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Radial Basis Networks
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Radial Basis Network
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The first layer weight vectors iw1 are called “centers” of 
the basis functions.
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Gaussian Transfer Function (Local)
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Example Network Function
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Parameter Variations
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Pattern Recognition Problem
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Radial Basis Solution
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Choose centers at p2 and p3: Choose bias to be 1:

This will cause the following reduction 
in the basis functions where they meet:

Choose the second layer bias to 
produce negative outputs, unless we 
are near p2 and p3. Choose second 
layer weights so that output moves 
above 0 near p2 and p3. 
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Final Decision Regions
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Global Versus Local

• Multilayer networks create a distributed representation.
– All sigmoid or linear transfer functions overlap in their activity.

• Radial basis networks create local representations.
– Each basis function is only active over a small region.

• The global approach requires fewer neurons.  The local 
approach is susceptible to the “curse of dimensionality.”

• The local approach leads to faster training and is suitable 
for adaptive methods.
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Radial Basis Training

• Radial basis network training generally consists of two 
stages.

• During the first stage, the weights and biases in the first 
layer are set. This can involve unsupervised training or 
even random selection of the weights.

• The weights and biases in the second layer are found 
during the second stage. This usually involves linear least 
squares, or LMS for adaptive training.

• Backpropagation (gradient-based) algorithms can also be 
used for radial basis networks.
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Assume Fixed First Layer

max

1
1

d
Sbi 

We begin with the case where the first layer weights (centers) are 
fixed. Assume they are set on a grid, or randomly set. For random 
weights, the bias can be
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The training data is given by

With first layer weights and biases fixed, the first layer output can 
be computed:

This provides a training set for the second layer:
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Linear Least Squares (2nd Layer)
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Matrix Form
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Linear Least Squares Solution
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Example (1)

  22for  
4

sin1 





 pppg 

 2,2.1,4.0,4.0,2.1,2 p

 2,8.1,3.1,69.0,19.0,0t



































5.0
5.0
5.0

,
2
0
2

11 bW



17

16

Example (2)
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Example (3)
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Example (4)
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Bias Too Large
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Subset Selection

• Given a set of potential first layer weights (centers), which 
combination should we use?

• An exhaustive search is too expensive.
• Forward selection begins with an empty set and adds 

centers one at a time.
• Backward elimination begins by using all of the potential 

centers and then removes them one at a time.
• There are other combinations of the forward and backward 

methods.
• We will concentrate on one forward selection method, 

called Orthogonal Least Squares.
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Forward Selection
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• There will be one row of U for each input/target pair.
• If we consider all input vectors as potential centers, there 

will be one first-layer neuron for each input vector: 
n=Q+1.

• In this case, the columns of U represent the potential 
centers.

• We will start with zero centers selected, and at each step 
we will add the center (or column of U) which produces 
the largest reduction in squared error.



17

22

Orthogonalize the Columns

MRU 
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Orthogonalized Least Squares
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Gram-Schmidt Orthogonalization
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Incremental Error
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Therefore, basis function i contributes the following to the 
squared value:
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OLS Algorithm
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First Step (k = 1):
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Stopping Criteria
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To convert to original weights:



17

28

Competitive Learning for First Layer

• Cluster the input space using a competitive layer (or 
Feature Map).

• Use the cluster centers as basis function centers.
• The bias can be computed from the variation in each 

cluster:
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Backpropagation
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