Associative Learning
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Simple Associative Network

Inputs Hard Limit Neuron
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a = hardlim(wp+b)

a = hardlim(wp +b) = hardlim(wp —0.5)

_ | 1, stimulus _
P = . a =
0, no stimulus

1, response
0, no response
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Shape Smell

Banana Associator

Network

v

Banana?

Sight of banana p°

C N0

Inputs Hard Limit Neuron

wo=1
Smell of banana p w=010b
\ ) U |

Unconditioned Stimulus
_ { 1, shape detected

P

0

0, shape not detected

A\

a Banana?

—

a = hardlim (W°p°+wp +b)

Conditioned Stimulus

0, smell not detected

b= { I, smell detected
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Unsupervised Hebb Rule

Vector Form:

| W(g) = Wig-1)+oa@p’(q) |

Training Sequence:

p(l), p(2), ..., p(Q)




Banana Recognition Example

Initial Weights:
w = 1, w(0) = 0

Training Sequence:
(") =0, p(1) = 131, {p°@) = 1, p(2) = 1}, ...
o=1

w(q) = w(g—1)+a(q)p(q)
First Iteration (sight fails):

a(1) = hardlim(w’p’(1) + w(0)p(1) - 0.5)
= hardlim(1 X0+ 0X1-0.5) = 0 (no response)

w(l) = w(0)+a(1)p(1) = 0+0x1 = 0
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Example

Second Iteration (sight works):

a(2) = hardlim(w’p"(2) + w(1)p(2) - 0.5)
= hardlim(1 X1 +0X1-0.5) = 1 (banana)

w(2) = w(l)+a2)p(2) = 0+1x1 = 1

Third Iteration (sight fails):

a(3) = hardlim(w’ p’(3)+w(2)p(3) —0.5)
= hardlim(1 xX0+1x1-0.5) =1 (banana)

w(3) = w2)+taB)p(3) = 1+1x1 =2

[ Banana will now be detected if either sensor works. ]
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Problems with Hebb Rule

* Weights can become arbitrarily large

* There 1s no mechanism for weights to
decrease




Hebb Rule with Decay

W(g) = W(g—-1)+oa(q)pT(q)—YW(g-1)

[ W(g) = (1-7)W(g-1)+oaa(g)p’(qg) ]

This keeps the weight matrix from growing without bound,
which can be demonstrated by setting both ¢; and p; to 1:

max max

max max
Wi =(1—y)wl.j + o

Wmax _ o
ij %




Example: Banana Associator

First Iteration (sight fails):

a(1) = hardlim(w’p’(1) + w(0)p(1) - 0.5)
= hardlim(1 X0+ 0X1-0.5) = 0 (no response)

w(l) = w(0)+a(1)p(1)—0.1w(0) = 0+0x1—0.1(0) = 0

Second Iteration (sight works):

a(2) = hardlim(w’p"(2) + w(1)p(2) - 0.5)
= hardlim(1 X1 +0X1-0.5) = 1 (banana)

w(2) = w(l)+a(2)p(2) —0.1w(1) = 0+ 1x1 —0.1(0) = 1
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a(3)

Example

Third Iteration (sight fails):

hardlim(w'p’(3) + w(2)p(3) - 0.5)
hardlim(1 xX0+1x1-0.5) =1

(banana)

w(3) = w2)+a3)p(3)—0.1w3) = 1+ 1x1-0.1(1) = 1.9
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Problem of Hebb with Decay

 Associations will decay away if stimuli are not
occasionally presented.

3

If a,= 0, then

Wl'j(Q) = (1 _Y)Wij(q —1)

[t y=0, this becomes |

Wl'j(Q) = (0-9)Wl'j(q_ 1)

° 0
° o0
o
o
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Therefore the weight decays by 10% at each iteration

\ where there 1s no stimulus. /




Instar (Recognition Network)

Inputs Hard Limit Neuron

r N0 A
P Wi

w n a
p.e— Y —p [ >
Pr . Wik b
/U J

a = hardlim(Wp+Db)




Instar Operation
a = hardlim(Wp +b) = hardlim(,wTp + b)

The instar will be active when
wip=-b
or

wp = [, w]lpl cos® 25

For normalized vectors, the largest inner product occurs when the
angle between the weight vector and the input vector is zero --
the input vector 1s equal to the weight vector.

The rows of a weight matrix represent patterns
to be recognized.




Vector Recognition

If we set
b = —|,w|lpl

the instar will only be active when 6=0.

If we set
b > —|,w|lpl

the instar will be active for a range of angles.

1V

As b 1s increased, the more patterns there will be (over a
wider range of 0) which will activate the instar.
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Instar Rule

Hebb with Decay

Modify so that learning and forgetting will only occur
when the neuron is active - Instar Rule:

WU(Q) = WU(Q — 1) + O(al(Q)p](Q) o YGZ(Q)WU(Q — 1)
or

Wl'j(Q) - Wl'j(q — 1)+ aai(Q)(pj(Q) - Wl'j(q —1))

Vector Form:

[ iw(Q) - iW(q— 1)+ Oﬂai(Q)(P(Q) —l.W(q —1)) }




Graphical Representation

For the case where the instar is active (a;= 1):

iW(g) = wW(g-1)+a(p(q)—w(g-1))

or
W(g) = (1-a)w(g—1)+op(q)
A
p(q)
Ww(q)
W(g-1)
I

For the case where the instar is inactive (a,= 0):

W(g) = wW(g—1)




Example
o _ | 1, orange detected visually
P 0, orange not detected
Sight Measure shape
P = |texture
Network Lweight
¢ Inputs Hard Limit Neuron
Orange? ( \ A
Sight of orange p° g wW°=3
n a QOrange?
Measured shape p, —p | P
Measured texture p, h=_2
Measured weight p, & w,,
) J
a = hardlim(Wop'+Wp+b) /




Training

W) = 1w (0) = [o0q

N\

p’(1)=0,p(1) =|_1|

N\

2’ =1,p2) =44 ...

First Iteration (0=1):

a(l) = hardlim(wopo(l) +Wp(1)-2)

a(l) = hardlim| 3 x0 + [() 0 ()] “1l—-2 =0 (no response)

0
W) = W(0) +a(1)(Pp(1)—W(0) = fof +0|[ 1] - [of | =
Q




Further Training
( 1
a(2) = hardlim(w’p’(2) + Wp(2)~2) = hardlim|3x1+[o 0 o] |-1] -2 | = 1
\ -1 (orange)
0 1 o 1
W(2) = w(l)+a2)(p2)—w(l)) = ol + 1| [-1| 0] | = [-1
0 - 10f) L

a(3) = hardlim(w0p0(3)+Wp(3)—2) = hardlim|3 X0 + [1 1 _1] 11-21=1

L (orange)

1 1 1 1
W) = (W(2) +a(3)(P) — W(2)) = [-1] T 1| [-1] |1 ] -1

[Orange will now be detected if either set of sensors Works.]
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Kohonen Rule

1W(g) = 1W(g—1)+o(p(g)—1Ww(g—1)), forie X(q)

Learning occurs when the neuron’s index i is a member of
the set X(q). We will see in Chapter 14 that this can be used
to train all neurons in a given neighborhood.
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Outstar (Recall Network)

Symmetric Saturating

Input Linear Layer
N\ N
n, a,
D e < e e
n, a,
D e < e e
Ng dg
D e < 7 w4
—/ \ J

a = satlins (Wp)
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Outstar Operation

Suppose we want the outstar to recall a certain pattern a*
whenever the input p=1 1s presented to the network. Let

W = a*
Then, when p=1
a = satlins(Wp) = satlins(a®*x1) = a*

and the pattern 1s correctly recalled.

The columns of a weight matrix represent patterns
to be recalled.

!

22



/

Outstar Rule

For the instar rule we made the weight decay term of the Hebb
rule proportional to the output of the network. For the outstar
rule we make the weight decay term proportional to the input of
the network.

Wl'j(Q) - Wl'j(q —1)+ aai(Q)pj(q) —ij(q)wij(q —1)

If we make the decay rate y equal to the learning rate o,

wl.j(q) = wl.j(q —1)+ a(ai(Q) - Wl'j(q - 1))pj(Q)

Vector Form:

[Wj(q) = Ww;(g-1)+a(alq)-w;(¢g-1))p;(q) }
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Example - Pineapple Recall

Symmetric Saturating

Inputs Linear Layer
] r . a, Recalled shape
Measured shape p' @—sl —1 > : > _//- >
Measured texture p, e w},=1
Measured weight p, L 3 . a, Recalled texture
Wy, = 2 Ve
SFA—
Wi
’ . a; Recalled weight
Identified Pineapple p? - Z : D> _//- o
W3,1
—/ N y

a = satlins (Wopo+Wp)
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Definitions

a = satlins(WOpO + Wp)

w-

Sight Measure
Network o | Shape
P = |texture
vy weight
Measurements?

100
010

00 1

p

pineapple _

{ 1, 1if apineapple can be seen
p =

0, otherwise

25



Iteration 1

0
' =|ol, pcy=14p"@ = 1|, p2)=1%,.
0] 1
o=1
ol |o 0
a(l) = satlins| o] + [o|1 = |o| (noresponse)
0] L0 0]
0 ol |0 0
w, (1) = w(0)+(a(l)-w, (0)p(l) = ol +[lol — o] I = |0
0 0] L0 0]




Convergence

—1 0 —1
a(2) = satlins||_1] +]ol1 = |-1| (measurements given)
|11 L0 |1
0 —1 0 —1
Wi (2) = wi(D)+(a2)-wi(1)p2) = o| | [-1f o] I = [-1
O (LU 10 | L
0 —1 -1
a(3) = satlins| |o| + |11 [= |-1| (measurements recalled)
Of L L | L
—1 —1 —1 —1
w,3) = w,(2)+(a2)-w,2)p2) = |-1|T||-1| - |-1| |} = |1
1 0 L1 i




