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Probability Estimation
Case Study:

Molecular Dynamics
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Carbon Vapor Deposition (CVD)

• A carbon dimer is projected toward a diamond 
substrate. 

• We will assume that the dimer can react with the 
substrate in one of three ways:
– chemisorption (the atoms in the dimer become bound to the 

substrate), 
– scattering (the atoms bounce off the substrate), 
– desorption (the atoms become bound to the substrate for a period 

of time, but are then released).
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Variable Definitions

• Impact parameter b is the distance between the location of the central atom and the 
point of intersection of the initial velocity vector and the diamond surface (the 
origin of the axes). 

• Angle  represents the angle between the x axis and the line from the origin to the 
central atom.

• Black circle represents the carbon dimer, 
• Directed line represents the direction of the 

initial velocity vector. 
• Blue star represents the location of the 

central carbon atom in the diamond 
substrate. 

• Angle  denotes the angle of incidence, i.e., 
the angle between the direction of the 
initial velocity vector of the carbon dimer 
and the perpendicular on the surface (the z
direction).
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Neural Network
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trans - translational velocity of the C2 dimer

rot - rotational velocity of the C2 dimer

PCNN(p) - NN prediction of chemisorption probability

PSNN(p) - NN prediction of scattering probability

PDNN(p) - NN prediction of desorption probability
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Monte Carlo Data Collection

• Data for training the neural network are obtained by molecular dynamics 
(MD) simulations, where the motion of atoms and molecules in a material 
under a given force are simulated, using known laws of physics to 
calculate the forces on individual atoms

• We use a total of 324 atoms to model the CVD system. Out of these, 282 
atoms of diamond substrate are used to model the crystalline face with 40 
atoms of hydrogen on the top layer of the diamond surface, and 2 atoms 
in the C2 dimer.

• The term Monte Carlo refers to the set of simulations that are obtained by 
setting a number of the variables to random values for each trajectory. We 
refer to the simulation of a single trajectory as an MD simulation, since 
the principles of molecular dynamics are used to perform the 
computations.
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Training Data
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The targets are obtained by estimating the probabilities of chemisorption, 
scattering or desorption from the Monte Carlo trials:

where NX is the number of MD trajectories that resulted in reaction X, and NT
is the total number of MD trajectories computed in the Monte Carlo trials.
Since we do not know the true underlying reaction probabilities, we use the 
estimates obtained from the Monte Carlo trials as target outputs for the neural 
network. We can think of these estimates as noisy versions of the true 
probabilities.

2000 different  input/target pairs were generated. Of these, 70% were 
randomly selected for training, 15% for validation, and 15% for testing. For 
each trajectory, the p were generated randomly, using physically-appropriate 
distributions for each variable. A total of 50 different trajectories were run to 
obtain each estimated probability. This means that 2000x50 trajectories were 
run to create the entire data set.
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Network Architecture

Tan-Sigmoid Layer Softmax Layer

a tansig W p b
1 1 1
= ( + ) a softmax W a b

2 2 1 2
= ( + )

S
1
x 1 3 x 1

S
1
x 1 3 x 1

S
1
x 1 3 x 1

5 x 1

S
1
x 5 3 x S

1

S
1

3

n
1

n
2

p
1

a
1

a
2

W
1

W
2

b
1

b
21 1

5

Inputs
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Softmax Transfer Function
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Training and Validation Performance

Training RMSE Validation RMSE
(p) 0.0496 0.0493
(p) 0.0634 0.0659
(p) 0.0586 0.0604

S1 = 10

Training RMSE Validation RMSE
(p) 0.0634 0.0627
(p) 0.0669 0.0704
(p) 0.0617 0.0618

S1 = 2

Training RMSE Validation RMSE
(p) 0.0432 0.0444
(p) 0.0603 0.0643
(p) 0.0569 0.0595

S1 = 20
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Multiple Initial Conditions

3.046e-003 2.953e-003 3.031e-003 3.105e-003 3.050e-003

• Final validation MSE for five different training runs. 
• All of the errors are similar, so we have reached a 

global minimum at each run. 
• If one error was significantly lower than the others, 

then we would use the weights that obtained the lowest 
error.
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Output vs Target Scatter Plots
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Statistical Error in PMCX
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Outputs vs Targets for NT=500
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Reaction Prob. vs Impact Parameter
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