8x% dx, 0x,
9 9’ 2
VE®) = [ox, O VR = [T 0 52t
i :
F(X) a2 a2
0
L xl’l . axnaxl F(X) a nasz(X)

+1(X—X*)TV2F(X)| (X =XF) 4
2 X=X
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Directional Derivatives

First derivative (slope) of F(x) along x; axis: JF(X)/0x;

(ith element of gradient)

Second derivative (curvature) of F(x) along x, axis: azF(x)/ 8xl.2

(i,i element of Hessian)

| o p’' VF(x)
First derivative (slope) of F(x) along vector p: lIpll

p V2F(X)p

Second derivative (curvature) of F(x) along vector p: :
lIpll
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Example

F(x) = x% + 2x1x2 + 2x§

bl

d
VF(X) axlF(X) _ [le + 2Xz] _ H
X=X" iF(X) 2X1 +4x, ) 1

x> X =X
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Minima

Strong Minimum

The point x* is a strong minimum of F(x) if a scalar 0>0 exists,
such that F(x*) < F(x* + Ax) for all Ax such that 0> IlAxII>0.

Global Minimum

The point x* 1s a unique global minimum of F(x) if
F(x*) < F(x*+Ax) for all Ax#0.

Weak Minimum

The point x* is a weak minimum of F(x) if it 1s not a strong
minimum, and a scalar 0>0 exists, such that F(x*) < F(x* + AX)
for all Ax such that 0> IlIAxII>0.
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Scalar Example

F(x) = 3x4—7x2—%x+6

Strong Maximum

Strong Minimum

Global Minimum

| | |
1 0 1
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F(x) = (xz—x1)4+ 8X Xy —X; +X,+3

SSOSSISosoS

<>
S o<

[
"“‘
o= /) "»‘
s STS oS >SS

RN

%

Vector Example

F(x) = (x% — 1.5xx, + 2x§)x%
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First-Order Optimality Condition

F(X) = F(x*+Ax) = F(X*)+V F <x>T| Ax +ITVRGO| Ak
X = X 2 X = X

AX = X -—Xx*

For small Ax: If x* is a minimum, this implies:

F(X* + AX) = F(X™) + VF(X)T‘ LAX VF(X)T‘ AX >0
X = X X=X"

If VF(X)T JAX>0 then F(X* - AX) = F(X™) - VF(X)T‘ JAX < F(XT)
X = X X = X

But this would imply that x* is not a minimum. Therefore VF (X)T‘ AX =0
X =X
Since this must be true for every Ax, [VF (X)l . =0 ]
\ X=X
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Second-Order Condition

If the first-order condition is satisfied (zero gradient), then

2 X=X"

A strong minimum will exist at x* if AX' V2F (X)l JAX > 0 for any Ax#0.
X=X

Therefore the Hessian matrix must be positive definite. A matrix A is positive definite if:

[ZTAZ > O] for any z#0.

This is a sufficient condition for optimality.

A necessary condition is that the Hessian matrix be positive semidefinite. A matrix A is
positive semidefinite if:

[ 7 Az>0 ] for any z.
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Example

2 2
F(x) = x|+ 2x1x2 +2x5 + X,

2x, +4x, 05
V2F(X) = 272 (NOF a fqnctmn of x
2 4 in this case.)

To test the definiteness, check the eigenvalues of the Hessian. If the eigenvalues

are all greater than zero, the Hessian is positive definite.

[2 a2 ]
2 4-A

IV2F(x) - ATl = = AT —6A+4 = (L=0.76)(\—5.24)

A = 0.76,5.24 Both eigenvalues are positive, therefore strong minimum.
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Quadratic Functions

F(X) = %XTAX sd x+c

Gradient and Hessian:

(Symmetric A)

N

Useful properties of gradients:

V(h'x) = V(x h) = h

VXTQX = QX+QTX = 2Qx (for symmetric Q)

J

Gradient of Quadratic Function:

| VF(x) = Ax+d I

Hessian of Quadratic Function:

| V2F(x) = A I
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Eigensystem of the Hessian

Consider a quadratic function which has a stationary
point at the origin, and whose value there is zero.

F(X) = %XTAX

Perform a similarity transform on the Hessian matrix,
using the eigenvalues as the new basis vectors.

B = [zl Z ... zn]

Since the Hessian matrix 1s symmetric, its eigenvectors

re orthogonal.
are orthogona B! - B’

A' = [B'AB] = - A A = BAB”




Second Directional Derivative

pTV2F(X)p _ pTAp
Ipll” Ipl?

Represent p with respect to the eigenvectors (new basis):

p = Be
2 }\’iczz
p'Ap ¢ B (BAB)Bc c¢'Ac [T
||p||2 ¢ B Be ¢ ¢ i 2
i=1
T
A <P Ag’ <A
Ipll
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Eigenvector (Largest Eigenvalue)

P = Z,4x C = BTp = Bszax =

n

2

T Zkici
i=1

Zmax Azmax _ =

2ol S -
Zyax 2 Ci2
i=1

The eigenvalues represent curvature
(second derivatives) along the eigenvectors
(the principal axes).
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Circular Hollow

[

2 2 1. 7120
F(X) = x;+x, = =X X
1 2 2 |:02]

V2F(X) = {2 0] A, =
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Elliptical Hollow

2 2 1. TI21
F(x) = + + = =X X
(X) = x| +xx,+x, ) [12]




Elongated Saddle

|, 3 12 1.71-05-15
F(x) = I B b A B EX [_1.5 —O.S]X
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Quadratic Function Summary

If the eigenvalues of the Hessian matrix are all positive, the
function will have a single strong minimum.

If the eigenvalues are all negative, the function will have a
single strong maximum.

If some eigenvalues are positive and other eigenvalues are
negative, the function will have a single saddle point.

If the eigenvalues are all nonnegative, but some
eigenvalues are zero, then the function will either have a
weak minimum or will have no stationary point.

If the eigenvalues are all nonpositive, but some
eigenvalues are zero, then the function will either have a
weak maximum or will have no stationary point.

[ Stationary Point: x* = -A™'d ]
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