Competitive Networks
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( Layer 1 (Correlation) 1

We want the network to recognize the following prototype vectors:
{pla P2 ..., pQ}

The first layer weight matrix and bias vector are given by:

w! P/ -R-
wW! = W _ P bl = R
sw o ph =

The response of the first layer is:

T
Pip+R The prototype
q! = Wip+b! = pip+R closest to the
: input vector produces
the largest response.
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Layer 2 (Competition)

The second layer is

a2(0) ~ g initialized with the output
of the first layer.
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5 5 5 The neuron with the
a;(t+1) = poslin(ai (1) — 82 Clj(f)) largest initial condition
J#i will win the competiton.
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Competitive Learning

Instar Rule

iw(Q) - l.W(q -+ Oﬂai(Q)(P(Q) - l.W(q —1))

For the competitive network, the winning neuron has an
ouput of 1, and the other neurons have an output of 0.

Kohonen Rule

SW(g) = W(g- 1)+ ap(g)— ,W(g—1)

#W(q) = (I-a),.W(g—-1)+ap(q)

Z‘W(Q) - Z‘W(q_l) [ #0*




Graphical Representation
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Example
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Four Iterations
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Typical Convergence (Clustering)
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Dead Units

One problem with competitive learning 1s that neurons
with 1nitial weights far from any input vector may never win.

Dead Unit

Solution: Add a negative bias to each neuron, and increase the
magnitude of the bias as the neuron wins. This will make 1t harder

\ to win 1f a neuron has won often. This 1s called a “conscience.” /
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( Stability i\

If the input vectors don’t fall into nice clusters, then for large
learning rates the presentation of each input vector may modify the
configuration so that the system will undergo continual evolution.
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Competitive Layers 1n Biology

On-Center/Off-Surround Connections for Competition

Weights in the competitive layer of the Hamming network:
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Weights assigned based on distance:
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Mexican-Hat Function

neuron j
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Feature Maps

Update weight vectors in a neighborhood of the winning neuron.

W(g) = w(g-1)+a(p(g)—w(g—-1))

ie N.,(d)
W(g) = (1—o)w(g—1)+ap(q) l

Nl'(d) ={J ,di,de}

Nj;(1) = {8,12,13, 14, 18}
N;;(2) = {3,7,8,9,11, 12,13, 14, 15, 17, 18, 19, 23 }
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Example

Input Feature Map Feature Map
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Convergence
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Learning Vector Quantization

Input Competitive Layer Linear Layer
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The net input is not computed by taking an inner product of the
prototype vectors with the input. Instead, the net input 1s the
negative of the distance between the prototype vectors and the

Kinput.




Subclass

For the LVQ network, the winning neuron 1in the first layer
indicates the subclass which the input vector belongs to. There
may be several different neurons (subclasses) which make up
each class.

The second layer of the LVQ network combines subclasses into
a single class. The columns of W? represent subclasses, and the
rows represent classes. W2 has a single 1 in each column, with
the other elements set to zero. The row 1n which the 1 occurs
indicates which class the appropriate subclass belongs to.

(wi, ; = 1) = subclass i is a part of class k




Example
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« Subclasses 1, 3 and 4 belong to class 1.
 Subclass 2 belongs to class 2.

» Subclasses 5 and 6 belong to class 3.

A single-layer competitive network can create convex
classification regions. The second layer of the LVQ network can
combine the convex regions to create more complex categories.
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LVQ Learning 1

LVQ learning combines competive learning with supervision.
It requires a training set of examples of proper network behavior.

{pla t1}> {pza tz}a cec {an tQ}

If the input pattern is classified correctly, then move the winning
weight toward the input vector according to the Kohonen rule.

W @) = oW @D @) - W -1 ap =t = |

If the input pattern 1s classified incorrectly, then move the
winning weight away from the iput vector.

W) = W (G-D-op@) - W (Gg-1) a, = 1%, =0
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First Iteration
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Second Layer
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This 1s the correct class, therefore the weight vector 1s moved
toward the input vector.

1wl(l) = 1WI(O) +o(p, - 1wl(o))
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Figure
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Final Decision Regions
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| LVQ2 1

If the winning neuron in the hidden layer incorrectly classifies the
current input, we move its weight vector away from the input
vector, as before. However, we also adjust the weights of the
closest neuron to the input vector that does classify it properly.
The weights for this second neuron should be moved toward the
input vector.

When the network correctly classifies an input vector, the weights
of only one neuron are moved toward the input vector. However,
if the input vector 1s incorrectly classified, the weights of two
neurons are updated, one weight vector 1s moved away from the
input vector, and the other one 1s moved toward the input vector.
The resulting algorithm 1s called LVQ?2.
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LVQ2 Example
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