

Associative Learning

Simple Associative Network

$$a = hardlim(wp + b) = hardlim(wp - 0.5)$$

$$p = \begin{cases} 1, \text{ stimulus} \\ 0, \text{ no stimulus} \end{cases} \qquad a = \begin{cases} 1, \text{ response} \\ 0, \text{ no response} \end{cases}$$

Banana Associator

Unconditioned Stimulus

$$p^0 = \begin{cases} 1, \text{ shape detected} \\ 0, \text{ shape not detected} \end{cases}$$

Conditioned Stimulus

$$p = \begin{cases} 1, \text{ smell detected} \\ 0, \text{ smell not detected} \end{cases}$$

Unsupervised Hebb Rule

$$w_{ij}(q) = w_{ij}(q-1) + \alpha a_i(q) p_j(q)$$

Vector Form:

$$\mathbf{W}(q) = \mathbf{W}(q-1) + \alpha \mathbf{a}(q) \mathbf{p}^{T}(q)$$

Training Sequence:

Banana Recognition Example

Initial Weights:

$$w^0 = 1, w(0) = 0$$

Training Sequence:

$${p^{0}(1) = 0, p(1) = 1}, {p^{0}(2) = 1, p(2) = 1}, \dots$$

$$\alpha = 1$$

$$w(q) = w(q-1) + a(q)p(q)$$

First Iteration (sight fails):

$$a(1) = hardlim(w^{0}p^{0}(1) + w(0)p(1) - 0.5)$$

=
$$hardlim(1 \times 0 + 0 \times 1 - 0.5) = 0$$
 (no response)

$$w(1) = w(0) + a(1)p(1) = 0 + 0 \times 1 = 0$$

Example

Second Iteration (sight works):

$$a(2) = hardlim(w^{0}p^{0}(2) + w(1)p(2) - 0.5)$$

= $hardlim(1 \times 1 + 0 \times 1 - 0.5) = 1$ (banana)

$$w(2) = w(1) + a(2)p(2) = 0 + 1 \times 1 = 1$$

Third Iteration (sight fails):

$$a(3) = hardlim(w^{0}p^{0}(3) + w(2)p(3) - 0.5)$$

= $hardlim(1 \times 0 + 1 \times 1 - 0.5) = 1$ (banana)

$$w(3) = w(2) + a(3)p(3) = 1 + 1 \times 1 = 2$$

Banana will now be detected if either sensor works.

Problems with Hebb Rule

- Weights can become arbitrarily large
- There is no mechanism for weights to decrease

Hebb Rule with Decay

$$\mathbf{W}(q) = \mathbf{W}(q-1) + \alpha \mathbf{a}(q) \mathbf{p}^{T}(q) - \gamma \mathbf{W}(q-1)$$

$$\mathbf{W}(q) = (1 - \gamma)\mathbf{W}(q - 1) + \alpha \mathbf{a}(q)\mathbf{p}^{T}(q)$$

This keeps the weight matrix from growing without bound, which can be demonstrated by setting both a_i and p_j to 1:

$$w_{ij}^{max} = (1 - \gamma)w_{ij}^{max} + \alpha a_i p_j$$

$$w_{ij}^{max} = (1 - \gamma)w_{ij}^{max} + \alpha$$

$$w_{ij}^{max} = \frac{\alpha}{\gamma}$$

Example: Banana Associator

$$\alpha = 1$$

$$\alpha = 1$$
 $\gamma = 0.1$

First Iteration (sight fails):

$$a(1) = hardlim(w^{0}p^{0}(1) + w(0)p(1) - 0.5)$$

= $hardlim(1 \times 0 + 0 \times 1 - 0.5) = 0$ (no response)

$$w(1) = w(0) + a(1)p(1) - 0.1w(0) = 0 + 0 \times 1 - 0.1(0) = 0$$

Second Iteration (sight works):

$$a(2) = hardlim(w^{0}p^{0}(2) + w(1)p(2) - 0.5)$$

= hardlim(1 ×1 + 0 ×1 - 0.5) = 1 (banana)

$$w(2) = w(1) + a(2)p(2) - 0.1w(1) = 0 + 1 \times 1 - 0.1(0) = 1$$

Example

Third Iteration (sight fails):

$$a(3) = hardlim(w^{0}p^{0}(3) + w(2)p(3) - 0.5)$$

= $hardlim(1 \times 0 + 1 \times 1 - 0.5) = 1$ (banana)

$$w(3) = w(2) + a(3)p(3) - 0.1w(3) = 1 + 1 \times 1 - 0.1(1) = 1.9$$

Problem of Hebb with Decay

• Associations will decay away if stimuli are not occasionally presented.

If
$$a_i = 0$$
, then

$$w_{ij}(q) = (1 - \gamma)w_{ij}(q - 1)$$

If $\gamma = 0$, this becomes

$$w_{ij}(q) = (0.9)w_{ij}(q-1)$$

Therefore the weight decays by 10% at each iteration where there is no stimulus.

Instar (Recognition Network)

Instar Operation

$$a = hardlim(\mathbf{W}\mathbf{p} + b) = hardlim({}_{1}\mathbf{w}^{T}\mathbf{p} + b)$$

The instar will be active when

$$_{1}\mathbf{w}^{T}\mathbf{p} \ge -b$$

or

$$_{1}\mathbf{w}^{T}\mathbf{p} = \|_{1}\mathbf{w}\| \|\mathbf{p}\| \cos \theta \ge -b$$

For normalized vectors, the largest inner product occurs when the angle between the weight vector and the input vector is zero -the input vector is equal to the weight vector.

The rows of a weight matrix represent patterns to be recognized.

Vector Recognition

If we set

$$b = -\|\mathbf{w}\| \|\mathbf{p}\|$$

the instar will only be active when $\theta = 0$.

If we set

$$b > -\|\mathbf{u}\|\|\mathbf{p}\|$$

the instar will be active for a range of angles.

As b is increased, the more patterns there will be (over a wider range of θ) which will activate the instar.

Instar Rule

Hebb with Decay

$$w_{ij}(q) = w_{ij}(q-1) + \alpha a_i(q) p_j(q)$$

Modify so that learning and forgetting will only occur when the neuron is active - Instar Rule:

$$w_{ij}(q) = w_{ij}(q-1) + \alpha a_i(q) p_j(q) - \gamma a_i(q) w_{ij}(q-1)$$

$$\mathbf{Or}$$

$$w_{ij}(q) = w_{ij}(q-1) + \alpha a_i(q) (p_j(q) - w_{ij}(q-1))$$

Vector Form:

$$_{i}\mathbf{w}(q) = _{i}\mathbf{w}(q-1) + \alpha a_{i}(q)(\mathbf{p}(q) - _{i}\mathbf{w}(q-1))$$

Graphical Representation

For the case where the instar is active $(a_i = 1)$:

$$i\mathbf{w}(q) = i\mathbf{w}(q-1) + \alpha(\mathbf{p}(q) - i\mathbf{w}(q-1))$$
or
$$i\mathbf{w}(q) = (1-\alpha)i\mathbf{w}(q-1) + \alpha\mathbf{p}(q)$$

For the case where the instar is inactive $(a_i = 0)$:

$$_{i}\mathbf{w}(q) = _{i}\mathbf{w}(q-1)$$

Example

$$p^0 = \begin{cases} 1, & \text{orange detected visually} \\ 0, & \text{orange not detected} \end{cases}$$

$$\mathbf{p} = \begin{bmatrix} shape \\ texture \\ weight \end{bmatrix}$$

Inputs Hard Limit Neuron

 $a = hardlim(w^0p^0 + \mathbf{W}\mathbf{p} + b)$

Training

$$\mathbf{W}(0) = {}_{1}\mathbf{w}^{T}(0) = \begin{bmatrix} 0 & 0 & 0 \end{bmatrix}$$

$$\left\{ p^{0}(1) = 0, \, \mathbf{p}(1) = \begin{bmatrix} 1 \\ -1 \\ -1 \end{bmatrix} \right\}, \left\{ p^{0}(2) = 1, \, \mathbf{p}(2) = \begin{bmatrix} 1 \\ -1 \\ -1 \end{bmatrix} \right\}, \dots$$

First Iteration (α =1):

$$a(1) = hardlim(w^{0}p^{0}(1) + \mathbf{Wp}(1) - 2)$$

$$a(1) = hardlim \left(3 \times 0 + \begin{bmatrix} 0 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ -1 \\ -1 \end{bmatrix} - 2 \right) = 0 \quad \text{(no response)}$$

$${}_{1}\mathbf{w}(1) = {}_{1}\mathbf{w}(0) + a(1)(\mathbf{p}(1) - {}_{1}\mathbf{w}(0)) = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} + 0 \begin{bmatrix} 1 \\ -1 \\ -1 \end{bmatrix} - \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

Further Training

$$a(2) = hardlim(w^{0}p^{0}(2) + \mathbf{Wp}(2) - 2) = hardlim \left(3 \times 1 + \begin{bmatrix} 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ -1 \\ -1 \end{bmatrix} - 2 \right) = 1$$
 (orange)

$$_{1}\mathbf{w}(2) = _{1}\mathbf{w}(1) + a(2)(\mathbf{p}(2) - _{1}\mathbf{w}(1)) = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} + 1 \begin{bmatrix} 1 \\ -1 \\ -1 \end{bmatrix} - \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ -1 \\ -1 \end{bmatrix}$$

$$a(3) = hardlim(w^{0}p^{0}(3) + \mathbf{Wp}(3) - 2) = hardlim \left(3 \times 0 + \begin{bmatrix} 1 & -1 & -1 \end{bmatrix} \begin{bmatrix} 1 \\ -1 \\ -1 \end{bmatrix} - 2 \right) = 1$$
 (orange)

$$_{1}\mathbf{w}(3) = _{1}\mathbf{w}(2) + a(3)(\mathbf{p}(3) - _{1}\mathbf{w}(2)) = \begin{bmatrix} 1 \\ -1 \\ -1 \end{bmatrix} + 1 \begin{bmatrix} 1 \\ -1 \\ -1 \end{bmatrix} - \begin{bmatrix} 1 \\ -1 \\ -1 \end{bmatrix} = \begin{bmatrix} 1 \\ -1 \\ -1 \end{bmatrix}$$

Orange will now be detected if either set of sensors works.

Kohonen Rule

$$_{1}\mathbf{w}(q) = _{1}\mathbf{w}(q-1) + \alpha(\mathbf{p}(q) - _{1}\mathbf{w}(q-1)), \text{ for } i \in X(q)$$

Learning occurs when the neuron's index i is a member of the set X(q). We will see in Chapter 14 that this can be used to train all neurons in a given neighborhood.

Outstar (Recall Network)

Outstar Operation

Suppose we want the outstar to recall a certain pattern \mathbf{a}^* whenever the input p=1 is presented to the network. Let

$$\mathbf{W} = \mathbf{a}^*$$

Then, when p = 1

$$\mathbf{a} = \mathbf{satlins}(\mathbf{W}p) = \mathbf{satlins}(\mathbf{a}^* \times 1) = \mathbf{a}^*$$

and the pattern is correctly recalled.

The columns of a weight matrix represent patterns to be recalled.

Outstar Rule

For the instar rule we made the weight decay term of the Hebb rule proportional to the <u>output</u> of the network. For the outstar rule we make the weight decay term proportional to the <u>input</u> of the network.

$$w_{ij}(q) = w_{ij}(q-1) + \alpha a_i(q) p_j(q) - \gamma p_j(q) w_{ij}(q-1)$$

If we make the decay rate γ equal to the learning rate α ,

$$w_{ij}(q) = w_{ij}(q-1) + \alpha(a_i(q) - w_{ij}(q-1))p_j(q)$$

Vector Form:

$$\mathbf{w}_{j}(q) = \mathbf{w}_{j}(q-1) + \alpha(\mathbf{a}(q) - \mathbf{w}_{j}(q-1))p_{j}(q)$$

Example - Pineapple Recall

Definitions

$$\mathbf{a} = \mathbf{satlins}(\mathbf{W}^0 \mathbf{p}^0 + \mathbf{W}p)$$

$$\mathbf{W}^0 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$\mathbf{p}^{0} = \begin{bmatrix} shape \\ texture \\ weight \end{bmatrix} \qquad \mathbf{p}^{pineapple} = \begin{bmatrix} -1 \\ -1 \\ 1 \end{bmatrix}$$

$$\mathbf{p}^{pineapple} = \begin{bmatrix} -1 \\ -1 \\ 1 \end{bmatrix}$$

$$p = \begin{cases} 1, & \text{if a pineapple can be seen} \\ 0, & \text{otherwise} \end{cases}$$

Iteration 1

$$\left\{ \mathbf{p}^{0}(1) = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, p(1) = 1 \right\}, \left\{ \mathbf{p}^{0}(2) = \begin{bmatrix} -1 \\ -1 \\ 1 \end{bmatrix}, p(2) = 1 \right\}, \dots$$

$$\alpha = 1$$

$$\mathbf{a}(1) = \mathbf{satlins} \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} 1 = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \quad \text{(no response)}$$

$$\mathbf{w}_{1}(1) = \mathbf{w}_{1}(0) + (\mathbf{a}(1) - \mathbf{w}_{1}(0))p(1) = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} - \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \mathbf{1} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

Convergence

$$\mathbf{a}(2) = \mathbf{satlins} \begin{bmatrix} -1 \\ -1 \\ 1 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \mathbf{1} = \begin{bmatrix} -1 \\ -1 \\ 1 \end{bmatrix}$$
 (measurements given)

$$\mathbf{w}_{1}(2) = \mathbf{w}_{1}(1) + (\mathbf{a}(2) - \mathbf{w}_{1}(1))p(2) = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} + \begin{bmatrix} -1 \\ -1 \\ 1 \end{bmatrix} - \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \mathbf{1} = \begin{bmatrix} -1 \\ -1 \\ 1 \end{bmatrix}$$

$$\mathbf{a}(3) = \mathbf{satlins} \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} + \begin{bmatrix} -1 \\ -1 \\ 1 \end{bmatrix} 1 = \begin{bmatrix} -1 \\ -1 \\ 1 \end{bmatrix}$$
 (measurements recalled)

$$\mathbf{w}_{1}(3) = \mathbf{w}_{1}(2) + (\mathbf{a}(2) - \mathbf{w}_{1}(2))p(2) = \begin{bmatrix} -1 \\ -1 \\ 1 \end{bmatrix} + \begin{bmatrix} -1 \\ -1 \\ 1 \end{bmatrix} - \begin{bmatrix} -1 \\ -1 \\ 1 \end{bmatrix} \mathbf{1} = \begin{bmatrix} -1 \\ -1 \\ 1 \end{bmatrix}$$