Variations
on
Backpropagation

Variations

e Heuristic Modifications
— Momentum

— Variable Learning Rate

« Standard Numerical Optimization
— Conjugate Gradient
— Newton’s Method (Levenberg-Marquardt)

/

Network Architecture

Input Log-Sigmoid Layer Log-Sigmoid Layer
r N0 N 4 N
| n' at
W Z _>_£ W2
lbll n2 a2
P 1 XS >
nt, atl, b2
Wh Z—>_£ W2 ll
I
! J N J

Performance Surface Example

Nominal Function

~

0.75F

0.5F

0.251

a! = logsig(Wip+b!)

wip = 10wy, =10 by=-5 by=>5
2 2
wig =1 wi, =1 b~ = -1

/

15

Squared Error vs. w

10

1

2
1 and w L1

~

€ N

1
Squared Error vs. w', and b',

15

SIS
““‘
<> ""

i

— =

- 20
e)

=

J
v
it
i
i
i
o
22

Z 7

/
—

==

////

7

7

77

7

/
i
i

==
7 «i’
~
5
5
XX

o

7
7
7
7
7
0
QY
oo,

Q

N

i

7
-
THONS
N
o
Q

20
-15

'2_5 30 9

/

Squared Error vs. o', and b',

1.4

0.7

<<
AANNY SIS
RIS
NSNS S
\\‘}‘}‘\‘t“ ‘60’

bll 10 10 b21

Convergence Example

15

10

Learning Rate Too Large

15

10

2
W 11 5 S
e —
b @)
of :
5 . Fffi
5 0 5 10 15

i

I -v)w
. (2Tmk
=1+ s
sm(T)

- ‘ v‘ !‘l‘

(k

/
Momentum
- Fie

Tl

/

Steepest Descent Backpropagation
(SDBP)

m m—1_T

AW" (k) = —as" (@")

Ab" (k) = —as”

Momentum Backpropagation
(MOBP)

AW" (k) = yAW " (k—1)— (1 —y)as" (a"

Ab" (k) = yAb" (k- 1)— (1 —y)os”™

N

T
)

Momentum Backpropagation

15

~

/

Variable Learning Rate (VLBP)

« If the squared error (over the entire training set) increases by
more than some set percentage C after a weight update, then

the weight update 1s discarded, the learning rate 1s multiplied
by some factor (1>p>0), and the momentum coefficient y is

set to zero.

« If the squared error decreases after a weight update, then the
weight update is accepted and the learning rate 1s multiplied
by some factor n>1. If y has been previously set to zero, it is

reset to its original value.

« If the squared error increases by less than C, then the weight
update 1s accepted, but the learning rate and the momentum
coefficient are unchanged.

~

Example

n = 1.05
p = 0.7
C = 4%

15 60
1 40

0.5 20
0 0
10° 10° 10 10° 10° 10 10 10°

Iteration Number lteration Number

N

Conjugate Gradient

. The first search direction 1s steepest descent.

Py = 8 g=VFO|

. Take a step and choose the learning rate to minimize the

function along the search direction.

Xpo1 = Xp T 0Py

. Select the next search direction according to:

Py = — 8kt BiPx-1
where
Ag, 18, 2.8, Ag, 8,
Bk = 7 or Bk I or Bk - 7
Agik_1Pk-1 Sr_18k—1 S 18k-1

Interval Location

A F(x,+ 0, py)

8¢
. 4¢
26 —
[
®
N
@
® o
[
a—b,
ay— by
as bs
ay b,

Interval Reduction

A F(x, + 0, py)

a c b

(a) Interval is not reduced.

A F(x, 04, py)

a C b d

(b) Minimum must occur
between ¢ and b.

Golden Section Search

7=0.618
Set ¢, =a, +(1-1)(b-a,), F =F(c,)
d,=b,-(1-1)(b-a,), F~F(d,)
For /=1,2, ... repeat
If ¥, <F, then
Set @y = ap; by = disdi, = ¢
€1 = @ gy T DD gy -0 4y)
Fd:Fc;Fc:F(Ckﬂ)

else
Set @ = ¢ by by 6y =4y
d 11 = by - (DD gy -a gy)
F=F; FE(d.,)
end

end until b, , - a,,, < fol

/

Conjugate Gradient BP (CGBP)

Intermediate Steps

Complete Trajectory

~

Newton’s Method

B -1
Xpi1 = XAy 8

AkEV2F(X)| ngVF(X)l
X = X, X = X,

If the performance index is a sum of squares function:

N
F(x) = ¥ vi(x) = v (X)v(x)

i=1

then the jth element of the gradient is

dv;(X)

vrl, - 20 5302
J i=1]

Matrix Form

The gradient can be written in matrix form:

VE(x) = 2J" (x)v(x)

where J is the Jacobian matrix:

-avl(x) avl(X) avl(X)-
dx, dx, dx,
dv,(X) 9v,(X) dv,(X)

J(X) = axl axz axn

dv (X)) dvy(X) dvy(X)
_axl dx, Ox

n

Hessian

N {8\/ A(X) v, (X)

82
V2[F —
[(X)]k’J axkax g ox,;,

V2E(x) = 237 (x)J(x) + 2S(x)

N
S(x) = D v,(x)V2,(X)

i=1

azvi(x)

|

vi(X) 0x,.0x ;

20

Gauss-Newton Method

Approximate the Hessian matrix as:

V2E(x) = 2J" (x)J(x)

Newton’s method becomes:

1
X, = X, - [2F (x)I(x)] 23 (x)v(x))

T —lor
= X, — [J" (x)J(x)] I (xp)v(x;)

21

This matrix may be singular, but can be made invertible as follows:

Levenberg-Marquardt

Gauss-Newton approximates the Hessian by:
T
H=J1J

N

—
GZi = [H‘F“I]Zl = HZi_'_uZi = kiZi+uZl~ = (7‘1+H)Zi

G =H+ul
(" Ifthe eigenvalues and eigenvectors of H are:)
{}Ll’kZ”" ’kn} {Zl,Zz,... ,Zn}
then Eigenvalues of G

[Xk+1 = Xk—[JT(Xk)J(xk)+ukl]_1JT(Xk)V(Xk) }

22

Adjustment of U,

As u,—0, LM becomes Gauss-Newton.

T -7
X411 = Xk—[J (Xk)J(Xk)] J (X,)V(X;)

As 1, —, LM becomes Steepest Descent with small learning rate.

1L vrx)

1 7
X =x, - —J (X,)v(X,) = X, —
k+1=2k ™ k k k 2,

Therefore, begin with a small i, to use Gauss-Newton and speed

convergence. If a step does not yield a smaller F(x), then repeat the
step with an increased W, until F(x) is decreased. F(x) must

decrease eventually, since we will be taking a very small step in the

\steepest descent direction. Y,

23

Application to Multilayer Network

The performance index for the multilayer network is:

0 . o o s” ; N)
F(X) = D (t,—a) (t,—a,) = > ee,= > > (e;) = > (v)

g=1 g=1 g=1j=1 i=1

The error vector is:
T
vV = [vl V) .. VI\ZI = [81,1 €2,1 -+ Cou | €12 -+ eSMQ]

The parameter vector 1s:

T _ 1 1 1 1 1 2 M
X = =
[xl)C2 PR er [Wl, 1 W1’2 PR WS1’R bl PR bSl Wl’ 1 oo bSM

The dimensions of the two vectors are:

N=0xs" n=SR+H+5S + 1)+ +5MS" 1

~

!

24

Jacobian Matrix

a61,1 a31,1 ael,l ael,l
1 1 1 1
ow ow w db
1,1 1,2 s R 1
aez,) aez,) aez,) aez, {
1 1 1 1
awl,l awl,z ow 0b,
S,.R
Jix) = : : : :
ae ae ae Be
sM UM CM | CM
1 1 1 1
ow ow dw b
1,1 1,2 s' R 1
a31,2 ael,z ael,z ael,z
1 1 1 1
awl,l awl,z awsl . ob,

Computing the Jacobian

SDBP computes terms like:

X T
oF(x) _ 9¢, €
ox;, X,

using the chain rule:

m

oF of on;
X

o' o, ow.

I, J I I, J

where the sensitivity
n_ F

s; =—
ani

1s computed using backpropagation.

For the Jacobian we need to compute terms like:

dv de
[J]h,l = N = kg

ox;, ox;,

26

Marquardt Sensitivity

If we define a Marquardt sensitivity:

h=(qg-1)S"+k

We can compute the Jacobian as follows:

weight
m m
J B v, B aek’q B aek’q ani’q Cm ani’q Cm me 1
1= 5 = = = o X T SihX T, T SinXdjg
I awl.’j ani’q awl.’j awl.’j
bias
m m
J . avh aek q aek,q anz q _ ~m ani,q ~m
W= 5= — = X = S pX = Sih

27

Computing the Sensitivities

Initialization
M
EMh _dy, _ dey , _ oty ,— g) _
) an; an; Bnﬁg
M —fﬁQnQZ)fbri==k
Sioh .
’ 0 fori#k
~ M M
S, = -F'(n))
Backpropagation
~m -m m m+1 T~m+1
Sy = F'mHW""™1)'S,
~m ~m|~m ~m
S = [Sl So |- SQ:I

M
_aa kg
M
anuq

28

/

N

LMBP

 Present all inputs to the network and compute the
corresponding network outputs and the errors. Compute the
sum of squared errors over all inputs.

« Compute the Jacobian matrix. Calculate the sensitivities with
the backpropagation algorithm, after initializing. Augment the
individual matrices into the Marquardt sensitivities. Compute
the elements of the Jacobian matrix.

 Solve to obtain the change in the weights.

e Recompute the sum of squared errors with the new weights. If
this new sum of squares 1s smaller than that computed in step
1, then divide p, by v, update the weights and go back to step
1. If the sum of squares is not reduced, then multiply p, by v
and go back to step 3.

29

Example LMBP Step

LMBP Trajectory

