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Generalization

A cat that once sat on a hot stove
will never again sit on a hot stove
or on a cold one either.

Mark Twain
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(Generalization

* The network mput-output mapping is
accurate for the training data and for test
data never seen before.

* The network 1nterpolates well.
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Cause of Overfitting

Poor generalization 1s caused by using a
network that 1s too complex (too many
neurons/parameters). To have the best
performance we need to find the least complex
network that can represent the data (Ockham’s

Razor).




~
Ockham’s Razor

Find the simplest model that
explains the data.




Problem Statement

Training Set

Wty , WPytay, ..., P tos

Underlying Function

tq = 8P )+ g,

Performance Function

0
FX)=E,= Y (t,-a)'(t -a)

qg=1
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Poor Generalization

Overfitting  Extrapolation

Interpolation
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Good Generalization

Interpolation Extrapolation
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Measuring Generalization

Test Set

*Part of the available data 1s set aside during the training
process.

e After training, the network error on the test set is used as
a measure of generalization ability.

*The test set must never be used 1in any way to train the
network, or even to select one network from a group of
candidate networks.

*The test set must be representative of all situations for
which the network will be used.
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Methods for Improving Generalization

~

Pruning (removing neurons) until the
performance 1s degraded.

Growing (adding neurons) until the
performance 1s adequate.

Validation Methods

Regularization




Early Stopping

Break up data 1nto training, validation, and test sets.

Use only the training set to compute gradients and
determine weight updates.

Compute the performance on the validation set at each
iteration of training.

Stop training when the performance on the validation set
goes up for a specified number of iterations.

Use the weights which achieved the lowest error on the
validation set.



~
Early Stopping Example

~Validation
F(x)

Training
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Regularization

N

Standard Performance Measure
F = ED
Performance Measure with Regularization
0 n

I= BED P Z(tq_aq)T(tq_aq)Jrazx?

qg=1 i =1

Complexity Penalty

(Smaller weights means a smoother function.)

7




~
Effect of Weight Changes

25F

1.5

0.5

-0.5




Effect of Regularization

a/f=0

-15

o]

0z

0.4

06

0.8

/B = 0.01

-15

o]

0z

0.4

06

0.8

16



/
Bayes’ Rule

P(B]A)P(4)
P(B)

P(A|B) =

P(A) — Prior Probability. What we know about A4 before
B 1s known.

P(A|B) — Posterior Probability. What we know about A
after we know the outcome of B.

P(B|A) — Conditional Probability (Likelihood Function).
Describes our knowledge of the system.

P(B) — Marginal Probability. A normalization factor.




Example Problem

1% of the population have a certain disease.

A test for the disease 1s 80% accurate 1n detecting
the disease 1n people who have 1it.

10% of the time the test yields a false positive.

If you have a positive test, what 1s your probability
of having the disease?



i . .
Bayesian Analysis

P(B|A)P(4)

P(AIB) = =

A — Event that you have the disease.

B — Event that you have a positive test.

P(4)=0.01

P(B|A)=10.8

P(B)=P(B|A)P(A) + P(B|~4)P(~A) = 0.8 0.01 + 0.1 0.99 =0.107

P(BIA)P(A) _ 08 XOO] _ 00748
P(B) 0.107

PA|B) =




~
Signal Plus Noise Example

I =xt¢
o = —L—exp [—i] ) = ——ex [— x2j
rm Fro, T\ 2g2
2
. (t-x)’ At W)
k) zmexp( 202j S ==
fxp)

f(x)
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NN Bayesian Framework

(MacKay 92)
Posterior Likelilhood l/_ Brior
}
P
P(X|D,o,B, M) = P(D X, B. M) (X|a, M)
P(Dla, B, M)
L Normalization
(Evidence)
D - Data Set

M - Neural Network Model
x - Vector of Network Weights




i . .
Gaussian Assumptions

N

Gaussian Noise

1 /
P(DIX. B M) = 7 5 PP Ep) Zp(B) = 2red) " = (/)"

Gaussian Prior:

1

/2

a)eXP(—aEW) Z () = (chsfv)"/2 = (n/a)

eXp((BE, +0E))
ZA)Z,B) P i
P(X|D,o,B, M) = N(r))rmalization Factor B Z (o, B)

XP(-F(X))

|

F=BE,+akEy [MinimizeFto Maximize P.]

e




=) Optimizing Regularization Parameters

Evidence: P(D|a,B.M) =

N

Evidence from First Level

.
Second Level [ _ ?’(D|oc, B, M)P (a, B|M)
of Inference <\ Pl B1D. M) P(D|M)

PD|X, B, M)P(X|a, M)
P(X |D, a, B, M)

1 1
Z,3) P ED)][ZW(a)eXp (-aky)]
1

EP(-F (X))

Zp(o, B)
_ Zp(a,B) . XP(-BE, _O‘EW): Z{o,P)
Z,B Y o) eXp (—F(X)) Z(B)Zy(a)

Zp(a, B) 1s the only unknown 1n this expression.

/23




Quadratic Approximation

Taylor series expansion:
1

F(X)~ F(XMP) +5(X - XMP) Y (x XMPy H = BV2E, +aV2E,,

Substituting into previous posterior density function:

1 1
PX|D, o B, M) = -89 [ F(XMP) 5% xaP) THIT (x - xii 7
F

(x_ XMP)THMP(X _XMP):I
Zp

P(X|D, o, B, M) = {'I‘GXP(F(XMP))}CXP

Equate with standard Gaussian density:

1 1
P(X) = exp(_i(x_ xMPy THM P x _XMP))
Jeo |

Comparing to previous equation, we have:

Z (0, B) ~ (2m)" 2(det (HMD) 1)) exp_p(xmp)



i .
Optimum Parameters

If we make this substitution for Z,. in the expression for the
evidence and then take the derivative with respect to o and
B to locate the minimum we find:

MP v MP N —vy

= 1 B —
2EW(XMP) 2ED( XMP)

a

Effective Number of Parameters

vy = n _2aMPtr(HMP)—1
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Gauss-Newton Approximation

It can be expensive to compute the Hessian matrix.

Try the Gauss-Newton Approximation.

H = v2r(x) ~2pJ T+ 201

This 1s readily available if the Levenberg-Marquardt
algorithm 1s used for training.




Algorithm (GNBR)

. Initialize o, B and the weights.
. Take one step of Levenberg-Marquardt to minimize F(w).

. Compute the effective number of parameters
vy = n - 2atr(H'), using the Gauss-Newton approximation
for H.

. Compute new estimates of the regularization parameters
a =v/(2E,) and B = (N-y)/(2E,).

. Iterate steps 1-3 until convergence.



Checks of Performance

If y 1s very close to n, then the network may be too small.
Add more hidden layer neurons and retrain.

If the larger network has the same final y, then the smaller
network was large enough.

Otherwise, increase the number of hidden neurons.

If a network 1s sufficiently large, then a larger network will
achieve comparable values for vy, £, and E),.



GNBR Example

o/B =0.0137
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Convergence of GNBR

Training
107}
10 10" 10° 10
Iteration

o/

1

10

2

10

Iteration

10

10°} ED
10} Testing
100 M MR P
10 10" 10° 10°
Iteration
10°
10
100 1 2 3
10 10 10 10
Iteration

30



Relationship between
Early Stopping and Regularization
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[Linear Network

Input Linear Neuron
N\ N
p a
RxA1 W \ Sx1 I
SXR I n /
| SX1}/ a = purelin(Wp+b)= Wp+b
1P b %
R Sx1 g
'/ | J
a = purelin(Wp+b)
Wi
. . T T W,
a; = purelin(n;) = purelin(;jW p+b;) = wWp-+b W= i, 2
Wi R




/
Performance Index

Training Set:
{platl} > {p29t2} IR ) {vatQ}

Input: P, Target: t,

Notation:
X—|:1W:| Z:[P] a=1WTp‘|‘b |::>a=xTz
b 1

Mean Square Error:

F(x)= E[¢’] = E[(t-a)’] = E[(t-X"2)"] =E,
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Error Analysis

F(x)= E[e'] = E[(t—a)’] = E[(t—xT2)"]
F(x)= E[t2—2thz+xTzsz]

F(x) = E[f]-2xTE[tz] + xTE[zz" ]x

[F(X) — ¢ -2x h+x Rx ]

¢c = E[#]  h = E[z] R = E[zz ]

The mean square errvor for the Linear Network is a
quadratic function:

F(X) = c+ d' x+ %XTAX

d = 2h A = 2R

34
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Example

Inputs  Two-Input Neuron {p B H o 1}

=14 = Probability = 0.75
h f \ 1 i 1 (Probability )
P1 Wi {Pz = [_1],1‘2 = —1} (Probability = 0.25)

> A >

P2 Wi b F(x) =c _2x’h+x'Rx = E,
/U J

a = purelin(Wp+D>)

R = E[zz

ol oo

g

¢ = E[£] = (1)2(0.75) + (-1)%(0.25) = 1

1 R
h = = (0.75)(1 0.25)(-1 B
E[tz] = (0.75)( )L]H > ) )[1] [0.5]

= p,p;(0.75) + p, ps (0.25)
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Performance Contour

Optimum Point (Maximum Likelihood) Hessian Matrix
SRURERS (DRI R
x'“=-Ad=R h-= : = VFx)=A=2R =

0.5 1] |o. 0 12
Eigenvalues

‘ A_M‘ - 217“2; =43 -1 -3) 2> =1, A= 3

Eigenvectors

[A— M]V =0
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—
T

o
T

Contour Plot of £,
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Steepest Descent Trajectory

Xpr1 = Xp—08r = Xk—OL(AXk+ d)

= xk—ocA(xk+A_1d) = Xk—OLA(Xk—XML)

= [I—ocA]xk+ochML = Mx, + [I—M]XML [

M - [I—ocA]]

x, = Mx,+[I- M]XML

X, = Mx, +[I- MIx""

= M xg+ M[I-M]x" +[I-M]x""

2 ML 2 ML ML ML
=MXO+MX ~“Mx +x —Mx

2_ML

= M2x0+xML—M X = M2X0+[I—M2]XML

{Xk = kao+[I—Mk]xML }

38
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Regularization

F(X) = Ep +PEy (p = a/p)

1 T

Ey = 5(X =Xp) (X =Xq)

To locate the minimum point, set the gradient to zero.
VF(X)= VE, +pVEy

VE, = (X —Xj) VE, = A(X—XML)

VF(X) = A(x_le) +p(X —X,) = 0




/ MAP — ML

M P ML ML

ML MP M P
A(x —X ) = —p(x -Xy) = —p(X -X X T -X,)

M P ML ML
= —p(X -X )-p(X T —Xp)

(A +pD(xMP _xMhy = p(x, - xMh
(xMP _xMy = p(A+pD) 7 (x, - xMh

xMP _ xML_ oA Lol X ME 4 (A + pI)_IXO _ ML _MPXML+M

M, = p(A +pl)"

{ xMP o _ Mpx0+[I_Mp]xML}

p

X

0

40
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Early Stopping — Regularization

{xk = ka0+[I—Mk]XML } [ xMP = MpX0+[IMp]XML}

M = [I-aA] M, = p(A +pl)"

Eigenvalues of M¥:

[I-aAlz =z, -0Az, = z,-alz, = (1-al)Z,

~—
h'd

z, - eigenvector of A

1

A. -eigenvalue of A

1

Eigenvalues of M
: k k
eigM") = (1-ad))

Eigenvalues of M,;:

cig(M,) = ﬁ




Reg. Parameter — Iteration Number

M¥* and M, have the same eigenvectors. They would be
equal if their eigenvalues were equal.

. A
B ﬁ 5y (1_ock,-)" Taking log : —1og(1+ B’) = klog(1- ok )

Since these are equal at A; = 0, they are always equal if the
slopes are equal.

_;1 — ____lf___(_oc) 1 (1 —OLKZ-)
(Hﬁi)f’ I—ah, —— p (1+%/p)

p

If aA; and A/p are small, then:

ok = I (Increasing the number of iterations is equivalent to
decreasing the regularization parameter!)
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Example
Inputs  Two-Input Neuron
( \ N\ {Pf H’tl: 1} (Probability = 0.75)
- ]
P, 1, = =1t (Probability = 0.25)
a
> A > 1
P> Wi, b
F(X) = E + PEy,
AN J i
a = purelin(Wp+D>) E, =c +de+%x AXx
T -2 21
~ 1 =1 d=-2h = A =2R =
Bw = 3% X ’ [—1] [1 2]
VPF(X) = V2E |+ pV2E,, = [2ﬂ+p[l 0] _ [2+p 1 ]
1 01 1 2+p

N




p=0,2,00




p=0—>w

0.5

-0.5
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Steepest Descent Path




Efftective Number of Parameters

N

v =n _2OLMPtr4 (HMP)—I ¥

H(X) = V’F(X) = BV2Ep+aVE,, = pV2E, +2al

n n
) > B
_ o 2 MPy ) gHMPY L L o 2 L o P
Yy =n-—2a {( )} n ZBKZ.+20L ZBkl.Jrzoc
=1 i=1

l:

Effective number of parameters will equal number of large eigenvalues of the Hessian.

n n
B, B
e _Z_: — ——ee
Y Zml.+2a 2.V i T g+ 24 U<y, <!
i=1 i=1

47



